WO2020257990A1 - 设备推荐方法及相关产品 - Google Patents

设备推荐方法及相关产品 Download PDF

Info

Publication number
WO2020257990A1
WO2020257990A1 PCT/CN2019/092591 CN2019092591W WO2020257990A1 WO 2020257990 A1 WO2020257990 A1 WO 2020257990A1 CN 2019092591 W CN2019092591 W CN 2019092591W WO 2020257990 A1 WO2020257990 A1 WO 2020257990A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
user
target
target object
portrait
Prior art date
Application number
PCT/CN2019/092591
Other languages
English (en)
French (fr)
Inventor
安琪
Original Assignee
深圳市欢太科技有限公司
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市欢太科技有限公司, Oppo广东移动通信有限公司 filed Critical 深圳市欢太科技有限公司
Priority to PCT/CN2019/092591 priority Critical patent/WO2020257990A1/zh
Priority to CN201980089735.7A priority patent/CN113316778B/zh
Publication of WO2020257990A1 publication Critical patent/WO2020257990A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • This application relates to the field of communication technology, and specifically to a device recommendation method and related products.
  • the current mobile phone replacement is based on the user's own search or physical store experience. Often users choose their mobile phones randomly. Not only is it difficult to recommend a suitable model to the user, it is also time-consuming to select a mobile phone, which affects the user's replacement experience.
  • the embodiments of the present application provide a device recommendation method and related products to improve the efficiency of user replacement and improve user experience.
  • a device recommendation method includes:
  • the recommended model corresponding to the target object is determined according to the portrait of the target user.
  • an embodiment of the present application provides a device recommendation device, the device including:
  • the obtaining unit is used to obtain user data of the target object
  • An establishment unit configured to establish a target user portrait of the target object according to the user data
  • the determining unit is configured to determine the recommended model corresponding to the target object according to the portrait of the target user.
  • an embodiment of the present application provides an electronic device, including a processor, a memory, a communication interface, and one or more programs, wherein the one or more programs are stored in the memory and configured by Executed by a processor, and the foregoing program includes instructions for executing the steps in the first aspect of the embodiments of the present application.
  • an embodiment of the present application provides a computer-readable storage medium, wherein the foregoing computer-readable storage medium stores a computer program for electronic data exchange, wherein the foregoing computer program enables a computer to execute Some or all of the steps described in one aspect.
  • embodiments of the present application provide a computer program product, wherein the computer program product includes a non-transitory computer-readable storage medium storing a computer program, and the computer program is operable to cause a computer to execute Example part or all of the steps described in the first aspect.
  • the computer program product may be a software installation package.
  • FIG. 1A is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 1B is a schematic flowchart of a device recommendation method disclosed in an embodiment of the present application.
  • FIG. 1C is a schematic diagram of a device recommendation method disclosed in an embodiment of the present application.
  • FIG. 1D is a schematic diagram showing the structure of a user portrait disclosed in an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of another device recommendation method disclosed in an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of another device recommendation method disclosed in an embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of another electronic device disclosed in an embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of a device recommendation device disclosed in an embodiment of the present application.
  • terminal devices may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems, as well as various forms of users Equipment (user equipment, UE), mobile station (MS), smart home equipment (smart TV, smart air conditioner, smart range hood, smart fan, smart wheelchair, smart dining table, etc.), etc.
  • UE user equipment
  • MS mobile station
  • smart home equipment smart TV, smart air conditioner, smart range hood, smart fan, smart wheelchair, smart dining table, etc.
  • the above-mentioned devices are collectively referred to as electronic devices, and the above-mentioned electronic devices may also be servers, service platforms, and so on.
  • FIG. 1A is a schematic structural diagram of an electronic device disclosed in an embodiment of the present application.
  • the electronic device 100 may include a control circuit, and the control circuit may include a storage and processing circuit 110.
  • the storage and processing circuit 110 can be memory, such as hard disk drive memory, non-volatile memory (such as flash memory or other electronic programmable read-only memory used to form a solid-state drive, etc.), volatile memory (such as static or dynamic random access memory). Access to memory, etc.), etc., are not limited in the embodiment of the present application.
  • the processing circuit in the storage and processing circuit 110 can be used to control the operation of the electronic device 100.
  • the processing circuit can be implemented based on one or more microprocessors, microcontrollers, baseband processors, power management units, audio codec chips, application specific integrated circuits, display driver integrated circuits, etc.
  • the storage and processing circuit 110 can be used to run software in the electronic device 100, such as Internet browsing applications, voice over internet protocol (VOIP) phone call applications, email applications, media playback applications, and operating system functions Wait. These softwares can be used to perform some control operations, for example, camera-based image capture, ambient light measurement based on ambient light sensors, proximity sensor measurement based on proximity sensors, and information based on status indicators such as LED status indicators Display functions, touch event detection based on touch sensors, functions associated with displaying information on multiple (eg layered) displays, operations associated with performing wireless communication functions, operations associated with collecting and generating audio signals , The control operations associated with the collection and processing of button press event data, and other functions in the electronic device 100, are not limited in the embodiment of the present application.
  • the electronic device 100 may further include an input-output circuit 150.
  • the input-output circuit 150 can be used to enable the electronic device 100 to implement data input and output, that is, allow the electronic device 100 to receive data from an external device and also allow the electronic device 100 to output data from the electronic device 100 to the external device.
  • the input-output circuit 150 may further include a sensor 170.
  • the sensor 170 may include an ambient light sensor, a proximity sensor based on light and capacitance, and a touch sensor (for example, a light-based touch sensor and/or a capacitive touch sensor, where the touch sensor may be a part of a touch screen, or may be used as a The touch sensor structure is used independently), acceleration sensor, gravity sensor, and other sensors.
  • the input-output circuit 150 may also include one or more displays, such as the display 130.
  • the display 130 may include one or a combination of a liquid crystal display, an organic light emitting diode display, an electronic ink display, a plasma display, and a display using other display technologies.
  • the display 130 may include a touch sensor array (ie, the display 130 may be a touch display screen).
  • the touch sensor can be a capacitive touch sensor formed by an array of transparent touch sensor electrodes (such as indium tin oxide (ITO) electrodes), or can be a touch sensor formed using other touch technologies, such as sonic touch, pressure-sensitive touch, and resistance Touch, optical touch, etc., are not limited in the embodiment of the present application.
  • ITO indium tin oxide
  • the audio component 140 may be used to provide audio input and output functions for the electronic device 100.
  • the audio component 140 in the electronic device 100 may include a speaker, a microphone, a buzzer, a tone generator, and other components for generating and detecting sounds.
  • the communication circuit 120 may be used to provide the electronic device 100 with the ability to communicate with external devices.
  • the communication circuit 120 may include analog and digital input-output interface circuits, and wireless communication circuits based on radio frequency signals and/or optical signals.
  • the wireless communication circuit in the communication circuit 120 may include a radio frequency transceiver circuit, a power amplifier circuit, a low noise amplifier, a switch, a filter, and an antenna.
  • the wireless communication circuit in the communication circuit 120 may include a circuit for supporting near field communication (NFC) by transmitting and receiving near-field coupled electromagnetic signals.
  • the communication circuit 120 may include a near field communication antenna and a near field communication transceiver.
  • the communication circuit 120 may also include a cellular phone transceiver and antenna, a wireless local area network transceiver circuit and antenna, and so on.
  • the electronic device 100 may further include a battery, a power management circuit, and other input-output units 160.
  • the input-output unit 160 may include buttons, joysticks, click wheels, scroll wheels, touch pads, keypads, keyboards, cameras, light emitting diodes, and other status indicators.
  • the user can input commands through the input-output circuit 150 to control the operation of the electronic device 100, and can use the output data of the input-output circuit 150 to realize receiving status information from the electronic device 100 and other outputs.
  • FIG. 1B is a schematic flowchart of a device recommendation method according to an embodiment of the present application.
  • the data transmission method described in this embodiment is applied to the electronic device as shown in FIG. 1A.
  • the device recommendation method includes:
  • user data can be understood as data used by the electronic device within a specified time period, and the specified time period can be set by the user or the system defaults.
  • the user data may come from the usage data of at least one application in the electronic device.
  • the above at least one application may be a third-party application or a system application, and the usage data may include at least one of the following: registration application data, application cache data Or instant messaging data, etc., which are not limited here.
  • the application data may include: the user’s cookie, the APP-side browsing behavior identification ID, and the user ID such as the account ID.
  • the above user data may also be at least the following One: CPU operating frequency, CPU core number, CPU operating mode, GPU frame rate, GPU resolution, device brightness, device sound, some or all of the parameters in memory parameters.
  • the nature of the user ID of the user identity identification can be a device hardware ID or a character identification.
  • electronic devices may be used by multiple people.
  • IMEI device IMEI
  • SSOID Session Object Identity
  • OppenId user location data
  • Internet behavior data etc.
  • a multi-dimensional feature layer and ID-mapping relationship layer can be constructed.
  • the multi-code relationship can be used in the natural person recognition layer.
  • the letter recognition filtering algorithm and the graph connection algorithm complete the accurate recognition of natural persons, so that the owner can be accurately identified, after all, the owner is still using electronic equipment most of the time.
  • the above step 101, obtaining user data of the target object may include the following steps:
  • the aforementioned preset time period can be set by the user or the system defaults.
  • the preset time period can be understood as a period of time during which the electronic device has been used recently, or between registering any user ID in at least one user ID and the current time
  • the target object may be a user
  • the preset database may be used to store application data of different applications, and each application data corresponds to at least one user ID.
  • the user ID may be at least one of the following: phone number, integrated circuit card identity (ICCID), international mobile equipment identity (IMEI), single sign-on ID (Single Sign On identification, SSOID), third-party application ID, OppenId, etc., are not limited here.
