WO2020258227A1 - 致动器激励信号处理方法、装置、计算机设备及存储介质 - Google Patents

致动器激励信号处理方法、装置、计算机设备及存储介质 Download PDF

Info

Publication number
WO2020258227A1
WO2020258227A1 PCT/CN2019/093609 CN2019093609W WO2020258227A1 WO 2020258227 A1 WO2020258227 A1 WO 2020258227A1 CN 2019093609 W CN2019093609 W CN 2019093609W WO 2020258227 A1 WO2020258227 A1 WO 2020258227A1
Authority
WO
WIPO (PCT)
Prior art keywords
excitation signal
encrypted
actuator
original
processing
Prior art date
Application number
PCT/CN2019/093609
Other languages
English (en)
French (fr)
Inventor
王修越
向征
郭璇
李涛
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(新加坡)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(新加坡)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Priority to PCT/CN2019/093609 priority Critical patent/WO2020258227A1/zh
Priority to CN201910591555.0A priority patent/CN110347253B/zh
Priority to US16/994,686 priority patent/US11079853B2/en
Publication of WO2020258227A1 publication Critical patent/WO2020258227A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/70Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
    • G06F21/82Protecting input, output or interconnection devices
    • G06F21/84Protecting input, output or interconnection devices output devices, e.g. displays or monitors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B6/00Tactile signalling systems, e.g. personal calling systems

