WO2020259050A1 - 用于油箱的检测方法、装置及服务器 - Google Patents

用于油箱的检测方法、装置及服务器 Download PDF

Info

Publication number
WO2020259050A1
WO2020259050A1 PCT/CN2020/086886 CN2020086886W WO2020259050A1 WO 2020259050 A1 WO2020259050 A1 WO 2020259050A1 CN 2020086886 W CN2020086886 W CN 2020086886W WO 2020259050 A1 WO2020259050 A1 WO 2020259050A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel tank
refueling
shape
constant
satisfied
Prior art date
Application number
PCT/CN2020/086886
Other languages
English (en)
French (fr)
Inventor
黄亮
陈颖弘
刘兆萄
Original Assignee
南京智鹤电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京智鹤电子科技有限公司 filed Critical 南京智鹤电子科技有限公司
Priority to US17/617,316 priority Critical patent/US20220228892A1/en
Priority to EP20833378.1A priority patent/EP3967985A4/en
Publication of WO2020259050A1 publication Critical patent/WO2020259050A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F17/00Methods or apparatus for determining the capacity of containers or cavities, or the volume of solid bodies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B13/00Measuring arrangements characterised by the use of fluids
    • G01B13/16Measuring arrangements characterised by the use of fluids for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F22/00Methods or apparatus for measuring volume of fluids or fluent solid material, not otherwise provided for
    • G01F22/02Methods or apparatus for measuring volume of fluids or fluent solid material, not otherwise provided for involving measurement of pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm

Definitions

  • This application relates to the field of fuel tank calibration, and in particular to a detection method, device and server for fuel tanks.
  • the inspection of the fuel tank includes: oil level, oil level status, whether to refuel, etc.
  • the main purpose of this application is to provide a detection method, device and server for fuel tanks to solve the problem of poor fuel tank metering management caused by the inability to detect different types of fuel tank shapes.
  • a detection method for a fuel tank is provided.
  • the detection method for the fuel tank according to the present application includes: receiving the result of judging whether the constant-speed refueling condition is satisfied; if it is judged that the constant-speed refueling condition is satisfied, receiving the detection parameters collected from the refueling terminal through the sensor according to the preset frequency; The detection parameters are input into a preset shape judgment model to judge the shape of the staged fuel tank.
  • receiving the detection parameters collected from the refueling terminal through the sensor at a preset frequency includes: a receiving unit configured to receive the parameters of the liquid level pressure collected from the refueling terminal through the sensor at the preset frequency Collection; storage unit, used to record and save the parameter collection of liquid level pressure.
  • inputting the detection parameters into a preset shape judgment model and determining the shape of the staged fuel tank further includes: storing the staged fuel tank shape; and estimating the shape of the fuel tank based on the staged fuel tank shape determined multiple times.
  • the receiving the result of judging whether the constant-speed refueling condition is satisfied it further includes: if it is judged that the constant-speed refueling condition is not satisfied, suspending the shape judgment, and outputting the first termination reason on the smart terminal.
  • the method further includes: detecting a refueling event through the fuel tank cap detection device on the refueling terminal; if a refueling event is detected, determining whether the constant-speed refueling condition is satisfied.
  • inputting the detection parameters into a preset shape judgment model to determine the staged fuel tank shape includes: extracting the liquid level pressure in the detection parameters; drawing a refueling curve according to the change relationship of the liquid level pressure with time; The shape of the phased fuel tank is determined according to the fueling curve.
  • a detection device for a fuel tank is provided.
  • the detection device for a fuel tank includes: a first receiving module for receiving the result of judging whether the constant-speed refueling condition is satisfied; a second receiving module, for receiving the pass feeling from the refueling terminal if it is judged that the constant-speed refueling condition is satisfied
  • the detector collects the detection parameters obtained by the preset frequency; the shape judgment module is used to input the detection parameters into the preset shape judgment model to judge the phased fuel tank shape.
  • a storage module for storing the shape of the staged fuel tank; and an estimation module for estimating the shape of the fuel tank based on the staged fuel tank shape determined multiple times.
  • a suspension module which is used to stop the shape judgment if it is judged that the constant-speed refueling condition is not satisfied, and output the reason for the suspension in the intelligent terminal.
  • a server is provided.
  • the server according to the present application includes: the detection method described above.
  • the detection method, device and server for the fuel tank adopt the result of receiving the result of judging whether the constant-speed refueling condition is satisfied; if it is judged that the constant-speed refueling condition is satisfied, the receiving is obtained from the refueling terminal through the sensor according to the preset frequency.
  • the detection parameters input the detection parameters into the preset shape judgment model to determine the staged fuel tank shape, achieve the purpose of judging the shape of the fuel tank, thereby achieving the technical effect of facilitating the measurement and management of the fuel tank, thereby solving the inability to detect different The technical problem of poor fuel tank metering management caused by different fuel tank shapes.
  • Fig. 1 is a schematic flowchart of a detection method for a fuel tank according to a first embodiment of the present application
  • Fig. 2 is a schematic flow chart of a detection method for a fuel tank according to a second embodiment of the present application
  • Fig. 3 is a schematic flow chart of a detection method for a fuel tank according to a third embodiment of the present application.
  • Fig. 4 is a schematic flow chart of a detection method for a fuel tank according to a fourth embodiment of the present application.
  • FIG. 5 is a schematic flow chart of a detection method for a fuel tank according to a fifth embodiment of the present application.
  • Fig. 6 is a schematic flow chart of a detection method for a fuel tank according to a sixth embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of a detection device for a fuel tank according to a first embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of a detection device for a fuel tank according to a second embodiment of the present application.
  • Fig. 9 is a schematic structural diagram of a detection device for a fuel tank according to a third embodiment of the present application.
  • installation should be interpreted broadly.
  • it can be a fixed connection, a detachable connection, or an integral structure; it can be a mechanical connection or an electrical connection; it can be directly connected, or indirectly connected through an intermediary, or between two devices, components, or components. Connectivity within the room.
  • the specific meanings of the above-mentioned terms in this application can be understood according to specific circumstances.
  • a detection method for a fuel tank is provided. As shown in FIG. 1, the method includes the following steps S100 to S104:
  • Step S100 receiving the result of judging whether the constant-speed refueling condition is satisfied
  • the determination of whether the constant-speed refueling condition is satisfied can be automatically determined by the refueling terminal, or by the smart terminal, or the user can complete the judgment through cooperation with the smart terminal; in this embodiment, it is preferable that the user communicates with the smart terminal.
  • the application processing software is installed on the smart terminal. The user can first manually determine whether to refuel manually or through a fuel gun. If it is the latter, the user will open the software again and use the software interface Enter the refueling gun to refuel. After the server receives the information, it will determine that it meets the constant-speed refueling conditions; if no information is received, the default is that the uniform-rate refueling conditions are not met.
  • the method further includes:
  • Step S400 If it is determined that the constant-speed refueling condition is not satisfied, the shape determination is suspended, and the first reason for suspension is output on the smart terminal.
  • the server determines that the constant-speed refueling condition is not satisfied, the program flow of receiving the detection parameters is not executed, and the intelligent terminal outputs the first stop reason that is not the constant-speed refueling, and the user can check the stop reason through operation. Ensure that the tank shape is judged only under the condition of constant speed refueling, otherwise no judgment is made, because if it is not a constant speed refueling, the shape judged by the shape judgment model will not have reference, so the constant refueling condition must be met to continue the program flow .
  • the method before receiving the result of judging whether the condition of constant speed refueling is satisfied, the method further includes:
  • Step S500 detecting a refueling event through the fuel tank cap detection device on the refueling terminal;
  • Step S502 If a refueling event is detected, it is determined whether the constant-speed refueling condition is satisfied.
  • the fuel tank cap detection device on the refueling terminal detects a refueling event, it sends a prompt message to the smart terminal with a binding relationship to remind the user to start refueling. After the user receives the information , Click the prompt message to automatically open the application processing software, and then perform the corresponding operations to complete the judgment of whether the constant speed refueling condition is satisfied.
  • the smart terminal will output the link of the second reason for suspension that there is no refueling event; in this embodiment, preferably, the user can click the Link, open the software directly, enter the software interface to view the second reason for the suspension. After the user thinks that the reason exists on the site, he can continue to operate in this interface and restart the program.
  • the server can only receive the detection parameters sent by the refueling terminal and judge the shape of the fuel tank when the uniform refueling condition is met while detecting the refueling event.
  • Step S102 If it is determined that the constant-speed refueling condition is satisfied, the detection parameters collected from the refueling terminal through the sensor according to the preset frequency are received;
