WO2020256023A1 - 二次電池 - Google Patents

二次電池 Download PDF

Info

Publication number
WO2020256023A1
WO2020256023A1 PCT/JP2020/023819 JP2020023819W WO2020256023A1 WO 2020256023 A1 WO2020256023 A1 WO 2020256023A1 JP 2020023819 W JP2020023819 W JP 2020023819W WO 2020256023 A1 WO2020256023 A1 WO 2020256023A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collecting
electrode
secondary battery
positive electrode
negative electrode
Prior art date
Application number
PCT/JP2020/023819
Other languages
English (en)
French (fr)
Inventor
健太 江口
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2020256023A1 publication Critical patent/WO2020256023A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a secondary battery.
  • the secondary battery is a so-called storage battery, it can be repeatedly charged and discharged, and is used for various purposes.
  • secondary batteries are used in mobile devices such as mobile phones, smartphones and notebook computers.
  • the secondary battery generally has a structure in which the electrode assembly is housed inside the exterior.
  • the inventor of the present application noticed that there was a problem to be overcome with the conventional secondary battery, and found that it was necessary to take measures for that purpose. Specifically, the inventor of the present application has found that there are the following problems.
  • a secondary battery generally has an electrode assembly including a positive electrode, a negative electrode, and a separator arranged between the positive electrode and the negative electrode, and a structure in which an electrolyte is enclosed in an outer body.
  • the electrode assembly has one positive electrode current collecting tab and one negative electrode current collecting tab provided on different end faces of the electrode assembly (for example, Patent Document 1).
  • one positive electrode 1 current collecting tab 41 and one negative electrode 2 current collecting tab 42 are provided on the opposing end faces 200E 1 and 200E 2 of the electrode assembly 200, respectively. Has been done.
  • the current collecting tabs 41 and 42 are generally the ends of the positive electrode 1 and the negative electrode 2 (that is, the negative electrode 2). , The winding inner end or the winding outer end), respectively (see FIG. 11b).
  • the current collecting tabs 41 and 42 are in contact with the positive electrode conductive portion 310 and the negative electrode conductive portion 320 of the exterior body 300, respectively, so that the electrode assembly 200 and the exterior body 300 are electrically connected ( See FIG. 11c).
  • the secondary battery 400 having such a configuration, in both the positive electrode 1 and the negative electrode 2, electrons are transferred and received via only one current collecting tab (that is, the current collecting tab 41 or 42), respectively, so that the electrodes There is a risk that the conductive distance will be long and the electrical resistance will increase. Further, especially when performing high-speed charging / discharging, there is a possibility that current concentration may occur in the current collecting tab.
  • the present invention has been made in view of such a problem. That is, a main object of the present invention is to provide a secondary battery having a lower resistance while having a space-saving structure.
  • the present invention is a secondary battery comprising an electrode assembly including a positive electrode, a negative electrode and a separator arranged between the positive electrode and the negative electrode, the positive electrode and the positive electrode provided on different end faces of the electrode assembly, respectively.
  • a plurality of current collecting tabs for the negative electrode and at least one of the positive electrode and the negative electrode are provided, and the plurality of current collecting tabs face the end face of the electrode assembly provided with the current collecting tabs.
  • the present invention relates to a secondary battery which is folded into a secondary battery in which at least one of a plurality of bent current collection tabs does not overlap with any of the other current collection tabs in a plan view of the end face.
  • the secondary battery according to the present invention has a structure that saves space while having a lower resistance.
  • a plurality of current collecting tabs for at least one of a positive electrode and a negative electrode are provided.
  • the conduction distance at the electrodes can be shortened.
  • a secondary battery having a lower resistance can be obtained.
  • At the end face of the electrode assembly at least one of the plurality of current collecting tabs described above is bent so as not to overlap with any of the other current collecting tabs. Thereby, the increase in the size of the secondary battery can be suppressed, and the structure can be made more space-saving.
  • FIG. 1a is a schematic cross-sectional view showing an electrode assembly in a non-winding planar laminated battery.
  • FIG. 1b is a schematic cross-sectional view showing an electrode assembly in a wound battery.
  • FIG. 2a is a schematic perspective view showing an aspect of an electrode assembly in a wound battery according to an embodiment of the present invention.
  • FIG. 2b is a schematic development plan view of a positive electrode and a negative electrode in the wound battery shown in FIG. 2a.
  • FIG. 3 is a schematic plan view showing the movement of electrons in the electrodes of the secondary battery according to the embodiment of the present invention.
  • FIG. 4 is a schematic perspective view showing another aspect of the electrode assembly in the wound battery according to the embodiment of the present invention.
  • FIG. 5a is a schematic perspective view showing an aspect of an electrode assembly in a plane laminated battery according to an embodiment of the present invention.
  • FIG. 5b is a schematic development plan view of a positive electrode and a negative electrode in the flat laminated battery shown in FIG. 5a.
  • 6a to 6c are schematic development plan views showing various aspects of a positive electrode and a negative electrode in the wound battery according to the embodiment of the present invention.
  • 7a-7d are schematic perspective views showing various aspects in which a plurality of current collecting tabs are electrically connected to the external tabs.
  • FIG. 8a is a schematic cross-sectional view showing a mode in which a plurality of current collecting tabs are in contact with a conductive portion of an exterior body in the secondary battery according to the embodiment of the present invention.
  • FIG. 8b is a schematic cross-sectional view showing another aspect in which a plurality of current collecting tabs are in contact with a conductive portion of an exterior body in the secondary battery according to the embodiment of the present invention.
  • FIG. 8c is a schematic cross-sectional view showing a mode in which a plurality of current collecting tabs are in contact with a conductive portion of an exterior body via an external tab in the secondary battery according to the embodiment of the present invention.
  • FIG. 9 shows a schematic perspective view for explaining the constituent members of the electrode assembly constituting the secondary battery according to the embodiment of the present invention.
  • FIG. 10 shows a schematic perspective view for explaining a method of assembling the electrodes constituting the wound battery according to the embodiment of the present invention.
  • 11a to 11c show schematic views of a secondary battery according to the prior art.
  • the "thickness direction” described directly or indirectly in the present specification is based on the direction (or the direction in which) the electrode materials constituting the secondary battery are stacked.
  • the direction of "thickness” corresponds to the plate thickness direction of such a secondary battery.
  • the direction of "thickness” is based on the direction parallel to the surface having the smallest dimension among the surfaces constituting the secondary battery.
  • the "plan view” in the present specification is based on a form in which an object (for example, positive electrode and negative electrode) is grasped from the upper side or the lower side along the thickness direction. In short, it is based on the planar form of the object shown in FIG. 2b and the like.
  • cross-sectional view refers to a form in which an object is captured along a direction substantially perpendicular to the thickness direction (in other words, a form in which an object is cut out on a plane substantially parallel to the thickness direction). Is based on. In short, it is based on the shape of the cross section of the object shown in FIG. 1a and the like.
  • the present invention provides a secondary battery.
  • the term “secondary battery” refers to a battery that can be repeatedly charged and discharged.
  • the “secondary battery” is not overly bound by its name and may include, for example, a "storage device”.
  • the secondary battery according to the present invention includes an electrode assembly in which electrode building blocks including a positive electrode, a negative electrode, and a separator are laminated.
  • the electrode assembly 200 is illustrated in FIGS. 1a and 1b.
  • the positive electrode 1 and the negative electrode 2 are stacked with each other via the separator 3 to form an electrode constituent unit 100, and at least one or more of the electrode constituent units 100 are laminated to form an electrode assembly.
  • an electrode assembly is encapsulated in the exterior together with an electrolyte (eg, a non-aqueous electrolyte).
  • the positive electrode is composed of at least a positive electrode material layer and a positive electrode current collector (foil).
  • a positive electrode material layer is provided on at least one surface of the positive electrode current collector, and the positive electrode material layer contains a positive electrode active material as an electrode active material.
  • each of the plurality of positive electrodes in the electrode assembly may be provided with positive electrode material layers on both sides of the positive electrode current collector, or may be provided with positive electrode material layers on only one side of the positive electrode current collector. .. From the viewpoint of further increasing the capacity of the secondary battery, it is preferable that the positive electrode is provided with positive electrode material layers on both sides of the positive electrode current collector.
  • the negative electrode is composed of at least a negative electrode material layer and a negative electrode current collector.
  • a negative electrode material layer is provided on at least one surface of the negative electrode current collector, and the negative electrode material layer contains a negative electrode active material as an electrode active material.
  • each of the plurality of negative electrodes in the electrode assembly may be provided with negative electrode material layers on both sides of the negative electrode current collector, or may be provided with negative electrode material layers on only one side of the negative electrode current collector. .. From the viewpoint of further increasing the capacity of the secondary battery, it is preferable that the negative electrode is provided with negative electrode material layers on both sides of the negative electrode current collector.
  • the electrode active materials contained in the positive electrode and the negative electrode are substances that are directly involved in the transfer of electrons in the secondary battery, and are the main substances of the positive electrode and the negative electrode that are responsible for charge / discharge, that is, the battery reaction. Is. More specifically, ions are brought to the electrolyte due to the "positive electrode active material contained in the positive electrode material layer" and the "negative electrode active material contained in the negative electrode material layer", and such ions are transferred between the positive electrode and the negative electrode. The electrons are transferred and charged / discharged.
  • the positive electrode material layer and the negative electrode material layer are particularly preferably layers capable of occluding and releasing lithium ions.
  • the secondary battery according to the present invention corresponds to a so-called lithium ion battery, and the positive electrode and the negative electrode have layers capable of occluding and discharging lithium ions.
  • the positive electrode active material of the positive electrode material layer is composed of, for example, particles, and the positive electrode material layer contains a binder (also referred to as “binding material”) for better contact between particles and shape retention. Is preferable. Further, a conductive auxiliary agent may be contained in the positive electrode material layer in order to facilitate the transfer of electrons that promote the battery reaction. Similarly, when the negative electrode active material of the negative electrode material layer is composed of particles, for example, it is preferable that the negative electrode active material contains a binder for more sufficient contact between the particles and shape retention, and facilitates the transfer of electrons that promote the battery reaction. A conductive auxiliary agent may be contained in the negative electrode material layer. As described above, since the form is formed by containing a plurality of components, the positive electrode material layer and the negative electrode material layer can also be referred to as a "positive electrode mixture layer" and a "negative electrode mixture layer”, respectively.
  • the positive electrode active material is preferably a substance that contributes to the storage and release of lithium ions. From this point of view, the positive electrode active material is preferably, for example, a lithium-containing composite oxide. More specifically, the positive electrode active material is preferably a lithium transition metal composite oxide containing lithium and at least one transition metal selected from the group consisting of cobalt, nickel, manganese and iron. That is, in the positive electrode material layer of the secondary battery according to the present embodiment, such a lithium transition metal composite oxide is preferably contained as the positive electrode active material.
  • the positive electrode active material is lithium cobalt oxide, lithium nickel oxide, lithium manganate, lithium iron phosphate, or a part of the transition metal thereof replaced with another metal. Although such a positive electrode active material may be contained as a single species, two or more species may be contained in combination. In a more preferred embodiment, the positive electrode active material contained in the positive electrode material layer is lithium cobalt oxide.
  • the binder that can be contained in the positive electrode material layer is not particularly limited, but is not particularly limited, but is vinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, and polyvinylidene fluorotylene. At least one species selected from the group consisting of the above can be mentioned.
  • the conductive auxiliary agent that can be contained in the positive electrode material layer is not particularly limited, but is limited to carbon black such as thermal black, furnace black, channel black, ketjen black and acetylene black, graphite, carbon nanotubes, and vapor phase growth.
  • At least one selected from carbon fibers such as carbon fibers, metal powders such as copper, nickel, aluminum and silver, and polyphenylene derivatives can be mentioned.
  • the binder of the positive electrode material layer is polyvinylidene fluoride
  • the conductive auxiliary agent of the positive electrode material layer is carbon black.
  • the binder and conductive aid of the positive electrode material layer are a combination of polyvinylidene fluoride and carbon black.
  • the thickness direction dimension of the positive electrode material layer is not particularly limited, but is preferably 1 ⁇ m or more and 300 ⁇ m or less, for example, 5 ⁇ m or more and 200 ⁇ m or less.
  • the thickness direction dimension of the positive electrode material layer is the thickness inside the secondary battery, and the average value of the measured values at any 10 points is used.
  • the negative electrode active material is preferably a substance that contributes to the storage and release of lithium ions. From this point of view, the negative electrode active material is preferably, for example, various carbon materials, oxides, lithium alloys, and the like.
  • Examples of various carbon materials for the negative electrode active material include graphite (natural graphite, artificial graphite), hard carbon, soft carbon, and diamond-like carbon. In particular, graphite is preferable because it has high electron conductivity and excellent adhesion to a negative electrode current collector.
  • Examples of the oxide of the negative electrode active material include at least one selected from the group consisting of silicon oxide, tin oxide, indium oxide, zinc oxide, lithium oxide and the like.
  • the lithium alloy of the negative electrode active material may be any metal that can be alloyed with lithium, for example, Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, It is a binary, ternary or higher alloy of a metal such as La and lithium.
  • Such oxides are preferably amorphous as their structural form. This is because deterioration due to non-uniformity such as grain boundaries or defects is less likely to occur.
  • the negative electrode active material of the negative electrode material layer is artificial graphite.
  • the binder that can be contained in the negative electrode material layer is not particularly limited, but is at least one selected from the group consisting of styrene-butadiene rubber, polyacrylic acid, polyvinylidene fluoride, polyimide-based resin, and polyamide-imide-based resin. Can be mentioned.
  • the binder contained in the negative electrode material layer is styrene-butadiene rubber.
  • the conductive auxiliary agent that can be contained in the negative electrode material layer is not particularly limited, but is limited to carbon black such as thermal black, furnace black, channel black, ketjen black and acetylene black, graphite, carbon nanotubes, and vapor phase growth.
  • the negative electrode material layer may contain a component derived from a thickener component (for example, carboxylmethyl cellulose) used at the time of manufacturing the battery.
  • a thickener component for example, carboxylmethyl cellulose
  • the negative electrode active material and the binder in the negative electrode material layer are a combination of artificial graphite and styrene-butadiene rubber.
  • the thickness direction dimension of the negative electrode material layer is not particularly limited, but is preferably 1 ⁇ m or more and 300 ⁇ m or less, for example, 5 ⁇ m or more and 200 ⁇ m or less.