Definitions

  • This application relates to the field of signal processing, and in particular to an actuator excitation signal processing method, device, computer equipment and storage medium.
  • touch is an important way for people to perceive the world, which is different from the sense of sight and hearing. In some more abstract scenes without sound and picture conditions, touch can bring users accurate judgments and rich information prompts, so it has great application value.
  • Vibration feedback of different experiences is achieved through different excitation signals acting on actuators (for example, motors) (refer to Figure 2).
  • the excitation signal of traditional electronic equipment can be easily collected and easily copied by competitors, which leads to frequent embezzlement of the excitation signal and causes losses to the developers of the excitation signal.
  • the present application aims to solve the problem that the excitation signal of electronic equipment is easy to be copied by simulation, and provides an actuator excitation signal processing method, device, computer equipment and storage medium that can prevent theft.
  • An actuator excitation signal processing method includes:
  • the encrypted excitation signal is used to drive the actuator to generate vibration.
  • said performing encryption processing on the original excitation signal to obtain an encrypted excitation signal includes: performing vibration simulation processing on the original excitation signal to obtain a simulated vibration acceleration waveform; and processing the simulated vibration acceleration waveform Equalization processing obtains the encrypted excitation signal.
  • performing equalization processing on the simulated vibration acceleration waveform to obtain the encrypted excitation signal includes: modulating a high frequency or low frequency in the simulated vibration acceleration waveform to obtain an encrypted excitation signal.
  • the performing vibration simulation processing on the original excitation signal to obtain a simulated vibration acceleration waveform includes: obtaining a linear parameter of the actuator; performing processing on the original excitation signal according to the linear parameter Vibration simulation processing to obtain the simulated vibration acceleration waveform.
  • the actuator is a motor; the obtaining the linear parameters of the actuator includes: obtaining the motor linear parameters of the motor; and the original excitation is performed according to the linear parameters.
  • Performing vibration simulation processing on the signal to obtain the simulated vibration acceleration waveform includes: performing vibration simulation processing on the original excitation signal according to the linear parameters of the motor to obtain the simulated vibration acceleration waveform.
  • the encrypting the original excitation signal to obtain the encrypted excitation signal includes: using at least one vibration simulation model to process the original excitation signal to obtain a simulated vibration acceleration waveform; using at least one equalizer The module performs equalization processing on the simulated vibration acceleration waveform to obtain the encrypted excitation signal.
  • An actuator excitation signal processing device comprising:
  • the acquisition module is used to acquire the original excitation signal
  • An encryption module configured to perform encryption processing on the original excitation signal to obtain an encrypted excitation signal, where the encrypted excitation signal is the same as the vibration waveform generated by the original excitation signal acting on the actuator;
  • the driving module is used to drive the actuator to generate vibration using the encrypted excitation signal.
  • the encryption module is further configured to perform vibration simulation processing on the original excitation signal to obtain a simulated vibration acceleration waveform, and perform equalization processing on the simulated vibration acceleration waveform to obtain the encrypted excitation signal.
  • the encryption module is further used to modulate the high frequency or low frequency in the simulated vibration acceleration waveform to obtain an encrypted excitation signal.
  • the encryption module is also used to obtain linear parameters of the actuator; perform vibration simulation processing on the original excitation signal according to the linear parameters to obtain the simulated vibration acceleration waveform.
  • the actuator is a motor; the acquisition module is also used to acquire the motor linear parameters of the motor; the encryption module is also used to adjust the original excitation signal according to the motor linear parameters Perform vibration simulation processing to obtain the simulated vibration acceleration waveform.
  • the encryption module is further configured to process the original excitation signal by using at least one vibration simulation model to obtain a simulated vibration acceleration waveform, and use at least one equalization module to perform equalization processing on the simulated vibration acceleration waveform , To obtain the encrypted excitation signal.
  • a computer device includes a memory and a processor, the memory stores a computer program, and when the computer program is executed by the processor, the processor executes the following steps:
  • the encrypted excitation signal is used to drive the actuator to generate vibration.
  • a computer-readable storage medium storing a computer program, and when the computer program is executed by a processor, the processor executes the following steps:
  • the encrypted excitation signal is used to drive the actuator to generate vibration.
  • the above-mentioned actuator excitation signal processing method, device, computer equipment and storage medium first obtain the original excitation signal, and then encrypt the original excitation signal to obtain an encrypted excitation signal.
  • the encrypted excitation signal and the original excitation signal act on the actuator to generate The vibration waveform is the same, so the encrypted excitation signal can be used to drive the actuator to vibrate.
  • the encrypted excitation signal changes the shape of the original excitation signal, but the final vibration waveform generated by the actuator is the same, so that the vibration waveform corresponding to the original excitation signal can be obtained, and the leakage of the original excitation signal can be avoided, which effectively solves the excitation The signal is stolen.
  • Figure 1 is a flowchart of an actuator excitation signal processing method in an embodiment
  • Fig. 2 is a schematic diagram of the traditional process of directly applying the original excitation signal to the actuator
  • FIG. 3 is a schematic diagram of the process in which the original excitation signal is encrypted to obtain the encrypted excitation signal and then acted on the actuator in an embodiment
  • Fig. 4 is a schematic diagram of a process of encrypting an original excitation signal in an embodiment
  • Fig. 5 is a schematic diagram of frequency response before and after encrypting the motor in an embodiment
  • Figure 6 is a structural block diagram of an actuator excitation signal processing device in an embodiment
  • Fig. 7 is an internal structure diagram of a computer device in an embodiment.
  • an actuator excitation signal processing method is proposed.
  • the actuator excitation signal processing method can be applied to a terminal.
  • This embodiment is applied to a terminal as an example.
  • the actuator excitation signal processing method specifically includes the following steps:
  • Step 102 Obtain the original excitation signal.
  • the excitation signal is used to drive the actuator to vibrate.
  • the original excitation signal refers to the unencrypted excitation signal.
  • Using the original excitation signal to directly act on the actuator can generate the corresponding vibration waveform.
  • Figure 2 it is a schematic diagram of the traditional process of directly applying the original excitation signal to the actuator.
  • the waveform of the original excitation signal U(t) is directly given, it is easy to inversely deduce the generation mechanism of the excitation signal through the U(t) waveform, which may easily lead to the pirate of the excitation signal.
  • Step 104 Encryption processing is performed on the original excitation signal to obtain an encrypted excitation signal.
  • the encrypted excitation signal and the original excitation signal have the same vibration waveform generated by the actuator.
  • the encrypted excitation signal refers to the signal obtained after the original excitation signal is encrypted.