  • receiving the detection parameters collected from the refueling terminal through the sensor according to the preset frequency includes:
  • Step S200 receiving a parameter set of liquid level pressure collected from the refueling terminal through the sensor according to a preset frequency
  • Step S202 Record and save the parameter set of the liquid level pressure.
  • the sensor can collect the detection parameters periodically, that is, to detect and record the liquid level pressure at regular intervals to obtain a parameter set of liquid level pressure; the liquid level pressure in the parameter set of liquid level pressure is stored one by one, waiting After refueling, it will be uploaded to the server in a unified manner to determine the shape of the fuel tank.
  • Step S104 Input the detection parameters into a preset shape judgment model, and judge the shape of the staged fuel tank.
  • inputting the detection parameters into a preset shape judgment model, and judging the staged fuel tank shape includes:
  • Step S600 extract the liquid level pressure in the detection parameters
  • Step S602 drawing a refueling curve according to the relationship of the change of the liquid level pressure with time
  • Step S604 Determine the shape of the phased fuel tank according to the fueling curve.
  • the ⁇ v generated in the ⁇ t generation is the same, the hardware acquisition frequency is constant, the ⁇ t between two adjacent hydraulic data points is the same, and the corresponding ⁇ v is the same.
  • Pi ⁇ 1..n ⁇ is the hydraulic value collected at a fixed frequency during the refueling stage
  • the hydraulic pressure in the air is known to be P0
  • the bottom of the tank has a regular shape
  • Pn is the collected maximum hydraulic pressure point
  • P1 is the minimum hydraulic pressure collected at one time Value point.
  • inputting the detection parameters into a preset shape judgment model, and after judging the phased fuel tank shape further includes:
  • Step S300 storing the phased fuel tank shape
  • Step S302 Estimate the shape of the fuel tank based on the staged fuel tank shape determined multiple times.
  • the staged fuel tank of each part of the fuel tank can be obtained.
  • the shape of the staged fuel tank is corresponding to the detection parameters.
  • the detection method, device and server for the fuel tank adopt the result of receiving the result of judging whether the constant-speed refueling condition is satisfied; if it is judged that the constant-speed refueling condition is satisfied, the receiving is obtained from the refueling terminal through the sensor and the preset frequency
  • the detection parameters input the detection parameters into the preset shape judgment model to determine the staged fuel tank shape, achieve the purpose of judging the shape of the fuel tank, thereby achieving the technical effect of facilitating the measurement and management of the fuel tank, thereby solving the inability to detect different The technical problem of poor fuel tank metering management caused by different fuel tank shapes.
  • the device includes:
  • the first receiving module 10 is configured to receive the result of judging whether the constant-speed refueling condition is satisfied;
  • the judgment of whether the constant-speed refueling condition is satisfied can be automatically judged by the refueling terminal, or by the smart terminal, or the user can complete the judgment through cooperation with the smart terminal; in this embodiment, preferably, the user passes through the smart terminal To cooperate with the completion of the judgment, specifically, the application processing software is installed on the smart terminal.
  • the user can first manually determine whether to refuel manually or through a fuel gun. If it is the latter, the user will open the software again and use the software interface Enter the refueling gun to refuel. After the server receives the information, it will determine that it meets the constant-speed refueling conditions; if no information is received, the default is that the uniform-rate refueling conditions are not met.
  • FIG. 9 it further includes:
  • the suspension module is used to stop the shape judgment if it is judged that the constant-speed refueling condition is not satisfied, and output the reason for the suspension on the intelligent terminal.
  • the server determines that the constant-speed refueling condition is not satisfied, the program flow of receiving the detection parameters is not executed, and the intelligent terminal outputs the first stop reason that is not the constant-speed refueling, and the user can check the stop reason through operation. Ensure that the tank shape is judged only under the condition of constant speed refueling, otherwise no judgment is made, because if it is not a constant speed refueling, the shape judged by the shape judgment model will not have reference, so the constant refueling condition must be met to continue the program flow .
  • the method before receiving the result of judging whether the uniform speed refueling condition is satisfied, the method further includes:
  • the fuel tank cap detection device on the refueling terminal detects a refueling event, it sends a prompt message to the smart terminal with a binding relationship to remind the user to start refueling. After the user receives the information , Click the prompt message to automatically open the application processing software, and then perform the corresponding operations to complete the judgment of whether the constant speed refueling condition is satisfied.
  • the smart terminal will output the link of the second reason for suspension that there is no refueling event; in this embodiment, preferably, the user can click the Link, open the software directly, enter the software interface to view the second reason for the suspension. After the user thinks that the reason exists on the site, he can continue to operate in this interface and restart the program.
  • the server can only receive the detection parameters sent by the refueling terminal and judge the shape of the fuel tank when the uniform refueling condition is met while detecting the refueling event.
  • the second receiving module 20 is configured to, if it is determined that the constant-speed refueling condition is satisfied, receive the detection parameters collected from the refueling terminal through the sensor according to the preset frequency;
  • receiving the detection parameters collected from the refueling terminal through the sensor according to the preset frequency includes:
  • the sensor can collect the detection parameters periodically, that is, to detect and record the liquid level pressure at regular intervals to obtain a parameter set of liquid level pressure; the liquid level pressure in the parameter set of liquid level pressure is stored one by one, waiting After refueling, it will be uploaded to the server in a unified manner to determine the shape of the fuel tank.
  • the shape judgment module 30 is used to input the detection parameters into a preset shape judgment model to judge the shape of the staged fuel tank.
  • inputting the detection parameters into a preset shape judgment model and judging the shape of the staged fuel tank includes:
  • the shape of the phased fuel tank is determined according to the fueling curve.
  • the ⁇ v generated in the ⁇ t generation is the same, the hardware acquisition frequency is constant, the ⁇ t between two adjacent hydraulic data points is the same, and the corresponding ⁇ v is the same.
  • Pi ⁇ 1..n ⁇ is the hydraulic value collected at a fixed frequency during the refueling stage
  • the hydraulic pressure in the air is known to be P0
  • the bottom of the tank has a regular shape
  • Pn is the collected maximum hydraulic pressure point
  • P1 is the minimum hydraulic pressure collected at one time Value point.
  • the storage module 40 is used to store the phased fuel tank shape
  • the estimation module 50 is used to estimate the shape of the fuel tank based on the staged fuel tank shape determined multiple times.
  • the staged fuel tank of each part of the fuel tank can be obtained.
  • the shape of the staged fuel tank is corresponding to the detection parameters.
  • the detection method, device and server for the fuel tank adopt the result of receiving the result of judging whether the constant-speed refueling condition is satisfied; if it is judged that the constant-speed refueling condition is satisfied, the receiving is obtained from the refueling terminal through the sensor according to the preset frequency.
  • the detection parameters input the detection parameters into the preset shape judgment model to determine the staged fuel tank shape, achieve the purpose of judging the shape of the fuel tank, thereby achieving the technical effect of facilitating the measurement and management of the fuel tank, and thus solve the problem The technical problem of poor fuel tank metering management caused by different fuel tank shapes.
  • modules or steps of this application can be implemented by a general computing device, and they can be concentrated on a single computing device or distributed in a network composed of multiple computing devices.
  • they can be implemented with program codes executable by a computing device, so that they can be stored in a storage device for execution by the computing device, or they can be made into individual integrated circuit modules, or they can be Multiple modules or steps are made into a single integrated circuit module to achieve. In this way, this application is not limited to any specific hardware and software combination.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Loading And Unloading Of Fuel Tanks Or Ships (AREA)