  • the thickness direction dimension of the negative electrode material layer is the thickness inside the secondary battery, and the average value of the measured values at any 10 points is used.
  • the positive electrode current collector and the negative electrode current collector used for the positive electrode and the negative electrode are members that contribute to collecting and supplying electrons generated by the active material due to the battery reaction.
  • a current collector may be a sheet-like metal member and may have a perforated or perforated form.
  • the current collector may be metal leaf, punching metal, mesh or expanded metal.
  • the positive electrode current collector used for the positive electrode is preferably made of a metal foil containing at least one selected from the group consisting of aluminum, stainless steel, nickel and the like, and is, for example, an aluminum foil.
  • the negative electrode current collector used for the negative electrode is preferably one made of a metal foil containing at least one selected from the group consisting of copper, stainless steel, nickel and the like, and is, for example, a copper foil.
  • the separator is a member provided from the viewpoint of preventing a short circuit due to contact between the positive electrode and the negative electrode and retaining an electrolyte.
  • the separator can be said to be a member through which ions pass while preventing electronic contact between the positive electrode and the negative electrode.
  • the separator is a porous or microporous insulating member and has a film morphology due to its small thickness.
  • a microporous polyolefin membrane may be used as the separator.
  • the microporous membrane used as the separator may contain, for example, only polyethylene (PE) or polypropylene (PP) as the polyolefin.
  • the separator may be a laminate composed of a "microporous membrane made of PE” and a "microporous membrane made of PP".
  • the surface of the separator may be covered with an inorganic particle coat layer and / or an adhesive layer or the like.
  • the surface of the separator may have adhesiveness.
  • the thickness direction dimension of the separator is not particularly limited, but is preferably 1 ⁇ m or more and 100 ⁇ m or less, for example, 5 ⁇ m or more and 20 ⁇ m or less.
  • the thickness direction dimension of the separator is the thickness inside the secondary battery (particularly the thickness between the positive electrode and the negative electrode), and the average value of the measured values at any 10 points is used.
  • an electrode assembly including a positive electrode, a negative electrode and a separator is enclosed in an outer body together with an electrolyte.
  • the electrolyte assists the movement of metal ions released from the electrodes (positive electrode / negative electrode).
  • the electrolyte may be a "non-aqueous" electrolyte such as an organic electrolyte and an organic solvent, or it may be a "water-based” electrolyte containing water.
  • the secondary battery according to the present invention is preferably a non-aqueous electrolyte secondary battery in which an electrolyte containing a "non-aqueous" solvent and a solute is used as the electrolyte.
  • the electrolyte may have a form such as liquid or gel (note that the "liquid" non-aqueous electrolyte is also referred to as "non-aqueous electrolyte solution" in the present specification).
  • carbonates may be cyclic carbonates and / or chain carbonates.
  • the cyclic carbonates include at least one selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC) and vinylene carbonate (VC).
  • PC propylene carbonate
  • EC ethylene carbonate
  • BC butylene carbonate
  • VC vinylene carbonate
  • chain carbonates include at least one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC) and dipropyl carbonate (DPC).
  • a combination of cyclic carbonates and chain carbonates is used as the non-aqueous electrolyte, for example a mixture of ethylene carbonate and diethyl carbonate.
  • Li salts such as LiPF 6 and LiBF 4 are preferable.
  • the current collecting tab any current collecting tab used in the field of secondary batteries can be used.
  • the current collecting tab may be composed of a material capable of achieving electron transfer, and may be composed of a conductive material.
  • the current collecting tab may be composed of a metal material. Examples of such metal materials include materials selected from the group consisting of silver, gold, copper, iron, tin, platinum, aluminum, nickel, stainless steel and the like.
  • the form of the current collecting tab is not particularly limited.
  • the overall shape of the current collecting tab may be linear or plate-shaped.
  • the exterior body may be a hard case.
  • the exterior body has, for example, a two-part configuration of a first exterior body and a second exterior body.
  • the exterior body having a two-part configuration may be composed of a main body portion and a lid portion. In such a case, the main body and the lid may be sealed to each other after accommodating the electrode assembly, the electrolyte and the current collecting tab, and optionally the electrode terminals.
  • the sealing method is not particularly limited, and examples thereof include a laser irradiation method.
  • any material that can form a hard case type exterior body can be used in the field of secondary batteries.
  • a material may be a conductive material in which electron transfer can be achieved, or an insulating material in which electron transfer cannot be achieved.
  • the material of the exterior body is preferably a conductive material from the viewpoint of taking out the electrodes. That is, the exterior body preferably includes two members, a positive electrode conductive portion and a negative electrode conductive portion.
  • the main body portion of the exterior body may form either a positive electrode conductive portion or a negative electrode conductive portion
  • the lid portion of the exterior body may form the other of the positive electrode conductive portion and the negative electrode conductive portion.
  • Examples of the conductive material include a metal material selected from the group consisting of silver, gold, copper, iron, tin, platinum, aluminum, nickel, stainless steel and the like.
  • Examples of the insulating material include an insulating polymer material selected from the group consisting of polyester (eg, polyethylene terephthalate), polyimide, polyamide, polyamide-imide, and polyolefin (eg, polyethylene, and polypropylene).
  • both the main body and the lid may be made of stainless steel.
  • stainless steel is an alloy steel containing chromium or chromium and nickel, and generally has a chromium content of about 10.5% or more of the total. Refers to steel.
  • Examples of such stainless steels include stainless steels selected from the group consisting of martensite-based stainless steels, ferrite-based stainless steels, austenitic stainless steels, austenitic-ferrite-based stainless steels, and precipitation-hardened stainless steels.
  • the dimensions of the main body and the lid of the exterior body are mainly determined according to the dimensions of the electrode assembly.
  • the dimensions are such that the movement of the electrode assembly inside the exterior body is prevented. It is preferable to have. By preventing the electrode assembly from moving, it is possible to prevent damage to the electrode assembly due to impact or the like and improve the safety of the secondary battery.
  • the exterior body may be a flexible case such as a pouch made of a laminated film.
  • the laminated film has a structure in which at least a metal layer (for example, aluminum) and an adhesive layer (for example, polypropylene and polyethylene) are laminated, and an additional protective layer (for example, nylon and polyamide) is laminated. May be configured.
  • the thickness direction dimension (in other words, the wall thickness dimension) of the exterior body is not particularly limited, but is preferably 10 ⁇ m or more and 200 ⁇ m or less, for example, 50 ⁇ m or more and 100 ⁇ m or less.
  • the thickness direction dimension of the exterior body the average value of the measured values at any 10 points is used.
  • the secondary battery may be provided with an electrode terminal. That is, the secondary battery may be provided with a terminal for electrically connecting to the outside.
  • Such electrode terminals may be provided on at least one surface of the exterior body.
  • positive electrode terminals and negative electrode terminals may be provided on different surfaces of the exterior body. From the viewpoint of taking out the electrodes, it is preferable that the electrode terminals of the positive electrode and the negative electrode are provided on the facing surfaces of the exterior body.
  • the material of the electrode terminal is not particularly limited, and at least one selected from the group consisting of silver, gold, copper, iron, tin, platinum, aluminum, nickel, and stainless steel can be mentioned.
  • the positive electrode and negative electrode current collecting tabs may be electrically connected to the electrode terminals as described above, and may be led out to the outside of the secondary battery via the electrode terminals.
  • the positive electrode and negative electrode current collecting tabs may be electrically connected to the exterior body and led out to the outside of the secondary battery via the exterior body.
  • the current collecting tab may be in contact with the inside of the exterior body and electrically connected to the outside of the secondary battery via the exterior body. It may be derived.
  • the secondary battery according to the present invention is a battery having an electrode assembly including a positive electrode, a negative electrode, and a separator, and is characterized in the form and arrangement of a current collecting tab provided in the electrode assembly.
  • a plurality of current collecting tabs for at least one of a positive electrode and a negative electrode are provided, and the plurality of current collecting tabs are bent so as to face the end faces of the electrode assembly.
  • the current collecting tabs are bent so that each of the plurality of current collecting tabs and the end face of the electrode assembly directly face each other.
  • at least one of the plurality of folded current collecting tabs does not overlap with any of the other current collecting tabs.
  • the "end surface of the electrode assembly” in the present specification may refer to a surface substantially parallel to the electrode stacking direction in the electrode assembly. Further, the end surface of the electrode assembly may be a virtual surface when viewed macroscopically. For example, the end face of the electrode assembly may be a virtual surface formed by the ends of a plurality of electrodes and / or separators. In short, in either the plane laminated electrode assembly or the wound electrode assembly, the surface on which the laminated state (that is, the laminated state of the positive electrode layer, the negative electrode layer and the separator) can be visually recognized is the “electrode assembly”. Corresponds to the "end face of a solid".
  • the “plurality of current collecting tabs” in the present specification means that at least two current collecting tabs are provided. From the viewpoint of low resistance and space saving, the plurality of current collector tabs may be provided in the range of 2 or more and 6 or less for each of the positive electrode and the negative electrode, and are, for example, 3 or more and 5 or less.
  • the current collecting tab faces the end face (of the electrode assembly) means that any surface constituting the current collecting tab and the end face of the electrode assembly provided with the current collecting tab are mutually exclusive. Refers to facing directly. For example, when the current collecting tab is long, the surface formed by the longitudinal direction based on the shape direction having the largest dimension of the current collecting tab and the width direction having the next largest dimension after the longitudinal direction, and the current collecting tab. It may indicate that the end face of the electrode assembly provided with is facing each other.
  • bending as used herein includes bending in a bay shape (or bow shape) (that is, bending in a substantially curved line) and bending at an acute angle (that is, bending in a substantially straight line).
  • a plurality of current collecting tabs are provided on both the opposing end faces 200E 1 and 200E 2 of the electrode assembly 200. More specifically, a plurality of positive electrode current collector tabs 41 1, 41 2 are provided on one end surface 200E 1 of opposite end faces of the electrode assembly 200, the end face other opposing end faces of the electrode assembly 200 200E 2 negative electrode current collector tab 42 1, 42 2 and 42 3 are respectively provided a plurality of the. In other words, as to extend from the end surface 200E 1 and 200E 2 facing the electrode assembly 200, a plurality of positive electrode current collector tabs 41 1, 41 2 and 41 3 as well as the negative electrode current collector tab 42 1, 42 2 and 42 3 is Each is provided.
  • the conduction distance at the electrodes can be shortened. Thereby, a secondary battery having a lower resistance can be obtained. Further, when high-speed charging / discharging is performed, it is possible to prevent current concentration from occurring in a single current collecting tab.
  • electrodes eg, positive electrode 1
  • electrodes has a structure for collecting current at a plurality of current collecting tabs 41 1, 41 2 and 41 3.
  • the arrows in FIG. 3 schematically show the flow of electrons. With such a configuration, electrons are transferred from a plurality of current collecting tabs, and the conduction distance at the electrodes can be shortened.
  • the one electrode a plurality of electrode tabs (e.g., positive electrode current collector tab 41 1, 41 2 and 41 3), the plurality of current collecting tabs, the electrode assembly It is bent so as to face the end face 200E 1 .
  • a plurality of electrode tabs e.g., positive electrode current collector tab 41 1, 41 2 and 41 3
  • the plurality of current collecting tabs the electrode assembly It is bent so as to face the end face 200E 1 .
  • at least one of the plurality of current collecting tabs 41 1, 41 2 and 41 3 are all the bent so as not to overlap also the collector tab otherwise ing.
  • the plurality of current collecting tabs and the end faces of the electrode assembly face each other, and at least one of the plurality of current collecting tabs at the end faces of the electrode assembly overlaps with any of the other current collecting tabs. By not doing so, it is possible to suppress an increase in the dimensions of the secondary battery, and a more space-saving structure can be obtained. That is, preferably, a low-profile secondary battery can be obtained, and the overall volume of the secondary battery can be reduced.
  • the plurality of current collecting tabs need only be bent so that at least one of them does not overlap with any of the other current collecting tabs.
  • the end surface 200E 1 of the electrode assembly 200 it is sufficient cathode current collector tab 41 1, and the other by bent as the positive electrode current collector tab 41 2 and 41 3 nonoverlapping (see FIG. 4), the positive electrode current collector tab 41 1, 41 2 and 41 3 are optionally bent so as not to overlap each other (see FIG. 2a).
  • the plurality of bent current collecting tabs do not overlap each other in the plan view of the end face of the electrode assembly.
  • At least one of the positive electrode and negative electrode current collecting tabs constitutes a plurality of bent current collecting tabs as described above. From the viewpoint of low resistance and space saving, it is preferable that both the positive electrode and the negative electrode current collecting tabs form a plurality of bent current collecting tabs as described above.
  • the electrode assembly may be a wound electrode assembly 200 in which a positive electrode 1, a negative electrode 2 and a separator 3 are wound (see FIG. 2a).
  • the side surface of the virtual assembly whose winding axis is normal corresponds to the "end surface of the electrode assembly”.
  • the electrode assembly may be a plane laminated electrode assembly 200'in which the positive electrode 1 and the negative electrode 2 are laminated via the separator 3 (see FIG. 5a).
  • the side surface of the virtual assembly whose normal line is the line orthogonal to the stacking direction corresponds to the "end face of the electrode assembly".
  • the plane laminated electrode assembly may have a laminated structure in which a single electrode and a separator are laminated a plurality of times, and an electrode multi-unit in which a plurality of electrodes are laminated via a connecting portion is provided with a separator between the electrodes. It may have a folding structure in which the connecting portion is bent.
  • a plurality of current collecting tabs provided on each electrode should not overlap each other on the end faces of the electrode assembly. It has become. More specifically, the dimensions of the plurality of current collecting tabs (for example, the longitudinal dimension and / or the width direction) so that the current collecting tabs do not overlap in the circumferential direction C and / or the radial direction R of the electrode assembly 200. The dimensions) may be adjusted respectively, and / or the pitch between the plurality of current collecting tabs in one electrode may be adjusted respectively.
  • the laminated electrode assembly in the laminated electrode assembly, a plurality of current collecting tabs provided on each electrode overlap each other on the end face of the electrode assembly.
  • the dimensions of the plurality of current collecting tabs for example, the longitudinal dimension and / or the width direction
  • the dimensions may be adjusted respectively, and / or the widthwise positions of the current collector tabs on the plurality of electrodes may be adjusted respectively.
  • the electrode assembly is preferably a wound electrode assembly because the manufacturing process is easy and the cost is low. More specifically, in the wound electrode assembly, since the positive electrode and the negative electrode are each composed of one electrode, the number of electrode sheet cutting steps is smaller than that of the planar laminated electrode assembly, and the distance between the electrodes is small. Alignment can be facilitated.
  • the current collecting tab may be a tab extending so as to protrude from the electrode.
  • a current collector tab may be a current collector tab provided by extending the positive electrode current collector and the negative electrode current collector used for the positive electrode and the negative electrode to the outside.
  • the current collecting tab may be composed of a conductive member attached to the electrode.
