WO2020258426A1 - 一种考虑结构面粗糙度的裂隙岩体稳定性分析系统 - Google Patents

一种考虑结构面粗糙度的裂隙岩体稳定性分析系统 Download PDF

Info

Publication number
WO2020258426A1
WO2020258426A1 PCT/CN2019/097071 CN2019097071W WO2020258426A1 WO 2020258426 A1 WO2020258426 A1 WO 2020258426A1 CN 2019097071 W CN2019097071 W CN 2019097071W WO 2020258426 A1 WO2020258426 A1 WO 2020258426A1
Authority
WO
WIPO (PCT)
Prior art keywords
rock mass
structural surface
structural
fractured rock
stability analysis
Prior art date
Application number
PCT/CN2019/097071
Other languages
English (en)
French (fr)
Inventor
王述红
朱承金
王鹏宇
张紫杉
邱伟
王帅
Original Assignee
东北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学 filed Critical 东北大学
Publication of WO2020258426A1 publication Critical patent/WO2020258426A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems

Definitions

  • the invention belongs to the field of rock mass stability analysis, and in particular relates to a fractured rock mass stability analysis system considering the roughness of structural surfaces.
  • rock stability is a common geotechnical problem in my country's construction projects such as water conservancy and hydropower, roads, railways, and mineral resources development.
  • Rock mass disasters caused by natural landslides, tunnel collapse and human engineering activities have brought huge losses to my country’s economic construction and people’s lives and property. Therefore, the status of rock mass engineering in various engineering constructions is very important.
  • the stability of the body prevents problems before they happen, and can ensure the safety of production and construction and people’s property.
  • rock mass stability analysis the rock mass structural surface is generally assumed to be a plane, but in reality it is a surface with roughness, and it is difficult to measure the cohesive force in actual engineering. Therefore, a method for analyzing rock mass stability from the perspective of roughness is needed. method.
  • the present invention takes into account the influence of roughness on the shear strength of the structural surface when the fractured rock mass undergoes relative displacement along the structural surface, and proposes to introduce the structural surface roughness into the rock mass stability analysis system and analyze it accordingly.
  • the structural plane cuts the fractured rock mass stability analysis model to form a block system. Assign the measured shear strength ⁇ of the structural surface of the rock mass to the structural surface, run the program to analyze the stability of the rock mass, search for the key blocks, and put forward guiding suggestions for the treatment of the key blocks based on the analysis results, which is highly practical It contributes a new method to the stability analysis and treatment of fractured rock mass.
  • JRC structural surface roughness coefficient
  • is the effective normal stress
  • ⁇ b is the internal friction angle of the fractured rock mass structural plane
  • JCS is the compressive strength of the structural plane.
  • A, B, and C are plane parameters, and the plane normal vector n can be obtained as (-A,-B,1). Picking up points on the structural surface, any non-collinear n points (n>3), you can get the equation:
  • the present invention has the following beneficial technical effects:
  • the existing fractured rock mass stability analysis system generally uses the laboratory to obtain the shear strength parameters c and Then, the shear strength ⁇ of the discontinuity is determined according to the Mohr-Coulomb strength criterion for rock stability analysis, without considering the discontinuity characteristics of the actual fractured rock mass.
  • the fractured rock mass structural surface is a rough surface with roughness, and its influence on the shear strength of the structural surface should be closely considered. Therefore, a rock mass stability analysis system considering the roughness of the structural surface is proposed.
  • a roughness measuring instrument is used to measure the roughness parameters of the structural surface, obtain the fractal dimension D and the structural surface roughness coefficient JRC, and then calculate the shear strength ⁇ of the structural surface of the rock mass.
  • the structural plane cuts the fractured rock mass stability analysis model to form a block system. Assign the measured shear strength ⁇ of the structural surface of the rock mass to the structural surface, run the program to analyze the stability of the rock mass, search for the key blocks, and put forward guiding suggestions for the treatment of the key blocks based on the analysis results, which is highly practical It contributes a new method to the stability analysis and treatment of fractured rock mass.
  • Figure 1 is a flow chart of the procedure of the fractured rock mass stability analysis system considering the roughness of the structural surface
  • Figure 2 is a schematic diagram of the positions of key blocks calculated by the system of the present invention.
  • a fractured rock mass stability analysis system considering structural surface roughness of the present invention includes the following contents:
  • the engineering fractured rock mass was obtained on site, and the density was 2300kg/m3 and the elastic modulus was 15.2GPa measured by laboratory tests.
  • the roughness measuring instrument measured the average base length L and average height h of the structural surface roughness of the fractured rock mass. The specific values are: the average base length L is 15.2mm, the average height h is 2.92mm,
  • JRC structural surface roughness coefficient
  • is the effective normal stress
  • ⁇ b is the internal friction angle of the fractured rock mass structural plane
  • JCS is the compressive strength of the structural plane.
  • 10MPa
  • ⁇ b 40 °
  • JCS 100MPa, substituting the data obtained
  • 2.36MPa.
  • the three-dimensional model of fractured rock mass and the structural surface information of the slope are measured by UAV multi-level and omni-directional photogrammetry, and the stability analysis model of the fractured rock mass, the coordinate parameters of the slope structural surface and the exposure length are obtained.
  • the dimensions of the stability analysis model are as follows: the length of the top surface is 100m, the width is 20m, the length of the bottom surface is 100m, the width is 30m, and the rock mass height is 100m.
  • A, B, and C are plane parameters, and the plane normal vector n can be obtained as (-A,-B,1). Picking up points on the structural surface, any non-collinear n points (n>3), you can get the equation:
  • the safety factor of the slope under normal conditions when the safety factor of the slope under normal conditions is greater than 1.200, it can be considered to meet the stability requirements.
  • the key blocks that do not meet the stability requirements should be treated as soon as possible.
  • the pre-instability blocks include key block 1, key block 2, key block 4, key block 7, key block 8, and key block 9.
  • the pre-instability key block 2, key block 4, key block 7 and key block 8 with large volume are anchored and supported, and the volume is small or the rock is supported.
  • the pre-instability key block 1 and key block 9 that have little influence on the overall stability of the body are stripped to prevent the rock mass from destabilizing itself and causing major losses.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Geology (AREA)
  • Food Science & Technology (AREA)
  • Software Systems (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Databases & Information Systems (AREA)
  • Remote Sensing (AREA)
  • Algebra (AREA)
  • Operations Research (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种考虑结构面粗糙度的裂隙岩体稳定性分析系统,考虑裂隙岩体沿结构面发生相对位移时粗糙度对结构面抗剪强度的影响,提出将结构面粗糙度导入岩体稳定性分析系统并据此进行分析。先对裂隙岩体进行现场取样,并利用粗糙度测量仪测量结构面粗糙度的平均基长L和平均高度h,据此得到分形维数D及结构面粗糙系数JRC,进而计算出岩体结构面抗剪强度τ。通过无人机多层次全方位摄影测量边坡结构面信息并导入裂隙岩体稳定性分析模型中,将测得的岩体结构面抗剪强度τ赋予到结构面上,进行岩体稳定性分析,搜索出关键块体,对关键块体治理提出指导性建议,实用性强。

