WO2020258922A1 - 一种测试系统 - Google Patents

一种测试系统 Download PDF

Info

Publication number
WO2020258922A1
WO2020258922A1 PCT/CN2020/079146 CN2020079146W WO2020258922A1 WO 2020258922 A1 WO2020258922 A1 WO 2020258922A1 CN 2020079146 W CN2020079146 W CN 2020079146W WO 2020258922 A1 WO2020258922 A1 WO 2020258922A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
test
control module
distributed control
signal
Prior art date
Application number
PCT/CN2020/079146
Other languages
English (en)
French (fr)
Inventor
贾建波
尚捷
朱伟红
孙洪涛
李立刚
孙师贤
卢华涛
孟巍
吉玲
戴永寿
Original Assignee
中海油田服务股份有限公司
中国海洋石油集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中海油田服务股份有限公司, 中国海洋石油集团有限公司 filed Critical 中海油田服务股份有限公司
Publication of WO2020258922A1 publication Critical patent/WO2020258922A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B19/00Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
    • F15B19/007Simulation or modelling

Definitions

  • This application relates to but is not limited to the field of testing technology, and in particular to a testing system.
  • the rotary steering drilling system is an automatic drilling system that realizes the well trajectory control in the state of rotary drilling. Compared with traditional sliding steering drilling, this technology has the characteristics of high mechanical speed, high accuracy of well trajectory control, and good wellbore purification effect. It can meet high-difficulty and special process guidance such as horizontal wells, extended reach wells, and three-dimensional multi-target wells. Drilling needs.
  • rotary steerable drilling technology has been widely used in petroleum exploration, development and production around the world. Its mainstream design methods include static pointing, dynamic pointing, and static push-to-back.
  • the hydraulic system is one of the key technologies for static push-to-type rotary guidance tools. The performance and life of the hydraulic system directly determine the performance and life of the rotary guidance system.
  • the hydraulic system includes a hydraulic unit and a hydraulic drive module.
  • the hydraulic unit is the guiding force generating component, and the hydraulic drive module is used to drive the hydraulic unit.
  • the hydraulic drive module can realize the speed closed loop, pressure closed loop, and current closed loop control functions of the hydraulic unit.
  • a large number of chips with high reliability and high temperature performance are used on the hydraulic drive module.
  • the hydraulic drive module is affected by factors such as technology and chip quality during the production process. After mass production, many invisible Defects cannot be exposed in a conventional test environment, but they will appear in a high-temperature vibration environment, which directly affects the reliability of the instrument.
  • the traditional manual test method has a large workload, few data records, and continuous monitoring, which affects the comprehensiveness and reliability of the test.
  • test system including a main control module, one or more distributed control modules, and one or more test subsystems, wherein: the main control module and the one or more distributed control modules are respectively The distributed control module and the test subsystem are connected in a one-to-one correspondence; each of the test subsystems includes a data acquisition module, an analog load module, a signal simulation module, a drive module to be tested, and a motor.
  • the test drive module is set to drive the motor to run;
  • the distributed control module is connected to the data acquisition module, analog load module, signal simulation module, and drive module under test of the connected test subsystem, respectively, and is set to control the connected
  • the data acquisition module is configured to collect the measurement data of the drive module to be tested and transmit it to the connected distributed control module;
  • the analog load module is set to transmit a torque load to the motor driven by the drive module under test according to the first instruction of the connected distributed control module;
  • the signal simulation module is set to transmit torque load according to the connected distributed control module
  • the second instruction is to output an analog pressure signal to the drive module under test.
  • the main control module is configured to output a control instruction to the distributed control module and receive measurement data of the distributed control module, and the control instruction includes at least one of the following: Test mode and control signal.
  • the test mode includes two modes of continuous motor torque change and multiple program control levels as required;
  • the control signal includes at least one of the following: a manual control signal and an automatic control signal.
  • test subsystem is placed in a high-temperature shock test chamber.
  • the analog load module is a magnetic powder brake;
  • the signal simulation module is a digital-to-analog converter;
  • the digital-to-analog converter is configured to receive the first instruction and the second instruction of the connected distributed control module, output the analog pressure signal to the drive module to be tested according to the second instruction, and
  • the first instruction outputs a current signal to the magnetic powder brake, and the current signal is set to control the magnetic powder brake to generate a corresponding torque load.
  • the measurement data includes at least one of the following: torque, motor speed, motor operating current, and ambient temperature.
  • the test subsystem further includes: an alarm module, and the distributed control module is further configured to trigger the alarm module to generate an alarm when the measurement data exceeds a preset fluctuation range Signal, the alarm signal includes at least one of the following forms: sound, light, electricity, and text.
