WO2020259094A1 - 传感器用的led校准光源和灯具 - Google Patents
传感器用的led校准光源和灯具 Download PDFInfo
- Publication number
- WO2020259094A1 WO2020259094A1 PCT/CN2020/089166 CN2020089166W WO2020259094A1 WO 2020259094 A1 WO2020259094 A1 WO 2020259094A1 CN 2020089166 W CN2020089166 W CN 2020089166W WO 2020259094 A1 WO2020259094 A1 WO 2020259094A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light source
- infrared
- spectrum
- peak wavelength
- light unit
- Prior art date
Links
- 238000001228 spectrum Methods 0.000 claims abstract description 75
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 41
- 238000002329 infrared spectrum Methods 0.000 claims description 22
- 239000000843 powder Substances 0.000 claims description 17
- 239000011324 bead Substances 0.000 claims description 4
- 229910052736 halogen Inorganic materials 0.000 abstract description 9
- 150000002367 halogens Chemical class 0.000 abstract description 8
- 230000003287 optical effect Effects 0.000 abstract description 7
- 230000003595 spectral effect Effects 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 7
- 230000005284 excitation Effects 0.000 description 6
- 238000012360 testing method Methods 0.000 description 3
- 102100032047 Alsin Human genes 0.000 description 2
- 101710187109 Alsin Proteins 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012937 correction Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/02—Details
- G01J1/08—Arrangements of light sources specially adapted for photometry standard sources, also using luminescent or radioactive material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/02—Details
- G01J1/0295—Constructional arrangements for removing other types of optical noise or for performing calibration
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
- H01L33/501—Wavelength conversion elements characterised by the materials, e.g. binder
- H01L33/502—Wavelength conversion materials
- H01L33/504—Elements with two or more wavelength conversion materials
Definitions
- the invention belongs to the technical field of semiconductor luminescence, and specifically relates to an LED calibration light source and a lamp for sensors.
- the ambient light sensor uses the human eye method to detect brightness, and their system adapts to ambient light just like the human eye under any circumstances. Smart sensors such as ambient light sensors can predict indoor and outdoor ambient light and make corresponding feedback and corrections. To realize these functions, an intelligent calibration light source is required.
- the calibration light source has certain requirements on the spectral range, spectral shape and optical power.
- the light source is best to be continuous and smooth in the 380-1000nm spectrum, and the spectral shape is as similar as possible to natural light.
- the existing white light full spectrum technology can meet the requirements in the 400-700nm spectral range, but it is difficult to achieve in the ultraviolet and infrared light regions.
- the light source of the sensor usually adopts a halogen light source.
- the cost of the halogen light source is relatively expensive and the spectrum is not easy to control.
- the use of an LED light source to replace the halogen light source has a narrow infrared light range, poor continuity and poor spectral consistency, which is not suitable for industry Environmental sensor calibration.
- the purpose of the present invention is to overcome the above-mentioned shortcomings of the prior art and provide an LED calibration light source and lamp for sensors, aiming to solve the problem that the LED light source of the existing sensor has a narrow infrared light range, poor continuity, and consistency with natural light Inferior, leading to technical problems with unsatisfactory calibration results.
- One aspect of the present invention provides an LED calibration light source for sensors, including an ultraviolet light unit, a visible light unit, an infrared light unit and a control unit; the spectrum of the ultraviolet light unit is continuous in the range of 380-420nm, and the spectrum of the visible light unit Continuous in the range of 420-780nm, the spectrum of the infrared light unit is continuous in the range of 780-1000nm, the control unit controls the ultraviolet light unit, the visible light unit and the infrared light unit to emit light, so that the LED calibration light source spectrum Continuous in the range of 380-1000nm.
- the present invention provides an LED calibration light source applied to a sensor.
- the LED calibration light source includes an ultraviolet light unit, a visible light unit, an infrared light unit and a control unit, and the ultraviolet light unit, visible light unit and infrared light unit with continuous spectrum are controlled by the control unit It emits light, so that the spectrum of the LED calibration light source can be continuous and half-wave wide in the range of 380-1000nm; the spectrum of the LED calibration light source is in the range of 380-1000nm and the spectral shape of the solar spectrum of the same color temperature is similar, which can replace the existing sensor
- the halogen light source is used, and the infrared light range of the LED calibration light source is wide, good continuity, and close to the natural light spectrum, suitable for industrial environmental sensor calibration, and has a good application prospect in sensors.
- Another aspect of the present invention provides a lamp which includes the LED calibration light source for the sensor of the present invention.
- the lamp provided by the present invention includes the unique LED calibration light source of the present invention.
- the spectrum of the LED calibration light source is similar to the spectrum shape of the solar spectrum of the same color temperature in the range of 380-1000nm, which can replace the halogen light source for the existing sensor, and the LED calibration light source
- the infrared light of the light source has a wide range and good continuity, which is close to the natural light spectrum, suitable for sensor calibration in industrial environments, and has a good application prospect in sensors.
- Fig. 1 is a full spectrum diagram of the LED calibration light source modulation of embodiment 1 of the present invention
- Fig. 2 is a full spectrum diagram of the LED calibration light source modulation of embodiment 4 of the present invention.
- first”, “second”, “third”, etc. are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first”, “second”, and “third” may explicitly or implicitly include one or more of these features.
- “plurality” or “plurality” means two or more, unless otherwise specifically defined.
- an embodiment of the present invention provides an LED calibration light source for a sensor, including an ultraviolet light unit, a visible light unit, an infrared light unit, and a control unit; the spectrum of the ultraviolet light unit is continuous in the range of 380-420 nm, and The spectrum of the visible light unit is continuous in the range of 420-780nm, and the spectrum of the infrared light unit is continuous in the range of 780-1000nm.