  • the electronic device may obtain at least one user ID of the target object, and further, may obtain at least one application data of the target object in a preset time period from a preset database according to the at least one user ID, and then combine the at least one application data The data is the user data of the target object.
  • step 101 when the at least one user ID is a natural person ID, before step 101, the following steps may be further included:
  • A2. Construct a multi-dimensional feature layer and ID-mapping relationship layer according to the historical usage data
  • A3. Determine the natural person ID according to the multi-dimensional feature layer and the ID-mapping relationship layer.
  • historical user data can be understood as the use data corresponding to the user from using the electronic device for the first time to the current time, or all use data corresponding to at least one user ID of the target object, and the historical use data may come from at least one application
  • the above-mentioned at least one application may be a third-party application or a system application
  • the usage data may include at least one of the following: registered application data, application cache data, or instant messaging data, etc., which are not limited here, for example
  • the application data may include: the user’s cookie, APP-side browsing behavior identification ID, and user ID such as account ID.
  • the above user data may also be at least one of the following: CPU operating frequency, CPU core number, CPU operating mode , GPU frame rate, GPU resolution, device brightness, device sound, some or all of the parameters in memory parameters.
  • the nature of the user ID of the user identity identification can be a device hardware ID or a character identification.
  • the electronic device can obtain historical usage data corresponding to the target object.
  • the historical usage data can be obtained from a data source.
  • the data source can include at least one of the following: browser, software store, account system, high German data, shopping data, communication data, game data, social data, office data, smart home data, etc. are not limited here.
  • the ID-MAPPing relationship layer data can be obtained according to the historical usage data.
  • the ID-MAPPing relationship layer data can include at least one of the following: OSSID ⁇ ->IMEI (the mapping relationship between OSSID and IMEI), TEL ⁇ ->IMEI, OppenId ⁇ ->ICCID, etc., are not limited here.
  • Multi-dimensional feature layer data can also be obtained based on historical usage data.
  • Multi-dimensional feature layer data can include at least one of the following: device features, APP features, positioning features, etc., which are not limited here
  • the multi-dimensional feature layer and the ID-mapping relationship layer it can be determined that each natural person ID can correspond to a user portrait.
  • the user portrait can include at least one of the following: demographic attributes, human-land relationship, interest Hobbies, equipment attributes, assets, business interests, etc., are not limited here.
  • the above-mentioned device characteristics may include at least one of the following: device attributes (such as equipment daily management, model configuration, activation date, etc.), network connection conditions (such as: WIFI connection, network IP, base station, connection distribution, etc.) ), ID's own attributes (such as ID format, character length, etc.), etc., which are not limited here.
  • APP features can include at least one of the following: APP installation, startup, uninstallation, APP type preferences (such as games, applications), APP active periods (working days, holidays, etc.), etc., which are not limited here.
  • Positioning features can include the following At least one: location attribute (for example, home or company, resident business district, frequently active place), travel preference (for example, travel mode, travel time, travel frequency, travel trajectory, etc.), POI preference (POI arrival, POI search for).
  • the user data reflects some characteristics of the user to a certain extent, and further, the target user portrait of the target object can be established based on the user data.
  • the target user portrait may reflect the following characteristics of the user: identity, occupation, age, hobbies, activity area, asset situation, consumption situation, etc., which are not limited here.
  • step 102 establishing the target user portrait of the target object according to the user data, may include the following steps:
  • different data can correspond to different types.
  • user data can be divided into different types according to different application types.
  • the application types can include at least one of the following: APP name, application function type (for example, game, chat , Video, shopping, etc.), the number of app users, app size, app ratings, etc., are not limited here.
  • user data can also be classified according to user ID, etc., which is not limited here.
  • the electronic device can classify user data to obtain multiple types of data, and further, can integrate each type of data in the multiple types of data.
  • the purpose of integration is to remove some unnecessary data. If integrated,
  • the clustering algorithm or other classification algorithms are used for processing to obtain integrated multiple types of data, and the target user portrait of the target object can be generated based on the integrated multiple types of data.
  • step 22 integrating each of the multiple types of data to obtain the multiple types of data after integration, may include the following steps:
  • the j-th type data is any type of data among multiple types of data
  • the electronic device can perform cluster analysis on the data in the j-th type data to obtain multiple sub-category data, and further, Keep the target sub-category data.
  • the target sub-category data is the sub-category data with the largest amount of data among the multiple sub-category data.
  • all other sub-category data except the target sub-category data in the multiple sub-category data are excluded.
  • the target user portrait reflects the target object's model preference and the user's asset situation to a certain extent. Therefore, the recommended model corresponding to the target object can be determined according to the target user portrait.
  • the recommended model can be one or more models, and the model can be understood as the model of the electronic device, such as RENO, or Huawei P30Pro, etc.
  • step 103 determining the recommended model corresponding to the target object according to the target user portrait, may include the following steps:
  • B31 Determine the target consumption level of the target object and user usage habit data of the target object according to the target user portrait
  • B34 Determine an intersection of the first model set and the second model set, and use at least one model in the intersection as the recommended model.
  • the usage habit data reflects the user's requirements for the hardware and software of the device to a certain extent, for example, is it accustomed to Android system or Apple system, for example, is accustomed to using Huawei mobile phone, or OPPO mobile phone, for example, accustomed to using full screen , Or non-full screen, etc.
  • the information of each model can be pre-stored in the above-mentioned preset device information database, and the information of the model can be at least one of the following: model, price, configuration, color, etc., which are not limited here.
  • the electronic device can determine the target consumption level of the target object and the user's usage habit data of the target object through the target user portrait.
  • the electronic device can also pre-store the mapping relationship between the consumption level and the model model, and further, can be based on the mapping relationship from The first model set that matches the target consumption level is determined in the preset database.
  • the first model set can include at least one model.
  • the electronic device can pre-store the habit data and the model model.
  • the second model set corresponding to the user habit data can be determined from the preset device information database according to the mapping relationship.
  • the second model set may include at least one model of the model.
  • the intersection of the first model set and the second model set can be determined, and at least one model in the intersection can be used as a recommended model.
  • step B34 using at least one model model in the intersection as the recommended model, can be implemented as follows:
  • the above-mentioned equipment attention information may be at least one of the following: equipment color, equipment price, equipment thickness, equipment brand, equipment sales volume, number of equipment sales highlights, etc., which are not limited here.
  • the electronic device can determine the device attention information corresponding to the target object according to the target user portrait, and then determine the display order of all models in the intersection according to the device attention information to obtain the target display order, for example, the price from high to low
  • the order, or the order of device thickness from low to high, etc. is not limited here, and furthermore, the devices corresponding to the models in the intersection can be displayed according to the target display order.
  • step 103 determining the recommended model corresponding to the target object according to the target user portrait, may include the following steps:
  • the above-mentioned preset threshold can be set by the user or the system defaults.
  • the electronic device can obtain multiple user portraits, and each user portrait can correspond to a natural person ID.
  • the target user portrait can be matched with multiple user portraits to obtain multiple matching values, which can be selected from multiple matching values.
  • For a matching value greater than a preset threshold at least one target matching value is obtained, the user portrait corresponding to the at least one target matching value can be determined, at least one reference user portrait is obtained, and the model corresponding to the at least one reference user portrait is used as the recommended model In this way, models of people with the same habits or tastes as the target can be provided to the target.
  • step D32 matching the target user portrait with the multiple user portraits to obtain multiple matching values, may include the following steps:
  • the parameter feature set i includes parameter features of multiple dimensions, and the user portrait i is any one of the multiple user portraits;
  • D333 Determine the similarity between the feature parameter of each dimension in the multiple dimensions in the parameter feature set i and the feature parameter of the target parameter feature set to obtain multiple similarities, and the target parameter feature set is the target user
  • D334. Perform a weighting operation according to the multiple similarities and the multiple weight values to obtain a matching value between the user portrait i and the target user portrait.
  • the above parameter feature set can be at least one of the following features: user level, point consumption, activity, preference type, online time, online time, operating habits, communication times, communication time, user ID, etc., which are not done here limited.
  • the electronic device may perform feature extraction on the user portrait i.
  • a rule/pattern machine learning algorithm may be used to perform feature extraction on the user portrait i to obtain the parameter feature set i.
  • the electronic device can perform feature extraction according to the user portrait i to obtain a parameter feature set i.
  • the parameter feature set i can include parameter features in multiple dimensions, and the user portrait i is any one of the multiple user portraits.
  • User portrait the electronic device can also store the weight value corresponding to each dimension, can obtain the weight value corresponding to each dimension of the feature parameters of multiple dimensions in the parameter feature set i, and obtain multiple weight values, which can be based on a preset algorithm Determine the similarity between the feature parameters of each dimension in the multiple dimensions in the parameter feature set i and the feature parameters of the target parameter feature set, and obtain multiple similarities.
  • the target parameter feature set is the parameter feature set corresponding to the target user portrait.
  • the preset comparison algorithm can be: Locality-Sensitive Hashing (LSH), SSIM, dual-sequence local comparison algorithm, etc., which are not limited here, and further, weighted based on multiple similarities and multiple weight values Calculate the matching value between the user portrait i and the target user portrait.