  • the positive electrode 1 has a positive electrode material layer 12 in which a positive electrode material is formed on the positive electrode current collector 11, and a portion where the positive electrode current collector 11 is exposed. Exposed portions of such cathode current collector 11 constitute a plurality of current collecting tabs 41 1, 41 2 and 41 3 (see Figures and Figure 2b 5b).
  • a plurality of current collecting tabs are provided side by side at one end of at least one electrode. More specifically, a plurality of positive electrode current collector tabs 41 1, 41 2 and 41 3 are provided side by side to one end of the cathode 1, and / or the negative electrode current collector tab 42 1, 42 2 and 42 3 is , Are provided side by side at one end of the negative electrode 2 (see FIGS. 6a to 6c).
  • a plurality of both positive electrode and negative electrode current collecting tabs may be provided (see FIGS. 6a and 6b), and only one of the positive electrode and negative electrode current collecting tabs may be provided (see FIG. 6c). From the viewpoint of lowering the resistance, it is preferable that a plurality of both positive electrode and negative electrode current collecting tabs are provided.
  • the plurality of current collecting tabs may have different dimensions (for example, longitudinal dimension, width direction dimension, and thickness direction dimension) from each other (see FIG. 6b).
  • the longitudinal dimension of the current collecting tab (that is, the length of the tab portion extending outward from the electrode assembly) is 1 mm or more and 30 mm or less.
  • the longitudinal dimension is 1 mm or more, the contact area with the exterior body (or the electrode terminal) can be made larger. Thereby, the resistance between the electrode assembly and the exterior body can be made lower.
  • the longitudinal dimension is 30 mm or less, it is possible to more easily arrange the plurality of current collecting tabs so as not to overlap each other.
  • the longitudinal dimension of the current collecting tab is preferably 2 mm or more and 20 mm or less, for example, 5 mm or more and 10 mm or less.
  • the width direction dimension of the current collecting tab is 100 ⁇ m or more and 10 mm or less.
  • the width direction dimension is 100 ⁇ m or more, the contact area with the exterior body can be further increased. Thereby, the resistance between the electrode assembly and the exterior body can be made lower.
  • the width direction dimension is 10 mm or less, it is possible to more easily arrange the plurality of current collecting tabs so as not to overlap each other.
  • the width direction dimension of the current collector tab is preferably 300 ⁇ m or more and 5 mm or less, for example, 500 ⁇ m or more and 2.5 mm or less.
  • the thickness direction dimension of the current collecting tab is 1 ⁇ m or more and 3 mm or less.
  • the handleability can be further improved.
  • the thickness direction dimension of the current collector tab is preferably 3 ⁇ m or more and 2 mm or less, for example, 5 ⁇ m or more and 1 mm or less. .
  • a plurality of current collecting tabs are provided at substantially equal intervals in the longitudinal direction of the electrodes in the developed plan view of the positive electrode and the negative electrode. ..
  • a plurality of current collecting tabs 41 1, 41 2 and 41 3 are provided at substantially equal intervals with respect to the longitudinal direction of the positive electrode 1.
  • the "substantially equal interval” means a range in which each interval is within ⁇ 50% of the average value of the intervals between the current collector tabs. That is, the gap D 2 between the gap D 1 and electrode tabs 41 2 and 41 3 between the current collector tabs 41 1 and 41 2 are respectively (D 1 + D 2) / 2 ⁇ (D 1 + D 2) / 4 It means that it is within the range (see FIG. 6a).
  • the parameters related to the shape of the current collection tab described above are measured by a micrometer (Mitutoyo model number MDH-25MB) or a height gauge. May refer to the dimensions measured using, or the values calculated from those dimensions.
  • the positive electrode and negative electrode current collecting tabs are provided on different end faces of the electrode assembly. From the viewpoint of taking out the electrodes, it is preferable that the positive electrode and negative electrode current collecting tabs are provided on the opposite end faces of the electrode assembly, respectively. More specifically, it is preferable that the positive electrode and negative electrode current collecting tabs are bent so as to face the opposite end faces of the electrode assembly.
  • the plurality of current collecting tabs are arranged side by side in the direction in which the current collecting tabs are folded back (that is, the radial direction in the wound electrode assembly or the width direction in the three-dimensional laminated electrode assembly) on the end face of the electrode assembly. It does not have to be arranged side by side in the folding direction.
  • the plurality of current collecting tabs are not arranged side by side in the direction in which the current collecting tabs are folded back on the end face of the electrode assembly.
  • a plurality of current collecting tabs 41 1, 41 2 and 41 3 are not arranged in the radial direction R of the electrode assembly 200. With such a configuration, it is possible to further prevent the plurality of current collecting tabs from overlapping.
  • each of the plurality of current collecting tabs may be bent only once so as to form a substantially right angle. That is, for example, as shown in Figure 2a, the tab (41 1, 41 2, 41 3) that protrudes from the end face 200E 1 of the electrode assembly, are bent in parallel with the virtual plane where the edge forms.
  • the term "substantially right angle” here means that it does not have to be a perfect “right angle” and may be slightly deviated from it. For example, at an angle that falls within a range of ⁇ 10 ° from the right angle. It may be there. If the current collecting tabs are bent only once so as to form a substantially right angle in this way, a more space-saving structure of the secondary battery can be more effectively provided.
  • each of the plurality of current collecting tabs may be bent only once at the end face (or its vicinity) of the electrode assembly. That is, for example, as shown in FIG. 2a, tab projecting from an end surface 200E 1 of the electrode assembly (41 1, 41 2, 41 3) may have bent from as close as possible points on the end surface 200E 1. As a result, the current collecting tab faces the end face of the electrode assembly in a state where the gap between the end face of the assembly is reduced as much as possible. Therefore, the current collecting tab that is bent only once at the end face of the assembly contributes to a more space-saving structure of the secondary battery.
  • the portion from the bent portion to the tip of the tab may be flat. That is, for example, as shown in FIG. 2a, tab projecting from an end surface 200E 1 of the electrode assembly (41 1, 41 2, 41 3) from the bent portion to the distal end may have a straight line shape or planar . It can be said that the portion from the bent portion to the tip of the current collecting tab and the end surface of the electrode assembly (particularly the virtual plane formed by the end surface) have a parallel relationship with each other.
  • the current collecting tab in which the portion from the bent portion to the tip is flat in this way contributes to a more space-saving structure of the secondary battery.
  • the electrode assembly further comprises an external tab for making an electrical connection to the outside of the electrode assembly.
  • the external tab is positioned on the end face of the electrode assembly provided with the plurality of current collecting tabs, and the plurality of bent current collecting tabs are electrically connected to the external tabs.
  • a plurality of electrode tabs e.g., positive electrode current collector tab 41 1, 41 2 and 41 3
  • the end surface 200E 1 of the electrode assembly an external tab respectively 41E Is electrically connected to.
  • each current collecting tab is aggregated by the external tabs, making it easy to electrically connect to the exterior body (or electrode terminals). Become.
  • a plurality of current collecting tabs 41 provided on the end surface 200E 1 of the electrode assembly 200 1, 41 of the two and 41 3, all of the current collecting tabs directly with external tabs 41E respectively May be in contact with (see FIGS. 7a, 7c and 7d).
  • Electrode tabs e.g., 41 1 and 41 3
  • the other current collecting tabs e.g., 41 2
  • the external tabs 41E At least one of electrode tabs (e.g., 41 3) which may be in contact with an external tab 41E through (see Figure 7b).
  • all of the plurality of current collecting tabs are in direct contact with the external tabs.
  • the external tab may have any shape as long as it is electrically connected to a plurality of current collecting tabs.
  • the external tab 41E may be rectangular (see FIGS. 7a and 7b), circular (see FIG. 7c), a combination thereof (see FIG. 7d), and others. It may have a different shape.
  • the external tab may be composed of a material that can achieve the movement of electrons. From the viewpoint of adhesion between members and conductivity, the external tab is preferably selected from the same materials as the current collecting tab.
  • a plurality of electrode tabs i.e., positive electrode current collector tab 41 1, 41 2 and 41 3 as well as the negative electrode current collector tab 42 1, 42 2 and 42 3
  • the exterior body 300 is in direct contact with the positive electrode conductive portion 310 and the negative electrode conductive portion 320, respectively (see FIG. 8a).
  • the electrode assembly 200 and the exterior body 300 are electrically connected.
  • the positive electrode conductive portion 310 and the negative electrode conductive portion 320 are electrically insulated by the insulating portion 330.
  • a plurality of positive electrode current collector tabs (i.e., 41 1, 41 2 and 41 3) of at least two of the positive electrode current collector tabs (e.g., 41 1 and 41 3) is positive Gokushirubeden in exterior body 300 part 310 and are in direct contact each other collector tabs (e.g., 41 2) is at least one of the current collector tabs in direct contact with the cathode conductor 310 (e.g., 41 3) via a positive It is in contact with the conductive portion 310 (see FIG. 8b).
  • a plurality of negative electrode current collector tab (i.e., 42 1, 42 2 and 42 3), may also have a similar manner to the positive electrode current collector tab.
  • a plurality of current collecting tabs of the positive electrode and the negative electrode i.e., cathode current collector tabs 41 1, 41 2 and 41 3 as well as the negative electrode current collector tab 42 1, 42 2 and 42 3
  • the external tab They are electrically connected to the positive electrode conductive portion 310 and the negative electrode conductive portion 320, respectively, via 41E and 42E (see FIG. 8c).
  • the end faces 200E 1 and 200E 2 of the electrode assembly face each other of the positive electrode conductive portion 310 and the negative electrode conductive portion 320 on the electrode assembly side.
  • the separator 3 extends longer than the positive electrode 1 and the negative electrode 2. More specifically, the end faces 200E 1 and 200E 2 of the electrode assembly are virtual planes formed by the ends of the separator 3 (see FIG. 8a and the like).
  • the end faces 200E 1 and / or 200E 2 of the electrode assembly may be covered with an insulating material (see FIG. 8a and the like).
  • the exterior body has a substantially circular plan view shape. Since the exterior body has a substantially circular plan view shape, it is easy to accommodate the electrode assembly so as to fit the shape, especially when the electrode assembly is a wound electrode assembly. Become. That is, the battery capacity of the secondary battery can be further increased, and / or the space of the secondary battery can be further reduced.
  • each electrode is a plane laminated electrode assembly having a substantially circular plan view shape.
  • the secondary battery whose outer body has a substantially circular plan view shape may be, for example, a button type battery (also referred to as a coin type battery or a bean type battery).
  • a button type battery also referred to as a coin type battery or a bean type battery.
  • the button type battery has a small size and / or a high battery capacity, it is particularly preferably used for a device (particularly a small mobile device) that requires a power source in a state independent of an external power source. Can be done.
  • the "small mobile device” is, for example, a wearable device.
  • a wearable device refers to a device that can be used while being worn in the form of clothes or a wristwatch, such as a head-mounted display or a smart watch.
  • the secondary battery according to the present invention can be manufactured by a manufacturing method including the following steps. That is, the method for manufacturing a secondary battery according to the present invention is a step of laminating or winding a positive electrode, a negative electrode, and a separator arranged between the positive electrode and the negative electrode, and then bending a current collecting tab to obtain an electrode assembly. (Assembly step of the electrode) and a step (accommodation step) of adhering the current collecting tab to the electrode terminal and injecting an electrolyte into the exterior body while accommodating the electrode assembly in the exterior body.
  • the method for manufacturing a secondary battery according to the present invention is a step of laminating or winding a positive electrode, a negative electrode, and a separator arranged between the positive electrode and the negative electrode, and then bending a current collecting tab to obtain an electrode assembly. (Assembly step of the electrode) and a step (accommodation step) of adhering the current collecting tab to the electrode terminal and injecting an electrolyte
  • a precursor of an electrode assembly is obtained by arranging a positive electrode, a negative electrode and a rectangular separator in a predetermined order and laminating or winding them. That is, the precursor of the electrode assembly may be a plane laminated electrode assembly 200 (see FIG. 1a) in which the positive electrode 1, the negative electrode 2 and the separator 3 are laminated in the thickness direction. Alternatively, the precursor of the electrode assembly may be a wound electrode assembly 200 (see FIG. 1b) by winding the positive electrode 1, the negative electrode 2, and the separator 3. The manufacturing method in the wound electrode assembly will be described below.
  • a separator 3 having a desired shape / number of positive electrodes 1, negative electrode 2, and rectangular shape is prepared (see FIG. 9).
  • Protrusions 41 1, 41 2 and 41 3 is a moiety cathode current collector 11 is exposed, the protruding portions 41 1, 41 2 and 41 3 are a plurality of positive electrode current collector tabs 41 1, 41 2 and 41 3 Constitute.
  • the negative electrode 2 on both sides of the negative electrode current collector 21, the protrusions 42 1, 42 2 and 42 3 negative electrode material layer 22 by applying a negative electrode material paste except is formed.
  • Protrusions 42 1, 42 2 and 42 3 is a moiety negative electrode collector 21 is exposed, the protruding portions 42 1, 42 2 and 42 3 negative electrode current collector tab 42 1 a plurality of, 42 2 and 42 3 Constitute.
  • the positive electrode 1, the negative electrode 2, and the separator 3 having two rectangular shapes are arranged in a predetermined order.
  • a precursor of the electrode assembly can be obtained (see FIG. 10).
  • the separator 3 is focused toward the winding axis by applying a predetermined tension to the separator 3.
  • the tension applied to the separator 3 at the time of winding is usually 0.1 N or more and 10 N or less, and preferably 0.5 N or more and 3.0 N or less from the viewpoint of focusing.
  • the dimensions of the separator 3 used are not particularly limited as long as a precursor of the desired electrode assembly can be obtained.
  • the length dimension w1 in the width direction r of the separator 3 is usually preferably 105% or more and 400% or less, for example, 120% or more and 200% or less with respect to the length in the winding axis direction of the positive electrode 1 or the negative electrode. (See FIG. 9).
  • the length dimension w2 in the longitudinal direction s of the separator 3 may be appropriately determined according to the dimension of the target secondary battery (particularly, the number of turns of the electrode assembly).
  • the winding end portion of the winding body may be adhered with an adhesive 200T, if desired. Further, the precursor of the electrode assembly may be formed into a substantially flat column shape by pressing in the diameter direction of the wound body, if desired (see FIG. 2a).
  • the electrode assembly is obtained by bending the plurality of positive electrode and negative electrode current collecting tabs protruding from the opposing end faces of the precursors of the electrode assembly along the end faces so as not to overlap each other. ..
  • the plurality of current collecting tabs may be prevented from overlapping each other by adjusting the dimensions of the current collecting tabs.
  • the plurality of current collecting tabs may not overlap each other by adjusting the angle with respect to the circumferential direction in which the current collecting tab is bent.
  • the plurality of positive electrode current collecting tabs and the plurality of negative electrode current collecting tabs are housed in the exterior body (more specifically, the positive electrode conductive portion and the negative electrode conductive portion of the exterior body). Adhere to each part) and inject electrolyte into the exterior.
  • the secondary battery according to the present invention can be used in various fields where storage is expected.
  • secondary batteries are used in the fields of electricity, information, and communication (for example, mobile phones, smartphones, laptop computers and digital cameras, activity meters, arm computers, and electronic papers) in which electric and electronic devices are used.
  • Wearable devices for example, mobile phones, smartphones, laptop computers and digital cameras, activity meters, arm computers, and electronic papers
  • RFID tags for example, RFID tags, card-type electronic money, smart watches, etc.
  • the secondary battery according to the present invention has a structure that saves space while having a lower resistance. Therefore, the secondary battery according to the present invention can be particularly preferably used for a wearable device that requires high energy density and space saving.
  • Electrode building block 200 Electrode assembly 200E: End face with protruding current collecting tab 200E 1 : End face with protruding positive electrode current collecting tab 200E 2 : Negative electrode collection End face with protruding electric tab 200T: Adhesive material 300: Exterior body 310: Positive electrode conductive part 320: Negative electrode conductive part 330: Insulation part 400: Secondary battery