- the control unit controls the ultraviolet light unit, the visible light unit and the infrared light unit to emit light, so that the LED
- the spectrum of the calibration light source is continuous in the range of 380-1000nm.
- the embodiment of the present invention provides an LED calibration light source applied to a sensor.
- the LED calibration light source includes an ultraviolet light unit, a visible light unit, an infrared light unit, and a control unit.
- the control unit controls the ultraviolet light unit, the visible light unit and the infrared light unit with continuous spectrum.
- the light unit emits light, so that the spectrum of the LED calibration light source can be continuous and half-wave wide in the range of 380-1000nm; the spectrum of the LED calibration light source is similar to that of the solar spectrum of the same color temperature in the range of 380-1000nm, which can replace the current
- There is a halogen light source for the sensor and the infrared light range of the LED calibration light source is wide, good continuity, and close to the natural light spectrum, suitable for industrial environment sensor calibration, and has a good application prospect in sensors.
- control circuits are used to control the current to control the spectral shape of each light source of the ultraviolet unit, the visible light unit, and the infrared light-emitting unit, so that different spectra can be changed to adapt to different environments, and the LED spectrum can be close to the natural spectrum and continuous Adjustable.
- the LED calibration light source includes a plurality of the control units, and the plurality of control units independently or in combination regulate the spectrum of the LED calibration light source in the range of 380-1000 nm.
- the LED calibration light source includes a plurality of continuous ultraviolet light units, visible light units and infrared light units, and the multiple control units can independently or in combination adjust the LED calibration light source to be continuous in the range of 380-1000 nm.
- the ultraviolet light unit includes: a first ultraviolet light source with a peak wavelength of 390-395nm, a second ultraviolet light source with a peak wavelength of 400-405nm, and a third ultraviolet light source with a peak wavelength of 410-415nm; specifically Ground, the first ultraviolet light source is an LED chip with a peak wavelength of 390-395nm, the second ultraviolet light source is an LED chip with a peak wavelength of 400-405nm, and the third ultraviolet light source is an LED chip with a peak wavelength of 410-415nm.
- the three light sources of the unit are all packaged with LED chips, with white glue and no phosphor.
- the spectra of ultraviolet light sources with multiple bands are superimposed on each other to realize the continuity and controllability of the spectra.
- the infrared light unit includes a blue chip and infrared phosphors excited by the blue chip.
- the infrared phosphor in the infrared light unit includes a first infrared powder with a peak wavelength of 710-730 nm, a second infrared powder with a peak wavelength of 820-850 nm, and a third infrared powder with a peak wavelength of 900-950 nm.
- the half-peak width of the three infrared powders is relatively wide, and the coordination of the three infrared powders enables the LED calibration light source to be continuously adjustable in the infrared part and has a wide wavelength range.
- the first infrared powder is Lu 3 Al 5 O 12 :Cr 3+ , Ce 3+ with a peak wavelength of 710 nm
- the second infrared powder is (Y, Zn) 3 (Al ,Ga,Ge) 5 O 12 :Cr 3+ , Ce 3+
- the third infrared powder is YVO 4 :Bi 3+ , Yb 3+ with a peak wavelength of 900-950 nm.
- the above three infrared powders adopt different chemical structures and chemical formulas respectively, and their structure stability is good and the luminous efficiency is high.
- the infrared light unit may also include one or more LED lamp beads to achieve spectral superposition.
- the spectrum of the infrared light unit is superimposed by the first infrared spectrum with a peak wavelength of 710-730nm, a second infrared spectrum with a peak wavelength of 820-850nm and a third infrared spectrum with a peak wavelength of 900-950nm. to make.
- the first infrared spectrum with a peak wavelength of 710-730nm is formed by the first infrared phosphor with a peak wavelength of 710nm Lu 3 Al 5 O 12 :Cr 3+ and Ce 3+ excited by the blue chip, and the peak wavelength is at 820-
- the second infrared spectrum of 850nm is formed by the second infrared phosphor of (Y,Zn) 3 (Al,Ga,Ge) 5 O 12 :Cr 3+ ,Ce 3+ with a peak wavelength of 820nm excited by the blue chip, and the peak wavelength is at
- the third infrared spectrum of 900-950nm is formed by the third infrared phosphor of YVO 4 :Bi 3+ , Yb 3+ whose peak wavelength is 900-950nm excited by the blue chip.
- the visible light unit includes a plurality of coupled broadband continuous-spectrum lamp beads, so that the spectrum is continuous in the range of 420-780 nm.
- the ultraviolet chip with the peak wavelength at 350-390nm excites the blue phosphor to achieve monochromatic blue light (the monochromatic blue peak wavelength is at 440-470nm) or directly the blue chip with the peak wavelength at 440-470nm
- the blue chip with the peak wavelength at 440-460nm excites the green phosphor to achieve monochromatic green light (the peak wavelength of the monochromatic light is at 500-530nm)
- the blue chip with the peak wavelength at 440-460nm The orange phosphor is excited to achieve monochromatic orange light (the peak wavelength of the monochromatic light is at 580-610nm)
- the blue chip with the peak wavelength at 440-460nm excites the red phosphor to achieve monochromatic red light (the single The peak wavelength of red light of colored light is located at 640-660nm).
- the types of the blue phosphor in (1), the green phosphor in (2), the orange phosphor in (3), and the red phosphor in (4) above are respectively: Sr 5 (PO 4 ) 3 Cl:Eu 2+ , Lu 3 (Al,Ga) 5 O 12 :Ce 3+ , SrAlSiN 3 :Eu 2+ , (Sr,Ca)AlSiN 3 :Eu 2+ .