  • the data measurement module is a data acquisition card
  • the distributed control module is an embedded controller
  • the main control module is a computer.
  • the distributed control module is further configured to transmit the measurement data to the main control module; the main control module is also configured to save the measurement data and pass the The computer interactive interface displays the measurement data.
  • the main control module is further configured to perform abnormality judgment on the measurement data, and if the measurement data is abnormal, display the abnormal measurement data on the human-computer interaction interface by flashing , And send out an audible alarm signal on the computer.
  • FIG. 1 is a schematic structural diagram of a test system provided by an embodiment of the application
  • Fig. 2 is a schematic structural diagram of another test system provided by an embodiment of the application.
  • Fig. 1 is a schematic diagram of a framework of an embodiment of a test system provided by an embodiment of the present application.
  • the test system includes a main control module 10, one or more distributed control modules 20 and one or more test subsystems 30.
  • the main control module 10 is connected to one or more distributed control modules 20 respectively.
  • the distributed control module 20 and the test subsystem 30 are connected in a one-to-one correspondence.
  • Each test subsystem 30 includes a data acquisition module 301, a simulated load module 302, a signal simulation module 303, a drive module to be tested 304, and a motor 305.
  • the drive module to be tested 304 is configured to drive the motor 305 to run; the distribution
  • the control module 20 is connected to the data acquisition module 301, the analog load module 302, the signal simulation module 303, and the drive module 304 to be tested of the connected test subsystem 30, respectively, and is set to control the connected data acquisition module 301 and analog load respectively Operation of module 302, signal simulation module 303, and drive module 304 to be tested.
  • the data collection module 301 can be set to collect the measurement data of the drive module 304 to be tested, and transmit it to the connected distributed control module 20; the analog load module 302 can be set to be based on the connected distributed control module The first instruction of 20 is to transmit the torque load to the motor 305 driven by the drive module 304 under test; the signal simulation module 303 may be set to output an analog pressure signal according to the second instruction of the connected distributed control module 20 To the drive module 304 to be tested.
  • a main control module 10 one or more distributed control modules 20, and one or more test subsystems 30 are provided, and each test subsystem 30 is provided with a data acquisition module 301,
  • the simulated load module 302, the signal simulation module 303, the drive module to be tested 304 and the motor 305 realize the full-function simulation test of one or more drive modules 304 to be tested, which can effectively detect the working performance of the drive module 304 to be tested, which is convenient Technicians analyze the performance of the drive module 304 to be tested under various conditions, which is of positive significance for improving the overall reliability of the rotary steering hydraulic system.
  • each test subsystem 30 can run independently, or any number of test subsystems 30 or all test subsystems 30 can run together.
  • the main control module 10 may be configured to output a control instruction to the distributed control module 20 and receive measurement data of the distributed control module 20, and the control instruction includes at least one of the following One: Test mode and control signal.
  • the test mode may include two modes of continuous motor torque change and multiple variable program control levels as required;
  • the control signal may include at least one of the following: manual control signal and automatic control signal. control signal.
  • the test subsystem 30 may be placed in a high-temperature shock test chamber.
  • this embodiment can continuously test the operating characteristics of the drive module 304 to be tested in a high-temperature and vibration environment, so as to fully screen out the drive to be tested in a harsh downhole environment.
  • the module 304 effectively detects the working performance of the drive module 304 to be tested.
  • the analog load module 302 may be a magnetic powder brake; the signal simulation module 303 may be a digital-to-analog (D/A) converter.
  • D/A digital-to-analog
  • the digital-to-analog converter can receive the first instruction and the second instruction of the connected distributed control module 20, and output the analog pressure signal to the drive module 304 under test according to the second instruction, A current signal is output to the magnetic powder brake according to the first instruction, and the current signal is set to control the magnetic powder brake to generate a corresponding torque load.
  • a program-controlled current source is further provided between the magnetic powder brake and the digital-to-analog converter, and the magnetic powder brake receives the current signal through the program-controlled current source.
  • the corresponding torque load is generated under the control of the signal.
  • the measurement data includes at least one of the following: torque, motor speed, motor operating current, ambient temperature and other related parameters.
  • the test subsystem 30 may further include an alarm module, and the distributed control module 20 is further configured to trigger the alarm when the measurement data exceeds a preset fluctuation range