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

正極、負極および正極と負極との間に配置されたセパレータを含む電極組立体を有して成る二次電池が提供される。かかる二次電池では、電極組立体の互いに異なる端面にそれぞれ設けられた正極および負極の集電タブを備え、正極および負極の少なくとも一方の集電タブが、複数設けられており、複数の集電タブが、当該集電タブが設けられた端面に対向するように折り曲げられており、当該端面の平面視において、折り曲げられた複数の集電タブのうちの少なくとも1つが、それ以外の集電タブのいずれにもオーバーラップしていない。

Description

二次電池
 本発明は二次電池に関する。
 二次電池は、いわゆる蓄電池ゆえ充電・放電の繰り返しが可能であり、様々な用途に用いられている。例えば、携帯電話、スマートフォンおよびノートパソコンなどのモバイル機器に二次電池が用いられている。
 二次電池は、一般的に外装体内に電極組立体が収容された構造を有する。
特表2012-517658号公報
 本願発明者は、従前の二次電池では克服すべき課題があることに気付き、そのための対策を取る必要性を見出した。具体的には以下の課題があることを本願発明者は見出した。
 二次電池は、一般的に、正極、負極および正極と負極との間に配置されたセパレータを含む電極組立体、ならびに電解質が外装体に封入された構造を有する。電極組立体は、当該電極組立体の互いに異なる端面にそれぞれ設けられた正極および負極の集電タブを1つずつ有している(例えば、特許文献1)。
 図11a~図11cに示す例示態様でいえば、電極組立体200の対向する端面200Eおよび200Eに、1つの正極1の集電タブ41および1つの負極2の集電タブ42がそれぞれ設けられている。
 電極組立体が正極1、負極2およびセパレータ3が巻回されて成る巻回型電極組立体200である場合、集電タブ41および42は一般的に、正極1および負極2の端部(すなわち、巻内側端部または巻外側端部)にそれぞれ設けられる(図11b参照)。
 二次電池400において、集電タブ41および42は、外装体300における正極導電部310および負極導電部320にそれぞれ接することで、電極組立体200と外装体300とが電気的に接続される(図11c参照)。
 このような構成の二次電池400では、正極1および負極2のいずれにおいても、1つの集電タブ(すなわち、集電タブ41または42)のみをそれぞれ介して電子の授受がなされるため、電極における電導距離が長く、電気抵抗が大きくなる虞がある。また、特に高速充放電を行う場合、かかる集電タブに電流集中が生じる虞がある。
 本発明はかかる課題に鑑みてなされたものである。即ち、本発明の主たる目的は、省スペースな構造を備えつつ、より低い抵抗を有する二次電池を提供することである。
 本発明は、正極、負極および正極と負極との間に配置されたセパレータを含む電極組立体を有して成る二次電池であって、電極組立体の互いに異なる端面にそれぞれ設けられた正極および負極の集電タブを備え、正極および負極の少なくとも一方の集電タブが、複数設けられており、複数の集電タブが、当該集電タブが設けられた電極組立体の端面に対向するように折り曲げられており、当該端面の平面視において、折り曲げられた複数の集電タブのうちの少なくとも1つが、それ以外の集電タブのいずれにもオーバーラップしていない二次電池に関する。
 本発明に係る二次電池は、より低い抵抗を有しつつ、より省スペースな構造を備える。
 具体的には、本発明に係る二次電池において、正極および負極の少なくとも一方の集電タブが複数設けられている。集電タブを複数設けることで、電極における電導距離を短くすることができる。それによって、より低い抵抗を有する二次電池とすることができる。さらに、高速充放電を行う場合、単一の集電タブに電流集中が生じることを防止することができる。
 また、電極組立体の端面において、上述する複数の集電タブのうちの少なくとも1つは、それ以外の集電タブのいずれにもオーバーラップしないように折り曲げられている。それによって、二次電池における寸法の増加を抑えることができ、より省スペースな構造とすることができる。
図1aは、非巻回の平面積層型電池における電極組立体を示す模式的断面図である。 図1bは、巻回型電池における電極組立体を示す模式的断面図である。 図2aは、本発明の一実施形態に係る巻回型電池における電極組立体の態様を示す模式的斜視図である。 図2bは、図2aに示す巻回型電池における正極および負極の模式的展開平面図である。 図3は、本発明の一実施形態に係る二次電池の電極における電子の移動を示す模式的平面図である。 図4は、本発明の一実施形態に係る巻回型電池における電極組立体の別の態様を示す模式的斜視図である。 図5aは、本発明の一実施形態に係る平面積層型電池における電極組立体の態様を示す模式的斜視図である。 図5bは、図5aに示す平面積層型電池における正極および負極の模式的展開平面図である。 図6a~図6cは、本発明の一実施形態に係る巻回型電池における正極および負極の種々の態様を示す模式的展開平面図である。 図7a~図7dは、複数の集電タブが外付けタブに電気的に接続されている種々の態様を示す模式的斜視図である。 図8aは、本発明の一実施形態に係る二次電池において、複数の集電タブが外装体の導電部と接している態様を示す模式的断面図である。 図8bは、本発明の一実施形態に係る二次電池において、複数の集電タブが外装体の導電部と接している別の態様を示す模式的断面図である。 図8cは、本発明の一実施形態に係る二次電池において、複数の集電タブが外付けタブを介して外装体の導電部と接している態様を示す模式的断面図である。 図9は、本発明の一実施形態に係る二次電池を構成する電極組立体の構成部材を説明するための模式的斜視図を示す。 図10は、本発明の一実施形態に係る巻回型電池を構成する電極の組立方法を説明するための模式的斜視図を示す。 図11a~図11cは、従来技術に係る二次電池の模式図を示す。
 以下では、本発明の一実施形態に係る二次電池をより詳細に説明する。必要に応じて図面を参照して説明を行うものの、図面における各種の要素は、本発明の理解のために模式的かつ例示的に示したにすぎず、外観や寸法比などは実物と異なり得る。例えば、図8aなどにおいて、電極組立体の端面と外装体との間に間隙が存在するが、当該端面は外装体と接していてもよい。
 本明細書で直接的または間接的に説明される「厚み方向」は、二次電池を構成する電極材を重ねる方向(または、積層する方向)に基づいている。例えば扁平状電池などの「板状に厚みを有する二次電池」でいえば、“厚み”の方向は、かかる二次電池の板厚方向に相当する。換言すれば、“厚み”の方向は、二次電池を構成する面のうち、最も小さい寸法を有する面に対して平行となる方向に基づいている。
 本明細書における「平面視」とは、厚み方向に沿って対象物(例えば、正極および負極の電極)を上側または下側から捉えた場合の形態に基づいている。端的にいえば、図2bなどに示される対象物の平面の形態に基づいている。
 本明細書における「断面視」とは、厚み方向に対して略垂直な方向に沿って対象物を捉えた場合の形態(換言すれば、厚み方向に略平行な面で切り取った場合の形態)に基づいている。端的にいえば、図1aなどに示される対象物の断面の形態に基づいている。
[本発明に係る二次電池の基本構成]
 本発明は二次電池を提供する。本明細書中、「二次電池」という用語は充電・放電の繰り返しが可能な電池のことを指している。「二次電池」は、その名称に過度に拘泥されるものではなく、例えば、「蓄電デバイス」なども包含し得る。
 本発明に係る二次電池は、正極、負極およびセパレータを含む電極構成単位が積層した電極組立体を有して成る。図1aおよび図1bには電極組立体200を例示している。図示されるように、正極1と負極2とはセパレータ3を介して積み重なって電極構成単位100を成しており、かかる電極構成単位100が少なくとも1つ以上積層して電極組立体が構成されている。二次電池では、そのような電極組立体が電解質(例えば非水電解質)と共に外装体に封入されている。
 正極は、少なくとも正極材層および正極集電体(箔)から構成されている。正極では正極集電体の少なくとも片面に正極材層が設けられており、正極材層には電極活物質として正極活物質が含まれている。例えば、電極組立体における複数の正極は、それぞれ、正極集電体の両面に正極材層が設けられていてよいし、あるいは、正極集電体の片面にのみ正極材層が設けられていてよい。二次電池のさらなる高容量化の観点でいえば正極は正極集電体の両面に正極材層が設けられていることが好ましい。
 負極は、少なくとも負極材層および負極集電体から構成されている。負極では負極集電体の少なくとも片面に負極材層が設けられており、負極材層には電極活物質として負極活物質が含まれている。例えば、電極組立体における複数の負極は、それぞれ、負極集電体の両面に負極材層が設けられていてよいし、あるいは、負極集電体の片面にのみ負極材層が設けられていてよい。二次電池のさらなる高容量化の観点でいえば負極は負極集電体の両面に負極材層が設けられていることが好ましい。
 正極および負極に含まれる電極活物質、即ち、正極活物質および負極活物質は、二次電池において電子の受け渡しに直接関与する物質であり、充放電、すなわち電池反応を担う正極および負極の主物質である。より具体的には、「正極材層に含まれる正極活物質」および「負極材層に含まれる負極活物質」に起因して電解質にイオンがもたらされ、かかるイオンが正極と負極との間で移動して電子の受け渡しが行われて充放電がなされる。正極材層および負極材層は特にリチウムイオンを吸蔵放出可能な層であることが好ましい。つまり、非水電解質を介してリチウムイオンが正極と負極との間で移動して電池の充放電が行われる非水電解質二次電池となっていることが好ましい。充放電にリチウムイオンが関与する場合、本発明に係る二次電池は、いわゆるリチウムイオン電池に相当し、正極および負極がリチウムイオンを吸蔵放出可能な層を有している。
 正極材層の正極活物質は例えば粒状体から成るところ、粒子同士のより十分な接触と形状保持のためにバインダー(「結着材」とも称される)が正極材層に含まれていることが好ましい。更には、電池反応を推進する電子の伝達を円滑にするために導電助剤が正極材層に含まれていてもよい。同様にして、負極材層の負極活物質は例えば粒状体から成るところ、粒子同士のより十分な接触と形状保持のためにバインダーが含まれることが好ましく、電池反応を推進する電子の伝達を円滑にするために導電助剤が負極材層に含まれていてもよい。このように、複数の成分が含有されて成る形態ゆえ、正極材層および負極材層はそれぞれ「正極合材層」および「負極合材層」などと称すこともできる。
 正極活物質は、リチウムイオンの吸蔵放出に資する物質であることが好ましい。かかる観点でいえば、正極活物質は例えばリチウム含有複合酸化物であることが好ましい。より具体的には、正極活物質は、リチウムと、コバルト、ニッケル、マンガンおよび鉄から成る群から選択される少なくとも1種の遷移金属とを含むリチウム遷移金属複合酸化物であることが好ましい。つまり、本実施態様に係る二次電池の正極材層においては、そのようなリチウム遷移金属複合酸化物が正極活物質として好ましくは含まれている。例えば、正極活物質はコバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、リン酸鉄リチウム、または、それらの遷移金属の一部を別の金属で置き換えたものである。そのような正極活物質は、単独種として含まれてよいものの、二種以上が組み合わされて含まれていてもよい。より好適な態様では正極材層に含まれる正極活物質がコバルト酸リチウムとなっている。
 正極材層に含まれ得るバインダーとしては、特に制限されるわけではないが、ポリフッ化ビニリデン、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロチレン共重合体およびポリテトラフルオロチレンなどから成る群から選択される少なくとも1種を挙げることができる。正極材層に含まれる得る導電助剤としては、特に制限されるわけではないが、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラックおよびアセチレンブラックなどのカーボンブラック、黒鉛、カーボンナノチューブおよび気相成長炭素繊維などの炭素繊維、銅、ニッケル、アルミニウムおよび銀などの金属粉末、ならびに、ポリフェニレン誘導体などから選択される少なくとも1種を挙げることができる。より好適な態様では正極材層のバインダーはポリフッ化ビニリデンであり、また、別のより好適な態様では正極材層の導電助剤はカーボンブラックである。さらに好適な態様では、正極材層のバインダーおよび導電助剤が、ポリフッ化ビニリデンとカーボンブラックとの組合せとなっている。