Abstract

一种用于油箱的检测方法,包括:接收判断是否满足匀速加油条件的结果(S100);如果判断满足匀速加油条件,则接收从加油终端通过感测器按照预设频率采集得到的检测参数(S102);将检测参数输入预设的形状判断模型,判断出阶段性油箱形状(S104)。解决了无法检测不同种类油箱形状造成的油箱计量管理不佳的技术问题。

Description

用于油箱的检测方法、装置及服务器 技术领域
本申请涉及油箱标定领域,具体而言,涉及一种用于油箱的检测方法、装置及服务器。
背景技术
对油箱的检测包括:油位、油位状态、是否加油等。
发明人发现,对于不同种类油箱形状各异,缺少一种检测油箱形状的方法。进一步,影响了油箱计量管理。
针对相关技术中无法检测不同种类油箱形状造成的油箱计量管理不佳的问题,目前尚未提出有效的解决方案。
发明内容
本申请的主要目的在于提供一种用于油箱的检测方法、装置及服务器,以解决无法检测不同种类油箱形状造成的油箱计量管理不佳的问题。
为了实现上述目的,根据本申请的一个方面,提供了一种用于油箱的检测方法。
根据本申请的用于油箱的检测方法包括:接收判断是否满足匀速加油条件的结果;如果判断满足匀速加油条件,则接收从加油终端通过感测器按照预设频率采集得到的检测参数;将所述检测参数输入预设的形状判断模型,判断出阶段性油箱形状。
进一步的,接收从加油终端通过感测器按照预设频率采集得到的检测参数包括:接收单元,用于接收从所述加油终端通过所述感测器按照预设频率采集得到液位压的参数集合;储存单元,用于记录并保存所述液位压的参数集合。
进一步的,将所述检测参数输入预设的形状判断模型,判断出阶段性油箱 形状之后还包括:存储所述阶段性油箱形状;根据多次判断出的阶段性油箱形状推定油箱形状。
进一步的,接收判断是否满足匀速加油条件的结果之后还包括:如果判断不满足匀速加油条件,则中止形状判断,并在智能终端输出第一中止原因。
进一步的,接收判断是否满足匀速加油条件的结果之前还包括:通过所述加油终端上的油箱盖检测设备,检测加油事件;如果检测到加油事件,则判断是否满足匀速加油条件。
进一步的,将所述检测参数输入预设的形状判断模型,判断出阶段性油箱形状包括:提取所述检测参数中的液位压;根据所述液位压随时间的变化关系绘制加油曲线;根据所述加油曲线判断出阶段性油箱形状。
为了实现上述目的,根据本申请的另一方面,提供了一种用于油箱的检测装置。
根据本申请的用于油箱的检测装置包括:第一接收模块,用于接收判断是否满足匀速加油条件的结果;第二接收模块,用于如果判断满足匀速加油条件,则接收从加油终端通过感测器按照预设频率采集得到的检测参数;形状判断模块,用于将所述检测参数输入预设的形状判断模型,判断出阶段性油箱形状。
进一步的,还包括:存储模块,用于存储所述阶段性油箱形状;推定模块,用于根据多次判断出的阶段性油箱形状推定油箱形状。
进一步的,还包括:中止模块,用于如果判断不满足匀速加油条件,则中止形状判断,并在智能终端输出中止原因。
为了实现上述目的,根据本申请的另一方面,提供了一种服务器。
根据本申请的服务器包括:所述的检测方法。
在本申请实施例中用于油箱的检测方法、装置及服务器,采用接收判断是否满足匀速加油条件的结果;如果判断满足匀速加油条件,则接收从加油终端通过感测器按照预设频率采集得到的检测参数;将所述检测参数输入预设 的形状判断模型,判断出阶段性油箱形状,达到了判断出油箱形状的目的,从而实现了便于油箱计量管理的技术效果,进而解决了无法检测不同种类油箱形状造成的油箱计量管理不佳的技术问题。
附图说明
构成本申请的一部分的附图用来提供对本申请的进一步理解,使得本申请的其它特征、目的和优点变得更明显。本申请的示意性实施例附图及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是根据本申请第一实施例的用于油箱的检测方法流程示意图;
图2是根据本申请第二实施例的用于油箱的检测方法流程示意图;
图3是根据本申请第三实施例的用于油箱的检测方法流程示意图;
图4是根据本申请第四实施例的用于油箱的检测方法流程示意图;
图5是根据本申请第五实施例的用于油箱的检测方法流程示意图;
图6是根据本申请第六实施例的用于油箱的检测方法流程示意图;
图7是根据本申请第一实施例的用于油箱的检测装置结构示意图;
图8是根据本申请第二实施例的用于油箱的检测装置结构示意图;
图9是根据本申请第三实施例的用于油箱的检测装置结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第 一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本申请中,术语“上”、“下”、“左”、“右”、“前”、“后”、“顶”、“底”、“内”、“外”、“中”、“竖直”、“水平”、“横向”、“纵向”等指示的方位或位置关系为基于附图所示的方位或位置关系。这些术语主要是为了更好地描述本申请及其实施例,并非用于限定所指示的装置、元件或组成部分必须具有特定方位,或以特定方位进行构造和操作。
并且,上述部分术语除了可以用于表示方位或位置关系以外,还可能用于表示其他含义,例如术语“上”在某些情况下也可能用于表示某种依附关系或连接关系。对于本领域普通技术人员而言,可以根据具体情况理解这些术语在本申请中的具体含义。
此外,术语“安装”、“设置”、“设有”、“连接”、“相连”、“套接”应做广义理解。例如,可以是固定连接,可拆卸连接,或整体式构造;可以是机械连接,或电连接;可以是直接相连,或者是通过中间媒介间接相连,又或者是两个装置、元件或组成部分之间内部的连通。对于本领域普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
根据本申请实施例,提供了一种用于油箱的检测方法,如图1所示,该方法包括如下的步骤S100至步骤S104:
步骤S100、接收判断是否满足匀速加油条件的结果;
判断是否满足匀速加油条件可以通过加油终端自动判断,也可以是由智能终端自动判断,还可以是用户通过与智能终端的配合完成判断;本实施例中, 优选的,是用户通过与智能终端的配合完成判断,具体而言,智能终端上安装有应用处理软件,用户可以先人为判断出是人工加油还是通过加油枪加油,如果是后者,用户再打开该软件,通过在该软件界面内的操作,输入加油枪加油,服务器收到该信息后,即判断为满足匀速加油条件;如果未收到任何信息,默认为不满足匀速加油条件。
优选的,如图4所示,接收判断是否满足匀速加油条件的结果之后还包括:
步骤S400、如果判断不满足匀速加油条件,则中止形状判断,并在智能终端输出第一中止原因。
当服务器判断为不满足匀速加油条件,则不执行接收检测参数的程序流程,并在智能终端输出不是匀速加油的第一中止原因,用户可以通过操作查看该中止原因。保证仅在匀速加油的状况下,才进行油箱形状判断,否则不进行判断,因为如果不是匀速加油,形状判断模型判断出的形状将不具备参考性,因此必须满足匀速加油条件才能继续执行程序流程。