  • the module generates an alarm signal, and the alarm signal includes at least one of the following forms: sound, light, electricity, and text.
  • the test system may include a main control module 10, one or more distributed control modules 20, and one or more test subsystems 30, wherein each test subsystem 30 may include data
  • the main control module 10 is set to provide the operator with a man-machine interface (the man-machine interface is used to provide The tester provides a more friendly operation interface, which is convenient to observe the working status of the test system and the current test data, etc.), and perform data transmission with the distributed control module 20 (the data transmission includes the main control module 10 and the distributed control module Two-way data transmission between 20, including test mode selection, manual/automatic control signal transmission, measurement data upload, etc.), measurement data processing (measurement data processing here includes data storage, data query, and data abnormality judgment) , Report printing, etc.); each distributed control module 20 is set to independently control the operation of each module in a test subsystem 30; the data acquisition module 301 is set to
  • the voltage and current signals are used to simulate the output signal of the actual pressure sensor to provide to the pressure acquisition part of the drive module 304 to be tested for use; the alarm module is set to appear during the test Provides at least one form of alarm reminder in multiple forms such as sound, light, text, etc. when a fault occurs.
  • test steps when the test system of the embodiment of the present application is used for testing, the test steps may include:
  • the distributed control module 20 loads the specified torque load onto the motor 305 through the analog load module 302;
  • the distributed control module 20 sends out a drive instruction of the motor 305 according to the communication protocol of the drive module 304 to be tested;
  • the distributed control module 20 outputs an analog pressure signal to the drive module 304 under test through the signal simulation module 303;
  • the data collection module 301 collects all measurement data in real time
  • the main control module 10 performs data processing on the measurement data
  • the alarm module provides corresponding alarm reminders in at least one form of sound, light, text, etc. according to the data processing result.
  • test system of the embodiment of the present application realizes the full-function simulation test of the multiple drive modules 304 to be tested.
  • the drive module 304 to be tested can be placed in a high-temperature vibration test chamber, and a long-term high-temperature vibration screening experiment can be carried out, which can effectively detect the working performance of the drive module 304 to be tested, which is convenient for technicians to analyze more information.
  • the performance of the drive module 304 to be tested under these conditions has positive significance for improving the overall reliability of the rotary steering hydraulic system.
  • a computer can be used as the main control module 10; a human-computer interaction interface can be provided through a computer display; an embedded controller can be used as a distributed control module 20; data can be used
  • the acquisition card is used as the data acquisition module 301; the digital-to-analog converter can be used as the signal simulation module 303 and the control input of the analog load module 302; the magnetic powder brake can be used as the analog load module 302.
  • the test system is running.
  • the computer selects two modes to simulate continuous load changes or set 5 variable programmable levels.
  • the digital-to-analog converter outputs the corresponding current signal to control the magnetic powder brake to produce the corresponding torque load.
  • the embedded controller sends the motor 305 drive command according to the communication protocol of the drive module 304 to be tested, and the data acquisition card collects real-time torque, motor 305 speed, motor 305 operating current, ambient temperature and other related parameters.
  • the embedded controller transmits the collected data to the computer for storage and corresponding processing.
  • the current test data and status are displayed on the monitor in real time. If the measured data is abnormal, the abnormal data will be displayed on the monitor by flashing, and an audible alarm signal will be issued on the computer. .
  • the test system can carry out functional tests of multiple motor drive circuits under conditions of high temperature, vibration or low temperature and vibration.
  • each test subsystem can run independently, or any number of test subsystems or all test subsystems can run together.
  • each test subsystem can be freely given a test plan.
  • relevant parameters such as torque, motor speed, motor operating current, ambient temperature, etc. can be recorded and displayed in real time, and can be visually displayed in the form of a curve.
  • an alarm reminder in at least one of multiple forms such as sound, light, and text is provided when a fault occurs during the test.
  • the test system can realize the full-function simulation test of the drive module to be tested, automatically collect all data in the test process, and perform real-time storage and analysis to effectively detect the working performance of the drive module to be tested , To achieve the following technical indicators:
  • test drive modules 1 ⁇ 6;
  • this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware.
  • this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.

