WO2020255982A1 - Method for designing head-up display and head-up display - Google Patents

Method for designing head-up display and head-up display Download PDF

Info

Publication number
WO2020255982A1
WO2020255982A1 PCT/JP2020/023666 JP2020023666W WO2020255982A1 WO 2020255982 A1 WO2020255982 A1 WO 2020255982A1 JP 2020023666 W JP2020023666 W JP 2020023666W WO 2020255982 A1 WO2020255982 A1 WO 2020255982A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
eye point
windshield
image
viewed
Prior art date
Application number
PCT/JP2020/023666
Other languages
French (fr)
Japanese (ja)
Inventor
健 川合
Original Assignee
日本精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精機株式会社 filed Critical 日本精機株式会社
Priority to JP2021526817A priority Critical patent/JPWO2020255982A1/ja
Publication of WO2020255982A1 publication Critical patent/WO2020255982A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Arrangement of adaptations of instruments
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays

Definitions

  • This disclosure relates to a head-up display design method and a head-up display.
  • a head-up display having a display that emits display light and a concave mirror that is rotatably provided with respect to the vehicle body and reflects the display light emitted from the display toward a windshield (front windshield) is known. ing.
  • the driver of the vehicle can obtain information necessary for driving by visually recognizing the display image (virtual image) of the display reflected on the windshield.
  • the position of the viewpoint (eye point) where a virtual image can be visually recognized is adjusted to the height of the driver's eyes by changing the position of the windshield on which the display light is projected by rotating the concave mirror. Can be adjusted.
  • the conventional head-up display has a problem that the display quality of the virtual image differs within the adjustable eye point range.
  • An object of the present disclosure is to provide a head-up display design method and a head-up display that can maintain high display quality of a display image regardless of the position of the eye point.
  • the optical system (1) so as to minimize the difference between the index value (Mv) and the second calculated value when viewed from the second eye point (EP2) higher than the standard eye point (EP).
  • a design method including the step of determining the shape of 13) is provided.
  • a head-up display design method and a head-up display capable of obtaining high display quality regardless of the position of the eye point are provided.
  • FIG. 1 is a diagram showing a configuration of a head-up display of this embodiment.
  • the head-up display 1 includes a display 11, a plane mirror 12, and a concave mirror 13 as an optical system for converging light.
  • a predetermined display image (for example, a display image showing information necessary for driving a vehicle) is displayed on the display screen 11a of the display device 11.
  • the display size of the display image displayed on the display screen 11a is variable for each display area. As a result, it is possible to suppress distortion of the display image finally viewed by the driver.
  • the display image can be displayed so that the display size (display magnification) in the vertical direction differs depending on the display area of the display image.
  • the upper display size is enlarged or reduced than the lower display size.
  • the display size may be variable in the horizontal direction.
  • the display light emitted from the display screen 11a of the display 11 is converged and reflected by the concave mirror 13 rotatably attached to the vehicle body, and is irradiated to the windshield (front windshield) 14 of the vehicle.
  • the concave mirror 13 has a function of magnifying the displayed image. Further, the concave mirror 13 has a function of suppressing distortion of the display image due to reflection by the windshield 14. Further, the concave mirror 13 has a function of equalizing the focal length (distance from the driver's eyes to the virtual image of the display image) in the entire display image so as to approach a predetermined distance.
  • a lens optical system for example, a convex lens may be used instead of the concave mirror 13.
  • the eyepoint EP indicates, for example, the standard position of the eyes of the driver of the vehicle. Specifically, for example, it is the central position of the range of the eye point that can be adjusted by rotating the concave mirror 13. The driver can visually recognize the virtual image of the display image reflected on the windshield 14 from the vicinity of the eye point EP.
  • the components of the head-up display 1 are two-dimensionally arranged on a flat surface (paper surface of FIG. 1). However, in reality, these components can be arranged three-dimensionally.
  • the eye point EP1 shown in FIG. 1 indicates a first eye point located at a lower position in the vertical direction of the vehicle than the eye point EP.
  • the eye point EP1 corresponds to the lowest position in the vertical direction of the vehicle in the range of the eye point that can be adjusted by rotating the concave mirror 13.
  • the eye point EP2 shown in FIG. 1 indicates a second eye point located higher than the eye point EP in the vertical direction of the vehicle.
  • the eye point EP2 corresponds to the highest position in the vertical direction of the vehicle in the range of the eye point that can be adjusted by rotating the concave mirror 13.
  • the height of the eye point depends on the driver.
  • the eye point EP1 corresponds to the case where the eye position is low, and the eye point EP2 corresponds to the case where the eye position is high.
  • FIG. 2 is a diagram showing the relationship between the virtual image and the eye box.
  • the eye box EB shows a range in which the virtual image IM of the display image reflected on the windshield 14 can be visually recognized.
  • the concave mirror 13 can be rotated in a predetermined direction (for example, an axial direction orthogonal to the paper surface of FIG. 1). By changing the direction of the concave mirror 13, the eyebox EB is set at a position corresponding to the height of the driver's eyes.
  • FIG. 3 is a diagram showing the positional relationship between the eye points EP, EP1, EP2 and the corresponding virtual images IM, IM1, and IM2 when the orientation of the concave mirror 13 is changed according to the eye point.
  • the virtual images IM, IM1 and IM2 can always be reflected on the windshield 14.
  • a rotatable reflecting surface (not shown) may be provided in the optical path of the display light, and the direction of the reflecting surface may be changed. The same applies when a lens optical system is used instead of the concave mirror 13.
  • the radius of curvature of the windshield 14 is not constant in the entire windshield 14.
  • the radius of curvature in the vertical direction at the upper part is often smaller than the radius of curvature at the lower part.
  • the radius of curvature in the lateral direction of the front windshield also changes depending on the position in the lateral direction (width direction of the vehicle), but usually, the change in the vertical direction is particularly large. Therefore, when the height of the eye point changes, the display state of the display image tends to change significantly. That is, the height of the area where the front windshield is used as the reflective surface changes according to the height of the eye point.
  • This disclosure takes such a problem into consideration, and provides a method for designing a head-up display that can suppress deterioration of the display quality of the display image even when the height of the eye point changes.
  • the distribution of the radius of curvature in the windshield 14, especially the radius of curvature in the vertical direction, is known.
  • the distribution of the radius of curvature of the windshield 14 is controlled to be a constant distribution.
  • the distribution of the radius of curvature in the windshield 14 is measured and stored in advance for at least the entire range used for displaying the display image.
  • FIG. 4 is a diagram showing parameters used in the design of the head-up display 1.
  • the light ray 50 connecting the light emitting point 51 of the display screen 11a of the display 11 to the eye point EP is shown by a solid line.
  • the components of the head-up display 1 are arranged on a virtual two-dimensional plane (paper surface) so that the light rays 50 are located on the paper surface.
  • the vertical direction of FIG. 4 corresponds to the vertical direction of the windshield 14.
  • a light ray 50 is emitted from a light emitting point 51 on the display screen 11a of the display 11.
  • the light ray 50 is sequentially bent at the incident point 52 of the plane mirror 12 and the incident point 53 of the concave mirror 13. Further, the light ray 50 is bent at the incident point 54 of the windshield 14 to reach the eye point EP.
  • the display distance L1 is the distance from the eye point EP to the virtual image IM.
  • the distance L2 is the distance from the eye point EP to the incident point 54.
  • the distance L3 is the distance from the incident point 54 to the incident point 53.
  • the distance L4 is the distance from the incident point 53 to the light emitting point 51.
  • the incident angle ⁇ 1 is the incident angle of the light ray 50 on the windshield 14.
  • the incident angle ⁇ 2 is the angle of incidence of the light ray 50 on the concave mirror 13.
  • the tilt angle ⁇ 3 is an angle formed by the normal line of the plane corresponding to the display screen 11a of the display 11 and the light ray 50.
  • the incident angle ⁇ 1, the incident angle ⁇ 2, and the tilt angle ⁇ 3 are all angles corresponding to the vertical direction (vertical direction) of the windshield 14.
  • the vertical angle of view Vdo is the vertical angle of view at the eye point EP.
  • the size Vmo is the ideal display image vertical size of the virtual image IM.
  • the vertical radius Rwi is the vertical radius (radius in the vertical direction) of the windshield 14.
  • the focal length Fw is the vertical focal length (focal length in the vertical direction) of the windshield 14.
  • the distance L5 is the distance from the windshield 14 to the virtual image IM'formed by the concave mirror 13.
  • the size Vc is the vertical size of the virtual image IM'formed by the concave mirror 13.
  • the focal length Fc is the vertical focal length (focal length in the vertical direction) of the concave mirror 13.
  • the vertical radius Rci is the vertical radius (radius in the vertical direction) of the concave mirror 13.
  • the display size Di is a display size (display magnification) in the vertical direction of the display image displayed on the display screen 11a.
  • FIG. 5 is a diagram showing the vertical radius Rci of the concave mirror 13.
  • a circle having a radius Rci whose center is the point Pr comes into contact with the concave mirror 13 at the incident point 53. That is, the vertical radius Rci indicates the radius of curvature in the vertical direction at the incident point 53 of the concave mirror 13.
  • the longitudinal radius Rwi indicates the radius of curvature in the longitudinal direction at the incident point 54 of the windshield 14.
  • the shape of the concave mirror 13 is calculated so that the display distance L1 is the same at a plurality of places in the display area (eye box). Specifically, the vertical radius Rci is calculated so that the same display distance L1 is obtained at each of the four corners of the display area (eye box). In addition, the display size Di at which the vertical angle of view Vdo at the eye point EP is obtained at each of the four corners of the display area is calculated.
  • the "i" attached to each parameter indicates these parts.
  • the part to be calculated is arbitrary, it is usually in the peripheral region of the display image that the distortion and astigmatism of the display image appear significantly. Therefore, it is desirable that the peripheral region of the display image, for example, the four corners of the display image or the parts close to the four corners are selected as the parts for performing the calculation.
  • equation (1) holds.
  • Vmo 2 ⁇ L1 ⁇ tan (Vdo / 2) ... (1) Equations (2) to (7) are established.
  • the vertical radius Rci of the concave mirror 13 and the display size Di on the display screen 11a are calculated using the equations (1) to (7).
  • the scaling factor of the display image at the eyepoint EP1 and the eyepoint EP2 is calculated.
  • the magnifying magnification Mw is the magnifying magnification of the display image due to reflection by the windshield 14.
  • the display image vertical size Vm is the vertical size (vertical size) of the display image.
  • the display image vertical angle of view Mv of the formula (16) is a scaling factor (%) of the display image.
  • the calculation is performed using the equations (8) to (16).
  • the scaling factor Mv1'of the displayed image at the site Pmax at the eye point EP1 and the scaling factor Mv2'of the displayed image at the site Pmax at the eye point EP2 can be obtained.
  • the scaling factor Mv1' of the displayed image at the site Pmax at the eye point EP1 and the scaling factor Mv2' of the displayed image at the site Pmax at the eye point EP2 are calculated. repeat.
  • the scaling factor Mv1'of the displayed image at the site Pmax at the eye point EP1 and the scaling factor Mv2'of the displayed image at the site Pmax at the eye point EP2 are equal.
  • the vertical radius RAwi of the windshield 14 is required.
  • the algorithm for obtaining the solution of the longitudinal radius RAwi of the windshield 14 at which the scaling factors Mv'of the displayed image at the site Pmax are equal at the eye point EP1 and the eye point EP2 is arbitrary.
  • FIG. 7 is a diagram showing how the concave mirror 13 is rotated when the original eye point EP is changed to the temporary eye point EPA. In this way, the angle of the concave mirror 13 is set to an angle adjusted to the temporary eye point EPA.
  • a rotatable reflecting surface (not shown) may be provided in the optical path of the display light, and the direction of the reflecting surface may be changed.
  • a lens optical system is used instead of the concave mirror 13.
  • the shape of the concave mirror 13 is optimized. Specifically, the shape of the concave mirror 13 is adjusted so that the display distance when the virtual image IM is viewed from the eye box EB corresponding to the temporary eye point EPA matches the target distance (distance L1). Further, the shape of the concave mirror 13 is adjusted so that the distortion of the displayed image is reduced.
  • the radius of curvature for example, the vertical radius Rc
  • the equations (1) to (7) Repeat the simulation using the equation corresponding to the equation.
  • the optimum solution of the radius of curvature of each part of the optimum concave mirror 13 is obtained.
  • the optimum solution may be obtained by simulation together with the radius of curvature of each part of the concave mirror 13.
  • the eye point is set to the eye point EPA. Therefore, in the eye point EP1 and the eye point EP2, the region of the windshield 14 corresponding to the vertical radius so that the influence on the display distance (size of the display image) is even can be used. That is, the area of the windshield 14 can be used so that the influence on the display distance (size of the display image) is equal regardless of the height of the eye point. Therefore, excellent display quality can be obtained regardless of the height of the eye point. In particular, it is possible to suppress the difference in the display state between the eye point EP1 and the eye point EP2.
  • the curvature of the concave mirror 13 and the area of use of the windshield 14 are set based on the display state at the portion (site Pmax) where distortion of the display image and astigmatism are likely to occur. Therefore, it is possible to prevent the occurrence of a portion having a large astigmatism or a large distortion in the entire display image or the entire eye box.
  • [Appendix 1] It is a design method of a head-up display (1) that projects a display image onto a windshield (14) via an optical system (13) that converges light. Based on the radius of curvature information of the windshield (14), the first calculated value (Mv) of the index value (Mv) related to the display image when viewed from the first eye point (EP1) lower than the standard eye point (EP). The optical system (1) so as to minimize the difference between the index value (Mv) and the second calculated value when viewed from the second eye point (EP2) higher than the standard eye point (EP).
  • a design method comprising the step of determining the shape of 13).
  • the display image when viewed from the first eye point and the display image when viewed from the second eye point since the difference between the first calculated value and the second calculated value is minimized, the display image when viewed from the first eye point and the display image when viewed from the second eye point.
  • the display quality of is made uniform. Therefore, the display quality of those display images including the display images when viewed from a standard eye point is made uniform.
  • the index value (Mv) is the scaling factor (Mv1', Mv2') of the displayed image.
  • the difference between the scaling ratios of the displayed image, which is the first calculated value and the second calculated value, is minimized, so that the displayed image when viewed from the first eye point and the second eye point are used. Differences in the size of the displayed image when viewed and distortion of the image can be suppressed. Therefore, the display quality of those display images including the display images when viewed from a standard eye point is made uniform.
  • the difference between the first calculated value and the second calculated value of the index value in the peripheral region of the displayed image where distortion and astigmatism of the displayed image are likely to occur is minimized, so that the first eye
  • the display quality of the display image when viewed from the point and the display quality when viewed from the second eye point are effectively made uniform.
  • the index value (Mv1') regarding the display image when viewed from the first eye point (EP1) lower than the standard eye point (EP) is higher than the standard eye point (EP).
  • a head-up display configured to be substantially the same as the index value (Mv2') when viewed from (EP2).
  • the index value related to the display image when viewed from the first eye point is substantially the same as the index value when viewed from the second eye point, when viewed from the first eye point.
  • the display quality of the display image and the display image when viewed from the second eye point are made uniform. Therefore, the display quality of those display images including the display images when viewed from a standard eye point is made uniform.
  • Appendix 7 The head-up display according to Appendix 6, wherein the index value is a scaling factor (Mv1', Mv2') of the display image.
  • the difference between the scaling ratios of the displayed image, which is the first calculated value and the second calculated value, is minimized, so that the displayed image when viewed from the first eye point and the second eye point are used. Differences in the size of the displayed image when viewed and distortion of the image can be suppressed. Therefore, the display quality of those display images including the display images when viewed from a standard eye point is made uniform.

Abstract

Provided are a method for designing a head-up display and a head-up display with which it is possible to maintain a high display quality of a display image regardless of the position of an eye point. The shape of an optical system (13) is determined to minimize the difference between a first calculated value for an index value (Mv) associated with a display image when viewed from a first eye point (EP1) lower than a standard eye point (EP) and a second calculated value for the index value (Mv) when viewed from a second eye point (EP2) higher than the standard eye point (EP) on the basis of information relating to the radius of curvature of a windshield (14).

Description

ヘッドアップディスプレイの設計方法およびヘッドアップディスプレイHead-up display design method and head-up display
 本開示は、ヘッドアップディスプレイの設計方法およびヘッドアップディスプレイに関する。 This disclosure relates to a head-up display design method and a head-up display.
 表示光を出射する表示器と、車体に対して回転可能に設けられ、表示器から出射された表示光をウインドシールド(フロントウインドシールド)に向けて反射する凹面鏡とを備えるヘッドアップディスプレイが知られている。車両の運転者は、ウインドシールドに映り込む表示器の表示像(虚像)を視認することで、運転に必要な情報等を得ることができる。 A head-up display having a display that emits display light and a concave mirror that is rotatably provided with respect to the vehicle body and reflects the display light emitted from the display toward a windshield (front windshield) is known. ing. The driver of the vehicle can obtain information necessary for driving by visually recognizing the display image (virtual image) of the display reflected on the windshield.
 通常、ヘッドアップディスプレイは、凹面鏡を回転させて表示光が投射されるウインドシールドの位置を変更することで、虚像を視認できる視点の位置(アイポイント)を運転者の目の高さに合わせて調整できる。 Normally, in a head-up display, the position of the viewpoint (eye point) where a virtual image can be visually recognized is adjusted to the height of the driver's eyes by changing the position of the windshield on which the display light is projected by rotating the concave mirror. Can be adjusted.
特開2003-107391号公報Japanese Unexamined Patent Publication No. 2003-107391
 従来のヘッドアップディスプレイでは、調整可能なアイポイントの範囲において、虚像の表示品位に差が生じるという問題がある。 The conventional head-up display has a problem that the display quality of the virtual image differs within the adjustable eye point range.
 本開示は、アイポイントの位置に関わらず、表示像の表示品質を高く維持することができるヘッドアップディスプレイの設計方法およびヘッドアップディスプレイを提供することを目的とする。 An object of the present disclosure is to provide a head-up display design method and a head-up display that can maintain high display quality of a display image regardless of the position of the eye point.
 1つの側面では、
 光を収束させる光学系(13)を介してウインドシールド(14)に表示像を投影するヘッドアップディスプレイ(1)の設計方法であって、
 ウインドシールド(14)の曲率半径情報に基づいて、標準的なアイポイント(EP)よりも低い第1アイポイント(EP1)から視たときの表示像に関する指標値(Mv)の第1算出値と、前記標準的なアイポイント(EP)よりも高い第2アイポイント(EP2)から視たときの前記指標値(Mv)の第2算出値との差異が最小化するように、前記光学系(13)の形状を決定するステップを含む、設計方法を提供する。
On one side,
It is a design method of a head-up display (1) that projects a display image onto a windshield (14) via an optical system (13) that converges light.
Based on the radius of curvature information of the windshield (14), the first calculated value (Mv) of the index value (Mv) related to the display image when viewed from the first eye point (EP1) lower than the standard eye point (EP). The optical system (1) so as to minimize the difference between the index value (Mv) and the second calculated value when viewed from the second eye point (EP2) higher than the standard eye point (EP). A design method including the step of determining the shape of 13) is provided.
 本開示によれば、アイポイントの位置に関わらず、高い表示品質を得ることができるヘッドアップディスプレイの設計方法およびヘッドアップディスプレイが提供される。 According to the present disclosure, a head-up display design method and a head-up display capable of obtaining high display quality regardless of the position of the eye point are provided.
本実施例のヘッドアップディスプレイの構成を示す図である。It is a figure which shows the structure of the head-up display of this Example. 虚像とアイボックスとの関係を示す図である。It is a figure which shows the relationship between a virtual image and an eye box. 凹面鏡13の向きをアイポイントに応じて変えた場合の、アイポイントEP、EP1、EP2および対応する虚像IM、IM1、IM2の位置関係を示す図である。It is a figure which shows the positional relationship of the eye points EP, EP1, EP2 and the corresponding virtual images IM, IM1, IM2 when the direction of the concave mirror 13 is changed according to the eye point. ヘッドアップディスプレイ1の設計に用いられるパラメータを示す図である。It is a figure which shows the parameter used in the design of a head-up display 1. 凹面鏡13の縦半径Rciを示す図である。It is a figure which shows the vertical radius Rci of a concave mirror 13. 計算の対象となる部位を示す図である。It is a figure which shows the part to be calculated. 元のアイポイントEPから仮のアイポイントEPAに変更した際に、凹面鏡13が回転される様子を示す図である。It is a figure which shows the state that the concave mirror 13 is rotated when the original eye point EP is changed to the temporary eye point EPA.
 以下、添付図面を参照しながら各実施例について詳細に説明する。 Hereinafter, each embodiment will be described in detail with reference to the attached drawings.
 図1は、本実施例のヘッドアップディスプレイの構成を示す図である。ヘッドアップディスプレイ1は、表示器11と、平面鏡12と、光を収束させる光学系としての凹面鏡13と、を備える。 FIG. 1 is a diagram showing a configuration of a head-up display of this embodiment. The head-up display 1 includes a display 11, a plane mirror 12, and a concave mirror 13 as an optical system for converging light.
 表示器11の表示画面11aには、所定の表示像(例えば、車両の運転に必要な情報を示す表示像)が表示される。表示画面11aに表示される表示像の表示サイズは、その表示領域ごとに可変とされる。これにより、最終的に運転者が視認する表示像の歪みを抑制することができる。例えば、表示像の表示領域により縦方向の表示サイズ(表示倍率)が異なるように、表示像を表示することができる。上部の表示サイズが下部の表示サイズよりも拡大され、あるいは縮小される。なお、横方向についても、同様に表示サイズを可変としてもよい。 A predetermined display image (for example, a display image showing information necessary for driving a vehicle) is displayed on the display screen 11a of the display device 11. The display size of the display image displayed on the display screen 11a is variable for each display area. As a result, it is possible to suppress distortion of the display image finally viewed by the driver. For example, the display image can be displayed so that the display size (display magnification) in the vertical direction differs depending on the display area of the display image. The upper display size is enlarged or reduced than the lower display size. Similarly, the display size may be variable in the horizontal direction.
 表示器11の表示画面11aから出射された表示光は、車体に回転可能に取り付けられた凹面鏡13で収束されるとともに反射され、車両のウインドシールド(フロントウインドシールド)14に照射される。凹面鏡13は、表示像を拡大する機能を有する。また、凹面鏡13は、ウインドシールド14での反射による表示像の歪みを抑制する機能を有する。さらに、凹面鏡13は、表示像全体における焦点距離(運転者の目から表示像の虚像までの距離)を所定の距離に近づけるように均一化する機能を有する。なお、光を収束させる光学系として、凹面鏡13に代えてレンズ光学系(例えば、凸レンズ)を用いてもよい。 The display light emitted from the display screen 11a of the display 11 is converged and reflected by the concave mirror 13 rotatably attached to the vehicle body, and is irradiated to the windshield (front windshield) 14 of the vehicle. The concave mirror 13 has a function of magnifying the displayed image. Further, the concave mirror 13 has a function of suppressing distortion of the display image due to reflection by the windshield 14. Further, the concave mirror 13 has a function of equalizing the focal length (distance from the driver's eyes to the virtual image of the display image) in the entire display image so as to approach a predetermined distance. As the optical system for converging light, a lens optical system (for example, a convex lens) may be used instead of the concave mirror 13.
 ウインドシールド14に照射された表示光の一部は、ウインドシールド14で反射され、アイポイントEPに向かう。アイポイントEPは、例えば、車両の運転者の目の標準的な位置を示す。具体的には、例えば、凹面鏡13を回転させて調整可能なアイポイントの範囲の中央の位置である。運転者は、アイポイントEPの近傍からウインドシールド14に映る表示像の虚像を視認することができる。 A part of the display light emitted to the windshield 14 is reflected by the windshield 14 and heads for the eye point EP. The eyepoint EP indicates, for example, the standard position of the eyes of the driver of the vehicle. Specifically, for example, it is the central position of the range of the eye point that can be adjusted by rotating the concave mirror 13. The driver can visually recognize the virtual image of the display image reflected on the windshield 14 from the vicinity of the eye point EP.
 なお、図1では、ヘッドアップディスプレイ1の構成要素を、平面(図1の紙面)上に2次元的に配置している。しかし、実際にはこれらの構成要素を3次元的に配置することができる。 Note that in FIG. 1, the components of the head-up display 1 are two-dimensionally arranged on a flat surface (paper surface of FIG. 1). However, in reality, these components can be arranged three-dimensionally.
 図1に示すアイポイントEP1は、アイポイントEPよりも車両の上下方向において低い位置にある第1アイポイントを示す。アイポイントEP1は、凹面鏡13を回転させて調整可能なアイポイントの範囲において最も車両の上下方向において低い位置に対応する。また、図1に示すアイポイントEP2は、アイポイントEPよりも車両の上下方向において高い位置にある第2アイポイントを示す。アイポイントEP2は、凹面鏡13を回転させて調整可能なアイポイントの範囲において最も車両の上下方向において高い位置に対応する。アイポイントの高さは運転者によって異なる。アイポイントEP1は目の位置が低い場合に、アイポイントEP2は目の位置が高い場合に、それそれぞれ対応する。 The eye point EP1 shown in FIG. 1 indicates a first eye point located at a lower position in the vertical direction of the vehicle than the eye point EP. The eye point EP1 corresponds to the lowest position in the vertical direction of the vehicle in the range of the eye point that can be adjusted by rotating the concave mirror 13. Further, the eye point EP2 shown in FIG. 1 indicates a second eye point located higher than the eye point EP in the vertical direction of the vehicle. The eye point EP2 corresponds to the highest position in the vertical direction of the vehicle in the range of the eye point that can be adjusted by rotating the concave mirror 13. The height of the eye point depends on the driver. The eye point EP1 corresponds to the case where the eye position is low, and the eye point EP2 corresponds to the case where the eye position is high.
 図2は、虚像とアイボックスとの関係を示す図である。図2において、アイボックスEBは、ウインドシールド14に映る表示像の虚像IMを視認できる範囲を示す。 FIG. 2 is a diagram showing the relationship between the virtual image and the eye box. In FIG. 2, the eye box EB shows a range in which the virtual image IM of the display image reflected on the windshield 14 can be visually recognized.
 凹面鏡13は所定の方向(例えば、図1の紙面と直交する軸周り方向)に回転可能とされる。凹面鏡13の向きを変えることにより、運転者の目の高さに応じた位置にアイボックスEBが設定される。 The concave mirror 13 can be rotated in a predetermined direction (for example, an axial direction orthogonal to the paper surface of FIG. 1). By changing the direction of the concave mirror 13, the eyebox EB is set at a position corresponding to the height of the driver's eyes.
 図3は、凹面鏡13の向きをアイポイントに応じて変えた場合の、アイポイントEP、EP1、EP2および対応する虚像IM、IM1、IM2の位置関係を示す図である。このように、目の高さに合わせて凹面鏡13の向きを変えることにより、常に、虚像IM、IM1、IM2をウインドシールド14に映り込ませることができる。なお、凹面鏡13の向きを変える代りに、表示光の光路中に回転可能な反射面(不図示)を設け、この反射面の向きを変えてもよい。凹面鏡13に代えてレンズ光学系を用いる場合も同様である。 FIG. 3 is a diagram showing the positional relationship between the eye points EP, EP1, EP2 and the corresponding virtual images IM, IM1, and IM2 when the orientation of the concave mirror 13 is changed according to the eye point. By changing the direction of the concave mirror 13 according to the height of the eyes in this way, the virtual images IM, IM1 and IM2 can always be reflected on the windshield 14. Instead of changing the direction of the concave mirror 13, a rotatable reflecting surface (not shown) may be provided in the optical path of the display light, and the direction of the reflecting surface may be changed. The same applies when a lens optical system is used instead of the concave mirror 13.
 ところで、ウインドシールド14の曲率半径は、ウインドシールド14の全体において一定ではない。例えば、車両のフロントウインドシールドでは、上部において縦方向の曲率半径が下部における曲率半径よりも小さくなる場合が多い。フロントウインドシールド横方向の曲率半径も横方向(車両の幅方向)の位置に応じて変化するが、通常は、縦方向の変化がとくに大きい。そのため、アイポイントの高さが変化すると、表示像の表示状態が大きく変化しやすい。すなわち、アイポイントの高さに応じて、フロントウインドシールドを反射面として使用する領域の高さが変わる。このため、その領域における縦方向の曲率半径が変化するため、アイポイントの高さが変わった場合に、表示品質を維持することが難しくなる。具体的には、表示像に非点収差や像シフトが発生し、表示像が鮮明に視認しにくくなり、あるいは表示像が歪んで視認される。 By the way, the radius of curvature of the windshield 14 is not constant in the entire windshield 14. For example, in the front windshield of a vehicle, the radius of curvature in the vertical direction at the upper part is often smaller than the radius of curvature at the lower part. The radius of curvature in the lateral direction of the front windshield also changes depending on the position in the lateral direction (width direction of the vehicle), but usually, the change in the vertical direction is particularly large. Therefore, when the height of the eye point changes, the display state of the display image tends to change significantly. That is, the height of the area where the front windshield is used as the reflective surface changes according to the height of the eye point. Therefore, since the radius of curvature in the vertical direction in the region changes, it becomes difficult to maintain the display quality when the height of the eye point changes. Specifically, astigmatism and image shift occur in the displayed image, making it difficult to clearly see the displayed image, or the displayed image is distorted and visually recognized.
 本開示は、このような問題を考慮したものであり、アイポイントの高さが変わった場合でも、表示像の表示品質の劣化を抑制できるヘッドアップディスプレイの設計方法を提供する。 This disclosure takes such a problem into consideration, and provides a method for designing a head-up display that can suppress deterioration of the display quality of the display image even when the height of the eye point changes.
 なお、ウインドシールド14における曲率半径、とくに縦方向の曲率半径の分布は既知である。例えば、製造にあたり、ウインドシールド14の曲率半径の分布が一定の分布となるように管理される。あるいは、ヘッドアップディスプレイ1を設計するにあたり、ウインドシールド14における曲率半径の分布は、少なくとも表示像の表示に用いられる範囲の全体についてあらかじめ測定、記憶される。 The distribution of the radius of curvature in the windshield 14, especially the radius of curvature in the vertical direction, is known. For example, in manufacturing, the distribution of the radius of curvature of the windshield 14 is controlled to be a constant distribution. Alternatively, when designing the head-up display 1, the distribution of the radius of curvature in the windshield 14 is measured and stored in advance for at least the entire range used for displaying the display image.
 次に、ヘッドアップディスプレイ1の設計方法について説明する。 Next, the design method of the head-up display 1 will be described.
 図4は、ヘッドアップディスプレイ1の設計に用いられるパラメータを示す図である。図4では、表示器11の表示画面11aの発光点51から、アイポイントEPまでを結ぶ光線50を実線で示している。なお、図4では、光線50が紙面上に位置するように、ヘッドアップディスプレイ1の構成要素を、仮想の2次元平面(紙面)に配置している。図4の上下方向が、ウインドシールド14の上下方向に対応している。 FIG. 4 is a diagram showing parameters used in the design of the head-up display 1. In FIG. 4, the light ray 50 connecting the light emitting point 51 of the display screen 11a of the display 11 to the eye point EP is shown by a solid line. In FIG. 4, the components of the head-up display 1 are arranged on a virtual two-dimensional plane (paper surface) so that the light rays 50 are located on the paper surface. The vertical direction of FIG. 4 corresponds to the vertical direction of the windshield 14.
 図4に示すように、表示器11の表示画面11a上の発光点51から光線50が射出される。光線50は、平面鏡12の入射点52、および凹面鏡13の入射点53で、順次、折り曲げられる。さらに、光線50は、ウインドシールド14の入射点54で折り曲げられ、アイポイントEPに至る。 As shown in FIG. 4, a light ray 50 is emitted from a light emitting point 51 on the display screen 11a of the display 11. The light ray 50 is sequentially bent at the incident point 52 of the plane mirror 12 and the incident point 53 of the concave mirror 13. Further, the light ray 50 is bent at the incident point 54 of the windshield 14 to reach the eye point EP.
 ここで、表示距離L1は、アイポイントEPから虚像IMまでの距離である。距離L2は、アイポイントEPから入射点54までの距離である。距離L3は、入射点54から入射点53までの距離である。距離L4は、入射点53から発光点51までの距離である。 Here, the display distance L1 is the distance from the eye point EP to the virtual image IM. The distance L2 is the distance from the eye point EP to the incident point 54. The distance L3 is the distance from the incident point 54 to the incident point 53. The distance L4 is the distance from the incident point 53 to the light emitting point 51.
 また、入射角θ1は、ウインドシールド14への光線50の入射角である。入射角θ2は、凹面鏡13への光線50の入射角である。チルト角θ3は、表示器11の表示画面11aに対応する平面の法線と、光線50とのなす角度である。入射角θ1、入射角θ2およびチルト角θ3は、いずれもウインドシールド14の上下方向(縦方向)に対応する方向の角度である。 Further, the incident angle θ1 is the incident angle of the light ray 50 on the windshield 14. The incident angle θ2 is the angle of incidence of the light ray 50 on the concave mirror 13. The tilt angle θ3 is an angle formed by the normal line of the plane corresponding to the display screen 11a of the display 11 and the light ray 50. The incident angle θ1, the incident angle θ2, and the tilt angle θ3 are all angles corresponding to the vertical direction (vertical direction) of the windshield 14.
 垂直画角Vdoは、アイポイントEPにおける垂直画角である。サイズVmoは、虚像IMの理想の表示像縦サイズである。縦半径Rwiは、ウインドシールド14の縦半径(縦方向における半径)である。焦点距離Fwは、ウインドシールド14の縦焦点距離(縦方向における焦点距離)である。距離L5は、ウインドシールド14から凹面鏡13によって形成される虚像IM´までの距離である。大きさVcは、凹面鏡13によって形成される虚像IM´の縦方向の大きさである。焦点距離Fcは、凹面鏡13の縦焦点距離(縦方向における焦点距離)である。縦半径Rciは、凹面鏡13の縦半径(縦方向における半径)である。表示サイズDiは、表示画面11aに表示される表示像の縦方向における表示サイズ(表示倍率)である。 The vertical angle of view Vdo is the vertical angle of view at the eye point EP. The size Vmo is the ideal display image vertical size of the virtual image IM. The vertical radius Rwi is the vertical radius (radius in the vertical direction) of the windshield 14. The focal length Fw is the vertical focal length (focal length in the vertical direction) of the windshield 14. The distance L5 is the distance from the windshield 14 to the virtual image IM'formed by the concave mirror 13. The size Vc is the vertical size of the virtual image IM'formed by the concave mirror 13. The focal length Fc is the vertical focal length (focal length in the vertical direction) of the concave mirror 13. The vertical radius Rci is the vertical radius (radius in the vertical direction) of the concave mirror 13. The display size Di is a display size (display magnification) in the vertical direction of the display image displayed on the display screen 11a.
 図5は、凹面鏡13の縦半径Rciを示す図である。図5に示すように、中心を点Prとする半径Rciの円は、入射点53において凹面鏡13と接する。すなわち、縦半径Rciは、凹面鏡13の入射点53における縦方向の曲率半径を示す。同様に、縦半径Rwiは、ウインドシールド14の入射点54における縦方向の曲率半径を示す。 FIG. 5 is a diagram showing the vertical radius Rci of the concave mirror 13. As shown in FIG. 5, a circle having a radius Rci whose center is the point Pr comes into contact with the concave mirror 13 at the incident point 53. That is, the vertical radius Rci indicates the radius of curvature in the vertical direction at the incident point 53 of the concave mirror 13. Similarly, the longitudinal radius Rwi indicates the radius of curvature in the longitudinal direction at the incident point 54 of the windshield 14.
 次に、ヘッドアップディスプレイ1を設計する手順の一例を示す。 Next, an example of the procedure for designing the head-up display 1 is shown.
 本実施例では、表示領域(アイボックス)の複数個所において、表示距離L1が同じとなるような凹面鏡13の形状を算出する。具体的には、表示領域(アイボックス)の4隅でそれぞれ、同じ表示距離L1となるような縦半径Rciを計算する。また、表示領域の4隅でそれぞれアイポイントEPにおける垂直画角Vdoが得られる表示サイズDiを計算する。 In this embodiment, the shape of the concave mirror 13 is calculated so that the display distance L1 is the same at a plurality of places in the display area (eye box). Specifically, the vertical radius Rci is calculated so that the same display distance L1 is obtained at each of the four corners of the display area (eye box). In addition, the display size Di at which the vertical angle of view Vdo at the eye point EP is obtained at each of the four corners of the display area is calculated.
 図6は、計算の対象となる部位を示す図である。すなわち、i=1が左上の部位を、i=2が右上の部位を、i=3が左下の部位を、i=4が右下の部位を、それぞれ示す。各パラメータ(縦半径Rwi、縦半径Rci、表示サイズDi)に添付される「i」は、これらの部位を示している。なお、計算を行う部位は任意であるが、通常は表示像の歪みや非点収差が大きく現れるのは、表示像の周辺領域である。このため、表示像の周辺領域、例えば、表示像の4隅、または4隅に近い部位が、計算を行う部位として選択されることが望ましい。 FIG. 6 is a diagram showing a part to be calculated. That is, i = 1 indicates the upper left part, i = 2 indicates the upper right part, i = 3 indicates the lower left part, and i = 4 indicates the lower right part. The "i" attached to each parameter (vertical radius Rwi, vertical radius Rci, display size Di) indicates these parts. Although the part to be calculated is arbitrary, it is usually in the peripheral region of the display image that the distortion and astigmatism of the display image appear significantly. Therefore, it is desirable that the peripheral region of the display image, for example, the four corners of the display image or the parts close to the four corners are selected as the parts for performing the calculation.
 図4に示すように、(1)式が成立する。 As shown in FIG. 4, equation (1) holds.
 Vmo=2×L1×tan(Vdo/2)・・・(1)式
 また、(2)式~(7)式が成立する。
Vmo = 2 × L1 × tan (Vdo / 2) ... (1) Equations (2) to (7) are established.
Figure JPOXMLDOC01-appb-M000001
 ここで、i=1~4のそれぞれについて、(1)式~(7)式を用いて、凹面鏡13の縦半径Rciおよび表示画面11aにおける表示サイズDiが算出される。
Figure JPOXMLDOC01-appb-M000001
Here, for each of i = 1 to 4, the vertical radius Rci of the concave mirror 13 and the display size Di on the display screen 11a are calculated using the equations (1) to (7).
 次に、(6)式および(7)式で得られた凹面鏡13の縦半径Rciおよび表示画面11aにおける表示サイズDiを用いて、アイポイントEP1およびアイポイントEP2での表示像の拡縮率を計算する。ここでも、表示像の拡縮率は、アイポイントEP1およびアイポイントEP2での表示像のそれぞれに対し、表示領域の4隅、すなわち、i=1~4のそれぞれについて計算を行う。この計算は(8)式~(16)式を用いて行われる。 Next, using the vertical radius Rci of the concave mirror 13 obtained by the equations (6) and (7) and the display size Di on the display screen 11a, the scaling factor of the display image at the eyepoint EP1 and the eyepoint EP2 is calculated. To do. Here, too, the scaling factor of the displayed image is calculated for each of the four corners of the display area, that is, i = 1 to 4, for each of the displayed images at the eye point EP1 and the eye point EP2. This calculation is performed using equations (8) to (16).
Figure JPOXMLDOC01-appb-M000002
 ここで、拡大倍率Mwは、ウインドシールド14での反射による表示像の拡大倍率である。表示像縦サイズVmは、表示像の縦サイズ(縦方向のサイズ)である。式(16)の表示像縦画角Mvは、表示像の拡縮率(%)である。
 次に、アイポイントEP1での表示像の拡縮率と、アイポイントEP2での表示像の拡縮率とを比較する。そして、表示領域の4隅、すなわち、i=1~4の中で、表示像の拡縮率の変化が最も大きい部位を選択する。具体的には、i=1~4について、アイポイントEP1での表示像の拡縮率と、アイポイントEP2での表示像の拡縮率との差分を算出する。そして差分の絶対値が最も大きい部位Pmax(例えば、i=1)を選択する。
Figure JPOXMLDOC01-appb-M000002
Here, the magnifying magnification Mw is the magnifying magnification of the display image due to reflection by the windshield 14. The display image vertical size Vm is the vertical size (vertical size) of the display image. The display image vertical angle of view Mv of the formula (16) is a scaling factor (%) of the display image.
Next, the scaling factor of the displayed image at the eye point EP1 and the scaling factor of the displayed image at the eye point EP2 are compared. Then, among the four corners of the display area, that is, i = 1 to 4, the portion where the change in the scaling ratio of the display image is the largest is selected. Specifically, for i = 1 to 4, the difference between the scaling factor of the displayed image at the eye point EP1 and the scaling factor of the displayed image at the eye point EP2 is calculated. Then, the portion Pmax (for example, i = 1) having the largest absolute value of the difference is selected.
 本実施例では、アイポイントEP1での部位Pmaxにおける表示像の拡縮率Mwと、アイポイントEP2での部位Pmaxにおける表示像の拡縮率Mwとを等しくすることを目標とする。すなわち、部位Pmaxにおける表示像の大きさが、アイポイントEP1から視ても、アイポイントEP2から視ても、同じとなることを目標とする。 In this embodiment, it is aimed to equalize the scaling factor Mw of the displayed image at the site Pmax at the eye point EP1 and the scaling factor Mw of the displayed image at the site Pmax at the eye point EP2. That is, the goal is that the size of the displayed image at the site Pmax is the same regardless of whether the image is viewed from the eye point EP1 or the eye point EP2.
 このため、上記の差分がゼロとなるような仮のアイポイントEP´におけるウインドシールド14の縦半径Rwi´を求める必要がある。そこで、(1)式~(7)式において、部位Pmax(例えば、i=1)のウインドシールド14の縦半径Rwiを縦半径Rw´(任意の値)に変更した計算(シミュレーション)を行う。この計算により凹面鏡13の縦半径Rc´、表示画面11aにおける表示サイズD´が算出される。 Therefore, it is necessary to obtain the vertical radius Rwi'of the windshield 14 at the temporary eye point EP'that makes the above difference zero. Therefore, in the equations (1) to (7), a calculation (simulation) is performed in which the vertical radius Rwi of the windshield 14 of the portion Pmax (for example, i = 1) is changed to the vertical radius Rw'(arbitrary value). By this calculation, the vertical radius Rc'of the concave mirror 13 and the display size D'on the display screen 11a are calculated.
 次に、算出された縦半径Rc´、表示画面11aにおける表示サイズD´を用い、(8)式~(16)式を用いた計算を行う。この計算により、アイポイントEP1での部位Pmaxにおける表示像の拡縮率Mv1´と、アイポイントEP2での部位Pmaxにおける表示像の拡縮率Mv2´が得られる。 Next, using the calculated vertical radius Rc'and the display size D'on the display screen 11a, the calculation is performed using the equations (8) to (16). By this calculation, the scaling factor Mv1'of the displayed image at the site Pmax at the eye point EP1 and the scaling factor Mv2'of the displayed image at the site Pmax at the eye point EP2 can be obtained.
 このように、仮のアイポイントEP´を変化させながら、アイポイントEP1での部位Pmaxにおける表示像の拡縮率Mv1´と、アイポイントEP2での部位Pmaxにおける表示像の拡縮率Mv2´の算出を繰り返す。そして、最終的に、アイポイントEP1での部位Pmaxにおける表示像の拡縮率Mv1´と、アイポイントEP2での部位Pmaxにおける表示像の拡縮率Mv2´とが等しくなる仮のアイポイントEP´でのウインドシールド14の縦半径RAwiが求められる。なお、アイポイントEP1およびアイポイントEP2での、部位Pmaxにおける表示像の拡縮率Mv´が等しくなるウインドシールド14の縦半径RAwiの解、を求めるためのアルゴリズムは任意である。 In this way, while changing the provisional eye point EP', the scaling factor Mv1' of the displayed image at the site Pmax at the eye point EP1 and the scaling factor Mv2' of the displayed image at the site Pmax at the eye point EP2 are calculated. repeat. Finally, at the provisional eye point EP', where the scaling factor Mv1'of the displayed image at the site Pmax at the eye point EP1 and the scaling factor Mv2'of the displayed image at the site Pmax at the eye point EP2 are equal. The vertical radius RAwi of the windshield 14 is required. The algorithm for obtaining the solution of the longitudinal radius RAwi of the windshield 14 at which the scaling factors Mv'of the displayed image at the site Pmax are equal at the eye point EP1 and the eye point EP2 is arbitrary.
 次に、ウインドシールド14の縦半径RAwiが決まれば、仮のアイポイントEPAを決定する。仮のアイポイントEPAは、部位Pmaxにおいて、アイボックスEBと虚像IMとを結んだ線とウインドシールド14との交点の位置の縦半径が、およそウインドシールド14の縦半径RAwiとなるような、アイポイントである。これにより、仮のアイポイントEPAにおける凹面鏡13の角度、アイボックスEBの位置および虚像IMの位置が決定する。図7は、元のアイポイントEPから仮のアイポイントEPAに変更した際に、凹面鏡13が回転される様子を示す図である。このように、凹面鏡13の角度は、仮のアイポイントEPAに合わせた角度とされる。なお、凹面鏡13の向きを変える代りに、表示光の光路中に回転可能な反射面(不図示)を設け、この反射面の向きを変えてもよい。凹面鏡13に代えてレンズ光学系を用いる場合も同様である。 Next, if the vertical radius RAwi of the windshield 14 is determined, a temporary eye point EPA will be determined. In the temporary eye point EPA, the vertical radius at the intersection of the line connecting the eye box EB and the virtual image IM and the windshield 14 at the site Pmax is approximately the vertical radius RAwi of the windshield 14. It is a point. As a result, the angle of the concave mirror 13 at the temporary eye point EPA, the position of the eye box EB, and the position of the virtual image IM are determined. FIG. 7 is a diagram showing how the concave mirror 13 is rotated when the original eye point EP is changed to the temporary eye point EPA. In this way, the angle of the concave mirror 13 is set to an angle adjusted to the temporary eye point EPA. Instead of changing the direction of the concave mirror 13, a rotatable reflecting surface (not shown) may be provided in the optical path of the display light, and the direction of the reflecting surface may be changed. The same applies when a lens optical system is used instead of the concave mirror 13.
 仮のアイポイントEPAが決定したら、凹面鏡13の形状の最適化を実施する。具体的には、仮のアイポイントEPAに対応するアイボックスEBから虚像IMを視た際の表示距離が、目標の距離(距離L1)と一致するように、凹面鏡13の形状を整える。また、表示像の歪みが少なくなるように、凹面鏡13の形状を整える。ここでは、例えば、表示像の各部(アイポイントEPAに対応するアイボックスEBAの各部)に対応する凹面鏡13の各部の曲率半径(例えば、縦半径Rc)を変えながら、(1)式~(7)式に相当する式を用いたシミュレーションを繰り返す。そして、最適な凹面鏡13の各部の曲率半径の最適解を求める。なお、表示像の各部位の表示サイズDについても、凹面鏡13の各部の曲率半径とともにシミュレーションにより最適解を求めてもよい。 Once the temporary eye point EPA is determined, the shape of the concave mirror 13 is optimized. Specifically, the shape of the concave mirror 13 is adjusted so that the display distance when the virtual image IM is viewed from the eye box EB corresponding to the temporary eye point EPA matches the target distance (distance L1). Further, the shape of the concave mirror 13 is adjusted so that the distortion of the displayed image is reduced. Here, for example, while changing the radius of curvature (for example, the vertical radius Rc) of each part of the concave mirror 13 corresponding to each part of the display image (each part of the eyebox EBA corresponding to the eyepoint EPA), the equations (1) to (7). ) Repeat the simulation using the equation corresponding to the equation. Then, the optimum solution of the radius of curvature of each part of the optimum concave mirror 13 is obtained. Regarding the display size D of each part of the display image, the optimum solution may be obtained by simulation together with the radius of curvature of each part of the concave mirror 13.
 このように、本実施例では、アイポイントをアイポイントEPAに設定している。このため、アイポイントEP1およびアイポイントEP2において、表示距離(表示像の大きさ)への影響が均等になるような縦半径に対応するウインドシールド14の領域を使用できる。すなわち、アイポイントの高さに拠らず、表示距離(表示像の大きさ)への影響が均等になるようなウインドシールド14の領域を使用できる。したがって、アイポイントの高さに拠らず、優れた表示品質を得ることができる。とくに、アイポイントEP1およびアイポイントEP2における表示状態の相違を抑制できる。 As described above, in this embodiment, the eye point is set to the eye point EPA. Therefore, in the eye point EP1 and the eye point EP2, the region of the windshield 14 corresponding to the vertical radius so that the influence on the display distance (size of the display image) is even can be used. That is, the area of the windshield 14 can be used so that the influence on the display distance (size of the display image) is equal regardless of the height of the eye point. Therefore, excellent display quality can be obtained regardless of the height of the eye point. In particular, it is possible to suppress the difference in the display state between the eye point EP1 and the eye point EP2.
 また、本実施例では、表示像の歪みや非点収差が生じやすい部位(部位Pmax)における表示状態に基づいて、凹面鏡13の曲率およびウインドシールド14の使用領域を設定している。このため、表示像の全体、あるいはアイボックスの全体について、大きな非点収差や大きな歪みを有する部位が生ずることを防止できる。 Further, in this embodiment, the curvature of the concave mirror 13 and the area of use of the windshield 14 are set based on the display state at the portion (site Pmax) where distortion of the display image and astigmatism are likely to occur. Therefore, it is possible to prevent the occurrence of a portion having a large astigmatism or a large distortion in the entire display image or the entire eye box.
 以上、各実施例について詳述したが、特定の実施例に限定されるものではなく、特許請求の範囲に記載された範囲内において、種々の変形および変更が可能である。また、前述した実施例の構成要素を全部および複数を組み合わせることも可能である。 Although each embodiment has been described in detail above, it is not limited to a specific embodiment, and various modifications and changes can be made within the scope of the claims. It is also possible to combine all or a plurality of the components of the above-described embodiment.
 なお、以上の実施例に関し、さらに以下の付記を開示する。 Regarding the above examples, the following additional notes will be disclosed.
[付記1]
 光を収束させる光学系(13)を介してウインドシールド(14)に表示像を投影するヘッドアップディスプレイ(1)の設計方法であって、
 ウインドシールド(14)の曲率半径情報に基づいて、標準的なアイポイント(EP)よりも低い第1アイポイント(EP1)から視たときの表示像に関する指標値(Mv)の第1算出値と、前記標準的なアイポイント(EP)よりも高い第2アイポイント(EP2)から視たときの前記指標値(Mv)の第2算出値との差異が最小化するように、前記光学系(13)の形状を決定するステップを含む、設計方法。
[Appendix 1]
It is a design method of a head-up display (1) that projects a display image onto a windshield (14) via an optical system (13) that converges light.
Based on the radius of curvature information of the windshield (14), the first calculated value (Mv) of the index value (Mv) related to the display image when viewed from the first eye point (EP1) lower than the standard eye point (EP). The optical system (1) so as to minimize the difference between the index value (Mv) and the second calculated value when viewed from the second eye point (EP2) higher than the standard eye point (EP). A design method comprising the step of determining the shape of 13).
 付記1の構成によれば、第1算出値と第2算出値との差異が最小化するので、第1アイポイントから視たときの表示像と、第2アイポイントから視たときの表示像の表示品質が均一化される。このため、標準的なアイポイントから視たときの表示像も含め、それらの表示像の表示品質が均一化される。 According to the configuration of Appendix 1, since the difference between the first calculated value and the second calculated value is minimized, the display image when viewed from the first eye point and the display image when viewed from the second eye point. The display quality of is made uniform. Therefore, the display quality of those display images including the display images when viewed from a standard eye point is made uniform.
[付記2]
 前記指標値(Mv)は、前記表示像の拡縮率(Mv1´,Mv2´)であり、
 前記ステップでは、前記第1算出値と、前記第2算出値との差分が最小化するように、前記光学系(13)の形状を決定する、付記1に記載の設計方法。
[Appendix 2]
The index value (Mv) is the scaling factor (Mv1', Mv2') of the displayed image.
The design method according to Appendix 1, wherein in the step, the shape of the optical system (13) is determined so that the difference between the first calculated value and the second calculated value is minimized.
 付記2の構成によれば、第1算出値と第2算出値である表示像の拡縮率の差分が最小化するので、第1アイポイントから視たときの表示像と、第2アイポイントから視たときの表示像の大きさの相違や、像の歪みを抑制できる。このため、標準的なアイポイントから視たときの表示像も含め、それらの表示像の表示品質が均一化される。 According to the configuration of Appendix 2, the difference between the scaling ratios of the displayed image, which is the first calculated value and the second calculated value, is minimized, so that the displayed image when viewed from the first eye point and the second eye point are used. Differences in the size of the displayed image when viewed and distortion of the image can be suppressed. Therefore, the display quality of those display images including the display images when viewed from a standard eye point is made uniform.
[付記3]
 前記ステップでは、前記標準的なアイポイント(EP)から視たときに、前記標準的なアイポイント(EP)から前記ウインドシールド(14)に形成される前記表示像の虚像までの距離(L1)が、前記表示像内で均一化されるように前記光学系(13)の形状を決定し、形状が決定された前記光学系(13)を用いて前記第1算出値および前記第2算出値を算出する、付記1または2に記載の設計方法。
[Appendix 3]
In the step, the distance (L1) from the standard eye point (EP) to the virtual image of the display image formed on the windshield (14) when viewed from the standard eye point (EP). However, the shape of the optical system (13) is determined so as to be uniform in the display image, and the first calculated value and the second calculated value are used using the determined optical system (13). The design method according to Appendix 1 or 2, wherein the method is calculated.
 付記3の構成によれば、標準的なアイポイントからウインドシールドに形成される虚像までの距離が、表示像内で均一化されるように凹面鏡の形状を決定したうえで、第1算出値および第2算出値を算出するので、第1アイポイントから視たときの表示像と、第2アイポイントから視たときの表示像の非点収差を抑制することができる。このため、標準的なアイポイントから視たときの表示像も含め、それらの表示像の表示品質が均一化される。 According to the configuration of Appendix 3, after determining the shape of the concave mirror so that the distance from the standard eye point to the virtual image formed on the windshield is uniform in the displayed image, the first calculated value and Since the second calculated value is calculated, astigmatism of the display image when viewed from the first eye point and the display image when viewed from the second eye point can be suppressed. Therefore, the display quality of those display images including the display images when viewed from a standard eye point is made uniform.
[付記4]
 前記ステップでは、
 前記差分を最小化するウインドシールド(14)の縦方向の曲率半径を導出し、
 導出された前記縦方向の曲率半径(RAwi)を有するウインドシールド(14)の領域に前記表示像が投影されるように表示光の光路を設定する、付記1~3のいずれか1項に記載の設計方法。
[Appendix 4]
In the above step
The radius of curvature in the vertical direction of the windshield (14) that minimizes the difference is derived.
The item described in any one of Supplementary note 1 to 3, wherein the optical path of the display light is set so that the display image is projected on the region of the windshield (14) having the derived radius of curvature (RAwi) in the vertical direction. Design method.
 付記4の構成によれば、差分を最小化する縦方向の曲率半径を有するウインドシールドの領域に表示像が投影されるので、第1アイポイントから視たときの表示像と、第2アイポイントから視たときの表示像の大きさの相違や、像の歪みを抑制できる。このため、標準的なアイポイントから視たときの表示像も含め、それらの表示像の表示品質が均一化される。 According to the configuration of Appendix 4, since the display image is projected on the area of the windshield having the radius of curvature in the vertical direction that minimizes the difference, the display image when viewed from the first eye point and the second eye point. Differences in the size of the displayed image when viewed from above and distortion of the image can be suppressed. Therefore, the display quality of those display images including the display images when viewed from a standard eye point is made uniform.
[付記5]
 前記指標値(Mv)は、前記表示像の周辺領域における値である、付記1~4のいずれか1項に記載の設計方法。
[Appendix 5]
The design method according to any one of Supplementary note 1 to 4, wherein the index value (Mv) is a value in the peripheral region of the display image.
 付記5の構成によれば、表示像の歪みや非点収差が発生しやすい表示像の周辺領域における指標値の第1算出値と第2算出値との差異が最小化するので、第1アイポイントから視たときの表示像と、第2アイポイントから視たときの表示像の表示品質が効果的に均一化される。 According to the configuration of Appendix 5, the difference between the first calculated value and the second calculated value of the index value in the peripheral region of the displayed image where distortion and astigmatism of the displayed image are likely to occur is minimized, so that the first eye The display quality of the display image when viewed from the point and the display quality when viewed from the second eye point are effectively made uniform.
[付記6]
 表示6を出射する表示器(11)と、
 車体に対して回転可能に設けられ、前記表示器(11)から出射された前記表示光をウインドシールド(14)に向けて収束させる光学系(13)と、を備え、
 標準的なアイポイント(EP)よりも低い第1アイポイント(EP1)から視たときの表示像に関する指標値(Mv1´)が、前記標準的なアイポイント(EP)よりも高い第2アイポイント(EP2)から視たときの前記指標値(Mv2´)と略同じであるように構成されている、ヘッドアップディスプレイ。
[Appendix 6]
A display (11) that emits display 6 and
It is provided with an optical system (13) that is rotatably provided with respect to the vehicle body and that converges the display light emitted from the display (11) toward the windshield (14).
The index value (Mv1') regarding the display image when viewed from the first eye point (EP1) lower than the standard eye point (EP) is higher than the standard eye point (EP). A head-up display configured to be substantially the same as the index value (Mv2') when viewed from (EP2).
 付記6の構成によれば、第1アイポイントから視たときの表示像に関する指標値が、第2アイポイントから視たときの指標値と略同じであるため、第1アイポイントから視たときの表示像と、第2アイポイントから視たときの表示像の表示品質が均一化される。このため、標準的なアイポイントから視たときの表示像も含め、それらの表示像の表示品質が均一化される。 According to the configuration of Appendix 6, since the index value related to the display image when viewed from the first eye point is substantially the same as the index value when viewed from the second eye point, when viewed from the first eye point. The display quality of the display image and the display image when viewed from the second eye point are made uniform. Therefore, the display quality of those display images including the display images when viewed from a standard eye point is made uniform.
[付記7]
 前記指標値は、前記表示像の拡縮率(Mv1´,Mv2´)である、付記6に記載のヘッドアップディスプレイ。
[Appendix 7]
The head-up display according to Appendix 6, wherein the index value is a scaling factor (Mv1', Mv2') of the display image.
 付記7の構成によれば、第1算出値と第2算出値である表示像の拡縮率の差分が最小化するので、第1アイポイントから視たときの表示像と、第2アイポイントから視たときの表示像の大きさの相違や、像の歪みを抑制できる。このため、標準的なアイポイントから視たときの表示像も含め、それらの表示像の表示品質が均一化される。 According to the configuration of Appendix 7, the difference between the scaling ratios of the displayed image, which is the first calculated value and the second calculated value, is minimized, so that the displayed image when viewed from the first eye point and the second eye point are used. Differences in the size of the displayed image when viewed and distortion of the image can be suppressed. Therefore, the display quality of those display images including the display images when viewed from a standard eye point is made uniform.
 1   ヘッドアップディスプレイ
 11  表示器
 13  凹面鏡(光学系)
 14  ウインドシールド
 EP  アイポイント(標準的なアイポイント)
 EP1 アイポイント(第1アイポイント)
 EP2 アイポイント(第2アイポイント)
 Mv1´ 拡縮率(指標値)
 Mv2´ 拡縮率(指標値)
 Rwi  縦半径(曲率半径)
 RAwi 縦半径(曲率半径)
1 Head-up display 11 Display 13 Concave mirror (optical system)
14 Windshield EP Eyepoint (Standard Eyepoint)
EP1 eye point (1st eye point)
EP2 eye point (second eye point)
Mv1'scale ratio (index value)
Mv2'scale ratio (index value)
Rwi vertical radius (radius of curvature)
RAwi vertical radius (radius of curvature)

Claims (7)

  1.  光を収束させる光学系(13)を介してウインドシールド(14)に表示像を投影するヘッドアップディスプレイ(1)の設計方法であって、
     ウインドシールド(14)の曲率半径情報に基づいて、標準的なアイポイント(EP)よりも低い第1アイポイント(EP1)から視たときの表示像に関する指標値(Mv)の第1算出値と、前記標準的なアイポイント(EP)よりも高い第2アイポイント(EP2)から視たときの前記指標値(Mv)の第2算出値との差異が最小化するように、前記光学系(13)の形状を決定するステップを含む、設計方法。
    It is a design method of a head-up display (1) that projects a display image onto a windshield (14) via an optical system (13) that converges light.
    Based on the radius of curvature information of the windshield (14), the first calculated value (Mv) of the index value (Mv) related to the display image when viewed from the first eye point (EP1) lower than the standard eye point (EP). The optical system (1) so as to minimize the difference between the index value (Mv) and the second calculated value when viewed from the second eye point (EP2) higher than the standard eye point (EP). A design method comprising the step of determining the shape of 13).
  2.  前記指標値(Mv)は、前記表示像の拡縮率(Mv1´,Mv2´)であり、
     前記ステップでは、前記第1算出値と、前記第2算出値との差分が最小化するように、前記光学系(13)の形状を決定する、請求項1に記載の設計方法。
    The index value (Mv) is the scaling factor (Mv1', Mv2') of the displayed image.
    The design method according to claim 1, wherein in the step, the shape of the optical system (13) is determined so that the difference between the first calculated value and the second calculated value is minimized.
  3.  前記ステップでは、前記標準的なアイポイント(EP)から視たときに、前記標準的なアイポイント(EP)から前記ウインドシールド(14)に形成される前記表示像の虚像までの距離(L1)が、前記表示像内で均一化されるように前記光学系(13)の形状を決定し、形状が決定された前記光学系(13)を用いて前記第1算出値および前記第2算出値を算出する、請求項1または2に記載の設計方法。 In the step, the distance (L1) from the standard eye point (EP) to the virtual image of the display image formed on the windshield (14) when viewed from the standard eye point (EP). However, the shape of the optical system (13) is determined so as to be uniform in the display image, and the first calculated value and the second calculated value are used using the determined optical system (13). The design method according to claim 1 or 2, wherein the method is calculated.
  4.  前記ステップでは、
     前記差分を最小化するウインドシールド(14)の縦方向の曲率半径を導出し、
     導出された前記縦方向の曲率半径(RAwi)を有するウインドシールド(14)の領域に前記表示像が投影されるように表示光の光路を設定する、請求項1~3のいずれか1項に記載の設計方法。
    In the above step
    The radius of curvature in the vertical direction of the windshield (14) that minimizes the difference is derived.
    According to any one of claims 1 to 3, the optical path of the display light is set so that the display image is projected on the region of the windshield (14) having the derived radius of curvature (RAwi) in the vertical direction. Described design method.
  5.  前記指標値(Mv)は、前記表示像の周辺領域における値である、請求項1~4のいずれか1項に記載の設計方法。 The design method according to any one of claims 1 to 4, wherein the index value (Mv) is a value in the peripheral region of the display image.
  6.  表示光を出射する表示器(11)と、
     車体に対して回転可能に設けられ、前記表示器(11)から出射された前記表示光をウインドシールド(14)に向けて収束させる光学系(13)と、を備え、
     標準的なアイポイント(EP)よりも低い第1アイポイント(EP1)から視たときの表示像に関する指標値(Mv)が、前記標準的なアイポイント(EP)よりも高い第2アイポイント(EP2)から視たときの前記指標値(Mv)と略同じであるように構成されている、ヘッドアップディスプレイ(1)。
    A display (11) that emits display light and
    It is provided with an optical system (13) that is rotatably provided with respect to the vehicle body and converges the display light emitted from the display (11) toward the windshield (14).
    The index value (Mv) related to the display image when viewed from the first eye point (EP1), which is lower than the standard eye point (EP), is higher than the standard eye point (EP). A head-up display (1) configured to be substantially the same as the index value (Mv) when viewed from EP2).
  7.  前記指標値は、前記表示像の拡縮率(Mv1´,Mv2´)である、請求項6に記載のヘッドアップディスプレイ(1)。 The head-up display (1) according to claim 6, wherein the index value is a scaling factor (Mv1', Mv2') of the display image.
PCT/JP2020/023666 2019-06-20 2020-06-17 Method for designing head-up display and head-up display WO2020255982A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021526817A JPWO2020255982A1 (en) 2019-06-20 2020-06-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019114986 2019-06-20
JP2019-114986 2019-06-20

Publications (1)

Publication Number Publication Date
WO2020255982A1 true WO2020255982A1 (en) 2020-12-24

Family

ID=74040812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023666 WO2020255982A1 (en) 2019-06-20 2020-06-17 Method for designing head-up display and head-up display

Country Status (2)

Country Link
JP (1) JPWO2020255982A1 (en)
WO (1) WO2020255982A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001208999A (en) * 2000-01-25 2001-08-03 Nippon Soken Inc Head up display and its concave mirror
US20170169612A1 (en) * 2015-12-15 2017-06-15 N.S. International, LTD Augmented reality alignment system and method
JP2017187528A (en) * 2016-04-01 2017-10-12 日本精機株式会社 Head-up display device
JP2017197031A (en) * 2016-04-27 2017-11-02 旭硝子株式会社 Vehicular window plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001208999A (en) * 2000-01-25 2001-08-03 Nippon Soken Inc Head up display and its concave mirror
US20170169612A1 (en) * 2015-12-15 2017-06-15 N.S. International, LTD Augmented reality alignment system and method
JP2017187528A (en) * 2016-04-01 2017-10-12 日本精機株式会社 Head-up display device
JP2017197031A (en) * 2016-04-27 2017-11-02 旭硝子株式会社 Vehicular window plate

Also Published As

Publication number Publication date
JPWO2020255982A1 (en) 2020-12-24

Similar Documents

Publication Publication Date Title
CN107238927B (en) Projection display apparatus for vehicle
US9470896B2 (en) Display device
JP6650584B2 (en) Head-up display and moving object equipped with head-up display
US20070229394A1 (en) Headup display apparatus
WO2016079926A1 (en) Head-up display and vehicle
KR101572132B1 (en) Optical System for Focus Adjustable Head Up Display
CN109791283B (en) Projection optical system and head-up display device
US7602553B2 (en) Windshield and head-up display system
JP6225341B2 (en) Head-up display and mobile body equipped with head-up display
JPWO2019008684A1 (en) Projection optical system and head-up display device
JP5186003B2 (en) Visual display device
WO2018123528A1 (en) Display device and moving body carrying display device
WO2020255982A1 (en) Method for designing head-up display and head-up display
CN109791284B (en) Projection optical system and head-up display device
CN112198661A (en) Optical expander for vehicle head-up display
JP2021067909A (en) Stereoscopic display device and head-up display apparatus
WO2021002428A1 (en) Head-up display device
WO2021153616A1 (en) Head-up display device and mobile object
JP7354846B2 (en) heads up display device
JP6628873B2 (en) Projection optical system, head-up display device, and automobile
CN217506280U (en) Head-up display device
WO2021090548A1 (en) Head mounted display
JP7278447B2 (en) vehicle
JPH06107037A (en) Reflection type display device for vehicle
JP2023113630A (en) vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20826614

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021526817

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20826614

Country of ref document: EP

Kind code of ref document: A1