优选的,如图5所示,接收判断是否满足匀速加油条件的结果之前还包括:
步骤S500、通过所述加油终端上的油箱盖检测设备,检测加油事件;
步骤S502、如果检测到加油事件,则判断是否满足匀速加油条件。
仅在满足一定的条件后,才能触发判断是否满足匀速加油条件。
在本实施例中,优选的,在加油终端上的油箱盖检测设备检测到加油事件时,向具有绑定关系的智能终端上发出一提示信息,提示用户要开始加油,用户收到该信息后,点击该提示信息,能够自动打开应用处理软件,再进行相应的操作后,完成是否满足匀速加油条件的判断。
如果加油终端上的油箱盖检测设备没有检测到加油事件,则在智能终端输出没有加油事件的第二中止原因的链接;本实施例中,优选的,用户收到该中止原因后,可以点击该链接,直接打开软件,进入该软件界面查看第二中止原因,用户认为查看排除现场存在该原因后,可以在该界面中继续操作,重启程序。
保证在有加油事件的时候,可以主动发送提示信息,提示人员通过应用处理软件的操作完成是否满足匀速加油条件的判断,没有加油事件的时候,中止程序,仅在用户打开软件进行操作之后才能继续判断是否满足匀速加油条件。
服务器仅在检测到加油事件的同时,满足匀速加油条件才能接收加油终端发出的检测参数,进行油箱形状判断。
步骤S102、如果判断满足匀速加油条件,则接收从加油终端通过感测器按照预设频率采集得到的检测参数;
具体的,如图2所示,接收从加油终端通过感测器按照预设频率采集得到的检测参数包括:
步骤S200、接收从所述加油终端通过所述感测器按照预设频率采集得到液位压的参数集合;
步骤S202、记录并保存所述液位压的参数集合。
加油过程中的多个检测参数实现油箱形状判断。感测器能够周期性的采集检测参数,即每隔一段时间对液位压进行检测并记录,得到一个液位压的参数集合;液位压的参数集合中的液位压逐个进行存储,待加油结束,统一上传至服务器,进行油箱形状判断。
步骤S104、将所述检测参数输入预设的形状判断模型,判断出阶段性油箱形状。
具体的,如图6所示,将所述检测参数输入预设的形状判断模型,判断出阶段性油箱形状包括:
步骤S600、提取所述检测参数中的液位压;
步骤S602、根据所述液位压随时间的变化关系绘制加油曲线;
步骤S604、根据所述加油曲线判断出阶段性油箱形状。
具体而言,假定加油枪加油速率恒定,在Δt产生内产生的Δv相同,硬件采集频率恒定,两个相邻液压数据点之间的Δt相同,对应的Δv就相同。
设Pi{1..n}为加油阶段以固定频率采集的液压值,已知空气中的液压值为P0,油箱底部形状规则,Pn为采集的最大液压值点,P1为一次采集的最小液压值点。
首先利用Pi{1..m}(m<n)进行一次多项式拟合(Pi,i-1),得到斜率k和偏移b,利用k,b和空气中的液压值P0计算得到P0所对应的下标Index0:Index0=P0*k+b。
液位压随时间的变化关系:Index=P*k+b。
参照液位压随时间的变化关系:Index=P*k+b,可以依次计算出各个液位压值的下标,根据这些下标能够拟合出加油曲线,最后通过该加油曲线能够判断出本次加油对应的油箱某个部位的形状,即阶段性油箱形状;为获取完整的油箱形状提供了保障。
优选的,如图3所示,将所述检测参数输入预设的形状判断模型,判断出阶段性油箱形状之后还包括:
步骤S300、存储所述阶段性油箱形状;
步骤S302、根据多次判断出的阶段性油箱形状推定油箱形状。
经过多次的加油,其中必然包含一次空油箱状态下的从底部开始加油,以及一次加满至油箱顶部的状态;通过将每次的检测参数输入形状判断模型可以获取油箱各个部位的阶段性油箱形状,并将该阶段性油箱形状和检测参数相对应,最后通过检测参数的大小关系,将多段阶段性油箱形状依次拼接成油箱形状,从而现了油箱形状的智能推算,便于进一步的油箱计量管理。
从以上的描述中,可以看出,本申请实现了如下技术效果:
在本申请实施例中用于油箱的检测方法、装置及服务器,采用接收判断是否满足匀速加油条件的结果;如果判断满足匀速加油条件,则接收从加油终端通过感测器按照预设频率采集得到的检测参数;将所述检测参数输入预设的形状判断模型,判断出阶段性油箱形状,达到了判断出油箱形状的目的,从而实现了便于油箱计量管理的技术效果,进而解决了无法检测不同种类 油箱形状造成的油箱计量管理不佳的技术问题。
需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
根据本申请实施例,还提供了一种用于实施上述检测方法的装置,如图7所示,该装置包括:
第一接收模块10,用于接收判断是否满足匀速加油条件的结果;
判断是否满足匀速加油条件可以通过加油终端自动判断,也可以是由智能终端自动判断,还可以是用户通过与智能终端的配合完成判断;本实施例中,优选的,是用户通过与智能终端的配合完成判断,具体而言,智能终端上安装有应用处理软件,用户可以先人为判断出是人工加油还是通过加油枪加油,如果是后者,用户再打开该软件,通过在该软件界面内的操作,输入加油枪加油,服务器收到该信息后,即判断为满足匀速加油条件;如果未收到任何信息,默认为不满足匀速加油条件。
优选的,如图9所示,还包括:
中止模块,用于如果判断不满足匀速加油条件,则中止形状判断,并在智能终端输出中止原因。
当服务器判断为不满足匀速加油条件,则不执行接收检测参数的程序流程,并在智能终端输出不是匀速加油的第一中止原因,用户可以通过操作查看该中止原因。保证仅在匀速加油的状况下,才进行油箱形状判断,否则不进行判断,因为如果不是匀速加油,形状判断模型判断出的形状将不具备参考性,因此必须满足匀速加油条件才能继续执行程序流程。
优选的,接收判断是否满足匀速加油条件的结果之前还包括:
通过所述加油终端上的油箱盖检测设备,检测加油事件;
如果检测到加油事件,则判断是否满足匀速加油条件。
仅在满足一定的条件后,才能触发判断是否满足匀速加油条件。
在本实施例中,优选的,在加油终端上的油箱盖检测设备检测到加油事件时,向具有绑定关系的智能终端上发出一提示信息,提示用户要开始加油,用户收到该信息后,点击该提示信息,能够自动打开应用处理软件,再进行相应的操作后,完成是否满足匀速加油条件的判断。
如果加油终端上的油箱盖检测设备没有检测到加油事件,则在智能终端输出没有加油事件的第二中止原因的链接;本实施例中,优选的,用户收到该中止原因后,可以点击该链接,直接打开软件,进入该软件界面查看第二中止原因,用户认为查看排除现场存在该原因后,可以在该界面中继续操作,重启程序。
保证在有加油事件的时候,可以主动发送提示信息,提示人员通过应用处理软件的操作完成是否满足匀速加油条件的判断,没有加油事件的时候,中止程序,仅在用户打开软件进行操作之后才能继续判断是否满足匀速加油条件。
服务器仅在检测到加油事件的同时,满足匀速加油条件才能接收加油终端发出的检测参数,进行油箱形状判断。