Abstract

一种测试系统被公开。该测试系统包括主控制模块(10)、和主控制模块(10)相连的一个或多个分布式控制模块(20)以及与分布式控制模块(20)一一对应连接的一个或多个测试子系统(30);每个测试子系统(30)包括数据采集模块(301)、模拟负载模块(302)、信号仿真模块(303)、待测驱动模块(304)和电机(305),待测驱动模块(304)设置为驱动电机(305)运行;分布式控制模块(20)与所连接的测试子系统(30)内的每个模块分别连接,设置为分别控制所连接的每个模块的运行;数据采集模块(301)设置为采集待测驱动模块(304)的测量数据并传递至所连接的分布式控制模块(20);模拟负载模块(302)设置为根据所连接的分布式控制模块(20)的第一指令,为待测驱动模块(304)所驱动的电机(305)传递扭矩负载;信号仿真模块(303)设置为根据所连接的分布式控制模块(20)的第二指令,输出模拟压力信号至待测驱动模块(304)。

Description

一种测试系统 技术领域
本申请涉及但不限于测试技术领域,尤其涉及一种测试系统。
背景技术
旋转导向钻井系统是在旋转钻进的状态下,实现井眼轨迹控制的一种自动化钻井系统。该技术与传统的滑动导向钻井相比,具有机械转速高、井身轨迹控制精度高、井眼净化效果好等特点,可以满足水平井、大位移井、三维多目标井等高难度特殊工艺导向钻井需求。目前旋转导向钻井技术已经在世界范围内广泛应用于石油勘探开发生产中,其主流的设计方法包括静态指向式、动态指向式、静态推靠式三种。对于静态推靠式旋转导向工具,液压系统是其中一项关键技术,液压系统的性能和寿命直接决定了旋转导向系统的性能和寿命。液压系统包括液压单元和液压驱动模块。液压单元是导向力产生部件,液压驱动模块用于驱动液压单元。
液压驱动模块可以实现液压单元的转速闭环、压力闭环、电流闭环控制功能。为了实现驱动液压单元的功能,液压驱动模块上采用了大量的高可靠性能、高温性能的芯片,但液压驱动模块在制作过程中受到工艺、芯片质量等因素的影响在批量制作后,许多隐形的缺陷在常规测试环境中无法得到暴露,但是在高温震动环境中会显现出来,直接影响到仪器的工作可靠性能。传统的人工测试方法工作量大,数据记录少,不能连续监测,影响了测试的全面性和可靠性。
发明概述
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请提供了一种测试系统,包括主控制模块、一个或多个分布式控制模块以及一个或多个测试子系统,其中:所述主控制模块分别与所述一个或 多个分布式控制模块相连接;所述分布式控制模块和所述测试子系统一一对应连接;每个所述测试子系统包括数据采集模块、模拟负载模块、信号仿真模块、待测驱动模块和电机,所述待测驱动模块设置为驱动所述电机运行;所述分布式控制模块与所连接的测试子系统的数据采集模块、模拟负载模块、信号仿真模块、待测驱动模块分别连接,设置为分别控制所连接的数据采集模块、模拟负载模块、信号仿真模块、待测驱动模块的运行;所述数据采集模块设置为采集所述待测驱动模块的测量数据,并传递至所连接的分布式控制模块;所述模拟负载模块设置为根据所连接的分布式控制模块的第一指令,为所述待测驱动模块所驱动的电机传递扭矩负载;所述信号仿真模块设置为根据所连接的分布式控制模块的第二指令,输出模拟压力信号至所述待测驱动模块。
在一种示例性实施例中,所述主控制模块设置为,输出控制指令至所述分布式控制模块,并接收所述分布式控制模块的测量数据,所述控制指令包括以下至少之一:测试模式和控制信号。
在一种示例性实施例中,所述测试模式包括电机扭矩连续变化和按需设置多个程控量级两种模式;所述控制信号包括以下至少之一:手动控制信号和自动控制信号。
在一种示例性实施例中,所述测试子系统被放置于一个高温震动实验舱内。
在一种示例性实施例中,所述模拟负载模块为磁粉制动器;所述信号仿真模块为数模转换器;
所述数模转换器设置为接收所连接的分布式控制模块的所述第一指令和所述第二指令,根据所述第二指令输出所述模拟压力信号至所述待测驱动模块,根据所述第一指令输出电流信号至所述磁粉制动器,所述电流信号设置成控制所述磁粉制动器产生对应的扭矩负载。
在一种示例性实施例中,所述测量数据包括以下至少之一:扭矩、电机转速、电机工作电流、环境温度。
在一种示例性实施例中,所述测试子系统还包括:报警模块,所述分布 式控制模块还设置为,当所述测量数据超出预设的波动范围时,触发所述报警模块产生报警信号,所述报警信号包括以下至少一种形式:声、光、电、文字。
在一种示例性实施例中,所述数据测量模块为数据采集卡,所述分布式控制模块为嵌入式控制器,所述主控制模块为计算机。
