WO2020257972A1 - 测距装置、测距方法及电子设备 - Google Patents

测距装置、测距方法及电子设备 Download PDF

Info

Publication number
WO2020257972A1
WO2020257972A1 PCT/CN2019/092537 CN2019092537W WO2020257972A1 WO 2020257972 A1 WO2020257972 A1 WO 2020257972A1 CN 2019092537 W CN2019092537 W CN 2019092537W WO 2020257972 A1 WO2020257972 A1 WO 2020257972A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
optical signal
target object
emitted
unit
Prior art date
Application number
PCT/CN2019/092537
Other languages
English (en)
French (fr)
Inventor
侯俊科
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2019/092537 priority Critical patent/WO2020257972A1/zh
Priority to CN201980001101.1A priority patent/CN112567265A/zh
Publication of WO2020257972A1 publication Critical patent/WO2020257972A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only

Definitions

  • the embodiments of the present application relate to the field of signal processing technology, and in particular, to a ranging device, a ranging method, and electronic equipment.
  • the general principle of time of flight calculation (TOF) technology ranging can be briefly described as: the sensor emits a light signal, such as near-infrared light, which is reflected by an object and then received by the sensor. By calculating the light signal emission and reflection Time difference or phase difference to determine the distance between the object and the sensor.
  • a light signal such as near-infrared light
  • the phase difference between the emission and reflection of the optical signal since the phase period of the optical signal is 2 ⁇ , the phase difference will repeat every 2 ⁇ , resulting in mixed distances.
  • Stack also known as distance aliasing in the industry, cannot effectively determine the distance between the object and the sensor.
  • the ranging device, the ranging method, and the electronic device are used to at least solve the above-mentioned problems in the prior art.
  • the embodiment of the application provides a distance measuring device, which includes a signal detector, a wavelength statistics unit, and a distance calculator.
  • the transmitter is used to emit a light signal to a target object
  • the signal detector is used to detect that the transmitter emits and is emitted by the target object.
  • Reflected optical signal the wavelength statistical unit is used to count the amount of light emitted by the transmitter from when the signal detector starts to emit the optical signal to the target object and ends when the signal detector detects the optical signal reflected by the target object
  • the number of integer wavelengths and the phase of decimal wavelengths of the optical signal, and the distance calculator is used to calculate the distance between the target object and the distance measuring device according to the number of integer wavelengths and the phase of the decimal wavelength.
  • the distance calculator includes an adder and a multiplier
  • the adder is used for summing the number of integer wavelengths and the phase of the fractional wavelengths
  • the multiplier is used to multiply the wavelength of the optical signal and the result of the summation processing to calculate the distance between the target object and the distance measuring device.
  • it further includes: an interference cancellation unit, which eliminates the environmental interference light signal received by the signal detector and is used to eliminate the environmental interference light received by the signal detector.
  • an interference cancellation unit which eliminates the environmental interference light signal received by the signal detector and is used to eliminate the environmental interference light received by the signal detector.
  • Signal so that the wavelength statistical unit is used to count the light emitted by the transmitter from when the signal detector starts to emit the light signal to the target object and ends when the signal detector detects the light signal reflected by the target object The number of integer wavelengths of the signal and the phase of fractional wavelengths.
  • the interference cancellation unit is further configured to filter the optical signal detected by the signal detector to eliminate the environmental interference optical signal therefrom.
  • the interference cancellation unit includes a band pass filter and a low pass filter, and the band pass filter is used to detect the signal detector according to a set pass band.
  • the received optical signal is subjected to band-pass filtering, and the low-pass filter is used to perform low-pass filtering on the optical signal after the band-pass filtering, so as to eliminate the environmental interference optical signal.
  • the interference cancellation unit further includes a multiplier, and the multiplier is provided between the band-pass filter and the low-pass filter, and the multiplier is used to The band-pass filtered optical signal is subjected to multiplication processing with the set reference signal, and the low-pass filter is further used to perform low-pass filter processing on the multiplied optical signal to eliminate the environmental interference optical signal.
  • the set reference signal has the same frequency as the optical signal emitted by the transmitter to the target object.
  • the wavelength statistics unit includes: a first statistics unit and a second statistics unit, and the first statistics unit is used to count the time when the optical signal is transmitted to the target object.
  • the first statistics unit is used to count the time when the optical signal is transmitted to the target object.
  • the second statistical unit is used to count the number of light signals that are emitted to the target object. The optical signal starts and cuts off the fractional wavelength phase of the optical signal that the transmitter has emitted when the signal detector detects the optical signal reflected by the target object.
  • the first statistical unit is configured with an enabling terminal, and the enabling terminal is used to receive an enabling signal, and the transmitter starts to transmit the
  • the enable signal is used to enable the first statistical unit to start counting the number of integer wavelengths, and when the signal detector detects the optical signal reflected by the target object, the enable The energy signal is used to control the first statistics unit to stop counting the number of integer wavelengths.
  • it further includes: an enabling unit configured to generate an enabling unit for enabling the first statistical unit to start statistical processing according to the emitted optical signal Signal, and for detecting the light signal reflected by the target object to generate an enable signal for controlling the first statistics unit to stop statistics.
  • the enabling unit is a comparator, and the comparator is configured to compare according to the emitted light signal and a set reference threshold, and according to the result of the comparison The enable signal is generated.
  • the first statistical unit is further configured with a reset terminal for receiving a reset signal, and the reset signal is used to control the reset of the first statistical unit to calculate The number of integer wavelengths of the optical signal that the transmitter has emitted since the start of emitting the optical signal to the target object and until the signal detector detects the optical signal reflected by the target object.
  • the first statistical unit is a counter, and the counter is used to count by counting from the time the light signal is transmitted to the target object is started, and the signal detector is stopped. The number of integer wavelengths of the light signal that the transmitter has emitted when the light signal reflected by the target object is detected.
  • the second statistical unit is a time-of-flight statistic
  • the time-of-flight statistic is used to count the flight time of the light beam and start to transmit the light to the target object. Starting from the optical signal, and cutting off the phase of the fractional wavelength of the optical signal that the transmitter has emitted when the signal detector detects the optical signal reflected by the target object.
  • the second statistical unit is activated to start the statistics from transmitting the optical signal to the target object. , Cut off the phase of the fractional wavelength of the optical signal that has been emitted by the transmitter when the signal detector detects the optical signal reflected by the target object.
  • it further includes: a signal source, the signal source is used to generate an electrical signal, and correspondingly, the transmitter is further used to generate and transmit to a target object according to the electrical signal Light signal.
  • a delayer is further included, which is used to make the time difference between the time when the signal source stops generating electrical signals and the time when the wavelength statistics unit stops detecting the integer wavelengths. Within a certain time difference range.
  • the embodiment of the present application provides a ranging method, which includes:
  • the distance between the target object and the distance measuring device is calculated according to the number of integer wavelengths and the phase of the decimal wavelength.
  • the method further includes: eliminating the environmental interference optical signal received by the signal detector.
  • eliminating the environmental interference optical signal received by the signal detector includes: filtering the detected optical signal to eliminate the environmental interference optical signal therefrom.
  • eliminating the environmental interference optical signal received by the signal detector includes: banding the optical signal detected by the signal detector according to a set passband. Pass filtering processing, performing low-pass filtering processing on the band-pass filtered optical signal to eliminate the environmental interference optical signal.
  • eliminating the environmental interference optical signal received by the signal detector includes multiplying the band-pass filtered optical signal with a set reference signal to perform multiplication
  • the processed optical signal is subjected to low-pass filtering processing to eliminate the environmental interference optical signal.
  • counting the light signals that have been emitted since the light signal is transmitted to the target object is counted, and the light signal that has been emitted when the signal detector detects the light signal reflected by the target object
  • the number of integer wavelengths and the phase of fractional wavelengths including:
  • the first statistical unit counts the number of integer wavelengths of the light signal emitted by the transmitter from when the light signal reflected by the target object is detected by the signal detector. Quantity
  • the second statistical unit counts the fractional wavelength of the optical signal that has been emitted by the transmitter when the signal detector detects the optical signal reflected by the target object from the time when the optical signal is transmitted to the target object. Phase.
  • the method further includes: receiving an enable signal, and when the transmitter starts to transmit the optical signal to the target object, the enable signal is used to enable the first A statistical unit starts statistical processing, and when the light signal reflected by the target object is detected, the enable signal is used to control the first statistical unit to stop counting.
  • an enable signal for enabling the first statistical unit to start statistical processing is generated according to the emitted optical signal, and an enable signal for detecting reflection by the target object
  • the optical signal generates an enable signal for controlling the first statistics unit to stop statistics.
  • an enable signal for enabling the first statistical unit to start statistical processing is generated according to the emitted optical signal, and an enable signal for detecting reflection by the target object
  • the optical signal generating an enabling signal for controlling the first statistical unit to stop counting includes: comparing according to the emitted optical signal and a set reference threshold, and generating and enabling the first statistical unit according to the result of the comparison
  • the method further includes: receiving a reset signal, the reset signal is used to control the reset of the first statistical unit, and start to transmit the light signal to the target object with statistics, The number of integer wavelengths of the optical signal that the transmitter has emitted when the signal detector detects the optical signal reflected by the target object.
  • the second statistical unit is activated to start statistically when the optical signal is transmitted to the target object. , Cut off the phase of the fractional wavelength of the emitted optical signal when the optical signal reflected by the target object is detected.
  • An embodiment of the present application provides an electronic device, which includes the distance measuring device described in any one of the embodiments of the present application.
  • the distance measuring device includes: a signal detector, a wavelength statistical unit, a distance calculator, the transmitter is used to emit a light signal to the target object, and the signal detector is used to detect and The optical signal reflected by the target object, and the wavelength statistics unit is used to count the time when the signal detector starts to emit the optical signal to the target object and stops when the signal detector detects the optical signal reflected by the target object.
  • the number of integer wavelengths and the phase of decimal wavelengths of the emitted optical signal, and the distance calculator is used to calculate the distance between the target object and the distance measuring device according to the number of integer wavelengths and the phase of the decimal wavelength
  • the distance thus avoiding the phenomenon of aliasing in the distance caused by the phase difference recurring every 2 ⁇ , can effectively determine the distance between the object and the sensor.
  • FIG. 1 is a schematic structural diagram of a distance measuring device in Embodiment 1 of this application;
  • FIG. 2 is a schematic structural diagram of a distance measuring device in Embodiment 2 of this application.
  • FIG. 3 is a schematic diagram of the structure of the enabling unit in the third embodiment of the application.
  • FIG. 4 is a schematic flowchart of a distance measurement method in Embodiment 4 of this application.
  • FIG. 5 is a schematic flowchart of a distance measurement method in Embodiment 5 of this application.
