WO2020258331A1 - 一种测量间隔的配置方法及装置、终端、网络设备 - Google Patents

一种测量间隔的配置方法及装置、终端、网络设备 Download PDF

Info

Publication number
WO2020258331A1
WO2020258331A1 PCT/CN2019/093917 CN2019093917W WO2020258331A1 WO 2020258331 A1 WO2020258331 A1 WO 2020258331A1 CN 2019093917 W CN2019093917 W CN 2019093917W WO 2020258331 A1 WO2020258331 A1 WO 2020258331A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
measurement interval
type
time window
interval
Prior art date
Application number
PCT/CN2019/093917
Other languages
English (en)
French (fr)
Inventor
胡荣贻
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201980090871.8A priority Critical patent/CN113383571B/zh
Priority to PCT/CN2019/093917 priority patent/WO2020258331A1/zh
Publication of WO2020258331A1 publication Critical patent/WO2020258331A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements

Definitions

  • the embodiments of the present application relate to the field of mobile communication technology, and in particular to a method and device, terminal, and network device for configuring a measurement interval.
  • the purpose of the measurement gap (MG) is to create a small gap (gap) in which the terminal measures the target cell.
  • the terminal needs to stop normal data transmission during the measurement interval.
  • the typical measurement interval is 6ms long. In this case, the terminal will not be able to transmit data for 6ms.
  • R16 it is necessary to support high reliability and low latency (Ultra Reliable Low Latency Communications, URLLC) services, and the transmission period is required to be 0.5 ms. If the terminal cannot transmit data in all measurement intervals, it will cause the URLLC service delay to increase, fail to meet the quality of service (QoS) requirements, and cause service transmission and even major errors in industrial operations.
  • QoS quality of service
  • the embodiments of the present application provide a method and device for configuring a measurement interval, a terminal, and a network device.
  • the terminal receives first indication information sent by the network device, where the first indication information is used to instruct the terminal to extend the first measurement time window to the second measurement time window;
  • the measurement interval in the first measurement time window has an overlap time with the time domain resource of the first service data; the measurement interval in the second measurement time window has no overlap time with the time domain resource of the first service data, Or, the measurement interval in the second measurement time window has an overlap time with the time domain resource of the first service data, and a part or all of the overlap time is used to transmit the first service data.
  • the terminal receives first configuration information sent by the network device, where the first configuration information is used to determine the first measurement interval configuration for the first frequency band range and/or the second measurement interval configuration for the first service type.
  • the network device sends first indication information to the terminal, where the first indication information is used to instruct the terminal to extend the first measurement time window to the second measurement time window;
  • the measurement interval in the first measurement time window has an overlap time with the time domain resource of the first service data; the measurement interval in the second measurement time window has no overlap time with the time domain resource of the first service data, Or, the measurement interval in the second measurement time window has an overlap time with the time domain resource of the first service data, and a part or all of the overlap time is used to transmit the first service data.
  • the network device sends first configuration information to the terminal, where the first configuration information is used to determine the first measurement interval configuration for the first frequency band range and/or the second measurement interval configuration for the first service type.
  • a receiving unit configured to receive first indication information sent by a network device, where the first indication information is used to instruct the terminal to extend the first measurement time window to a second measurement time window;
  • the measurement interval in the first measurement time window has an overlap time with the time domain resource of the first service data; the measurement interval in the second measurement time window has no overlap time with the time domain resource of the first service data, Or, the measurement interval in the second measurement time window has an overlap time with the time domain resource of the first service data, and a part or all of the overlap time is used to transmit the first service data.
  • the receiving unit is configured to receive first configuration information sent by a network device, where the first configuration information is used to determine a first measurement interval configuration for a first frequency band range and/or a second measurement interval configuration for a first service type.
  • a sending unit configured to send first indication information to the terminal, where the first indication information is used to instruct the terminal to extend the first measurement time window to the second measurement time window;
  • the measurement interval in the first measurement time window has an overlap time with the time domain resource of the first service data; the measurement interval in the second measurement time window has no overlap time with the time domain resource of the first service data, Or, the measurement interval in the second measurement time window has an overlap time with the time domain resource of the first service data, and a part or all of the overlap time is used to transmit the first service data.
  • the sending unit is configured to send first configuration information to the terminal, where the first configuration information is used to determine the first measurement interval configuration for the first frequency band range and/or the second measurement interval configuration for the first service type.
  • the terminal provided in the embodiment of the present application includes a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the above-mentioned method for configuring the measurement interval.
  • the network device provided by the embodiment of the present application includes a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the above-mentioned method for configuring the measurement interval.
  • the chip provided in the embodiment of the present application is used to implement the foregoing measurement interval configuration method.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes the above-mentioned method for configuring the measurement interval.
  • the computer-readable storage medium provided by the embodiment of the present application is used to store a computer program, and the computer program enables the computer to execute the above-mentioned method for configuring the measurement interval.
  • the computer program product provided by the embodiment of the present application includes computer program instructions, and the computer program instructions cause the computer to execute the above-mentioned method for configuring the measurement interval.
  • the computer program provided in the embodiment of the present application when it runs on a computer, causes the computer to execute the above-mentioned method for configuring the measurement interval.
  • the network device configures the measurement interval
  • the terminal is notified to extend the measurement time window by configuring the first indication information to ensure certain service data Priority transmission.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of this application.
  • FIG. 2 is a first schematic flowchart of a method for configuring a measurement interval according to an embodiment of the application
  • Figure 3-1 is a schematic diagram 1 of a measurement interval pattern provided by an embodiment of the application.
  • Figure 3-2 is a second schematic diagram of a measurement interval pattern provided by an embodiment of this application.
  • FIG. 4 is a third schematic diagram of a measurement interval pattern provided by an embodiment of the application.
  • FIG. 5 is a fourth schematic diagram of a measurement interval pattern provided by an embodiment of this application.
  • FIG. 6 is a second schematic flowchart of a method for configuring a measurement interval according to an embodiment of the application
  • FIG. 7 is a schematic diagram 1 of the structural composition of a measurement interval configuration device provided by an embodiment of the application.
  • FIG. 8 is a second schematic diagram of the structural composition of the device for configuring the measurement interval provided by an embodiment of the application.
  • FIG. 9 is a schematic diagram 3 of the structural composition of a device for configuring a measurement interval provided by an embodiment of the application.
  • FIG. 10 is a fourth structural composition diagram of a measurement interval configuration device provided by an application embodiment
  • FIG. 11 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • FIG. 13 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GSM Global System of Mobile Communication
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal 120 (or called a communication terminal or a terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminals located in the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system (Evolutional Node B, eNB or eNodeB), or the wireless controller in the Cloud Radio Access Network (CRAN), or the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks, or network devices in the future evolution of the Public Land Mobile Network (PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • LTE Long Term Evolutional Node B
  • eNB evolved base station
  • CRAN Cloud Radio Access Network
  • the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches
  • the communication system 100 also includes at least one terminal 120 located within the coverage area of the network device 110.
  • the "terminal” used here includes, but is not limited to, connection via wired lines, such as public switched telephone networks (PSTN), digital subscriber lines (Digital Subscriber Line, DSL), digital cables, and direct cable connections; And/or another data connection/network; and/or via a wireless interface, such as for cellular networks, wireless local area networks (WLAN), digital TV networks such as DVB-H networks, satellite networks, AM-FM Broadcast transmitter; and/or another terminal's device configured to receive/send communication signals; and/or Internet of Things (IoT) equipment.
  • a terminal set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellites or cellular phones; Personal Communications System (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, Internet/intranet PDA with internet access, web browser, memo pad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop receivers or others including radio phone transceivers Electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • Terminal can refer to access terminal, user equipment (User Equipment, UE), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent or user Device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminals in 5G networks, or terminals in the future evolution of PLMN, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminals 120 may perform device-to-device (D2D) communication.
  • D2D device-to-device
  • the 5G system or 5G network may also be referred to as a New Radio (NR) system or NR network.
  • NR New Radio
  • FIG. 1 exemplarily shows one network device and two terminals.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminals. This embodiment of the present application There is no restriction on this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 110 and a terminal 120 with communication functions, and the network device 110 and the terminal 120 may be the specific devices described above, which will not be repeated here;
  • the device may also include other devices in the communication system 100, such as other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the NR UE can configure the measurement interval for the UE (per UE gap) or the measurement interval for the frequency range (Frequency Range, FR) (per FR gap).
  • the parameters of the measurement interval are configured through MeasgapConfig.
  • the information element of the MeasgapConfig is shown in Table 1 below.
  • gapFR1 represents the measurement interval configuration for FR1.
  • gapFR2 represents the measurement interval configuration for FR2.
  • gapUE indicates the measurement interval configuration for all frequencies (including FR1 and FR2).
  • gapUE cannot use NR RRC configuration, only LTE RRC can configure gapUE.
  • FR1 and FR2 in the embodiments of this application refer to NR FR1 and NR FR2.
  • the frequency range NR FR1 usually refers to the 5G Sub-6GHz (below 6GHz) frequency band, and may be extended to sub-7GHz (below 7GHz) in the future
  • the frequency range NR FR2 usually refers to the 5G millimeter wave frequency band.
  • NR UEs can support dual connectivity architecture, which can be configured for per UE gap or per FR gap. Further,
  • gapUE the master node
  • MN determines the configuration information of the gap (that is, gapUE).
  • gapFR1 is used for FR1 frequency measurement
  • gapFR2 is used for FR2 frequency measurement
  • the MN determines the configuration information of gapFR1
  • the secondary node (SN) determines the configuration information of gapFR2.
  • E-UTRA only UE adopts the LTE measurement gap configuration, that is, per UE gap.
  • MN indicates per UE gap configuration information and the purpose of the gap to SN.
  • SN indicates the list of frequencies to be measured by the MN regarding the SN on FR1 or/and FR2.
  • SN indicates a list of frequencies to be measured by SN on FR1
  • MN indicates a list of frequencies to be measured by MN on FR2.
  • gapUE and gapFR1/gapFR2 cannot be configured at the same time.
  • gapUE and gapFR1 can only be configured by E-UTRA.
  • a UE capability is defined, that is, whether the UE supports the per FR gap capability, or whether the UE supports the capability of configuring independent measurement intervals for different frequency band ranges.
  • This UE capability is configured through independentGapConfig.
  • the measurement interval will cause the interruption of UE transmission.
  • per UE gap measurement affects the transmission interruption of cells in all frequency bands
  • per FR gap measurement only affects the transmission interruption of the cell with the same measurement frequency.
  • the existing Rel-15 protocol only distinguishes the three measurement interval configuration types per FR1, per FR2, and per UE for the measurement interval configuration types. This will result in the inability to further provide for some specific frequency bands or independent radio links. Distinguish the type of measurement interval configuration. It is also unable to provide different measurement interval configuration types for different service types of terminals, especially URLLC services.
  • the difference between the URLLC service and the eMTC service is that it is an independent deployment network, and service types such as eMTC will not coexist in the same terminal.
  • the eMTC service has an additional configuration measurement interval configuration, such as a 1000ms measurement interval.
  • URLLC services can coexist or switch in the same terminal, and rel-15 terminals currently do not support this per-service measurement interval configuration. To this end, the following technical solutions of the embodiments of the present application are proposed.
  • FIG. 2 is a schematic flowchart 1 of a method for configuring a measurement interval according to an embodiment of the application. As shown in FIG. 2, the method for configuring a measurement interval includes the following steps:
  • Step 201 The network device sends first indication information to the terminal, and the terminal receives the first indication information sent by the network device, where the first indication information is used to instruct the terminal to extend the first measurement time window to the second measurement time window;
  • the measurement interval in the first measurement time window has an overlap time with the time domain resource of the first service data;
  • the measurement interval in the second measurement time window has no overlap time with the time domain resource of the first service data,
  • the measurement interval in the second measurement time window has an overlap time with the time domain resource of the first service data, and a part or all of the overlap time is used to transmit the first service data.
  • the network device may be a base station, such as a 4G base station (ie eNB), or an NR base station (ie gNB).
  • a base station such as a 4G base station (ie eNB), or an NR base station (ie gNB).
  • the terminal may be any device capable of communicating with the network, such as a mobile phone, a tablet computer, a notebook, a vehicle-mounted terminal, and a wearable device.
  • the measurement time window may also be referred to as a measurement period (Measurement period). Based on this, the first measurement time window and the second measurement time window refer to the first measurement period and the second measurement period, respectively.
  • the terminal when the network device configures the measurement interval, when some measurement intervals collide with the transmission of certain service data (referred to as the first service data in the embodiment of this application), the terminal is notified to extend the measurement time through the first indication information Window, that is, the current first measurement time window is extended to the second measurement time window to ensure the priority transmission of the first service data.
  • the first indication information is carried in Downlink Control Information (DCI) or Media Access Control Control Element (MAC CE).
  • the current measurement time window of the terminal is the first measurement time window
  • the measurement interval in the first measurement time window overlaps with the time domain resource of the first service data (may be a partial overlap or a full overlap), that is, The measurement interval in the first measurement time window collides with the transmission of the first service data.
  • the network device sends the first indication information to the terminal, and informs the terminal to extend the first measurement time window to the first indication information through the first indication information.
  • Two measurement time window, the extended second measurement time window has the following two situations:
  • Case 2 The measurement interval in the second measurement time window has an overlap time with the time domain resource of the first service data, and part or all of the overlap time is used to transmit the first service data.
  • the measurement interval in the first measurement time window and the second measurement time window will be described in detail below.
  • the first measurement time window includes the first type of measurement interval and the second type of measurement interval, wherein the first type of measurement interval does not overlap with the time domain resources of the first service data, and the second type of measurement interval It overlaps with the time domain resource of the first service data.
  • the measurement interval in the first measurement time window is divided into two types.
  • One is the measurement interval that does not overlap with the time domain resource of the first service data, which is called the first type of measurement interval, and the other is the measurement interval with the first type.
  • the time domain resource of a service data has a measurement interval of overlapping time, which is called the second type of measurement interval. It should be noted that the measurement interval of the first type and the measurement interval of the second type of the first measurement time window belong to the measurement interval under the same measurement interval configuration.
  • the overlapping time between the measurement interval in the first measurement time window and the time domain resource of the first service data refers to: the first measurement time window includes the first type of measurement interval and the second type The measurement interval, or, the first measurement time window includes only the second type of measurement interval. Since the measurement interval in the first measurement time window overlaps with the time domain resources of the first service data, the network device sends the first indication information to the terminal, and informs the terminal to extend the first measurement time window to the first indication information through the first indication information. 2. Measurement time window.
  • the second measurement time window includes the first type of measurement interval or includes the first type of measurement interval and the second type of measurement interval, wherein the first type of measurement interval does not overlap with the time domain resources of the first service data, The measurement interval of the second type overlaps with the time domain resource of the first service data.
  • the measurement interval in the second measurement time window is divided into two types.
  • One is the measurement interval that does not overlap with the time domain resource of the first service data, which is called the first type of measurement interval, and the other is the measurement interval with the first type.
  • the time domain resource of a service data has a measurement interval of overlapping time, which is called the second type of measurement interval. It should be noted that the first-type measurement interval and the second-type measurement interval of the second measurement time window belong to the measurement interval under the same measurement interval configuration.
  • the time that the measurement interval in the second measurement time window does not overlap with the time domain resource of the first service data means that the second measurement time window only includes the first type of measurement interval.
  • the time that the measurement interval in the second measurement time window overlaps with the time domain resource of the first service data means that the second measurement time window includes the first type of measurement interval and the second type of measurement interval.