在一种示例性实施例中,所述分布式控制模块还设置为,将所述测量数据传输至所述主控制模块;所述主控制模块还设置为,保存所述测量数据,并通过人机交互界面显示所述测量数据。
在一种示例性实施例中,所述主控制模块还设置为,对所述测量数据进行异常判断,若所述测量数据异常,在所述人机交互界面上通过闪烁方式显示异常的测量数据,并在所述计算机上发出声音报警信号。
在阅读并理解了附图概述和本申请的实施方式后,可以明白其他方面。
附图概述
图1为本申请实施例提供的一种测试系统的结构示意图;
图2为本申请实施例提供的另一种测试系统的结构示意图。
详述
下面结合附图,对本申请实施例的实施方式进行说明。应该理解,这些描述只是示例性的,而并非要限制本申请实施例的范围。
图1是本申请实施例提供的测试系统实施例的框架示意图。
如图1所示,在本实施例中,测试系统包括主控制模块10、一个或多个分布式控制模块20以及一个或多个测试子系统30。
其中,主控制模块10分别与一个或多个分布式控制模块20相连接。所述分布式控制模块20和所述测试子系统30一一对应连接。
每个测试子系统30包括数据采集模块301、模拟负载模块302、信号仿真模块303、待测驱动模块304和电机305,所述待测驱动模块304设置为驱 动所述电机305运行;所述分布式控制模块20与所连接的测试子系统30的数据采集模块301、模拟负载模块302、信号仿真模块303、待测驱动模块304分别连接,设置为分别控制所连接的数据采集模块301、模拟负载模块302、信号仿真模块303、待测驱动模块304的运行。
所述数据采集模块301可以设置为采集所述待测驱动模块304的测量数据,并传递至所连接的分布式控制模块20;所述模拟负载模块302可以设置为根据所连接的分布式控制模块20的第一指令,为所述待测驱动模块304所驱动的电机305传递扭矩负载;所述信号仿真模块303可以设置为根据所连接的分布式控制模块20的第二指令,输出模拟压力信号至所述待测驱动模块304。
本申请实施例提供的测试系统,通过设置主控制模块10、一个或多个分布式控制模块20以及一个或多个测试子系统30,并在每个测试子系统30中设置数据采集模块301、模拟负载模块302、信号仿真模块303、待测驱动模块304和电机305,实现了一路或多路待测驱动模块304的全功能模拟测试,有效地检测出待测驱动模块304的工作性能,便于技术人员分析多种条件下的待测驱动模块304的性能,对旋转导向液压系统整体的可靠性提高具有积极意义。
在一种示例性实施例中,每个测试子系统30可以独立运行,也可任意数量的测试子系统30或全部测试子系统30一起运行。
在一种示例性实施例中,所述主控制模块10可以设置为,输出控制指令至所述分布式控制模块20,并接收所述分布式控制模块20的测量数据,控制指令包括以下至少之一:测试模式和控制信号。
在一种示例性实施例中,所述测试模式可以包括电机扭矩连续变化和按需设置多个可变程控量级两种模式;所述控制信号可以包括以下至少之一:手动控制信号和自动控制信号。
在一种示例性实施例中,所述测试子系统30可以被放置于一个高温震动实验舱内。通过将测试子系统30放置于一个高温震动实验舱内,本实施例能够连续测试高温、震动环境下的待测驱动模块304的工作特性,从而可以全面筛选出满足井下恶劣环境下的待测驱动模块304,有效地检测出待测驱动 模块304的工作性能。
在一种示例性实施例中,所述模拟负载模块302可以为磁粉制动器;所述信号仿真模块303可以为数模(Digit to Analog,D/A)转换器。
所述数模转换器可以接收所连接的分布式控制模块20的所述第一指令和所述第二指令,根据所述第二指令输出所述模拟压力信号至所述待测驱动模块304,根据所述第一指令输出电流信号至所述磁粉制动器,所述电流信号设置成控制所述磁粉制动器产生对应的扭矩负载。
在一种示例性实施例中,所述磁粉制动器和所述数模转换器之间还设置有一程控电流源,所述磁粉制动器通过所述程控电流源接收所述电流信号,并在所述电流信号的控制下产生对应的扭矩负载。
在一种示例性实施例中,所述测量数据包括以下至少之一:扭矩、电机转速、电机工作电流、环境温度等相关参数。
在一种示例性实施例中,所述测试子系统30还可以包括:报警模块,所述分布式控制模块20还设置为,当所述测量数据超出预设的波动范围时,触发所述报警模块产生报警信号,所述报警信号包括以下至少一种形式:声、光、电、文字。
