WO2020255902A1 - Machine tool, method for controlling machine tool, and program for controlling machine tool - Google Patents

Machine tool, method for controlling machine tool, and program for controlling machine tool Download PDF

Info

Publication number
WO2020255902A1
WO2020255902A1 PCT/JP2020/023327 JP2020023327W WO2020255902A1 WO 2020255902 A1 WO2020255902 A1 WO 2020255902A1 JP 2020023327 W JP2020023327 W JP 2020023327W WO 2020255902 A1 WO2020255902 A1 WO 2020255902A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
work
tool
boring
machine tool
Prior art date
Application number
PCT/JP2020/023327
Other languages
French (fr)
Japanese (ja)
Inventor
敏 宮本
哲寛 泉
悟 神田
Original Assignee
Dmg森精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dmg森精機株式会社 filed Critical Dmg森精機株式会社
Priority to CN202080044575.7A priority Critical patent/CN114007787B/en
Publication of WO2020255902A1 publication Critical patent/WO2020255902A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B47/00Constructional features of components specially designed for boring or drilling machines; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q5/00Driving or feeding mechanisms; Control arrangements therefor
    • B23Q5/54Arrangements or details not restricted to group B23Q5/02 or group B23Q5/22 respectively, e.g. control handles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4093Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine

Definitions

  • This disclosure relates to a technique for controlling boring in a machine tool.
  • Boring is a general term for processing to form holes in a work and polishing the formed holes. Boring is also called inner diameter machining.
  • Z direction the direction of gravity
  • Y direction the direction of gravity
  • X direction the direction orthogonal to both Z direction and Y direction
  • the machine tool When boring in the horizontal direction (Z direction), the machine tool first controls the servomotor for the X direction and the servomotor for the Y direction, and feeds and drives the spindle in the XY direction. Next, the machine tool controls the servomotor for the Z direction and feeds and drives the spindle in the horizontal direction. As a result, the work is cut in the horizontal direction, and holes are formed in the work.
  • Patent Document 1 Japanese Patent Laid-Open No. 61-252041 discloses a machine tool provided with a brake mechanism for a servomotor for the direction of gravity.
  • the machine tool locks the feed drive of the spindle in the direction of gravity during boring. As a result, the machine tool prevents the spindle from falling during a power failure.
  • the boring tool By the way, if the boring tool is pulled out from the work while the boring tool is in contact with the work, the boring tool may be damaged or the work may be damaged. Therefore, the boring tool needs to be pulled out from the work after eliminating the contact with the work.
  • Various methods can be considered as a method of eliminating the contact between the boring tool and the work.
  • the machine tool releases the lock of the brake mechanism and then feeds and drives the boring tool to eliminate the contact between the boring tool and the work.
  • a power failure may occur during unlocking, in which case the spindle will fall.
  • the boring tool is damaged. Therefore, there is a demand for a technique capable of pulling out the boring tool from the work in a state where the feed drive of the boring tool in the direction of gravity is locked.
  • a machine tool in one example of the present disclosure, includes a spindle to which a tool used for boring of a workpiece can be attached, a table for fixing the workpiece, and a rotary drive unit for rotationally driving the spindle.
  • a position driving unit for changing the relative position of the tool with respect to the work is provided by moving at least one position of the spindle and the table.
  • the position driving unit includes a first motor for changing the relative position in the horizontal direction, a second motor for changing the relative position in the gravity direction, and the relative position in the horizontal direction and the gravity direction. It includes a third motor for changing in a direction orthogonal to both of the above.
  • the machine tool further includes a brake mechanism for locking the drive of the second motor and a control device for controlling the machine tool.
  • the control device controls the first motor and the second motor, and after the process of moving the tool to a predetermined machining start position and the process of moving the tool to the machining start position are completed, the brake mechanism A process of controlling the drive of the second motor to lock the drive of the second motor, and a process of controlling the rotary drive unit and the third motor while maintaining the lock of the second motor to execute the boring process of the work.
  • the process of controlling the first motor and canceling the contact between the work and the tool while maintaining the lock of the second motor and the process of canceling the contact are completed.
  • the third motor is controlled, and the process of pulling out the tool from the work is executed while the lock of the second motor is maintained.
  • control device is further set to the previous machining position of the work after the process of pulling out the tool from the work is completed and before the next boring of the work is started. If the next machining position of the work is different in the direction of gravity, the process of unlocking the second motor is executed.