- the visible light unit includes the above-mentioned (1) monochromatic light blue light, (2) monochromatic light green light, (3) monochromatic light orange light, (4) monochromatic light red light, that is, four coupled broadband continuous spectrum lamp beads, Achieve continuous spectrum in the range of 420-780nm.
- the visible light unit includes a blue chip and green phosphor and red phosphor excited by the blue chip, so as to achieve a continuous spectrum in the range of 420-780 nm.
- the blue chip is a blue chip with a peak wavelength of 440-460nm
- the green phosphor excited by the blue chip is Lu 3 (Al,Ga) 5 O 12 :Ce 3+
- a red phosphor It is (Sr,Ca)AlSiN 3 :Eu 2+ .
- an embodiment of the present invention also provides a lamp, which includes the LED calibration light source for the sensor described above in the embodiment of the present invention.
- the lamp provided in the embodiment of the present invention includes the unique LED calibration light source of the embodiment of the present invention.
- the spectrum of the LED calibration light source is similar to the spectral shape of the solar spectrum of the same color temperature in the range of 380-1000nm, which can replace the halogen light source for the existing sensor.
- the LED calibration light source has a wide range of infrared light, good continuity, and is close to the natural light spectrum, which is suitable for sensor calibration in industrial environments and has a good application prospect in sensors.
- the LED calibration light source includes an ultraviolet light unit, a visible light unit, an infrared light unit and a control unit;
- the ultraviolet light unit includes a first ultraviolet light source with a peak wavelength of 390-395nm, a second ultraviolet light source with a peak wavelength of 400-405nm, and a third ultraviolet light source with a peak wavelength of 410-415nm; the spectrum of the ultraviolet light unit is 380-420nm Continuously adjustable within the range;
- the visible light unit includes a 450nm blue chip and a green phosphor and a red phosphor excited by the blue chip, so as to realize the continuous full spectrum of visible light in the range of 420-780nm;
- the spectrum of the infrared light unit is formed by the first infrared spectrum with a peak wavelength of 710-730 nm (Lu 3 Al 5 O 12 :Cr 3+ , Ce 3+ with a peak wavelength of 710 nm excited by the blue chip), and a peak wavelength of 820-
- the second infrared spectrum of 850nm (the blue chip excites (Y,Zn) 3 (Al,Ga,Ge) 5 O 12 :Cr 3+ ,Ce 3+ with a peak wavelength of 820nm) and the second infrared spectrum with a peak wavelength of 900-950nm
- Three infrared spectra formed by YVO 4 :Bi 3+ , Yb 3+ third infrared phosphor with a peak wavelength of 900nm for the blue chip) are superimposed, and they are continuous in the range of 780-1000nm.
- the LED calibration light source also includes 7 control units to control the ultraviolet light unit, the visible light unit and the infrared light unit to emit light so that the spectrum of the LED calibration light source is continuous in the range of 380-1000 nm.
- Figure 1 shows the full spectrum of the light source regulated by the LED calibration light source.
- the LED calibration light source includes an ultraviolet light unit, a visible light unit, an infrared light unit and a control unit;
- the ultraviolet light unit includes a first ultraviolet light source with a peak wavelength of 390-395nm, a second ultraviolet light source with a peak wavelength of 400-405nm, and a third ultraviolet light source with a peak wavelength of 410-415nm; the spectrum of the ultraviolet light unit is 380-420nm Continuously adjustable within the range;
- the visible light unit includes a 450nm blue chip and a green phosphor and a red phosphor excited by the blue chip, so as to realize the continuous full spectrum of visible light in the range of 420-780nm;
- the spectrum of the infrared light unit is composed of the first infrared spectrum with a peak wavelength of 710-730nm (the first infrared phosphor with a peak wavelength of 730nm excited by the blue chip) and the second infrared spectrum (the blue chip with a peak wavelength of 820-850nm)
- the second infrared phosphor with an excitation peak wavelength of 850nm) and the third infrared spectrum with a peak wavelength of 900-950nm (the third infrared phosphor with a blue chip excitation peak wavelength of 950nm) are superimposed, in the range of 780-1000nm Within continuous.
- the LED calibration light source also includes 5 control units to control the ultraviolet light unit, the visible light unit and the infrared light unit to emit light so that the spectrum of the LED calibration light source is continuous in the range of 380-1000 nm.
- the LED calibration light source includes an ultraviolet light unit, a visible light unit, an infrared light unit and a control unit;
- the ultraviolet light unit includes a first ultraviolet light source with a peak wavelength of 390-395nm, a second ultraviolet light source with a peak wavelength of 400-405nm, and a third ultraviolet light source with a peak wavelength of 410-415nm; the spectrum of the ultraviolet light unit is 380-420nm Continuously adjustable within the range;
- the visible light unit includes a 450nm blue chip and a green phosphor and a red phosphor excited by the blue chip, so as to realize the continuous full spectrum of visible light in the range of 420-780nm;
- the spectrum of the infrared light unit consists of the first infrared spectrum with a peak wavelength of 710-730nm (the first infrared phosphor with a peak wavelength of 720nm excited by the blue chip) and the second infrared spectrum (the blue chip with a peak wavelength of 820-850nm)
- the third infrared spectrum with a peak wavelength of 900-950nm (the third infrared phosphor with a blue chip excitation peak wavelength of 925nm) are superimposed, in the range of 780-1000nm Within continuous.
- the LED calibration light source also includes three control units to control the ultraviolet light unit, the visible light unit and the infrared light unit to emit light so that the spectrum of the LED calibration light source is continuous in the range of 380-1000 nm.
