WO2020258486A1 - 一种列车级制动力管理方法 - Google Patents

一种列车级制动力管理方法 Download PDF

Info

Publication number
WO2020258486A1
WO2020258486A1 PCT/CN2019/102675 CN2019102675W WO2020258486A1 WO 2020258486 A1 WO2020258486 A1 WO 2020258486A1 CN 2019102675 W CN2019102675 W CN 2019102675W WO 2020258486 A1 WO2020258486 A1 WO 2020258486A1
Authority
WO
WIPO (PCT)
Prior art keywords
braking force
control unit
braking
network
train
Prior art date
Application number
PCT/CN2019/102675
Other languages
English (en)
French (fr)
Inventor
杨正专
杨俊�
刘寅虎
杜运哲
幸甚
胡康
赵飒
Original Assignee
南京中车浦镇海泰制动设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京中车浦镇海泰制动设备有限公司 filed Critical 南京中车浦镇海泰制动设备有限公司
Priority to EP19934924.2A priority Critical patent/EP3895943B1/en
Publication of WO2020258486A1 publication Critical patent/WO2020258486A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • B60T17/22Devices for monitoring or checking brake systems; Signal devices
    • B60T17/228Devices for monitoring or checking brake systems; Signal devices for railway vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/665Electrical control in fluid-pressure brake systems the systems being specially adapted for transferring two or more command signals, e.g. railway systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1701Braking or traction control means specially adapted for particular types of vehicles
    • B60T8/1705Braking or traction control means specially adapted for particular types of vehicles for rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/40Failsafe aspects of brake control systems
    • B60T2270/402Back-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/40Failsafe aspects of brake control systems
    • B60T2270/413Plausibility monitoring, cross check, redundancy