  • LSH Locality-Sensitive Hashing
  • SSIM Single-sequence local comparison algorithm
  • the embodiment of this application can construct a multi-dimensional feature layer and ID-mapping relationship layer by integrating multiple data sources, such as: device IMEI, OPPO account ssoid system, OppenId, user location data, and Internet behavior data, etc.
  • the natural person recognition layer uses the multi-code relationship trusted recognition filtering algorithm and the graph connection algorithm to complete the accurate recognition of natural persons. Each natural person is assigned a unique user ID, and then the user data corresponding to the target object is determined based on the user ID. Extract all cross-device and cross-account system historical data of the user, and establish a complete user portrait of the user by analyzing and researching the historical data.
  • User portraits include, but are not limited to, demographic attributes, device attributes, human-land relationships, hobbies, assets, consumption levels, and other label data. Then, the target user portrait of the target object is established. After the target user portrait is established, when the user has When a replacement is required, a suitable mobile phone model can be recommended to the user according to the characteristics of the user's portrait, which improves the effect of recommendation conversion and improves the user's replacement experience. For example, if a user had a low income before, but now he has changed jobs and his income level has increased, he can recommend a relatively high-priced model to him.
  • the device recommendation method described in the above embodiment of the application obtains user data of the target object, establishes the target user portrait of the target object according to the user data, and determines the recommended model corresponding to the target object according to the target user portrait.
  • a user has a need to replace a phone, he can recommend a suitable mobile phone model to him based on the user's portrait characteristics, so as to improve the effect of recommendation conversion and improve the user's replacement experience.
  • FIG. 2 is a schematic flowchart of another device recommendation method provided by an embodiment of the present application.
  • the device recommendation method described in this embodiment is applied to the electronic device shown in FIG. 1A , The method may include the following steps:
  • the device recommendation method described in the above embodiment of the application obtains user data of the target object, establishes the target user portrait of the target object according to the user data, and determines the target consumption level of the target object and the target user's user according to the target user portrait Using habit data, according to the target consumption level, determine the first model set matching the target consumption level from the preset equipment information database, and determine the corresponding user habit data from the preset equipment information database according to the user usage habit data For the second model set, determine the intersection of the first model set and the second model set, and use at least one model in the intersection as the recommended model. In this way, when the user needs to change the phone, then It is possible to recommend a suitable mobile phone model to the user according to the characteristics of the user's portrait, which improves the effect of recommendation conversion and improves the user's replacement experience.
  • FIG. 3 is a schematic flowchart of an embodiment of another device recommendation method provided by an embodiment of this application.
  • the device recommendation method described in this embodiment is applied to the electronic device as shown in FIG. 1A.
  • the method may include the following steps:
  • the device recommendation method described in the above embodiment of the application obtains user data of the target object, establishes the target user portrait of the target object according to the user data, obtains multiple user portraits, and combines the target user portrait with the multiple user portraits.
  • Match to obtain multiple matching values select a matching value greater than a preset threshold from the multiple matching values to obtain at least one target matching value, determine the user portrait corresponding to at least one target matching value, and obtain at least one reference user portrait, which will be at least A model corresponding to the reference user portrait is the recommended model.
  • a user portrait similar to the user can be determined based on the user’s portrait characteristics, and the models corresponding to these user portraits can be recommended to the user to improve the effect of recommendation conversion and improve user replacement.
  • Machine experience when a user has a need for replacement, a user portrait similar to the user can be determined based on the user’s portrait characteristics, and the models corresponding to these user portraits can be recommended to the user to improve the effect of recommendation conversion and improve user replacement. Machine experience.
  • FIG. 4 is an electronic device provided by an embodiment of the present application, including: a processor and a memory; and one or more programs, the one or more programs are stored in the In the memory and configured to be executed by the processor, the program includes instructions for executing the following steps:
  • the recommended model corresponding to the target object is determined according to the portrait of the target user.
  • the electronic device described in the above embodiment of the application obtains user data of the target object, establishes the target user portrait of the target object according to the user data, and determines the recommended model corresponding to the target object according to the target user portrait.
  • a suitable mobile phone model can be recommended to the user based on the characteristics of the user's portrait, which improves the effect of recommendation conversion and improves the user's replacement experience.
  • the program includes instructions for executing the following steps:
  • the program when the at least one user ID is a natural person ID, the program further includes instructions for executing the following steps:
  • the natural person ID is determined according to the multi-dimensional feature layer and the ID-mapping relationship layer.
  • the program includes instructions for executing the following steps:
  • the target user portrait of the target object is generated according to the integrated data of the multiple types.
  • the program includes instructions for executing the following steps:
  • the target sub-category data exclude all other sub-category data except the target sub-category data in the multiple sub-category data, and the target sub-category data is the category with the largest amount of data among the multiple sub-category data Subcategory data.
  • the program includes instructions for executing the following steps:
  • the program further includes instructions for executing the following steps:
  • the using at least one model model in the intersection as the recommended model includes:
  • the program further includes instructions for executing the following steps:
  • the program further includes instructions for executing the following steps:
  • the parameter feature set i includes parameter features of multiple dimensions, and the user portrait i is any one of the multiple user portraits;
  • the electronic device includes hardware structures and/or software modules corresponding to each function.
  • this application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiment of the present application may divide the electronic device into functional units according to the foregoing method examples.
  • each functional unit may be divided corresponding to each function, or two or more functions may be integrated into one processing unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit. It should be noted that the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 5 is a schematic structural diagram of a device recommendation apparatus provided by this embodiment.
  • the device recommendation device is applied to the electronic device as shown in FIG. 1A, and the device recommendation device includes an acquiring unit 501, a establishing unit 502, and a determining unit 503, wherein,
  • the obtaining unit 501 is configured to obtain user data of the target object
  • the establishment unit 502 is configured to establish a target user portrait of the target object according to the user data
  • the determining unit 503 is configured to determine the recommended model corresponding to the target object according to the portrait of the target user.
  • the device recommendation apparatus described in the above embodiment of the application obtains user data of the target object, establishes the target user portrait of the target object according to the user data, and determines the recommended model corresponding to the target object according to the target user portrait.
  • a user has a need to replace a phone, he can recommend a suitable mobile phone model to him based on the user's portrait characteristics, so as to improve the effect of recommendation conversion and improve the user's replacement experience.
  • the acquiring unit 501 is specifically configured to:
  • the at least one user ID is a natural person ID
  • the acquiring unit 501 is also specifically configured to acquire historical usage data of the electronic device corresponding to the target object;
  • the establishing unit 502 is further specifically configured to construct a multi-dimensional feature layer and an ID-mapping relationship layer according to the historical usage data;
  • the determining unit 503 is further specifically configured to determine the natural person ID according to the multi-dimensional feature layer and the ID-mapping relationship layer.
  • the establishing unit 502 is specifically configured to:
  • the target user portrait of the target object is generated according to the integrated data of the multiple types.
  • the establishing unit 502 is specifically configured to:
  • the target sub-category data exclude all other sub-category data except the target sub-category data in the multiple sub-category data, and the target sub-category data is the category with the largest amount of data among the multiple sub-categories Subcategory data.
  • the determining unit 503 is specifically configured to:
  • the determining unit 503 is further specifically configured to:
  • the determining unit is specifically configured to:
  • the determining unit 503 is specifically configured to:
  • the determining unit 503 is specifically configured to:
  • the parameter feature set i includes parameter features of multiple dimensions, and the user portrait i is any one of the multiple user portraits;
  • each program module of the device recommendation apparatus of this embodiment can be implemented according to the method in the above method embodiment, and the specific implementation process can be referred to the relevant description of the above method embodiment, which will not be repeated here.
  • An embodiment of the present application also provides a computer storage medium, wherein the computer storage medium stores a computer program for electronic data exchange, and the computer program causes a computer to execute a part of any data transmission method described in the above method embodiment Or all steps.
  • the embodiments of the present application also provide a computer program product, the computer program product includes a non-transitory computer-readable storage medium storing a computer program, and the computer program is operable to cause a computer to execute the method described in the foregoing method embodiment Part or all of the steps of any data transmission method.
  • the disclosed device may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be realized in the form of hardware or software program module.
  • the integrated unit is implemented in the form of a software program module and sold or used as an independent product, it can be stored in a computer readable memory.
  • the technical solution of the present application essentially or the part that contributes to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a memory, A number of instructions are included to enable a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned memory includes: U disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), mobile hard disk, magnetic disk, or optical disk and other media that can store program codes.
  • the program can be stored in a computer-readable memory, and the memory can include: flash disk , ROM, RAM, magnetic disk or CD, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