- the LED calibration light source includes an ultraviolet light unit, a visible light unit, an infrared light unit and a control unit;
- the ultraviolet light unit includes a first ultraviolet light source with a peak wavelength of 390-395nm, a second ultraviolet light source with a peak wavelength of 400-405nm, and a third ultraviolet light source with a peak wavelength of 410-415nm; the spectrum of the ultraviolet light unit is 380-420nm Continuously adjustable within the range;
- the visible light unit includes: (1) an ultraviolet chip with a peak wavelength of 350-390nm excites blue phosphor to achieve monochromatic blue light, (2) a blue chip with a peak wavelength of 440-460nm excites green phosphor to achieve monochromatic light Green light, (3) a blue chip with a peak wavelength of 440-460nm excites orange phosphor to achieve monochromatic orange light, (4) a blue chip with a peak wavelength of 440-460nm excites red phosphor to achieve monochromatic red light; Four coupled broadband continuous spectra to achieve continuous visible light spectrum in the range of 420-780nm;
- the spectrum of the infrared light unit consists of the first infrared spectrum with a peak wavelength of 710-730nm (the first infrared phosphor with a peak wavelength of 720nm excited by the blue chip) and the second infrared spectrum (the blue chip with a peak wavelength of 820-850nm)
- the third infrared spectrum with a peak wavelength of 900-950nm (the third infrared phosphor with a blue chip excitation peak wavelength of 925nm) are superimposed, in the range of 780-1000nm Within continuous.
- the LED calibration light source also includes 7 control units to control the ultraviolet light unit, the visible light unit and the infrared light unit to emit light so that the spectrum of the LED calibration light source is continuous in the range of 380-1000 nm.
- the spectrum of the LED calibration light source is shown in Figure 2.
- a halogen light source for sensors The specific power and other photoelectric parameters are the same as the embodiment.
- An LED calibration light source for a sensor includes an ultraviolet light unit, a visible light unit, an infrared light unit, and a control unit; specifically, the ultraviolet light unit, the visible light unit and the infrared unit directly use an ultraviolet chip, a blue light chip, a green light chip, The red light chip and the infrared chip are coupled and made. Each unit is controlled by multiple control units.
- the LED calibration light source for the sensor includes an ultraviolet light unit, a visible light unit, an infrared light unit, and a control unit; specifically, the ultraviolet unit and the visible light unit are the same as in Example 1, and the infrared light unit adopts 740nm, 780nm, 820nm, 860nm, 900nm, 940nm, 980nm chips are coupled together, and they are controlled by multiple units.
- test data of the LED calibration light source of the above embodiment and the comparative example are shown in Table 1 below:
- Example 1 it is good very good low
- Example 2 it is good it is good low
- Example 3 it is good in low