Definitions

  • the invention relates to a rail transit train braking force control technology, in particular to a train-level braking force management method with high reliability.
  • the Chinese invention patent application CN 202320277 U discloses a frame control system.
  • the electronic brake control unit is installed close to each bogie of the vehicle, and each frame control system communicates with each other through CAN cables. connection.
  • the CAN cable forms a unit of all EBCUs mounted on it, and does not completely rely on the train bus, making it possible to distribute the braking force at the train level, that is, to maximize the use of electric braking and fully optimize the friction braking distribution of all bogies.
  • the CAN cable adopts a dual-channel CAN cable to achieve redundancy on the network, when a fault occurs in which two channels are disconnected at the same time, the reliability of the system will not be effectively guaranteed.
  • the technical problem to be solved by the present invention is to overcome the above-mentioned shortcomings of the prior art and provide a train-level braking force management method to improve the fault-tolerant operation capability of the braking system and improve the reliability and safety of the braking system; Vehicle braking force management mode, system braking force control accuracy is higher. Compared with the traditional braking force management method, the braking control accuracy of the whole train is higher; this system method is equipped with multiple redundancy, and adopts the method of self-discipline and master-slave control.
  • control unit In the case of a single control unit failure, other control units It can accurately supplement the braking force of the control unit to ensure the normal application of train braking force, with higher reliability and safety; the main control unit adopts a hot backup method, which improves the system's fault-tolerant operation capability.
  • the train-level braking force management method of the present invention is based on the implementation of the electronic brake control unit through the brake system composed of the train network and the brake internal network.
  • the train is divided into multiple network segments, and the network segments pass through the train network.
  • the electronic brake control unit at both ends of each network segment is the master control unit.
  • the master control unit collects information from the train network and the brake intranet to calculate and distribute the braking force, and then pass the brake
  • the internal brake network distributes the braking force to the electronic brake control unit of each local network segment, thereby realizing the braking force management of the entire train.
  • the brake internal network when the brake internal network is disconnected, the brake internal network is divided into two In this area, the two main control units of the faulty network segment collect the vehicle weight information and available air brake information of the electronic brake control unit on the faulty side through the brake intranet, and upload it through the train network, so that each main control unit is Receiving the relevant information of the entire train and performing the brake calculation and the calculation of the braking force applied by each car, the two main control units of the faulty network segment distribute the required application to the electronic brake control unit of the faulty side through the brake internal network. Braking force.
  • the present invention also has the following further features:
  • the two main control units in the network segment will offline the vehicle weight information of the electronic brake control unit.
  • the vehicle of the offline electronic brake control unit adopts the fixed vehicle weight to participate in the calculation of the braking force, and the available air brake capacity of the vehicle of the offline electronic brake control unit is set to 0, and the braking force of the vehicle is not distributed.
  • the braking force of the vehicle is assumed by other vehicles to realize the braking force distribution of the whole vehicle.
  • the two main control units in the network segment set the vehicle weight information of the faulty electronic brake control unit to 0, and electronic brake control occurs
  • the vehicle with a unit failure adopts the fixed vehicle weight to participate in the calculation of the braking force.
  • the available air braking capacity of the vehicle with a failure of the electronic brake control unit is set to 0, and the braking force of the vehicle is not distributed, and other vehicles are responsible for the braking force of the vehicle. Power, realize the distribution of braking force of the whole vehicle.
  • each network segment performs the calculation of the required braking force in the network segment and the distribution of the braking force in this network segment according to the received braking instructions, so as to ensure the required braking force of the entire vehicle. power.
  • the present invention is based on the train network (MVB) and the brake internal network (CAN).
  • MVB train network
  • CAN brake internal network
  • the network segment adopts the master-slave control method and sets two mutual hot backups. Redundant main control unit to realize train-level braking force management.
  • the invention realizes the self-distributed management of braking force between network segments through MVB. In the case of MVB failure, each network segment can manage the braking force autonomously; each network segment is equipped with two mutually redundant main control units to achieve master-slave control.
  • the main control can be switched in real time to realize train-level braking force management; ensure the normal operation of the braking system, and improve the safety and reliability of the braking system and the train. Therefore, the present invention ensures the reliability and safety of the braking system during train operation through the ingenious design of the basic train network (MVB), the braking internal network and the braking control unit.
  • VMB basic train network
  • Fig. 1 is the braking force management framework under normal operating conditions of the present invention.
  • Figure 2 shows the braking force management architecture under a working condition of CAN intranet failure.