本申请实施例公开了一种设备推荐方法及相关产品,该方法包括:获取目标对象的用户数据;依据所述用户数据建立所述目标对象的目标用户画像;依据所述目标用户画像确定所述目标对象对应的推荐机型。采用本申请实施例,可以在用户有换机需求时,则可以根据该用户的画像特征向其推荐合适的手机型号,提升推荐转化的效果,改善用户的换机体验。

Description

设备推荐方法及相关产品 技术领域
本申请涉及通信技术领域,具体涉及一种设备推荐方法及相关产品。
背景技术
随着电子设备(如:手机、平板电脑等)的大量普及应用,电子设备能够支持的应用越来越多,功能越来越强大,电子设备向着多样化、个性化的方向发展,成为用户生活中不可缺少的电子用品。
目前的手机换机基于用户自己去搜索或实体店体验,往往用户也是随机选择手机,不仅很难给用户推荐到合适的机型,另外,选择手机也相当耗费时间,影响用户的换机体验。
发明内容
本申请实施例提供了一种设备推荐方法及相关产品,提升用户换机效率,提升用户体验。
第一方面,本申请实施例一种设备推荐方法,包括:
获取目标对象的用户数据;
依据所述用户数据建立所述目标对象的目标用户画像;
依据所述目标用户画像确定所述目标对象对应的推荐机型。
第二方面,本申请实施例提供了一种设备推荐装置,所述装置包括:
获取单元,用于获取目标对象的用户数据;
建立单元,用于依据所述用户数据建立所述目标对象的目标用户画像;
确定单元,用于依据所述目标用户画像确定所述目标对象对应的推荐机型。
第三方面,本申请实施例提供一种电子设备,包括处理器、存储器、通信接口,以及一个或多个程序,其中,上述一个或多个程序被存储在上述存储器中,并且被配置由上述处理器执行,上述程序包括用于执行本申请实施例第一方面中的步骤的指令。
第四方面,本申请实施例提供了一种计算机可读存储介质,其中,上述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,上述计算机程序使得计算机执行如本申请实施例第一方面中所描述的部分或全部步骤。
第五方面,本申请实施例提供了一种计算机程序产品,其中,上述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,上述计算机程序可操作来使计算机执行如本申请实施例第一方面中所描述的部分或全部步骤。该计算机程序产品可以为一个软件安装包。
附图说明
下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技 术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1A是本申请实施例提供的一种电子设备的结构示意图;
图1B是本申请实施例公开的一种设备推荐方法的流程示意图;
图1C是本申请实施例公开的一种设备推荐方法的演示示意图;
图1D是本申请实施例公开的一种用户画像的结构演示示意图;
图2是本申请实施例公开的另一种设备推荐方法的流程示意图;
图3是本申请实施例公开的另一种设备推荐方法的流程示意图;
图4是本申请实施例公开的另一种电子设备的结构示意图;
图5是本申请实施例公开的一种设备推荐装置的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本申请实施例所涉及到的电子设备,终端设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备(user equipment,UE),移动台(mobile station,MS),智能家居设备(智能电视机、智能空调、智能油烟机、智能电扇、智能轮椅、智能饭桌等等)等等。为方便描述,上面提到的设备统称为电子设备,上述电子设备还可以为服务器、业务平台等等。
下面对本申请实施例进行详细介绍。
请参阅图1A,图1A是本申请实施例公开的一种电子设备的结构示意图,电子设备100可以包括控制电路,该控制电路可以包括存储和处理电路110。该存储和处理电路110可以存储器,例如硬盘驱动存储器,非易失性存储器(例如闪存或用于形成固态驱动器的其它电子可编程只读存储器等),易失性存储器(例如静态或动态随机存取存储器等)等,本申请实施例不作限制。存储和处理电路110中的处理电路可以用于控制电子设备100的运 转。该处理电路可以基于一个或多个微处理器,微控制器,基带处理器,功率管理单元,音频编解码器芯片,专用集成电路,显示驱动器集成电路等来实现。
存储和处理电路110可用于运行电子设备100中的软件,例如互联网浏览应用程序,互联网协议语音(voice over internet protocol,VOIP)电话呼叫应用程序,电子邮件应用程序,媒体播放应用程序,操作系统功能等。这些软件可以用于执行一些控制操作,例如,基于照相机的图像采集,基于环境光传感器的环境光测量,基于接近传感器的接近传感器测量,基于诸如发光二极管的状态指示灯等状态指示器实现的信息显示功能,基于触摸传感器的触摸事件检测,与在多个(例如分层的)显示器上显示信息相关联的功能,与执行无线通信功能相关联的操作,与收集和产生音频信号相关联的操作,与收集和处理按钮按压事件数据相关联的控制操作,以及电子设备100中的其它功能等,本申请实施例不作限制。
电子设备100还可以包括输入-输出电路150。输入-输出电路150可用于使电子设备100实现数据的输入和输出,即允许电子设备100从外部设备接收数据和也允许电子设备100将数据从电子设备100输出至外部设备。输入-输出电路150可以进一步包括传感器170。传感器170可以包括环境光传感器,基于光和电容的接近传感器,触摸传感器(例如,基于光触摸传感器和/或电容式触摸传感器,其中,触摸传感器可以是触控显示屏的一部分,也可以作为一个触摸传感器结构独立使用),加速度传感器,重力传感器,和其它传感器等。
输入-输出电路150还可以包括一个或多个显示器,例如显示器130。显示器130可以包括液晶显示器,有机发光二极管显示器,电子墨水显示器,等离子显示器,使用其它显示技术的显示器中一种或者几种的组合。显示器130可以包括触摸传感器阵列(即,显示器130可以是触控显示屏)。触摸传感器可以是由透明的触摸传感器电极(例如氧化铟锡(ITO)电极)阵列形成的电容式触摸传感器,或者可以是使用其它触摸技术形成的触摸传感器,例如音波触控,压敏触摸,电阻触摸,光学触摸等,本申请实施例不作限制。
音频组件140可以用于为电子设备100提供音频输入和输出功能。电子设备100中的音频组件140可以包括扬声器,麦克风,蜂鸣器,音调发生器以及其它用于产生和检测声音的组件。
通信电路120可以用于为电子设备100提供与外部设备通信的能力。通信电路120可以包括模拟和数字输入-输出接口电路,和基于射频信号和/或光信号的无线通信电路。通信电路120中的无线通信电路可以包括射频收发器电路、功率放大器电路、低噪声放大器、开关、滤波器和天线。举例来说,通信电路120中的无线通信电路可以包括用于通过发射和接收近场耦合电磁信号来支持近场通信(near field communication,NFC)的电路。例如,通信电路120可以包括近场通信天线和近场通信收发器。通信电路120还可以包括蜂窝电话收发器和天线,无线局域网收发器电路和天线等。
电子设备100还可以进一步包括电池,电力管理电路和其它输入-输出单元160。输入-输出单元160可以包括按钮,操纵杆,点击轮,滚动轮,触摸板,小键盘,键盘,照相机,发光二极管和其它状态指示器等。
用户可以通过输入-输出电路150输入命令来控制电子设备100的操作,并且可以使用 输入-输出电路150的输出数据以实现接收来自电子设备100的状态信息和其它输出。
请参阅图1B,图1B是本申请实施例提供的一种设备推荐方法的流程示意图,本实施例中所描述的数据传输方法,应用于如图1A的电子设备,该设备推荐方法包括:
101、获取目标对象的用户数据。
其中,用户数据可以理解为电子设备在指定时间段内使用的数据,该指定时间段可以由用户自行设置或者系统默认。用户数据可以来自于电子设备中至少一个应用的使用数据,本申请实施例中,上述至少一个应用可以为第三方应用或者系统应用,使用数据可以包括以下至少一种:注册应用数据、应用缓存数据或者即时通讯数据等等,在此不做限定,例如,应用数据可以包括:用户的cookie、APP端浏览行为标识ID、以及账号ID等用户身份标识的用户ID,上述用户数据还可以为以下至少一种:CPU工作频率、CPU核数、CPU工作模式、GPU帧率、GPU分辨率、设备亮度、设备声音、内存参数中的部分参数或者全部参数。其中,该用户身份标识的用户ID的性质可以为设备硬件ID或字符标识。
当然,电子设备可能被多个人使用,可以通过整合设备IMEI、SSOID、OppenId、用户位置数据和互联网行为数据等,构建出多维特征层和ID-mapping关系层,在自然人识别层利用多码关系可信识别过滤算法和图连通算法完成对自然人的精准识别,如此,能够精准识别出机主,毕竟大部分时间还是机主在使用电子设备。
在一个可能的示例中,上述步骤101,获取目标对象的用户数据,可以包括如下步骤:
11、获取所述目标对象的至少一个用户ID;
12、依据所述至少一个用户ID从预设数据库中获取所述目标对象在预设时间段内的至少一个应用数据,并将所述至少一个应用数据作为所述目标对象的用户数据。
其中,上述预设时间段可以由用户自行设置或者系统默认,预设时间段可以理解为最近使用电子设备的一段时间,或者,从注册至少一个用户ID中的任一用户ID到当前时间之间的一段时间,目标对象可以为用户,预设数据库可以用于存储不同应用的应用数据,每一应用数据对应至少一个用户ID。本申请实施例中,用户ID可以为以下至少一种:电话号码、集成电路卡识别码(Integrate circuit card identity,ICCID)、国际移动设备识别码(International Mobile Equipment Identity,IMEI)、单点登录ID(Single Sign On identification,SSOID)、第三方应用的ID、OppenId等等,在此不做限定。
进一步地,电子设备可以获取目标对象的至少一个用户ID,进而,可以依据该至少一个用户ID从预设数据库中获取该目标对象在预设时间段内的至少一个应用数据,并将至少一个应用数据作为该目标对象的用户数据。
在一个可能的示例中,在所述至少一个用户ID为自然人ID时,上述步骤101之前,还可以包括如下步骤:
A1、获取所述目标对象对应的电子设备的历史使用数据;
A2、依据所述历史使用数据构建出多维特征层和ID-mapping关系层;
A3、依据所述多维特征层和所述ID-mapping关系层确定出自然人ID。
其中,历史用户数据可以理解为用户从第一次使用电子设备到当前时间所对应的使用数据,或者,目标对象的至少一个用户ID对应的全部使用数据,该历史使用数据可以来自 于至少一个应用,本申请实施例中,上述至少一个应用可以为第三方应用或者系统应用,使用数据可以包括以下至少一种:注册应用数据、应用缓存数据或者即时通讯数据等等,在此不做限定,例如,应用数据可以包括:用户的cookie、APP端浏览行为标识ID、以及账号ID等用户身份标识的用户ID,上述用户数据还可以为以下至少一种:CPU工作频率、CPU核数、CPU工作模式、GPU帧率、GPU分辨率、设备亮度、设备声音、内存参数中的部分参数或者全部参数。其中,该用户身份标识的用户ID的性质可以为设备硬件ID或字符标识。