在一种示例性实施例中,所述测试系统可以包括主控制模块10、一个或多个分布式控制模块20以及一个或多个测试子系统30,其中,每个测试子系统30可以包括数据采集模块301、模拟负载模块302、信号仿真模块303、报警模块、待测驱动模块304和电机305;主控制模块10设置为为操作人员提供人机交互界面(所述人机交互界面用于给测试人员提供较为友好的操作界面,便于观察测试系统的工作状态以及当前的测试数据等),与所述分布式控制模块20进行数据传输(所述数据传输包括主控制模块10与分布式控制模块20之间的双向数据传输,包括测试模式的选择、手动/自动控制信号的传输、测量数据的上传等),进行测量数据处理(此处的测量数据处理包括数据保存、数据查询、数据异常判断、报表打印等);每个分布式控制模块20设置为独立控制一个测试子系统30内的每个模块的运行;数据采集模 块301设置为完成待测驱动模块304的测量数据的检测与读取;模拟负载模块302设置为给待测驱动模块304的电机305提供大小可控的扭矩负载;信号仿真模块303设置为与待测驱动模块304的对应接口相连接,可以提供大小可控的电压、电流信号至所述待测驱动模块304,所述电压、电流信号用于模拟实际压力传感器的输出信号,以提供给待测驱动模块304的压力采集部分使用;报警模块设置为在测试过程中出现故障时提供声音、光、文字等多种形式中的至少一种形式的报警提醒。
在一种示例性实施例中,在使用本申请实施例的测试系统进行测试时,测试步骤可以包括:
通过人机交互界面将测试模式通过主控制模块10发送至分布式控制模块20;
分布式控制模块20通过模拟负载模块302将指定的扭矩负载加载到电机305上;
分布式控制模块20根据待测驱动模块304的通信协议将电机305驱动指令发出;
分布式控制模块20通过信号仿真模块303输出模拟压力信号至待测驱动模块304;
数据采集模块301实时采集所有测量数据;
主控制模块10对测量数据进行数据处理;
报警模块根据数据处理结果提供相应的声音、光、文字等多种形式中至少一种形式的报警提醒。
本申请实施例的测试系统实现了多路待测驱动模块304的全功能模拟测试。
在一种示例性实施例中,可将待测驱动模块304放置于高温震动实验舱内,开展长时间高温震动筛选实验,有效地检测出待测驱动模块304的工作性能,便于技术人员分析多种条件下的待测驱动模块304性能,对旋转导向液压系统整体的可靠性提高具有积极意义。
在一种示例性实施例中,如图2所示,可以使用计算机作为主控制模块10;可以通过计算机显示器提供人机交互界面;可以使用嵌入式控制器作为分布式控制模块20;可以使用数据采集卡作为数据采集模块301;可以使用数模转换器作为信号仿真模块303,并作为模拟负载模块302的控制输入;可以使用磁粉制动器作为模拟负载模块302。
测试系统运行,通过计算机选择模拟负载连续变化或设置5个可变程控量级两种模式,根据设置的模式由数模转换器输出相应的电流信号,控制磁粉制动器产生对应的扭矩负载。
嵌入式控制器根据待测驱动模块304的通信协议将电机305驱动指令发出,数据采集卡实时采集扭矩、电机305转速、电机305工作电流、环境温度等相关参数。嵌入式控制器将采集的数据传输至计算机保存并做相应处理,在显示器实时显示当前的测试数据和状态,若测量数据异常,在显示器用闪烁方式显示异常数据,并在计算机上发出声音报警信号。
在一种示例性实施例中,测试系统可以在高温、振动或低温、振动的条件下,开展多路电机驱动电路的功能测试。
在一种示例性实施例中,每个测试子系统可以独立运行,也可任意数量的测试子系统或全部测试子系统一起运行。
在一种示例性实施例中,每路测试子系统可以自由给定测试方案。
在一种示例性实施例中,可以实时记录并显示扭矩、电机转速、电机工作电流、环境温度等相关参数,并可用曲线形式形象地展现。
在一种示例性实施例中,在测试过程中出现故障时提供声音、光、文字等多种形式中的至少一种形式的报警提醒。
在一种示例性实施例中,测试系统能够实现待测驱动模块的全功能模拟测试,自动采集测试过程中的所有数据,并进行实时保存与分析,有效的检测出待测驱动模块的工作性能,达到以下技术指标:
(1)测试驱动模块数量:1~6块;
(2)电机转速:0~5000转每分(Revolutions Per Minute,rpm)连续可 调;
(3)最大制动扭矩:0.6牛米(Nm);
(4)扭矩控制模式:连续/程控;
(5)数据保存时间:不小于200小时;
(6)人机接口:触摸液晶显示屏。
在此指出,仅对本申请实施例所描述的测试系统的用途作出改变,而不改变本申请的宗旨,依然属于本申请实施例所保护的范围。
术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
本领域技术人员应明白,本申请实施例可提供为方法、系统或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有多种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (10)