  • Figure 3 shows the braking force management architecture under the second working condition of CAN intranet failure.
  • Figure 4 shows the braking force management architecture under a failure condition of a brake control unit in the network segment.
  • the invention provides a high-reliability train-level braking force management method.
  • the method is based on the realization of the electronic brake control unit through a brake system composed of a train network (MVB network) and a brake intranet (CAN network).
  • VMB network train network
  • CAN network brake intranet
  • the train network transmits the braking command information of TCMS, the electric braking related information of the DCU, and the vehicle weight and available air braking capacity transmitted by each segment of the braking intranet.
  • the brake internal network adopts a dual redundant structure, which transmits the vehicle weight information, available air brake capacity, actual air brake completion value, coasting status, failure and other information sent by LU to MU; and transmits information sent from MU to LU Air brake target value, brake command status and other information.
  • EBCU electronic brake control units
  • MU is mutually redundant and adopts a hot backup method, mainly receiving brake commands from the train network, electric brake related information, and other
  • the vehicle weight and available air brake capacity of the network unit, the vehicle weight and air brake capacity of each LU unit of this unit are calculated and distributed; the LU receives the target brake assigned by the MU through the brake intranet Perform braking force control and fault diagnosis.
  • the brake internal network divides the entire column of brake units into two network segments.
  • the first network segment is equipped with EBCU1 and EBCU6.
  • Control unit the second network segment is equipped with two main control units, EBCU7 and EBCU12; the 4 main control units are connected through the MVB network to receive MVB and hard-wire braking commands, and receive vehicle weight and vehicle weight from the MVB and CAN network.
  • Air brake can use information, electric brake information, electric brake coasting and other information to calculate and distribute the braking force of the whole vehicle and this network segment.
  • Each EBCU receives the braking force allocated by EBCU1 and EBCU12 by default.
  • EBCU1, EBCU6, EBCU7, EBCU12 respectively perform the required braking force calculation in this unit and the braking force distribution in this unit according to the received braking instruction and other relevant information, so as to ensure that the whole vehicle The required braking force.
  • the main control unit of each network segment performs the calculation of the required braking force in the network segment and the distribution of the braking force in the network segment according to the received braking instructions to ensure the braking force required by the entire vehicle .
  • FIG. 2 shows the train-level braking force management architecture under a working condition of CAN intranet failure. It can be seen that the CAN network disconnection fault between EBCU3 and EBCU4 causes the brake intranet to be divided into two areas.
  • EBCU1 collects the vehicle weight information of EBCU1, EBCU2 and EBCU3 and the available air brake information through the brake intranet. Upload through MVB;
  • EBCU6 collects vehicle weight information and available air brake information of EBCU4, EBCU5 and EBCU6 through the brake intranet and uploads it through MVB; thus, it can be ensured that each main control unit can receive the relevant information of the entire train for braking calculation And the calculation of the braking force applied by each car.
  • EBCU1 distributes the required braking force to EBCU1, EBCU2 and EBCU3 through the internal braking network
  • EBCU6 distributes the required braking force to EBCU4, EBCU5 and EBCU6 through the internal braking network.
  • Figure 3 shows the train-level braking force management architecture under the second working condition of CAN intranet failure.
  • the two main control units EBCU1 and EBCU6 in the network segment will set the vehicle weight information of the offline electronic brake control unit EBCU2 to 0, and the vehicle of the electronic brake control unit EBCU2 Using the fixed vehicle weight to participate in the calculation of the braking force, the available air braking capacity of the vehicle where EBCU2 is located is set to 0, and the braking force of the vehicle is not distributed, and the braking force of the vehicle is assumed by other vehicles to realize the braking force distribution of the whole vehicle. Loss of braking force ensures safe train operation.
  • Figure 4 shows the train-level braking force management architecture under a failure condition of a brake control unit in the network segment.
  • the processing situation is similar to that shown in Figure 3, and will not be repeated at the beginning.
  • main control unit EBCU1 fails, it will set its own main control signal to "0". After each electronic brake control unit detects that the main control signal of EBCU1 is set to "0", another main control unit in the network segment
  • the braking force allocated by EBCU6 implements braking, and the vehicle where EBCU1 is located uses the fixed vehicle weight to participate in the calculation of the braking force.
  • the available air braking capacity of the vehicle where EBCU1 is located is set to 0, and the braking force distribution of the vehicle is not performed, and other vehicles are responsible for it.
  • the braking force of this vehicle realizes the distribution of the braking force of the whole vehicle.
  • the high-reliability train-level braking force management method of the present invention has good effects. It can be reliably guided to the safe side in the case of various equipment failures of the train, and ensure the normal application of train braking force, thereby ensuring the safety and reliability of the train Ground operation, while ensuring the availability of the braking system. Therefore, a high-reliability train-level braking force management method involved in this invention has good braking control performance and wide application prospects.
  • the present invention may also have other embodiments. All technical solutions formed by equivalent replacements or equivalent transformations fall within the protection scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Regulating Braking Force (AREA)