  • the terminal when the measurement interval in the second measurement time window overlaps with the time domain resource of the first service data, part or all of the overlap time is used to transmit the first service data, This means: if the second measurement time window includes the first type measurement interval and the second type measurement interval, the terminal transmits the first type measurement interval on at least one second type measurement interval within the second measurement time window One business data.
  • the measurement interval of the second type corresponding to the first frequency layer is used to transmit the first service data
  • the second type of measurement interval corresponding to the second frequency layer is used to perform measurement
  • the first frequency layer and the second frequency layer both belong to the measurement frequency layer configured by the network for the terminal.
  • the first frequency layer refers to a frequency layer corresponding to the first service data, or a frequency layer used to transmit the first service data.
  • the network device can implement the measurement interval configuration of the first measurement time window and the second measurement time window in the following manner:
  • Manner 1 Both the measurement intervals in the first measurement time window and the second measurement time window are configured through a first measurement interval configuration. That is: before and after the measurement time window is extended, the network device does not adjust the measurement interval configuration. Because the first measurement time window before the extension includes the first type measurement interval and the second type measurement interval, the second measurement time window after the extension It also includes the first type of measurement interval and the second type of measurement interval.
  • the second measurement time window consists of overlapping measurement intervals (ie, the second type of measurement interval) and non-overlapping measurement intervals (ie, the first type of measurement interval). For overlapping measurement intervals, it depends on the implementation of the terminal. Transmitting the first service data, specifically, the terminal transmits the first service data in at least one measurement interval of the second type within the second measurement time window.
  • the measurement interval in the first measurement time window is configured through a first measurement interval configuration, and the measurement interval in the second measurement time window is configured through a second measurement interval configuration; the second measurement interval configuration
  • the measurement interval repetition period (MGRP) is greater than the MGRP configured for the first measurement interval, and/or the measurement interval length (MGL) configured for the second measurement interval is less than the MGL configured for the first measurement interval. That is: before and after the measurement time window is extended, the network device adjusts the measurement interval configuration.
  • the first measurement time window before the extension includes the first type measurement interval and the second type measurement interval, and the second measurement time window after the extension only includes The first type of measurement interval.
  • the second measurement time window consists of non-overlapping measurement intervals (that is, the first type of measurement interval). This is the network device that reconfigures the terminal with a measurement interval configuration to ensure the measurement interval and the first service data The time domain resources do not overlap.
  • the content indicated by the first indication information includes at least one of the following: the time domain position for transmitting the first service data, and the measurement interval of the second type in the first measurement time window accounts for the first measurement interval.
  • the ratio of the total measurement interval in the measurement time window and the length of the time domain for transmitting the first service data are described in detail below on the content indicated by the first indication information.
  • the first indication information is also used to indicate the time domain position for transmitting the first service data, and the time domain bit is used by the terminal to determine the measurement interval in the first measurement time window and the first service data Whether the time domain resources have overlapping time.
  • the terminal When the measurement interval in the first measurement time window overlaps with the time domain resource of the first service data, the terminal extends the first measurement time window to a second measurement time window.
  • the terminal determines, based on the time domain position of the first service data, that the measurement interval in the first measurement time window overlaps with the time domain resource of the first service data, and in addition, it can also determine which The measurement interval continues to be used for the transmission of the first service data, specifically, the overlapping measurement interval (that is, the second type of measurement interval) is continued to be used for the transmission of the first service data.
  • the first indication information indicates the time domain position for transmitting the first service data
  • the time domain position is the position of the measurement interval that may collide.
  • the two measurement interval patterns are the same: 1 , SSB measurement timing configuration (SS/PBCH block Measurement Timing Configuration, SMTC) period (periodicity), namely 40ms. 2.
  • SMTC duration (SMTC duration), that is, both are 5ms.
  • SMTC offset SMTC offset
  • the SMTC offset corresponding to frequency band F1 is 0ms
  • the SMTC offset corresponding to frequency band F2 is 10ms.
  • Method 1 As shown in Figure 3-1, before the measurement time window is extended, the measurement interval in the first measurement time window is configured as the first measurement interval configuration, and the MGRP1 configured for the first measurement interval is 20ms; the measurement time window is extended After that, the measurement interval configuration in the second measurement time window is still the first measurement interval configuration, and the MGRP1 of the first measurement interval configuration is 20 ms.
  • the terminal For the measurement interval used to transmit the first service data in Figure 3-1 (for example, the second and fourth measurement intervals), the terminal is allowed to skip the measurement interval and transmit the first service data through the measurement interval. Based on the implementation of the terminal side, it is decided to transmit the first service data in some conflicting measurement intervals.
  • the actual effect is equivalent to lengthening the MGRP, such as lengthening the original MGRP from 20ms to 40ms.
  • the measurement interval in the first measurement time window is configured as the first measurement interval configuration, and the MGL1 of the first measurement interval configuration is 6ms; after the measurement time window is extended, the second measurement The measurement interval configuration in the time window is still the first measurement interval configuration, and the MGL1 of the first measurement interval configuration is 6 ms.
  • the terminal is allowed to transmit the first part of the measurement interval (for example, half of the measurement interval).
  • this implementation based on the terminal side decides to transmit the first service data during a part of the conflicting measurement interval.
  • Method 2 The network device reconfigures the second measurement interval configuration for the terminal. Compared with the original first measurement interval configuration, the reconfigured second measurement interval configuration has the measurement interval parameters and/or the measurement interval pattern identifier (MG pattern). ID) has changed, where the measurement interval parameters include MGRP and/or MGL. Specifically, before the measurement time window is extended, the measurement interval in the first measurement time window is configured as the first measurement interval configuration, and the MGRP1 configured for the first measurement interval is, for example, 20 ms; after the measurement time window is extended, the measurement interval in the second measurement time window The measurement interval is configured as the second measurement interval configuration.
  • MG pattern measurement interval pattern identifier
  • the embodiment of the present application also includes shortening the MGL, or simultaneously extending the MGRP and Ways to shorten MGL.
  • one is to not modify the measurement interval configuration, but to transmit the first service data in certain measurement intervals or part of the measurement interval through autonomous implementation of the terminal; the other is to modify the measurement interval configuration to ensure the first There is no overlap time between business data and measurement interval.
  • the measurement of the signal by the terminal in a certain measurement interval can be achieved by measuring the synchronization signal block (SS/PBCH block, SSB), and the time domain resource used for transmitting the SSB is determined by the SMTC.
  • SS/PBCH block SS/PBCH block
  • the first indication information is also used to indicate the proportion of the measurement interval of the second type in the first measurement time window to the total measurement interval in the first measurement time window.
  • the terminal extends the first measurement time window to a second measurement time window according to the ratio indicated by the first indication information.
  • the first indication information may indicate the ratio N of the time that the first service data overlaps the measurement interval (ie, the collision time) in the original measurement interval, or the number of measurement intervals where the first service data overlaps the measurement interval accounts for the number of the original measurement interval.
  • the ratio N the terminal adjusts the measurement time window to the original measurement time window divided by this ratio.
  • the ratio of the overlap time between the first service data and the measurement interval ie, the collision time
  • the first indication information is also used to indicate the length of the time domain for transmitting the first service data.
  • the terminal determines the number of measurement intervals occupied by transmitting the first service data based on the time domain length of the first service data; the terminal determines the number of measurement intervals occupied by the first service data according to the number of measurement intervals occupied by the first service data. At least one measurement interval of the second type is selected within the second measurement time window, and the first service data is transmitted on the at least one measurement interval of the second type.
  • the selecting at least one measurement interval of the second type in the second measurement time window is configured and implemented by the network, which specifically includes: randomly selecting at least one measurement interval of the second type in the second measurement time window; Alternatively, at least one measurement interval of the second type is periodically selected within the second measurement time window.
  • the first indication information indicates that the time domain length (duration) of the first service data transmission is 2 SSB window durations (SSB window duration), that is, the first service data will occupy 2 measurement intervals, and the terminal will be in the first On a measurement interval corresponding to a measurement interval configuration, a hole is drilled to find out 2 measurement intervals or 2 measurement intervals are found according to a cycle, which are used to transmit the first service data.
  • SSB window duration 2 SSB window duration
  • a measurement interval can be found every other MGRP to transmit the first service data, which is equivalent to lengthening MGRP1 by 2 times (ie MGRP2), and the total measurement time window is also changed from the first measurement time window Extend 2 times (that is, the second measurement time window) to ensure that the number of effective measurement intervals (that is, the measurement intervals used for measurement) in the total measurement time window remains unchanged.
  • the first indication information indicates that the time domain length of the first service data is 10ms, and the measurement time window is extended from the first measurement time window (60ms+5ms) to the second measurement time window (120ms+5ms) to ensure The number of valid measurement intervals before and after the measurement time window is extended is 4.
  • the foregoing effective measurement interval refers to a measurement interval used for measurement, or a measurement interval other than the transmission of the first service data.
  • the first service data may be, but not limited to, URLLC service data.
  • the network device when the network device has configured the measurement interval configuration, when some measurement intervals collide with the first service data transmission, the terminal is notified of the collision data information through the first indication information or the measurement time is adjusted to ensure Priority transmission of the first service data. Or the network device reconfigures the measurement interval configuration to ensure that there is no transmission collision between the measurement interval and the first service data.
  • FIG. 6 is a second schematic flowchart of a method for configuring a measurement interval according to an embodiment of the application. As shown in FIG. 6, the method for configuring a measurement interval includes the following steps:
  • Step 601 The network device sends first configuration information to the terminal, and the terminal receives the first configuration information sent by the network device.
  • the first configuration information is used to determine the first measurement interval configuration for the first frequency band range and/or for the first measurement interval.
  • the second measurement interval configuration of the service type is used to determine the first measurement interval configuration for the first frequency band range and/or for the first measurement interval.
  • the network device may be a base station, such as a 4G base station (ie eNB), or an NR base station (ie gNB).
  • a base station such as a 4G base station (ie eNB), or an NR base station (ie gNB).
  • the terminal may be any device capable of communicating with the network, such as a mobile phone, a tablet computer, a notebook, a vehicle-mounted terminal, and a wearable device.
  • the network device can quickly configure a new type of measurement interval configuration type and its corresponding measurement interval parameters for the terminal for a multi-service concurrent scenario or a service switching situation. Specifically, the network device may configure the terminal with a first measurement interval configuration for the first frequency band range and/or a second measurement interval configuration for the first service type.
  • the first measurement interval configuration and the second measurement interval configuration are described in detail below.
  • the measurement interval configuration type (MeasGapConfig Type) configured by the network device for the terminal also adds new MeasGapConfig Type, such as per FR3 gap, per FR4 gap, etc. .
  • the configuration parameter corresponding to the first measurement interval configuration for the first frequency band range includes at least one of the following: measurement interval offset, measurement interval length, measurement interval repetition period, and measurement interval time advance.
  • the value range of the measurement interval length is a first value range or a second value range
  • the first value range is a subset of the second value range.
  • the first value range is, for example, ⁇ 1.5ms, 3ms, 3.5ms, 4ms, 5.5ms, 6ms ⁇ .
  • the second value range is, for example, ⁇ 1.5ms, 3ms, 3.5ms, 4ms, 5.5ms, 6ms, 5ms ⁇ .
  • the value range of the measurement interval repetition period is a third value range or a fourth value range
  • the third value range is a subset of the fourth value range.
  • the third value range is, for example, ⁇ 20ms, 40ms, 80ms, 160ms ⁇ .
  • the fourth value range is, for example, ⁇ 20ms, 40ms, 80ms, 160ms, 240ms, 320ms, 640ms ⁇ .
  • the measurement interval configuration is distinguished based on the frequency band as the granularity.
  • the measurement interval configuration type newly configured by the network device is: per FR3 gap, and the corresponding terminal has an independent radio frequency link.
  • the FR3 can be a specific service frequency band, such as 5.9 GHz (band47) of URLLC.
  • the parameters of the measurement interval are configured through MeasgapConfig. MeasgapConfig is shown in Table 2 below. A new gapFR3 type is added.
  • the parameters of the measurement interval corresponding to this gapFR3 can use the previous configuration parameters (such as the first value range corresponding to the measurement interval length, measurement The third value range corresponding to the interval repetition period), or the introduction of new configuration parameters (such as the second value range corresponding to the measurement interval length, and the fourth value range corresponding to the measurement interval repetition period).
  • the configuration parameters include: measurement interval offset (gapoffset), measurement interval length (mgl), measurement interval repetition period (mgrp), measurement interval time advance (mgta).
  • the value ranges of mgl and mgrp are the second value range and the fourth value range respectively.
  • gapUE and at least one of the following cannot be configured at the same time: gapFR1, gapFR2, and gapFR3. But gapFR1, gapFR2 and gapFR3 can be configured at the same time.
  • the first measurement interval configuration for the first frequency band range is configured through RRC signaling.
  • FR3 refers to other frequency bands different from FR2 and FR1, and gapFR3 passes RRC signaling is configured.
  • a terminal capability is defined, that is, whether the terminal supports per FR gap capability (that is, whether the UE supports the capability of independent gap measurement in different frequency ranges).
  • This terminal capability is configured through independentGapConfig, and whether the terminal supports different frequency ranges independently
  • the gap measurement capability refers to whether the terminal supports the configuration of two or more measurement intervals (gapFR1, gapFR2, perFR3).
  • the measurement interval configuration type (MeasGapConfigType) configured by the network device for the terminal may be service-based, that is, different service types can correspond to different measurement interval configuration types.
  • the corresponding second measurement interval configuration can be configured for the first service type (such as eMBB service or URLLC service).
  • the second measurement interval configuration for the first service type includes at least one of the following: a measurement interval type, a measurement interval identifier, and a measurement interval parameter.
  • the network device first determines the service type, and then configures the corresponding second measurement interval configuration (such as measurement interval type, measurement interval identifier, measurement interval parameter) according to the service type.
  • the network device can determine the service type in the following ways:
  • Manner 1 The network device determines the service type according to the scheduling information of the transmission resource corresponding to the first service type. Based on this, the second measurement interval configuration for the first service type is that the network device corresponds to the first service type.
  • the scheduling information of the transmission resource is configured through RRC signaling or MAC CE.
  • the scheduling information of the transmission resource corresponding to the first service type is static scheduling information or semi-persistent scheduling information.
  • a network device configures the static scheduling information or semi-persistent scheduling information of the first service type through RRC signaling or MAC CE, and at the same time configures the second measurement interval configuration of the first service type through the RRC signaling or MAC CE (e.g. Measurement interval type, measurement interval identification, measurement interval parameters).
  • the second measurement interval configuration for the first service type is configured by the network device through DCI according to scheduling information of transmission resources corresponding to the first service type.
  • the scheduling information of the transmission resource corresponding to the first service type is static scheduling information or semi-persistent scheduling information or dynamic scheduling information.
  • the network device configures the static scheduling information or semi-persistent scheduling information or dynamic scheduling information of the first service type through DCI, and at the same time configures the second measurement interval configuration of the first service type through the DCI (such as measurement interval type, measurement interval) Identification, measurement interval parameters).
  • DCI such as measurement interval type, measurement interval
  • Identification such as measurement interval parameters
  • the measurement interval configuration with business granularity can be a new measurement interval type, or it can be a subset of the currently configured perUE or perFR gap.
  • the scheduling information of the transmission resource includes at least one of the following: the period of the transmission resource, the length of the transmission resource, the modulation and coding scheme (MCS) corresponding to the transmission resource, and the identifier of the transmission resource.
  • MCS modulation and coding scheme
  • the terminal sends first capability information to the network device, where the first capability information is used to indicate the capability of the measurement interval supported by the terminal. Further, the first capability information is used to indicate whether the terminal supports the ability to configure corresponding independent measurement intervals for different frequency band ranges, and/or whether the terminal supports the ability to configure corresponding independent measurement intervals for different service types .
  • the measurement interval configuration type (MeasGapConfig Type) configured by the network device for the terminal is in addition to the existing per UE gap, per FR1 gap, per FR2 gap, and a new MeasGapConfig Type is added, for example, Measurement interval configuration corresponding to other frequency ranges, or measurement interval configuration corresponding to certain service types.