- Example 4 it is good very good low
- Comparative example 1 it is good difference very high Comparative example 2 difference difference high Comparative example 3 in in high
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Led Device Packages (AREA)
Abstract
一种传感器用的LED校准光源和灯具。LED校准光源,包括紫外光单元、可见光单元、红外光单元和控制单元;紫外光单元的光谱在380-420nm范围内连续,可见光单元的光谱在420-780nm范围内连续,红外光单元的光谱在780-1000nm范围内连续,控制单元控制紫外光单元、可见光单元和红外光单元发光,使LED校准光源的光谱在380-1000nm范围内连续。LED校准光源的光谱在380-1000nm范围内和相同色温太阳光谱的光谱形状类似,能够替代现有传感器用卤素灯光源,在传感器中具有很好的应用前景。
Description
本发明属于半导体发光技术领域,具体涉及一种传感器用的LED校准光源和灯具。
环境光传感器是用人眼的方法来检测亮度,它们的系统无论在什么情况下都如同人眼一样适应环境光。环境光传感器等智能传感器可以对室内、室外环境光预测并做相应的反馈和修正,而要实现这些功能需要有一个智能的校准光源。校准光源对光谱范围、光谱形状和光功率都有一定的要求,光源最好在380-1000nm光谱连续平滑,且光谱形状和自然光尽可能相似。现有白光全光谱技术在400-700nm光谱范围内能够达到要求,但是在紫外和红外光区域很难实现。
目前传感器的光源通常采用卤素灯光源,该卤素灯光源成本比较贵且光谱不易调控,而采用LED光源替代卤素灯光源在红外光范围光谱较窄、连续性差且光谱一致性较差,不适宜产业化环境传感器校准。
因此,现有技术有待改进。
本发明的目的在于克服现有技术的上述不足,提供一种传感器用的LED校准光源和灯具,旨在解决现有传感器的LED光源在红外光范围光谱较窄、连续性差,与自然光光谱一致性较差,从而导致校准效果不理想的技术问题。
为实现上述发明目的,本发明采用的技术方案如下:
本发明一方面提供一种传感器用的LED校准光源,包括紫外光单元、可见光单元、红外光单元和控制单元;所述紫外光单元的光谱在380-420nm范围内连续,所述可见光单元的光谱在420-780nm范围内连续,所述红外光单元的光谱在780-1000nm范围内连续,所述控制单元控制所述紫外光单元、可见光单元和红外光单元发光,使所述LED校准光源的光谱在380-1000nm范围内连续。
本发明提供一种应用于传感器的LED校准光源,该LED校准光源包括紫外光单元、可见光单元、红外光单元和控制单元,通过该控制单元控制光谱连续的紫外光单元、可见光单元和红外光单元发光,从而可以实现LED校准光源的光谱在380-1000nm范围内连续且半波较宽;该LED校准光源的光谱在380-1000nm范围内和相同色温太阳光谱的光谱形状类似,能够替代现有传感器用卤素灯光源,而且该LED校准光源的红外光范围宽、连续性好,与自然光光谱接近,适合产业化环境传感器校准,在传感器中具有很好的应用前景。
本发明另一方面提供一种灯具,所述灯具包括本发明所述的传感器用的LED校准光源。
本发明提供的灯具包括本发明特有的LED校准光源,该LED校准光源的光谱在380-1000nm范围内和相同色温太阳光谱的光谱形状类似,能够替代现有传感器用卤素灯光源,而且该LED校准光源的红外光范围宽、连续性好,与自然光光谱接近,适合产业化环境传感器校准,在传感器中具有很好的应用前景。
图1为本发明实施例1的LED校准光源调制的全光谱图;
图2为本发明实施例4的LED校准光源调制的全光谱图。
为了使本发明要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
术语“第一”、“第二”、 “第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、 “第三”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”或“多种”的含义是两个或两个以上,除非另有明确具体的限定。
一方面,本发明实施例提供了一种传感器用的LED校准光源,包括紫外光单元、可见光单元、红外光单元和控制单元;所述紫外光单元的光谱在380-420nm范围内连续,所述可见光单元的光谱在420-780nm范围内连续,所述红外光单元的光谱在780-1000nm范围内连续,所述控制单元控制所述紫外光单元、可见光单元和红外光单元发光,使所述LED校准光源的光谱在380-1000nm范围内连续。
本发明实施例提供一种应用于传感器的LED校准光源,该LED校准光源包括紫外光单元、可见光单元、红外光单元和控制单元,通过该控制单元控制光谱连续的紫外光单元、可见光单元和红外光单元发光,从而可以实现LED校准光源的光谱在380-1000nm范围内连续且半波较宽;该LED校准光源的光谱在380-1000nm范围内和相同色温太阳光谱的光谱形状类似,能够替代现有传感器用卤素灯光源,而且该LED校准光源的红外光范围宽、连续性好,与自然光光谱接近,适合产业化环境传感器校准,在传感器中具有很好的应用前景。
具体地,采用多种控制电路通过控制电流,分别控制紫外单元、可见光单元及红外发光单元的各个光源的光谱形状,从而能够变化不同的光谱适应不同环境,能达到LED光谱接近自然光谱,且连续可调。
在一个实施例中,所述LED校准光源包括多个所述控制单元,该多个控制单元独立或者组合调控所述LED校准光源的光谱在380-1000nm范围内。具体地,LED校准光源包括多个连续的紫外光单元、可见光单元和红外光单元,多个控制单元独立或者组合能够调控LED校准光源在380-1000nm范围内连续。
在一个实施例中,所述紫外光单元包括:峰值波长位于390-395nm的第一紫外光源、峰值波长位于400-405nm的第二紫外光源以及峰值波长位于410-415nm的第三紫外光源;具体地,第一紫外光源为峰值波长位于390-395nm的LED芯片,第二紫外光源为峰值波长位于400-405nm的LED芯片,第三紫外光源为峰值波长位于410-415nm的LED芯片,该紫外光单元的三个光源均采用LED芯片封装,点白胶,无荧光粉。采用多个波段的紫外光源的光谱相互叠加从而能实现光谱的连续性和可调控性。
在一个实施例中,所述红外光单元包括蓝光芯片和被所述蓝光芯片激发的红外荧光粉。
优选地,所述红外光单元中的红外荧光粉包括峰值波长位于710-730nm的第一红外粉、峰值波长位于820-850nm的第二红外粉和峰值波长位于900-950nm的第三红外粉。该三个红外粉的半峰宽较宽,且三个红外粉协同能够使得该LED校准光源在红外部分连续可调,波长范围广。具体地,所述第一红外粉是峰值波长为710nm的Lu
3Al
5O
12:Cr
3+,Ce
3+,所述第二红外粉是峰值波长为820nm的(Y,Zn)
3(Al,Ga,Ge)
5O
12:Cr
3+,Ce
3+,所述第三红外粉是峰值波长为900-950nm的YVO