Abstract

一种列车级制动力管理方法,基于电子制动控制单元通过列车网络、制动内网构成的制动系统实现,当制动内网发生断线故障使制动内网被分割成两个区域,故障网段的两个主控单元分别通过制动内网收集故障本侧电子制动控制单元的车重信息和可用气制动信息并通过列车网络进行上传,使得各主控单元均接收到整列车的相关信息并进行制动计算及各车所施加制动力的计算,故障网段的两个主控单元通过制动内网向故障本侧电子制动控制单元分配所需施加的制动力。该管理方法提升了制动系统容错运行的能力,提高制动系统的可靠性、安全性;同时采用整车制动力管理方式,系统制动力控制精度更高。

Description

一种列车级制动力管理方法 技术领域
本发明涉及轨道交通列车制动力控制技术,尤其涉及一种具有高可靠性的列车级制动力管理方法。
背景技术
目前,轨道交通迅猛发展,对轨道车辆的需求越来越大,尤其是城市轨道交通车辆的发车间隔越来越短,对轨道车辆制动系统的安全性、可靠性、可用性、舒适性提出了更高要求。大部分轨道车辆制动系统采用由电子单元控制的直通式制动,需要具备良好的制动力控制,以保证动车组在高速运行过程中的安全性,同时还需满足运营的可维护性和经济性。
经检索发现中国发明专利申请CN 202320277 U公开了一种架控制动系统,该系统中,电子制动控制单元靠近车辆的每个转向架安装,并且各个架控制动系统之间通过CAN电缆通信地连接。CAN电缆将其挂载的所有EBCU形成一个单元,不完全依赖列车总线,使列车级的制动力分配成为可能,即最大限度的利用电制动,全面优化所有转向架的摩擦制动分配。虽然该方案中,CAN电缆采用双通道的CAN电缆,实现了网络上冗余,然而当发生两个通道同时被断开的故障时,系统的系统的可靠性将不能得到有效保证。
发明内容
本发明所要解决的技术问题是,克服现有上述缺点,提供一种列车级制动力管理方法,以提升了制动系统容错运行的能力,提高制动系统的可靠性、安全性;同时采用整车制动力管理方式,系统制动力控制精度更高。与传统的制动力管理方法相比,整列车制动控制精度更高;该系统方法设置多重冗余,采用自律分散和主从控制的方式,在单台控制单元故障的情况下,其他控制单元 能够准确的补充该控制单元的制动力,保证列车制动力的正常施加,可靠性、安全性更高;主控单元采用热备份的方式,提升了系统容错运行的能力。
为了解决以上技术问题,本发明列车级制动力管理方法,基于电子制动控制单元通过列车网络、制动内网构成的制动系统实现,列车分为多个网段,网段间通过列车网络进行信息交互,每个网段两端的电子制动控制单元为主控单元,所述主控单元收集来自于列车网络的信息及制动内网的信息进行制动力的计算和分配,再通过制动内网将制动力分配至各个本地网段的电子制动控制单元,从而实现整列车的制动力管理,其特征在于:当制动内网发生断线故障使制动内网被分割成两个区域,故障网段的两个主控单元分别通过制动内网收集故障本侧电子制动控制单元的车重信息和可用气制动信息并通过列车网络进行上传,使得各主控单元均接收到整列车的相关信息并进行制动计算及各车所施加制动力的计算,故障网段的两个主控单元通过制动内网向故障本侧电子制动控制单元分配所需施加的制动力。
本发明还具有如下进一步的特征:
1、当网段内的某一主控单元发生故障,则发生故障的主控单元将自身主控信号置“0”,各电子制动控制单元检测出该主控单元的主控信号置“0”后,由该网段内另一个主控单元所分配的制动力实施制动,同时发生主控单元故障的车辆采用定员车重参与制动力的计算,发生主控单元故障的车辆的可用气制动能力置为0,不进行该车制动力的分配,由其他车承担该车的制动力,实现整车制动力分配。
2、当制动内网发生断线故障使得网段内主控单元以外的某一电子制动控制单元离线,网段内的两个主控单元将离线的电子制动控制单元所在车重信息置为0,离线电子制动控制单元的车辆采用定员车重参与制动力的计算,离线的电 子制动控制单元的车辆的可用气制动能力置为0,不进行该车制动力的分配,由其他车承担该车的制动力,实现整车制动力分配。
3、当网段内主控单元以外的某一电子制动控制单元发生故障,网段内的两个主控单元将故障电子制动控制单元所在车重信息置为0,发生电子制动控制单元故障的车辆采用定员车重参与制动力的计算,发生电子制动控制单元故障的车辆的可用气制动能力置为0,不进行该车制动力的分配,由其他车承担该车的制动力,实现整车制动力分配。
4、列车网络发生故障,各网段的主控单元分别根据接收到的制动指令,进行本网段内所需制动力计算和本网段内的制动力分配,保证整车所需的制动力。