  • the network device can quickly configure the terminal to execute a certain measurement interval configuration type and its corresponding measurement interval parameters for multi-service concurrent scenarios or service switching according to the capabilities of the supported measurement interval configuration reported by the terminal.
  • the measurement configuration of Rel-15 only defines SSB-based measurement, and the technical solution of the embodiment of the present application is also applicable to the measurement based on the Channel Status Indicator Reference Signal (CSI-RS).
  • CSI-RS Channel Status Indicator Reference Signal
  • the difference is that 1) The configuration parameters of the measurement interval of the CSI-RS may be different from those of the SSB. At present, there are 23 measurement interval patterns in the SSB, and new MGL and MGRP measurement interval patterns may appear in the CSI-RS. 2) The definition of intra-frequency and inter-frequency measurement of CSI-RS is different from that of SSB.
  • the measurement belongs to the same frequency measurement, otherwise, the measurement of the SSB of the target cell belongs to the different frequency measurement.
  • the CSI-RS of the target cell is included in the CSI-RS of the serving cell, and the SCS of the target cell and the serving cell are the same, the measurement of the CSI-RS of the target cell belongs to the same frequency measurement, otherwise , The measurement of the CSI-RS of the target cell belongs to inter-frequency measurement.
  • FIG. 7 is a schematic diagram 1 of the structural composition of an apparatus for configuring a measurement interval provided by an embodiment of the application. As shown in FIG. 7, the apparatus for configuring a measurement interval includes:
  • the receiving unit 701 is configured to receive first indication information sent by a network device, where the first indication information is used to instruct the terminal to extend a first measurement time window to a second measurement time window;
  • the measurement interval in the first measurement time window has an overlap time with the time domain resource of the first service data; the measurement interval in the second measurement time window has no overlap time with the time domain resource of the first service data, Or, the measurement interval in the second measurement time window has an overlap time with the time domain resource of the first service data, and a part or all of the overlap time is used to transmit the first service data.
  • the first measurement time window includes a first type of measurement interval and a second type of measurement interval
  • the second measurement time window includes the first type of measurement interval or includes the first type of measurement interval and the second type of measurement interval.
  • the measurement interval of the first type does not overlap with the time domain resource of the first service data, and the measurement interval of the second type overlaps with the time domain resource of the first service data.
  • the device further includes:
  • the sending unit 702 is configured to, if the second measurement time window includes the first type measurement interval and the second type measurement interval, transmit the first type measurement interval on at least one second type measurement interval within the second measurement time window.
  • One business data One business data.
  • the measurement interval of the second type corresponding to the first frequency layer is used to transmit the first service data
  • the second type of measurement interval corresponding to the second frequency layer is used to perform measurement
  • the first frequency layer and the second frequency layer both belong to the measurement frequency layer configured by the network for the terminal.
  • the first indication information is also used to indicate the time domain position for transmitting the first service data, and the time domain bit is used by the terminal to determine the measurement interval and the measurement interval in the first measurement time window. Whether the time domain resources of the first service data have overlapping time; the device further includes:
  • the processing unit 703 is configured to extend the first measurement time window to a second measurement time window when the measurement interval in the first measurement time window overlaps with the time domain resource of the first service data.
  • the first indication information is further used to indicate the proportion of the measurement interval of the second type in the first measurement time window to the total measurement interval in the first measurement time window; the device is also include:
  • the processing unit 703 is configured to extend the first measurement time window to a second measurement time window according to the ratio indicated by the first indication information.
  • the second measurement time window includes the first type of measurement interval and the second type of measurement interval, and the measurement intervals in the first measurement time window and the second measurement time window both pass The first measurement interval configuration is configured.
  • the second measurement time window includes the first type of measurement interval, and the measurement interval in the first measurement time window is configured by a first measurement interval configuration, and the second measurement time window The measurement interval within is configured through the second measurement interval configuration;
  • the MGRP configured for the second measurement interval is greater than the MGRP configured for the first measurement interval, and/or the MGL configured for the second measurement interval is smaller than the MGL configured for the first measurement interval.
  • the first indication information is further used to indicate the length of the time domain for transmitting the first service data; the apparatus further includes:
  • the processing unit 703 is configured to determine the number of measurement intervals occupied by transmitting the first service data based on the time domain length of the first service data; according to the number of measurement intervals occupied by the first service data, Select at least one measurement interval of the second type within the second measurement time window;
  • the sending unit 702 is configured to transmit the first service data in the at least one measurement interval of the second type.
  • the selecting at least one measurement interval of the second type within the second measurement time window includes:
  • At least one measurement interval of the second type is periodically selected within the second measurement time window.
  • the first indication information is carried in DCI or MAC CE.
  • FIG. 8 is a second schematic diagram of the structural composition of the device for configuring the measurement interval provided by an embodiment of the application. As shown in FIG. 8, the device for configuring the measurement interval includes:
  • the receiving unit 801 is configured to receive first configuration information sent by a network device, where the first configuration information is used to determine a first measurement interval configuration for a first frequency band range and/or a second measurement interval configuration for a first service type .
  • the configuration parameter corresponding to the first measurement interval configuration for the first frequency band range includes at least one of the following: measurement interval offset, measurement interval length, measurement interval repetition period, and measurement interval time advance.
  • the value range of the measurement interval length is a first value range or a second value range, and the first value range is a subset of the second value range.
  • the value range of the measurement interval repetition period is a third value range or a fourth value range
  • the third value range is a subset of the fourth value range
  • the first measurement interval configuration for the first frequency band range is configured through RRC signaling.
  • the second measurement interval configuration for the first service type is configured by the network device through RRC signaling or MAC CE according to scheduling information of the transmission resource corresponding to the first service type.
  • the scheduling information of the transmission resource corresponding to the first service type is static scheduling information or semi-persistent scheduling information.
  • the second measurement interval configuration for the first service type is configured by the network device through DCI according to scheduling information of transmission resources corresponding to the first service type.
  • the scheduling information of the transmission resource corresponding to the first service type is static scheduling information or semi-persistent scheduling information or dynamic scheduling information.
  • the scheduling information of the transmission resource includes at least one of the following: the period of the transmission resource, the length of the transmission resource, the MCS corresponding to the transmission resource, and the identifier of the transmission resource.
  • the second measurement interval configuration for the first service type includes at least one of the following: a measurement interval type, a measurement interval identifier, and a measurement interval parameter.
  • the device further includes:
  • the sending unit 802 is configured to send first capability information to the network device, where the first capability information is used to indicate the measurement interval capability supported by the terminal.
  • the first capability information is used to indicate whether the terminal supports the ability to configure corresponding independent measurement intervals for different frequency band ranges, and/or whether the terminal supports the corresponding independent configuration for different service types The ability to measure intervals.
  • FIG. 9 is the third structural composition diagram of the device for configuring the measurement interval provided by an embodiment of the application. As shown in FIG. 9, the device for configuring the measurement interval includes:
  • the sending unit 901 is configured to send first indication information to the terminal, where the first indication information is used to instruct the terminal to extend the first measurement time window to the second measurement time window;
  • the measurement interval in the first measurement time window has an overlap time with the time domain resource of the first service data; the measurement interval in the second measurement time window has no overlap time with the time domain resource of the first service data, Or, the measurement interval in the second measurement time window has an overlap time with the time domain resource of the first service data, and a part or all of the overlap time is used to transmit the first service data.
  • the first measurement time window includes a first type of measurement interval and a second type of measurement interval
  • the second measurement time window includes the first type of measurement interval or includes the first type of measurement interval and the second type of measurement interval.
  • the measurement interval of the first type does not overlap with the time domain resource of the first service data, and the measurement interval of the second type overlaps with the time domain resource of the first service data.
  • the first indication information is also used to indicate the time domain position for transmitting the first service data; the time domain position is used by the terminal to determine the measurement interval and the first measurement interval in the first measurement time window. Whether the time domain resources of a business data have overlapping time.
  • the first indication information is also used to indicate the proportion of the measurement interval of the second type in the first measurement time window to the total measurement interval in the first measurement time window; Extending the first measurement time window to a second measurement time window at the terminal.
  • the second measurement time window includes the first type of measurement interval and the second type of measurement interval, and the measurement intervals in the first measurement time window and the second measurement time window both pass The first measurement interval configuration is configured.
  • the second measurement time window includes the first type of measurement interval, and the measurement interval in the first measurement time window is configured by a first measurement interval configuration, and the second measurement time window The measurement interval within is configured through the second measurement interval configuration;
  • the MGRP configured for the second measurement interval is greater than the MGRP configured for the first measurement interval, and/or the MGL configured for the second measurement interval is smaller than the MGL configured for the first measurement interval.
  • the first indication information is also used to indicate the length of the time domain for transmitting the first service data; the length of the time domain is used for the terminal to determine the number of measurement intervals occupied by the transmission of the first service data , According to the number of measurement intervals occupied by the first service data, select at least one second type measurement interval within the second measurement time window, and transmit the first service on the at least one second type measurement interval data.
  • the first indication information is carried in DCI or MAC CE.
  • FIG. 10 is a schematic diagram 4 of the structural composition of the device for configuring the measurement interval provided by an embodiment of the application. As shown in FIG. 10, the device for configuring the measurement interval includes:
  • the sending unit 1001 is configured to send first configuration information to the terminal, where the first configuration information is used to determine the first measurement interval configuration for the first frequency band range and/or the second measurement interval configuration for the first service type.
  • the configuration parameter corresponding to the first measurement interval configuration for the first frequency band range includes at least one of the following: measurement interval offset, measurement interval length, measurement interval repetition period, and measurement interval time advance.
  • the value range of the measurement interval length is a first value range or a second value range, and the first value range is a subset of the second value range.
  • the value range of the measurement interval repetition period is a third value range or a fourth value range
  • the third value range is a subset of the fourth value range
  • the first measurement interval configuration for the first frequency band range is configured through RRC signaling.
  • the second measurement interval configuration for the first service type is configured by the network device through RRC signaling or MAC CE according to scheduling information of the transmission resource corresponding to the first service type.
  • the scheduling information of the transmission resource corresponding to the first service type is static scheduling information or semi-persistent scheduling information.
  • the second measurement interval configuration for the first service type is configured by the network device through DCI according to scheduling information of transmission resources corresponding to the first service type.
  • the scheduling information of the transmission resource corresponding to the first service type is static scheduling information or semi-persistent scheduling information or dynamic scheduling information.
  • the scheduling information of the transmission resource includes at least one of the following: the period of the transmission resource, the length of the transmission resource, the MCS corresponding to the transmission resource, and the identifier of the transmission resource.
  • the second measurement interval configuration for the first service type includes at least one of the following: a measurement interval type, a measurement interval identifier, and a measurement interval parameter.
  • the device further includes:
  • the receiving unit 1002 is configured to receive first capability information sent by the terminal, where the first capability information is used to indicate the measurement interval capability supported by the terminal.
  • the first capability information is used to indicate whether the terminal supports the ability to configure corresponding independent measurement intervals for different frequency band ranges, and/or whether the terminal supports the corresponding independent configuration for different service types The ability to measure intervals.
  • FIG. 11 is a schematic structural diagram of a communication device 1100 according to an embodiment of the present application.
  • the communication device may be a terminal or a network device.
  • the communication device 1100 shown in FIG. 11 includes a processor 1110.
  • the processor 1110 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 1100 may further include a memory 1120.
  • the processor 1110 may call and run a computer program from the memory 1120 to implement the method in the embodiment of the present application.
  • the memory 1120 may be a separate device independent of the processor 1110, or may be integrated in the processor 1110.
  • the communication device 1100 may further include a transceiver 1130, and the processor 1110 may control the transceiver 1130 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 1130 may include a transmitter and a receiver.
  • the transceiver 1130 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 1100 may specifically be a network device in an embodiment of the application, and the communication device 1100 may implement the corresponding process implemented by the network device in each method of the embodiment of the application. For the sake of brevity, details are not repeated here. .
  • the communication device 1100 may specifically be a mobile terminal/terminal according to an embodiment of the application, and the communication device 1100 may implement the corresponding procedures implemented by the mobile terminal/terminal in each method of the embodiments of the application. For the sake of brevity, This will not be repeated here.
  • FIG. 12 is a schematic structural diagram of a chip of an embodiment of the present application.
  • the chip 1200 shown in FIG. 12 includes a processor 1210, and the processor 1210 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 1200 may further include a memory 1220.
  • the processor 1210 can call and run a computer program from the memory 1220 to implement the method in the embodiment of the present application.
  • the memory 1220 may be a separate device independent of the processor 1210, or it may be integrated in the processor 1210.
  • the chip 1200 may further include an input interface 1230.
  • the processor 1210 can control the input interface 1230 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 1200 may further include an output interface 1240.
  • the processor 1210 can control the output interface 1240 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the network device in the various methods of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the network device in the various methods of the embodiment of the present application.
  • the chip can be applied to the mobile terminal/terminal in the embodiment of the present application, and the chip can implement the corresponding process implemented by the mobile terminal/terminal in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the mobile terminal/terminal in each method of the embodiment of the present application.
  • it will not be omitted here. Repeat.
  • the chip mentioned in the embodiment of the present application may also be referred to as a system-level chip, a system-on-chip, a system-on-chip, or a system-on-chip, etc.
  • FIG. 13 is a schematic block diagram of a communication system 1300 according to an embodiment of the present application. As shown in FIG. 13, the communication system 1300 includes a terminal 1310 and a network device 1320.
  • the terminal 1310 may be used to implement the corresponding functions implemented by the terminal in the foregoing method
  • the network device 1320 may be used to implement the corresponding functions implemented by the network device in the foregoing method.
  • details are not described herein again.
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the aforementioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • Synchlink DRAM SLDRAM
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is to say, the memory in the embodiment of the present application is intended to include but not limited to these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium may be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer-readable storage medium may be applied to the mobile terminal/terminal in the embodiments of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the mobile terminal/terminal in the various methods of the embodiments of the present application, for It’s concise and will not be repeated here.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product may be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program product can be applied to the mobile terminal/terminal in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding procedures implemented by the mobile terminal/terminal in the various methods of the embodiments of the present application, for the sake of brevity , I won’t repeat it here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program runs on the computer, the computer is caused to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the computer program can be applied to the mobile terminal/terminal in the embodiments of the present application.
  • the computer program runs on the computer, the computer can execute the corresponding methods implemented by the mobile terminal/terminal in the various methods of the embodiments of the present application. For the sake of brevity, the process will not be repeated here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种测量间隔的配置方法及装置、终端、网络设备,该方法包括:终端接收网络设备发送的第一指示信息,所述第一指示信息用于指示所述终端将第一测量时间窗口延长为第二测量时间窗口;其中,所述第一测量时间窗口内的测量间隔与第一业务数据的时域资源有重叠时间;所述第二测量时间窗口内的测量间隔与第一业务数据的时域资源没有重叠时间,或者,所述第二测量时间窗口内的测量间隔与第一业务数据的时域资源有重叠时间,且该重叠时间的一部分或全部用于传输所述第一业务数据。