Description

一种考虑结构面粗糙度的裂隙岩体稳定性分析系统 技术领域
本发明属于岩体稳定性分析领域,尤其涉及一种考虑结构面粗糙度的裂隙岩体稳定性分析系统。
背景技术
目前,岩体稳定性问题是我国水利水电、公路、铁路和矿产资源开发等建设工程中常见的岩土工程问题。自然滑坡、隧道垮塌及人类工程活动等引起的岩体灾害对我国经济建设和人民生命财产带来了巨大损失,因此岩体工程在各类工程建设中的地位是十分重要的,正确的评价岩体的稳定性,防患于未然,能确保生产建设与人民财产安全。
岩体稳定性分析中一般将岩体结构面假设为平面,而实际其为有粗糙度的面,且实际工程中内聚力较难测得,故需要一种从粗糙度角度分析岩体稳定性的方法。
发明内容
为解决上述技术问题,本发明考虑了裂隙岩体沿结构面发生相对位移时粗糙度对结构面抗剪强度的影响,提出将结构面粗糙度导入岩体稳定性分析系统并据此进行分析。首先对裂隙岩体进行现场取样,并利用粗糙度测量仪测量结构面粗糙度的平均基长L和平均高度h,据此得到分形维数D及结构面粗糙系数JRC,进而计算出岩体结构面抗剪强度参数τ。通过无人机多层次全方位摄影测量边坡结构面信息,得到边坡结构面坐标参数以及出露迹长,并通过最小二乘法计算结构面倾向、倾角,并将结构面信息导入裂隙岩体稳定性分析模型中,结构面切割裂隙岩体稳定性分析模型,形成块体系统。将测得的岩体结构面抗剪强度τ赋予到结构面上,运行程序进行岩体稳定性分析,搜索出关键块体,并根据分析结果对关键块体治理提出指导性建议,实用性强,为裂隙岩体稳定性分析及治理贡献了一种新手段。
具体技术方案如下:
一种考虑结构面粗糙度的裂隙岩体稳定性分析系统,其特征在于,包括以下步骤:
(1)现场获取工程裂隙岩体,室内试验测得其密度、弹性模量,粗糙度测量仪测量裂隙岩体结构面粗糙度的平均基长L和平均高度h;
(2)利用测定的裂隙岩体结构面粗糙度的平均基长L和平均高度h计算岩体结构面的分形维数,即D=log 104/log 10[2(1+cot -1(2h/L))];
(3)进而由分形维数确定结构面粗糙系数(JRC)值,
即JRC=85.2671(D-1) 0.5679
(4)预测岩体各结构面抗剪强度τ:
τ=σtan[JRClog 10(JCS/σ)+Φ b]
其中σ为有效法向应力,Φ b为裂隙岩体结构面的内摩擦角,JCS为结构面压缩强度。
(5)通过无人机多层次全方位摄影测量裂隙岩体三维模型和边坡结构面信息,得到裂隙岩体稳定性分析模型、边坡结构面坐标参数以及出露迹长,,假设该结构面平面方程为:
Z=AX+BY+C
其中A、B、C为平面参数,可得该平面法向量n为(-A,-B,1)。对该结构面进行点的拾取,任意不共线的n个点(n>3),可以得到方程:
Figure PCTCN2019097071-appb-000001
利用最小二乘法解算(A,B,C)为:
Figure PCTCN2019097071-appb-000002
结构面倾向
Figure PCTCN2019097071-appb-000003
结构面倾角
Figure PCTCN2019097071-appb-000004
(6)将(5)获取的结构面信息导入裂隙岩体稳定性分析模型中,结构面切割裂隙岩体稳定性分析模型,形成块体系统。
(7)将(4)测得的岩体结构面抗剪强度τ赋予到结构面上,程序运算,搜索关键块体,确定关键块体位置、数量及安全系数F s,并对关键块体进行锚固或剥离。
与现有技术相比,本发明具有如下有益技术效果:
现有的裂隙岩体稳定性分析系统一般采用实验室获取结构面抗剪强度参数c和
Figure PCTCN2019097071-appb-000005
后根据摩尔-库伦强度准则确定结构面抗剪强度τ来进行岩体稳定性分析,没有考虑实际裂隙岩体的结构面特征。而裂隙岩体结构面是具有粗糙度的不光滑面,应密切考虑其对结构面抗剪强度的影响,故提出考虑结构面粗糙度的岩体稳定性分析系统。利用粗糙度测量仪测量结构面粗糙度参数,获取分形维数D及结构面粗糙系数JRC,进而计算出岩体结构面抗剪强度τ。通过无人机多层次全方位摄影测量边坡结构面信息,得到边坡结构面坐标参数以及出露迹长,并通过最小二乘法计算结构面倾向、倾角,并将结构面信息导入裂隙岩体稳定性分析模型中,结构面切割裂隙岩体稳定性分析模型,形成块体系统。将测得的岩体结构面抗剪强度τ赋予 到结构面上,运行程序进行岩体稳定性分析,搜索出关键块体,并根据分析结果对关键块体治理提出指导性建议,实用性强,为裂隙岩体稳定性分析及治理贡献了一种新手段。