本发明是基于列车网络(MVB)和制动内网(CAN),通过巧妙地设计网段间采用自律分散的制动力管理方式,网段内采用主从控制方式并设置两个相互热备份的冗余主控单元,从而实现列车级的制动力管理。发明通过MVB实现网段间制动力自律分散管理,在MVB故障的情况下,各网段能够自律管理制动力;每个网段内设置两个互为冗余的主控单元实现主从控制,在CAN网络或某一主控单元故障时,能够即时进行主控切换,实现列车级的制动力管理;保证制动系统正常工作,提高制动系统及列车的安全性及可靠性。因此本发明通过基本列车网络(MVB)和制动内网及制动控制单元的巧妙设计,保证了列车在运行过程中制动系统的可靠性和安全性。
附图说明
图1为本发明正常工况下的制动力管理架构。
图2为CAN内网故障情形一工况下的制动力管理架构。
图3为CAN内网故障情形二工况下的制动力管理架构。
图4为网段内某一制动控制单元故障工况下的制动力管理架构。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
本发明提供了一种高可靠性列车级制动力管理方法。该方法基于电子制动控制单元通过列车网络(MVB网)、制动内网(CAN网)构成的制动系统实现。
列车网络(MVB网)传输TCMS的制动指令信息、DCU的电制动相关信息以及制动内网各网段相互传输的车重、可用气制动能力等信息。
制动内网(CAN网)采用双重冗余结构,传输LU向MU发送的车重信息、可用气制动能力、气制动实际完成值、滑行状态、故障等信息;传输MU向LU发送的气制动目标值、制动指令状态等信息。
每个制动内网中设有两个主控电子制动控制单元(EBCU),其中MU互为冗余采用热备份的方式,主要接收列车网络的制动指令、电制动相关信息、其他网络单元的车重及可用气制动能力、本单元各个LU单元的车重和气制动能力等信息进行整车制动力的计算及分配;其中LU通过制动内网接收MU分配的目标制动进行制动力控制及故障诊断等。
从图1中给出的此发明中正常工况下列车级制动力管理架构,可以看出制动内网将整列制动单元分成2个网段,第一网段设置EBCU1和EBCU6两个主控单元,第二网段设置EBCU7和EBCU12两个主控单元;4个主控单元通过MVB网络连接,分别接收MVB和硬线制动指令,以及从MVB和CAN网络中接收车重、各车气制动可用信息、电制动信息、电制动滑行等信息进行整车及本网段的制动力计算及分配,各EBCU默认接收EBCU1和EBCU12分配的制动力。同时在MVB故障的情况下,EBCU1、EBCU6和EBCU7、EBCU12分别根据接收到的制动指令等相关信息,进行本单元内所需制动力计算和本单元内的制动力分配,从而 保证整车所需的制动力。当列车网络发生故障,各网段的主控单元分别根据接收到的制动指令,进行本网段内所需制动力计算和本网段内的制动力分配,保证整车所需的制动力。
图2给出了CAN内网故障情形一工况下的列车级制动力管理架构。可用看出在EBCU3和EBCU4之间CAN网络断线故障,使制动内网被分割成两个区域,EBCU1通过制动内网收集EBCU1、EBCU2和EBCU3的车重信息、可用气制动信息并通过MVB上传;EBCU6通过制动内网收集EBCU4、EBCU5和EBCU6的车重信息、可用气制动信息并通过MVB上传;从而可以保证各个主控单元能够接收到整列车的相关信息进行制动计算及各车所施加制动力的计算,计算后EBCU1通过制动内网向EBCU1、EBCU2和EBCU3分配所需施加的制动力,EBCU6通过制动内网向EBCU4、EBCU5和EBCU6分配所需的制动力。
图3给出了CAN内网故障情形二工况下的列车级制动力管理架构。当制动内网发生断线故障使得EBCU2离线,网段内的两个主控单元EBCU1和EBCU6将离线的电子制动控制单元EBCU2所在车重信息置为0,电子制动控制单元EBCU2的车辆采用定员车重参与制动力的计算,EBCU2所在车辆的可用气制动能力置为0,不进行该车制动力的分配,由其他车承担该车的制动力,实现整车制动力分配,不损失制动力保证列车运行安全。
图4给出了网段内某一制动控制单元故障工况下的列车级制动力管理架构。当网段内电子制动控制单元EBCU2发生故障,其处理情形余图3中的类似,本初不再赘述。
若是主控单元EBCU1故障,则将会将自身的主控信号置“0”,各电子制动控制单元检测出EBCU1的主控信号置“0”后,由该网段内另一个主控单元EBCU6所分配的制动力实施制动,同时EBCU1所在车辆采用定员车重参与制动力的计算, EBCU1所在车辆的可用气制动能力置为0,不进行该车制动力的分配,由其他车承担该车的制动力,实现整车制动力分配。
综合上述本发明的高可靠性列车级制动力管理方法具有良好的效果,能够在列车各种设备故障的情况下可以可靠地导向安全侧,保证列车制动力的正常施加,从而保证列车安全、可靠地运行,同时保证了制动系统的可用性。因此此发明中涉及的一种高可靠性列车级制动力管理方法具有良好的制动控制性能及广泛的应用前景。
除上述实施例外,本发明还可以有其他实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。