4:Bi
3+,
Yb
3+。以上三种红外粉分别采用不同的化学结构和化学式,其结构稳定性较好且发光效率高。
所述红外光单元还可以是包括一种或多种LED灯珠光谱叠加实现。在一个实施例中,所述红外光单元的光谱由峰值波长位于710-730nm第一红外光谱、峰值波长位于820-850nm的第二红外光谱和峰值波长位于900-950nm的第三红外光谱叠加而成。具体地,峰值波长位于710-730nm第一红外光谱由蓝光芯片激发的峰值波长为710nm的Lu
3Al
5O
12:Cr
3+,Ce
3+的第一红外荧光粉形成,峰值波长位于820-850nm的第二红外光谱由蓝光芯片激发峰值波长为820nm的(Y,Zn)
3(Al,Ga,Ge)
5O
12:Cr
3+,Ce
3+的第二红外荧光粉形成,峰值波长位于900-950nm的第三红外光谱由蓝光芯片激发峰值波长为900-950nm的YVO
4:Bi
3+,
Yb
3+的第三红外荧光粉形成。
在一个实施例中,所述可见光单元包括多个耦合的宽带连续光谱灯珠,实现光谱在420-780nm范围内连续。具体包括:(1)峰值波长位于350-390nm的紫外芯片激发蓝色荧光粉实现单色光蓝光(该单色光蓝光峰值波长位于440-470nm)或者直接是峰值波长位于440-470nm的蓝光芯片,(2)峰值波长位于440-460nm的蓝光芯片激发绿色荧光粉实现单色光绿光(该单色光绿光峰值波长位于500-530nm),(3)峰值波长位于440-460nm的蓝光芯片激发橙色荧光粉实现单色光橙光(该单色光橙光峰值波长位于580-610nm),(4)峰值波长位于440-460nm的蓝光芯片激发红色荧光粉实现单色光红光(该单色光红光峰值波长位于640-660nm)。进一步地,上述(1)中的所述蓝色荧光粉、上述(2)中的绿色荧光粉、上述(3)中的橙色荧光粉和上述(4)中的红色荧光粉的种类分别为:Sr
5(PO
4)
3Cl:Eu
2+、Lu
3(Al,Ga)
5O
12:Ce
3+、SrAlSiN
3:Eu
2+、(Sr,Ca)AlSiN
3:Eu
2+。
可见光单元包括上述(1)单色光蓝光、(2)单色光绿光、(3)单色光橙光、(4)单色光红光,即四个耦合的宽带连续光谱灯珠,实现光谱在420-780nm范围内连续。
在另一个实施例中,所述可见光单元包括蓝光芯片和被所述蓝光芯片激发的绿色荧光粉和红色荧光粉,以实现光谱在420-780nm范围内连续。具体地,所述可见光单元中,蓝光芯片为是峰值波长为440-460nm的蓝光芯片,该蓝光芯片激发的绿色荧光粉为Lu
3(Al,Ga)
5O
12:Ce
3+,红色荧光粉为(Sr,Ca)AlSiN
3:Eu
2+。
另一方面,本发明实施例还提供了一种灯具,所述灯具包括本发明实施例上述所述的传感器用的LED校准光源。
本发明实施例提供的灯具包括本发明实施例特有的LED校准光源,该LED校准光源的光谱在380-1000nm范围内和相同色温太阳光谱的光谱形状类似,能够替代现有传感器用卤素灯光源,而且该LED校准光源的红外光范围宽、连续性好,与自然光光谱接近,适合产业化环境传感器校准,在传感器中具有很好的应用前景。
本发明先后进行过多次试验,现举一部分试验结果作为参考对发明进行进一步详细描述,下面结合具体实施例进行详细说明。
实施例1
一种传感器用的LED校准光源。该LED校准光源,包括紫外光单元、可见光单元、红外光单元和控制单元;
所述紫外光单元包括峰值波长位于390-395nm的第一紫外光源、峰值波长位于400-405nm的第二紫外光源以及410-415nm的第三紫外光源;所述紫外光单元的光谱在380-420nm范围内连续可调;
所述可见光单元的包括450nm蓝光芯片和被所述蓝光芯片激发的绿色荧光粉和红色荧光粉,以实现可见光全光谱在420-780nm范围内连续;
所述红外光单元的光谱由峰值波长位于710-730nm第一红外光谱(蓝光芯片激发的峰值波长为710nm的Lu
3Al
5O
12:Cr
3+,Ce
3+形成)、峰值波长位于820-850nm的第二红外光谱(蓝光芯片激发峰值波长为820nm的(Y,Zn)
3(Al,Ga,Ge)
5O
12:Cr
3+,Ce
3+形成)和峰值波长位于900-950nm的第三红外光谱(蓝光芯片激发峰值波长为900nm的YVO
4:Bi
3+,
Yb
3+的第三红外荧光粉形成)叠加而成,在780-1000nm范围内连续。
该LED校准光源还包括7个控制单元控制所述紫外光单元、可见光单元和红外光单元发光,使所述LED校准光源的光谱在380-1000nm范围内连续。图1为该LED校准光源调控的光源全光谱。
实施例2
一种传感器用的LED校准光源。该LED校准光源,包括紫外光单元、可见光单元、红外光单元和控制单元;
所述紫外光单元包括峰值波长位于390-395nm的第一紫外光源、峰值波长位于400-405nm的第二紫外光源以及410-415nm的第三紫外光源;所述紫外光单元的光谱在380-420nm范围内连续可调;
所述可见光单元的包括450nm蓝光芯片和被所述蓝光芯片激发的绿色荧光粉和红色荧光粉,以实现可见光全光谱在420-780nm范围内连续;
所述红外光单元的光谱由峰值波长位于710-730nm第一红外光谱(蓝光芯片激发的峰值波长为730nm的第一红外荧光粉形成)、峰值波长位于820-850nm的第二红外光谱(蓝光芯片激发峰值波长为850nm的第二红外荧光粉形成)和峰值波长位于900-950nm的第三红外光谱(蓝光芯片激发峰值波长为950nm的第三红外荧光粉形成)叠加而成,在780-1000nm范围内连续。
该LED校准光源还包括5个控制单元控制所述紫外光单元、可见光单元和红外光单元发光,使所述LED校准光源的光谱在380-1000nm范围内连续。
实施例3
一种传感器用的LED校准光源。该LED校准光源,包括紫外光单元、可见光单元、红外光单元和控制单元;
所述紫外光单元包括峰值波长位于390-395nm的第一紫外光源、峰值波长位于400-405nm的第二紫外光源以及410-415nm的第三紫外光源;所述紫外光单元的光谱在380-420nm范围内连续可调;
所述可见光单元的包括450nm蓝光芯片和被所述蓝光芯片激发的绿色荧光粉和红色荧光粉,以实现可见光全光谱在420-780nm范围内连续;
所述红外光单元的光谱由峰值波长位于710-730nm第一红外光谱(蓝光芯片激发的峰值波长为720nm的第一红外荧光粉形成)、峰值波长位于820-850nm的第二红外光谱(蓝光芯片激发峰值波长为835nm的第二红外荧光粉形成)和峰值波长位于900-950nm的第三红外光谱(蓝光芯片激发峰值波长为925nm的第三红外荧光粉形成)叠加而成,在780-1000nm范围内连续。
该LED校准光源还包括3个控制单元控制所述紫外光单元、可见光单元和红外光单元发光,使所述LED校准光源的光谱在380-1000nm范围内连续。
实施例4
一种传感器用的LED校准光源。该LED校准光源,包括紫外光单元、可见光单元、红外光单元和控制单元;
所述紫外光单元包括峰值波长位于390-395nm的第一紫外光源、峰值波长位于400-405nm的第二紫外光源以及410-415nm的第三紫外光源;所述紫外光单元的光谱在380-420nm范围内连续可调;