Description

一种测量间隔的配置方法及装置、终端、网络设备 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种测量间隔的配置方法及装置、终端、网络设备。
背景技术
测量间隔(Measurement gap,MG)的目的是创建一个小的间隔(gap),终端在这个间隔中对目标小区进行测量。在配置了测量间隔的情况下,终端在测量间隔期间需要停止正常的数据传输,典型的测量间隔的长度为6ms,在这种情况下终端将有6ms不能进行数据传输。而在R16中,需要支持高可靠低时延(Ultra Reliable Low Latency Communications,URLLC)的业务,其传输周期要求为0.5ms。若终端在所有的测量间隔内都不能传输数据,将造成URLLC业务时延增大,不能满足服务质量(Quality of Service,QoS)的需求,造成业务传输,甚至工业操作出现重大错误等问题。
发明内容
本申请实施例提供一种测量间隔的配置方法及装置、终端、网络设备。
本申请实施例提供的测量间隔的配置方法,包括:
终端接收网络设备发送的第一指示信息,所述第一指示信息用于指示所述终端将第一测量时间窗口延长为第二测量时间窗口;
其中,所述第一测量时间窗口内的测量间隔与第一业务数据的时域资源有重叠时间;所述第二测量时间窗口内的测量间隔与第一业务数据的时域资源没有重叠时间,或者,所述第二测量时间窗口内的测量间隔与第一业务数据的时域资源有重叠时间,且该重叠时间的一部分或全部用于传输所述第一业务数据。
本申请实施例提供的测量间隔的配置方法,包括:
终端接收网络设备发送的第一配置信息,所述第一配置信息用于确定针对第一频段范围的第一测量间隔配置和/或针对第一业务类型的第二测量间隔配置。
本申请实施例提供的测量间隔的配置方法,包括:
网络设备向终端发送第一指示信息,所述第一指示信息用于指示所述终端将第一测量时间窗口延长为第二测量时间窗口;
其中,所述第一测量时间窗口内的测量间隔与第一业务数据的时域资源有重叠时间;所述第二测量时间窗口内的测量间隔与第一业务数据的时域资源没有重叠时间,或者,所述第二测量时间窗口内的测量间隔与第一业务数据的时域资源有重叠时间,且该重叠时间的一部分或全部用于传输所述第一业务数据。
本申请实施例提供的测量间隔的配置方法,包括:
网络设备向终端发送第一配置信息,所述第一配置信息用于确定针对第一频段范围的第一测量间隔配置和/或针对第一业务类型的第二测量间隔配置。
本申请实施例提供的测量间隔的配置装置,包括:
接收单元,用于接收网络设备发送的第一指示信息,所述第一指示信息用于指示 所述终端将第一测量时间窗口延长为第二测量时间窗口;
其中,所述第一测量时间窗口内的测量间隔与第一业务数据的时域资源有重叠时间;所述第二测量时间窗口内的测量间隔与第一业务数据的时域资源没有重叠时间,或者,所述第二测量时间窗口内的测量间隔与第一业务数据的时域资源有重叠时间,且该重叠时间的一部分或全部用于传输所述第一业务数据。
本申请实施例提供的测量间隔的配置装置,包括:
接收单元,用于接收网络设备发送的第一配置信息,所述第一配置信息用于确定针对第一频段范围的第一测量间隔配置和/或针对第一业务类型的第二测量间隔配置。
本申请实施例提供的测量间隔的配置装置,包括:
发送单元,用于向终端发送第一指示信息,所述第一指示信息用于指示所述终端将第一测量时间窗口延长为第二测量时间窗口;
其中,所述第一测量时间窗口内的测量间隔与第一业务数据的时域资源有重叠时间;所述第二测量时间窗口内的测量间隔与第一业务数据的时域资源没有重叠时间,或者,所述第二测量时间窗口内的测量间隔与第一业务数据的时域资源有重叠时间,且该重叠时间的一部分或全部用于传输所述第一业务数据。
本申请实施例提供的测量间隔的配置装置,包括:
发送单元,用于向终端发送第一配置信息,所述第一配置信息用于确定针对第一频段范围的第一测量间隔配置和/或针对第一业务类型的第二测量间隔配置。
本申请实施例提供的终端,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的测量间隔的配置方法。
本申请实施例提供的网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的测量间隔的配置方法。
本申请实施例提供的芯片,用于实现上述的测量间隔的配置方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的测量间隔的配置方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的测量间隔的配置方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的测量间隔的配置方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的测量间隔的配置方法。
通过上述技术方案,网络设备在配置测量间隔时,当一些测量间隔与某些业务数据的时域资源冲撞时,通过配置第一指示信息来通知终端拉长测量时间窗口,以保证某些业务数据的优先传输。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请实施例提供的一种通信系统架构的示意性图;
图2为本申请实施例提供的测量间隔的配置方法的流程示意图一;
图3-1为本申请实施例提供的测量间隔图样的示意图一;
图3-2为本申请实施例提供的测量间隔图样的示意图二;
图4为本申请实施例提供的测量间隔图样的示意图三;
图5为本申请实施例提供的测量间隔图样的示意图四;
图6为本申请实施例提供的测量间隔的配置方法的流程示意图二;
图7为本申请实施例提供的测量间隔的配置装置的结构组成示意图一;
图8为本申请实施例提供的测量间隔的配置装置的结构组成示意图二;
图9为本申请实施例提供的测量间隔的配置装置的结构组成示意图三;
图10为申请实施例提供的测量间隔的配置装置的结构组成示意图四;
图11本申请实施例提供的一种通信设备示意性结构图;
图12本申请实施例的芯片的示意性结构图;
图13本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统或5G系统等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端120。作为在此使用的“终端”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能 力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端或者未来演进的PLMN中的终端等。
可选地,终端120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端120,网络设备110和终端120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例涉及到的相关技术进行说明。
NR的UE可配置针对UE的测量间隔(per UE gap)或者针对频率范围(Frequency Range,FR)的测量间隔(per FR gap)。测量间隔的参数通过MeasgapConfig来配置,MeasgapConfig的信息单元(information element)如下表1所示,其中,在MeasgapConfig中,gapFR1表示针对FR1的测量间隔配置。在EN-DC场景下,gapFR1不能使用NR RRC配置,只有LTE RRC可以配置gapFR1。gapFR2表示针对FR2的测量间隔配置。gapUE表示针对全部频率(包括FR1和FR2)的测量间隔配置。在EN-DC场景下,gapUE不能使用NR RRC配置,只有LTE RRC可以配置gapUE。需要说明的是,本申请实施例中的FR1和FR2是指NR FR1和NR FR2。其中,频率范围NR FR1通常是指5G Sub-6GHz(6GHz以下)频段,未来也可能扩展到sub-7GHz(7GHz以下),频率范围NR FR2通常是指5G毫米波频段。
Figure PCTCN2019093917-appb-000001
Figure PCTCN2019093917-appb-000002
表1
NR的UE可支持双连接架构,可配置针对per UE gap或者per FR gap,进一步,
◆per UE gap,只能配置一个,即gapUE,用于FR1和FR2频率的测量。对于per UE gap,主节点(MN)决定gap的配置信息(即gapUE)。
◆per FR gap,可独立配置两个,即gapFR1和/或gapFR2,gapFR1用于FR1频率的测量,gapFR2用于FR2频率的测量。对于per FR gap,MN决定gapFR1的配置信息,辅节点(SN)决定gapFR2的配置信息。
E-UTRA only的UE,采用LTE的测量gap配置,即per UE gap。
举个例子,gap配置协商过程中:
◆对于per UE gap,MN指示per UE gap配置信息以及gap目的给SN。SN指示MN关于FR1或/和FR2上的SN要测量的频率列表。
◆对于per FR gap,SN指示MN关于FR1上SN要测量的频率列表,MN指示SN关于FR2上MN要测量的频率列表。
需要说明的是,gapUE和gapFR1/gapFR2不能同时配置。对于支持EN-DC的UE,gapUE和gapFR1只能由E-UTRA来配置。
另一方面,定义了一种UE能力,即UE是否支持per FR gap的能力,或者说UE是否支持不同频段范围配置对应独立的测量间隔的能力,这个UE能力通过independentGapConfig来配置。
测量间隔会导致UE传输的中断,其中,per UE gap的测量是对所有频段的小区都有传输中断的影响,per FR gap的测量只对与有同样测量频点的小区有传输中断的影响。此外,现有Rel-15协议中对测量间隔配置的类型只区分了per FR1、per FR2和per UE这三种测量间隔配置类型,这将导致无法进一步为一些特定的频段或独立射频链路做测量间隔配置类型的区分。也无法为终端不同的业务类型提供不同的测量间隔配置类型,特别是URLLC业务。URLLC业务与eMTC业务不同的是,它是独立的部署网络,eMTC等业务类型不会在同一终端共存,所以eMTC业务有额外配置的测量间隔配置,比如1000ms长度的测量间隔。而URLLC业务可以在同一个终端共存或切换,rel-15的终端目前不支持这种以业务为粒度(per service)的测量间隔配置。为此,提出了本申请实施例的以下技术方案。
图2为本申请实施例提供的测量间隔的配置方法的流程示意图一,如图2所示,所述测量间隔的配置方法包括以下步骤:
步骤201:网络设备向终端发送第一指示信息,终端接收网络设备发送的第一指示信息,所述第一指示信息用于指示所述终端将第一测量时间窗口延长为第二测量时间窗口;其中,所述第一测量时间窗口内的测量间隔与第一业务数据的时域资源有重叠时间;所述第二测量时间窗口内的测量间隔与第一业务数据的时域资源没有重叠时间,或者,所述第二测量时间窗口内的测量间隔与第一业务数据的时域资源有重叠时间,且该重叠时间的一部分或全部用于传输所述第一业务数据。
本申请实施例中,所述网络设备可以是基站,例如4G基站(即eNB),NR基站(即gNB)。
本申请实施例中,所述终端可以是手机、平板电脑、笔记本、车载终端、可穿戴设备等任意能够与网络进行通信的设备。
本申请实施例中,测量时间窗口也可以称为测量周期(Measurement period),基于此,第一测量时间窗口和第二测量时间窗口分别是指第一测量周期和第二测量周期。
本申请实施例中,网络设备在配置测量间隔时,当一些测量间隔与某些业务数据(本申请实施例称为第一业务数据)传输冲撞时,通过第一指示信息通知终端拉长测量时间窗口,即将当前的第一测量时间窗口延长为第二测量时间窗口,以保证第一业务数据的优先传输。在一些可选实施方式中,所述第一指示信息携带在下行控制信息(Downlink Control Information,DCI)或媒体接入控制控制单元(Media Access Control Control Element,MAC CE)中。
具体地,终端当前的测量时间窗口为第一测量时间窗口,所述第一测量时间窗口内的测量间隔与第一业务数据的时域资源有重叠时间(可以是部分重叠或全部重叠),即所述第一测量时间窗口内的测量间隔与第一业务数据传输冲撞,这种情况下,网络设备向终端发送第一指示信息,通过第一指示信息通知终端将第一测量时间窗口延长为第二测量时间窗口,延长后的所述第二测量时间窗口有如下两种情况:
情况1):所述第二测量时间窗口内的测量间隔与第一业务数据的时域资源没有重叠时间。
情况2):所述第二测量时间窗口内的测量间隔与第一业务数据的时域资源有重叠时间,且该重叠时间的一部分或全部用于传输所述第一业务数据。
以下对所述第一测量时间窗口和所述第二测量时间窗口内的测量间隔进行详细说明。
●所述第一测量时间窗口内包括第一类测量间隔和第二类测量间隔,其中,所述第一类测量间隔与第一业务数据的时域资源未重叠,所述第二类测量间隔与第一业务数据的时域资源重叠。
这里,将第一测量时间窗口内的测量间隔划分为两类,一类是与第一业务数据的时域资源没有重叠时间的测量间隔,称为第一类测量间隔,另一类是与第一业务数据的时域资源有重叠时间的测量间隔,称为第二类测量间隔。需要说明的是,所述第一测量时间窗口的第一类测量间隔和第二类测量间隔属于同一测量间隔配置下的测量间隔。
本申请实施例中,所述第一测量时间窗口内的测量间隔与第一业务数据的时域资源有重叠时间是指:所述第一测量时间窗口内包括第一类测量间隔和第二类测量间隔,或者,所述第一测量时间窗口内仅包括第二类测量间隔。由于第一测量时间窗口内的测量间隔与第一业务数据的时域资源有重叠时间,因此网络设备向终端发送第一指示信息,通过第一指示信息通知终端将第一测量时间窗口延长为第二测量时间窗口。
●所述第二测量时间窗口内包括第一类测量间隔或者包括第一类测量间隔和第二类测量间隔,其中,所述第一类测量间隔与第一业务数据的时域资源未重叠,所述第二类测量间隔与第一业务数据的时域资源重叠。
这里,将第二测量时间窗口内的测量间隔划分为两类,一类是与第一业务数据的时域资源没有重叠时间的测量间隔,称为第一类测量间隔,另一类是与第一业务数据的时域资源有重叠时间的测量间隔,称为第二类测量间隔。需要说明的是,所述第二测量时间窗口的第一类测量间隔和第二类测量间隔属于同一测量间隔配置下的测量间隔。
本申请实施例中,所述第二测量时间窗口内的测量间隔与第一业务数据的时域资源没有重叠时间是指:所述第二测量时间窗口内仅包括第一类测量间隔。所述第二测量时间窗口内的测量间隔与第一业务数据的时域资源有重叠时间是指:所述第二测量时间窗口内包括第一类测量间隔和第二类测量间隔。
本申请实施例中,所述第二测量时间窗口内的测量间隔与第一业务数据的时域资源有重叠时间的情况下,该重叠时间的一部分或全部用于传输所述第一业务数据,是指:若所述第二测量时间窗口包括第一类测量间隔和第二类测量间隔,则所述终端在所述第二测量时间窗口内的至少一个第二类测量间隔上传输所述第一业务数据。
进一步,在所述第二测量时间窗口内的至少一个第二类测量间隔上,
第一频率层对应的第二类测量间隔用于传输所述第一业务数据;
第二频率层对应的第二类测量间隔用于执行测量;
其中,所述第一频率层和所述第二频率层均属于网络配置给所述终端的测量频率层。