Claims (10)

  1. 一种列车级制动力管理方法,基于电子制动控制单元通过列车网络、制动内网构成的制动系统实现,列车分为多个网段,网段间通过列车网络进行信息交互,每个网段两端的电子制动控制单元为主控单元,所述主控单元收集来自于列车网络的信息及制动内网的信息进行制动力的计算和分配,再通过制动内网将制动力分配至各个本地网段的电子制动控制单元,从而实现整列车的制动力管理,其特征在于:当制动内网发生断线故障使制动内网被分割成两个区域,故障网段的两个主控单元分别通过制动内网收集故障本侧电子制动控制单元的车重信息和可用气制动信息并通过列车网络进行上传,使得各主控单元均接收到整列车的相关信息并进行制动计算及各车所施加制动力的计算,故障网段的两个主控单元通过制动内网向故障本侧电子制动控制单元分配所需施加的制动力。
  2. 根据权利要求1所述的列车级制动力管理方法,其特征在于:当网段内的某一主控单元发生故障,则发生故障的主控单元将自身主控信号置“0”,各电子制动控制单元检测出该主控单元的主控信号置“0”后,由该网段内另一个主控单元所分配的制动力实施制动,同时发生主控单元故障的车辆采用定员车重参与制动力的计算,发生主控单元故障的车辆的可用气制动能力置为0,不进行该车制动力的分配,由其他车承担该车的制动力,实现整车制动力分配。
  3. 根据权利要求1所述的列车级制动力管理方法,其特征在于:当制动内网发生断线故障使得网段内主控单元以外的某一电子制动控制单元离线,网段内的两个主控单元将离线的电子制动控制单元所在车重信息置为0,离线电子制动控制单元的车辆采用定员车重参与制动力的计算,离线的电子制动控制单元的车辆的可用气制动能力置为0,不进行该车制动力的分配,由其他车承担该车的制动力,实现整车制动力分配。
  4. 根据权利要求1所述的列车级制动力管理方法,其特征在于:当网段内主控单元以外的某一电子制动控制单元发生故障,网段内的两个主控单元将故障电子制动控制单元所在车重信息置为0,发生电子制动控制单元故障的车辆采用定员车重参与制动力的计算,发生电子制动控制单元故障的车辆的可用气制动能力置为0,不进行该车制动力的分配,由其他车承担该车的制动力,实现整车制动力分配。
  5. 根据权利要求1所述的列车级制动力管理方法,其特征在于:列车网络发生故障,各网段的主控单元分别根据接收到的制动指令,进行本网段内所需制动力计算和本网段内的制动力分配,保证整车所需的制动力。
  6. 根据权利要求1所述的列车级制动力管理方法,其特征在于:制动系统还具有制动硬线,各网段的主控单元分别于制动硬线连接,接收硬线制动指令。
  7. 根据权利要求1所述的列车级制动力管理方法,其特征在于:所述主控单元从列车网络和制动内网接收车重、各车气制动可用信息、电制动信息、电制动滑行信息进行整车及本网段的制动力计算及分配,电子制动控制单元默认根据本网段内的主控单元所分配的制动力实施制动。
  8. 根据权利要求1所述的列车级制动力管理方法,其特征在于:所述列车网络为MVB网络或以太网,制动内网为CAN网络或485网络。
  9. 根据权利要求1所述的列车级制动力管理方法,其特征在于:所述CAN网络为双重冗余结构。
  10. 根据权利要求1所述的列车级制动力管理方法,其特征在于:优先使用电制动力,在电制动力不足的情况下进行空气制动补充;在某个空气制动控制单元故障的情况下,全列其余控制单元在不超出粘着条件下进行制动力补充。
PCT/CN2019/102675 2019-06-26 2019-08-27 一种列车级制动力管理方法 WO2020258486A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19934924.2A EP3895943B1 (en) 2019-06-26 2019-08-27 Train-grade braking force management method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910561481.6 2019-06-26
CN201910561481.6A CN110254406B (zh) 2019-06-26 2019-06-26 一种列车级制动力管理方法