  1. 一种测试系统,包括主控制模块、一个或多个分布式控制模块以及一个或多个测试子系统,其中:
    所述主控制模块分别与所述一个或多个分布式控制模块相连接;所述分布式控制模块和所述测试子系统一一对应连接;
    每个所述测试子系统包括数据采集模块、模拟负载模块、信号仿真模块、待测驱动模块和电机,所述待测驱动模块设置为驱动所述电机运行;所述分布式控制模块与所连接的测试子系统的数据采集模块、模拟负载模块、信号仿真模块、待测驱动模块分别连接,设置为分别控制所连接的数据采集模块、模拟负载模块、信号仿真模块、待测驱动模块的运行;
    所述数据采集模块设置为采集所述待测驱动模块的测量数据,并传递至所连接的分布式控制模块;所述模拟负载模块设置为根据所连接的分布式控制模块的第一指令,为所述待测驱动模块所驱动的电机传递扭矩负载;所述信号仿真模块设置为根据所连接的分布式控制模块的第二指令,输出模拟压力信号至所述待测驱动模块。
  2. 根据权利要求1所述的测试系统,其中,所述主控制模块设置为,输出控制指令至所述分布式控制模块,并接收所述分布式控制模块的测量数据,所述控制指令包括以下至少之一:测试模式和控制信号。
  3. 根据权利要求2所述的测试系统,其中,所述测试模式包括电机扭矩连续变化和按需设置多个程控量级两种模式;所述控制信号包括以下至少之一:手动控制信号和自动控制信号。
  4. 根据权利要求1所述的测试系统,其中,所述测试子系统被放置于一个高温震动实验舱内。
  5. 根据权利要求1所述的测试系统,其中,所述模拟负载模块为磁粉制动器;所述信号仿真模块为数模转换器;
    所述数模转换器设置为接收所连接的分布式控制模块的所述第一指令和 所述第二指令,根据所述第二指令输出所述模拟压力信号至所述待测驱动模块,根据所述第一指令输出电流信号至所述磁粉制动器,所述电流信号设置成控制所述磁粉制动器产生对应的扭矩负载。
  6. 根据权利要求1所述的测试系统,其中,所述测量数据包括以下至少之一:扭矩、电机转速、电机工作电流、环境温度。
  7. 根据权利要求6所述的测试系统,还包括:报警模块,
    所述分布式控制模块还设置为,当所述测量数据超出预设的波动范围时,触发所述报警模块产生报警信号,所述报警信号包括以下至少一种形式:声、光、电、文字。
  8. 根据权利要求1所述的测试系统,其中,所述数据测量模块为数据采集卡,所述分布式控制模块为嵌入式控制器,所述主控制模块为计算机。
  9. 根据权利要求1所述的测试系统,其中,所述分布式控制模块还设置为,将所述测量数据传输至所述主控制模块;
    所述主控制模块还设置为,保存所述测量数据,并通过人机交互界面显示所述测量数据。
  10. 根据权利要求9所述的测试系统,其中,所述主控制模块还设置为,对所述测量数据进行异常判断,若所述测量数据异常,在所述人机交互界面上通过闪烁方式显示异常的测量数据,并发出声音报警信号。
PCT/CN2020/079146 2019-06-25 2020-03-13 一种测试系统 WO2020258922A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910555458.6A CN110388354A (zh) 2019-06-25 2019-06-25 一种测试系统
CN201910555458.6 2019-06-25