  • the distance measuring device includes: a signal detector, a wavelength statistical unit, a distance calculator, the transmitter is used to emit a light signal to the target object, and the signal detector is used to detect and The optical signal reflected by the target object, and the wavelength statistics unit is used to count the time when the signal detector starts to emit the optical signal to the target object and stops when the signal detector detects the optical signal reflected by the target object.
  • the number of integer wavelengths and the phase of decimal wavelengths of the emitted optical signal, and the distance calculator is used to calculate the distance between the target object and the distance measuring device according to the number of integer wavelengths and the phase of the decimal wavelength
  • the distance thus avoiding the phenomenon of aliasing in the distance caused by the phase difference recurring every 2 ⁇ , can effectively determine the distance between the object and the sensor.
  • Fig. 1 is a schematic structural diagram of a distance measuring device in Embodiment 1 of the application; as shown in Fig. 1, the distance measuring device includes: a signal source 101, a transmitter 102, a signal detector 103, a delay 104, a wavelength statistics unit 106, The distance calculator 107, the signal source 101 is used to generate an electrical signal, the transmitter 102 is used to generate an optical signal emitted to the target object according to the electrical signal, and the signal detector 103 is used to detect and The light signal reflected by the target object, and the wavelength statistics unit 106 is used to count the emission when the light signal reflected by the target object is detected by the signal detector 103 after the light signal is started to be transmitted to the target object.
  • the signal source 101 is used to generate an electrical signal
  • the transmitter 102 is used to generate an optical signal emitted to the target object according to the electrical signal
  • the signal detector 103 is used to detect and The light signal reflected by the target object
  • the wavelength statistics unit 106 is used to count the emission when
  • the number of integer wavelengths and the phase of fractional wavelengths of the optical signal that the device 102 has emitted, and the distance calculator 107 is used to calculate the target object and the measurement based on the number of integer wavelengths and the phase of the fractional wavelength.
  • the delayer 104 is used to make the time difference between the time when the signal source 101 stops generating electrical signals and the time when the wavelength statistical unit 106 stops detecting the integer wavelength within a set time difference range.
  • the wavelength statistics unit 106 may include: a first statistics unit 126 and a second statistics unit 116.
  • the first statistics unit 126 is configured to count the start of transmitting the optical signal to the target object, When the signal detector 103 detects the optical signal reflected by the target object, the number of integer wavelengths of the optical signal that the transmitter 102 has emitted; the second statistical unit 116 is used to count Since the object emits the optical signal, the phase of the fractional wavelength of the optical signal that has been emitted by the transmitter 102 is stopped when the signal detector 103 detects the optical signal reflected by the target object.
  • the first statistical unit 126 is configured with an enable terminal, and the enable terminal is used to receive an enable signal.
  • the enable signal is used to enable the first statistical unit 126 to start counting the number of integer wavelengths, and the signal detector 103 detects the optical signal reflected by the target object, the enable signal It is used to control the first counting unit 126 to stop counting the number of integer wavelengths.
  • the first statistical unit 126 is further configured with a reset terminal for receiving a reset signal iRst, and the reset signal is used to control the reset of the first statistical unit 126, Count the number of integer wavelengths of the optical signals that the transmitter 102 has emitted since the start of emitting the optical signals to the target object and until the signal detector 103 detects the optical signals reflected by the target object.
  • an enabling unit 105 configured to generate an enable signal ienable for enabling the first statistical unit 126 to start statistical processing according to the emitted optical signal, And for detecting the light signal reflected by the target object, it generates an enable signal ienable for controlling the first statistics unit 126 to stop statistics.
  • the enabling unit 105 is a comparator, and the comparator 105 is configured to compare according to the emitted optical signal and a set reference threshold, and generate the enabling signal according to the result of the comparison.
  • the second statistical unit 126 is a counter
  • the statistics unit 116 is a flight time statistics device, which will be described in detail below.
  • the counter as the first counting unit 126 is used to count the light reflected by the target object from the time the signal detector 103 starts to emit the light signal to the target object by counting.
  • the time-of-flight statistic of the second statistical unit 116 by counting the flight time of the light rays, it starts to emit the light signal to the target object and stops the signal detector 103 detecting the When the light signal reflected by the target object is the fractional wavelength phase of the light signal that the transmitter 102 has emitted.
  • the second statistical unit 116 is activated to start counting and stop transmitting the optical signal to the target object.
  • the signal detector 103 detects the optical signal reflected by the target object, the phase of the fractional wavelength of the optical signal that the transmitter 102 has emitted.
  • the light detected by the signal detector may also include environmental interference signals, that is, the light detected by the signal detector 103 includes not only the light reflected by the target object, but also environmental interference signals from the application environment. , Especially the light signal that the target object starts to reflect back is relatively weak. If the environmental interference signal is not eliminated, an effective enable signal cannot be generated.
  • the ranging The device may further include: an interference cancellation unit that eliminates the environmental interference light signal received by the signal detector, so that the wavelength statistics unit 106 is used to count the start and stop of the signal when the light signal is transmitted to the target object.
  • the interference cancellation unit can be integrated into the enabling unit 105, or the enabling unit 105 not only has the function of generating an enable signal, but also has the function of eliminating environmental interference light signals.
  • the interference optical signal from the environment is eliminated through the differential method.
  • the interference cancellation unit can not only be integrated into the enabling unit 105.
  • the interference cancellation unit may also be a structure independent of the enabling unit 105.
  • FIG. 3 is a schematic diagram of the structure of the enabling unit in the third embodiment of the application; as shown in FIG. 3, in this embodiment, the enabling unit 105 includes: a band-pass filter, a multiplier, and a low-pass filter, the multiplier Set between the band-pass filter and the low-pass filter.
  • the enabling unit 105 includes: a band-pass filter, a multiplier, and a low-pass filter, the multiplier Set between the band-pass filter and the low-pass filter.
  • these three structural components cooperate with each other, and are mainly used to filter the optical signal detected by the signal detector 103 to eliminate all the components.
  • the environment interferes with the optical signal.
  • the band-pass filter is used to perform band-pass filtering processing on the optical signal detected by the signal detector 103 according to the set pass band;
  • the low-pass filter is used to perform low-pass filtering processing on the optical signal after band-pass filtering, so as to eliminate the environmental interference optical signal therefrom.
  • the band-pass filtered optical signal and the set reference signal can be multiplied by the multiplier.
  • the low-pass filter performs multiplication processing on the band-pass filtered optical signal.
  • it is actually low-pass filtering the optical signal after the multiplication process to realize the low-pass filtering of the optical signal after the band-pass filtering. Eliminate the environmental interference light signal.
  • the emitter 102 considering that the distance is calculated based on the light emitted by the emitter 102 and the light emitted by the emitter 102 irradiating the target object and being reflected by the target object, therefore, in fact, the emitter 102 The frequency of the emitted light and the light emitted by the emitter 102 irradiate the target object and be reflected by the target object. The frequency of the two light rays can be regarded as equal. Therefore, in order to quickly and directly obtain the signal from the detector The ambient interference light signal is filtered out of the detected light in the light source to filter out the light emitted by the emitter 102 irradiated on the target object and reflected by the target object. The set reference signal and the emitter 102 are directed toward the target object. The transmitted optical signals have the same frequency.
  • the distance calculator 107 includes an adder and a multiplier, the adder is used to sum the number of the integer wavelengths and the phase of the fractional wavelengths, and the multiplier is used to A multiplication operation is performed on the wavelength of the optical signal and the result of the summation processing to calculate the distance between the target object and the distance measuring device.
  • the following embodiment provides a distance measuring method, which includes: detecting the light signal emitted by the transmitter and reflected by the target object; and counting the start of emitting the light to the target object The number of integer wavelengths and the phase of fractional wavelengths of the optical signals that have been emitted when the signal detector detects the optical signal reflected by the target object; according to the number of integer wavelengths and the fractional wavelength The phase of calculating the distance between the target object and the distance measuring device.
  • the transmitter is used as the structure of the ranging device for description, but in fact, the transmitter may not be used as the structure of the ranging device, which can be specifically based on different application scenarios. Make flexible settings.
  • FIG. 4 is a schematic flow chart of the distance measurement method in the fourth embodiment of this application; as shown in FIG. 4, the distance measurement method in this embodiment is mainly for the distance measurement device in FIG. 1, or also known as the distance measurement device in FIG. Working process.
  • the ranging method specifically includes the following steps:
  • the first statistical unit receives a reset signal.
  • the reset signal is used to control the reset of the first statistical unit, so that when the first statistical unit starts counting the number of integer wavelengths, it starts counting from 0, so that it can directly and quickly Geostatistically count the number of integer wavelengths of the optical signals that the transmitter has emitted since the transmitter starts to emit the optical signal to the target object and ends when the signal detector detects the optical signal reflected by the target object.
  • the reset processing of the first statistical unit by the reset signal is not limited to counting the number of integer wavelengths starting from 0. In fact, for those of ordinary skill in the art, In other words, it can also be set to a non-zero value according to the needs of the application scenario.
  • the first statistics unit receives an enable signal that enables it to start statistics processing, and when the signal detector detects the light signal reflected by the target object, the first statistics unit receives the enable signal that controls it to stop statistics;
  • the enable signal that enables the first statistical unit to start statistical processing may specifically be a high level
  • the enable signal that controls the first statistical unit to stop statistics may specifically be a low level.
  • an enable signal ienable is generated by the enable unit, and when the transmitter starts to emit the light signal to the target object, the enable signal ienable is at a low level, that is, the high level
  • the enable signal is used as the enable signal to enable the first statistical unit to start statistical processing; and when the signal detector detects the light signal reflected by the target object, the enable signal ienable is at a high level, that is
  • the high-level enable signal is used as an enable signal for controlling the first statistics unit to stop statistics.
  • the aforementioned enabling unit is implemented based on a comparator, since the light emitted by the emitter and the light emitted by the emitter and reflected by the target object both have known attribute parameters, it can be based on the Set a reference threshold based on the known attribute parameters, compare the transmitted optical signal with the reference threshold, and generate the enable signal based on the result of the comparison.
  • the optical signal emitted by the transmitter is obtained by electrical-optical conversion of the electrical signal of the signal source, it is based on the optical signal emitted by the transmitter and the electrical signal Corresponding relationship, one input of the comparator can be connected to the signal source, and the other input can be connected to a reference level set according to the attribute parameters of the optical signal that the transmitter can emit.
  • the comparator When the signal source is detected for the first time When the level of the electrical signal is greater than the reference level, the comparator generates a high-level enable signal ienable, or the output of the comparator is high-level, so that the first statistical unit stops statistical processing ; When it is detected that the level of the electrical signal generated by the signal source is less than the reference level, the comparator generates an enabling signal ienable of a level, or the output of the comparator is also called a low level, enabling the first A statistical unit starts statistical processing.
  • an enable signal for enabling the first statistical unit to start statistical processing is generated based on the emitted light signal, and an optical signal for detecting reflection by the target object is generated to control the An enable signal for the first statistics unit to stop statistics.