Publications (1)

Publication Number Publication Date
WO2020258486A1 true WO2020258486A1 (zh) 2020-12-30

Family

ID=67921874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/102675 WO2020258486A1 (zh) 2019-06-26 2019-08-27 一种列车级制动力管理方法

Country Status (3)

Country Link
EP (1) EP3895943B1 (zh)
CN (1) CN110254406B (zh)
WO (1) WO2020258486A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113835337A (zh) * 2021-10-19 2021-12-24 中车株洲电力机车有限公司 一种列车网络冗余控制的方法与系统
CN113997793A (zh) * 2021-11-30 2022-02-01 中国铁道科学研究院集团有限公司 一种非黏着制动参与下的列车制动力分配方法及装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111216701A (zh) * 2020-01-08 2020-06-02 中车株洲电力机车有限公司 一种制动控制单元模式切换控制方法及装置
CN111596646B (zh) * 2020-05-21 2021-07-23 中国铁道科学研究院集团有限公司 列车安全控制系统和方法
CN111959466B (zh) * 2020-08-20 2023-09-19 南京中车浦镇海泰制动设备有限公司 一种轨道车辆电机械制动系统
CN112141170A (zh) * 2020-10-14 2020-12-29 中车株洲电力机车有限公司 轨道交通车辆及其参考速度计算方法
CN114228783B (zh) * 2020-12-29 2023-12-26 长沙市轨道交通集团有限公司 一种列车制动控制方法、装置和可读存储介质
CN114228782A (zh) * 2020-12-29 2022-03-25 长沙市轨道交通集团有限公司 一种制动系统中主及主备bcu平稳切换方法、装置、列车及可读存储介质
CN113060112B (zh) * 2021-03-10 2022-03-08 交控科技股份有限公司 轨道车载制动控制的安全备用制动系统和方法
CN113415264B (zh) * 2021-07-30 2023-08-18 中车长春轨道客车股份有限公司 一种轨道车辆制动系统和轨道车辆制动系统的监控方法
CN113997977B (zh) * 2021-11-16 2023-09-26 中车唐山机车车辆有限公司 制动控制系统车辆总线主从通讯方法,装置及系统
CN114954557A (zh) * 2022-06-27 2022-08-30 中车浦镇阿尔斯通运输系统有限公司 一种导轨式胶轮系统车辆的制动系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202320277U (zh) 2011-12-30 2012-07-11 克诺尔车辆设备(苏州)有限公司 架控制动系统及轨道车辆
EP2705994A1 (en) * 2012-09-11 2014-03-12 Bombardier Transportation GmbH Control arrangement for a rail vehicle
CN105438151A (zh) * 2015-11-05 2016-03-30 中国铁道科学研究院 制动控制系统及其故障导向安全处理方法
CN107792039A (zh) * 2017-10-25 2018-03-13 中车株洲电力机车有限公司 磁浮列车液压制动系统动力管理方法、系统和轨道车辆
CN109808666A (zh) * 2017-11-21 2019-05-28 中车唐山机车车辆有限公司 一种列车车厢制动控制方法、列车车厢和列车