附图说明
图1为考虑结构面粗糙度的裂隙岩体稳定性分析系统程序步骤流程图;
图2为经本发明系统计算后的关键块体位置示意图。
具体实施方式
下面结合附图对本发明进行详细说明,但本发明的保护范围不受实施例所限。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
本发明的一种考虑结构面粗糙度的裂隙岩体稳定性分析系统,包括以下内容:
(1)现场获取工程裂隙岩体,室内试验测得其密度为2300kg/m3、弹性模量为15.2GPa,粗糙度测量仪测量裂隙岩体结构面粗糙度的平均基长L和平均高度h,具体数值分别为:平均基长L为15.2mm,平均高度h为2.92mm,
(2)利用测定的裂隙岩体结构面粗糙度的平均基长L和平均高度h计算岩体结构面的分形维数,即D=log 104/log 10[2(1+cot -1(2h/L))],代入数据得,D=1.02501;
(3)进而由分形维数确定结构面粗糙系数(JRC)值,
即JRC=85.2671(D-1) 0.5679,代入数据得,JRC=10.498;
(4)预测岩体抗剪强度τ:
τ=σtan[JRClog 10(JCS/σ)+Φ b]
其中σ为有效法向应力,Φ b为裂隙岩体结构面的内摩擦角,JCS为结构面压缩强度。其具体数值如下:σ=10MPa,Φ b=40°,JCS=100MPa,代入数据得,τ=2.36MPa。
(5)通过无人机多层次全方位摄影测量裂隙岩体三维模型和边坡结构面信息,得到裂隙岩体稳定性分析模型、边坡结构面坐标参数以及出露迹长,,裂隙岩体稳定性分析模型的尺寸如下:顶面长度为100m,宽度为20m,底面长度为100m,宽度为30m,岩体高度为100m。
假设该结构面平面方程为:
Z=AX+BY+C
其中A、B、C为平面参数,可得该平面法向量n为(-A,-B,1)。对该结构面进行点的拾取,任意不共线的n个点(n>3),可以得到方程:
Figure PCTCN2019097071-appb-000006
利用最小二乘法解算(A,B,C)为:
Figure PCTCN2019097071-appb-000007
结构面倾向
Figure PCTCN2019097071-appb-000008
结构面倾角
Figure PCTCN2019097071-appb-000009
计算可得结构面产状信息如表1所示:
表1结构面产状信息
Figure PCTCN2019097071-appb-000010
(6)将(5)计算得到的结构面信息导入裂隙岩体稳定性分析模型中,结构面切割裂隙岩体稳定性分析模型,形成块体系统。
(7)将(4)测得的岩体结构面抗剪强度τ=2.36MPa赋予到结构面上,程序运算,搜索关键块体,确定关键块体位置、数量及安全系数F s,并对关键块体进行锚固或剥离。关键块 体相关信息如表2所示:
表2关键块体相关信息
Figure PCTCN2019097071-appb-000011
根据相关设计规范规定,边坡在正常工况下的安全系数大于1.200时,可认为其满足稳定性要求。相应不满足稳定性要求的关键块体,需尽快对其采取措施进行治理。根据安全系数计算结果,预失稳的块体有关键块体1、关键块体2、关键块体4、关键块体7、关键块体8及关键块体9。
根据图2所表征的关键块体位置,对体积量大的预失稳关键块体2、关键块体4、关键块体7及关键块体8进行锚固支护,对体积量小或对岩体整体稳定性影响较小的预失稳关键块体1及关键块体9进行剥离,避免岩体自行失稳,造成重大损失。
以上所述仅为本发明的较佳实施例,并不用以限制本发明的思想,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (2)