 正極材層の厚み方向寸法は、特に制限されるわけではないが、1μm以上300μm以下が好ましく、例えば5μm以上200μm以下である。正極材層の厚み方向寸法は二次電池内部での厚みであって、任意の10箇所における測定値の平均値を用いている。
 負極活物質は、リチウムイオンの吸蔵放出に資する物質であることが好ましい。かかる観点でいえば、負極活物質は例えば各種の炭素材料、酸化物、または、リチウム合金などであることが好ましい。
 負極活物質の各種の炭素材料としては、黒鉛(天然黒鉛、人造黒鉛)、ハードカーボン、ソフトカーボン、ダイヤモンド状炭素などを挙げることができる。特に、黒鉛は電子伝導性が高く、負極集電体との接着性が優れる点などで好ましい。負極活物質の酸化物としては、酸化シリコン、酸化スズ、酸化インジウム、酸化亜鉛および酸化リチウムなどから成る群から選択される少なくとも1種を挙げることができる。負極活物質のリチウム合金は、リチウムと合金形成され得る金属であればよく、例えば、Al、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、Laなどの金属とリチウムとの2元、3元またはそれ以上の合金である。そのような酸化物は、その構造形態としてアモルファスとなっていることが好ましい。結晶粒界または欠陥といった不均一性に起因する劣化が引き起こされにくくなるからである。より好適な態様では負極材層の負極活物質が人造黒鉛となっている。
 負極材層に含まれる得るバインダーとしては、特に制限されるわけではないが、スチレンブタジエンゴム、ポリアクリル酸、ポリフッ化ビニリデン、ポリイミド系樹脂およびポリアミドイミド系樹脂から成る群から選択される少なくとも1種を挙げることができる。より好適な実施態様では負極材層に含まれるバインダーはスチレンブタジエンゴムとなっている。負極材層に含まれる得る導電助剤としては、特に制限されるわけではないが、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラックおよびアセチレンブラックなどのカーボンブラック、黒鉛、カーボンナノチューブおよび気相成長炭素繊維などの炭素繊維、銅、ニッケル、アルミニウムおよび銀などの金属粉末、ならびに、ポリフェニレン誘導体などから選択される少なくとも1種を挙げることができる。なお、負極材層には、電池製造時に使用された増粘剤成分(例えばカルボキシルメチルセルロース)に起因する成分が含まれていてもよい。
 さらに好適な態様では、負極材層における負極活物質およびバインダーが人造黒鉛とスチレンブタジエンゴムとの組合せとなっている。
 負極材層の厚み方向寸法は、特に制限されるわけではないが、1μm以上300μm以下が好ましく、例えば5μm以上200μm以下である。負極材層の厚み方向寸法は二次電池内部での厚みであって、任意の10箇所における測定値の平均値を用いている。
 正極および負極に用いられる正極集電体および負極集電体は電池反応に起因して活物質で発生した電子を集めたり供給したりするのに資する部材である。そのような集電体は、シート状の金属部材であってよく、多孔または穿孔の形態を有していてよい。例えば、集電体は金属箔、パンチングメタル、網またはエキスパンドメタルなどである。正極に用いられる正極集電体は、アルミニウム、ステンレス鋼およびニッケルなどから成る群から選択される少なくとも1種を含んだ金属箔から成るものが好ましく、例えばアルミニウム箔である。一方、負極に用いられる負極集電体は、銅、ステンレス鋼およびニッケルなどから成る群から選択される少なくとも1種を含んだ金属箔から成るものが好ましく、例えば銅箔である。
 セパレータは、正極および負極の接触による短絡防止および電解質保持などの観点から設けられる部材である。換言すれば、セパレータは、正極と負極との間の電子的接触を防止しつつイオンを通過させる部材であるといえる。好ましくは、セパレータは多孔性または微多孔性の絶縁性部材であり、その小さい厚みに起因して膜形態を有している。あくまでも例示にすぎないが、ポリオレフィン製の微多孔膜がセパレータとして用いられてよい。この点、セパレータとして用いられる微多孔膜は、例えば、ポリオレフィンとしてポリエチレン(PE)のみ又はポリプロピレン(PP)のみを含んだものであってよい。更にいえば、セパレータは、“PE製の微多孔膜”と“PP製の微多孔膜”とから構成される積層体であってもよい。セパレータの表面は無機粒子コート層および/または接着層などにより覆われていてもよい。セパレータの表面は接着性を有していてもよい。
 セパレータの厚み方向寸法は、特に制限されるわけではないが、1μm以上100μm以下が好ましく、例えば5μm以上20μm以下である。セパレータの厚み方向寸法は二次電池内部での厚み(特に正極と負極との間での厚み)であって、任意の10箇所における測定値の平均値を用いている。
 本発明に係る二次電池では、正極、負極およびセパレータを含む電極組立体が電解質と共に外装体に封入されている。電解質は電極(正極・負極)から放出された金属イオンの移動を助力する。電解質は有機電解質および有機溶媒などの“非水系”の電解質であっても、または水を含む“水系”の電解質であってもよい。本発明に係る二次電池は、電解質として“非水系”の溶媒と、溶質とを含む電解質が用いられた非水電解質二次電池が好ましい。電解質は液体状またはゲル状などの形態を有し得る(なお、本明細書において“液体状”の非水電解質は「非水電解質液」とも称される)。
 具体的な非水電解質の溶媒としては、少なくともカーボネートを含んで成るものが好ましい。かかるカーボネートは、環状カーボネート類および/または鎖状カーボネート類であってもよい。特に制限されるわけではないが、環状カーボネート類としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)およびビニレンカーボネート(VC)から成る群から選択される少なくとも1種を挙げることができる。鎖状カーボネート類としては、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)およびジプロピルカーボネート(DPC)から成る群から選択される少なくも1種を挙げることができる。本発明の1つの好適な実施態様では、非水電解質として環状カーボネート類と鎖状カーボネート類との組合せが用いられ、例えばエチレンカーボネートとジエチルカーボネートとの混合物が用いられる。具体的な非水電解質の溶質としては、例えば、LiPFおよびLiBFなどのLi塩が好ましい。
 集電タブとしては、二次電池の分野で使用されているあらゆる集電タブが使用可能である。集電タブは、電子の移動が達成され得る材料から構成されればよく、導電性材料から構成されていてよい。例えば金属材料から集電タブが構成されてよい。かかる金属材料としては、銀、金、銅、鉄、スズ、プラチナ、アルミニウム、ニッケルおよびステンレス鋼などから成る群から選択される材料を挙げることができる。集電タブの形態は特に限定されない。例えば、集電タブの全体形状が線状であってよいし、または板状であってもよい。
 外装体は、ハードケースであってよい。外装体は、例えば、第1外装体と第2外装体の2パーツ構成を有している。2パーツ構成を有する外装体は、本体部と蓋部とから構成されていてよい。かかる場合、本体部と蓋部とは、電極組立体、電解質および集電タブ、ならびに所望により電極端子の収容後、互いに密封されてよい。密封方法としては、特に限定されず、例えば、レーザー照射法などが挙げられる。
 外装体の本体部および蓋部を構成する材料としては、二次電池の分野でハードケース型外装体を構成し得るあらゆる材料が使用可能である。そのような材料は、電子の移動が達成され得る導電性材料であってもよいし、または電子の移動が達成され得ない絶縁材料であってもよい。
 外装体の材料は、電極取り出しの観点から、導電性材料であることが好ましい。すなわち、外装体は、正極導電部および負極導電部の2つの部材を含むことが好ましい。ここで、外装体の本体部が正極導電部および負極導電部のいずれか一方を成し、外装体の蓋部が正極導電部および負極導電部の他方を成していてよい。
 導電性材料としては、例えば銀、金、銅、鉄、スズ、プラチナ、アルミニウム、ニッケルおよびステンレス鋼などから成る群から選択される金属材料が挙げられる。絶縁材料としては、例えば、ポリエステル(例えば、ポリエチレンテレフタレート)、ポリイミド、ポリアミド、ポリアミドイミド、ならびにポリオレフィン(例えば、ポリエチレン、およびポリプロピレン)などから成る群から選択される絶縁ポリマー材料が挙げられる。
 上述した導電性および剛性の観点を重視すると、本体部および蓋部はともに、ステンレス鋼から構成されていてよい。なお、ステンレス鋼とは、「JIS G 0203 鉄鋼用語」に規定されている通り、クロムまたはクロムとニッケルとを含有させた合金鋼で、一般にはクロム含有量が全体の約10.5%以上の鋼をいう。そのようなステンレス鋼としては、マルテンサイト系ステンレス鋼、フェライト系ステンレス鋼、オーステナイト系ステンレス鋼、オーステナイト・フェライト系ステンレス鋼、および析出硬化系ステンレス鋼から成る群から選択されるステンレス鋼が挙げられる。
 外装体の本体部および蓋部の寸法は、主として電極組立体の寸法に応じて決定され、例えば電極組立体を収容したとき、外装体内での電極組立体の移動が防止される程度の寸法を有することが好ましい。電極組立体の移動を防止することにより、衝撃などによる電極組立体の損傷を防止し、二次電池の安全性を向上させることができる。
 外装体はラミネートフィルムからなるパウチなどのフレキシブルケースであってもよい。ラミネートフィルムとしては、少なくとも金属層(例えば、アルミニウムなど)と接着層(例えば、ポリプロピレンおよびポリエチレンなど)とが積層される構成であり、付加的に保護層(例えば、ナイロンおよびポリアミドなど)が積層される構成であってもよい。
 外装体の厚み方向寸法(換言すると、肉厚寸法)は、特に制限されるわけではないが、10μm以上200μm以下が好ましく、例えば50μm以上100μm以下である。外装体の厚み方向寸法は、任意の10箇所における測定値の平均値を用いている。
 二次電池には、電極端子が設けられていてよい。つまり、外部と電気的に接続するための端子が二次電池に設けられていてよい。かかる電極端子は、外装体の少なくとも1つの面に設けられてよい。例えば、外装体の異なる面に正極および負極の電極端子がそれぞれ設けられてもよい。電極取り出しの観点から、正極および負極の電極端子は、外装体の対向する面に設けられていることが好ましい。
 電極端子は、導電率が大きい材料を用いることが好ましい。電極端子の材質としては、特に制限するわけではないが、銀、金、銅、鉄、スズ、プラチナ、アルミニウム、ニッケルおよびステンレス鋼から成る群から選択される少なくとも一種を挙げることができる。
 一例として、正極および負極の集電タブは、上述のような電極端子に電気的に接続され、かかる電極端子を介して、二次電池の外部に導出されていてよい。
 別の例として、正極および負極の集電タブは、外装体に電気的に接続され、外装体を介して二次電池の外部に導出されるようになっていてもよい。
 例えば、外装体が導電性ハードケース型外装体である場合、集電タブは外装体の内側と接触して電気的に接続されていてもよく、かかる外装体を介して二次電池の外部に導出されるようになっていてもよい。
[本発明に係る二次電池の特徴]
 本発明に係る二次電池は、正極、負極およびセパレータを含む電極組立体を有して成る電池であるところ、当該電極組立体に設けられる集電タブの形態および配置の点で特徴を有する。
 具体的には、本発明に係る二次電池において、正極および負極の少なくとも一方の集電タブが複数設けられており、当該複数の集電タブが、電極組立体の端面に対向するように折り曲げられている。つまり、複数の集電タブの各々と電極組立体の端面とが互いに直接的に対向するように集電タブが折り曲げられている。ここで、折り曲げられた複数の集電タブのうちの少なくとも1つは、それ以外の集電タブのいずれにもオーバーラップしていない。