  • control device is further set to the previous machining position of the work after the process of pulling out the tool from the work is completed and before the next boring of the work is started. If the next machining position of the work is the same in the direction of gravity, the process of maintaining the lock of the second motor is executed.
  • control device further executes a process of maintaining the lock of the second motor when the machine tool stops abnormally during the boring process of the work.
  • control device executes a process of directing the blade of the tool in a direction different from the direction of gravity after the boring process of the work is completed and before controlling the first motor. To do.
  • a method of controlling a machine tool includes a spindle to which a tool used for boring of a workpiece can be attached, a table for fixing the workpiece, a rotary drive unit for rotationally driving the spindle, and the spindle and the table.
  • a position driving unit for changing the relative position of the tool with respect to the work is provided by moving at least one position of the above.
  • the position driving unit includes a first motor for changing the relative position in the horizontal direction, a second motor for changing the relative position in the gravity direction, and the relative position in the horizontal direction and the gravity direction. It includes a third motor for changing in a direction orthogonal to both of the above.
  • the machine tool further includes a braking mechanism for locking the drive of the second motor.
  • the control method controls the first motor and the second motor, controls the step of moving the tool to a predetermined machining start position, and controls the brake mechanism after the moving step is completed, and controls the second motor.
  • the first motor is controlled, and the third motor is controlled after the step of canceling the contact between the work and the tool while maintaining the lock of the second motor and the step of canceling the contact are completed. Then, the step of pulling out the tool from the work while maintaining the lock of the second motor is provided.
  • a machine tool control program includes a spindle to which a tool used for boring of a workpiece can be attached, a table for fixing the workpiece, a rotary drive unit for rotationally driving the spindle, and the spindle and the table.
  • a position driving unit for changing the relative position of the tool with respect to the work is provided by moving at least one position of the above.
  • the position driving unit includes a first motor for changing the relative position in the horizontal direction, a second motor for changing the relative position in the gravity direction, and the relative position in the horizontal direction and the gravity direction. It includes a third motor for changing in a direction orthogonal to both of the above.
  • the machine tool further includes a braking mechanism for locking the drive of the second motor.
  • the control program controls the first motor and the second motor to the machine tool, and controls the brake mechanism after the step of moving the tool to a predetermined machining start position and the step of moving the tool are completed. Then, a step of locking the drive of the second motor, a step of controlling the rotary drive unit and the third motor while maintaining the lock of the second motor, and a step of executing the boring process of the work, and the above.
  • the first motor is controlled, and the contact between the work and the tool is released while the lock of the second motor is maintained, and after the release step is completed, the above is performed.
  • the third motor is controlled, and the step of pulling out the tool from the work is executed while the lock of the second motor is maintained.
  • CPU Central Processing Unit
  • CNC Computer Numerical Control
  • FIG. 1 is a diagram showing an example of a device configuration of the machine tool 10.
  • FIG. 1 shows a machine tool 10 as a machining center.
  • the machine tool 10 as a machining center will be described, but the machine tool 10 is not limited to the machining center.
  • the machine tool 10 may be a lathe, another cutting machine, or a grinding machine.
  • the machine tool 10 is a horizontal machining center on which tools are mounted horizontally.
  • the machine tool 10 includes a control device 50, a brake mechanism 110, servo drivers 111R, 111X to 111Z, servomotors 112R, 112X to 112Z, a moving body 113, and a spindle head 131. , The boring tool 134 and the table 136.
  • control device 50 as used herein means a device that controls the machine tool 10.
  • the device configuration of the control device 50 is arbitrary.
  • the control device 50 may be composed of a single control unit or a plurality of control units.
  • the control device 50 is composed of a CPU unit 20 as a PLC (Programmable Logic Controller), a CNC unit 30, and an I / O (Input Output) unit 40.
  • the CPU unit 20, the CNC unit 30, and the I / O unit 40 are connected to the fieldbus B and communicate with each other via the fieldbus B.
  • the direction in which the boring tool 134 makes a hole (that is, the left-right direction of the paper surface) is referred to as "Z direction", and the direction of gravity (that is, the vertical direction of the paper surface) is referred to as "Y direction”.
  • the direction orthogonal to both the direction and the Y direction is referred to as the "X direction”.
  • the spindle head 131 is composed of a spindle 132 and a housing 133.
  • the spindle 132 is arranged inside the housing 133.
  • a tool for machining the work W which is a work piece, is mounted on the spindle 132.