Publications (1)

Publication Number Publication Date
WO2020258922A1 true WO2020258922A1 (zh) 2020-12-30

Family

ID=68285896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079146 WO2020258922A1 (zh) 2019-06-25 2020-03-13 一种测试系统

Country Status (2)

Country Link
CN (1) CN110388354A (zh)
WO (1) WO2020258922A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116907825A (zh) * 2023-09-11 2023-10-20 湖南揽月机电科技有限公司 一种飞轮轴系自动考核系统及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110388354A (zh) * 2019-06-25 2019-10-29 中国海洋石油集团有限公司 一种测试系统
CN111679138B (zh) * 2020-05-29 2021-09-17 中国石油天然气集团有限公司 一种用于非接触传输系统的性能评价测试平台及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5221905A (en) * 1992-02-28 1993-06-22 International Business Machines Corporation Test system with reduced test contact interface resistance
US20100162828A1 (en) * 2008-12-26 2010-07-01 Foxnum Technology Co., Ltd. Testing system and method for motor
CN102466775A (zh) * 2010-11-17 2012-05-23 益明精密科技有限公司 多功能可变换模块测试装置
CN106324498A (zh) * 2015-06-30 2017-01-11 湖南南车时代电动汽车股份有限公司 一种测试电机驱动系统的方法
CN106842071A (zh) * 2016-12-29 2017-06-13 上海新时达电气股份有限公司 门机变频器测试系统及方法
CN110388354A (zh) * 2019-06-25 2019-10-29 中国海洋石油集团有限公司 一种测试系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101598766B (zh) * 2009-07-07 2011-07-20 华中科技大学 一种开放式便携电机驱动器全自动测试装置
CN102565693A (zh) * 2011-12-30 2012-07-11 上海电器科学研究所(集团)有限公司 一种机械及电气寿命试验系统
CN204694824U (zh) * 2015-06-17 2015-10-07 湖南工程学院 变频电机智能测试装置
CN205229419U (zh) * 2015-12-04 2016-05-11 浙江佳乐科仪股份有限公司 一种小功率伺服驱动器性能测试系统
CN105866683B (zh) * 2016-04-01 2019-10-18 深圳北航天汇创业孵化器有限公司 一种闭环步进电机及其驱动器的测试系统
CN108710081A (zh) * 2018-07-02 2018-10-26 浙江易控电子科技有限公司 一种变频器及电机测验系统、测验方法及安装方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5221905A (en) * 1992-02-28 1993-06-22 International Business Machines Corporation Test system with reduced test contact interface resistance
US20100162828A1 (en) * 2008-12-26 2010-07-01 Foxnum Technology Co., Ltd. Testing system and method for motor
CN102466775A (zh) * 2010-11-17 2012-05-23 益明精密科技有限公司 多功能可变换模块测试装置
CN106324498A (zh) * 2015-06-30 2017-01-11 湖南南车时代电动汽车股份有限公司 一种测试电机驱动系统的方法
CN106842071A (zh) * 2016-12-29 2017-06-13 上海新时达电气股份有限公司 门机变频器测试系统及方法
CN110388354A (zh) * 2019-06-25 2019-10-29 中国海洋石油集团有限公司 一种测试系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116907825A (zh) * 2023-09-11 2023-10-20 湖南揽月机电科技有限公司 一种飞轮轴系自动考核系统及方法
CN116907825B (zh) * 2023-09-11 2024-01-16 湖南揽月机电科技有限公司 一种飞轮轴系自动考核系统及方法

Also Published As

Publication number Publication date
CN110388354A (zh) 2019-10-29

Similar Documents

Publication Publication Date Title
WO2020258922A1 (zh) 一种测试系统
CN107168201B (zh) 一种发动机试验台架的实时监测设备运维管理系统
CN201107393Y (zh) 同步/协调控制器性能测试平台
CN201336157Y (zh) 一种用于反应堆保护系统过程仪表测试的新型试验装置
CN101968653B (zh) 控制台装置检测仪及控制台装置检测方法
CN109324601A (zh) 基于硬件在环的机器人控制器或控制系统的测试平台
CN102179728A (zh) 一种数控刀具磨损智能检测装置
CN101561351A (zh) 一种飞机发动机动态仿真试验台
CN104296927B (zh) 一种电主轴动平衡性能测试实验系统
CN202583869U (zh) Ecu的检测诊断控制装置
CN203101018U (zh) 一种隧道通风模型试验测试系统
CN202331190U (zh) 可移动式电动助力转向控制器综合试验台
CN100465840C (zh) 对技术设备进行仿真的方法
CN112666845A (zh) 综采工作面的仿真测试系统以及仿真测试方法
CN103019940A (zh) 一种电能表嵌入式软件半仿真测试装置
CN103699017A (zh) 核电站模拟机接口设备仿真测试系统及其仿真测试方法
CN103759757A (zh) 一种汽车组合仪表测试装置
CN103234742A (zh) 振动筛减振弹簧故障诊断方法
CN201740656U (zh) 一种基于LabVIEW的推土机动态参数的测试装置
KR20030020536A (ko) 지진감시 및 분석 시스템
CN102097017A (zh) 汽车自动变速器测试系统
CN204613245U (zh) 齿盘测速综合校验仪
CN204405465U (zh) 一种耐磨检测仪控制系统
CN104076812B (zh) 比例换向阀组实时仿真测试装置
CN207374706U (zh) 一种可视化参数记录仪系统测试台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20831686

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20831686

Country of ref document: EP

Kind code of ref document: A1