具体实现中,如图1C所示,电子设备可以获取目标对象对应的历史使用数据,历史使用数据可以从数据源获取,数据源可以包括以下至少一种:浏览器、软件商店、账号体系、高德数据、购物数据、通讯数据、游戏数据、社交数据、办公数据、智能家居数据等等在此不作限定。可以依据该历史使用数据得到ID-MAPPing关系层数据,ID-MAPPing关系层数据可以包括以下至少一种:OSSID<->IMEI(OSSID与IMEI之间的映射关系)、TEL<->IMEI、OppenId<->ICCID等等,在此不作限定,还可以依据历史使用数据得到多维特征层数据,多维特征层数据可以包括以下至少一种:设备特征、APP特征、定位特征等等,在此不作限定,依据多维特征层和ID-mapping关系层可以确定出自然人ID每一个自然人ID可以对应一个用户画像,如图1D所示,用户画像可以包括以下至少一项内容:人口属性、人地关系、兴趣爱好、设备属性、资产情况、商业兴趣等等,在此不作限定。
另外,上述设备特征可以包括以下至少一种:设备自身属性(如设备日活打点、机型配置、激活日期等等)、网络连接情况(如:WIFI连接、网络IP、基站、连接度分布等等)、ID自身属性(如ID格式、字符长度等等)等等,在此不作限定。APP特征可以包括以下至少一种:APP安装、启动、卸载、APP类型偏好(如游戏、应用)、APP常活跃时段(工作日、假期等)等等,在此不作限定,定位特征可以包括以下至少一种:位置属性(例如,家或公司、常驻商圈、常活跃地)、出行偏好(例如,出行方式、出行时间、出行频次、出行轨迹等等)、POI偏好(POI到达、POI搜索)。
102、依据所述用户数据建立所述目标对象的目标用户画像。
其中,用户数据在一定程度上反映了用户的一些特征,进而,可以基于用户数据建立目标对象的目标用户画像。目标用户画像可以反映用户如下特征:身份、职业、年龄、兴趣爱好、活动区域、资产情况、消费情况等等,在此不作限定。
在一个可能的示例中,上述步骤102,依据所述用户数据建立所述目标对象的目标用户画像,可以包括如下步骤:
21、将所述用户数据进行分类,得到多个类型数据;
22、将所述多个类型数据中每一类型数据进行整合,得到整合后的所述多个类型数据;
23、依据整合后的所述多个类型数据生成所述目标对象的目标用户画像。
其中,不同的数据可以对应不同的类型,例如,依据不同的应用类型,可以将用户数据划分为不同的类型,应用类型可以包括以下至少一种:APP名称、应用作用类型(例如,游戏、聊天、视频、购物等等)、应用用户数量、应用大小、应用评分等级等等,在此不作限定。当然,还可以依据用户ID对用户数据进行分类等等,在此不作限定。
具体实现中,电子设备可以将用户数据进行分类,得到多个类型数据,进而,可以将 多个类型数据中每一类型数据进行整合,整合的目的在于,去除一些非必要数据,整合的话,可以采用聚类算法或者其他分类算法进行处理,得到整合后的多个类型数据,依据整合后的多个类型数据可以生成目标对象的目标用户画像。
进一步可选地,在一个可能的示例中,上述步骤22,将所述多个类型数据中每一类型数据进行整合,得到整合后的所述多个类型数据,可以包括如下步骤:
221、将第j类型数据中的数据进行聚类分析,得到多个子类数据,所述第j类型数据为所述多个类型数据中的任一类型数据;
222、保留目标子类数据,剔除所述多个子类数据中除了所述目标子类数据之外的所有其他子类数据,所述目标子类数据为所述多个子类数据中数据量最多的一类子类数据。
其中,以第j类数据为例,第j类型数据为多个类型数据中的任一类型数据,电子设备可以将第j类型数据中的数据进行聚类分析,得到多个子类数据,进而,保留目标子类数据,该目标子类数据为多个子类数据中数据量最多的一类子类数据,同时,剔除多个子类数据中除了目标子类数据之外的所有其他子类数据。
103、依据所述目标用户画像确定所述目标对象对应的推荐机型。
其中,目标用户画像在一定程度上反映了目标对象的机型偏好,用户的资产情况,因此,可以依据目标用户画像确定目标对象对应的推荐机型。推荐机型可以为一个或者多个机型,机型可以理解为电子设备的型号,例如,RENO,又例如,华为P30Pro等等。
在一个可能的示例中,上述步骤103,依据所述目标用户画像确定所述目标对象对应的推荐机型,可以包括如下步骤:
B31、依据所述目标用户画像确定所述目标对象的目标消费水平和所述目标对象的用户使用习惯数据;
B32、依据所述目标消费水平从预设设备信息库中确定出与所述目标消费水平匹配的第一机型型号集;
B33、依据所述用户使用习惯数据从所述预设设备信息库中确定出与所述用户习惯数据对应的第二机型型号集;
B34、确定所述第一机型型号集和所述第二机型型号集的交集,并将所述交集内的至少一个机型型号作为所述推荐机型。
其中,使用习惯数据在一定程度上反映了用户对设备的硬件和软件的要求,例如,习惯安卓系统,还是苹果系统,又例如,习惯用华为手机,还是OPPO手机,又例如,习惯用全面屏,还是非全面屏等等,上述预设设备信息库中可以预先存储各个机型的信息,机型的信息可以为以下至少一种:型号、价格、配置、颜色等等,在此不作限定。电子设备可以通过目标用户画像确定目标对象的目标消费水平与目标对象的用户使用习惯数据,电子设备中还可以预先存储消费水平与机型型号之间的映射关系,进而,可以依据该映射关系从预设数据库中确定出与目标消费水平匹配的第一机型型号集,该第一机型型号集可以包括至少一个机型的型号,另外,电子设备中可以预先存储习惯数据与机型型号之间的映射关系,依据该映射关系可以从预设设备信息库中确定出与用户习惯数据对应的第二机型型号集,该第二机型型号集可以包括至少一个机型的型号,最后,可以确定第一机型型号集和第二机型型号集的交集,并将交集内的至少一个机型型号作为推荐机型。
进一步地,在一个可能的示例中,还可以包括如下步骤:
C1、依据所述目标用户画像确定所述目标对象对应的设备关注信息;
C2、依据所述设备关注信息确定所述交集内的所有机型的展示顺序,得到目标展示顺序;
上述步骤B34,将所述交集内的至少一个机型型号作为所述推荐机型,可以按照如下方式实施:
依据所述目标展示顺序展示所述交集内的机型型号对应的设备。
其中,上述设备关注信息可以为以下至少一种:设备颜色、设备价格、设备厚度、设备品牌、设备销量、设备销售亮点数量等等,在此不作限定。具体实现中,电子设备可以依据目标用户画像确定目标对象对应的设备关注信息,进而,依据设备关注信息确定交集内的所有机型的展示顺序,得到目标展示顺序,例如,价格由高到低的顺序,或者,设备厚度由低到高的顺序等等,在此不作限定,进而,可以依据目标展示顺序展示交集内的机型型号对应的设备。
在一个可能的示例中,上述步骤103,依据所述目标用户画像确定所述目标对象对应的推荐机型,可以包括如下步骤:
D31、获取多个用户画像;
D32、将所述目标用户画像与所述多个用户画像进行匹配,得到多个匹配值;
D33、从所述多个匹配值中选取大于预设阈值的匹配值,得到至少一个目标匹配值;
D34、确定所述至少一个目标匹配值对应的用户画像,得到至少一个参考用户画像;
D35、将所述至少一个参考用户画像对应的机型作为所述推荐机型。
其中,上述预设阈值可以由用户自行设置或者系统默认。电子设备可以获取多个用户画像,每一用户画像可以对应一个自然人ID,进而,可以将目标用户画像与多个用户画像进行匹配,得到多个匹配值,进而,可以从多个匹配值中选取大于预设阈值的匹配值,得到至少一个目标匹配值,可以确定该至少一个目标匹配值对应的用户画像,得到至少一个参考用户画像,将该至少一个参考用户画像对应的机型作为推荐机型,如此,可以将与目标对象具备相同习惯或者品味的人的机型提供给目标对象。
在一个可能的示例中,上述步骤D32,将所述目标用户画像与所述多个用户画像进行匹配,得到多个匹配值,可以包括如下步骤:
D321、依据用户画像i进行特征提取,得到参数特征集i,所述参数特征集i包括多个维度的参数特征,所述用户画像i为所述多个用户画像中的任一用户画像;
D232、获取所述参数特征集i中多个维度的特征参数中每一维度对应的权重值,得到多个权重值;
D333、确定所述参数特征集i中多个维度中每一维度的特征参数与目标参数特征集的特征参数之间相似度,得到多个相似度,所述目标参数特征集为所述目标用户画像对应的参数特征集;
D334、依据所述多个相似度和所述多个权重值进行加权运算,得到所述用户画像i与所述目标用户画像之间的匹配值。
其中,上述参数特征集可以为以下至少一种特征:用户等级、积分消耗、活跃度、偏 好类型、上线时间、在线时间、操作习惯、通信次数、通信时间、用户ID等等,在此不做限定。具体实现中,电子设备可以用户画像i进行特征提取,具体地,可以采用规则/模式机器学习算法对用户画像i进行特征提取,得到参数特征集i。
具体实现中,电子设备可以依据用户画像i进行特征提取,得到参数特征集i,该参数特征集i可以包括多个维度的参数特征,该用户画像i为所述多个用户画像中的任一用户画像,电子设备中还可以存储每一维度对应的权重值,可以获取参数特征集i中多个维度的特征参数中每一维度对应的权重值,得到多个权重值,可以基于预设算法确定参数特征集i中多个维度中每一维度的特征参数与目标参数特征集的特征参数之间相似度,得到多个相似度,目标参数特征集为目标用户画像对应的参数特征集,该预设比对算法可以为:局部敏感哈希(Locality-Sensitive Hashing,LSH)、SSIM、双序列局部对比算法等等,在此不作限定,进而,依据多个相似度和多个权重值进行加权运算,得到用户画像i与目标用户画像之间的匹配值。
具体实现中,本申请实施例,可以通过整合多方数据源,如:设备IMEI、OPPO账号ssoid体系、OppenId、用户位置数据和互联网行为数据等,构建出多维特征层和ID-mapping关系层,在自然人识别层利用多码关系可信识别过滤算法和图连通算法完成对自然人的精准识别,每个自然人会分配一个唯一的用户ID,进而,依据该用户ID确定目标对象对应的用户数据,即可以提取该用户所有的跨设备、跨账号体系的历史数据,通过对历史数据进行分析研究,建立该用户的完整的用户画像。用户画像包括但不限于人口属性、设备属性、人地关系、兴趣爱好、资产情况、消费水平等标签数据,进而,建立目标对象的目标用户画像,在目标用户画像建立完成之后,当该用户有换机需求时,则可以根据用户的画像特征向其推荐合适的手机型号,提升推荐转化的效果,改善用户的换机体验。例如,某用户以前收入低,现在已经换工作,收入水平提高,则可以向其推荐价位相对较高的机型。
可以看出,上述本申请实施例所描述的设备推荐方法,获取目标对象的用户数据,依据用户数据建立目标对象的目标用户画像,依据目标用户画像确定目标对象对应的推荐机型,如此,当用户有换机需求时,则可以根据该用户的画像特征向其推荐合适的手机型号,提升推荐转化的效果,改善用户的换机体验。
与上述一致地,请参阅图2,图2是本申请实施例提供的另一种设备推荐方法的流程示意图,本实施例中所描述的设备推荐方法,应用于如图1A所示的电子设备,该方法可包括以下步骤:
201、获取目标对象的用户数据。
202、依据所述用户数据建立所述目标对象的目标用户画像。
203、依据所述目标用户画像确定所述目标对象的目标消费水平和所述目标对象的用户使用习惯数据。
204、依据所述目标消费水平从预设设备信息库中确定出与所述目标消费水平匹配的第一机型型号集。