  • a comparison may be made according to the emitted optical signal and a set reference threshold, and an enable signal for enabling the first statistical unit to start statistical processing is generated according to the result of the comparison, and the enable signal is used Upon detecting the light signal reflected by the target object, an enable signal for controlling the first statistical unit to stop counting is generated.
  • the reference threshold may also be set according to the frequency of the optical signal that the transmitter can emit, and the details are not repeated here.
  • the first statistical unit counts the integer wavelength of the optical signal that has been emitted by the transmitter when the signal detector detects the optical signal reflected by the target object since it starts to transmit the optical signal to the target object. quantity;
  • the wavelength of the optical signal emitted by the transmitter is the distance that light travels in one period, and the period is directly related to the frequency
  • statistics can be directly started to emit the optical signal to the target object. First, cut off the time difference when the signal detector detects the light signal reflected by the target object, and then determine that the time difference covers several cycles, that is, the number of integer wavelengths is obtained.
  • the second statistics unit receives an enable signal that enables it to start statistics processing, and when the signal detector detects the light signal reflected by the target object, the second statistics unit receives the enable signal that controls it to stop statistics;
  • the second statistical unit counts the fractional wavelength of the optical signal that has been emitted by the transmitter when the signal detector detects the optical signal reflected by the target object since it starts to emit the optical signal to the target object. The phase.
  • the second statistical unit in order to avoid resource consumption caused by the simultaneous activation of the first statistical unit and the second statistical unit, it is preferable that after the first statistical unit completes the number statistics of integer wavelengths, the second statistical unit is activated to perform fractional wavelength phase statistics.
  • the enable signal that enables the second statistical unit to start statistics is at a high level
  • the enable signal that controls the second statistical unit to stop statistics is at a low level, or in other words, controls the phase of the second statistical unit to fractional wavelengths
  • the enable signal for performing statistics is logically opposite to the enable signal for controlling the first statistical unit to perform statistics on the number of integer wavelengths.
  • the first statistical unit may be activated to complete the number statistics of integer wavelengths, or the first statistical unit and the first The two statistical units can also be activated at the same time to perform number statistics of integer wavelengths and phase statistics of decimal wavelengths respectively.
  • the phase of the fractional wavelength is calculated based on the phase difference between the optical signal reflected by the target object and the optical signal emitted by the transmitter, the light reflected by the target object can be calculated.
  • the phase difference between the signal and the optical signal emitted by the transmitter divided by 2 ⁇ is directly used as the phase of the fractional wavelength.
  • the distance calculator calculates the distance between the target object and the distance measuring device according to the number of integer wavelengths and the phase of the decimal wavelength.
  • the distance between the target object and the distance measuring device may be specifically calculated by the following formula:
  • d represents the distance between the target object and the ranging device
  • represents the wavelength of the optical signal emitted by the transmitter
  • Data[N:0] represents the number of integer wavelengths
  • a person of ordinary skill in the art can build a distance calculation model according to the above formula (1), the number of integer wavelengths Data[N:0] and the phase of fractional wavelengths
  • the corresponding output is the distance d between the target object and the distance measuring device.
  • Figure 5 is a schematic flow diagram of the ranging method in Embodiment 5 of the application; corresponding to the above-mentioned Figure 2 schematic diagram of the ranging device structure, that is, a counter is used as the first statistical unit, and the number of integer wavelengths is counted by counting. As the second statistical unit, a time-of-flight statistician counts the number of decimal wavelengths by calculating the phase difference.
  • the ranging method in this embodiment specifically includes the following steps:
  • S501 The counter receives a reset signal
  • S502 The signal source generates an electric signal
  • the transmitter processes the electrical signal to form an optical signal emitted toward the target object
  • the transmitter converts electrical energy to light energy, thereby obtaining a light signal emitted toward the target object.
  • the enabling unit eliminates the environmental interference light signal and compares the emitted light signal with the reference threshold. When the result of the comparison indicates that the transmitter starts to emit the light signal toward the target object, the generating and enabling counter starts Enable signal for statistical processing;
  • the counter receives the enable signal for enabling it to start statistical processing to start counting the number of integer wavelengths
  • counting starts from 0 for the number of integer wavelengths.
  • the above embodiment in FIG. 4 is the same.
  • the high and low levels of an enable signal ienable are used to enable the counter to start statistical processing and to control the counter to stop counting.
  • the counter counts the integer number of the light signal that has been emitted by the transmitter when the light signal reflected by the target object is detected by the signal detector since the light signal is transmitted to the target object by counting.
  • the count value will increase by 1 every time a period of 2 ⁇ has passed. Since a period of 2 ⁇ corresponds to a wavelength of the optical signal emitted by the transmitter, the signal detector is blocked from detecting When the light signal reflected by the target object is reflected, the count value of the counter can reflect the start of transmitting the light signal to the target object, and when the signal detector detects the light signal reflected by the target object, the emission
  • the number of integer wavelengths of the optical signal that the device has emitted can also be understood as the number of wavelengths that are generally required for the light signal emitted by the transmitter toward the target object to reach the signal detector after being reflected by the target object, which is an integer wavelength.
  • the time-of-flight statistician calculates the phase difference from the start of transmitting the light signal to the target object.
  • the signal detector detects the light signal reflected by the target object, the transmitter has already emitted The fractional wavelength phase of the optical signal.
  • the optical signal emitted by the transmitter toward the target object reaches the phase of the fractional wavelength among the wavelengths roughly required by the signal detector after being reflected by the target object.
  • the time-of-flight statistic performs the statistics of fractional wavelengths
  • the level of the enable signal that the time-of-flight statistic starts to count is enabled and the counter is enabled
  • the level of the enable signal that ends statistics is opposite, and the level of the enable signal that enables the time-of-flight statistic to stop statistics is opposite to the level of the enable signal that enables the counter to start statistics.
  • the adder in the distance calculator performs summation processing on the number of integer wavelengths and the phase of the decimal wavelength
  • the multiplier in the distance calculator multiplies the wavelength of the optical signal and the result of the summation processing to obtain the distance between the target object and the distance measuring device.
  • step S509 is actually calculating
  • step S510 is actually calculating versus The product of this product actually reflects the distance between the target object and the distance measuring device.
  • the transmitter needs to transmit optical signals with different frequencies multiple times, and the distance is determined based on the processing results of multiple frequency optical signals. Since distance measurement can be achieved based on a single frequency, the measurement time is shorter and the power consumption is lower.
  • An embodiment of the present application provides an electronic device, which includes the distance measuring device described in any one of the embodiments of the present application.
  • the electronic devices in the embodiments of this application exist in various forms, including but not limited to:
  • Mobile communication equipment This type of equipment is characterized by mobile communication functions, and its main goal is to provide voice and data communications.
  • Such terminals include: smart phones (such as iPhone), multimedia phones, functional phones, and low-end phones.
  • Ultra-mobile personal computer equipment This type of equipment belongs to the category of personal computers, has calculation and processing functions, and generally also has mobile Internet features.
  • Such terminals include: PDA, MID and UMPC devices, such as iPad.
  • Portable entertainment equipment This type of equipment can display and play multimedia content.
  • Such devices include: audio, video players (such as iPod), handheld game consoles, e-books, as well as smart toys and portable car navigation devices.
  • Server A device that provides computing services.
  • the composition of a server includes a processor 810, hard disk, memory, system bus, etc.
  • the server is similar to a general computer architecture, but because it needs to provide highly reliable services, it has High requirements in terms of performance, reliability, security, scalability, and manageability.
  • a programmable logic device Programmable Logic Device, PLD
  • FPGA Field Programmable Gate Array
  • HDL Hardware Description Language
  • ABEL Advanced Boolean Expression Language
  • AHDL Altera Hardware Description Language
  • HDCal JHDL
  • Lava Lava
  • Lola MyHDL
  • PALASM RHDL
  • Verilog Verilog
  • the controller can be implemented in any suitable manner.
  • the controller can take the form of, for example, a microprocessor or a processor and a computer-readable medium storing computer-readable program codes (such as software or firmware) executable by the (micro)processor. , Logic gates, switches, application specific integrated circuits (ASICs), programmable logic controllers and embedded microcontrollers.
  • controllers include but are not limited to the following microcontrollers: ARC 625D, Atmel AT91SAM, Microchip PIC18F26K20 and Silicon Labs C8051F320, the memory controller can also be implemented as a part of the memory control logic.
  • controller in addition to implementing the controller in a purely computer-readable program code manner, it is entirely possible to program the method steps to make the controller use logic gates, switches, application specific integrated circuits, programmable logic controllers and embedded The same function can be realized in the form of a microcontroller, etc. Therefore, such a controller can be regarded as a hardware component, and the devices included in it for implementing various functions can also be regarded as a structure within the hardware component. Or even, the device for realizing various functions can be regarded as both a software module for realizing the method and a structure within a hardware component.
  • a typical implementation device is a computer.
  • the computer may be, for example, a personal computer, a laptop computer, a cell phone, a camera phone, a smart phone, a personal digital assistant, a media player, a navigation device, an email device, a game console, a tablet computer, a wearable device, or Any combination of these devices.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Therefore, the present application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.
  • the computing device includes one or more processors (CPU), input/output interfaces, network interfaces, and memory.
  • processors CPU
  • input/output interfaces network interfaces
  • memory volatile and non-volatile memory
  • the memory may include non-permanent memory in computer readable media, random access memory (RAM) and/or non-volatile memory, such as read-only memory (ROM) or flash memory (flash RAM). Memory is an example of computer readable media.
  • RAM random access memory
  • ROM read-only memory
  • flash RAM flash memory
  • Computer-readable media include permanent and non-permanent, removable and non-removable media, and information storage can be realized by any method or technology.
  • the information can be computer-readable instructions, data structures, program modules, or other data.
  • Examples of computer storage media include: but not limited to phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) or other optical storage, Magnetic cassettes, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission media can be used to store information that can be accessed by computing devices. According to the definition in this article, computer-readable media does not include transitory media, such as modulated data signals and carrier waves.
  • this application can be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • This application may be described in the general context of computer-executable instructions executed by a computer, such as program modules.
  • program modules include routines, programs, objects, components, data structures, etc. that perform specific transactions or implement specific abstract data types.
  • This application can also be practiced in distributed computing environments. In these distributed computing environments, remote processing devices connected through a communication network execute transactions.
  • program modules can be located in local and remote computer storage media including storage devices.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种测距装置、测距方法及电子设备,测距装置包括:发射器(102)、信号检测器(103)、波长统计单元(106)、距离计算器(107),发射器(102)用于向目标对象发射光信号,信号检测器(103)用于检测发射器(102)发出并被目标对象反射的光信号,波长统计单元(106)用于统计开始向目标对象发射光信号起、截止信号检测器(103)检测到被目标对象反射的光信号时发射器(102)已发射出的光信号的整数波长的数量以及小数波长的相位,距离计算器(107)用于根据整数波长的数量和小数波长的相位计算目标对象和测距装置之间的距离。测距装置避免了由于相位差每隔2π会重复出现而导致的在距离上出现混叠的现象,可以有效确定出物体跟传感器之间的距离。