在一个例子中,所述第一频率层是指所述第一业务数据对应的频率层,或者说用于传输所述第一业务数据的频率层。
本申请实施例中,网络设备对于第一测量时间窗口和第二测量时间窗口的测量间隔配置,可以通过以下方式实现:
方式一:所述第一测量时间窗口和所述第二测量时间窗口内的测量间隔均通过第一测量间隔配置进行配置。即:测量时间窗口延长前后,网络设备对于测量间隔配置不作调整,由于延长前的第一测量时间窗口内包括第一类测量间隔和第二类测量间隔,因而延长后的第二测量时间窗口内也包括第一类测量间隔和第二类测量间隔。
对于方式一而言,第二测量时间窗口内由重叠测量间隔(即第二类测量间隔)和非重叠测量间隔(即第一类测量间隔)组成,对于重叠测量间隔,取决于终端的实现来传输第一业务数据,具体地,终端在所述第二测量时间窗口内的至少一个第二类测量间隔上传输所述第一业务数据。
方式二:所述第一测量时间窗口内的测量间隔通过第一测量间隔配置进行配置,所述第二测量时间窗口内的测量间隔通过第二测量间隔配置进行配置;所述第二测量间隔配置的测量间隔重复周期(MGRP)大于所述第一测量间隔配置的MGRP,和/或,所述第二测量间隔配置的测量间隔长度(MGL)小于所述第一测量间隔配置的MGL。即:测量时间窗口延长前后,网络设备对于测量间隔配置进行调整,延长前的第一测量时间窗口内包括第一类测量间隔和第二类测量间隔,延长后的第二测量时间窗口内仅包括第一类测量间隔。
对于方式二而言,第二测量时间窗口内由非重叠测量间隔(即第一类测量间隔)组成,这个是网络设备给终端重新配了一个测量间隔配置,保障测量间隔与对第一业务数据的时域资源没有重叠。
本申请实施例中,所述第一指示信息所指示的内容包括以下至少之一:传输第一业务数据的时域位置、所述第一测量时间窗口内的第二类测量间隔占所述第一测量时间窗口内的总测量间隔的比例、传输第一业务数据的时域长度,以下对第一指示信息所指示的内容进行具体说明。
●所述第一指示信息还用于指示传输第一业务数据的时域位置,所述时域位用于所述终端确定所述第一测量时间窗口内的测量间隔与所述第一业务数据的时域资源是否有重叠时间。
所述第一测量时间窗口内的测量间隔与第一业务数据的时域资源有重叠时间的情况下,所述终端将所述第一测量时间窗口延长为第二测量时间窗口。
这里,所述终端基于所述第一业务数据的时域位置,确定所述第一测量时间窗口内的测量间隔与第一业务数据的时域资源有重叠时间,除此以外,还可以确定哪些测量间隔继续做第一业务数据的传输,具体地,重叠测量间隔(即第二类测量间隔)继续做第一业务数据的传输。
举个例子:第一指示信息指示传输第一业务数据的时域位置,该时域位置即是可能冲撞的测量间隔的位置。参照图3-1,图3-1中的上半部分为频段F1的测量间隔图样,图3-1中的下半部分为频段F2的测量间隔图样,两个测量间隔图样相同的是:1、SSB测量定时配置(SS/PBCH block Measurement Timing Configuration,SMTC)周期 (periodicity),即都为40ms。2、SMTC时长(SMTC duration),即都为5ms。两个测量间隔图样不同的是:SMTC偏移(SMTC offset),频段F1对应的SMTC offset为0ms,频段F2对应的SMTC offset为10ms。1)方式一:如图3-1所示,测量时间窗口延长前,第一测量时间窗口内的测量间隔配置为第一测量间隔配置,第一测量间隔配置的MGRP1为20ms;测量时间窗口延长后,第二测量时间窗口内的测量间隔配置仍然为第一测量间隔配置,第一测量间隔配置的MGRP1为20ms。对于图3-1中的用于传输第一业务数据的测量间隔(例如第2个、第4个测量间隔),允许终端跳过该测量间隔,通过该测量间隔传输第一业务数据,这种基于终端侧的实现来决定在某些冲突的测量间隔上传输第一业务数据,实际效果等效于将MGRP拉长,如将原来的MGRP从20ms拉长为40ms。如图3-2所示,测量时间窗口延长前,第一测量时间窗口内的测量间隔配置为第一测量间隔配置,第一测量间隔配置的MGL1为6ms;测量时间窗口延长后,第二测量时间窗口内的测量间隔配置仍然为第一测量间隔配置,第一测量间隔配置的MGL1为6ms。对于图3-2中用于传输第一业务数据的测量间隔(例如第2个、第4个测量间隔),允许终端在该测量间隔内的部分时间上(如测量间隔的一半时间)传输第一业务数据,这种基于终端侧的实现来决定在某些冲突的测量间隔的一部分时间上传输第一业务数据,实际效果等效于将MGL缩短,如将原来的MGL从6ms缩短为3ms。2)方式二:网络设备给终端重新配置第二测量间隔配置,重新配置的第二测量间隔配置相对于原来的第一测量间隔配置来说,测量间隔参数和/或测量间隔图样标识(MG pattern ID)发生了变化,其中,测量间隔参数包括MGRP和/或MGL。具体地,测量时间窗口延长前,第一测量时间窗口内的测量间隔配置为第一测量间隔配置,第一测量间隔配置的MGRP1例如为20ms;测量时间窗口延长后,第二测量时间窗口内的测量间隔配置为第二测量间隔配置,第二测量间隔配置的MGRP2例如为40ms,这样可以保障第一业务数据的传输资源(一般指时域资源)与测量间隔没有重叠时间,终端只需按照正常的规则来处理测量间隔上的测量即可。需要说明的是,上述例子是以拉长MGRP为例进行说明(即将MGRP1=20ms拉长为MGRP2=40ms),但不局限于此,本申请实施例还包括缩短MGL,或者同时拉长MGRP和缩短MGL的方式。
对于上面两个方式,一种是不修改测量间隔配置,通过终端自主实现来在某些测量间隔或测量间隔内的部分时间传输第一业务数据;另一种是修改测量间隔配置,保障第一业务数据与测量间隔没有重叠时间。
需要说明的是,终端在某个测量间隔上对信号的测量可以通过对同步信号块(SS/PBCH block,SSB)进行测量来实现,用于传输SSB的时域资源通过SMTC来确定。
●所述第一指示信息还用于指示所述第一测量时间窗口内的第二类测量间隔占所述第一测量时间窗口内的总测量间隔的比例。
终端根据所述第一指示信息所指示的比例,将所述第一测量时间窗口延长为第二测量时间窗口。
具体地,第一指示信息可以指示第一业务数据与测量间隔重叠的时间(即冲撞的时间)占原测量间隔的比例N或者第一业务数据与测量间隔重叠的测量间隔数目占原测量间隔数目的比例N,终端调整测量时间窗口为原测量时间窗口除该比例。
举个例子:如图4所示,第一业务数据与测量间隔重叠的时间(即冲撞的时间)占原测量间隔的比例或者第一业务数据与测量间隔重叠的测量间隔数目占原测量间隔数目的比例为N=2/4=0.5,第二测量时间窗口=第一测量时间窗口/N=第一测量时间窗口×2=65ms×2=130ms。
●所述第一指示信息还用于指示传输第一业务数据的时域长度。
所述终端基于所述第一业务数据的时域长度,确定传输所述第一业务数据占据的测量间隔的数目;所述终端根据所述第一业务数据占据的测量间隔的数目,在所述第二测量时间窗口内选择至少一个第二类测量间隔,在所述至少一个第二类测量间隔上传输所述第一业务数据。
进一步,所述在所述第二测量时间窗口内选择至少一个第二类测量间隔,由网络来配置实现,具体包括:在所述第二测量时间窗口内随机选择至少一个第二类测量间隔;或者,在所述第二测量时间窗口内周期选择至少一个第二类测量间隔。
举个例子:第一指示信息指示第一业务数据传输的时域长度(duration)为2个SSB窗口长度(SSB widow duration),即第一业务数据会占用2个测量间隔,终端据此在第一测量间隔配置对应的测量间隔上,打孔找出2个测量间隔或者按着周期找出2个测量间隔,用于传输第一业务数据。在一个例子中,可以每隔一个MGRP找出一个测量间隔来传输第一业务数据,即等效于将MGRP1拉长2倍(即MGRP2),同时总的测量时间窗口也由第一测量时间窗口延长2倍(即第二测量时间窗口),以保证总的测量时间窗口内的有效的测量间隔(即用于测量的测量间隔)的数目不变。如图5所示,第一指示信息指示第一业务数据的时域长度为10ms,测量时间窗口由第一测量时间窗口(60ms+5ms)延长为第二测量时间窗口(120ms+5ms),保证测量时间窗口延长前后有效的测量间隔数目为4个。
需要说明的是,上述有效的测量间隔是指用于测量的测量间隔,或者除了传输第一业务数据以外的测量间隔。
本申请实施例中,所述第一业务数据可以但不局限于是URLLC业务数据。
需要注意的是,对于同频测量,如果终端不支持同时接收SSB和数据(simultaneousRxDataSSB-DiffNumerology)的能力,则对于数据传输有一些额外限制,即在SSB窗口(或者说SMTC窗口)及其前后一个符号不允许终端收发数据。对于异频测量,数据传输没有限制,对于同频测量且终端支持simultaneousRxDataSSB-DiffNumerology的能力,数据和SSB的传输也不会有限制。
本申请实施例的技术方案中,网络设备已经配置测量间隔配置的情况下,当一些测量间隔与第一业务数据传输冲撞时,通过第一指示信息通知终端冲撞数据的信息或调整测量时间,保证第一业务数据的优先传输。或者网络设备重新配置测量间隔配置,保证测量间隔与第一业务数据不会发生传输冲撞。
图6为本申请实施例提供的测量间隔的配置方法的流程示意图二,如图6所示,所述测量间隔的配置方法包括以下步骤:
步骤601:网络设备向终端发送第一配置信息,终端接收网络设备发送的第一配置信息,所述第一配置信息用于确定针对第一频段范围的第一测量间隔配置和/或针对第一业务类型的第二测量间隔配置。
本申请实施例中,所述网络设备可以是基站,例如4G基站(即eNB),NR基站(即gNB)。
本申请实施例中,所述终端可以是手机、平板电脑、笔记本、车载终端、可穿戴设备等任意能够与网络进行通信的设备。
本申请实施例中,网络设备可以针对多业务并发场景或业务切换的情况,快速为终端配置一种新型的测量间隔配置类型及其对应的测量间隔参数。具体地,网络设备可以给终端配置针对第一频段范围的第一测量间隔配置和/或针对第一业务类型的第二测量间隔配置。以下对第一测量间隔配置和第二测量间隔配置进行详细说明。
Figure PCTCN2019093917-appb-000003
针对第一频段范围的第一测量间隔配置
这里,网络设备给终端配置的测量间隔配置类型(MeasGapConfig Type)除了现有 的per UE gap、per FR1 gap、per FR2 gap外,还增加新的MeasGapConfig Type,例如per FR3 gap、per FR4 gap等等。
本申请实施例中,所述针对第一频段范围的第一测量间隔配置对应的配置参数包括以下至少之一:测量间隔偏移量、测量间隔长度、测量间隔重复周期、测量间隔时间提前量。
在一可选实施方式中,所述测量间隔长度的取值范围为第一取值范围或第二取值范围,所述第一取值范围为所述第二取值范围的子集。这里,第一取值范围例如是{1.5ms,3ms,3.5ms,4ms,5.5ms,6ms}。第二取值范围例如是{1.5ms,3ms,3.5ms,4ms,5.5ms,6ms,5ms}。
在一可选实施方式中,所述测量间隔重复周期的取值范围为第三取值范围或第四取值范围,所述第三取值范围为所述第四取值范围的子集。这里,第三取值范围例如是{20ms,40ms,80ms,160ms}。第四取值范围例如是{20ms,40ms,80ms,160ms,240ms,320ms,640ms}。
举个例子:以频段为粒度来区分测量间隔配置,网络设备新配置的测量间隔配置类型为:per FR3 gap,对应终端有独立的射频链路。该FR3可以为特定业务频段,如URLLC的5.9GHz(band47)等。测量间隔的参数通过MeasgapConfig来配置,MeasgapConfig如下表2所示,增加新的gapFR3类型,该gapFR3对应的测量间隔的参数可以沿用以前的配置参数(如测量间隔长度对应的第一取值范围,测量间隔重复周期对应的第三取值范围),也可以是引入新的配置参数(如测量间隔长度对应的第二取值范围,测量间隔重复周期对应的第四取值范围)。参照如下表2,配置参数包括:测量间隔偏移量(gapoffset)、测量间隔长度(mgl)、测量间隔重复周期(mgrp)、测量间隔时间提前量(mgta)。其中,mgl和mgrp的取值范围分别为第二取值范围和第四取值范围。
Figure PCTCN2019093917-appb-000004
表2
需要说明的是,gapUE和以下至少之一不能同时配置:gapFR1、gapFR2、gapFR3。但gapFR1、gapFR2和gapFR3之间可以同时配置。
本申请实施例中,所述针对第一频段范围的第一测量间隔配置通过RRC信令进行配置,以第一频段范围为FR3为例,FR3是指与FR2和FR1不同的其他频段,gapFR3通过RRC信令进行配置。
另一方面,定义了一种终端能力,即终端是否支持per FR gap的能力(即UE是否支持不同频率范围独立gap测量的能力),这个终端能力通过independentGapConfig来配置,终端是否支持不同频率范围独立gap测量的能力是指终端是否支持两个或多个的测量间隔(gapFR1,gapFR2,perFR3)的配置。
Figure PCTCN2019093917-appb-000005
针对第一业务类型的第二测量间隔配置
这里,网络设备给终端配置的测量间隔配置类型(MeasGapConfig Type)可以是 以业务为粒度的,即不同的业务类型可以对应不同的测量间隔配置类型。
本申请实施例中,可以针对第一业务类型(如eMBB业务或者URLLC业务)配置对应的第二测量间隔配置。
本申请实施例中,所述针对第一业务类型的第二测量间隔配置包括以下至少之一:测量间隔类型、测量间隔标识、测量间隔参数。
本申请实施例中,网络设备首先确定业务类型,然后根据该业务类型配置对应的第二测量间隔配置(如测量间隔类型、测量间隔标识、测量间隔参数)。这里,网络设备可以通过以下方式来确定业务类型:
方式一:网络设备根据第一业务类型对应的传输资源的调度信息,来确定业务类型,基于此,所述针对第一业务类型的第二测量间隔配置是所述网络设备根据第一业务类型对应的传输资源的调度信息通过RRC信令或MAC CE进行配置的。
这里,所述第一业务类型对应的传输资源的调度信息为静态调度信息或半静态调度信息。
举个例子:网络设备通过RRC信令或MAC CE配置第一业务类型的静态调度信息或半静态调度信息,同时通过该RRC信令或MAC CE配置第一业务类型的第二测量间隔配置(如测量间隔类型、测量间隔标识、测量间隔参数)。
方式二:所述针对第一业务类型的第二测量间隔配置是所述网络设备根据第一业务类型对应的传输资源的调度信息通过DCI进行配置的。
这里,所述第一业务类型对应的传输资源的调度信息为静态调度信息或半静态调度信息或动态调度信息。
举个例子:网络设备通过DCI配置第一业务类型的静态调度信息或半静态调度信息或动态调度信息,同时通过该DCI配置第一业务类型的第二测量间隔配置(如测量间隔类型、测量间隔标识、测量间隔参数)。
需要说明的是,以业务为粒度的测量间隔配置可以为一个新的测量间隔类型,也可以是当下配置的perUE或perFR gap的一个子集。
上述方案中,所述传输资源的调度信息包括以下至少之一:传输资源的周期、传输资源的长度、传输资源对应的调制编码方式(Modulation and Coding Scheme,MCS)、传输资源的标识。
为了便于网络设备有效的为终端配置测量间隔配置,所述终端向所述网络设备发送第一能力信息,所述第一能力信息用于指示所述终端支持的测量间隔的能力。进一步,所述第一能力信息用于指示所述终端是否支持为不同频段范围配置对应独立的测量间隔的能力,和/或,所述终端是否支持为不同业务类型配置对应独立的测量间隔的能力。