  • a boring tool 134 used for boring of the work W is mounted on the spindle 132.
  • the boring tool 134 has one blade protruding from the tool shaft.
  • the CPU unit 20 controls various units constituting the control device 50 according to a PLC program prepared in advance.
  • the PLC program is described by, for example, a ladder program.
  • the CNC unit 30 starts executing a machining program prepared in advance based on the machining start command from the CPU unit 20, and controls the servo drivers 111R, 111X to 111Z according to the machining program. , The work W fixed to the table 136 is processed.
  • the machining program is described by, for example, an NC (Numerical Control) program.
  • the servo driver 111R sequentially receives the input of the target rotation speed from the CNC unit 30 and controls the servo motor 112R (rotation drive unit).
  • the servomotor 112R rotationally drives the spindle 132 around the axis in the Z direction. More specifically, the servo driver 111R calculates the actual rotation speed of the servo motor 112R from the feedback signal of an encoder (not shown) for detecting the rotation angle of the servo motor 112R, and the actual rotation speed is the target rotation speed. If it is smaller than, the rotation speed of the servomotor 112R is increased, and if the actual rotation speed is larger than the target rotation speed, the rotation speed of the servomotor 112R is decreased. In this way, the servo driver 111R brings the rotation speed of the servomotor 112R closer to the target rotation speed while sequentially receiving feedback of the rotation speed of the servomotor 112R.
  • the servo driver 111X sequentially receives the input of the target position from the CNC unit 30 and controls the servo motor 112X (first motor).
  • the servomotor 112X feeds and drives the moving body 113 to which the spindle head 131 is attached via a ball screw (not shown), and feeds and drives the spindle 132 to an arbitrary position in the X direction. More specifically, the servo driver 111X calculates the actual position of the moving body 113 from the feedback signal of the encoder (not shown) for detecting the rotation angle of the servomotor 112X, and the actual position is smaller than the target position.
  • the actual position of the servomotor 112X is raised, and when the actual position is larger than the target position, the actual position of the servomotor 112X is lowered.
  • the servo driver 111X brings the actual position of the servomotor 112X closer to the target position while sequentially receiving feedback of the actual position of the servomotor 112X.
  • the servo driver 111X feeds and drives the spindle 132 to an arbitrary position in the X direction.
  • the servo driver 111Y sequentially receives the input of the target position from the CNC unit 30 and controls the servo motor 112Y (second motor).
  • the servomotor 112Y feeds and drives the moving body 113 to which the spindle head 131 is attached via a ball screw (not shown), and feeds and drives the spindle 132 to an arbitrary position in the Y direction. Since the method of controlling the servomotor 112Y by the servo driver 111Y is the same as that of the servo driver 111X, the description thereof will not be repeated.
  • the servo driver 111Z sequentially receives input of the target position from the CNC unit 30 and controls the servo motor 112Z (third motor).
  • the servomotor 112Z feeds and drives the moving body 113 to which the spindle head 131 is attached via a ball screw (not shown), and feeds and drives the spindle 132 to an arbitrary position in the Z direction. Since the method of controlling the servomotor 112Z by the servo driver 111Z is the same as that of the servo driver 111X, the description thereof will not be repeated.
  • the CPU unit 20 outputs a control command to the brake mechanism 110 via the I / O unit 40 to lock the feed drive of the servomotor 112Y for the gravity direction and unlock the servomotor 112Y.
  • the brake mechanism 110 is, for example, an electromagnetic brake, an electromagnetic clutch, or other hard mechanism capable of locking the feed drive of the servomotor 112Y.
  • the brake mechanism 110 locks the feed drive of the servomotor 112Y, the moving body 113 does not fall even if a power failure occurs. This prevents the boring tool 134 from being damaged.
  • the machine tool 10 changes the relative position of the work W with respect to the boring tool 134 by feeding and driving the spindle 132
  • the relative position may be changed by feeding and driving the table 136, or the relative position may be changed by feeding and driving both the spindle 132 and the table 136.
  • the servomotor 112X may be configured to feed and drive the spindle 132 in the X direction, or may be configured to feed and drive the table 136 in the X direction.
  • the servomotor 112Y may be configured to feed and drive the spindle 132 in the Y direction, or may be configured to feed and drive the table 136 in the Y direction.
  • the servomotor 112Z may be configured to feed and drive the spindle 132 in the Z direction, or may be configured to feed and drive the table 136 in the Z direction.