第二接收模块20,用于如果判断满足匀速加油条件,则接收从加油终端通过感测器按照预设频率采集得到的检测参数;
具体的,如图2所示,接收从加油终端通过感测器按照预设频率采集得到的检测参数包括:
接收从所述加油终端通过所述感测器按照预设频率采集得到液位压的参数集合;
记录并保存所述液位压的参数集合。
加油过程中的多个检测参数实现油箱形状判断。感测器能够周期性的采集检测参数,即每隔一段时间对液位压进行检测并记录,得到一个液位压的参数集合;液位压的参数集合中的液位压逐个进行存储,待加油结束,统一上传至服务器,进行油箱形状判断。
形状判断模块30,用于将所述检测参数输入预设的形状判断模型,判断出阶段性油箱形状。
具体的,将所述检测参数输入预设的形状判断模型,判断出阶段性油箱形状包括:
提取所述检测参数中的液位压;
根据所述液位压随时间的变化关系绘制加油曲线;
根据所述加油曲线判断出阶段性油箱形状。
具体而言,假定加油枪加油速率恒定,在Δt产生内产生的Δv相同,硬件采集频率恒定,两个相邻液压数据点之间的Δt相同,对应的Δv就相同。
设Pi{1..n}为加油阶段以固定频率采集的液压值,已知空气中的液压值为P0,油箱底部形状规则,Pn为采集的最大液压值点,P1为一次采集的最小液压值点。
首先利用Pi{1..m}(m<n)进行一次多项式拟合(Pi,i-1),得到斜率k和偏移b,利用k,b和空气中的液压值P0计算得到P0所对应的下标Index0:Index0=P0*k+b。
液位压随时间的变化关系:Index=P*k+b。
参照液位压随时间的变化关系:Index=P*k+b,可以依次计算出各个液位压值的下标,根据这些下标能够拟合出加油曲线,最后通过该加油曲线能够判断出本次加油对应的油箱某个部位的形状,即阶段性油箱形状;为获取完整的油箱形状提供了保障。
优选的,如图8所示,还包括:
存储模块40,用于存储所述阶段性油箱形状;
推定模块50,用于根据多次判断出的阶段性油箱形状推定油箱形状。
经过多次的加油,其中必然包含一次空油箱状态下的从底部开始加油,以 及一次加满至油箱顶部的状态;通过将每次的检测参数输入形状判断模型可以获取油箱各个部位的阶段性油箱形状,并将该阶段性油箱形状和检测参数相对应,最后通过检测参数的大小关系,将多段阶段性油箱形状依次拼接成油箱形状,从而现了油箱形状的智能推算,便于进一步的油箱计量管理。
从以上的描述中,可以看出,本申请实现了如下技术效果:
在本申请实施例中用于油箱的检测方法、装置及服务器,采用接收判断是否满足匀速加油条件的结果;如果判断满足匀速加油条件,则接收从加油终端通过感测器按照预设频率采集得到的检测参数;将所述检测参数输入预设的形状判断模型,判断出阶段性油箱形状,达到了判断出油箱形状的目的,从而实现了便于油箱计量管理的技术效果,进而解决了无法检测不同种类油箱形状造成的油箱计量管理不佳的技术问题。
显然,本领域的技术人员应该明白,上述的本申请的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本申请不限制于任何特定的硬件和软件结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种用于油箱的检测方法,其特征在于,包括:
    接收判断是否满足匀速加油条件的结果;
    如果判断满足匀速加油条件,则接收从加油终端通过感测器按照预设频率采集得到的检测参数;
    将所述检测参数输入预设的形状判断模型,判断出阶段性油箱形状。
  2. 根据权利要求1所述的检测方法,其特征在于,接收从加油终端通过感测器按照预设频率采集得到的检测参数包括:
    接收从所述加油终端通过所述感测器按照预设频率采集得到液位压的参数集合;
    记录并保存所述液位压的参数集合。
  3. 根据权利要求1所述的检测方法,其特征在于,将所述检测参数输入预设的形状判断模型,判断出阶段性油箱形状之后还包括:
    存储所述阶段性油箱形状;
    根据多次判断出的阶段性油箱形状推定油箱形状。
  4. 根据权利要求1所述的检测方法,其特征在于,接收判断是否满足匀速加油条件的结果之后还包括:
    如果判断不满足匀速加油条件,则中止形状判断,并在智能终端输出第一中止原因。
  5. 根据权利要求1所述的检测方法,其特征在于,接收判断是否满足匀速加油条件的结果之前还包括:
    通过所述加油终端上的油箱盖检测设备,检测加油事件;
    如果检测到加油事件,则判断是否满足匀速加油条件。
  6. 根据权利要求1所述的检测方法,其特征在于,将所述检测参数输入预 设的形状判断模型,判断出阶段性油箱形状包括:
    提取所述检测参数中的液位压;
    根据所述液位压随时间的变化关系绘制加油曲线;
    根据所述加油曲线判断出阶段性油箱形状。
  7. 一种用于油箱的检测装置,其特征在于,包括:
    第一接收模块,用于接收判断是否满足匀速加油条件的结果;
    第二接收模块,用于如果判断满足匀速加油条件,则接收从加油终端通过感测器按照预设频率采集得到的检测参数;
    形状判断模块,用于将所述检测参数输入预设的形状判断模型,判断出阶段性油箱形状。
  8. 根据权利要求1所述的检测装置,其特征在于,还包括:
    存储模块,用于存储所述阶段性油箱形状;
    推定模块,用于根据多次判断出的阶段性油箱形状推定油箱形状。
  9. 根据权利要求1所述的检测装置,其特征在于,还包括:
    中止模块,用于如果判断不满足匀速加油条件,则中止形状判断,并在智能终端输出中止原因。
  10. 一种服务器,其特征在于,包括:如权利要求1至6中任一项所述的检测方法。
PCT/CN2020/086886 2019-06-27 2020-04-25 用于油箱的检测方法、装置及服务器 WO2020259050A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/617,316 US20220228892A1 (en) 2019-06-27 2020-04-25 Method and Device for Detecting a Fuel Tank, and Server
EP20833378.1A EP3967985A4 (en) 2019-06-27 2020-04-25 METHOD AND DEVICE FOR DETECTING A FUEL TANK AND SERVER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910572848.4A CN110220557B (zh) 2019-06-27 2019-06-27 用于油箱的检测方法、装置及服务器
CN201910572848.4 2019-06-27