所述可见光单元的包括:(1)峰值波长位于350-390nm的紫外芯片激发蓝色荧光粉实现单色光蓝光,(2)峰值波长位于440-460nm的蓝光芯片激发绿色荧光粉实现单色光绿光,(3)峰值波长位于440-460nm的蓝光芯片激发橙色荧光粉实现单色光橙光,(4)峰值波长位于440-460nm的蓝光芯片激发红色荧光粉实现单色光红光;该四个耦合的宽带连续光谱以实现可见光全光谱在420-780nm范围内连续;
所述红外光单元的光谱由峰值波长位于710-730nm第一红外光谱(蓝光芯片激发的峰值波长为720nm的第一红外荧光粉形成)、峰值波长位于820-850nm的第二红外光谱(蓝光芯片激发峰值波长为835nm的第二红外荧光粉形成)和峰值波长位于900-950nm的第三红外光谱(蓝光芯片激发峰值波长为925nm的第三红外荧光粉形成)叠加而成,在780-1000nm范围内连续。
该LED校准光源还包括7个控制单元控制所述紫外光单元、可见光单元和红外光单元发光,使所述LED校准光源的光谱在380-1000nm范围内连续。该LED校准光源的光谱如图2所示。
对比例1
一种传感器用的卤素灯光源。其具体功率及其它光电参数同实施例一样。
对比例2
一种传感器用的LED校准光源:包括紫外光单元、可见光单元、红外光单元和控制单元;具体的所述紫外光单元、可见光单元和红外单元分别直接采用紫外芯片、蓝光芯片、绿光芯片、红光芯片和红外芯片耦合制成。所述的每一个单元分别采用多个控制单元来控制。
对比例3
传感器用的LED校准光源:包括紫外光单元、可见光单元、红外光单元和控制单元;具体地所述紫外单元和可见光单元与实施例1相同,所述红外光单元分别采用740nm、780nm、820nm、860nm、900nm、940nm、980nm芯片耦合而成,分别采用多个单元来控制。
性能测试
上述实施例和对比例的LED校准光源测试数据如下表1所示:
表1
实例 | 光谱连续性 | 光谱调控性 | 成本 |
实施例1 | 好 | 非常好 | 低 |
实施例2 | 好 | 好 | 低 |
实施例3 | 好 | 中 | 低 |
实施例4 | 好 | 非常好 | 低 |
对比例1 | 好 | 差 | 非常高 |
对比例2 | 差 | 差 | 高 |
对比例3 | 中 | 中 | 高 |
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
Claims (10)
- 一种传感器用的LED校准光源,其特征在于,包括紫外光单元、可见光单元、红外光单元和控制单元;所述紫外光单元的光谱在380-420nm范围内连续,所述可见光单元的光谱在420-780nm范围内连续,所述红外光单元的光谱在780-1000nm范围内连续,所述控制单元控制所述紫外光单元、可见光单元和红外光单元发光,使所述LED校准光源的光谱在380-1000nm范围内连续。
- 如权利要求1所述的传感器用的LED校准光源,其特征在于,所述LED校准光源包括多个所述控制单元,该多个控制单元独立或者组合调控所述LED校准光源的光谱在380-1000nm范围内。
- 如权利要求1所述的传感器用的LED校准光源,其特征在于,所述紫外光单元包括:峰值波长位于390-395nm的第一紫外光源、峰值波长位于400-405nm的第二紫外光源以及峰值波长位于410-415nm的第三紫外光源。
- 如权利要求1所述的传感器用的LED校准光源,其特征在于,所述红外光单元包括蓝光芯片和被所述蓝光芯片激发的红外荧光粉。
- 如权利要求4所述的传感器用的LED校准光源,其特征在于,所述红外光单元中的红外荧光粉包括峰值波长位于710-730nm的第一红外粉、峰值波长位于820-850nm的第二红外粉和峰值波长位于900-950nm的第三红外粉。
- 如权利要求5所述的传感器用的LED校准光源,其特征在于,所述第一红外粉是峰值波长为710nm的Lu 3Al 5O 12:Cr 3+,Ce 3+,所述第二红外粉是峰值波长为820nm的(Y,Zn) 3(Al,Ga,Ge) 5O 12:Cr 3+,Ce 3+,所述第三红外粉是峰值波长为900-950nm的YVO 4:Bi 3+, Yb 3+。
- 如权利要求4所述的传感器用的LED校准光源,其特征在于,所述红外光单元的光谱由峰值波长位于710-730nm第一红外光谱、峰值波长位于820-850nm的第二红外光谱和峰值波长位于900-950nm的第三红外光谱叠加而成。
- 如权利要求1所述的传感器用的LED校准光源,其特征在于,所述可见光单元包括多个耦合的宽带连续光谱灯珠。
- 如权利要求1所述的传感器用的LED校准光源,其特征在于,所述可见光单元包括蓝光芯片和被所述蓝光芯片激发的绿色荧光粉和红色荧光粉,以实现光谱在420-780nm范围内连续。
- 一种灯具,其特征在于,所述灯具包括权利要求1-9任一项所述的传感器用的LED校准光源。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010060279.8A CN111189535B (zh) | 2020-01-19 | 2020-01-19 | 传感器用的led校准光源和灯具 |
CN202010060279.8 | 2020-01-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020259094A1 true WO2020259094A1 (zh) | 2020-12-30 |
Family
ID=70710066
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/089166 WO2020259094A1 (zh) | 2020-01-19 | 2020-05-08 | 传感器用的led校准光源和灯具 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111189535B (zh) |
WO (1) | WO2020259094A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113357614B (zh) * | 2021-06-02 | 2022-06-14 | 旭宇光电(深圳)股份有限公司 | 环境光校准用发光装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201416780Y (zh) * | 2009-06-25 | 2010-03-03 | 李欣洋 | 一种使用具有arton透明基材的光学器件的led光源 |
CN104848059A (zh) * | 2015-04-16 | 2015-08-19 | 北京航空航天大学 | 一种用于光生物学实验的可调光配方的宽光谱led光源 |
CN105042426A (zh) * | 2015-08-12 | 2015-11-11 | 北京航空航天大学 | 一种模拟自然光变换的方法及其光源设备 |
EP2469983B1 (en) * | 2010-12-22 | 2016-03-09 | Tridonic Jennersdorf GmbH | Spectrum for mesopic vision |
CN207097825U (zh) * | 2017-08-08 | 2018-03-13 | 苏州大学 | 一种兼具可见光及近红外oled光源装置 |