  • FIGS. 2 and 3 are diagrams showing the boring process in chronological order.
  • step S1 the control device 50 of the machine tool 10 unlocks the servomotor 112Y by the brake mechanism 110, and feeds and drives the spindle 132 in the gravity direction (Y direction).
  • the control device 50 controls the servomotors 112X and 112Y, and feeds and drives the boring tool 134 in the XY directions. As a result, the boring tool 134 moves to a predetermined machining start position.
  • step S2 it is assumed that the control device 50 has completed the process of moving the boring tool 134 to the predetermined machining start position. Based on this, the control device 50 controls the brake mechanism 110 and locks the feed drive of the servomotor 112Y. As a result, the boring tool 134 becomes immobile in the direction of gravity (Y direction).
  • step S3 the control device 50 controls the servomotor 112R and the servomotor 112Z while maintaining the lock of the servomotor 112Y, and executes the boring process of the work W.
  • the boring tool 134 digs the work W in the Z direction while rotating.
  • step S4 The term "completion of boring” as used herein means that the formation of one inner diameter (hole) has been completed. Since the blade of the boring tool 134 protrudes from the tool shaft, only the blade portion is in contact with the work W when the boring process is completed. In order to eliminate this contact, it is necessary to feed and drive the boring tool 134, but since the feed drive in the Y direction (gravity direction) is locked, the control device 50 only feeds and drives in the X direction. The contact between the boring tool 134 and the work W is eliminated.
  • control device 50 controls the servomotor 112X after the boring process of the work W is completed, and eliminates the contact between the work W and the boring tool 134 while maintaining the lock of the servomotor 112Y. At this time, the control device 50 feeds and drives the servomotor 112X in the direction in which the blade of the boring tool 134 is separated from the inner diameter surface of the work W.
  • the blade of the boring tool 134 may be oriented in the Y direction (gravity direction) when the boring process is completed. In this case, the contact between the boring tool 134 and the work W is not eliminated only by feeding and driving the boring tool 134 in the X direction. Therefore, when the blade of the boring tool 134 is oriented in the Y direction (gravity direction), the control device 50 directs the blade of the boring tool 134 in a direction different from the Y direction (gravity direction), and then, The boring tool 134 is fed and driven in the X direction to eliminate the contact between the boring tool 134 and the work W.
  • the control device 50 directs the blade of the boring tool 134 in a direction different from the Y direction (gravity direction)
  • the boring tool 134 is fed and driven in the X direction to eliminate the contact between the boring tool 134 and the work W.
  • the control device 50 directs the blade of the boring tool 134 to the positive side in the X direction and then moves the boring tool 134 to the negative side in the X direction.
  • the control device 50 directs the blade of the boring tool 134 toward the negative side in the X direction, and then moves the boring tool 134 to the positive side in the X direction. As a result, the contact between the boring tool 134 and the work W is more reliably eliminated.
  • step S5 the control device 50 controls the servomotor 112Z and pulls out the boring tool 134 from the work W while maintaining the lock of the servomotor 112Y.
  • the control device 50 feeds and drives the boring tool 134 in the X direction to eliminate the contact between the work W and the boring tool 134. This eliminates the need to unlock the servomotor 112Y when the boring tool 134 is pulled out of the work W. As a result, the machine tool 10 can shorten the machining time and can surely prevent the boring tool 134 from falling due to a power failure or an error.
  • the boring tool 134 since the boring tool 134 is pulled out from the work W after the contact between the boring tool 134 and the work W is eliminated, the boring tool 134 does not damage the work W and the boring tool 134 is prevented from being damaged. It comes off.
  • N represents an integer of 1 or more.
  • FIG. 4 is a diagram showing a flow of boring processing when the boring position at the Nth boring processing and the boring position at the N + 1th boring processing are the same in the direction of gravity.
  • step S11 the process of pulling out the boring tool 134 from the work W is completed, and the Nth boring process is completed.
  • a hole is formed at the machining position P of the work W by the Nth boring process.
  • the control device 50 acquires the next machining position PX (coordinate value) from the machining program, and sets the machining position P at the Nth boring machining and the machining position PX at the N + 1th boring machining in the direction of gravity. Compare with respect to (Y direction). In this example, it is assumed that the machining position P and the machining position PX are the same in the direction of gravity. In this case, in step S12, the control device 50 aligns the boring tool 134 only in the X direction while maintaining the locked state of the servomotor 112Y.