Description

测距装置、测距方法及电子设备 技术领域
本申请实施例涉及信号处理技术领域,尤其涉及一种测距装置、测距方法及电子设备。
背景技术
飞行时间计算(time of flight,简称TOF)技术测距的大致原理可简述为:传感器发出光信号比如近红外光,遇到物体被反射后又被传感器接收,通过计算光信号发射和反射的时间差或相位差来确定物体跟传感器之间的距离。
其中对于通过计算光信号发射和反射的相位差来确定物体跟传感器之间的距离时,由于光信号的相位周期是2π,由此导致相位差每隔2π会重复出现,导致在距离上出现混叠,业界又称之距离混叠,无法有效确定出物体跟传感器之间的距离。
发明内容
有鉴于此,本申请实施例提供的测距装置、测距方法及电子设备,用以至少解决现有技术中存在的上述问题。
本申请实施例提供一种测距装置,其包括:信号检测器、波长统计单元,距离计算器,发射器用于向目标对象发射光信号,所述信号检测器用于检测发射器发出并被目标对象反射的光信号,所述波长统计单元用于统计开始向目标对象发射所述光信号起、截止所述信号检测器检测到被所述目标对象反射的光信号时所述发射器已发射出的光信号的整数波长的数量以及小数波长的相位,所述距离计算器用于根据所述整数波长的数量和所述小数波长的相位计算所述目标对象和所述测距装置之间的距离。
可选地,在本申请的任一实施例中,所述距离计算器包括加法器以及乘法器,所述加法器用于对所述整数波长的数量和所述小数波长的相位进行求和处理,所述乘法器用于对所述光信号的波长与所述求和处理的结果进行乘法运算,以计算所述目标对象和所述测距装置之间的距离。
可选地,在本申请的任一实施例中,还包括:干扰消除单元,消除所述信号检测器所接收到的环境干扰光信号用于消除所述信号检测器所接收到的环境干扰光信号,以使所述波长统计单元用于统计开始向目标对象发射所述光信号起、截止所述信号检测器检测到被所述目标对象反射的光信号时所述发射器已发射出的光信号的整数波长的数量以及小数波长的相位。
可选地,在本申请的任一实施例中,所述干扰消除单元进一步用于对所 述信号检测器检测到的光信号进行滤波以从中消除所述环境干扰光信号。
可选地,在本申请的任一实施例中,所述干扰消除单元包括带通滤波器以及低通滤波器,所述带通滤波器用于根据设定的通带对所述信号检测器检测到的光信号进行带通滤波处理,所述低通滤波器用于对带通滤波后的光信号进行低通滤波处理,以从中消除所述环境干扰光信号。
可选地,在本申请的任一实施例中,所述干扰消除单元还包括乘法器,所述乘法器设置在所述带通滤波器和低通滤波器之间,所述乘法器用于对带通滤波的光信号与设定的参考信号进行乘法处理,所述低通滤波器进一步用于对乘法处理后的光信号进行低通滤波处理,以从中消除所述环境干扰光信号。
可选地,在本申请的任一实施例中,所述设定的参考信号与所述发射器向目标对象发射的光信号频率相同。
可选地,在本申请的任一实施例中,所述波长统计单元包括:第一统计单元以及第二统计单元,所述第一统计单元用于统计开始向目标对象发射所述光信号起,截止所述信号检测器检测到被所述目标对象反射的光信号时,所述发射器已发射出的光信号的整数波长的数量;所述第二统计单元用于统计开始向目标对象发射所述光信号起,截止所述信号检测器检测到被所述目标对象反射的光信号时,所述发射器已发射出的光信号的小数波长的相位。
可选地,在本申请的任一实施例中,所述第一统计单元配置有使能端,所述使能端用于接收使能信号,在所述发射器开始向目标对象发射所述光信号时,所述使能信号用于使能所述第一统计单元开始统计所述整数波长的数量,以及在所述信号检测器检测到被所述目标对象反射的光信号,所述使能信号用于控制所述第一统计单元停止统计所述整数波长的数量。
可选地,在本申请的任一实施例中,还包括:使能单元,所述使能单元用于根据发射的所述光信号生成使能所述第一统计单元开始统计处理的使能信号,以及用于检测到被所述目标对象反射的光信号生成控制所述第一统计单元停止统计的使能信号。
可选地,在本申请的任一实施例中,所述使能单元为比较器,所述比较器用于根据发射的所述光信号以及设定的参考门限进行比较,根据所述比较的结果生成所述使能信号。
可选地,在本申请的任一实施例中,所述第一统计单元还配置有复位端,用于接收复位信号,所述复位信号用于控制所述第一统计单元的复位,以统计开始向目标对象发射所述光信号起、截止所述信号检测器检测到被所述目标对象反射的光信号时所述发射器已发射出的光信号的整数波长的数量。
可选地,在本申请的任一实施例中,所述第一统计单元为计数器,所述计数器用于通过计数的方式统计开始向目标对象发射所述光信号起,截止所述信号检测器检测到被所述目标对象反射的光信号时,所述发射器已发射出的光信号 的整数波长的个数。
可选地,在本申请的任一实施例中,所述第二统计单元为飞行时间统计器,所述飞行时间统计器用于通过统计所述光线飞行时间的方式统计开始向目标对象发射所述光信号起,截止所述信号检测器检测到被所述目标对象反射的光信号时,所述发射器已发射出的光信号的小数波长的相位。
可选地,在本申请的任一实施例中,在所述第一统计单元完成对所述整数波长的检测之后,所述第二统计单元启动以统计开始向目标对象发射所述光信号起,截止所述信号检测器检测到被所述目标对象反射的光信号时,所述发射器已发射出的光信号的小数波长的相位。
可选地,在本申请的任一实施例中,还包括:信号源,所述信号源用于产生电信号,对应地,所述发射器进一步用于根据所述电信号生成向目标对象发射光信号。
可选地,在本申请的任一实施例中,还包括延时器,用于使得所述信号源停止产生电信号的时间与所述波长统计单元停止检测所述整数波长时间的时间差在设定时间差值范围内。
本申请实施例提供一种测距方法,其包括:
检测由发射器发射并被目标对象反射的光信号;
统计开始向目标对象发射所述光信号起、截止所述信号检测器检测到被所述目标对象反射的光信号时已发射出的光信号的整数波长的数量以及小数波长的相位;
根据所述整数波长的数量和所述小数波长的相位计算所述目标对象和所述测距装置之间的距离。
可选地,在本申请的任一实施例中,还包括:消除所述信号检测器所接收到的环境干扰光信号。
可选地,在本申请的任一实施例中,消除所述信号检测器所接收到的环境干扰光信号,包括:对检测到的光信号进行滤波以从中消除所述环境干扰光信号。
可选地,在本申请的任一实施例中,消除所述信号检测器所接收到的环境干扰光信号,包括:根据设定的通带对所述信号检测器检测到的光信号进行带通滤波处理,对带通滤波后的光信号进行低通滤波处理,以从中消除所述环境干扰光信号。
可选地,在本申请的任一实施例中,消除所述信号检测器所接收到的环境干扰光信号,包括对带通滤波的光信号与设定的参考信号进行乘法处理,以对乘法处理后的光信号进行低通滤波处理,以从中消除所述环境干扰光信号。
可选地,在本申请的任一实施例中,统计开始向目标对象发射所述光信号起、截止所述信号检测器检测到被所述目标对象反射的光信号时已发射出的光 信号的整数波长的数量以及小数波长的相位,包括:
通过第一统计单元统计开始向目标对象发射所述光信号起,截止所述信号检测器检测到被所述目标对象反射的光信号时,所述发射器已发射出的光信号的整数波长的数量;
通过第二统计单元统计开始向目标对象发射所述光信号起,截止所述信号检测器检测到被所述目标对象反射的光信号时,所述发射器已发射出的光信号的小数波长的相位。
可选地,在本申请的任一实施例中,还包括:接收使能信号,在所述发射器开始向目标对象发射所述光信号时,所述使能信号用于使能所述第一统计单元开始统计处理,以及在检测到被所述目标对象反射的光信号,所述使能信号用于控制所述第一统计单元停止统计。
可选地,在本申请的任一实施例中,根据发射的所述光信号生成使能所述第一统计单元开始统计处理的使能信号,以及用于检测到被所述目标对象反射的光信号生成控制所述第一统计单元停止统计的使能信号。
可选地,在本申请的任一实施例中,根据发射的所述光信号生成使能所述第一统计单元开始统计处理的使能信号,以及用于检测到被所述目标对象反射的光信号生成控制所述第一统计单元停止统计的使能信号,包括:根据发射的所述光信号以及设定的参考门限进行比较,根据所述比较的结果生成使能所述第一统计单元开始统计处理的使能信号,以及用于检测到被所述目标对象反射的光信号生成控制所述第一统计单元停止统计的使能信号。
可选地,在本申请的任一实施例中,还包括:接收复位信号,所述复位信号用于控制所述第一统计单元的复位,以统计开始向目标对象发射所述光信号起、截止所述信号检测器检测到被所述目标对象反射的光信号时所述发射器已发射出的光信号的整数波长的数量。
可选地,在本申请的任一实施例中,在所述第一统计单元完成对所述整数波长的检测之后,启动所述第二统计单元以统计开始向目标对象发射所述光信号起,截止检测到被所述目标对象反射的光信号时,已发射出的光信号的小数波长的相位。
本申请实施例提供一种电子设备,其包括本申请实施例任一项所述的测距装置。
由以上技术方案可见,本申请实施例中,测距装置包括:信号检测器、波长统计单元,距离计算器,发射器用于向目标对象发射光信号,所述信号检测器用于检测发射器发出并被目标对象反射的光信号,所述波长统计单元用于统计开始向目标对象发射所述光信号起、截止所述信号检测器检测到被所述目标对象反射的光信号时所述发射器已发射出的光信号的整数波长的数量以及小数波长的相位,所述距离计算器用于根据所述整数波长的数量和所述小数波长的相位计算 所述目标对象和所述测距装置之间的距离,从而避免了由于相位差每隔2π会重复出现而导致的在距离上出现混叠的现象,可以有效确定出物体跟传感器之间的距离。
附图说明
图1为本申请实施例一中测距装置的结构示意图;
图2为本申请实施例二中测距装置的结构示意图;
图3为本申请实施例三中使能单元的结构示意图;
图4为本申请实施例四中测距方法的流程示意图;
图5为本申请实施例五中测距方法的流程示意图。
具体实施方式
为使本领域的普通技术人员更好地理解本申请实施例中的技术方案,下面结合附图对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请的一部分实施例,而不是全部实施例。因此,本领域普通技术人员基于所描述的实施例而获得的其他实施例,都应当属于本申请实施例保护的范围。
由以上技术方案可见,本申请实施例中,测距装置包括:信号检测器、波长统计单元,距离计算器,发射器用于向目标对象发射光信号,所述信号检测器用于检测发射器发出并被目标对象反射的光信号,所述波长统计单元用于统计开始向目标对象发射所述光信号起、截止所述信号检测器检测到被所述目标对象反射的光信号时所述发射器已发射出的光信号的整数波长的数量以及小数波长的相位,所述距离计算器用于根据所述整数波长的数量和所述小数波长的相位计算所述目标对象和所述测距装置之间的距离,从而避免了由于相位差每隔2π会重复出现而导致的在距离上出现混叠的现象,可以有效确定出物体跟传感器之间的距离。
图1为本申请实施例一中测距装置的结构示意图;如图1所示,测距装置包括:信号源101、发射器102、信号检测器103、延时器104、波长统计单元106、距离计算器107,所述信号源101用于产生电信号,所述发射器102用于根据所述电信号生成向目标对象发射的光信号,所述信号检测器103用于检测发射器发出并被目标对象反射的光信号,所述波长统计单元106用于统计开始向目标对象发射所述光信号起、截止所述信号检测器103检测到被所述目标对象反射的光信号时所述发射器102已发射出的光信号的整数波长的数量以及小数波长的相位,所述距离计算器107用于根据所述整数波长的数量和所述小数波长的相位计算所述目标对象和所述测距装置之间的距离。延时器104用于使得所述信号源101停止产生电信号的时间与所述波长统计单元106停止检测所述整数波长时间的时 间差在设定时间差值范围内。