 本明細書における「電極組立体の端面」とは、電極組立体における電極積層方向に対して略平行な面を指していてよい。また、電極組立体の端面は、巨視的にみた場合の仮想面であってよい。例えば、電極組立体の端面は、複数の電極および/またはセパレータの端部が成す仮想面であってよい。端的にいえば、平面積層型電極組立体または巻回型電極組立体のいずれであっても、その積層状態(すなわち、正極層、負極層およびセパレーターの積層状態)を視認できる面が“電極組立体の端面”に相当する。
 本明細書における「複数の集電タブ」とは、少なくとも2つの集電タブが設けられていることを指す。低抵抗化および省スペース化の観点を重視すれば、複数の集電タブは、正極および負極の各々につき、2以上6以下の範囲で設けられていてよく、例えば3以上5以下である。
 本明細書における「集電タブが(電極組立体の)端面に対向する」とは、集電タブを構成するいずれかの面と、集電タブが設けられた電極組立体の端面とが互いに直接的に向き合っていることを指す。例えば、集電タブが長尺状である場合、集電タブの最も大きい寸法を有する形状方向に基づく長手方向と、かかる長手方向に次いで大きい寸法を有する幅方向とが成す面と、集電タブが設けられた電極組立体の端面とが対向していることを指していてよい。
 本明細書における「折り曲げ」とは、湾状(または弓状)に曲がること(すなわち略曲線的に曲がること)、および鋭角に折れ曲がること(すなわち略直線的に曲がること)を包含する。
 図2aおよび図2bに示す例示態様でいえば、電極組立体200の対向する端面200Eおよび200Eの双方に、複数の集電タブが設けられている。より具体的には、電極組立体200の対向する端面の一方の端面200Eに複数の正極集電タブ41、41が設けられ、電極組立体200の対向する端面の他方の端面200Eに複数の負極集電タブ42、42および42がそれぞれ設けられている。換言すれば、電極組立体200の対向する端面200Eおよび200Eから延びるように、複数の正極集電タブ41、41および41ならびに負極集電タブ42、42および42がそれぞれ設けられている。
 上述のように、電極の集電タブを複数設けることで、当該電極における電導距離を短くすることができる。それによって、より低い抵抗を有する二次電池とすることができる。さらに、高速充放電を行う場合、単一の集電タブに電流集中が生じることを防止することができる。
 本発明の二次電池は、正極および負極の各電極において、複数の集電タブで集電を行うことができる。図3に示す例示態様でいえば、電極(例えば、正極1)は、複数の集電タブ41、41および41にて集電を行う構造を有している。図3中の矢印は、電子の流れを模式的に示している。そのような構成とすることで、複数の集電タブから電子の授受が行われ、電極における電導距離を短くできる。
 図2aに示す例示態様でいえば、一方の電極について、複数の集電タブ(例えば、正極集電タブ41、41および41)は、当該複数の集電タブが、電極組立体の端面200Eに対向するように折り曲げられている。ここで、端面200Eの平面視において、当該複数の集電タブ41、41および41のうちの少なくとも1つは、それ以外の集電タブのいずれにもオーバーラップしないように折り曲げられている。
 複数の集電タブと電極組立体の端面とが対向していること、および電極組立体の端面において複数の集電タブのうちの少なくとも1つがそれ以外の集電タブのいずれにもオーバーラップしていないことによって、二次電池における寸法の増加を抑えることができ、より省スペースな構造とすることができる。つまり、好ましくは低背な二次電池を得ることができ、二次電池の全体的な体積減を図ることができる。
 電極組立体の端面の平面視において、複数の集電タブは、それらのうちの少なくとも1つがそれ以外の集電タブのいずれにもオーバーラップしないように折り曲げられていればよい。
 図示する例示態様でいえば、電極組立体200の端面200Eにおいて、正極集電タブ41が、それ以外の正極集電タブ41および41にオーバーラップしないように折り曲げられていればよく(図4参照)、正極集電タブ41、41および41が互いにオーバーラップしないように折り曲げられていてもよい(図2a参照)。
 省スペース化の観点から、電極組立体の端面の平面視において、折り曲げられた複数の集電タブは、互いにオーバーラップしていないことが好ましい。
 本発明に係る二次電池において、正極および負極の少なくとも一方の集電タブが、上述のような折り曲げられた複数の集電タブを構成している。低抵抗化および省スペース化の観点から、正極および負極の両方の集電タブが、上述のような折り曲げられた複数の集電タブを構成することが好ましい。
 電極組立体は、正極1、負極2およびセパレータ3が巻回されて成る巻回型電極組立体200であってよい(図2a参照)。かかる場合、巻回軸が法線となる仮想の組立体側面が“電極組立体の端面”に相当する。または、電極組立体は、正極1と負極2とがセパレータ3を介して積層されて成る平面積層型電極組立体200’であってもよい(図5a参照)。かかる場合、積層方向と直交する線が法線となる仮想の組立体側面が“電極組立体の端面”に相当する。
 平面積層型電極組立体は、単一の電極およびセパレータを複数回積層された積層構造であってよく、複数の電極が連結部を介して成る電極マルチユニットを、電極間にセパレータを介しつつ、連結部を折り曲げた折り畳み構造であってもよい。
 図2aに例示するような巻回型電極組立体の場合、巻回後の電極組立体において、各電極に設けられた複数の集電タブが電極組立体の端面にて互いに重なることがないようになっている。より具体的には、電極組立体200の円周方向Cおよび/もしくは径方向Rにおいて集電タブがオーバーラップしないように、複数の集電タブの寸法(例えば、長手方向寸法および/もしくは幅方向寸法)をそれぞれ調整してよく、ならびに/または1つの電極における複数の集電タブ間のピッチをそれぞれ調整してもよい。
 また、図5aおよび図5bに例示するような平面積層型電極組立体の場合、積層後の電極組立体において、各電極に設けられた複数の集電タブが電極組立体の端面にて互いに重なることがないようになっている。より具体的には、電極組立体200’の長手方向Lおよび/もしくは幅方向Tにおいて集電タブがオーバーラップしないように、複数の集電タブの寸法(例えば、長手方向寸法および/もしくは幅方向寸法)をそれぞれ調整してよく、ならびに/または複数の電極における集電タブの幅方向位置をそれぞれ調整してもよい。
 製造工程が容易であり、低コストであることから、電極組立体は巻回型電極組立体であることが好ましい。より具体的には、巻回型電極組立体は、正極および負極がそれぞれ1つの電極から構成されるため、平面積層型電極組立体に比して、電極のシートカット工程が少なく、かつ電極間の位置合わせを容易にすることができる。
 集電タブは、電極から突出するように延在するタブであってよい。このような集電タブは、正極および負極に用いられる正極集電体および負極集電体をより外側に延出することでもたらされた集電タブであってよい。あるいは、集電タブは、電極に取り付けられた導電性部材から構成されてもよい。
 一実施形態では、正極1は、正極集電体11上に正極材が形成された正極材層12および正極集電体11が露出した部分を有する。かかる正極集電体11の露出した部分が、複数の集電タブ41、41および41を構成している(図2bおよび図5b参照)。
 巻回型電極組立体を有する二次電池において、複数の集電タブは、少なくとも一方の電極において、当該電極の一端に並んで設けられている。より具体的には、複数の正極集電タブ41、41および41が、正極1の一端に並んで設けられており、ならびに/または負極集電タブ42、42および42が、負極2の一端に並んで設けられている(図6a~図6c参照)。
 正極および負極の集電タブの両方がそれぞれ複数設けられていてよく(図6aおよび図6b参照)、正極および負極の集電タブの一方のみが複数設けられていてもよい(図6c参照)。より抵抗を低くする観点から、正極および負極の集電タブの両方が、それぞれ複数設けられていることが好ましい。
 複数の集電タブは、それぞれ互いに異なる寸法(例えば、長手方向寸法、幅方向寸法および厚み方向寸法)を有していてもよい(図6b参照)。
 一実施形態では、集電タブの長手方向寸法(即ち、電極組立体から外側に延在しているタブ部分の長さ)は、1mm以上30mm以下である。長手方向寸法が1mm以上であると、外装体(または、電極端子)との接触面積をより大きくすることができる。それによって、電極組立体と外装体との抵抗をより低くすることができる。長手方向寸法が30mm以下であると、複数の集電タブをオーバーラップしないように配置することをより容易化することができる。集電タブの長手方向寸法は、2mm以上20mm以下であることが好ましく、例えば5mm以上10mm以下である。
 一実施形態では、集電タブの幅方向寸法は、100μm以上10mm以下である。幅方向寸法が100μm以上であると、外装体との接触面積をより大きくすることができる。それによって、電極組立体と外装体との抵抗をより低くすることができる。幅方向寸法が10mm以下であると、複数の集電タブをオーバーラップしないように配置することをより容易化することができる。集電タブの幅方向寸法は、300μm以上5mm以下であることが好ましく、例えば500μm以上2.5mm以下である。
 一実施形態では、集電タブの厚み方向寸法は、1μm以上3mm以下である。厚み方向寸法が1μm以上であると、ハンドリング性をより向上させることができる。(厚み方向寸法が3mm以下であると、二次電池をより省スペース化することができる。集電タブの厚み方向寸法は、3μm以上2mm以下であることが好ましく、例えば5μm以上1mm以下である。)
 巻回型電極組立体を有する二次電池の一実施形態では、正極および負極の電極の展開平面視において、複数の集電タブが該電極の長手方向に対して略等間隔に設けられている。図6aに示す例示態様でいえば、正極1の平面視において、複数の集電タブ41、41および41が、正極1の長手方向に対して略等間隔に設けられている。
 ここで「略等間隔」とは、各集電タブ間の間隔の平均値に対して、それぞれの間隔が当該平均値の±50%以内に収まる範囲をいう。すなわち、集電タブ41と41との間隙Dおよび集電タブ41と41との間隙Dが、それぞれ(D+D)/2±(D+D)/4の範囲内であることをいう(図6a参照)。
 上述する集電タブの形状に関連するパラメータ(すなわち、長手方向寸法、幅方向寸法および厚み方向寸法、ならびに各集電タブの間隔)は、マイクロメータ(Mitsutoyo社製 型番MDH-25MB)、またはハイトゲージを用いて測定した寸法、またはその寸法から算出した値を指してよい。
 正極および負極の集電タブは、電極組立体の異なる端面にそれぞれ設けられている。電極取り出しの観点から、正極および負極の集電タブは、電極組立体の対向する端面にそれぞれ設けられていることが好ましい。より具体的には、正極および負極の集電タブは、電極組立体の対向する端面にそれぞれ対向するように折り曲げられていることが好ましい。
 複数の集電タブは、電極組立体の端面において、集電タブを折り返す方向(すなわち、巻回型電極組立体における径方向、または平面積層型電極組立体における幅方向)に並んで配置されていてよく、かかる折り返す方向に並んで配置されていなくてもよい。
 複数の集電タブは、電極組立体の端面において集電タブを折り返す方向に並んで配置されていないことが好ましい。図2aに示す例示態様でいえば、複数の集電タブ41、41および41は、電極組立体200の径方向Rに並んで配置されていない。そのような構成とすることで、複数の集電タブがオーバーラップすることをより防止することができる。
 電極組立体の端面に対向するように折り曲げられた複数の集電タブのより好適な態様について詳述しておく。本発明の二次電池では、複数の集電タブの各々は、略直角を成すように1回のみ折り曲げられていてよい。つまり、例えば図2aに示すように、電極組立体の端面200Eから突出するタブ(41、41、41)が、当該端面が成す仮想面と平行となるように曲げられている。ここでいう「略直角」とは、完全な“直角”でなくてよく、それから僅かにずれたものでもよいことを意味しており、例えば、直角から±10°の範囲に収まるような角度であってよい。このように略直角を成すように1回のみ集電タブが折り曲げられていると、二次電池のより省スペースな構造がより効果的にもたらされ得る。