本申请实施例的技术方案中,网络设备给终端配置的测量间隔配置类型(MeasGapConfig Type)除现有的per UE gap,per FR1 gap,per FR2 gap外,增加新的MeasGapConfig Type,例如,可以是其他频率范围对应的测量间隔配置,或者某些业务类型对应的测量间隔配置。网络设备根据终端上报的支持的测量间隔配置的能力,针对多业务并发场景或业务切换,快速配置终端执行某个测量间隔配置类型及其对应的测量间隔参数。采用本申请实施例的技术方案,可以为一些特定的频段或独立射频链路提供对应的测量间隔配置类型,从而做快速测量间隔配置类别的区分。为终端不同的业务类型提供不同的测量间隔配置类别,特别是URLLC业务,支持而URLLC和eMBB业务共存或切换时测量的快速配置,并保证URLLC等高优先级业务的连续传输。
需要说明的是,Rel-15的测量配置只定义了基于SSB的测量,本申请实施例的技术 方案同样适用于基于信道状态指示参考信号(Channel Status Indicator Reference Signal,CSI-RS)的测量。不同的地方在于,1)CSI-RS的测量间隔的配置参数可能与SSB的不同,目前SSB有23种测量间隔图样,可能CSI-RS会出现新的MGL和MGRP的测量间隔图样。2)CSI-RS的同频和异频测量的定义与SSB有所不同,对于SSB而言,若服务小区的SBB和目标小区的SSB的中心频点和SCS相同,则对于目标小区的SSB的测量属于同频测量,否则,对于目标小区的SSB的测量属于异频测量。对于CSI-RS而言,目标小区的CSI-RS被包含在服务小区的CSI-RS内,且目标小区和服务小区的SCS相同,则对于目标小区的CSI-RS的测量属于同频测量,否则,对于目标小区的CSI-RS的测量属于异频测量。
图7为本申请实施例提供的测量间隔的配置装置的结构组成示意图一,如图7所示,所述测量间隔的配置装置包括:
接收单元701,用于接收网络设备发送的第一指示信息,所述第一指示信息用于指示所述终端将第一测量时间窗口延长为第二测量时间窗口;
其中,所述第一测量时间窗口内的测量间隔与第一业务数据的时域资源有重叠时间;所述第二测量时间窗口内的测量间隔与第一业务数据的时域资源没有重叠时间,或者,所述第二测量时间窗口内的测量间隔与第一业务数据的时域资源有重叠时间,且该重叠时间的一部分或全部用于传输所述第一业务数据。
在一实施方式中,所述第一测量时间窗口内包括第一类测量间隔和第二类测量间隔,所述第二测量时间窗口内包括第一类测量间隔或者包括第一类测量间隔和第二类测量间隔;
其中,所述第一类测量间隔与第一业务数据的时域资源未重叠,所述第二类测量间隔与第一业务数据的时域资源重叠。
在一实施方式中,所述装置还包括:
发送单元702,用于若所述第二测量时间窗口包括第一类测量间隔和第二类测量间隔,则在所述第二测量时间窗口内的至少一个第二类测量间隔上传输所述第一业务数据。
在一实施方式中,在所述第二测量时间窗口内的至少一个第二类测量间隔上,
第一频率层对应的第二类测量间隔用于传输所述第一业务数据;
第二频率层对应的第二类测量间隔用于执行测量;
其中,所述第一频率层和所述第二频率层均属于网络配置给所述终端的测量频率层。
在一实施方式中,所述第一指示信息还用于指示传输第一业务数据的时域位置,所述时域位用于所述终端确定所述第一测量时间窗口内的测量间隔与所述第一业务数据的时域资源是否有重叠时间;所述装置还包括:
处理单元703,用于所述第一测量时间窗口内的测量间隔与第一业务数据的时域资源有重叠时间的情况下,将所述第一测量时间窗口延长为第二测量时间窗口。
在一实施方式中,所述第一指示信息还用于指示所述第一测量时间窗口内的第二类测量间隔占所述第一测量时间窗口内的总测量间隔的比例;所述装置还包括:
处理单元703,用于根据所述第一指示信息所指示的比例,将所述第一测量时间窗口延长为第二测量时间窗口。
在一实施方式中,所述第二测量时间窗口内包括第一类测量间隔和第二类测量间隔的情况,所述第一测量时间窗口和所述第二测量时间窗口内的测量间隔均通过第一测量间隔配置进行配置。
在一实施方式中,所述第二测量时间窗口内包括第一类测量间隔的情况,所述第 一测量时间窗口内的测量间隔通过第一测量间隔配置进行配置,所述第二测量时间窗口内的测量间隔通过第二测量间隔配置进行配置;
所述第二测量间隔配置的MGRP大于所述第一测量间隔配置的MGRP,和/或,所述第二测量间隔配置的MGL小于所述第一测量间隔配置的MGL。
在一实施方式中,所述第一指示信息还用于指示传输第一业务数据的时域长度;所述装置还包括:
处理单元703,用于基于所述第一业务数据的时域长度,确定传输所述第一业务数据占据的测量间隔的数目;根据所述第一业务数据占据的测量间隔的数目,在所述第二测量时间窗口内选择至少一个第二类测量间隔;
发送单元702,用于在所述至少一个第二类测量间隔上传输所述第一业务数据。
在一实施方式中,所述在所述第二测量时间窗口内选择至少一个第二类测量间隔,包括:
在所述第二测量时间窗口内随机选择至少一个第二类测量间隔;或者,
在所述第二测量时间窗口内周期选择至少一个第二类测量间隔。
在一实施方式中,所述第一指示信息携带在DCI或MAC CE中。
本领域技术人员应当理解,本申请实施例的上述测量间隔的配置装置的相关描述可以参照本申请实施例的测量间隔的配置方法的相关描述进行理解。
图8为本申请实施例提供的测量间隔的配置装置的结构组成示意图二,如图8所示,所述测量间隔的配置装置包括:
接收单元801,用于接收网络设备发送的第一配置信息,所述第一配置信息用于确定针对第一频段范围的第一测量间隔配置和/或针对第一业务类型的第二测量间隔配置。
在一实施方式中,所述针对第一频段范围的第一测量间隔配置对应的配置参数包括以下至少之一:测量间隔偏移量、测量间隔长度、测量间隔重复周期、测量间隔时间提前量。
在一实施方式中,所述测量间隔长度的取值范围为第一取值范围或第二取值范围,所述第一取值范围为所述第二取值范围的子集。
在一实施方式中,所述测量间隔重复周期的取值范围为第三取值范围或第四取值范围,所述第三取值范围为所述第四取值范围的子集。
在一实施方式中,所述针对第一频段范围的第一测量间隔配置通过RRC信令进行配置。
在一实施方式中,所述针对第一业务类型的第二测量间隔配置是所述网络设备根据第一业务类型对应的传输资源的调度信息通过RRC信令或MAC CE进行配置的。
在一实施方式中,所述第一业务类型对应的传输资源的调度信息为静态调度信息或半静态调度信息。
在一实施方式中,所述针对第一业务类型的第二测量间隔配置是所述网络设备根据第一业务类型对应的传输资源的调度信息通过DCI进行配置的。
在一实施方式中,所述第一业务类型对应的传输资源的调度信息为静态调度信息或半静态调度信息或动态调度信息。
在一实施方式中,所述传输资源的调度信息包括以下至少之一:传输资源的周期、传输资源的长度、传输资源对应的MCS、传输资源的标识。
在一实施方式中,所述针对第一业务类型的第二测量间隔配置包括以下至少之一:测量间隔类型、测量间隔标识、测量间隔参数。
在一实施方式中,所述装置还包括:
发送单元802,用于向所述网络设备发送第一能力信息,所述第一能力信息用于指示所述终端支持的测量间隔的能力。
在一实施方式中,所述第一能力信息用于指示所述终端是否支持为不同频段范围配置对应独立的测量间隔的能力,和/或,所述终端是否支持为不同业务类型配置对应独立的测量间隔的能力。
本领域技术人员应当理解,本申请实施例的上述测量间隔的配置装置的相关描述可以参照本申请实施例的测量间隔的配置方法的相关描述进行理解。
图9为本申请实施例提供的测量间隔的配置装置的结构组成示意图三,如图9所示,所述测量间隔的配置装置包括:
发送单元901,用于向终端发送第一指示信息,所述第一指示信息用于指示所述终端将第一测量时间窗口延长为第二测量时间窗口;
其中,所述第一测量时间窗口内的测量间隔与第一业务数据的时域资源有重叠时间;所述第二测量时间窗口内的测量间隔与第一业务数据的时域资源没有重叠时间,或者,所述第二测量时间窗口内的测量间隔与第一业务数据的时域资源有重叠时间,且该重叠时间的一部分或全部用于传输所述第一业务数据。
在一实施方式中,所述第一测量时间窗口内包括第一类测量间隔和第二类测量间隔,所述第二测量时间窗口内包括第一类测量间隔或者包括第一类测量间隔和第二类测量间隔;
其中,所述第一类测量间隔与第一业务数据的时域资源未重叠,所述第二类测量间隔与第一业务数据的时域资源重叠。
在一实施方式中,所述第一指示信息还用于指示传输第一业务数据的时域位置;所述时域位置用于所述终端确定所述第一测量时间窗口内的测量间隔与第一业务数据的时域资源是否有重叠时间。
在一实施方式中,所述第一指示信息还用于指示所述第一测量时间窗口内的第二类测量间隔占所述第一测量时间窗口内的总测量间隔的比例;所述比例用于所述终端将所述第一测量时间窗口延长为第二测量时间窗口。
在一实施方式中,所述第二测量时间窗口内包括第一类测量间隔和第二类测量间隔的情况,所述第一测量时间窗口和所述第二测量时间窗口内的测量间隔均通过第一测量间隔配置进行配置。
在一实施方式中,所述第二测量时间窗口内包括第一类测量间隔的情况,所述第一测量时间窗口内的测量间隔通过第一测量间隔配置进行配置,所述第二测量时间窗口内的测量间隔通过第二测量间隔配置进行配置;
所述第二测量间隔配置的MGRP大于所述第一测量间隔配置的MGRP,和/或,所述第二测量间隔配置的MGL小于所述第一测量间隔配置的MGL。
在一实施方式中,所述第一指示信息还用于指示传输第一业务数据的时域长度;所述时域长度用于所述终端确定传输所述第一业务数据占据的测量间隔的数目,根据所述第一业务数据占据的测量间隔的数目,在所述第二测量时间窗口内选择至少一个第二类测量间隔,在所述至少一个第二类测量间隔上传输所述第一业务数据。
在一实施方式中,所述第一指示信息携带在DCI或MAC CE中。
本领域技术人员应当理解,本申请实施例的上述测量间隔的配置装置的相关描述可以参照本申请实施例的测量间隔的配置方法的相关描述进行理解。
图10为本申请实施例提供的测量间隔的配置装置的结构组成示意图四,如图10所示,所述测量间隔的配置装置包括:
发送单元1001,用于向终端发送第一配置信息,所述第一配置信息用于确定针 对第一频段范围的第一测量间隔配置和/或针对第一业务类型的第二测量间隔配置。
在一实施方式中,所述针对第一频段范围的第一测量间隔配置对应的配置参数包括以下至少之一:测量间隔偏移量、测量间隔长度、测量间隔重复周期、测量间隔时间提前量。
在一实施方式中,所述测量间隔长度的取值范围为第一取值范围或第二取值范围,所述第一取值范围为所述第二取值范围的子集。
在一实施方式中,所述测量间隔重复周期的取值范围为第三取值范围或第四取值范围,所述第三取值范围为所述第四取值范围的子集。
在一实施方式中,所述针对第一频段范围的第一测量间隔配置通过RRC信令进行配置。
在一实施方式中,所述针对第一业务类型的第二测量间隔配置是所述网络设备根据第一业务类型对应的传输资源的调度信息通过RRC信令或MAC CE进行配置的。
在一实施方式中,所述第一业务类型对应的传输资源的调度信息为静态调度信息或半静态调度信息。
在一实施方式中,所述针对第一业务类型的第二测量间隔配置是所述网络设备根据第一业务类型对应的传输资源的调度信息通过DCI进行配置的。
在一实施方式中,所述第一业务类型对应的传输资源的调度信息为静态调度信息或半静态调度信息或动态调度信息。
在一实施方式中,所述传输资源的调度信息包括以下至少之一:传输资源的周期、传输资源的长度、传输资源对应的MCS、传输资源的标识。
在一实施方式中,所述针对第一业务类型的第二测量间隔配置包括以下至少之一:测量间隔类型、测量间隔标识、测量间隔参数。
在一实施方式中,所述装置还包括:
接收单元1002,用于接收所述终端发送的第一能力信息,所述第一能力信息用于指示所述终端支持的测量间隔的能力。
在一实施方式中,所述第一能力信息用于指示所述终端是否支持为不同频段范围配置对应独立的测量间隔的能力,和/或,所述终端是否支持为不同业务类型配置对应独立的测量间隔的能力。
本领域技术人员应当理解,本申请实施例的上述测量间隔的配置装置的相关描述可以参照本申请实施例的测量间隔的配置方法的相关描述进行理解。
图11是本申请实施例提供的一种通信设备1100示意性结构图。该通信设备可以是终端,也可以是网络设备,图11所示的通信设备1100包括处理器1110,处理器1110可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图11所示,通信设备1100还可以包括存储器1120。其中,处理器1110可以从存储器1120中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1120可以是独立于处理器1110的一个单独的器件,也可以集成在处理器1110中。
可选地,如图11所示,通信设备1100还可以包括收发器1130,处理器1110可以控制该收发器1130与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1130可以包括发射机和接收机。收发器1130还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备1100具体可为本申请实施例的网络设备,并且该通信设备1100可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再 赘述。
可选地,该通信设备1100具体可为本申请实施例的移动终端/终端,并且该通信设备1100可以实现本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
图12是本申请实施例的芯片的示意性结构图。图12所示的芯片1200包括处理器1210,处理器1210可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图12所示,芯片1200还可以包括存储器1220。其中,处理器1210可以从存储器1220中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1220可以是独立于处理器1210的一个单独的器件,也可以集成在处理器1210中。
可选地,该芯片1200还可以包括输入接口1230。其中,处理器1210可以控制该输入接口1230与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片1200还可以包括输出接口1240。其中,处理器1210可以控制该输出接口1240与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图13是本申请实施例提供的一种通信系统1300的示意性框图。如图13所示,该通信系统1300包括终端1310和网络设备1320。
其中,该终端1310可以用于实现上述方法中由终端实现的相应的功能,以及该网络设备1320可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器 (Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、 装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (100)

  1. 一种测量间隔的配置方法,所述方法包括:
    终端接收网络设备发送的第一指示信息,所述第一指示信息用于指示所述终端将第一测量时间窗口延长为第二测量时间窗口;
    其中,所述第一测量时间窗口内的测量间隔与第一业务数据的时域资源有重叠时间;所述第二测量时间窗口内的测量间隔与第一业务数据的时域资源没有重叠时间,或者,所述第二测量时间窗口内的测量间隔与第一业务数据的时域资源有重叠时间,且该重叠时间的一部分或全部用于传输所述第一业务数据。
  2. 根据权利要求1所述的方法,其中,所述第一测量时间窗口内包括第一类测量间隔和第二类测量间隔,所述第二测量时间窗口内包括第一类测量间隔或者包括第一类测量间隔和第二类测量间隔;
    其中,所述第一类测量间隔与第一业务数据的时域资源未重叠,所述第二类测量间隔与第一业务数据的时域资源重叠。
  3. 根据权利要求2所述的方法,其中,所述方法还包括:
    若所述第二测量时间窗口包括第一类测量间隔和第二类测量间隔,则所述终端在所述第二测量时间窗口内的至少一个第二类测量间隔上传输所述第一业务数据。
  4. 根据权利要求3所述的方法,其中,在所述第二测量时间窗口内的至少一个第二类测量间隔上,
    第一频率层对应的第二类测量间隔用于传输所述第一业务数据;
    第二频率层对应的第二类测量间隔用于执行测量;
    其中,所述第一频率层和所述第二频率层均属于网络配置给所述终端的测量频率层。
  5. 根据权利要求2至4中任一项所述的方法,其中,所述第一指示信息还用于指示传输第一业务数据的时域位置,所述时域位用于所述终端确定所述第一测量时间窗口内的测量间隔与所述第一业务数据的时域资源是否有重叠时间;
    所述第一测量时间窗口内的测量间隔与第一业务数据的时域资源有重叠时间的情况下,所述终端将所述第一测量时间窗口延长为第二测量时间窗口。
  6. 根据权利要求2至5中任一项所述的方法,其中,所述第一指示信息还用于指示所述第一测量时间窗口内的第二类测量间隔占所述第一测量时间窗口内的总测量间隔的比例;
    所述将所述第一测量时间窗口延长为第二测量时间窗口,包括:
    根据所述第一指示信息所指示的比例,将所述第一测量时间窗口延长为第二测量时间窗口。
  7. 根据权利要求2至6中任一项所述的方法,其中,所述第二测量时间窗口内包括第一类测量间隔和第二类测量间隔的情况,所述第一测量时间窗口和所述第二测量时间窗口内的测量间隔均通过第一测量间隔配置进行配置。
  8. 根据权利要求2至6中任一项所述的方法,其中,所述第二测量时间窗口内包括第一类测量间隔的情况,所述第一测量时间窗口内的测量间隔通过第一测量间隔配置进行配置,所述第二测量时间窗口内的测量间隔通过第二测量间隔配置进行配置;
    所述第二测量间隔配置的测量间隔重复周期MGRP大于所述第一测量间隔配置的MGRP,和/或,所述第二测量间隔配置的测量间隔长度MGL小于所述第一测量间 隔配置的MGL。
  9. 根据权利要求2至8中任一项所述的方法,其中,所述第一指示信息还用于指示传输第一业务数据的时域长度;所述方法还包括:
    所述终端基于所述第一业务数据的时域长度,确定传输所述第一业务数据占据的测量间隔的数目;
    所述终端根据所述第一业务数据占据的测量间隔的数目,在所述第二测量时间窗口内选择至少一个第二类测量间隔,在所述至少一个第二类测量间隔上传输所述第一业务数据。
  10. 根据权利要求9所述的方法,其中,所述在所述第二测量时间窗口内选择至少一个第二类测量间隔,包括:
    在所述第二测量时间窗口内随机选择至少一个第二类测量间隔;或者,
    在所述第二测量时间窗口内周期选择至少一个第二类测量间隔。
  11. 根据权利要求1至10中任一项所述的方法,其中,所述第一指示信息携带在下行控制信息DCI或媒体接入控制控制单元MAC CE中。
  12. 一种测量间隔的配置方法,所述方法包括:
    终端接收网络设备发送的第一配置信息,所述第一配置信息用于确定针对第一频段范围的第一测量间隔配置和/或针对第一业务类型的第二测量间隔配置。
  13. 根据权利要求12所述的方法,其中,所述针对第一频段范围的第一测量间隔配置对应的配置参数包括以下至少之一:测量间隔偏移量、测量间隔长度、测量间隔重复周期、测量间隔时间提前量。
  14. 根据权利要求13所述的方法,其中,所述测量间隔长度的取值范围为第一取值范围或第二取值范围,所述第一取值范围为所述第二取值范围的子集。
  15. 根据权利要求13或14所述的方法,其中,所述测量间隔重复周期的取值范围为第三取值范围或第四取值范围,所述第三取值范围为所述第四取值范围的子集。
  16. 根据权利要求12至15中任一项所述的方法,其中,所述针对第一频段范围的第一测量间隔配置通过RRC信令进行配置。
  17. 根据权利要求12至15中任一项所述的方法,其中,所述针对第一业务类型的第二测量间隔配置是所述网络设备根据第一业务类型对应的传输资源的调度信息通过RRC信令或MAC CE进行配置的。
  18. 根据权利要求17所述的方法,其中,所述第一业务类型对应的传输资源的调度信息为静态调度信息或半静态调度信息。
  19. 根据权利要求12至15中任一项所述的方法,其中,所述针对第一业务类型的第二测量间隔配置是所述网络设备根据第一业务类型对应的传输资源的调度信息通过DCI进行配置的。
  20. 根据权利要求19所述的方法,其中,所述第一业务类型对应的传输资源的调度信息为静态调度信息或半静态调度信息或动态调度信息。
  21. 根据权利要求17至20中任一项所述的方法,其中,所述传输资源的调度信息包括以下至少之一:传输资源的周期、传输资源的长度、传输资源对应的调制编码方式MCS、传输资源的标识。
  22. 根据权利要求12至21中任一项所述的方法,其中,所述针对第一业务类型的第二测量间隔配置包括以下至少之一:测量间隔类型、测量间隔标识、测量间隔参数。
  23. 根据权利要求12至22中任一项所述的方法,其中,所述方法还包括:
    所述终端向所述网络设备发送第一能力信息,所述第一能力信息用于指示所述终端 支持的测量间隔的能力。
  24. 根据权利要求23所述的方法,其中,所述第一能力信息用于指示所述终端是否支持为不同频段范围配置对应独立的测量间隔的能力,和/或,所述终端是否支持为不同业务类型配置对应独立的测量间隔的能力。
  25. 一种测量间隔的配置方法,所述方法包括:
    网络设备向终端发送第一指示信息,所述第一指示信息用于指示所述终端将第一测量时间窗口延长为第二测量时间窗口;
    其中,所述第一测量时间窗口内的测量间隔与第一业务数据的时域资源有重叠时间;所述第二测量时间窗口内的测量间隔与第一业务数据的时域资源没有重叠时间,或者,所述第二测量时间窗口内的测量间隔与第一业务数据的时域资源有重叠时间,且该重叠时间的一部分或全部用于传输所述第一业务数据。
  26. 根据权利要求25所述的方法,其中,所述第一测量时间窗口内包括第一类测量间隔和第二类测量间隔,所述第二测量时间窗口内包括第一类测量间隔或者包括第一类测量间隔和第二类测量间隔;
    其中,所述第一类测量间隔与第一业务数据的时域资源未重叠,所述第二类测量间隔与第一业务数据的时域资源重叠。
  27. 根据权利要求26所述的方法,其中,所述第一指示信息还用于指示传输第一业务数据的时域位置;所述时域位置用于所述终端确定所述第一测量时间窗口内的测量间隔与第一业务数据的时域资源是否有重叠时间。
  28. 根据权利要求26或27所述的方法,其中,所述第一指示信息还用于指示所述第一测量时间窗口内的第二类测量间隔占所述第一测量时间窗口内的总测量间隔的比例;所述比例用于所述终端将所述第一测量时间窗口延长为第二测量时间窗口。
  29. 根据权利要求26至28中任一项所述的方法,其中,所述第二测量时间窗口内包括第一类测量间隔和第二类测量间隔的情况,所述第一测量时间窗口和所述第二测量时间窗口内的测量间隔均通过第一测量间隔配置进行配置。
  30. 根据权利要求26至28中任一项所述的方法,其中,所述第二测量时间窗口内包括第一类测量间隔的情况,所述第一测量时间窗口内的测量间隔通过第一测量间隔配置进行配置,所述第二测量时间窗口内的测量间隔通过第二测量间隔配置进行配置;
    所述第二测量间隔配置的MGRP大于所述第一测量间隔配置的MGRP,和/或,所述第二测量间隔配置的MGL小于所述第一测量间隔配置的MGL。
  31. 根据权利要求26至30中任一项所述的方法,其中,所述第一指示信息还用于指示传输第一业务数据的时域长度;所述时域长度用于所述终端确定传输所述第一业务数据占据的测量间隔的数目,根据所述第一业务数据占据的测量间隔的数目,在所述第二测量时间窗口内选择至少一个第二类测量间隔,在所述至少一个第二类测量间隔上传输所述第一业务数据。
  32. 根据权利要求25至31中任一项所述的方法,其中,所述第一指示信息携带在DCI或MAC CE中。
  33. 一种测量间隔的配置方法,所述方法包括:
    网络设备向终端发送第一配置信息,所述第一配置信息用于确定针对第一频段范围的第一测量间隔配置和/或针对第一业务类型的第二测量间隔配置。
  34. 根据权利要求33所述的方法,其中,所述针对第一频段范围的第一测量间隔配置对应的配置参数包括以下至少之一:测量间隔偏移量、测量间隔长度、测量间隔重复周期、测量间隔时间提前量。
  35. 根据权利要求34所述的方法,其中,所述测量间隔长度的取值范围为第一取值范围或第二取值范围,所述第一取值范围为所述第二取值范围的子集。
  36. 根据权利要求34或35所述的方法,其中,所述测量间隔重复周期的取值范围为第三取值范围或第四取值范围,所述第三取值范围为所述第四取值范围的子集。
  37. 根据权利要求33至36中任一项所述的方法,其中,所述针对第一频段范围的第一测量间隔配置通过RRC信令进行配置。
  38. 根据权利要求33至36中任一项所述的方法,其中,所述针对第一业务类型的第二测量间隔配置是所述网络设备根据第一业务类型对应的传输资源的调度信息通过RRC信令或MAC CE进行配置的。
  39. 根据权利要求38所述的方法,其中,所述第一业务类型对应的传输资源的调度信息为静态调度信息或半静态调度信息。
  40. 根据权利要求33至36中任一项所述的方法,其中,所述针对第一业务类型的第二测量间隔配置是所述网络设备根据第一业务类型对应的传输资源的调度信息通过DCI进行配置的。
  41. 根据权利要求40所述的方法,其中,所述第一业务类型对应的传输资源的调度信息为静态调度信息或半静态调度信息或动态调度信息。
  42. 根据权利要求38至41中任一项所述的方法,其中,所述传输资源的调度信息包括以下至少之一:传输资源的周期、传输资源的长度、传输资源对应的MCS、传输资源的标识。
  43. 根据权利要求33至42中任一项所述的方法,其中,所述针对第一业务类型的第二测量间隔配置包括以下至少之一:测量间隔类型、测量间隔标识、测量间隔参数。
  44. 根据权利要求33至43中任一项所述的方法,其中,所述方法还包括:
    所述网络设备接收所述终端发送的第一能力信息,所述第一能力信息用于指示所述终端支持的测量间隔的能力。
  45. 根据权利要求44所述的方法,其中,所述第一能力信息用于指示所述终端是否支持为不同频段范围配置对应独立的测量间隔的能力,和/或,所述终端是否支持为不同业务类型配置对应独立的测量间隔的能力。
  46. 一种测量间隔的配置装置,所述装置包括:
    接收单元,用于接收网络设备发送的第一指示信息,所述第一指示信息用于指示所述终端将第一测量时间窗口延长为第二测量时间窗口;
    其中,所述第一测量时间窗口内的测量间隔与第一业务数据的时域资源有重叠时间;所述第二测量时间窗口内的测量间隔与第一业务数据的时域资源没有重叠时间,或者,所述第二测量时间窗口内的测量间隔与第一业务数据的时域资源有重叠时间,且该重叠时间的一部分或全部用于传输所述第一业务数据。
  47. 根据权利要求46所述的装置,其中,所述第一测量时间窗口内包括第一类测量间隔和第二类测量间隔,所述第二测量时间窗口内包括第一类测量间隔或者包括第一类测量间隔和第二类测量间隔;
    其中,所述第一类测量间隔与第一业务数据的时域资源未重叠,所述第二类测量间隔与第一业务数据的时域资源重叠。
  48. 根据权利要求47所述的装置,其中,所述装置还包括:
    发送单元,用于若所述第二测量时间窗口包括第一类测量间隔和第二类测量间隔,则在所述第二测量时间窗口内的至少一个第二类测量间隔上传输所述第一业务数据。
  49. 根据权利要求48所述的装置,其中,在所述第二测量时间窗口内的至少一个第二类测量间隔上,
    第一频率层对应的第二类测量间隔用于传输所述第一业务数据;
    第二频率层对应的第二类测量间隔用于执行测量;
    其中,所述第一频率层和所述第二频率层均属于网络配置给所述终端的测量频率层。
  50. 根据权利要求47至49中任一项所述的装置,其中,所述第一指示信息还用于指示传输第一业务数据的时域位置,所述时域位用于所述终端确定所述第一测量时间窗口内的测量间隔与所述第一业务数据的时域资源是否有重叠时间;所述装置还包括:
    处理单元,用于所述第一测量时间窗口内的测量间隔与第一业务数据的时域资源有重叠时间的情况下,将所述第一测量时间窗口延长为第二测量时间窗口。
  51. 根据权利要求47至50中任一项所述的装置,其中,所述第一指示信息还用于指示所述第一测量时间窗口内的第二类测量间隔占所述第一测量时间窗口内的总测量间隔的比例;所述装置还包括:
    处理单元,用于根据所述第一指示信息所指示的比例,将所述第一测量时间窗口延长为第二测量时间窗口。
  52. 根据权利要求47至51中任一项所述的装置,其中,所述第二测量时间窗口内包括第一类测量间隔和第二类测量间隔的情况,所述第一测量时间窗口和所述第二测量时间窗口内的测量间隔均通过第一测量间隔配置进行配置。
  53. 根据权利要求47至51中任一项所述的装置,其中,所述第二测量时间窗口内包括第一类测量间隔的情况,所述第一测量时间窗口内的测量间隔通过第一测量间隔配置进行配置,所述第二测量时间窗口内的测量间隔通过第二测量间隔配置进行配置;
    所述第二测量间隔配置的MGRP大于所述第一测量间隔配置的MGRP,和/或,所述第二测量间隔配置的MGL小于所述第一测量间隔配置的MGL。
  54. 根据权利要求47至53中任一项所述的装置,其中,所述第一指示信息还用于指示传输第一业务数据的时域长度;所述装置还包括:
    处理单元,用于基于所述第一业务数据的时域长度,确定传输所述第一业务数据占据的测量间隔的数目;根据所述第一业务数据占据的测量间隔的数目,在所述第二测量时间窗口内选择至少一个第二类测量间隔;
    发送单元,用于在所述至少一个第二类测量间隔上传输所述第一业务数据。
  55. 根据权利要求54所述的装置,其中,所述在所述第二测量时间窗口内选择至少一个第二类测量间隔,包括:
    在所述第二测量时间窗口内随机选择至少一个第二类测量间隔;或者,
    在所述第二测量时间窗口内周期选择至少一个第二类测量间隔。
  56. 根据权利要求46至55中任一项所述的装置,其中,所述第一指示信息携带在DCI或MAC CE中。
  57. 一种测量间隔的配置装置,所述装置包括:
    接收单元,用于接收网络设备发送的第一配置信息,所述第一配置信息用于确定针对第一频段范围的第一测量间隔配置和/或针对第一业务类型的第二测量间隔配置。
  58. 根据权利要求57所述的装置,其中,所述针对第一频段范围的第一测量间隔配置对应的配置参数包括以下至少之一:测量间隔偏移量、测量间隔长度、测量间 隔重复周期、测量间隔时间提前量。
  59. 根据权利要求58所述的装置,其中,所述测量间隔长度的取值范围为第一取值范围或第二取值范围,所述第一取值范围为所述第二取值范围的子集。
  60. 根据权利要求58或59所述的装置,其中,所述测量间隔重复周期的取值范围为第三取值范围或第四取值范围,所述第三取值范围为所述第四取值范围的子集。
  61. 根据权利要求57至60中任一项所述的装置,其中,所述针对第一频段范围的第一测量间隔配置通过RRC信令进行配置。
  62. 根据权利要求57至60中任一项所述的装置,其中,所述针对第一业务类型的第二测量间隔配置是所述网络设备根据第一业务类型对应的传输资源的调度信息通过RRC信令或MAC CE进行配置的。
  63. 根据权利要求62所述的装置,其中,所述第一业务类型对应的传输资源的调度信息为静态调度信息或半静态调度信息。
  64. 根据权利要求57至60中任一项所述的装置,其中,所述针对第一业务类型的第二测量间隔配置是所述网络设备根据第一业务类型对应的传输资源的调度信息通过DCI进行配置的。
  65. 根据权利要求64所述的装置,其中,所述第一业务类型对应的传输资源的调度信息为静态调度信息或半静态调度信息或动态调度信息。
  66. 根据权利要求62至65中任一项所述的装置,其中,所述传输资源的调度信息包括以下至少之一:传输资源的周期、传输资源的长度、传输资源对应的MCS、传输资源的标识。
  67. 根据权利要求57至66中任一项所述的装置,其中,所述针对第一业务类型的第二测量间隔配置包括以下至少之一:测量间隔类型、测量间隔标识、测量间隔参数。
  68. 根据权利要求57至67中任一项所述的装置,其中,所述装置还包括:
    发送单元,用于向所述网络设备发送第一能力信息,所述第一能力信息用于指示所述终端支持的测量间隔的能力。
  69. 根据权利要求68所述的装置,其中,所述第一能力信息用于指示所述终端是否支持为不同频段范围配置对应独立的测量间隔的能力,和/或,所述终端是否支持为不同业务类型配置对应独立的测量间隔的能力。
  70. 一种测量间隔的配置装置,所述装置包括:
    发送单元,用于向终端发送第一指示信息,所述第一指示信息用于指示所述终端将第一测量时间窗口延长为第二测量时间窗口;
    其中,所述第一测量时间窗口内的测量间隔与第一业务数据的时域资源有重叠时间;所述第二测量时间窗口内的测量间隔与第一业务数据的时域资源没有重叠时间,或者,所述第二测量时间窗口内的测量间隔与第一业务数据的时域资源有重叠时间,且该重叠时间的一部分或全部用于传输所述第一业务数据。
  71. 根据权利要求70所述的装置,其中,所述第一测量时间窗口内包括第一类测量间隔和第二类测量间隔,所述第二测量时间窗口内包括第一类测量间隔或者包括第一类测量间隔和第二类测量间隔;
    其中,所述第一类测量间隔与第一业务数据的时域资源未重叠,所述第二类测量间隔与第一业务数据的时域资源重叠。
  72. 根据权利要求71所述的装置,其中,所述第一指示信息还用于指示传输第一业务数据的时域位置;所述时域位置用于所述终端确定所述第一测量时间窗口内的测量间隔与第一业务数据的时域资源是否有重叠时间。
  73. 根据权利要求71或72所述的装置,其中,所述第一指示信息还用于指示所述第一测量时间窗口内的第二类测量间隔占所述第一测量时间窗口内的总测量间隔的比例;所述比例用于所述终端将所述第一测量时间窗口延长为第二测量时间窗口。
  74. 根据权利要求71至73中任一项所述的装置,其中,所述第二测量时间窗口内包括第一类测量间隔和第二类测量间隔的情况,所述第一测量时间窗口和所述第二测量时间窗口内的测量间隔均通过第一测量间隔配置进行配置。
  75. 根据权利要求71至73中任一项所述的装置,其中,所述第二测量时间窗口内包括第一类测量间隔的情况,所述第一测量时间窗口内的测量间隔通过第一测量间隔配置进行配置,所述第二测量时间窗口内的测量间隔通过第二测量间隔配置进行配置;
    所述第二测量间隔配置的MGRP大于所述第一测量间隔配置的MGRP,和/或,所述第二测量间隔配置的MGL小于所述第一测量间隔配置的MGL。
  76. 根据权利要求71至75中任一项所述的装置,其中,所述第一指示信息还用于指示传输第一业务数据的时域长度;所述时域长度用于所述终端确定传输所述第一业务数据占据的测量间隔的数目,根据所述第一业务数据占据的测量间隔的数目,在所述第二测量时间窗口内选择至少一个第二类测量间隔,在所述至少一个第二类测量间隔上传输所述第一业务数据。
  77. 根据权利要求70至76中任一项所述的装置,其中,所述第一指示信息携带在DCI或MAC CE中。
  78. 一种测量间隔的配置装置,所述装置包括:
    发送单元,用于向终端发送第一配置信息,所述第一配置信息用于确定针对第一频段范围的第一测量间隔配置和/或针对第一业务类型的第二测量间隔配置。
  79. 根据权利要求78所述的装置,其中,所述针对第一频段范围的第一测量间隔配置对应的配置参数包括以下至少之一:测量间隔偏移量、测量间隔长度、测量间隔重复周期、测量间隔时间提前量。
  80. 根据权利要求79所述的装置,其中,所述测量间隔长度的取值范围为第一取值范围或第二取值范围,所述第一取值范围为所述第二取值范围的子集。
  81. 根据权利要求79或80所述的装置,其中,所述测量间隔重复周期的取值范围为第三取值范围或第四取值范围,所述第三取值范围为所述第四取值范围的子集。
  82. 根据权利要求78至81中任一项所述的装置,其中,所述针对第一频段范围的第一测量间隔配置通过RRC信令进行配置。
  83. 根据权利要求78至81中任一项所述的装置,其中,所述针对第一业务类型的第二测量间隔配置是所述网络设备根据第一业务类型对应的传输资源的调度信息通过RRC信令或MAC CE进行配置的。
  84. 根据权利要求83所述的装置,其中,所述第一业务类型对应的传输资源的调度信息为静态调度信息或半静态调度信息。
  85. 根据权利要求78至81中任一项所述的装置,其中,所述针对第一业务类型的第二测量间隔配置是所述网络设备根据第一业务类型对应的传输资源的调度信息通过DCI进行配置的。
  86. 根据权利要求85所述的装置,其中,所述第一业务类型对应的传输资源的调度信息为静态调度信息或半静态调度信息或动态调度信息。
  87. 根据权利要求83至86中任一项所述的装置,其中,所述传输资源的调度信息包括以下至少之一:传输资源的周期、传输资源的长度、传输资源对应的MCS、传输资源的标识。
  88. 根据权利要求78至87中任一项所述的装置,其中,所述针对第一业务类型的第二测量间隔配置包括以下至少之一:测量间隔类型、测量间隔标识、测量间隔参数。
  89. 根据权利要求78至88中任一项所述的装置,其中,所述装置还包括:
    接收单元,用于接收所述终端发送的第一能力信息,所述第一能力信息用于指示所述终端支持的测量间隔的能力。
  90. 根据权利要求89所述的装置,其中,所述第一能力信息用于指示所述终端是否支持为不同频段范围配置对应独立的测量间隔的能力,和/或,所述终端是否支持为不同业务类型配置对应独立的测量间隔的能力。
  91. 一种终端,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至24中任一项所述的方法。
  92. 一种网络设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求25至45中任一项所述的方法。
  93. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至24中任一项所述的方法。
  94. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求25至45中任一项所述的方法。
  95. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至24中任一项所述的方法。
  96. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求25至45中任一项所述的方法。
  97. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至24中任一项所述的方法。
  98. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求25至45中任一项所述的方法。
  99. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至24中任一项所述的方法。
  100. 一种计算机程序,所述计算机程序使得计算机执行如权利要求25至45中任一项所述的方法。
PCT/CN2019/093917 2019-06-28 2019-06-28 一种测量间隔的配置方法及装置、终端、网络设备 WO2020258331A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980090871.8A CN113383571B (zh) 2019-06-28 2019-06-28 一种测量间隔的配置方法及装置、终端、网络设备
PCT/CN2019/093917 WO2020258331A1 (zh) 2019-06-28 2019-06-28 一种测量间隔的配置方法及装置、终端、网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/093917 WO2020258331A1 (zh) 2019-06-28 2019-06-28 一种测量间隔的配置方法及装置、终端、网络设备