Publications (1)

Publication Number Publication Date
WO2020259050A1 true WO2020259050A1 (zh) 2020-12-30

Family

ID=67815361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086886 WO2020259050A1 (zh) 2019-06-27 2020-04-25 用于油箱的检测方法、装置及服务器

Country Status (4)

Country Link
US (1) US20220228892A1 (zh)
EP (1) EP3967985A4 (zh)
CN (1) CN110220557B (zh)
WO (1) WO2020259050A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110220557B (zh) * 2019-06-27 2021-06-15 南京智鹤电子科技有限公司 用于油箱的检测方法、装置及服务器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1763484A (zh) * 2004-10-21 2006-04-26 胡嘉刚 可以提供道路坡度测量数据和燃油体积测量数据的机动车燃油箱系统
CN201837433U (zh) * 2010-09-08 2011-05-18 成都泛华航空仪表电器有限公司 任意形状油箱油位测量传感器
KR20160069563A (ko) * 2014-12-08 2016-06-17 현담산업 주식회사 연료펌프모듈의 초음파 레벨센서 및 농도센서 어셈블리의 실링방법
CN106908113A (zh) * 2017-02-24 2017-06-30 北京中位科技有限公司 车辆油箱油量监测方法及系统
CN106908115A (zh) * 2017-02-24 2017-06-30 北京中位科技有限公司 车辆油箱油量标定方法及系统
CN206847667U (zh) * 2017-01-19 2018-01-05 四川英卓科技有限责任公司 加油站罐容表批量并行校正及泄漏检测系统
CN109345295A (zh) * 2018-09-18 2019-02-15 杭州的蓝科技有限公司 共享汽车油费计算方法及装置
CN110220557A (zh) * 2019-06-27 2019-09-10 南京智鹤电子科技有限公司 用于油箱的检测方法、装置及服务器