205、依据所述用户使用习惯数据从所述预设设备信息库中确定出与所述用户习惯数据对应的第二机型型号集。
206、确定所述第一机型型号集和所述第二机型型号集的交集,并将所述交集内的至少一个机型型号作为推荐机型。
其中,上述步骤201-206的具体实现过程可参照图1B所示的方法中相应的描述,在此不再赘述。
可以看出,上述本申请实施例所描述的设备推荐方法,获取目标对象的用户数据,依据用户数据建立目标对象的目标用户画像,依据目标用户画像确定目标对象的目标消费水平和目标对象的用户使用习惯数据,依据目标消费水平从预设设备信息库中确定出与目标消费水平匹配的第一机型型号集,依据用户使用习惯数据从预设设备信息库中确定出与用户习惯数据对应的第二机型型号集,确定第一机型型号集和第二机型型号集的交集,并将交集内的至少一个机型型号作为推荐机型,如此,当用户有换机需求时,则可以根据该用户的画像特征向其推荐合适的手机型号,提升推荐转化的效果,改善用户的换机体验。
与上述一致地,请参阅图3,为本申请实施例提供的另一种设备推荐方法的实施例流程示意图,本实施例中所描述的设备推荐方法,应用于如图1A的电子设备,本方法可包括以下步骤:
301、获取目标对象的用户数据。
302、依据所述用户数据建立所述目标对象的目标用户画像。
303、获取多个用户画像。
304、将所述目标用户画像与所述多个用户画像进行匹配,得到多个匹配值。
305、从所述多个匹配值中选取大于预设阈值的匹配值,得到至少一个目标匹配值。
306、确定所述至少一个目标匹配值对应的用户画像,得到至少一个参考用户画像。
307、将所述至少一个参考用户画像对应的机型作为所述推荐机型。
其中,上述步骤301-307的具体实现过程可参照图1B所示的方法中相应的描述,在此不再赘述。
可以看出,上述本申请实施例所描述的设备推荐方法,获取目标对象的用户数据,依据用户数据建立目标对象的目标用户画像,获取多个用户画像,将目标用户画像与多个用户画像进行匹配,得到多个匹配值,从多个匹配值中选取大于预设阈值的匹配值,得到至少一个目标匹配值,确定至少一个目标匹配值对应的用户画像,得到至少一个参考用户画像,将至少一个参考用户画像对应的机型作为推荐机型。如此,当用户有换机需求时,则可以根据该用户的画像特征确定出与该用户相似的用户画像,将这些用户画像对应的机型推荐给用户,提升推荐转化的效果,改善用户的换机体验。
与上述一致地,请参阅图4,图4是本申请实施例提供的一种电子设备,包括:处理器和存储器;以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置成由所述处理器执行,所述程序包括用于执行以下步骤的指令:
获取目标对象的用户数据;
依据所述用户数据建立所述目标对象的目标用户画像;
依据所述目标用户画像确定所述目标对象对应的推荐机型。
可以看出,上述本申请实施例所描述的电子设备,获取目标对象的用户数据,依据用户数据建立目标对象的目标用户画像,依据目标用户画像确定目标对象对应的推荐机型,如此,当用户有换机需求时,则可以根据该用户的画像特征向其推荐合适的手机型号,提升推荐转化的效果,改善用户的换机体验。
在一个可能的示例中,在所述获取目标对象的用户数据方面,所述程序包括用于执行以下步骤的指令:
获取所述目标对象的至少一个用户ID;
依据所述至少一个用户ID从预设数据库中获取所述目标对象在预设时间段内的至少一个应用数据,并将所述至少一个应用数据作为所述目标对象的用户数据。
在一个可能的示例中,在所述至少一个用户ID为自然人ID时,所述程序还包括用于执行以下步骤的指令:
获取所述目标对象对应的电子设备的历史使用数据;
依据所述历史使用数据构建出多维特征层和ID-mapping关系层;
依据所述多维特征层和所述ID-mapping关系层确定出自然人ID。
在一个可能的示例中,在所述依据所述用户数据建立所述目标对象的目标用户画像方面,所述程序包括用于执行以下步骤的指令:
将所述用户数据进行分类,得到多个类型数据;
将所述多个类型数据中每一类型数据进行整合,得到整合后的所述多个类型数据;
依据整合后的所述多个类型数据生成所述目标对象的目标用户画像。
在一个可能的示例中,在所述将所述多个类型数据中每一类型数据进行整合,得到整合后的所述多个类型数据方面,所述程序包括用于执行以下步骤的指令:
将第j类型数据中的数据进行聚类分析,得到多个子类数据,所述第j类型数据为所述多个类型数据中的任一类型数据;
保留目标子类数据,剔除所述多个子类数据中除了所述目标子类数据之外的所有其他子类数据,所述目标子类数据为所述多个子类数据中数据量最多的一类子类数据。
在一个可能的示例中,在所述依据所述目标用户画像确定所述目标对象对应的推荐机型方面,所述程序包括用于执行以下步骤的指令:
依据所述目标用户画像确定所述目标对象的目标消费水平和所述目标对象的用户使用习惯数据;
依据所述目标消费水平从预设设备信息库中确定出与所述目标消费水平匹配的第一机型型号集;
依据所述用户使用习惯数据从所述预设设备信息库中确定出与所述用户习惯数据对应的第二机型型号集;
确定所述第一机型型号集和所述第二机型型号集的交集,并将所述交集内的至少一个机型型号作为所述推荐机型。
在一个可能的示例中,所述程序还包括用于执行以下步骤的指令:
依据所述目标用户画像确定所述目标对象对应的设备关注信息;
依据所述设备关注信息确定所述交集内的所有机型的展示顺序,得到目标展示顺序;
所述将所述交集内的至少一个机型型号作为所述推荐机型,包括:
依据所述目标展示顺序展示所述交集内的机型型号对应的设备。
在一个可能的示例中,在所述依据所述目标用户画像确定所述目标对象对应的推荐机型方面,所述程序还包括用于执行以下步骤的指令:
获取多个用户画像;
将所述目标用户画像与所述多个用户画像进行匹配,得到多个匹配值;
从所述多个匹配值中选取大于预设阈值的匹配值,得到至少一个目标匹配值;
确定所述至少一个目标匹配值对应的用户画像,得到至少一个参考用户画像;
将所述至少一个参考用户画像对应的机型作为所述推荐机型。
在一个可能的示例中,在所述将所述目标用户画像与所述多个用户画像进行匹配,得到多个匹配值方面,所述程序还包括用于执行以下步骤的指令:
依据用户画像i进行特征提取,得到参数特征集i,所述参数特征集i包括多个维度的参数特征,所述用户画像i为所述多个用户画像中的任一用户画像;
获取所述参数特征集i中多个维度的特征参数中每一维度对应的权重值,得到多个权重值;
确定所述参数特征集i中多个维度中每一维度的特征参数与目标参数特征集的特征参数之间相似度,得到多个相似度,所述目标参数特征集为所述目标用户画像对应的参数特征集;
依据所述多个相似度和所述多个权重值进行加权运算,得到所述用户画像i与所述目标用户画像之间的匹配值。
上述主要从方法侧执行过程的角度对本申请实施例的方案进行了介绍。可以理解的是,电子设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所提供的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对电子设备进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
请参阅图5,图5是本实施例提供的一种设备推荐装置的结构示意图。该设备推荐装置应用于如图1A所示的电子设备,所述设备推荐装置包括获取单元501、建立单元502、和确定单元503,其中,
获取单元501,用于获取目标对象的用户数据;
建立单元502,用于依据所述用户数据建立所述目标对象的目标用户画像;
确定单元503,用于依据所述目标用户画像确定所述目标对象对应的推荐机型。
可以看出,上述本申请实施例所描述的设备推荐装置,获取目标对象的用户数据,依据用户数据建立目标对象的目标用户画像,依据目标用户画像确定目标对象对应的推荐机型,如此,当用户有换机需求时,则可以根据该用户的画像特征向其推荐合适的手机型号,提升推荐转化的效果,改善用户的换机体验。
在一个可能的示例中,在所述获取目标对象的用户数据方面,所述获取单元501具体用于:
获取所述目标对象的至少一个用户ID;
依据所述至少一个用户ID从预设数据库中获取所述目标对象在预设时间段内的至少一个应用数据,并将所述至少一个应用数据作为所述目标对象的用户数据。
在一个可能的示例中,在所述至少一个用户ID为自然人ID时,其中,
所述获取单元501,还具体用于获取所述目标对象对应的电子设备的历史使用数据;
所述建立单元502,还具体用于依据所述历史使用数据构建出多维特征层和ID-mapping关系层;
所述确定单元503,还具体用于依据所述多维特征层和所述ID-mapping关系层确定出自然人ID。
在一个可能的示例中,在所述依据所述用户数据建立所述目标对象的目标用户画像方面,所述建立单元502具体用于:
将所述用户数据进行分类,得到多个类型数据;
将所述多个类型数据中每一类型数据进行整合,得到整合后的所述多个类型数据;
依据整合后的所述多个类型数据生成所述目标对象的目标用户画像。
在一个可能的示例中,在所述将所述多个类型数据中每一类型数据进行整合,得到整合后的所述多个类型数据方面,所述建立单元502具体用于:
将第j类型数据中的数据进行聚类分析,得到多个子类数据,所述第j类型数据为所述多个类型数据中的任一类型数据;
保留目标子类数据,剔除所述多个子类数据中除了所述目标子类数据之外的所有其他子类数据,所述目标子类数据为所述多个子类数据中数据量最多的一类子类数据。
在一个可能的示例中,在所述依据所述目标用户画像确定所述目标对象对应的推荐机型方面,所述确定单元503具体用于:
依据所述目标用户画像确定所述目标对象的目标消费水平和所述目标对象的用户使用习惯数据;
依据所述目标消费水平从预设设备信息库中确定出与所述目标消费水平匹配的第一机型型号集;
依据所述用户使用习惯数据从所述预设设备信息库中确定出与所述用户习惯数据对应的第二机型型号集;
确定所述第一机型型号集和所述第二机型型号集的交集,并将所述交集内的至少一个机型型号作为所述推荐机型。
在一个可能的示例中,所述确定单元503还具体用于:
依据所述目标用户画像确定所述目标对象对应的设备关注信息;
依据所述设备关注信息确定所述交集内的所有机型的展示顺序,得到目标展示顺序;
在所述将所述交集内的至少一个机型型号作为所述推荐机型方面,所述确定单元具体用于:
依据所述目标展示顺序展示所述交集内的机型型号对应的设备。
在一个可能的示例中,在所述依据所述目标用户画像确定所述目标对象对应的推荐机型方面,所述确定单元503具体用于:
获取多个用户画像;
将所述目标用户画像与所述多个用户画像进行匹配,得到多个匹配值;
从所述多个匹配值中选取大于预设阈值的匹配值,得到至少一个目标匹配值;
确定所述至少一个目标匹配值对应的用户画像,得到至少一个参考用户画像;
将所述至少一个参考用户画像对应的机型作为所述推荐机型。
在一个可能的示例中,在所述将所述目标用户画像与所述多个用户画像进行匹配,得到多个匹配值方面,所述确定单元503具体用于:
依据用户画像i进行特征提取,得到参数特征集i,所述参数特征集i包括多个维度的参数特征,所述用户画像i为所述多个用户画像中的任一用户画像;
获取所述参数特征集i中多个维度的特征参数中每一维度对应的权重值,得到多个权重值;