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008018873A1 (de) * 2008-04-14 2009-10-15 Bombardier Transportation Gmbh Steuerung für ein Fahrzeug
CN106043257B (zh) * 2016-06-30 2018-11-20 华伍轨道交通装备(上海)有限责任公司 一种单元内施行制动力分配的架控式制动系统及其制动控制方法
CN107097806B (zh) * 2016-11-30 2019-01-18 中车青岛四方车辆研究所有限公司 交流传动机车制动系统的电子控制系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202320277U (zh) 2011-12-30 2012-07-11 克诺尔车辆设备(苏州)有限公司 架控制动系统及轨道车辆
EP2705994A1 (en) * 2012-09-11 2014-03-12 Bombardier Transportation GmbH Control arrangement for a rail vehicle
CN105438151A (zh) * 2015-11-05 2016-03-30 中国铁道科学研究院 制动控制系统及其故障导向安全处理方法
CN107792039A (zh) * 2017-10-25 2018-03-13 中车株洲电力机车有限公司 磁浮列车液压制动系统动力管理方法、系统和轨道车辆
CN109808666A (zh) * 2017-11-21 2019-05-28 中车唐山机车车辆有限公司 一种列车车厢制动控制方法、列车车厢和列车

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113835337A (zh) * 2021-10-19 2021-12-24 中车株洲电力机车有限公司 一种列车网络冗余控制的方法与系统
CN113835337B (zh) * 2021-10-19 2023-07-11 中车株洲电力机车有限公司 一种列车网络冗余控制的方法与系统
CN113997793A (zh) * 2021-11-30 2022-02-01 中国铁道科学研究院集团有限公司 一种非黏着制动参与下的列车制动力分配方法及装置
CN113997793B (zh) * 2021-11-30 2023-09-01 中国铁道科学研究院集团有限公司 一种非黏着制动参与下的列车制动力分配方法及装置

Also Published As

Publication number Publication date
CN110254406A (zh) 2019-09-20
EP3895943A1 (en) 2021-10-20
CN110254406B (zh) 2021-04-02
EP3895943B1 (en) 2023-08-02
EP3895943C0 (en) 2023-08-02
EP3895943A4 (en) 2022-04-13

Similar Documents

Publication Publication Date Title
WO2020258486A1 (zh) 一种列车级制动力管理方法
CN109693690B (zh) 磁浮运行控制系统
CN109572654B (zh) 一种基于牵引制动融合控制系统的冲击率控制方法
CN109572726B (zh) 一种轨道交通牵引制动融合控制系统及方法
US20200156604A1 (en) Rail train brake control system and train
CN102320318B (zh) Mvb双冗余车门网络系统
CN112776854B (zh) 列车中央控制单元、列车控制系统及控制实现方法
CN112249097A (zh) 带降级管理装置的列车自主运行系统及其应用
CN107697056B (zh) 轨道列车制动控制系统及控制方法
CN109572643B (zh) 一种紧急牵引模式下的列车制动力分配方法
CN108263442A (zh) 列车制动系统、动车组及制动控制方法
CN101580073A (zh) 计算机联锁系统码位级冗余方法
CN113119938B (zh) 一种电机械制动控制系统
CN109808503A (zh) 一种高压系统控制方法、系统和列车
CN113665630B (zh) 一种vobc和tcms一体化列车控制设备
CN112758113A (zh) 列车主动径向控制方法及控制系统
CN112901010A (zh) 一种列车车门控制网络通讯系统
CN113942544B (zh) 机车无线重联远程分布动力牵引运行控制系统、重联机车
CN107499260B (zh) 一种多轴驱动车辆多节点分层网络控制系统
CN102193539A (zh) 用于轨道交通车辆的制动控制网络接口装置
CN111891097B (zh) 等磨耗方式制动力分配方法
CN115214747A (zh) 一种列车自动驾驶系统及自动驾驶控制方法
CN114715091A (zh) 一种地铁车辆制动系统优化方法
CN111891098B (zh) 等黏着方式制动力分配方法
CN113060112B (zh) 轨道车载制动控制的安全备用制动系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19934924

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019934924

Country of ref document: EP

Effective date: 20210713

NENP Non-entry into the national phase

Ref country code: DE