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5138559A (en) * 1989-08-28 1992-08-11 The Boeing Company System and method for measuring liquid mass quantity
US5975154A (en) * 1996-09-17 1999-11-02 Benric Technologies Fuel overflow prevention system with feedback
DE19942377A1 (de) * 1999-09-04 2001-03-08 Mannesmann Vdo Ag Verfahren und Vorrichtung zur Ermittlung eines Füllstandes einer Flüssigkeit in einem Behälter
US7059167B2 (en) * 2003-01-31 2006-06-13 Ab Volvo Penta Method and arrangement for indirectly determining fill characteristics of a fluid tank on a marine vessel
US6929039B2 (en) * 2003-06-11 2005-08-16 Stephen P. Vaitses Marine vessel fuel overflow tank system
EP1955028B1 (en) * 2005-11-23 2015-10-14 AB Volvo Penta Method of calibrating measurement systems
EP1971833A1 (en) * 2006-01-02 2008-09-24 CPAC Systems AB A method and arrangement for calibration of a system for determining the amount of liquid in a reservoir
EP2396273A2 (en) * 2009-02-09 2011-12-21 Warren Rogers Associates, Inc. Method and apparatus for monitoring fluid storage and dispensing systems
US8521495B2 (en) * 2010-12-10 2013-08-27 The Boeing Company Calculating liquid levels in arbitrarily shaped containment vessels using solid modeling
US9285944B1 (en) * 2011-04-22 2016-03-15 Angel A. Penilla Methods and systems for defining custom vehicle user interface configurations and cloud services for managing applications for the user interface and learned setting functions
US8742953B1 (en) * 2012-08-22 2014-06-03 Brunswick Corporation Marine fuel system with overfill alert
GB2538539A (en) * 2015-05-20 2016-11-23 Airbus Operations Ltd Measuring surface of a liquid
US9921150B2 (en) * 2016-02-04 2018-03-20 Simmonds Precision Products, Inc. Imaging system for fuel tank analysis
US9932944B2 (en) * 2016-06-13 2018-04-03 Ford Global Technologies, Llc Systems and method for an integrated fuel level and pressure sensor of a fuel tank
JP6350604B2 (ja) * 2016-07-21 2018-07-04 トヨタ自動車株式会社 内燃機関の排気浄化システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1763484A (zh) * 2004-10-21 2006-04-26 胡嘉刚 可以提供道路坡度测量数据和燃油体积测量数据的机动车燃油箱系统
CN201837433U (zh) * 2010-09-08 2011-05-18 成都泛华航空仪表电器有限公司 任意形状油箱油位测量传感器
KR20160069563A (ko) * 2014-12-08 2016-06-17 현담산업 주식회사 연료펌프모듈의 초음파 레벨센서 및 농도센서 어셈블리의 실링방법
CN206847667U (zh) * 2017-01-19 2018-01-05 四川英卓科技有限责任公司 加油站罐容表批量并行校正及泄漏检测系统
CN106908113A (zh) * 2017-02-24 2017-06-30 北京中位科技有限公司 车辆油箱油量监测方法及系统
CN106908115A (zh) * 2017-02-24 2017-06-30 北京中位科技有限公司 车辆油箱油量标定方法及系统
CN109345295A (zh) * 2018-09-18 2019-02-15 杭州的蓝科技有限公司 共享汽车油费计算方法及装置
CN110220557A (zh) * 2019-06-27 2019-09-10 南京智鹤电子科技有限公司 用于油箱的检测方法、装置及服务器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3967985A4 *

Also Published As

Publication number Publication date
US20220228892A1 (en) 2022-07-21
EP3967985A1 (en) 2022-03-16
CN110220557A (zh) 2019-09-10
EP3967985A4 (en) 2023-02-01
CN110220557B (zh) 2021-06-15

Similar Documents

Publication Publication Date Title
WO2020259051A1 (zh) 用于油箱的检测方法、装置及服务器
US10738403B2 (en) Method for monitoring water consumption of washing machine, washing machine, and washing machine system
CN103727991B (zh) 车辆油箱油量标定系统及标定方法
WO2020259050A1 (zh) 用于油箱的检测方法、装置及服务器
EP3040949A1 (en) Data updating method, device for vehicle diagnosing apparatus and vehicle diagnosing apparatus
CN111059612A (zh) 一种云计算的城市供暖故障检测设备及方法
CN112004061A (zh) 一种基于计算机视觉的卸油流程规范性智能监控方法
JP2002107198A (ja) ガスメータ、統括機器およびガス計量監視システム
CN104883406A (zh) 一种基于云计算的水利物联网系统及监测方法
CN105653835A (zh) 一种基于聚类分析的异常检测方法
CN105114148B (zh) 一种汽车机油监控装置和方法
CN109145923A (zh) 一种冰箱的食材确定方法和系统
CN104266731A (zh) 验证电磁流量计的系统
CA3138508C (en) System and method for managing liquid waste
CN104317543B (zh) 拼接墙显示单元的位置判断方法和系统
CN207730081U (zh) 胶球计数与胶球形态监测设备
CN205787806U (zh) 一种加油站罐区综合监控系统
CN114110551B (zh) 锅炉辅机运行状态检测方法、装置、电子设备及存储介质
CN111102922A (zh) 管道几何尺寸检测装置及方法
CN212106451U (zh) 具有液位计的移动式液压阀检测平台
CN108703099A (zh) 一种家用智能水族箱
CN219416618U (zh) 仓房气密性自动检测系统
CN210883631U (zh) 一种加油机渗漏检测及回气故障检测系统
CN114973448B (zh) 显示油量的确定方法、装置、电子设备及介质
JP7273109B2 (ja) セルフ給油監視システム及び学習装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20833378

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020833378

Country of ref document: EP

Effective date: 20211209

NENP Non-entry into the national phase

Ref country code: DE