具体地,本实施例中,所述波长统计单元106可以包括:第一统计单元126以及第二统计单元116,所述第一统计单元126用于统计开始向目标对象发射所述光信号起,截止所述信号检测器103检测到被所述目标对象反射的光信号时,所述发射器102已发射出的光信号的整数波长的数量;所述第二统计单元116用于统计开始向目标对象发射所述光信号起,截止所述信号检测器103检测到被所述目标对象反射的光信号时,所述发射器102已发射出的光信号的小数波长的相位。
进一步地,本实施例中,所述第一统计单元126配置有使能端,所述使能端用于接收使能信号,在所述发射器102开始向目标对象发射所述光信号时,所述使能信号用于使能所述第一统计单元126开始统计所述整数波长的数量,以及在所述信号检测器103检测到被所述目标对象反射的光信号,所述使能信号用于控制所述第一统计单元126停止统计所述整数波长的数量。
进一步地,在本申请的任一实施例中,所述第一统计单元126还配置有复位端,用于接收复位信号iRst,所述复位信号用于控制所述第一统计单元126的复位,以统计开始向目标对象发射所述光信号起、截止所述信号检测器103检测到被所述目标对象反射的光信号时所述发射器102已发射出的光信号的整数波长的数量。
进一步地,本实施例中,还包括:使能单元105,所述使能单元105用于根据发射的所述光信号生成使能所述第一统计单元126开始统计处理的使能信号ienable,以及用于检测到被所述目标对象反射的光信号生成控制所述第一统计单元126停止统计的使能信号ienable。
具体地,所述使能单元105为比较器,所述比较器105用于根据发射的所述光信号以及设定的参考门限进行比较,根据所述比较的结果生成所述使能信号。
图2为本申请实施例二中测距装置的结构示意图;如图2所示,与上述图1实施例不同的点可简要概述为:所述第一统计单元126为计数器,所述第二统计单元116为飞行时间统计器,以下对此进行详细的示例性描述。
本实施例中,作为所述第一统计单元126的计数器用于通过计数的方式统计开始向目标对象发射所述光信号起,截止所述信号检测器103检测到被所述目标对象反射的光信号时,所述发射器102已发射出的光信号的整数波长的个数。
本实施例中,作为所述第二统计单元116的飞行时间统计器,通过统计所述光线飞行时间的方式统计开始向目标对象发射所述光信号起,截止所述信号检测器103检测到被所述目标对象反射的光信号时,所述发射器102已发射出的光信号的小数波长的相位。
本实施例中,为了节省资源开销,在所述第一统计单元126完成对所述 整数波长的检测之后,所述第二统计单元116启动以统计开始向目标对象发射所述光信号起,截止所述信号检测器103检测到被所述目标对象反射的光信号时,所述发射器102已发射出的光信号的小数波长的相位。
考虑到一些应用环境中,信号检测器检测的光线可能还包括环境干扰信号,即信号检测器103检测到光线除了包括被目标对象反射回的光线,还包括来自应用环境的环境干扰信号,为此,尤其目标对象开始反射回的光信号较弱,如果不消除其中的环境干扰信号,无法产生有效的使能信号,基于这种需求,在上述图1或者图2的实施例基础上,测距装置还可以包括:干扰消除单元,消除所述信号检测器所接收到的环境干扰光信号,以使所述波长统计单元106用于统计开始向目标对象发射所述光信号起、截止所述信号检测器103检测到被所述目标对象反射的光信号时所述发射器102已发射出的光信号的整数波长的数量以及小数波长的相位。该干扰消除单元可以集成到使能单元105上,或者又称之使能单元105不但具有产生使能信号的作用,还具有消除环境干扰光信号的作用。
另外,对于飞行时间统计器来说,在其中通过差分方式消除来自环境干扰光信号。
但是,此处需要说明的是,干扰消除单元并非只能集成到使能单元105上,实际上,干扰消除单元也可以是一独立于使能单元105的结构。
图3为本申请实施例三中使能单元的结构示意图;如图3所示,本实施例中,使能单元105包括:带通滤波器、乘法器、低通滤波器,所述乘法器设置在所述带通滤波器和低通滤波器之间,从整体上来看,这三个结构件相互配合,主要用于对所述信号检测器103检测到的光信号进行滤波以从中消除所述环境干扰光信号。
其中,所述带通滤波器用于根据设定的通带对所述信号检测器103检测到的光信号进行带通滤波处理;
所述低通滤波器用于对带通滤波后的光信号进行低通滤波处理,以从中消除所述环境干扰光信号。
本实施例中,如果包括乘法器,则通过乘法器可以对带通滤波的光信号与设定的参考信号进行乘法处理,进一步地,所述低通滤波器在对带通滤波后的光信号进行低通滤波处理以从中消除所述环境干扰光信号时,实际上是通过对乘法处理后的光信号进行低通滤波处理,实现对带通滤波后的光信号进行低通滤波处理,从而从中消除所述环境干扰光信号。
本实施例中,考虑到在计算所述距离时,是基于发射器102发出的光线和发射器102发出的光线照射到目标对象上而被目标对象反射的光线,因此,实际上,发射器102发出的光线,与发射器102发出的光线照射到目标对象上而被目标对象反射的光线,这两部光线的频率可视为是相等的,因此,为了便于快速并直接地从信号好检测器中检测到的光线中滤除环境干扰光信号以筛选出发射器 102发出的光线照射到目标对象上而被目标对象反射的光线,所述设定的参考信号与所述发射器102向目标对象发射的光信号频率相同。
在上述任一实施例中,所述距离计算器107包括加法器以及乘法器,所述加法器用于对所述整数波长的数量和所述小数波长的相位进行求和处理,所述乘法器用于对所述光信号的波长与所述求和处理的结果进行乘法运算,以计算所述目标对象和所述测距装置之间的距离。
结合上述实施例测距装置实施例的结构示意图,以下实施例提供了一种测距方法,其包括:检测由发射器发射并被目标对象反射的光信号;统计开始向目标对象发射所述光信号起、截止所述信号检测器检测到被所述目标对象反射的光信号时已发射出的光信号的整数波长的数量以及小数波长的相位;根据所述整数波长的数量和所述小数波长的相位计算所述目标对象和所述测距装置之间的距离。
在此,需要说明的是,图1和图2中,发射器作为测距装置的结构进行说明,但实际上,发射器也可以不作为测距装置的结构,其具体可以根据应用场景的不同进行灵活设置。
为此,以下对图1和图2所示测距装置的工作过程分别做示例性说明。
图4为本申请实施例四中测距方法的流程示意图;如图4所示,本实施例中的测距方法主要针对上述图1的测距装置,或者又称之图1中测距装置的工作过程。
具体地,本实施例中,测距方法具体包括如下步骤:
S401、所述第一统计单元接收复位信号;
本实施中,所述复位信号用于控制所述第一统计单元的复位,以使得所述第一统计单元在启动对所述整数波长的数量的统计时,从0开始统计,从而能够直接快速地统计出发射器开始向目标对象发射所述光信号起、截止所述信号检测器检测到被所述目标对象反射的光信号时所述发射器已发射出的光信号的整数波长的数量。
当然,此处需要说明的是,所述复位信号对所述第一统计单元的复位处理,并非只能限定为从0开始统计所述整数波长的数量,实际上,对于本领域普通技术人员来说,也可以根据应用场景的需求设置成非0值。
S402、第一统计单元接收使能其开始统计处理的使能信号,并在信号检测器检测到被所述目标对象反射的光信号时,第一统计单元接收控制其停止统计的使能信号;
本实施例中,使能第一统计单元开始统计处理的使能信号具体可以为一高电平,控制第一统计单元停止统计的使能信号具体可以为一低电平。具体地,在一应用场景中,可以通过使能信号的高低电平的切换,从而产生使能第一统计单元开始统计处理的使能信号,以及控制第一统计单元停止统计的使能信号。
进一步地,如上述图1所示,通过使能单元产生一使能信号ienable,在发射器开始向目标对象发射所述光信号时,该使能信号ienable为低电平,即该高电平的使能信号作为使能第一统计单元开始统计处理的使能信号;而当所述信号检测器检测到被所述目标对象反射的光信号时,该使能信号ienable为高电平,即该高电平的使能信号作为控制第一统计单元停止统计的使能信号。
具体地,如果基于比较器来实现上述使能单元,由于发射器发出的光线,以及发射器发出且被目标对象反射会的光线,二者都具有已知的属性参数,因此,可以根据该已知的属性参数去设置一个参考门限,并根据发射的所述光信号与所述参考门限进行比较,根据所述比较的结果生成所述使能信号。
具体地,在上述图1的结构图中,由于发射器发射出的光信号是对信号源的电信号进行电-光转换得到的,因此,基于发射器发射出的光信号与所述电信号的对应关系,则可以比较器的一个输入端连接到信号源,另外一个输入端连接到根据发射器可发射出的光信号的属性参数设置的一参考电平,当首次检测到信号源产生的电信号的电平大于所述参考电平时,则所述比较器产生一高电平的使能信号ienable,或者又称之为比较器的输出为高电平,使第一统计单元停止统计处理;当检测到信号源产生的电信号的电平小于所述参考电平,所述比较器产生一电平的使能信号ienable,或者又称之比较器的输出为低电平,使能第一统计单元开始统计处理。
即,在本实施例中,根据发射的所述光信号生成使能所述第一统计单元开始统计处理的使能信号,以及用于检测到被所述目标对象反射的光信号生成控制所述第一统计单元停止统计的使能信号。进一步地,在具体实施时,可以根据发射的所述光信号以及设定的参考门限进行比较,根据所述比较的结果生成使能所述第一统计单元开始统计处理的使能信号,以及用于检测到被所述目标对象反射的光信号生成控制所述第一统计单元停止统计的使能信号。
此处,在其他实施例中,也可以根据发射器可发射出的光信号的频率设置参考门限,详细不再赘述。
此处需要说明的是,通过同一使能信号的高低电平切换,从而实现了使能第一统计单元开始统计处理、以及控制第一统计单元停止统计。但是,实际上,对于本领域普通技术人员来说,也可以两路信号去分别实现使能第一统计单元开始统计处理、以及控制第一统计单元停止统计。
S403、第一统计单元统计开始向目标对象发射所述光信号起,截止所述信号检测器检测到被所述目标对象反射的光信号时,所述发射器已发射出的光信号的整数波长的数量;
本实施例中,由于发射器发射的光信号的波长为一个周期内光传播的距离,而周期又跟频率直接相关,因此,本实施例中,可以直接统计开始向目标对象发射所述光信号起,截止所述信号检测器检测到被所述目标对象反射的光信号 时的时间差,再确定该时间差覆盖几个周期,即得到所述整数波长的数量。
S404、第二统计单元接收使能其开始统计处理的使能信号,并在信号检测器检测到被所述目标对象反射的光信号时,第二统计单元接收控制其停止统计的使能信号;
S405、第二统计单元统计开始向目标对象发射所述光信号起,截止所述信号检测器检测到被所述目标对象反射的光信号时,所述发射器已发射出的光信号的小数波长的相位。
本实施例中,为了避免第一统计单元和第二统计单元同时启动造成的资源消耗,优选在第一统计单元完成整数波长的数量统计之后,启动第二统计单元进行小数波长的相位统计。为此,使能第二统计单元开始统计的使能信号为高电平,而控制第二统计单元停止统计的使能信号为低电平,或者换言之,控制第二统计单元对小数波长的相位进行统计的使能信号与控制第一统计单元对整数波长的数量进行统计的使能信号,在电平的高低逻辑上相反。
此处,需要说明的是,在另外一实施例中,也可以在第二统计单元进行小数波长的相位统计之后,启动第一统计单元完成整数波长的数量统计,或者,第一统计单元与第二统计单元也可以同时启动,分别进行整数波长的数量统计以及小数波长的相位统计。
在一具体应用场景中,如果基于被所述目标对象反射的光信号与发射器发乎的光信号之间的相位差统计所述小数波长的相位的话,则可以将所述目标对象反射的光信号与发射器发乎的光信号之间的相位差除以2π直接作为所述小数波长的相位。
S406、距离计算器根据所述整数波长的数量和所述小数波长的相位计算所述目标对象和所述测距装置之间的距离。
本实施例中,具体可以通过如下公式计算所述目标对象和所述测距装置之间的距离:
Figure PCTCN2019092537-appb-000001
上述公式(1)中,d表示所述目标对象和所述测距装置之间的距离,λ表示发射器发出的光信号的波长,Data[N:0]表示整数波长的数量,
Figure PCTCN2019092537-appb-000002
表示小数波长的相位。
本实施例中,本领域普通技术人员可以根据上述公式(1)搭建一个距离计算模型,整数波长的数量Data[N:0]和小数波长的相位
Figure PCTCN2019092537-appb-000003
分别作为上述距离计算模型的输入,对应的输出即为所述目标对象和所述测距装置之间的距离d。
图5为本申请实施例五中测距方法的流程示意图;对应上述图2的测距装置结构示意图,即以计数器作为所述第一统计单元,通过计数的方式统计整数波长的个数,以飞行时间统计器作为所述第二统计单元,通过求取相位差的方式统计小数波长的个数。另外,考虑到在一些应用场景还存在来自环境的干扰光信号,有必要将其滤除。为此,如图5所示,本实施例中的测距方法具体包括如下步骤:
S501、计数器接收复位信号;
本实施例中,有关复位信号的详细描述类似上述图4所示的实施例,详细可参见上述图4所示的实施例。
S502、信号源产生电信号;
S503、发射器对电信号进行处理以形成朝目标对象发射的光信号;
本实施例中,发射器进行电能到光能的转换,从而得到朝目标对象发射的光信号。
S504、使能单元消除环境干扰光信号并根据发射的所述光信号与所述参考门限进行比较,在所述比较的结果表明发射器开始朝目标对象发射光信号,则生成使能其计数器开始统计处理的使能信号;
有关使能单元消除环境干扰光信号的具体技术处理细节详见上述实施例。
S505、计数器接收使能其开始统计处理的使能信号开始整数波长的数量统计;
本实施例中,如前所述,优选计数器被复位之后,从整数波长的数量从0开始统计。
S506、在信号检测器检测到发射器发出的信号被所述目标对象形成反射的光信号时,使能单元生成控制计数器停止统计的使能信号;
上述图4实施例相同,通过一使能信号ienable的高低电平实现使能计数器开始统计处理,以及控制计数器停止统计。
S507、计数器通过计数的方式统计开始向目标对象发射所述光信号起,截止所述信号检测器检测到被所述目标对象反射的光信号时,所述发射器已发射出的光信号的整数波长的数量;
本实施例中,若计数器从0开始计数,每经过一个2π周期,计数值加1,由于一个2π周期对应发射器发出的光信号的一个波长,由此,截止所述信号检测器检测到被所述目标对象反射的光信号时,计数器的计数值即可反应开始向目标对象发射所述光信号起,截止所述信号检测器检测到被所述目标对象反射的光信号时,所述发射器已发射出的光信号的整数波长的数量。此处,也可以理解为发射器朝目标对象发射的光信号,经过目标对象反射后到达信号检测器大致需要的波长数量中,整数波长多少个。
S508、飞行时间统计器通过计算相位差的方式统计开始向目标对象发射所述光信号起,截止所述信号检测器检测到被所述目标对象反射的光信号时,所述发射器已发射出的光信号的小数波长的相位。
本实施例中,发射器朝目标对象发射的光信号,经过目标对象反射后到达信号检测器大致需要的波长中,小数波长的相位。
此处,需要说明的是,如果在计数器完成整数波长的统计之后,再由飞行时间统计器进行小数波长的统计,则使能飞行时间统计器开始统计的使能信号的电平与使能计数器结束统计的使能信号的电平相反,使能飞行时间统计器停止统计的使能信号的电平与使能计数器开始统计的使能信号的电平相反。
S509、距离计算器中的加法器对所述整数波长的数量和所述小数波长的相位进行求和处理;
S510、所述距离计算器中的乘法器对所述光信号的波长与所述求和处理的结果进行乘法运算,得到所述目标对象和所述测距装置之间的距离。
参见上述公式(1),步骤S509实际上是计算
Figure PCTCN2019092537-appb-000004
而步骤S510实际上是计算
Figure PCTCN2019092537-appb-000005
Figure PCTCN2019092537-appb-000006
的乘积,该乘积的结果实际上就反应所述目标对象和所述测距装置之间的距离。
当然,在其他实施例中,也可以通过两个乘法器,一个加法器来实现,一个乘法器用于计算
Figure PCTCN2019092537-appb-000007
与Data[N:0]的乘积,另外一个乘法器用于计算
Figure PCTCN2019092537-appb-000008
Figure PCTCN2019092537-appb-000009
的乘积,加法器用于对
Figure PCTCN2019092537-appb-000010
与Data[N:0]的乘积结果和
Figure PCTCN2019092537-appb-000011
Figure PCTCN2019092537-appb-000012
的乘积进行求和运算,该求和的结果实际上就反应所述目标对象和所述测距装置之间的距离。
在上述实施例中,由于可对整数波长和小数波长分别进行统计,因此,可以实现基于单频率的距离计算,且出现距离混叠,而且可测距离范围较长;,尤其相对于多频测距方案,发射器需要多次发射频率不相同的光信号,基于多个频率光信号的处理结果确定距离,由于可以基于单频率实现距离的测量,测量时间较短以及功率消耗较低。
本申请实施例提供一种电子设备,其包括本申请实施例任一项所述的测距装置。
本申请实施例的电子设备以多种形式存在,包括但不限于:
(1)移动通信设备:这类设备的特点是具备移动通信功能,并且以提供话音、数据通信为主要目标。这类终端包括:智能手机(例如iPhone)、多媒体手机、 功能性手机,以及低端手机等。
(2)超移动个人计算机设备:这类设备属于个人计算机的范畴,有计算和处理功能,一般也具备移动上网特性。这类终端包括:PDA、MID和UMPC设备等,例如iPad。
(3)便携式娱乐设备:这类设备可以显示和播放多媒体内容。该类设备包括:音频、视频播放器(例如iPod),掌上游戏机,电子书,以及智能玩具和便携式车载导航设备。
(4)服务器:提供计算服务的设备,服务器的构成包括处理器810、硬盘、内存、系统总线等,服务器和通用的计算机架构类似,但是由于需要提供高可靠的服务,因此在处理能力、稳定性、可靠性、安全性、可扩展性、可管理性等方面要求较高。
(5)其他具有数据交互功能的电子装置。
至此,已经对本主题的特定实施例进行了描述。其它实施例在所附权利要求书的范围内。在一些情况下,在权利要求书中记载的动作可以按照不同的顺序来执行并且仍然可以实现期望的结果。另外,在附图中描绘的过程不一定要求示出的特定顺序或者连续顺序,以实现期望的结果。在某些实施方式中,多任务处理和并行处理可以是有利的。
在20世纪90年代,对于一个技术的改进可以很明显地区分是硬件上的改进(例如,对二极管、晶体管、开关等电路结构的改进)还是软件上的改进(对于方法流程的改进)。然而,随着技术的发展,当今的很多方法流程的改进已经可以视为硬件电路结构的直接改进。设计人员几乎都通过将改进的方法流程编程到硬件电路中来得到相应的硬件电路结构。因此,不能说一个方法流程的改进就不能用硬件实体模块来实现。例如,可编程逻辑器件(Programmable Logic Device,PLD)(例如现场可编程门阵列(Field Programmable Gate Array,FPGA))就是这样一种集成电路,其逻辑功能由用户对器件编程来确定。由设计人员自行编程来把一个数字系统“集成”在一片PLD上,而不需要请芯片制造厂商来设计和制作专用的集成电路芯片。而且,如今,取代手工地制作集成电路芯片,这种编程也多半改用“逻辑编译器(logic compiler)”软件来实现,它与程序开发撰写时所用的软件编译器相类似,而要编译之前的原始代码也得用特定的编程语言来撰写,此称之为硬件描述语言(Hardware Description Language,HDL),而HDL也并非仅有一种,而是有许多种,如ABEL(Advanced Boolean Expression Language)、AHDL(Altera Hardware Description Language)、Confluence、CUPL(Cornell University Programming Language)、HDCal、JHDL(Java Hardware Description Language)、Lava、Lola、MyHDL、PALASM、RHDL(Ruby Hardware Description Language)等,目前最普遍使用的是VHDL(Very-High-Speed Integrated Circuit Hardware Description Language)与Verilog。本领域技术人员也应该清楚,只需要 将方法流程用上述几种硬件描述语言稍作逻辑编程并编程到集成电路中,就可以很容易得到实现该逻辑方法流程的硬件电路。
控制器可以按任何适当的方式实现,例如,控制器可以采取例如微处理器或处理器以及存储可由该(微)处理器执行的计算机可读程序代码(例如软件或固件)的计算机可读介质、逻辑门、开关、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑控制器和嵌入微控制器的形式,控制器的例子包括但不限于以下微控制器:ARC 625D、Atmel AT91SAM、Microchip PIC18F26K20以及Silicone Labs C8051F320,存储器控制器还可以被实现为存储器的控制逻辑的一部分。本领域技术人员也知道,除了以纯计算机可读程序代码方式实现控制器以外,完全可以通过将方法步骤进行逻辑编程来使得控制器以逻辑门、开关、专用集成电路、可编程逻辑控制器和嵌入微控制器等的形式来实现相同功能。因此这种控制器可以被认为是一种硬件部件,而对其内包括的用于实现各种功能的装置也可以视为硬件部件内的结构。或者甚至,可以将用于实现各种功能的装置视为既可以是实现方法的软件模块又可以是硬件部件内的结构。
上述实施例阐明的系统、装置、模块或单元,具体可以由计算机芯片或实体实现,或者由具有某种功能的产品来实现。一种典型的实现设备为计算机。具体的,计算机例如可以为个人计算机、膝上型计算机、蜂窝电话、相机电话、智能电话、个人数字助理、媒体播放器、导航设备、电子邮件设备、游戏控制台、平板计算机、可穿戴设备或者这些设备中的任何设备的组合。
为了描述的方便,描述以上装置时以功能分为各种单元分别描述。当然,在实施本申请时可以把各单元的功能在同一个或多个软件和/或硬件中实现。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程 和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。内存是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括:但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
本领域技术人员应明白,本申请的实施例可提供为方法、系统或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程序模块。一般地,程序模块包括执行特定事务或实现特定抽象数据类型的例程、程序、对象、组件、数据结构等等。也可以在分布式计算环境中实践本申请,在这些分布式计算环境中,由通过通信网络而被连接的远程处理设备来执行事务。在分布式计算环境中,程序模块可以位于包括存储设备在内的本地和远程 计算机存储介质中。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (29)

  1. 一种测距装置,其特征在于,包括:信号检测器、波长统计单元,距离计算器,所述信号检测器用于检测发射器发出并被目标对象反射的光信号,所述波长统计单元用于统计开始向目标对象发射所述光信号起、截止所述信号检测器检测到被所述目标对象反射的光信号时所述发射器已发射出的光信号的整数波长的数量以及小数波长的相位,所述距离计算器用于根据所述整数波长的数量和所述小数波长的相位计算所述目标对象和所述测距装置之间的距离。
  2. 根据权利要求1所述的测距装置,其特征在于,所述距离计算器包括加法器以及乘法器,所述加法器用于对所述整数波长的数量和所述小数波长的相位进行求和处理,所述乘法器用于对所述光信号的波长与所述求和处理的结果进行乘法运算,以计算所述目标对象和所述测距装置之间的距离。
  3. 根据权利要求1所述的测距装置,其特征在于,还包括:干扰消除单元,消除所述信号检测器所接收到的环境干扰光信号用于消除所述信号检测器所接收到的环境干扰光信号。
  4. 根据权利要求3所述的测距装置,其特征在于,所述干扰消除单元进一步用于对所述信号检测器检测到的光信号进行滤波以从中消除所述环境干扰光信号。
  5. 根据权利要求3所述的测距装置,其特征在于,所述干扰消除单元包括带通滤波器以及低通滤波器,所述带通滤波器用于根据设定的通带对所述信号检测器检测到的光信号进行带通滤波处理,所述低通滤波器用于对带通滤波后的光信号进行低通滤波处理,以从中消除所述环境干扰光信号。
  6. 根据权利要求5所述的测距装置,其特征在于,所述干扰消除单元还包括乘法器,所述乘法器设置在所述带通滤波器和低通滤波器之间,所述乘法器用于对带通滤波的光信号与设定的参考信号进行乘法处理,所述低通滤波器进一步用于对乘法处理后的光信号进行低通滤波处理,以从中消除所述环境干扰光信号。
  7. 根据权利要求6所述的测距装置,其特征在于,所述设定的参考信号与所述发射器向目标对象发射的光信号频率相同。
  8. 根据权利要求1-7任一项所述的测距装置,其特征在于,所述波长统计单元包括:第一统计单元以及第二统计单元,所述第一统计单元用于统计开始向目标对象发射所述光信号起,截止所述信号检测器检测到被所述目标对象反射的光信号时,所述发射器已发射出的光信号的整数波长的数量;所述第二统计单元用于统计开始向目标对象发射所述光信号起,截止所述信号检测器检测到被所述目标对象反射的光信号时,所述发射器已发射出的光信号的小数波长的相位。
  9. 根据权利要求8所述的测距装置,其特征在于,所述第一统计单元配 置有使能端,所述使能端用于接收使能信号,在所述发射器开始向目标对象发射所述光信号时,所述使能信号用于使能所述第一统计单元开始统计所述整数波长的数量,以及在所述信号检测器检测到被所述目标对象反射的光信号,所述使能信号用于控制所述第一统计单元停止统计所述整数波长的数量。
  10. 根据权利要求9所述的测距装置,其特征在于,还包括:使能单元,所述使能单元用于根据发射的所述光信号生成使能所述第一统计单元开始统计处理的使能信号,以及用于检测到被所述目标对象反射的光信号生成控制所述第一统计单元停止统计的使能信号。
  11. 根据权利要求8所述的测距装置,其特征在于,所述使能单元为比较器,所述比较器用于根据发射的所述光信号以及设定的参考门限进行比较,根据所述比较的结果生成所述使能信号。
  12. 根据权利要求8所述的测距装置,其特征在于,所述第一统计单元还配置有复位端,用于接收复位信号,所述复位信号用于控制所述第一统计单元的复位,以统计开始向目标对象发射所述光信号起、截止所述信号检测器检测到被所述目标对象反射的光信号时所述发射器已发射出的光信号的整数波长的数量。
  13. 根据权利要求8所述的测距装置,其特征在于,所述第一统计单元为计数器,所述计数器用于通过计数的方式统计开始向目标对象发射所述光信号起,截止所述信号检测器检测到被所述目标对象反射的光信号时,所述发射器已发射出的光信号的整数波长的个数。
  14. 根据权利要求8所述的测距装置,其特征在于,所述第二统计单元为飞行时间统计器,所述飞行时间统计器用于通过统计所述光线飞行时间的方式统计开始向目标对象发射所述光信号起,截止所述信号检测器检测到被所述目标对象反射的光信号时,所述发射器已发射出的光信号的小数波长的相位。
  15. 根据权利要求8-14任一项所述的测距装置,其特征在于,在所述第一统计单元完成对所述整数波长的检测之后,所述第二统计单元启动以统计开始向目标对象发射所述光信号起,截止所述信号检测器检测到被所述目标对象反射的光信号时,所述发射器已发射出的光信号的小数波长的相位。
  16. 根据权利要求1-15任一项所述的测距装置,其特征在于,还包括:信号源,所述信号源用于产生电信号,对应地,所述发射器进一步用于根据所述电信号生成向目标对象发射光信号。
  17. 根据权利要求16所述的测距装置,其特征在于,还包括延时器,用于使得所述信号源停止产生电信号的时间与所述波长统计单元停止检测所述整数波长时间的时间差在设定时间差值范围内。
  18. 一种测距方法,其特征在于,包括:
    检测由发射器发射并被目标对象反射的光信号;
    统计开始向目标对象发射所述光信号起、截止所述信号检测器检测到被所述目标对象反射的光信号时已发射出的光信号的整数波长的数量以及小数波长的相位;
    根据所述整数波长的数量和所述小数波长的相位计算所述目标对象和所述测距装置之间的距离。
  19. 根据权利要求18所述的测距方法,其特征在于,还包括:消除所述信号检测器所接收到的环境干扰光信号。
  20. 根据权利要求18所述的测距方法,其特征在于,消除所述信号检测器所接收到的环境干扰光信号,包括:对检测到的光信号进行滤波以从中消除所述环境干扰光信号。
  21. 根据权利要求20所述的测距方法,其特征在于,消除所述信号检测器所接收到的环境干扰光信号,包括:根据设定的通带对所述信号检测器检测到的光信号进行带通滤波处理,对带通滤波后的光信号进行低通滤波处理,以从中消除所述环境干扰光信号。
  22. 根据权利要求21所述的测距方法,其特征在于,消除所述信号检测器所接收到的环境干扰光信号,包括对带通滤波的光信号与设定的参考信号进行乘法处理,以对乘法处理后的光信号进行低通滤波处理,以从中消除所述环境干扰光信号。
  23. 根据权利要求18-22任一项所述的测距方法,其特征在于,统计开始向目标对象发射所述光信号起、截止所述信号检测器检测到被所述目标对象反射的光信号时已发射出的光信号的整数波长的数量以及小数波长的相位,包括:
    通过第一统计单元统计开始向目标对象发射所述光信号起,截止所述信号检测器检测到被所述目标对象反射的光信号时,所述发射器已发射出的光信号的整数波长的数量;
    通过第二统计单元统计开始向目标对象发射所述光信号起,截止所述信号检测器检测到被所述目标对象反射的光信号时,所述发射器已发射出的光信号的小数波长的相位。
  24. 根据权利要求23所述的测距方法,其特征在于,还包括:接收使能信号,在所述发射器开始向目标对象发射所述光信号时,所述使能信号用于使能所述第一统计单元开始统计处理,以及在检测到被所述目标对象反射的光信号,所述使能信号用于控制所述第一统计单元停止统计。
  25. 根据权利要求24所述的测距方法,其特征在于,还包括:根据发射的所述光信号生成使能所述第一统计单元开始统计处理的使能信号,以及用于检测到被所述目标对象反射的光信号生成控制所述第一统计单元停止统计的使能信号。
  26. 根据权利要求23所述的测距方法,其特征在于,根据发射的所述光信号生成使能所述第一统计单元开始统计处理的使能信号,以及用于检测到被所述目标对象反射的光信号生成控制所述第一统计单元停止统计的使能信号,包括:根据发射的所述光信号以及设定的参考门限进行比较,根据所述比较的结果生成使能所述第一统计单元开始统计处理的使能信号,以及用于检测到被所述目标对象反射的光信号生成控制所述第一统计单元停止统计的使能信号。
  27. 根据权利要求23所述的测距方法,其特征在于,还包括:接收复位信号,所述复位信号用于控制所述第一统计单元的复位,以统计开始向目标对象发射所述光信号起、截止所述信号检测器检测到被所述目标对象反射的光信号时所述发射器已发射出的光信号的整数波长的数量。
  28. 根据权利要求23-27任一项所述的测距方法,其特征在于,在所述第一统计单元完成对所述整数波长的检测之后,启动所述第二统计单元以统计开始向目标对象发射所述光信号起,截止检测到被所述目标对象反射的光信号时,已发射出的光信号的小数波长的相位。
  29. 一种电子设备,其特征在于,包括权利要求1-17任一项所述的测距装置。
PCT/CN2019/092537 2019-06-24 2019-06-24 测距装置、测距方法及电子设备 WO2020257972A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/092537 WO2020257972A1 (zh) 2019-06-24 2019-06-24 测距装置、测距方法及电子设备
CN201980001101.1A CN112567265A (zh) 2019-06-24 2019-06-24 测距装置、测距方法及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/092537 WO2020257972A1 (zh) 2019-06-24 2019-06-24 测距装置、测距方法及电子设备