CN109103175A (zh) * | 2018-08-17 | 2018-12-28 | 广州市巨宏光电有限公司 | 一种仿太阳光谱led光源 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2805162B1 (en) * | 2012-01-16 | 2018-11-07 | Filmetrics, Inc. | High-lifetime broadband light source for low-power applications |
CN108231979B (zh) * | 2017-01-24 | 2020-03-31 | 江苏博睿光电有限公司 | 一种红外led光源 |
CN107654901A (zh) * | 2017-10-27 | 2018-02-02 | 广东凯西欧照明有限公司 | 一种自然光谱模组 |
CN207349930U (zh) * | 2017-10-27 | 2018-05-11 | 广东凯西欧照明有限公司 | 一种自然光谱模组 |
CN108336208B (zh) * | 2018-01-22 | 2020-04-14 | 暨南大学 | 一种分光光度计用led光源及其制备方法 |
KR101936946B1 (ko) * | 2018-02-19 | 2019-01-11 | 한국화학연구원 | 실내 태양광 자외선 모사 시험 장치 및 이를 이용한 시험 방법 |
CN109860370B (zh) * | 2018-11-26 | 2019-10-29 | 旭宇光电(深圳)股份有限公司 | 全光谱led光源 |
CN210241466U (zh) * | 2019-05-14 | 2020-04-03 | 广东光阳电器有限公司 | 一种全光谱led光源及含有该光源的led灯具 |
-
2020
- 2020-01-19 CN CN202010060279.8A patent/CN111189535B/zh active Active
- 2020-05-08 WO PCT/CN2020/089166 patent/WO2020259094A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201416780Y (zh) * | 2009-06-25 | 2010-03-03 | 李欣洋 | 一种使用具有arton透明基材的光学器件的led光源 |
EP2469983B1 (en) * | 2010-12-22 | 2016-03-09 | Tridonic Jennersdorf GmbH | Spectrum for mesopic vision |
CN104848059A (zh) * | 2015-04-16 | 2015-08-19 | 北京航空航天大学 | 一种用于光生物学实验的可调光配方的宽光谱led光源 |
CN105042426A (zh) * | 2015-08-12 | 2015-11-11 | 北京航空航天大学 | 一种模拟自然光变换的方法及其光源设备 |
CN207097825U (zh) * | 2017-08-08 | 2018-03-13 | 苏州大学 | 一种兼具可见光及近红外oled光源装置 |
CN109103175A (zh) * | 2018-08-17 | 2018-12-28 | 广州市巨宏光电有限公司 | 一种仿太阳光谱led光源 |
Also Published As
Publication number | Publication date |
---|---|
CN111189535A (zh) | 2020-05-22 |
CN111189535B (zh) | 2021-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111180427B (zh) | 一种光谱调光封装结构及其制作方法 | |
US11330686B2 (en) | Cyan enriched white light | |
KR20120093181A (ko) | 광혼합재를 포함하는 고상 조명 디바이스 | |
CN103779346A (zh) | 一种近紫外或紫光激发的led发光装置 | |
CN110212076B (zh) | 一种光源模组及包括该光源模组的照明装置 | |
KR102401586B1 (ko) | 표준광 구현 led 광원 모듈 | |
CN109370593B (zh) | 一种荧光体混合物及其发光装置 | |
WO2020015423A1 (zh) | 全光谱led光源 | |
WO2020107425A1 (zh) | 一种荧光体混合物及其发光装置 | |
CN106870976A (zh) | 一种光源模组及包括该光源模组的照明装置 | |
CN207146291U (zh) | 一种光源模组及包括该光源模组的照明装置 | |
CN106931332A (zh) | 一种光源模组及包括该光源模组的照明装置 | |
EP4151053A1 (en) | Melanopic light system with high cri using cyan direct emitters | |
CN206708776U (zh) | 一种光源模组及包括该光源模组的照明装置 | |
CN106784172A (zh) | Led发光装置的制造方法及led发光装置 | |
WO2020259094A1 (zh) | 传感器用的led校准光源和灯具 | |
US20180343720A1 (en) | Light source circuit and illumination apparatus | |
JP6045727B2 (ja) | 調光可能な発光装置 | |
CN209963086U (zh) | 一种光源模组及包括该光源模组的照明装置 | |
EP2467448B1 (en) | Phosphor blend for an led light source and led light source incorporating same | |
CN116504768A (zh) | 高显色、光谱连续的白光led封装体及发光装置 | |
CN110098304A (zh) | 一种新型发光灯珠与灯具 | |
CN206708775U (zh) | 一种光源模组及包括该光源模组的照明装置 | |
CN115377274A (zh) | 全光谱led光源及灯具 | |
EP3982428B1 (en) | White light source module and lighting device comprising the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20831606 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20831606 Country of ref document: EP Kind code of ref document: A1 |