 また、本発明の二次電池では、複数の集電タブの各々は、電極組立体の端面(またはその近傍)で1回のみ折り曲げられていてよい。つまり、例えば図2aに示すように、電極組立体の端面200Eから突出するタブ(41、41、41)は、その端面200Eにできるだけ近いポイントから折り曲げられていてよい。これにより、組立体端面との間の隙間ができるだけ減じられた状態で集電タブが電極組立体の端面と対向するようになる。よって、組立体端面で1回のみ折り曲げられた集電タブは、二次電池のより省スペースな構造に寄与する。
 更に、本発明の二次電池では、折り曲げられた複数の集電タブの各々において、折り曲げ部からタブ先端までの部分が平面状を成していてよい。つまり、例えば図2aに示すように、電極組立体の端面200Eから突出するタブ(41、41、41)は、その折り曲げ部から先端までが直線状または平面状になっていてよい。集電タブの折り曲げ部から先端までの部分と、電極組立体の端面(特にそれが成す仮想平面)とが互いに平行な関係性を有するともいえる。このように折り曲げ部から先端までの部分が平面状を成す集電タブは、二次電池のより省スペースな構造に寄与する。
 一実施形態では、電極組立体は、当該電極組立体の外部と電気的な接続を行うための外付けタブをさらに備えている。当該外付けタブは複数の集電タブが設けられた電極組立体の端面に位置付けられ、折り曲げられた複数の集電タブは、外付けタブに電気的に接続されている。
 図7a~図7dに示す例示態様でいえば、複数の集電タブ(例えば、正極集電タブ41、41および41)が、電極組立体の端面200Eにおいて、それぞれ外付けタブ41Eに電気的に接続されている。
 複数の集電タブがそれぞれ外付けタブに電気的に接続されていることで、各集電タブが外付けタブによって集約され、外装体(または、電極端子)への電気的な接続が容易となる。
 図示する例示態様でいえば、電極組立体200の端面200Eに設けられた複数の集電タブ41、41および41のうち、すべての集電タブがそれぞれ外付けタブ41Eと直接的に接していてよい(図7a、図7cおよび図7d参照)。
 または、少なくとも2つの集電タブ(例えば、41および41)は外付けタブ41Eと直接的に接し、それ以外の集電タブ(例えば、41)は外付けタブ41Eと直接的に接する集電タブの少なくともいずれか(例えば、41)を介して外付けタブ41Eと接していてもよい(図7b参照)。
 電極組立体の外部への接続をより容易にするために、複数の集電タブのすべてが、それぞれ外付けタブと直接的に接していることが好ましい。
 外付けタブは、複数の集電タブに電気的に接続されていれば、いかなる形状であってよい。例えば、外付けタブ41Eは矩形状であってよく(図7aおよび図7b参照)、円状であってもよく(図7c参照)、それらの組み合わせであってもよく(図7d参照)、その他の異形状であってもよい。
 外付けタブは、電子の移動が達成され得る材料から構成されていればよい。部材間の密着性および導電性の観点から、外付けタブは集電タブと同様の材料から選択されることが好ましい。
 一実施形態では、二次電池400の断面視において、複数の集電タブ(すなわち、正極集電タブ41、41および41ならびに負極集電タブ42、42および42)は、外装体300における正極導電部310および負極導電部320にそれぞれ直接的に接している(図8a参照)。それによって、電極組立体200と外装体300とが電気的に接続される。正極導電部310および負極導電部320は、絶縁部330によって電気的に絶縁されている。
 別の実施形態では、複数の正極集電タブ(すなわち、41、41および41)のうち、少なくとも2つの正極集電タブ(例えば、41および41)は外装体300における正極導電部310とそれぞれ直接的に接しており、それ以外の集電タブ(例えば、41)は正極導電部310と直接的に接する集電タブの少なくともいずれか(例えば、41)を介して正極導電部310と接している(図8b参照)。複数の負極集電タブ(すなわち、42、42および42)についても、正極集電タブと同様の態様となっていてよい。
 さらに別の実施形態では、正極および負極の複数の集電タブ(すなわち、正極集電タブ41、41および41ならびに負極集電タブ42、42および42)は、外付けタブ41Eおよび42Eをそれぞれ介して、正極導電部310および負極導電部320にそれぞれ電気的に接続されている(図8c参照)。
 一実施形態では、電極組立体の端面200Eおよび200Eは、正極導電部310および負極導電部320の電極組立体側の面とそれぞれ対向している。そのような構成とすることで、二次電池をより省スペース化することができる(図8aなど参照)。
 一実施形態では、二次電池400の断面視において、セパレータ3は、正極1および負極2よりも長く延在している。より具体的には、電極組立体の端面200Eおよび200Eは、セパレータ3の端部が成す仮想面である(図8aなど参照)。
 上述のような構成とすることで、集電タブと電極との接触を防ぐことができ、短絡を防止することができる。短絡防止の観点から、電極組立体の端面200Eおよび/または200Eは、絶縁材で覆われていてもよい(図8aなど参照)。
 一実施形態では、外装体は略円状の平面視形状を有している。外装体が略円状の平面視形状を有することで、特に電極組立体が巻回型電極組立体である場合、かかる電極組立体を、その形状に嵌合するように収容することが容易となる。すなわち、二次電池の電池容量をより高めることができ、および/または二次電池をより省スペース化することができる。
 なお、平面積層型電極組立体においても、略円状の平面視形状を有する外装体を適用し得る。かかる構成において、各電極が略円状の平面視形状を有する平面積層型電極組立体であることが好ましい。
 外装体が略円状の平面視形状を有する二次電池は、例えばボタン型電池(コイン型電池、マメ型電池とも称され得る)であってよい。上述したように、ボタン型電池は、小型および/または高電池容量を有するため、外部電源とは独立した状態で電源を必要とするデバイス(特に、小型のモバイル機器)などに特に好適に用いることができる。
 ここで「小型のモバイル機器」とは、例えばウェアラブルデバイスである。ウェアラブルデバイスとは、衣服状や腕時計状で身につけたまま使えるものを指し、例えば、ヘッドマウントディスプレイ、スマートウォッチなどである。
[本発明に係る二次電池の製造方法]
 本発明に係る二次電池は、以下の工程を含む製造方法により、製造することができる。つまり、本発明に係る二次電池の製造方法は、正極、負極および正極と負極との間に配置されたセパレータを積層または巻回した後、集電タブを折り曲げることで電極組立体を得る工程(電極の組立工程)、ならびに電極組立体を外装体に収容させつつ、集電タブを電極端子に接着し、外装体内に電解質を注入する工程(収容工程)を含む。
 本発明に係る二次電池は、上述したように、正極、負極および矩形状を有するセパレータを所定の順序で配置して積層または巻回することで電極組立体の前駆体を得る。すなわち、電極組立体の前駆体は、正極1、負極2およびセパレータ3を厚み方向に積層した平面積層型電極組立体200(図1a参照)としてよい。または、電極組立体の前駆体は、正極1、負極2およびセパレータ3を巻回して巻回型電極組立体200(図1b参照)としてもよい。以下では、巻回型電極組立体における製造方法について説明する。
 (電極の組立工程)
 まずは、所望の形状/数の正極1、負極2および矩形状を有するセパレータ3を準備する(図9参照)。正極1は、正極集電体11の両面に、突出部41、41および41を除いて正極材ペーストを塗布することで正極材層12が形成されている。突出部41、41および41は正極集電体11が露出した部分であり、当該突出部41、41および41が複数の正極集電タブ41、41および41を構成する。
 同様に、負極2は、負極集電体21の両面に、突出部42、42および42を除いて負極材ペーストを塗布することで負極材層22が形成されている。突出部42、42および42は負極集電体21が露出した部分であり、当該突出部42、42および42が複数の負極集電タブ42、42および42を構成する。
 次に、正極1、負極2および2枚の矩形状を有するセパレータ3を所定の順序で配置する。ここで、正極集電タブ41、41および41が突出する側と、負極集電タブ42、42および42が突出する側とが対向するように正極1および負極2を配置する。そのように配置した部材を巻き回すことで電極組立体の前駆体が得られる(図10参照)。
 巻回時において、セパレータ3に所定のテンションを印加することにより、セパレータ3が巻回軸に向かって集束する。それによって、電極組立体の端面を、セパレータ3の端部が成す仮想面とすることができる。巻回時にセパレータ3に印加されるテンションは通常、0.1N以上10N以下であり、集束の観点から、好ましくは0.5N以上3.0N以下である。
 使用されるセパレータ3の寸法は、所望の電極組立体の前駆体が得られる限り特に限定されない。例えば、セパレータ3の幅方向rの長さ寸法w1は通常、正極1または負極の巻回軸方向長さに対して、105%以上400%以下であることが好ましく、例えば120%以上200%以下である(図9参照)。また例えば、セパレータ3の長手方向sの長さ寸法w2は、目的とする二次電池の寸法(特に電極組立体の巻回数)に応じて、適宜決定されてよい。
 電極組立体の前駆体は、所望により、巻回体の巻き終わり部を接着材200Tで接着してよい。また、電極組立体の前駆体は、所望により、巻回体の直径方向にプレスすることにより、略偏平柱形状に成形されてもよい(図2a参照)。
 次に、電極組立体の前駆体の対向する端面からそれぞれ突出する複数の正極および負極の集電タブを、互いにオーバーラップしないように、当該端面に沿って折り曲げることで、電極組立体が得られる。複数の集電タブは、当該集電タブの寸法を調整することで、互いにオーバーラップしないようにしてよい。または、複数の集電タブは、当該集電タブを折り曲げる周方向に対する角度を調整することで、互いにオーバーラップしないようにしてもよい。
 (収容工程)
 先の工程において得られた電極組立体を外装体に収容させつつ、複数の正極集電タブおよび複数の負極集電タブを外装体(より具体的には、外装体の正極導電部および負極導電部)にそれぞれ接着し、外装体内に電解質を注入する。
 以上、本発明の実施形態について説明してきたが、あくまでも典型例を例示したに過ぎない。本発明はこれに限定されず、本発明の要旨を変更しない範囲において種々の態様が考えられることを当業者は容易に理解されよう。
 本発明に係る二次電池は、蓄電が想定される様々な分野に利用することができる。あくまでも例示にすぎないが、二次電池は、電気・電子機器などが使用される電気・情報・通信分野(例えば、携帯電話、スマートフォン、ノートパソコンおよびデジタルカメラ、活動量計、アームコンピューター、電子ペーパー、ウェアラブルデバイス、RFIDタグ、カード型電子マネー、スマートウォッチなどを含む電気・電子機器分野あるいはモバイル機器分野)、家庭・小型産業用途(例えば、電動工具、ゴルフカート、家庭用・介護用・産業用ロボットの分野)、大型産業用途(例えば、フォークリフト、エレベーター、湾港クレーンの分野)、交通システム分野(例えば、ハイブリッド車、電気自動車、バス、電車、電動アシスト自転車、電動二輪車などの分野)、電力系統用途(例えば、各種発電、ロードコンディショナー、スマートグリッド、一般家庭設置型蓄電システムなどの分野)、医療用途(イヤホン補聴器などの医療用機器分野)、医薬用途(服用管理システムなどの分野)、ならびに、IoT分野、宇宙・深海用途(例えば、宇宙探査機、潜水調査船などの分野)などに利用することができる。
 本発明に係る二次電池は、より低い抵抗を有しつつ、より省スペースな構造を備える。したがって、本発明に係る二次電池は、高エネルギー密度および省スペース性などが要求されるウェアラブルデバイスに特に好ましく利用することができる。
  1:正極
   11:正極集電体
   12:正極材層
  2:負極
   21:負極集電体
   22:負極材層
  3:セパレータ
  4:集電タブ
   41:正極集電タブ
   42:負極集電タブ
  4E:外付けタブ
   41E:正極外付けタブ
   42E:負極外付けタブ
  100:電極構成単位
  200:電極組立体
   200E:集電タブが突出する端面
    200E:正極集電タブが突出する端面
    200E:負極集電タブが突出する端面
   200T:接着材
  300:外装体
   310:正極導電部
   320:負極導電部
   330:絶縁部
  400:二次電池