Publications (1)

Publication Number Publication Date
WO2020258331A1 true WO2020258331A1 (zh) 2020-12-30

Family

ID=74061468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/093917 WO2020258331A1 (zh) 2019-06-28 2019-06-28 一种测量间隔的配置方法及装置、终端、网络设备

Country Status (2)

Country Link
CN (1) CN113383571B (zh)
WO (1) WO2020258331A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022266966A1 (zh) * 2021-06-24 2022-12-29 Oppo广东移动通信有限公司 测量方法、测量配置方法、终端设备和网络设备
WO2023108556A1 (zh) * 2021-12-16 2023-06-22 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
WO2023115405A1 (zh) * 2021-12-22 2023-06-29 北京小米移动软件有限公司 测量能力信息生成方法及装置
WO2023143055A1 (zh) * 2022-01-28 2023-08-03 展讯通信(上海)有限公司 一种邻区测量方法及相关装置
WO2023198039A1 (en) * 2022-04-13 2023-10-19 Mediatek Inc. Method and apparatus for data scheduling within measurement gaps

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115884220A (zh) * 2021-09-29 2023-03-31 华为技术有限公司 一种测量时间段配置方法及通信装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101873533A (zh) * 2009-04-27 2010-10-27 大唐移动通信设备有限公司 一种通知网络业务信息的方法及设备
US20150110060A1 (en) * 2012-06-28 2015-04-23 Huawei Technologies Co.,Ltd. Method for adjusting resource configuration, radio network controller, and base station
WO2019014920A1 (zh) * 2017-07-21 2019-01-24 Oppo广东移动通信有限公司 无线资源管理测量的方法、终端设备和网络设备
CN109803303A (zh) * 2017-11-16 2019-05-24 中国移动通信有限公司研究院 一种频点测量方法、测量配置方法、终端及基站

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150245235A1 (en) * 2014-02-24 2015-08-27 Yang Tang Measurement gap patterns
US11051193B2 (en) * 2015-07-22 2021-06-29 Qualcomm Incorporated Configurable measurement gap and window for machine type communications
US10383147B2 (en) * 2015-12-28 2019-08-13 Samsung Electronics Co., Ltd. Methods and apparatus for resource collision avoidance in vehicle to vehicle communication
US10764776B2 (en) * 2017-11-10 2020-09-01 Qualcomm Incorporated Measurement gap enhancements for BL/CE UEs

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101873533A (zh) * 2009-04-27 2010-10-27 大唐移动通信设备有限公司 一种通知网络业务信息的方法及设备
US20150110060A1 (en) * 2012-06-28 2015-04-23 Huawei Technologies Co.,Ltd. Method for adjusting resource configuration, radio network controller, and base station
WO2019014920A1 (zh) * 2017-07-21 2019-01-24 Oppo广东移动通信有限公司 无线资源管理测量的方法、终端设备和网络设备
CN109803303A (zh) * 2017-11-16 2019-05-24 中国移动通信有限公司研究院 一种频点测量方法、测量配置方法、终端及基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA ET AL.: "SMTC and Measurement Gap Timing for EN-DC", 3GPP TSG-RAN WG2 #101, R2-1803438, 2 March 2018 (2018-03-02), XP051400519, DOI: 20200316204720A *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022266966A1 (zh) * 2021-06-24 2022-12-29 Oppo广东移动通信有限公司 测量方法、测量配置方法、终端设备和网络设备
WO2023108556A1 (zh) * 2021-12-16 2023-06-22 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
WO2023115405A1 (zh) * 2021-12-22 2023-06-29 北京小米移动软件有限公司 测量能力信息生成方法及装置
WO2023143055A1 (zh) * 2022-01-28 2023-08-03 展讯通信(上海)有限公司 一种邻区测量方法及相关装置
WO2023198039A1 (en) * 2022-04-13 2023-10-19 Mediatek Inc. Method and apparatus for data scheduling within measurement gaps

Also Published As

Publication number Publication date
CN113383571A (zh) 2021-09-10
CN113383571B (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
WO2020258331A1 (zh) 一种测量间隔的配置方法及装置、终端、网络设备
WO2020248261A1 (zh) 一种测量间隔的确定方法及装置、终端
WO2020191683A1 (zh) 一种测量间隔配置方法及装置、终端、网络设备
US11963173B2 (en) Data transmission method and terminal device
WO2019242154A1 (zh) 信息测量方法、终端设备和网络设备
WO2019242712A1 (zh) 一种能力交互方法及相关设备
WO2020198983A1 (zh) 一种用于非授权频谱的无线通信方法及装置、通信设备
CN114631347A (zh) 一种小区配置方法及装置、终端设备、网络设备
WO2021026891A1 (zh) 传输侧行数据的方法、终端设备和网络设备
US20220046632A1 (en) Communication method in d2d system, terminal device, and network device
TW202013918A (zh) 一種訊號傳輸方法及裝置、終端、網路設備
WO2021237531A1 (zh) 一种测量方法及装置、终端设备、网络设备
WO2020199003A1 (zh) 一种切换方法及装置、终端、网络设备
WO2020087212A1 (zh) 侧行链路中确定传输模式的方法、终端设备和网络设备
WO2020087306A1 (zh) 一种窗口配置方法及装置、终端、网络设备
WO2022183341A1 (zh) 一种测量间隔的配置方法及装置、终端设备、网络设备
US20210153084A1 (en) Wireless communication method, terminal device, and network device
CN112956237B (zh) 业务处理方法、装置、芯片及计算机程序
WO2020051903A1 (zh) 一种链路恢复过程的处理方法及装置、终端
WO2020248281A1 (zh) 无线通信的方法、终端设备和网络设备
US11956666B2 (en) HARQ process determination method, network device and terminal
WO2022183336A1 (zh) 一种测量间隔的确定方法及装置、终端设备
WO2020107147A1 (zh) 一种信息生成及指示方法、装置、终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19934968

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19934968

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19934968

Country of ref document: EP

Kind code of ref document: A1