确定所述参数特征集i中多个维度中每一维度的特征参数与目标参数特征集的特征参数之间相似度,得到多个相似度,所述目标参数特征集为所述目标用户画像对应的参数特征集;
依据所述多个相似度和所述多个权重值进行加权运算,得到所述用户画像i与所述目标用户画像之间的匹配值。
可以理解的是,本实施例的设备推荐装置的各程序模块的功能可根据上述方法实施例中的方法具体实现,其具体实现过程可以参照上述方法实施例的相关描述,此处不再赘述。
本申请实施例还提供一种计算机存储介质,其中,该计算机存储介质存储用于电子数据交换的计算机程序,该计算机程序使得计算机执行如上述方法实施例中记载的任何一种数据传输方法的部分或全部步骤。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使计算机执行如上述方法实施例中记载的任何一种数据传输方法的部分或全部步骤。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分, 可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件程序模块的形式实现。
所述集成的单元如果以软件程序模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储器中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储器中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储器包括:U盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储器中,存储器可以包括:闪存盘、ROM、RAM、磁盘或光盘等。
以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种设备推荐方法,其特征在于,包括:
    获取目标对象的用户数据;
    依据所述用户数据建立所述目标对象的目标用户画像;
    依据所述目标用户画像确定所述目标对象对应的推荐机型。
  2. 根据权利要求1所述的方法,其特征在于,所述获取目标对象的用户数据,包括:
    获取所述目标对象的至少一个用户ID;
    依据所述至少一个用户ID从预设数据库中获取所述目标对象在预设时间段内的至少一个应用数据,并将所述至少一个应用数据作为所述目标对象的用户数据。
  3. 根据权利要求2所述的方法,其特征在于,在所述至少一个用户ID为自然人ID时,所述方法还包括:
    获取所述目标对象对应的电子设备的历史使用数据;
    依据所述历史使用数据构建出多维特征层和ID-mapping关系层;
    依据所述多维特征层和所述ID-mapping关系层确定出自然人ID。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述依据所述用户数据建立所述目标对象的目标用户画像,包括:
    将所述用户数据进行分类,得到多个类型数据;
    将所述多个类型数据中每一类型数据进行整合,得到整合后的所述多个类型数据;
    依据整合后的所述多个类型数据生成所述目标对象的目标用户画像。
  5. 根据权利要求4所述的方法,其特征在于,所述将所述多个类型数据中每一类型数据进行整合,得到整合后的所述多个类型数据,包括:
    将第j类型数据中的数据进行聚类分析,得到多个子类数据,所述第j类型数据为所述多个类型数据中的任一类型数据;
    保留目标子类数据,剔除所述多个子类数据中除了所述目标子类数据之外的所有其他子类数据,所述目标子类数据为所述多个子类数据中数据量最多的一类子类数据。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述依据所述目标用户画像确定所述目标对象对应的推荐机型,包括:
    依据所述目标用户画像确定所述目标对象的目标消费水平和所述目标对象的用户使用习惯数据;
    依据所述目标消费水平从预设设备信息库中确定出与所述目标消费水平匹配的第一机型型号集;
    依据所述用户使用习惯数据从所述预设设备信息库中确定出与所述用户习惯数据对应的第二机型型号集;
    确定所述第一机型型号集和所述第二机型型号集的交集,并将所述交集内的至少一个机型型号作为所述推荐机型。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    依据所述目标用户画像确定所述目标对象对应的设备关注信息;
    依据所述设备关注信息确定所述交集内的所有机型的展示顺序,得到目标展示顺序;
    所述将所述交集内的至少一个机型型号作为所述推荐机型,包括:
    依据所述目标展示顺序展示所述交集内的机型型号对应的设备。
  8. 根据权利要求1-5任一项所述的方法,其特征在于,所述依据所述目标用户画像确定所述目标对象对应的推荐机型,包括:
    获取多个用户画像;
    将所述目标用户画像与所述多个用户画像进行匹配,得到多个匹配值;
    从所述多个匹配值中选取大于预设阈值的匹配值,得到至少一个目标匹配值;
    确定所述至少一个目标匹配值对应的用户画像,得到至少一个参考用户画像;
    将所述至少一个参考用户画像对应的机型作为所述推荐机型。
  9. 根据权利要求8所述的方法,其特征在于,所述将所述目标用户画像与所述多个用户画像进行匹配,得到多个匹配值,包括:
    依据用户画像i进行特征提取,得到参数特征集i,所述参数特征集i包括多个维度的参数特征,所述用户画像i为所述多个用户画像中的任一用户画像;
    获取所述参数特征集i中多个维度的特征参数中每一维度对应的权重值,得到多个权重值;
    确定所述参数特征集i中多个维度中每一维度的特征参数与目标参数特征集的特征参数之间相似度,得到多个相似度,所述目标参数特征集为所述目标用户画像对应的参数特征集;
    依据所述多个相似度和所述多个权重值进行加权运算,得到所述用户画像i与所述目标用户画像之间的匹配值。
  10. 一种设备推荐装置,其特征在于,所述装置包括:
    获取单元,用于获取目标对象的用户数据;
    建立单元,用于依据所述用户数据建立所述目标对象的目标用户画像;
    确定单元,用于依据所述目标用户画像确定所述目标对象对应的推荐机型。
  11. 根据权利要求10所述的装置,其特征在于,在所述获取目标对象的用户数据方面,所述获取单元具体用于:
    获取所述目标对象的至少一个用户ID;
    依据所述至少一个用户ID从预设数据库中获取所述目标对象在预设时间段内的至少 一个应用数据,并将所述至少一个应用数据作为所述目标对象的用户数据。
  12. 根据权利要求11所述的装置,其特征在于,在所述至少一个用户ID为自然人ID时,其中,
    所述获取单元,还具体用于获取所述目标对象对应的电子设备的历史使用数据;
    所述建立单元,还具体用于依据所述历史使用数据构建出多维特征层和ID-mapping关系层;
    所述确定单元,还具体用于依据所述多维特征层和所述ID-mapping关系层确定出自然人ID。
  13. 根据权利要求10-12任一项所述的装置,其特征在于,在所述依据所述用户数据建立所述目标对象的目标用户画像方面,所述建立单元具体用于:
    将所述用户数据进行分类,得到多个类型数据;
    将所述多个类型数据中每一类型数据进行整合,得到整合后的所述多个类型数据;
    依据整合后的所述多个类型数据生成所述目标对象的目标用户画像。
  14. 根据权利要求13所述的方法,其特征在于,在所述将所述多个类型数据中每一类型数据进行整合,得到整合后的所述多个类型数据方面,所述建立单元具体用于:
    将第j类型数据中的数据进行聚类分析,得到多个子类数据,所述第j类型数据为所述多个类型数据中的任一类型数据;
    保留目标子类数据,剔除所述多个子类数据中除了所述目标子类数据之外的所有其他子类数据,所述目标子类数据为所述多个子类数据中数据量最多的一类子类数据。
  15. 根据权利要求10-14任一项所述的装置,其特征在于,在所述依据所述目标用户画像确定所述目标对象对应的推荐机型方面,所述确定单元具体用于:
    依据所述目标用户画像确定所述目标对象的目标消费水平和所述目标对象的用户使用习惯数据;
    依据所述目标消费水平从预设设备信息库中确定出与所述目标消费水平匹配的第一机型型号集;
    依据所述用户使用习惯数据从所述预设设备信息库中确定出与所述用户习惯数据对应的第二机型型号集;
    确定所述第一机型型号集和所述第二机型型号集的交集,并将所述交集内的至少一个机型型号作为所述推荐机型。
  16. 根据权利要求15所述的装置,其特征在于,所述确定单元还具体用于:
    依据所述目标用户画像确定所述目标对象对应的设备关注信息;
    依据所述设备关注信息确定所述交集内的所有机型的展示顺序,得到目标展示顺序;
    在所述将所述交集内的至少一个机型型号作为所述推荐机型方面,所述确定单元具体 用于:
    依据所述目标展示顺序展示所述交集内的机型型号对应的设备。
  17. 根据权利要求10-14任一项所述的装置,其特征在于,在所述依据所述目标用户画像确定所述目标对象对应的推荐机型方面,所述确定单元具体用于:
    获取多个用户画像;
    将所述目标用户画像与所述多个用户画像进行匹配,得到多个匹配值;
    从所述多个匹配值中选取大于预设阈值的匹配值,得到至少一个目标匹配值;
    确定所述至少一个目标匹配值对应的用户画像,得到至少一个参考用户画像;
    将所述至少一个参考用户画像对应的机型作为所述推荐机型。
  18. 一种电子设备,其特征在于,包括处理器、存储器、通信接口,以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行如权利要求1-9任一项所述的方法中的步骤的指令。
  19. 一种计算机可读存储介质,其特征在于,存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如权利要求1-9任一项所述的方法。
  20. 一种计算机程序产品,其特征在于,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使计算机执行如权利要求1-9任一项所述的方法。
PCT/CN2019/092591 2019-06-24 2019-06-24 设备推荐方法及相关产品 WO2020257990A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/092591 WO2020257990A1 (zh) 2019-06-24 2019-06-24 设备推荐方法及相关产品
CN201980089735.7A CN113316778B (zh) 2019-06-24 2019-06-24 设备推荐方法及相关产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/092591 WO2020257990A1 (zh) 2019-06-24 2019-06-24 设备推荐方法及相关产品