  • the actuator refers to a vibrator capable of generating vibration, such as a motor.
  • the encrypted excitation signal changes the waveform of the original excitation signal, but the encrypted excitation signal and the original excitation signal exert the same vibration waveform on the actuator. It should be noted that the same vibration waveform here is not absolutely the same, but relatively the same, and the difference can be ignored.
  • encrypting the original excitation signal can amplify the high-frequency or low-frequency part of the original excitation signal, so that the high-frequency or low-frequency part of the original excitation signal becomes obvious, thereby achieving the effect of encryption.
  • the encrypted excitation signal drives the actuator, the amplified high-frequency or low-frequency signal has no effect on the actuator, so it is ensured that the encrypted excitation signal acts on the vibration waveform generated by the driver and the original excitation signal acts on the actuation.
  • the vibration waveform generated by the generator is almost the same. It should be noted that there are multiple methods for the original excitation signal, and the encryption method is not limited here.
  • Step 106 Use the encrypted excitation signal to drive the actuator to generate vibration.
  • the encrypted excitation signal is used to drive the actuator to vibrate to generate a vibration waveform.
  • Fig. 3 it is a schematic diagram of a process in which the original excitation signal is encrypted to obtain the encrypted excitation signal and then acts on the actuator in an embodiment.
  • the actuator excitation signal processing method described above first obtains the original excitation signal, and then encrypts the original excitation signal to obtain the encrypted excitation signal.
  • the encrypted excitation signal and the original excitation signal have the same vibration waveform as the original excitation signal acting on the actuator, so it can be used
  • the encrypted excitation signal drives the actuator to vibrate.
  • the encrypted excitation signal changes the shape of the original excitation signal, but the final vibration waveform generated by the actuator is the same, so that the vibration waveform corresponding to the original excitation signal can be obtained, and the leakage of the original excitation signal can be avoided, which effectively solves the excitation The signal is stolen.
  • performing encryption processing on the original excitation signal to obtain an encrypted excitation signal includes: performing vibration simulation processing on the original excitation signal to obtain a simulated vibration acceleration waveform; and performing equalization processing on the simulated vibration acceleration waveform to obtain an encrypted excitation signal.
  • vibration simulation processing refers to simulating the original excitation signal into a simulated vibration acceleration waveform through vibration, that is, simulating the vibration of the actuator. Then the simulated vibration acceleration waveform is equalized.
  • the equalization is an encryption process.
  • the equalization process can be encrypted by amplifying the high-frequency or low-frequency part of the signal to obtain an encrypted excitation signal.
  • Figure 4 it is a schematic diagram of the process of encrypting the original excitation signal in an embodiment, taking the motor as an example.
  • the original excitation signal U(t) is the simulated vibration acceleration waveform A1(t) obtained by the motor vibration simulation, and then Encrypted by the equalization module to obtain the encrypted encrypted excitation signal U1(t), U1(t) acts on the motor, and finally generates a vibration waveform A(t).
  • the transfer function from voltage (excitation signal) to acceleration can be expressed as:
  • ⁇ 0 is the coefficient of the electromagnetic force of the motor
  • R eb is motor resistance
  • m d is the mass of the sub-Mada Zhen
  • z is the frequency
  • the other factor is defined as follows:
  • ⁇ 0 is the resonance frequency of the LRA
  • f s is the ADC (digital-to-analog converter) sampling rate
  • Q t is the quality factor of the LRA
  • c t is the motor damping coefficient
  • C 1 and C 2 are the acceleration gain constants
  • T s is the period .
  • performing equalization processing on the simulated vibration acceleration waveform to obtain the encrypted excitation signal includes: modulating the high frequency or low frequency in the simulated vibration acceleration waveform to obtain the encrypted excitation signal.
  • the process of equalization processing can be accomplished by modulating the high frequency or low frequency in the simulated vibration acceleration waveform.
  • Modulation refers to amplifying or reducing the high frequency or low frequency part of the signal to change the waveform of the original excitation signal.
  • the excitation signal before and after encryption has little effect on the vibration of the motor and can be ignored.
  • the frequency response of the motor is a short dotted line
  • the frequency response of the EQ (equalization module) is a long dotted line
  • the frequency response of the EQ and motor cascade is a solid line. It can be clearly seen from the figure that the frequency response after cascading is almost the same as that of the motor. Therefore, the encrypted excitation signal can be used to replace the original excitation signal to drive the motor to vibrate.
  • the principle is as follows: when the simulated vibration acceleration waveform passes through the EQ (equalization module), the low frequency part (less than 20Hz) will be amplified by about 15dB (relative to the data after 1KHz), so that the low frequency part of the encrypted excitation signal will be more obvious. So as to achieve the encryption effect.
  • the frequency response of the EQ+ motor cascade has a 20dB attenuation, so it has almost no effect on the final acceleration waveform.
  • ⁇ d and Q d are the specified expected resonance frequency and quality factor, and z is the frequency.
  • Reb is the DC resistance of the motor, and other parameters are defined as above.
  • performing vibration simulation processing on the original excitation signal to obtain a simulated vibration acceleration waveform includes: obtaining linear parameters of the actuator; performing vibration simulation processing on the original excitation signal according to the linear parameters to obtain a simulated vibration acceleration waveform.
  • the linear parameters of the actuator refer to the parameters that determine the function of the actuator, including: electromagnetic force coefficient, spring stiffness coefficient, voice coil inductance, undamped natural frequency, damped intrinsic frequency, acceleration resonance frequency, mechanical damping Coefficient, resistance coefficient, etc.
  • the vibration of the actuator can be simulated by obtaining the linear parameters of the actuator. Therefore, the original excitation signal is subjected to vibration simulation processing according to the linear parameters, so that the simulated vibration acceleration waveform is obtained.
  • the actuator is a motor; acquiring the linear parameters of the actuator includes: acquiring the linear parameters of the motor; performing vibration simulation processing on the original excitation signal according to the linear parameters to obtain the simulated vibration acceleration waveform, including: The linear parameters of the motor perform vibration simulation processing on the original excitation signal to obtain the simulated vibration acceleration waveform.
  • the motor is a kind of actuator.
  • the actuator is a motor
  • the motor linear parameters of the motor are obtained, and the motor vibration is simulated according to the motor linear parameters to obtain the simulated vibration acceleration waveform corresponding to the original excitation signal.
  • performing encryption processing on the original excitation signal to obtain the encrypted excitation signal includes: processing the original excitation signal using at least one vibration simulation model to obtain a simulated vibration acceleration waveform; and using at least one equalization module to perform processing on the simulated vibration acceleration waveform Equalization processing, get encrypted excitation signal.
  • a combination of a vibration simulation model and an equalization module can be used to complete the encryption process.
  • the number of vibration simulation models is not limited, and the number of equalization modules is not limited, and the settings can be customized according to actual needs.
  • the vibration simulation model and the equalization module can have a one-to-one relationship or a one-to-many relationship.
  • an actuator excitation signal processing device which includes:
  • the obtaining module 602 is used to obtain the original excitation signal
  • the encryption module 604 is configured to perform encryption processing on the original excitation signal to obtain an encrypted excitation signal, and the encrypted excitation signal is the same as the vibration waveform generated by the original excitation signal acting on the actuator;
  • the driving module 606 is configured to use the encrypted excitation signal to drive the actuator to generate vibration.
  • the encryption module 604 is further configured to perform vibration simulation processing on the original excitation signal to obtain a simulated vibration acceleration waveform, and perform equalization processing on the simulated vibration acceleration waveform to obtain the encrypted excitation signal.
  • the encryption module is also used to modulate the high frequency or low frequency in the simulated vibration acceleration waveform to obtain an encrypted excitation signal.
  • the encryption module is also used to obtain linear parameters of the actuator; perform vibration simulation processing on the original excitation signal according to the linear parameters to obtain the simulated vibration acceleration waveform.
  • the actuator is a motor; the acquisition module is also used to acquire motor linear parameters of the motor; the encryption module is also used to perform processing on the original excitation signal according to the motor linear parameters Vibration simulation processing to obtain the simulated vibration acceleration waveform.
  • the encryption module is further configured to process the original excitation signal using at least one vibration simulation model to obtain a simulated vibration acceleration waveform, and use at least one equalization module to perform equalization processing on the simulated vibration acceleration waveform, Obtain the encrypted excitation signal.
  • Fig. 7 shows an internal structure diagram of a computer device in an embodiment.
  • the computer device may be a terminal.
  • the computer device includes a processor, a memory, and a network interface connected through a system bus.
  • the memory includes a non-volatile storage medium and an internal memory.
  • the non-volatile storage medium of the computer device stores an operating system, and may also store a computer program.
  • the processor can realize the actuator excitation signal processing method.
  • a computer program may also be stored in the internal memory, and when the computer program is executed by the processor, the processor can execute the actuator excitation signal processing method.
  • the network interface is used to communicate with the outside world. Those skilled in the art can understand that the structure shown in FIG.
  • FIG. 7 is only a block diagram of part of the structure related to the solution of the present application, and does not constitute a limitation on the computer device to which the solution of the present application is applied.
  • the specific computer device may Including more or fewer parts than shown in the figure, or combining some parts, or having a different arrangement of parts.
  • a computer device which includes a memory and a processor, the memory stores a computer program, and when the computer program is executed by the processor, the processor executes the following steps: Excitation signal; encrypting the original excitation signal to obtain an encrypted excitation signal, the encrypted excitation signal and the original excitation signal acting on the actuator to generate the same vibration waveform; using the encrypted excitation signal to drive the actuation
  • the generator vibrates.
  • said performing encryption processing on the original excitation signal to obtain an encrypted excitation signal includes: performing vibration simulation processing on the original excitation signal to obtain a simulated vibration acceleration waveform; and equalizing the simulated vibration acceleration waveform
  • the encrypted excitation signal is obtained by processing.
  • said performing equalization processing on the simulated vibration acceleration waveform to obtain the encrypted excitation signal includes: modulating high frequency or low frequency in the simulated vibration acceleration waveform to obtain the encrypted excitation signal.
  • the performing vibration simulation processing on the original excitation signal to obtain a simulated vibration acceleration waveform includes: obtaining linear parameters of the actuator; and vibrating the original excitation signal according to the linear parameters The simulation processing obtains the simulation vibration acceleration waveform.
  • the actuator is a motor; the acquiring the linear parameter of the actuator includes: acquiring the motor linear parameter of the motor; and the processing the original excitation signal according to the linear parameter Performing vibration simulation processing to obtain the simulated vibration acceleration waveform includes: performing vibration simulation processing on the original excitation signal according to the linear parameters of the motor to obtain the simulated vibration acceleration waveform.
  • said performing encryption processing on the original excitation signal to obtain an encrypted excitation signal includes: using at least one vibration simulation model to process the original excitation signal to obtain a simulated vibration acceleration waveform; and using at least one equalization module Perform equalization processing on the simulated vibration acceleration waveform to obtain the encrypted excitation signal.
  • a computer-readable storage medium stores a computer program.
  • the processor causes the processor to perform the following steps: obtain an original excitation signal; Encryption processing obtains an encrypted excitation signal, and the encrypted excitation signal and the original excitation signal have the same vibration waveform generated by the actuator; the encrypted excitation signal is used to drive the actuator to generate vibration.
  • said performing encryption processing on the original excitation signal to obtain an encrypted excitation signal includes: performing vibration simulation processing on the original excitation signal to obtain a simulated vibration acceleration waveform; and equalizing the simulated vibration acceleration waveform
  • the encrypted excitation signal is obtained by processing.
  • said performing equalization processing on the simulated vibration acceleration waveform to obtain the encrypted excitation signal includes: modulating high frequency or low frequency in the simulated vibration acceleration waveform to obtain the encrypted excitation signal.
  • the performing vibration simulation processing on the original excitation signal to obtain a simulated vibration acceleration waveform includes: obtaining linear parameters of the actuator; and vibrating the original excitation signal according to the linear parameters The simulation processing obtains the simulation vibration acceleration waveform.
  • the actuator is a motor; the acquiring the linear parameter of the actuator includes: acquiring the motor linear parameter of the motor; and the processing the original excitation signal according to the linear parameter Performing vibration simulation processing to obtain the simulated vibration acceleration waveform includes: performing vibration simulation processing on the original excitation signal according to the linear parameters of the motor to obtain the simulated vibration acceleration waveform.
  • said performing encryption processing on the original excitation signal to obtain an encrypted excitation signal includes: using at least one vibration simulation model to process the original excitation signal to obtain a simulated vibration acceleration waveform; and using at least one equalization module Perform equalization processing on the simulated vibration acceleration waveform to obtain the encrypted excitation signal.
  • Non-volatile memory may include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory may include random access memory (RAM) or external cache memory.
  • RAM is available in many forms, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous chain Channel (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDRSDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchronous chain Channel
  • memory bus Radbus direct RAM
  • RDRAM direct memory bus dynamic RAM
  • RDRAM memory bus dynamic RAM

Abstract

一种致动器激励信号处理方法,所述方法包括:获取原始激励信号;对所述原始激励信号进行加密处理得到加密激励信号,所述加密激励信号和所述原始激励信号作用于致动器产生的振动波形相同;采用所述加密激励信号驱动所述致动器产生振动。该致动器激励信号处理方法通过对原始激励信号进行加密,可以有效地解决激励信号被盗用的问题。此外,还提出了一种致动器激励信号处理装置、计算机设备及存储介质。

Description

致动器激励信号处理方法、装置、计算机设备及存储介质 【技术领域】
本申请涉及一种信号处理领域,具体涉及一种致动器激励信号处理方法、装置、计算机设备及存储介质。
【背景技术】
触觉是人们感知世界的一种重要信息传递的方式,不同于视觉和听觉。在某些较为抽象,且不具备声音和画面条件的场景下,触觉能给用户带来准确的判断以及丰富的信息提示,因此具有重大的应用价值。
随着手机行业、游戏行业、VR行业等市场在触觉领域的不断兴起,振动形式的触觉反馈在电子消费产品中得以广泛应用。不同体验的振动反馈是通过作用于致动器(比如,马达)的不同激励信号实现的(参考图2)。传统的电子设备的激励信号可以很轻松地采集获得,容易被竞争对手模拟复制,导致激励信号被盗用的情况频繁发生,给激励信号的开发者造成损失。
【发明内容】
本申请针对解决电子设备的激励信号容易被模拟复制的问题,提供一种可以防止被盗用的致动器激励信号处理方法、装置、计算机设备及存储介质。
一种致动器激励信号处理方法,所述方法包括:
获取原始激励信号;
对所述原始激励信号进行加密处理得到加密激励信号,所述加密激励信号和所述原始激励信号作用于致动器产生的振动波形相同;
采用所述加密激励信号驱动所述致动器产生振动。
在其中一个实施例中,所述对所述原始激励信号进行加密处理得到加密激励信号,包括:对所述原始激励信号进行振动模拟处理,得到仿真振动加速度波形;将所述仿真振动加速度波形进行均衡处理得到所述加密激励信号。
在其中一个实施例中,所述将所述仿真振动加速度波形进行均衡处理得到所述加密激励信号,包括:对所述仿真振动加速度波形中的高频或低频进行调制得到加密激励信号。
在其中一个实施例中,所述对所述原始激励信号进行振动模拟处理,得到仿真振动加速度波形,包括:获取所述致动器的线性参数;根据所述线性参数对所述原始激励信号进行振动模拟处理,得到所述仿真振动加速度波形。
在其中一个实施例中,所述致动器为马达;所述获取所述致动器的线性参数,包括:获取所述马达的马达线性参数;所述根据所述线性参数对所述原始激励信号进行振动模拟处理,得到所述仿真振动加速度波形,包括:根据所述马达线性参数对所述原始激励信号进行振动模拟处理,得到所述仿真振动加速度波形。
在其中一个实施例中,所述对所述原始激励信号进行加密处理得到加密激励信号,包括:对所述原始激励信号采用至少一个振动模拟模型进行处理,得到仿真振动加速度波形;采用至少一个均衡模块对所述仿真振动加速度波形进行均衡处理,得到所述加密激励信号。
一种致动器激励信号处理装置,所述装置包括:
获取模块,用于获取原始激励信号;
加密模块,用于对所述原始激励信号进行加密处理得到加密激励信号,所述加密激励信号和所述原始激励信号作用于致动器产生的振动波形相同;
驱动模块,用于采用所述加密激励信号驱动所述致动器产生振动。
在其中一个实施例中,所述加密模块还用于对所述原始激励信号进行振动模拟处理,得到仿真振动加速度波形,将所述仿真振动加速度波形进行均衡处理得到所述加密激励信号。
在其中一个实施例中,所述加密模块还用于对所述仿真振动加速度波形中的高频或低频进行调制得到加密激励信号。
在其中一个实施例中,所述加密模块还用于获取所述致动器的线性参数;根据所述线性参数对所述原始激励信号进行振动模拟处理,得到所述仿真振动加速度波形。
在其中一个实施例中,所述致动器为马达;所述获取模块还用于获取所述马达的马达线性参数;所述加密模块还用于根据所述马达线性参数对所述原始激励信号进行振动模拟处理,得到所述仿真振动加速度波形。
在其中一个实施例中,所述加密模块还用于对所述原始激励信号采用至少一个振动模拟模型进行处理,得到仿真振动加速度波形,采用至少一个均衡模块对所述仿真振动加速度波形进行均衡处理,得到所述加密激励信号。
一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行以下步骤:
获取原始激励信号;
对所述原始激励信号进行加密处理得到加密激励信号,所述加密激励信号和所述原始激励信号作用于致动器产生的振动波形相同;
采用所述加密激励信号驱动所述致动器产生振动。
一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器执行以下步骤:
获取原始激励信号;
对所述原始激励信号进行加密处理得到加密激励信号,所述加密激励信号和所述原始激励信号作用于致动器产生的振动波形相同;
采用所述加密激励信号驱动所述致动器产生振动。
上述致动器激励信号处理方法、装置、计算机设备及存储介质,首先获取原始激励信号,然后对原始激励信号进行加密处理得到加密激励信号,该加密激励信号和原始激励信号作用于致动器产生的振动波形相同,所以可以采用加密激励信号驱动致动器产生振动。加密激励信号改变了原始激励信号的形状,但是最后作用于致动器产生的振动波形相同,从而既可以得到原始激励信号对应的振动波形,又可以避免将原始激励信号泄露,有效地解决了激励信号被盗用的问题。
【附图说明】
图1为一个实施例中致动器激励信号处理方法的流程图;
图2为传统的直接采用原始激励信号作用于致动器的过程示意图;
图3为一个实施例中原始激励信号经过加密得到加密激励信号,然后作用于致动器的过程示意图;
图4为一个实施例中对原始激励信号进行加密的过程示意图;
图5为一个实施例中对马达进行加密前后的频响示意图;
图6为一个实施例中致动器激励信号处理装置的结构框图;
图7为一个实施例中计算机设备的内部结构图。
【具体实施方式】
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
如图1所示,提出了一种致动器激励信号处理方法,该致动器激励信号处理方法可以应用于终端,本实施例以应用于终端举例说明。该致动器激励信号处理方法具体包括以下步骤:
步骤102,获取原始激励信号。
其中,激励信号用于驱动致动器振动。原始激励信号是指未加密的激励信号,采用原始激励信号直接作用于致动器可以产生相应的振动波形。如图2所示,为传统的直接采用原始激励信号作用于致动器的过程示意图。但是如果原始激励信号U(t)的波形直接给出,那么很容易通过U(t)的波形反推出激励信号的生成机制,从而容易导致激励信号被盗用的情况出现。
步骤104,对原始激励信号进行加密处理得到加密激励信号,加密激励信号和原始激励信号作用于致动器产生的振动波形相同。
其中,加密激励信号是指对原始激励信号进行加密处理之后得到的信号。致动器是指能够产生振动的振动器,比如,马达。
加密激励信号改变了原始激励信号的波形,但是加密激励信号和原始激励信号作用于致动器产生的振动波形相同。需要说明的是,这里的振动波形相同并不是绝对相同,而是相对相同,存在的差异可以忽略。
在一个实施例中,对原始激励信号进行加密处理可以通过放大原始激励信号中的高频或低频部分的信号,使得原始激励信号中的高频或低频部分变得明显,从而达到加密的效果。加密激励信号在对致动器进行驱动时,被放大的高频或低频部分的信号对致动器没有影响,所以保证了加密激励信号作用于驱动器产生的振动波形与原始激励信号作用于致动器产生的振动波形几乎相同。需要说明的是,对原始激励信号的方式有多种,这里并不对加密的方式进行限定。
步骤106,采用加密激励信号驱动致动器产生振动。
其中,采用加密后的加密激励信号来驱动致动器振动,产生振动波形。如图3所示,为一个实施例中,原始激励信号经过加密得到加密激励信号,然后作用于致动器的过程示意图。
上述致动器激励信号处理方法,首先获取原始激励信号,然后对原始激励信号进行加密处理得到加密激励信号,该加密激励信号和原始激励信号作用于致动器产生的振动波形相同,所以可以采用加密激励信号驱动致动器产生振动。加密激励信号改变了原始激励信号的形状,但是最后作用 于致动器产生的振动波形相同,从而既可以得到原始激励信号对应的振动波形,又可以避免将原始激励信号泄露,有效地解决了激励信号被盗用的问题。
在一个实施例中,对原始激励信号进行加密处理得到加密激励信号,包括:对原始激励信号进行振动模拟处理,得到仿真振动加速度波形;将仿真振动加速度波形进行均衡处理得到加密激励信号。
其中,振动模拟处理是指将原始激励信号通过振动模拟为仿真振动加速度波形,即模拟致动器的振动。然后将仿真振动加速度波形进行均衡处理,均衡处理是加密的过程,均衡的过程可以通过放大高频或低频部分的信号进行加密,得到加密激励信号。如图4所示,为一个实施例中,以马达为例,对原始激励信号进行加密的过程示意图,原始激励信号U(t)是经过马达振动模拟得到仿真振动加速度波形A1(t),然后通过均衡模块进行加密得到加密后的加密激励信号U1(t),U1(t)作用于马达,最后产生振动波形A(t)。
振动模拟处理的原理如下:
由电压(激励信号)到加速度的传递函数可以表示为:
Figure PCTCN2019093609-appb-000001
其中,φ 0是马达电磁力系数,R eb是马达电阻,m d为马达振子质量,z为频率,其他系数定义如下:
Figure PCTCN2019093609-appb-000002
Figure PCTCN2019093609-appb-000003
Figure PCTCN2019093609-appb-000004
b 0=(C 1+C 2)T s=c tT s
b 1=(C 1π+C 2π)T s=c tT s
Ω 0为LRA的谐振频率,f s为ADC(数模转换器)采样率,Q t为LRA的品质因子,c t为马达阻尼系数,C 1和C 2为加速度增益常数,T s为周期。
在一个实施例中,将仿真振动加速度波形进行均衡处理得到加密激励信号,包括:对仿真振动加速度波形中的高频或低频进行调制得到加密激励信号。
其中,均衡处理的过程可以采用对仿真振动加速度波形中的高频或低频进行调制来完成,调制是指将高频或低频部分的信号进行放大或缩小处理,以便改变原始激励信号的波形。
如图5所示,以马达为例,加密前后的激励信号对马达的振动影响不大,可以忽略。图5中马达的频响是短点线、EQ(均衡模块)的频响是长点线、EQ和马达级联(cascade)的频响是实线。从图中可以明显看出级联之后的频响几乎和马达的频响一致。所以可以采用加密后的加密激励信号代替原始激励信号驱动马达振动。
原理如下:当仿真振动加速度波形通过EQ(均衡模块)时,低频部分(小于20Hz)会被放大15dB左右(相对于1KHz后的数据),这样得到的加密激励信号中的低频部分会比较明显,从而达到加密效果。而EQ+马达的级联的频响有20dB的衰减,所以对最终的得到加速度波形几乎没有影响。
均衡模块(EQ)计算公式如下:
首先,EQ传递函数的表达式为:
Figure PCTCN2019093609-appb-000005
其中,
b 1·a=a 1
b 2·a=a 2
Figure PCTCN2019093609-appb-000006
Figure PCTCN2019093609-appb-000007
Figure PCTCN2019093609-appb-000008
Ω d和Q d为指定的期望谐振频率和品质因子,z为频率。
为了让加速度均衡之后高频附近为0增益,增益系数σ c求解方式为:
Figure PCTCN2019093609-appb-000009
其中:
Figure PCTCN2019093609-appb-000010
Figure PCTCN2019093609-appb-000011
上述公式中,R eb为马达的直流阻,其他参数定义同上。
在一个实施例中,对原始激励信号进行振动模拟处理,得到仿真振动加速度波形,包括:获取致动器的线性参数;根据线性参数对原始激励信号进行振动模拟处理,得到仿真振动加速度波形。
其中,致动器的线性参数是指确定致动器功能的参数,包括:电磁力系数、弹簧劲度系数、音圈电感、无阻尼自然频率、有阻尼本征频率、加速度共振频率、机械阻尼系数、电阻尼系数等等。通过获取致动器的线性参数就可以模拟致动器的振动。所以根据线性参数对原始激励信号进行振动模拟处理,这样就得到了仿真振动加速度波形。
在一个实施例中,致动器为马达;获取致动器的线性参数,包括:获取马达的马达线性参数;根据线性参数对原始激励信号进行振动模拟处理,得到仿真振动加速度波形,包括:根据马达线性参数对原始激励信号进行振动模拟处理,得到仿真振动加速度波形。
其中,马达是致动器的一种。当致动器为马达时,获取马达的马达线性参数,根据马达线性参数模拟马达振动,得到原始激励信号对应的仿真振动加速度波形。
在一个实施例中,对原始激励信号进行加密处理得到加密激励信号,包括:对原始激励信号采用至少一个振动模拟模型进行处理,得到仿真振 动加速度波形;采用至少一个均衡模块对仿真振动加速度波形进行均衡处理,得到加密激励信号。
其中,对原始激励信号进行加密,可以采用振动模拟模型和均衡模块进行组合来完成加密过程。振动模拟模型的数量不限,均衡模块的数量也不限,可以根据实际需求自定义设置。振动模拟模型与均衡模块可以是一对一的关系,也可以是一对多的关系。
如图6所示,提出了一种致动器激励信号处理装置,该装置包括:
获取模块602,用于获取原始激励信号;
加密模块604,用于对所述原始激励信号进行加密处理得到加密激励信号,所述加密激励信号和所述原始激励信号作用于致动器产生的振动波形相同;
驱动模块606,用于采用所述加密激励信号驱动所述致动器产生振动。
在一个实施例中,所述加密模块604还用于对所述原始激励信号进行振动模拟处理,得到仿真振动加速度波形,将所述仿真振动加速度波形进行均衡处理得到所述加密激励信号。
在一个实施例中,所述加密模块还用于对所述仿真振动加速度波形中的高频或低频进行调制得到加密激励信号。
在一个实施例中,所述加密模块还用于获取所述致动器的线性参数;根据所述线性参数对所述原始激励信号进行振动模拟处理,得到所述仿真振动加速度波形。
在一个实施例中,所述致动器为马达;所述获取模块还用于获取所述马达的马达线性参数;所述加密模块还用于根据所述马达线性参数对所述原始激励信号进行振动模拟处理,得到所述仿真振动加速度波形。
在一个实施例中,所述加密模块还用于对所述原始激励信号采用至少一个振动模拟模型进行处理,得到仿真振动加速度波形,采用至少一个均衡模块对所述仿真振动加速度波形进行均衡处理,得到所述加密激励信号。
图7示出了一个实施例中计算机设备的内部结构图。该计算机设备可以是终端。如图7所示,该计算机设备包括通过系统总线连接的处理器、存储器和网络接口。其中,存储器包括非易失性存储介质和内存储器。该计算机设备的非易失性存储介质存储有操作系统,还可存储有计算机程序,该计算机程序被处理器执行时,可使得处理器实现致动器激励信号处理方法。该内存储器中也可储存有计算机程序,该计算机程序被处理器执行时,可使得处理器执行致动器激励信号处理方法。网络接口用于与外界进行通信。本领域技术人员可以理解,图7中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,提出了一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行以下步骤:获取原始激励信号;对所述原始激励信号进行加密处理得到加密激励信号,所述加密激励信号和所述原始激励信号作用于致动器产生的振动波形相同;采用所述加密激励信号驱动所述致动器产生振动。
在一个实施例中,所述对所述原始激励信号进行加密处理得到加密激励信号,包括:对所述原始激励信号进行振动模拟处理,得到仿真振动加速度波形;将所述仿真振动加速度波形进行均衡处理得到所述加密激励信号。
在一个实施例中,所述将所述仿真振动加速度波形进行均衡处理得到所述加密激励信号,包括:对所述仿真振动加速度波形中的高频或低频进行调制得到加密激励信号。
在一个实施例中,所述对所述原始激励信号进行振动模拟处理,得到仿真振动加速度波形,包括:获取所述致动器的线性参数;根据所述线性参数对所述原始激励信号进行振动模拟处理,得到所述仿真振动加速度波形。
在一个实施例中,所述致动器为马达;所述获取所述致动器的线性参数,包括:获取所述马达的马达线性参数;所述根据所述线性参数对所述原始激励信号进行振动模拟处理,得到所述仿真振动加速度波形,包括:根据所述马达线性参数对所述原始激励信号进行振动模拟处理,得到所述仿真振动加速度波形。
在一个实施例中,所述对所述原始激励信号进行加密处理得到加密激励信号,包括:对所述原始激励信号采用至少一个振动模拟模型进行处理,得到仿真振动加速度波形;采用至少一个均衡模块对所述仿真振动加速度波形进行均衡处理,得到所述加密激励信号。
在一个实施例中,一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器执行以下步骤:获取原始激励信号;对所述原始激励信号进行加密处理得到加密激励信号,所述加密激励信号和所述原始激励信号作用于致动器产生的振动波形相同;采用所述加密激励信号驱动所述致动器产生振动。
在一个实施例中,所述对所述原始激励信号进行加密处理得到加密激励信号,包括:对所述原始激励信号进行振动模拟处理,得到仿真振动加速度波形;将所述仿真振动加速度波形进行均衡处理得到所述加密激励信号。
在一个实施例中,所述将所述仿真振动加速度波形进行均衡处理得到所述加密激励信号,包括:对所述仿真振动加速度波形中的高频或低频进行调制得到加密激励信号。
在一个实施例中,所述对所述原始激励信号进行振动模拟处理,得到仿真振动加速度波形,包括:获取所述致动器的线性参数;根据所述线性参数对所述原始激励信号进行振动模拟处理,得到所述仿真振动加速度波形。
在一个实施例中,所述致动器为马达;所述获取所述致动器的线性参数,包括:获取所述马达的马达线性参数;所述根据所述线性参数对所述 原始激励信号进行振动模拟处理,得到所述仿真振动加速度波形,包括:根据所述马达线性参数对所述原始激励信号进行振动模拟处理,得到所述仿真振动加速度波形。
在一个实施例中,所述对所述原始激励信号进行加密处理得到加密激励信号,包括:对所述原始激励信号采用至少一个振动模拟模型进行处理,得到仿真振动加速度波形;采用至少一个均衡模块对所述仿真振动加速度波形进行均衡处理,得到所述加密激励信号。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一非易失性计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种致动器激励信号处理方法,所述方法包括:
    获取原始激励信号;
    对所述原始激励信号进行加密处理得到加密激励信号,所述加密激励信号和所述原始激励信号作用于致动器产生的振动波形相同;
    采用所述加密激励信号驱动所述致动器产生振动。
  2. 根据权利要求1所述的方法,其特征在于,所述对所述原始激励信号进行加密处理得到加密激励信号,包括:
    对所述原始激励信号进行振动模拟处理,得到仿真振动加速度波形;
    将所述仿真振动加速度波形进行均衡处理得到所述加密激励信号。
  3. 根据权利要求2所述的方法,其特征在于,所述将所述仿真振动加速度波形进行均衡处理得到所述加密激励信号,包括:
    对所述仿真振动加速度波形中的高频或低频进行调制得到加密激励信号。
  4. 根据权利要求2所述的方法,其特征在于,所述对所述原始激励信号进行振动模拟处理,得到仿真振动加速度波形,包括:
    获取所述致动器的线性参数;
    根据所述线性参数对所述原始激励信号进行振动模拟处理,得到所述仿真振动加速度波形。
  5. 根据权利要求4所述的方法,其特征在于,所述致动器为马达;
    所述获取所述致动器的线性参数,包括:
    获取所述马达的马达线性参数;
    所述根据所述线性参数对所述原始激励信号进行振动模拟处理,得到所述仿真振动加速度波形,包括:
    根据所述马达线性参数对所述原始激励信号进行振动模拟处理,得到所述仿真振动加速度波形。
  6. 根据权利要求1所述的方法,其特征在于,所述对所述原始激励信号进行加密处理得到加密激励信号,包括:
    对所述原始激励信号采用至少一个振动模拟模型进行处理,得到仿真振动加速度波形;
    采用至少一个均衡模块对所述仿真振动加速度波形进行均衡处理,得到所述加密激励信号。
  7. 一种致动器激励信号处理装置,所述装置包括:
    获取模块,用于获取原始激励信号;
    加密模块,用于对所述原始激励信号进行加密处理得到加密激励信号,所述加密激励信号和所述原始激励信号作用于致动器产生的振动波形相同;
    驱动模块,用于采用所述加密激励信号驱动所述致动器产生振动。
  8. 根据权利要求7所述的装置,其特征在于,所述加密模块还用于对所述原始激励信号进行振动模拟处理,得到仿真振动加速度波形,将所述仿真振动加速度波形进行均衡处理得到所述加密激励信号。
  9. 一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行如权利要求1至6中任一项所述方法的步骤。
  10. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器执行如权利要求1至6中任一项所述方法的步骤。
PCT/CN2019/093609 2019-06-28 2019-06-28 致动器激励信号处理方法、装置、计算机设备及存储介质 WO2020258227A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2019/093609 WO2020258227A1 (zh) 2019-06-28 2019-06-28 致动器激励信号处理方法、装置、计算机设备及存储介质
CN201910591555.0A CN110347253B (zh) 2019-06-28 2019-07-02 致动器激励信号处理方法、装置、计算机设备及存储介质
US16/994,686 US11079853B2 (en) 2019-06-28 2020-08-17 Actuator excitation signal processing method, device, computer equipment and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/093609 WO2020258227A1 (zh) 2019-06-28 2019-06-28 致动器激励信号处理方法、装置、计算机设备及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/994,686 Continuation US11079853B2 (en) 2019-06-28 2020-08-17 Actuator excitation signal processing method, device, computer equipment and storage medium

Publications (1)

Publication Number Publication Date
WO2020258227A1 true WO2020258227A1 (zh) 2020-12-30

Family

ID=68177447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/093609 WO2020258227A1 (zh) 2019-06-28 2019-06-28 致动器激励信号处理方法、装置、计算机设备及存储介质

Country Status (3)

Country Link
US (1) US11079853B2 (zh)
CN (1) CN110347253B (zh)
WO (1) WO2020258227A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204481780U (zh) * 2015-03-29 2015-07-15 吉林大学 一种具有安全电路的触觉激励信号生成器
CN106208890A (zh) * 2016-07-21 2016-12-07 瑞声科技(新加坡)有限公司 线性电机振动一致性的补偿装置及其补偿方法
CN106713280A (zh) * 2016-11-30 2017-05-24 北京得瑞领新科技有限公司 一种激励信号处理方法、装置及模块验证系统
US20180028910A1 (en) * 2016-07-26 2018-02-01 Nintendo Co., Ltd. Vibration control system, vibration control method, and non-transitory computer-readable storage medium with executable vibration control program stored thereon
CN108325806A (zh) * 2017-12-29 2018-07-27 瑞声科技(新加坡)有限公司 振动信号的生成方法及装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6334219B1 (en) * 1994-09-26 2001-12-25 Adc Telecommunications Inc. Channel selection for a hybrid fiber coax network
US7966078B2 (en) * 1999-02-01 2011-06-21 Steven Hoffberg Network media appliance system and method
US8100832B2 (en) * 2007-04-27 2012-01-24 Hitachi Aloka Medical, Ltd. Ultrasound diagnostic apparatus
CN202016521U (zh) * 2011-04-15 2011-10-26 金守保 无线移动式实时防盗告知器
CN202111714U (zh) * 2011-06-14 2012-01-11 泉州天地星电子有限公司 一种基于编码波形加密传输的芯片结构
CN103971694B (zh) * 2013-01-29 2016-12-28 华为技术有限公司 带宽扩展频带信号的预测方法、解码设备
CN105496377B (zh) * 2014-10-08 2021-05-28 中科宁心电子科技(南京)有限公司 一种心率变异生物反馈锻炼系统方法和设备
US9503437B2 (en) * 2014-12-12 2016-11-22 Gn Resound A/S Apparatus for secure hearing device communication and related method
US10191579B2 (en) * 2015-05-22 2019-01-29 Tactual Labs Co. Transmitting and receiving system and method for bidirectional orthogonal signaling sensors
US9990040B2 (en) * 2015-09-25 2018-06-05 Immersion Corporation Haptic CAPTCHA
CN205230009U (zh) * 2015-12-15 2016-05-11 德尔福电子(苏州)有限公司 一种汽车中控面板
US10620704B2 (en) * 2018-01-19 2020-04-14 Cirrus Logic, Inc. Haptic output systems
CN109163794B (zh) * 2018-08-15 2021-11-12 瑞声科技(新加坡)有限公司 线性振动马达带宽的检测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204481780U (zh) * 2015-03-29 2015-07-15 吉林大学 一种具有安全电路的触觉激励信号生成器
CN106208890A (zh) * 2016-07-21 2016-12-07 瑞声科技(新加坡)有限公司 线性电机振动一致性的补偿装置及其补偿方法
US20180028910A1 (en) * 2016-07-26 2018-02-01 Nintendo Co., Ltd. Vibration control system, vibration control method, and non-transitory computer-readable storage medium with executable vibration control program stored thereon
CN106713280A (zh) * 2016-11-30 2017-05-24 北京得瑞领新科技有限公司 一种激励信号处理方法、装置及模块验证系统
CN108325806A (zh) * 2017-12-29 2018-07-27 瑞声科技(新加坡)有限公司 振动信号的生成方法及装置

Also Published As

Publication number Publication date
US20200409463A1 (en) 2020-12-31
CN110347253B (zh) 2022-04-01
CN110347253A (zh) 2019-10-18
US11079853B2 (en) 2021-08-03

Similar Documents

Publication Publication Date Title
US10429933B2 (en) Audio enhanced simulation of high bandwidth haptic effects
KR102204606B1 (ko) 다수의 액츄에이터를 사용하는 사운드-햅틱 효과 변환 시스템
JP2018037106A (ja) マッピングを用いた音をハプティック効果に変換するシステム
CN112438052B (zh) 具有电流源放大器的扩音器系统的非线性控制
CN110995079B (zh) 电机振动信号的生成方法、装置、终端及存储介质
Balthazar et al. Nonlinear control in an electromechanical transducer with chaotic behaviour
JP6895178B2 (ja) スピーカ駆動装置、スピーカ装置およびプログラム
Brunet Nonlinear system modeling and identification of loudspeakers
WO2020258227A1 (zh) 致动器激励信号处理方法、装置、计算机设备及存储介质
TW420930B (en) Active digital audio/video signal modification to correct for playback system deficiencies
CN107632927A (zh) 一种在c/s架构中模拟数据加密的压力测试方法与装置
CN111741407B (zh) 一种扬声器补偿方法、装置、存储介质及设备
US10381994B2 (en) Constrained nonlinear parameter estimation for robust nonlinear loudspeaker modeling for the purpose of smart limiting
CN111292722A (zh) 异步联合架构的模型训练方法、终端、服务器及存储装置
DE102020115839A1 (de) Doppler-Ausgleich bei koaxialen und versetzten Lautsprechern
WO2020157978A1 (ja) 情報処理装置
Klippel Active compensation of transducer nonlinearities
WO2021120034A1 (zh) 马达电信号参数化描述方法、装置、设备和介质
WO2019069466A1 (ja) スピーカ駆動装置、スピーカ装置およびプログラム
CN114727106A (zh) 一种电子设备的信号处理与传输方法、系统
Luo et al. A model based excursion protection algorithm for loudspeakers
DE112020004160T5 (de) Steuerungseinrichtung, lautsprechereinrichtung und audioausgabeverfahren
CN111818421B (zh) 音频信号的控制方法及装置、存储介质及设备
Brunet et al. New trends in modeling and identification of loudspeaker with nonlinear distortion
EP3085113B1 (fr) Procede et dispositif d'estimation de parametres caracterisant un ensemble acoustique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19935385

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19935385

Country of ref document: EP

Kind code of ref document: A1