  1. 一种考虑结构面粗糙度的裂隙岩体稳定性分析系统,其特征在于,包括以下步骤:
    (1)现场获取工程裂隙岩体,室内试验测得其密度、弹性模量,粗糙度测量仪测量裂隙岩体结构面粗糙度的平均基长L和平均高度h;
    (2)利用测定的裂隙岩体结构面粗糙度的平均基长L和平均高度h计算岩体结构面的分形维数:
    D=log 104/log 10[2(1+cot -1(2h/L))];
    (3)进而由分形维数确定结构面粗糙系数(JRC)值:
    JRC=85.2671(D-1) 0.5679
    (4)预测岩体各结构面抗剪强度τ:
    τ=σtan[JRClog 10(JCS/σ)+Φ b];
    其中σ为有效法向应力,Φ b为裂隙岩体结构面的内摩擦角,JCS为结构面压缩强度;
    (5)通过无人机多层次全方位摄影测量裂隙岩体三维模型和边坡结构面信息,得到裂隙岩体稳定性分析模型、边坡结构面坐标参数以及出露迹长,假设该结构面平面方程为:Z=AX+BY+C,其中A、B、C为平面参数,可得该平面法向量n为(-A,-B,1),对该结构面进行点的拾取,任意不共线的n个点(n>3),可以得到方程:
    Figure PCTCN2019097071-appb-100001
    利用最小二乘法解算(A,B,C)为:
    Figure PCTCN2019097071-appb-100002
    结构面倾向
    Figure PCTCN2019097071-appb-100003
    结构面倾角
    Figure PCTCN2019097071-appb-100004
    (6)将(5)获取的结构面信息导入裂隙岩体稳定性分析模型中,结构面切割裂隙岩体稳定性分析模型,形成块体系统;
    (7)将(4)测得的岩体结构面抗剪强度τ赋予到结构面上,程序运算,搜索关键块体,确定关键块体位置、数量及安全系数F s,并对关键块体进行锚固或剥离。
  2. 根据权利要求1所述的考虑结构面粗糙度的裂隙岩体稳定性分析系统,其特征在于:可根据所述关键块体安全系数F s大小判定边坡稳定性,安全系数越大,则块体稳定性越好。
PCT/CN2019/097071 2019-06-27 2019-07-22 一种考虑结构面粗糙度的裂隙岩体稳定性分析系统 WO2020258426A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910565653.7A CN110261578B (zh) 2019-06-27 2019-06-27 一种考虑结构面粗糙度的裂隙岩体稳定性分析系统
CN201910565653.7 2019-06-27

Publications (1)

Publication Number Publication Date
WO2020258426A1 true WO2020258426A1 (zh) 2020-12-30

Family

ID=67922081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097071 WO2020258426A1 (zh) 2019-06-27 2019-07-22 一种考虑结构面粗糙度的裂隙岩体稳定性分析系统

Country Status (2)

Country Link
CN (1) CN110261578B (zh)
WO (1) WO2020258426A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111274664B (zh) * 2019-11-11 2023-05-23 宁波大学 基于小波分析的各级表面形貌对抗剪强度贡献程度的确定方法
CN112484605B (zh) * 2020-12-21 2024-05-03 昆明理工大学 一种便携式岩体结构面粗糙度轮廓测量仪及其测量方法
CN116084440A (zh) * 2023-02-15 2023-05-09 中国电建集团成都勘测设计研究院有限公司 一种边坡危岩体的支护设置方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101739716A (zh) * 2009-12-04 2010-06-16 东北大学 工程岩体三维空间结构建模与关键块识别方法
CN101936008A (zh) * 2010-09-30 2011-01-05 东北大学 岩体边坡三维模型及块体滑落分析方法
US20130275101A1 (en) * 2007-08-24 2013-10-17 Sheng-Yuan Hsu Method For Modeling Deformation In Subsurface Strata
CN106951595A (zh) * 2017-02-23 2017-07-14 绍兴文理学院 一种工程岩体结构面抗剪强度精准取值方法
CN107784191A (zh) * 2017-12-12 2018-03-09 中国地质大学(武汉) 基于神经网络模型的异性结构面峰值抗剪强度预测方法
CN108446431A (zh) * 2018-02-06 2018-08-24 中国地质大学(武汉) 岩石结构面剪切强度各向异性评价方法
CN108776854A (zh) * 2018-04-16 2018-11-09 浙江大学 大型露天矿山边坡稳定性等精度评价方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103644866B (zh) * 2013-12-10 2014-12-24 中国地质大学(武汉) 一种克服尺寸效应的岩体结构面粗糙度测量方法
US20180292299A1 (en) * 2014-01-13 2018-10-11 Hubei University Of Technology Method of critical displacement forecast based on the deformation failure mechanism of slope
CN107067333B (zh) * 2017-01-16 2022-12-20 长沙矿山研究院有限责任公司 一种高寒高海拔高陡边坡稳定性监控方法
CN107328920B (zh) * 2017-08-15 2019-07-12 绍兴文理学院 矿山边坡岩体工程稳定性精准评价方法
CN108445188B (zh) * 2018-04-16 2020-06-02 浙江大学 基于中智区间函数的岩体结构面粗糙度系数尺寸效应下边坡稳定性表达方法
CN109470581B (zh) * 2018-11-30 2020-10-27 浙江大学 露天矿山边坡岩体结构面抗剪强度分级确定方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130275101A1 (en) * 2007-08-24 2013-10-17 Sheng-Yuan Hsu Method For Modeling Deformation In Subsurface Strata
CN101739716A (zh) * 2009-12-04 2010-06-16 东北大学 工程岩体三维空间结构建模与关键块识别方法
CN101936008A (zh) * 2010-09-30 2011-01-05 东北大学 岩体边坡三维模型及块体滑落分析方法
CN106951595A (zh) * 2017-02-23 2017-07-14 绍兴文理学院 一种工程岩体结构面抗剪强度精准取值方法
CN107784191A (zh) * 2017-12-12 2018-03-09 中国地质大学(武汉) 基于神经网络模型的异性结构面峰值抗剪强度预测方法
CN108446431A (zh) * 2018-02-06 2018-08-24 中国地质大学(武汉) 岩石结构面剪切强度各向异性评价方法
CN108776854A (zh) * 2018-04-16 2018-11-09 浙江大学 大型露天矿山边坡稳定性等精度评价方法

Also Published As

Publication number Publication date
CN110261578B (zh) 2020-07-31
CN110261578A (zh) 2019-09-20

Similar Documents

Publication Publication Date Title
WO2020258426A1 (zh) 一种考虑结构面粗糙度的裂隙岩体稳定性分析系统
Jiang et al. Observe the temporal evolution of deep tunnel's 3D deformation by 3D laser scanning in the Jinchuan No. 2 Mine
Kulatilake et al. Evaluation of rock slope stability for Yujian River dam site by kinematic and block theory analyses
Liu et al. A new semi-deterministic block theory method with digital photogrammetry for stability analysis of a high rock slope in China
CN104848838B (zh) 两种构形条件下岩土试样剪切带倾角演变规律观测方法
CN109492262A (zh) 一种利用数值模拟分析非均匀分布裂隙巷道稳定性的方法
CN113326756A (zh) 一种基于岩体劣化特征的库岸潜在滑坡隐患识别方法
CN108445188A (zh) 基于中智区间函数的岩体结构面粗糙度系数尺寸效应下边坡稳定性表达方法
Zhao et al. Formation and fractal characteristics of main fracture surface of red sandstone under restrictive shear creep
Xiaohu et al. Quantification of geological strength index based on discontinuity volume density of rock masses
CN108918682B (zh) 深切河谷斜坡岩体现今天然地应力室内测试分析方法
CN107036561B (zh) 基于中智数函数的结构面粗糙度各向异性的近似表达方法
Wang et al. A model of anisotropic property of seepage and stress for jointed rock mass
Wang et al. Modeling on spatial block topological identification and the irprogressive failure analysis of slopeand cavernrock mass
Kumar et al. 3D limit equilibrium method for rock slope stability analysis using generalised anisotropic material model
Aguilar et al. Structural damage assessment of Huaca de la Luna, Perú: preliminary results from ongoing multidisciplinary study
Xiao et al. Contact algorithm for determining aperture evolution of rock fracture during shearing
Xia et al. Study on shear strength characteristics of columnar jointed basalt based on in-situ direct shear test at Baihetan Hydropower Station
He et al. A procedure to detect, construct, quantify, numerically simulate and validate fracture networks in coal blocks
CN112926195B (zh) 一种重力式锚碇结构地基体系的安全系数计算方法
Wang et al. Numerical simulation of fracture failure characteristics of rock-mass with multiple nonparallel fractures under seepage stress coupling
CN104121864A (zh) 一种岩石错动裂缝面的间隙评价方法
Stead et al. Rock slope characterization and geomechanical modelling
Han et al. Investigation on failure characteristic and instability mechanism of red sandstone including serrated joints under variable angle shear
CN110387909A (zh) 一种桥梁爆破拆除对周围房屋桩基水平挤压安全性预测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19934920

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19934920

Country of ref document: EP

Kind code of ref document: A1