Publications (1)

Publication Number Publication Date
WO2020257990A1 true WO2020257990A1 (zh) 2020-12-30

Family

ID=74061143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092591 WO2020257990A1 (zh) 2019-06-24 2019-06-24 设备推荐方法及相关产品

Country Status (2)

Country Link
CN (1) CN113316778B (zh)
WO (1) WO2020257990A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112783984A (zh) * 2021-02-10 2021-05-11 中国人民银行数字货币研究所 一种信息展示方法和装置
CN112818223A (zh) * 2021-01-26 2021-05-18 北京百度网讯科技有限公司 用户画像的查询处理方法、装置、设备、程序产品及介质
CN112948226A (zh) * 2021-02-05 2021-06-11 中国建设银行股份有限公司 一种用户画像绘制方法和装置
CN113343109A (zh) * 2021-06-30 2021-09-03 掌阅科技股份有限公司 榜单推荐方法、计算设备及计算机存储介质
CN113344433A (zh) * 2021-06-28 2021-09-03 平安信托有限责任公司 产品匹配方法、装置、电子设备及可读存储介质
CN113435758A (zh) * 2021-06-30 2021-09-24 青岛海尔科技有限公司 风力等级的确定方法及装置、存储介质及电子装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106126582A (zh) * 2016-06-20 2016-11-16 乐视控股(北京)有限公司 推荐方法及装置
CN107613384A (zh) * 2016-07-12 2018-01-19 上海视畅信息科技有限公司 一种基于手机绑定机顶盒的个性化推荐方法
CN107766547A (zh) * 2017-10-31 2018-03-06 掌阅科技股份有限公司 电子书推荐方法、电子设备及计算机存储介质
CN108108465A (zh) * 2017-12-29 2018-06-01 北京奇宝科技有限公司 一种推送推荐内容的方法和装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106503015A (zh) * 2015-09-07 2017-03-15 国家计算机网络与信息安全管理中心 一种构建用户画像的方法
CN106504099A (zh) * 2015-09-07 2017-03-15 国家计算机网络与信息安全管理中心 一种构建用户画像的系统
CN105405026A (zh) * 2015-10-23 2016-03-16 中国联合网络通信集团有限公司 一种基于用户行为的定制机确定方法及装置
CN107465739B (zh) * 2017-08-01 2019-07-16 中国联合网络通信集团有限公司 实体渠道用户引流的方法及装置
CN108021929B (zh) * 2017-11-16 2023-01-10 华南理工大学 基于大数据的移动端电商用户画像建立与分析方法及系统
CN109145212A (zh) * 2018-08-22 2019-01-04 北京奇虎科技有限公司 一种推荐内容的提供方法和装置
CN109658192A (zh) * 2018-12-20 2019-04-19 重庆锐云科技有限公司 一种房源推荐方法及服务器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106126582A (zh) * 2016-06-20 2016-11-16 乐视控股(北京)有限公司 推荐方法及装置
CN107613384A (zh) * 2016-07-12 2018-01-19 上海视畅信息科技有限公司 一种基于手机绑定机顶盒的个性化推荐方法
CN107766547A (zh) * 2017-10-31 2018-03-06 掌阅科技股份有限公司 电子书推荐方法、电子设备及计算机存储介质
CN108108465A (zh) * 2017-12-29 2018-06-01 北京奇宝科技有限公司 一种推送推荐内容的方法和装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112818223A (zh) * 2021-01-26 2021-05-18 北京百度网讯科技有限公司 用户画像的查询处理方法、装置、设备、程序产品及介质
CN112818223B (zh) * 2021-01-26 2024-04-05 北京百度网讯科技有限公司 用户画像的查询处理方法、装置、设备、程序产品及介质
CN112948226A (zh) * 2021-02-05 2021-06-11 中国建设银行股份有限公司 一种用户画像绘制方法和装置
CN112948226B (zh) * 2021-02-05 2024-04-02 中国建设银行股份有限公司 一种用户画像绘制方法和装置
CN112783984A (zh) * 2021-02-10 2021-05-11 中国人民银行数字货币研究所 一种信息展示方法和装置
CN113344433A (zh) * 2021-06-28 2021-09-03 平安信托有限责任公司 产品匹配方法、装置、电子设备及可读存储介质
CN113343109A (zh) * 2021-06-30 2021-09-03 掌阅科技股份有限公司 榜单推荐方法、计算设备及计算机存储介质
CN113435758A (zh) * 2021-06-30 2021-09-24 青岛海尔科技有限公司 风力等级的确定方法及装置、存储介质及电子装置
CN113435758B (zh) * 2021-06-30 2024-03-22 青岛海尔科技有限公司 风力等级的确定方法及装置、存储介质及电子装置

Also Published As

Publication number Publication date
CN113316778A (zh) 2021-08-27
CN113316778B (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
WO2020257990A1 (zh) 设备推荐方法及相关产品
CN110472145B (zh) 一种内容推荐方法和电子设备
WO2021003673A1 (zh) 内容推送方法及相关产品
WO2020257988A1 (zh) 刷量用户识别方法及相关产品
CN111444425B (zh) 一种信息推送方法、电子设备及介质
WO2016015471A1 (zh) 一种预测用户离网的方法及装置
US10936140B2 (en) Method and device for displaying response
CN108205568A (zh) 基于标签选择数据的方法及装置
CN109062468A (zh) 分屏显示方法、装置、存储介质和电子设备
WO2020133435A1 (zh) 信息提示方法及相关产品
CN108256100A (zh) 一种信息搜索方法、移动终端及云服务器
CN109067981A (zh) 分屏应用切换方法、装置、存储介质和电子设备
CN108958606A (zh) 分屏显示方法、装置、存储介质和电子设备
WO2020142926A1 (zh) 一种广告推送方法及相关设备
CN107562917B (zh) 用户推荐方法及装置
WO2021007757A1 (zh) 用户识别方法及相关产品
EP3582450B1 (en) Message notification method and terminal
CN108958623A (zh) 一种应用程序启动方法及终端设备
WO2020252742A1 (zh) 资源推送方法及相关产品
WO2021012186A1 (zh) 内容推送方法及相关产品
CN109144721A (zh) 资源排序方法、资源显示方法、相关装置及存储介质
CN109062469A (zh) 分屏显示方法、装置、存储介质和电子设备
CN107807940B (zh) 信息推荐方法和装置
WO2021000084A1 (zh) 数据分类方法及相关产品
WO2020248131A1 (zh) 用户画像构建方法及相关产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19934900

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19934900

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25.05.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19934900

Country of ref document: EP

Kind code of ref document: A1