Publications (1)

Publication Number Publication Date
WO2020257972A1 true WO2020257972A1 (zh) 2020-12-30

Family

ID=74059876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092537 WO2020257972A1 (zh) 2019-06-24 2019-06-24 测距装置、测距方法及电子设备

Country Status (2)

Country Link
CN (1) CN112567265A (zh)
WO (1) WO2020257972A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001809A1 (ja) * 2008-07-03 2010-01-07 株式会社光コム 距離計及び距離測定方法並びに光学的三次元形状測定機
CN101813472A (zh) * 2009-11-27 2010-08-25 武汉大学 相位激光测距仪及激光测距方法
CN103364775A (zh) * 2013-06-25 2013-10-23 清华大学 基于光频梳校准的双色激光扫描绝对距离测量装置和方法
CN104635237A (zh) * 2013-11-08 2015-05-20 波音公司 合成波激光测距传感器和方法
CN105372668A (zh) * 2015-11-16 2016-03-02 中国电子科技集团公司第二十八研究所 一种相位式激光测距方法
CN105589074A (zh) * 2015-11-27 2016-05-18 中国人民解放军国防科学技术大学 基于飞秒光梳同步锁频的多波长干涉实时绝对测距装置
CN105680943A (zh) * 2016-04-19 2016-06-15 杭州富阳萝卜网络科技有限公司 一种可见光通信系统、方法及相关设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4856893A (en) * 1987-09-30 1989-08-15 Eaton Corporation Laser distance measuring method and apparatus
CN104849719A (zh) * 2015-05-28 2015-08-19 北京工业大学 一种激光雷达测距系统
CN107238839A (zh) * 2017-07-19 2017-10-10 北醒(北京)光子科技有限公司 一种红外探测与测量装置
CN109597090B (zh) * 2018-12-13 2023-10-03 武汉万集信息技术有限公司 多波长激光雷达测距装置及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001809A1 (ja) * 2008-07-03 2010-01-07 株式会社光コム 距離計及び距離測定方法並びに光学的三次元形状測定機
CN101813472A (zh) * 2009-11-27 2010-08-25 武汉大学 相位激光测距仪及激光测距方法
CN103364775A (zh) * 2013-06-25 2013-10-23 清华大学 基于光频梳校准的双色激光扫描绝对距离测量装置和方法
CN104635237A (zh) * 2013-11-08 2015-05-20 波音公司 合成波激光测距传感器和方法
CN105372668A (zh) * 2015-11-16 2016-03-02 中国电子科技集团公司第二十八研究所 一种相位式激光测距方法
CN105589074A (zh) * 2015-11-27 2016-05-18 中国人民解放军国防科学技术大学 基于飞秒光梳同步锁频的多波长干涉实时绝对测距装置
CN105680943A (zh) * 2016-04-19 2016-06-15 杭州富阳萝卜网络科技有限公司 一种可见光通信系统、方法及相关设备

Also Published As

Publication number Publication date
CN112567265A (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
US10860453B2 (en) Index anomaly detection method and apparatus, and electronic device
WO2016180100A1 (zh) 一种音频处理的性能提升方法及装置
CN109642949A (zh) 用于窄带测距系统的方法和装置
CN113168268B (zh) 触控检测方法、触控检测电路、触控芯片以及电子设备
CN106470284B (zh) 消除声学回声的方法、装置、系统、服务器及通话装置
US20160291138A1 (en) Wrap around ranging method and circuit
US20210090589A1 (en) Crosstalk Data Detection Method and Electronic Device
WO2023202496A1 (zh) 数据处理方法、装置、系统及设备
Pittman et al. Multiwave: Complex hand gesture recognition using the doppler effect
US20190302916A1 (en) Near ultrasound based proximity sensing for mobile devices
US8761332B2 (en) Dynamic prescaling counters
WO2020257972A1 (zh) 测距装置、测距方法及电子设备
US9503219B2 (en) Method and device for measuring the current signal-to-noise ratio when decoding LDPC codes
WO2024046015A1 (zh) 一种数据查询方法、装置、存储介质及电子设备
CN102968254B (zh) 电子设备及其信息处理方法
JP2014532362A (ja) モバイルデバイスにおける意図されない発信通信の抑止
EP3079056B1 (en) Systems and methods for computing mathematical functions
US20130181947A1 (en) Touch screen panel
Luo et al. SoundWrite II: Ambient acoustic sensing for noise tolerant device-free gesture recognition
CN204009070U (zh) 检测终端及移动电子装置
WO2016197430A1 (zh) 信息输出的方法、终端和计算机存储介质
US11438708B1 (en) Method for providing occluded sound effect and electronic device
US11947016B2 (en) Object detection device and method of operating the same
KR102166361B1 (ko) 저전력 통신을 수행하기 위한 서버 및 그 동작 방법 및 저전력 통신을 수행하기 위한 스케쥴링 맵 생성 방법
US10283135B2 (en) Touchscreen tapping noise suppression

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19934670

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19934670

Country of ref document: EP

Kind code of ref document: A1