Claims (14)

  1. 正極、負極および該正極と該負極との間に配置されたセパレータを含む電極組立体を有して成る二次電池であって、
     前記電極組立体の互いに異なる端面にそれぞれ設けられた前記正極および前記負極の集電タブを備え、
     前記正極および前記負極の少なくとも一方の集電タブが、複数設けられており、
     前記複数の集電タブが、前記端面に対向するように折り曲げられており、
     前記端面の平面視において、前記折り曲げられた複数の集電タブのうちの少なくとも1つが、それ以外の集電タブのいずれにもオーバーラップしていない、二次電池。
  2. 前記折り曲げられた複数の集電タブの各々は、略直角を成すように1回のみ折り曲げられている、請求項1に記載の二次電池。
  3. 前記折り曲げられた複数の集電タブの各々は、前記電極組立体の前記端面で1回のみ折り曲げられている、請求項1または2に記載の二次電池。
  4. 前記折り曲げられた複数の集電タブの各々において、折り曲げ部からタブ先端までの部分が平面状を成している、請求項1~3のいずれかに記載の二次電池。
  5. 前記端面の平面視において、前記折り曲げられた複数の集電タブが、互いにオーバーラップしていない、請求項1~4のいずれかに記載の二次電池。
  6. 前記正極および前記負極の両方の集電タブが、前記折り曲げられた複数の集電タブを構成する、請求項1~5のいずれかに記載の二次電池。
  7. 前記正極および前記負極の集電タブが、前記電極組立体の対向する端面にそれぞれ設けられている、請求項1~6のいずれかに記載の二次電池。
  8. 前記電極組立体は、該電極組立体の外部と電気的な接続を行うための外付けタブをさらに備え、
     前記折り曲げられた複数の集電タブが、前記外付けタブに電気的に接続されている、請求項1~7のいずれかに記載の二次電池。
  9. 前記電極組立体が、前記正極、前記負極および前記セパレータが巻回されて成る巻回型電極組立体である、請求項1~8のいずれかに記載の二次電池。
  10. 前記正極および前記負極の電極の展開平面視において、前記複数の集電タブが該電極の長手方向に対して略等間隔に設けられている、請求項9に記載の二次電池。
  11. 前記二次電池は、外装体をさらに有してなり、
     前記外装体は、絶縁材によって互いに電気的に絶縁されている正極導電部および負極導電部を有して成り、前記正極および前記負極の集電タブが、前記正極導電部および前記負極導電部にそれぞれ電気的に接続されている、請求項1~10のいずれかに記載の二次電池。
  12. 前記外装体が略円状の平面視形状を有する、請求項11に記載の二次電池。
  13. 前記正極および前記負極がリチウムイオンを吸蔵放出可能となっている、請求項1~12のいずれかに記載の二次電池。
  14. 請求項1~13のいずれかに記載の二次電池を用いた、ウェアラブルデバイス。
PCT/JP2020/023819 2019-06-18 2020-06-17 二次電池 WO2020256023A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-112916 2019-06-18
JP2019112916 2019-06-18

Publications (1)

Publication Number Publication Date
WO2020256023A1 true WO2020256023A1 (ja) 2020-12-24

Family

ID=74040796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023819 WO2020256023A1 (ja) 2019-06-18 2020-06-17 二次電池

Country Status (1)

Country Link
WO (1) WO2020256023A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114628764A (zh) * 2022-03-15 2022-06-14 贵州大学 一种微型无极耳软包电池制备方法及在柔性设备中的应用
CN115064781A (zh) * 2022-05-20 2022-09-16 楚能新能源股份有限公司 一种用于电芯的复合芯包、电芯和电池模组
WO2023189939A1 (ja) * 2022-03-31 2023-10-05 パナソニックIpマネジメント株式会社 蓄電装置
EP4329083A1 (de) * 2022-08-25 2024-02-28 VARTA Microbattery GmbH Elektrochemische energiespeicherzelle und verfahren zur herstellung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09298055A (ja) * 1996-04-30 1997-11-18 Toyota Autom Loom Works Ltd 円筒型二次電池
JP2000251871A (ja) * 1999-03-02 2000-09-14 Toshiba Battery Co Ltd アルカリ二次電池
JP2015053266A (ja) * 2013-09-09 2015-03-19 三星電子株式会社Samsung Electronics Co.,Ltd. 電極組み立て体及びこれを備える二次電池
WO2018180828A1 (ja) * 2017-03-29 2018-10-04 三洋電機株式会社 円筒形電池
WO2018190691A1 (ko) * 2017-04-14 2018-10-18 주식회사 엘지화학 이차전지 및 그 이차전지의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09298055A (ja) * 1996-04-30 1997-11-18 Toyota Autom Loom Works Ltd 円筒型二次電池
JP2000251871A (ja) * 1999-03-02 2000-09-14 Toshiba Battery Co Ltd アルカリ二次電池
JP2015053266A (ja) * 2013-09-09 2015-03-19 三星電子株式会社Samsung Electronics Co.,Ltd. 電極組み立て体及びこれを備える二次電池
WO2018180828A1 (ja) * 2017-03-29 2018-10-04 三洋電機株式会社 円筒形電池
WO2018190691A1 (ko) * 2017-04-14 2018-10-18 주식회사 엘지화학 이차전지 및 그 이차전지의 제조 방법

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114628764A (zh) * 2022-03-15 2022-06-14 贵州大学 一种微型无极耳软包电池制备方法及在柔性设备中的应用
WO2023189939A1 (ja) * 2022-03-31 2023-10-05 パナソニックIpマネジメント株式会社 蓄電装置
CN115064781A (zh) * 2022-05-20 2022-09-16 楚能新能源股份有限公司 一种用于电芯的复合芯包、电芯和电池模组
CN115064781B (zh) * 2022-05-20 2023-03-24 楚能新能源股份有限公司 一种用于电芯的复合芯包、电芯和电池模组
EP4329083A1 (de) * 2022-08-25 2024-02-28 VARTA Microbattery GmbH Elektrochemische energiespeicherzelle und verfahren zur herstellung
WO2024041912A1 (de) * 2022-08-25 2024-02-29 Varta Microbattery Gmbh Elektrochemische energiespeicherzelle und verfahren zur herstellung

Similar Documents

Publication Publication Date Title
JP6780766B2 (ja) 二次電池およびその製造方法
WO2020256023A1 (ja) 二次電池
US10998600B2 (en) Laminated secondary battery and manufacturing method of the same, and device
CN110462873B (zh) 二次电池
US20220045407A1 (en) Secondary battery
WO2020218214A1 (ja) 二次電池
US20230037438A1 (en) Secondary battery
CN113632280A (zh) 二次电池及其制造方法
US20220166071A1 (en) Secondary battery
US20220045404A1 (en) Secondary battery
JP2020092038A (ja) 二次電池およびその製造方法
EP4145616A1 (en) Secondary battery
WO2021140838A1 (ja) 二次電池
JPWO2018131346A1 (ja) 二次電池
JP6773208B2 (ja) 二次電池およびその製造方法
CN115552717A (zh) 二次电池
JP6885410B2 (ja) 二次電池
JP6828751B2 (ja) 二次電池
WO2021006161A1 (ja) 二次電池
JP7456163B2 (ja) 二次電池
WO2022138334A1 (ja) 二次電池および二次電池の製造方法
US20230369652A1 (en) Secondary battery and method of manufacturing secondary battery
WO2021149541A1 (ja) 二次電池
WO2022044672A1 (ja) 二次電池およびその製造方法
US20240170731A1 (en) Secondary battery and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20826034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20826034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP