WO2020258391A1 - 一种用于地下管线探测的动力触探装置 - Google Patents

一种用于地下管线探测的动力触探装置 Download PDF

Info

Publication number
WO2020258391A1
WO2020258391A1 PCT/CN2019/095741 CN2019095741W WO2020258391A1 WO 2020258391 A1 WO2020258391 A1 WO 2020258391A1 CN 2019095741 W CN2019095741 W CN 2019095741W WO 2020258391 A1 WO2020258391 A1 WO 2020258391A1
Authority
WO
WIPO (PCT)
Prior art keywords
hammer
rod
probe
wall
underground pipeline
Prior art date
Application number
PCT/CN2019/095741
Other languages
English (en)
French (fr)
Inventor
杨智勇
姚国平
Original Assignee
太仓华淏信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太仓华淏信息科技有限公司 filed Critical 太仓华淏信息科技有限公司
Publication of WO2020258391A1 publication Critical patent/WO2020258391A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D1/00Investigation of foundation soil in situ
    • E02D1/02Investigation of foundation soil in situ before construction work
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V9/00Prospecting or detecting by methods not provided for in groups G01V1/00 - G01V8/00
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06MCOUNTING MECHANISMS; COUNTING OF OBJECTS NOT OTHERWISE PROVIDED FOR
    • G06M1/00Design features of general application
    • G06M1/27Design features of general application for representing the result of count in the form of electric signals, e.g. by sensing markings on the counter drum
    • G06M1/272Design features of general application for representing the result of count in the form of electric signals, e.g. by sensing markings on the counter drum using photoelectric means

Definitions

  • the utility model relates to the technical field of dynamic penetrating devices, in particular to a dynamic penetrating device used for underground pipeline detection.
  • Dynamic penetration test is an in-situ test method commonly used in geotechnical engineering survey. This method is to use a certain drop hammer quality to drive a probe of a certain size and shape into the soil. According to the difficulty of the penetration, that is, the number of penetration hammers, the name of the soil layer and its engineering properties are determined. Double performance. According to the quality of the penetrating hammer and the lifting height, the three commonly used drop hammers in China are 10kg, 63.5kg and 120kg, which are called light, heavy and super heavy dynamic penetration. Light dynamic cone penetration is suitable for cohesive soil and silt, and is often used to test the bearing capacity of shallow foundations and to inspect grooves in foundation pits.
  • Heavy-duty dynamic cone penetration is suitable for sand and gravel
  • super-heavy dynamic cone penetration is suitable for gravel and gravel
  • standard penetration test is suitable for cohesive soil, silt and sandy soil.
  • the dynamic penetrating device is an instrument for judging soil mechanical properties based on the above theory.
  • the existing power penetration detection device needs to manually record the falling times of the hammer. If the number exceeds a hundred times, it is easy to record errors, and the device needs to be held by multiple hands during the hammering process to ensure that the probe penetrates the soil vertically; therefore, It does not meet the existing needs, for which we propose a dynamic sounding device for underground pipeline detection.
  • the purpose of the present utility model is to provide a dynamic cone penetration device for underground pipeline detection, so as to solve the problem that the existing dynamic penetration penetration device proposed in the background art needs to manually record the falling times of the hammer. If the number of times exceeds a hundred times, it is easy to record Error, and the device needs to be held by many people during the hammering process to ensure that the probe penetrates the soil vertically.
  • a dynamic penetration detection device for underground pipeline detection including a handle stopper, a hammer rod is installed below the handle stopper, and the hammer rod
  • a hammer is installed on the outer wall
  • a handle is installed on both sides of the hammer
  • a non-slip sleeve is provided on the outer wall of the handle
  • a drop hammer is installed at one end of the hammer rod.
  • a probe rod is installed below the probe rod, a scale line is provided on the probe rod, a probe is installed at one end of the probe rod, a bracket seat is installed on the outer wall of the probe rod, and a telescopic bracket is installed on the outer wall of the bracket seat , And three telescopic supports are provided, the telescopic supports are rotatably connected with the support base through a rotating shaft, and the outer wall of the telescopic supports is provided with a telescopic lock.
  • a connecting hole is provided at the middle position of the hammer, and the hammer is slidingly connected to the hammer rod through the connecting hole.
  • a miniature metal photoelectric sensor is installed inside the hammer rod, and the miniature metal photoelectric sensor adopts a miniature metal photoelectric sensor of model PR-FB15N1.
  • a bearing is arranged inside the bracket seat, and one end of the probe rod penetrates and extends into the bearing.
  • balls are arranged inside the bearing, and there are several balls.
  • rubber feet are installed at one end of the three telescopic supports.
  • the utility model installs a miniature metal photoelectric sensor in the hammer rod.
  • the hammer will slide up and fall through the miniature metal photoelectric sensor twice during a hammer stroke. Therefore, when recording, only the metal photoelectric sensor is needed.
  • the number measured by the sensor is divided by two to get the number of drops of the hammer, without manual recording, which improves the accuracy.
  • the three telescopic brackets can effectively improve the stability of the power penetration detection device, and ensure that the probe can penetrate the soil vertically without manual hand support, saving manpower.
  • One end of the telescopic bracket is installed The rubber feet can avoid damage to the telescopic bracket due to excessive impact.
  • Figure 1 is a schematic diagram of the overall structure of the utility model
  • Figure 2 is a schematic diagram of the top view structure of the hammer of the utility model
  • Figure 3 is a partial enlarged view of part A of the utility model
  • a dynamic penetration detection device for underground pipeline detection including a handle stopper 1, a hammer rod 2 is installed under the handle stopper 1, and A hammer 4 is installed on the outer wall of the hammer rod 2.
  • the hammer 4 is used to impact the probe rod 8 so that the probe 9 enters the soil.
  • An anti-skid sleeve 6 is provided on the outer wall of the handle 5. The anti-skid sleeve 6 can prevent the handle 5 from getting out of hand.
  • a drop hammer stopper 7 is installed at one end of the hammer rod 2.
  • the drop hammer stopper 7 can be placed on the hammer 4. It acts as a barrier when falling.
  • a probe rod 8 is installed under the drop hammer stopper 7, and a scale line 15 is provided on the probe rod 8.
  • the scale line 15 can record the penetration depth more conveniently.
  • One end of the probe rod 8 A probe 9 is installed, a bracket base 10 is installed on the outer wall of the probe rod 8, a telescopic bracket 12 is installed on the outer wall of the bracket base 10, and three telescopic brackets 12 are provided.
  • the telescopic bracket 12 can improve the stability of the power penetration device.
  • the telescopic support 12 is rotatably connected with the support base 10 through a rotating shaft 11.
  • a telescopic lock 13 is provided on the outer wall of the telescopic support 12. The telescopic lock 13 can adjust the length of the telescopic support 12 to adapt to probe rods 8 of different lengths.
  • a connecting hole 401 is provided at the middle position of the hammer 4, and the hammer 4 is slidably connected to the hammer rod 2 through the connecting hole 401, and the hammer 4 is pulled up by the handle 5 to make it fall naturally along the connecting hole 401, and the impact falls.
  • the hammer stopper 7 can drive the probe 9 into the soil.
  • a miniature metal photoelectric sensor 3 is installed inside the hammer rod 2, and the miniature metal photoelectric sensor 3 adopts a miniature metal photoelectric sensor 3 of model PR-FB15N1, and the miniature metal photoelectric sensor 3 can record the number of times the hammer 4 slips.
  • a bearing 16 is provided inside the support base 10, and one end of the probe rod 8 penetrates and extends into the inside of the bearing 16.
  • the bearing 16 plays a role of supporting the support base 10 and does not affect the extension of the probe rod 8 while supporting. .
  • balls 17 are arranged inside the bearing 16 and several balls 17 are arranged.
  • the balls 17 can make the movement of the probe 8 more stable.
  • rubber feet 14 are installed at one end of the three telescopic supports 12, and the rubber feet 14 can play a buffering role when the hammer 4 impacts, so as to prevent the telescopic supports 12 from being damaged due to excessive impact.
  • the hammer 4Each hammer hit will slide from up to down twice through the miniature metal photoelectric sensor 3, so you only need to divide the number recorded on the sensor by two to get the number of hammer hits, without manual recording, improve accuracy, and wait for data to be recorded After the completion, it can be determined whether the soil in the site is the backfill of the pipeline trench, and judge whether there is a low pipeline buried below.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • Soil Sciences (AREA)
  • Structural Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

本实用新型公开了一种用于地下管线探测的动力触探装置,涉及动力触探装置技术领域,为解决现有动力触探装置需要人工记录击锤的下落次数,若次数超过百次容易记录错误,且装置在锤击过程中,需要多人手扶,才能保证探头垂直打入土中的问题。所述手柄挡扣的下方安装有击锤杆,所述击锤杆的外壁上安装有击锤,所述击锤的两侧均安装有手柄,所述手柄的外壁上设置有防滑套,所述击锤杆的一端安装有落锤挡扣,所述落锤挡扣的下方安装有探杆,所述探杆上设置有刻度线,所述探杆的一端安装有探头,所述探杆的外壁上安装有支架座,所述支架座的外壁上安装有伸缩支架,且伸缩支架设置有三个,所述伸缩支架通过转轴与支架座转动连接。

Description

一种用于地下管线探测的动力触探装置 技术领域
本实用新型涉及动力触探装置技术领域,具体为一种用于地下管线探测的动力触探装置。
背景技术
动力触探试验是岩土工程勘察常用的一种原位测试方法。该方法是利用一定的落锤质量,将一定尺寸、一定形状的探头打入土中,根据打入的难度,即贯入锤击数,判定土层名称及其工程性质,具有勘察与测试的双重性能。根据穿心锤质量和提升高度的不同,国内常用的落锤三种质量为10kg、63.5kg和120kg,分别称为轻型、重型和超重型动力触探。轻型动力触探适用于粘性土和粉土,常用来检测浅基础地基承载力和基坑验槽。重型动力触探适用于砂土和砾卵石,超重型动力触探适用于砾卵石,标准贯入试验适用于粘性土、粉土和砂土。而动力触探装置就是基于上述理论制作的用于判定土壤力学性质的一种仪器。
但是,现有动力触探装置需要人工记录击锤的下落次数,若次数超过百次容易记录错误,且装置在锤击过程中,需要多人手扶,才能保证探头垂直打入土中;因此,不满足现有的需求,对此我们提出了一种用于地下管线探测的动力触探装置。
实用新型内容
本实用新型的目的在于提供一种用于地下管线探测的动力触探装置,以解决上述背景技术中提出的现有动力触探装置需要人工记录击锤的下落次数,若次数超过百次容易记录错误,且装置在锤击过程中,需要多人手扶,才能保证 探头垂直打入土中的问题。
为实现上述目的,本实用新型提供如下技术方案:一种用于地下管线探测的动力触探装置,包括手柄挡扣,所述手柄挡扣的下方安装有击锤杆,所述击锤杆的外壁上安装有击锤,所述击锤的两侧均安装有手柄,所述手柄的外壁上设置有防滑套,所述击锤杆的一端安装有落锤挡扣,所述落锤挡扣的下方安装有探杆,所述探杆上设置有刻度线,所述探杆的一端安装有探头,所述探杆的外壁上安装有支架座,所述支架座的外壁上安装有伸缩支架,且伸缩支架设置有三个,所述伸缩支架通过转轴与支架座转动连接,所述伸缩支架的外壁上设置有伸缩锁扣。
优选的,所述击锤的中间位置处设置有连接孔,且击锤通过连接孔与击锤杆滑动连接。
优选的,所述击锤杆的内部安装有微型金属光电传感器,且微型金属光电传感器采用型号为PR-FB15N1的微型金属光电传感器。
优选的,所述支架座的内部设置有轴承,所述探杆的一端贯穿并延伸至轴承内部。
优选的,所述轴承的内部设置有滚珠,且滚珠设置有若干个。
优选的,三个所述伸缩支架的一端均安装有橡胶支脚。
与现有技术相比,本实用新型的有益效果是:
1、本实用新型通过在击锤杆内安装微型金属光电传感器,击锤在一次锤击过程中,会由上滑和下落经过两次微型金属光电传感器,所以在记录时,只需将金属光电传感器测量的数字除二即可得出击锤的下落次数,无需人工记录,提高了准确性。
2、通过设置伸缩支架,且伸缩支架设置有三个,三个伸缩支架能够有效提高动力触探装置的稳定性,保证探头能垂直进行土壤,无需人工手扶,节省人力,伸缩支架的一端安装有橡胶支脚,能够避免伸缩支架因冲击力过大损坏。
附图说明
图1为本实用新型的整体结构示意图;
图2为本实用新型的击锤俯视结构示意图;
图3为本实用新型的A处局部放大图;
图中:1、手柄挡扣;2、击锤杆;3、微型金属光电传感器;4、击锤;401、连接孔;5、手柄;6、防滑套;7、落锤挡扣;8、探杆;9、探头;10、支架座;11、转轴;12、伸缩支架;13、伸缩锁扣;14、橡胶支脚;15、刻度线;16、轴承;17、滚珠。
具体实施方式
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。
请参阅图1-3,本实用新型提供的一种实施例:一种用于地下管线探测的动力触探装置,包括手柄挡扣1,手柄挡扣1的下方安装有击锤杆2,击锤杆2的外壁上安装有击锤4,击锤4用于冲击探杆8,使探头9进入土壤,击锤4的两侧均安装有手柄5,手柄5能够更方便的上拉击锤4,手柄5的外壁上设置有防滑套6,防滑套6能够起到防止手柄5脱手的作用,击锤杆2的一端安装有落锤挡扣7,落锤挡扣7能够在击锤4下落时起到阻挡的作用,落锤挡扣7的下方安装有探杆8,探杆8上设置有刻度线15,刻度线15能够更方便的对探入深度进 行记录,探杆8的一端安装有探头9,探杆8的外壁上安装有支架座10,支架座10的外壁上安装有伸缩支架12,且伸缩支架12设置有三个,伸缩支架12能够提高动力触探装置的稳定性,伸缩支架12通过转轴11与支架座10转动连接,伸缩支架12的外壁上设置有伸缩锁扣13,伸缩锁扣13能够调节伸缩支架12的长度,以适应不同长度的探杆8。
进一步,击锤4的中间位置处设置有连接孔401,且击锤4通过连接孔401与击锤杆2滑动连接,通过手柄5上拉击锤4使其沿连接孔401自然滑落,冲击落锤挡扣7,能够将探头9打入土壤。
进一步,击锤杆2的内部安装有微型金属光电传感器3,且微型金属光电传感器3采用型号为PR-FB15N1的微型金属光电传感器3,微型金属光电传感器3能够记录击锤4的滑落次数。
进一步,支架座10的内部设置有轴承16,探杆8的一端贯穿并延伸至轴承16内部,轴承16起到了支撑支架座10的作用,且在支撑的同时不会影响探杆8的伸入。
进一步,轴承16的内部设置有滚珠17,且滚珠17设置有若干个,滚珠17能够使探杆8的移动更加稳定。
进一步,三个伸缩支架12的一端均安装有橡胶支脚14,橡胶支脚14能够在击锤4冲击时起到缓冲的作用,避免伸缩支架12因冲击力过大损坏。
工作原理:使用时,将动力触探装置放置在待测土壤上,展开伸缩支架12,并根据探杆8长度对支架进行调节,调节完毕后,通过手柄5上拉击锤4使其沿连接孔401自然滑落,冲击落锤挡扣7,将探头9打入土壤,探杆8每入土一定深度,需记录一次锤击次数,因击锤杆2内安装有微型金属光电传感器3,击 锤4每锤击一次会由上滑到下落经过两次微型金属光电传感器3,所以只需将传感器上记录的数字除二即可得出锤击次数,无需人工记录,提高准确性,待数据记录完毕后,可得出该地土壤是否为管线沟槽回填土,并判断出下方是否埋有低下管线。
对于本领域技术人员而言,显然本实用新型不限于上述示范性实施例的细节,而且在不背离本实用新型的精神或基本特征的情况下,能够以其他的具体形式实现本实用新型。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本实用新型的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本实用新型内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。

Claims (6)

  1. 一种用于地下管线探测的动力触探装置,包括手柄挡扣(1),其特征在于:所述手柄挡扣(1)的下方安装有击锤杆(2),所述击锤杆(2)的外壁上安装有击锤(4),所述击锤(4)的两侧均安装有手柄(5),所述手柄(5)的外壁上设置有防滑套(6),所述击锤杆(2)的一端安装有落锤挡扣(7),所述落锤挡扣(7)的下方安装有探杆(8),所述探杆(8)上设置有刻度线(15),所述探杆(8)的一端安装有探头(9),所述探杆(8)的外壁上安装有支架座(10),所述支架座(10)的外壁上安装有伸缩支架(12),且伸缩支架(12)设置有三个,所述伸缩支架(12)通过转轴(11)与支架座(10)转动连接,所述伸缩支架(12)的外壁上设置有伸缩锁扣(13)。
  2. 根据权利要求1所述的一种用于地下管线探测的动力触探装置,其特征在于:所述击锤(4)的中间位置处设置有连接孔(401),且击锤(4)通过连接孔(401)与击锤杆(2)滑动连接。
  3. 根据权利要求1所述的一种用于地下管线探测的动力触探装置,其特征在于:所述击锤杆(2)的内部安装有微型金属光电传感器(3),且微型金属光电传感器(3)采用型号为PR-FB15N1的微型金属光电传感器(3)。
  4. 根据权利要求1所述的一种用于地下管线探测的动力触探装置,其特征在于:所述支架座(10)的内部设置有轴承(16),所述探杆(8)的一端贯穿并延伸至轴承(16)内部。
  5. 根据权利要求4所述的一种用于地下管线探测的动力触探装置,其特征在于:所述轴承(16)的内部设置有滚珠(17),且滚珠(17)设置有若干个。
  6. 根据权利要求1所述的一种用于地下管线探测的动力触探装置,其特征在于:三个所述伸缩支架(12)的一端均安装有橡胶支脚(14)。
PCT/CN2019/095741 2019-06-24 2019-07-12 一种用于地下管线探测的动力触探装置 WO2020258391A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201920953571.5U CN209879031U (zh) 2019-06-24 2019-06-24 一种用于地下管线探测的动力触探装置
CN201920953571.5 2019-06-24

Publications (1)

Publication Number Publication Date
WO2020258391A1 true WO2020258391A1 (zh) 2020-12-30

Family

ID=68948596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095741 WO2020258391A1 (zh) 2019-06-24 2019-07-12 一种用于地下管线探测的动力触探装置

Country Status (2)

Country Link
CN (1) CN209879031U (zh)
WO (1) WO2020258391A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005232715A (ja) * 2004-02-17 2005-09-02 Oyo Corp 打撃貫入時の過剰間隙水圧測定による地盤調査方法及び装置
US20120004848A1 (en) * 2005-12-13 2012-01-05 Sandy Golgart Sales Inc. D/B/A Sgs Device and methods for use of a dynamic cone penetrometer for evaluating soil compaction
CN103966994A (zh) * 2014-05-05 2014-08-06 深圳市工勘岩土集团有限公司 触探式地下管线探铲
CN206941553U (zh) * 2017-03-29 2018-01-30 南京南大工程检测有限公司 一种带导向装置的动力触探仪
CN208151999U (zh) * 2018-05-03 2018-11-27 珠海交通工程技术有限公司 一种地基动力触探的检测装置
CN109667257A (zh) * 2019-03-01 2019-04-23 四川电力设计咨询有限责任公司 一种便携式动力触探测试仪以及测试方法
CN109853512A (zh) * 2019-04-12 2019-06-07 福建融诚检测技术股份有限公司 自动可拆卸重型动力触探仪
CN109914377A (zh) * 2019-03-20 2019-06-21 深圳市勘察测绘院(集团)有限公司 基于感应器及激光测量的标准贯入试验记录设备
CN110174710A (zh) * 2019-06-24 2019-08-27 太仓华淏信息科技有限公司 一种用于地下管线探测的动力触探装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005232715A (ja) * 2004-02-17 2005-09-02 Oyo Corp 打撃貫入時の過剰間隙水圧測定による地盤調査方法及び装置
US20120004848A1 (en) * 2005-12-13 2012-01-05 Sandy Golgart Sales Inc. D/B/A Sgs Device and methods for use of a dynamic cone penetrometer for evaluating soil compaction
CN103966994A (zh) * 2014-05-05 2014-08-06 深圳市工勘岩土集团有限公司 触探式地下管线探铲
CN206941553U (zh) * 2017-03-29 2018-01-30 南京南大工程检测有限公司 一种带导向装置的动力触探仪
CN208151999U (zh) * 2018-05-03 2018-11-27 珠海交通工程技术有限公司 一种地基动力触探的检测装置
CN109667257A (zh) * 2019-03-01 2019-04-23 四川电力设计咨询有限责任公司 一种便携式动力触探测试仪以及测试方法
CN109914377A (zh) * 2019-03-20 2019-06-21 深圳市勘察测绘院(集团)有限公司 基于感应器及激光测量的标准贯入试验记录设备
CN109853512A (zh) * 2019-04-12 2019-06-07 福建融诚检测技术股份有限公司 自动可拆卸重型动力触探仪
CN110174710A (zh) * 2019-06-24 2019-08-27 太仓华淏信息科技有限公司 一种用于地下管线探测的动力触探装置

Also Published As

Publication number Publication date
CN209879031U (zh) 2019-12-31

Similar Documents

Publication Publication Date Title
US20200278473A1 (en) Borehole inspecting and testing device and method of using the same
US20150233230A1 (en) Borehole inspecting and testing device and method of using the same
US20160202054A1 (en) Shaft Sounding Device for Measuring Thickness of Sediments at Base of Drilled Shafts
WO2014097552A1 (ja) 地盤調査方法および地盤調査装置
JP6500300B2 (ja) 部品、装置及び地盤調査装置
CN104990640A (zh) 钻孔内壁土体温度快速测定的装置
WO2016178684A1 (en) Borehole inspecting and testing device and method of using the same
CN203256733U (zh) 灌注桩桩顶混凝土标高检测装置
CN103469778A (zh) 一种划分岩石风化程度的标准贯入试验方法
JP3136276U (ja) 貫入試験機用サンプラー、ケーシング、抜管機、試料収納ビンおよび試験方法
WO2020258391A1 (zh) 一种用于地下管线探测的动力触探装置
CN110174710A (zh) 一种用于地下管线探测的动力触探装置
CN102183230B (zh) 一种钻孔内基准点锚固装置
CN207749500U (zh) 动力触探仪
CN103485319B (zh) 光电式高填土方沉降量测试装置及其安置方法
CN216620950U (zh) 一种公路工程监理用桩孔孔径检测设备
CN110616703B (zh) 一种钎探装置
CN203475404U (zh) 一种划分岩石风化程度的标准贯入试验装置
CN211285553U (zh) 一种钎探设备
CN206556962U (zh) 一种土样制备装置
JPH09279560A (ja) 貫入試験機
CN208430997U (zh) 一种钻孔测量装置
CN109488382B (zh) 一种钻孔录像检测隧道空腔的方法
JP4115216B2 (ja) 孔内鉛直載荷試験方法及びその装置
CN206756617U (zh) 一种地质硬度现场检测仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19935692

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19935692

Country of ref document: EP

Kind code of ref document: A1