  • step S13 the control device 50 starts the N + 1th boring process and forms a hole at the processing position PX of the work W.
  • the control device 50 sets the previous machining position of the work W and the work before the process of pulling out the boring tool 134 from the work W and before the start of the next boring of the work W.
  • the next machining position of W is the same in the direction of gravity, the locked state of the servomotor 112Y by the brake mechanism 110 is maintained.
  • the control device 50 does not have to unlock the brake mechanism 110 when moving from the Nth boring process to the N + 1th boring process, and the processing time can be shortened.
  • FIG. 5 is a diagram showing a flow of boring processing when the boring position at the Nth boring processing and the boring position at the N + 1th boring processing are different in the direction of gravity.
  • step S21 the process of pulling out the boring tool 134 from the work W is completed, and the Nth boring process is completed.
  • a hole is formed at the machining position P of the work W by the Nth boring process.
  • the control device 50 acquires the next machining position PY (coordinate value) from the machining program, and sets the machining position P at the Nth boring machining and the machining position PY at the N + 1th boring machining in the direction of gravity. Compare with respect to. In this example, it is assumed that the machining position P and the machining position PY are different in the direction of gravity. In this case, the control device 50 unlocks the servomotor 112Y.
  • step S22 the control device 50 aligns the boring tool 134 in the X direction and the Y direction.
  • the control device 50 locks the feed drive of the servomotor 112Y again based on the completion of the alignment.
  • step S23 the control device 50 starts the N + 1th boring process and forms a hole at the processing position PY of the work W.
  • the control device 50 sets the previous machining position of the work W and the work before the process of pulling out the boring tool 134 from the work W and before the start of the next boring of the work W.
  • the next machining position of W is different in the direction of gravity
  • the locked state of the servomotor 112Y by the brake mechanism 110 is released.
  • the control device 50 can arbitrarily change the boring position in the direction of gravity when shifting from the Nth boring process to the N + 1th boring process.
  • FIG. 6 is a schematic view showing an example of the hardware configuration of the CPU unit 20.
  • the CPU unit 20 includes a processor 51, a ROM (Read Only Memory) 52, a RAM (Random Access Memory) 53, a communication interface 54, a fieldbus controller 55, and a storage device 70. These components are connected to the internal bus 59.
  • the processor 51 is composed of, for example, at least one integrated circuit.
  • the integrated circuit is, for example, at least one CPU (Central Processing Unit), at least one GPU (Graphics Processing Unit), at least one ASIC (Application Specific Integrated Circuit), at least one FPGA (Field Programmable Gate Array), or them. It may be composed of a combination of.
  • the processor 51 controls the operation of the CPU unit 20 by executing various programs such as the PLC program 72.
  • the PLC program 72 defines instructions for controlling various devices in the machine tool 10.
  • the processor 51 reads the PLC program 72 from the storage device 70 or the ROM 52 into the RAM 53 based on the reception of the execution instruction of the PLC program 72.
  • the RAM 53 functions as a working memory and temporarily stores various data necessary for executing the PLC program 72.
  • a LAN Local Area Network
  • an antenna or the like is connected to the communication interface 54.
  • the CPU unit 20 exchanges data with an external device (for example, a server) via the communication interface 54.
  • the CPU unit 20 may be configured so that the PLC program 72 can be downloaded from the external device.
  • the fieldbus controller 55 is an interface for realizing communication with various units connected to the fieldbus. Examples of the unit connected to the fieldbus include a CNC unit 30 and an I / O unit 40.
  • the storage device 70 is, for example, a storage medium such as a hard disk or a flash memory.
  • the storage device 70 stores the PLC program 72 and the like.
  • the storage location of the PLC program 72 is not limited to the storage device 70, and may be stored in a storage area of the processor 51 (for example, a cache memory), a ROM 52, a RAM 53, an external device (for example, a server), or the like.
  • FIG. 7 is a schematic view showing an example of the hardware configuration of the CNC unit 30.
  • the CNC unit 30 includes a processor 101, a ROM 102, a RAM 103, a communication interface 104, a fieldbus controller 105, and a storage device 120. These components are connected to the internal bus 109.
  • the processor 101 is composed of, for example, at least one integrated circuit.
  • An integrated circuit may consist of, for example, at least one CPU, at least one GPU, at least one ASIC, at least one FPGA, or a combination thereof.
  • the processor 101 controls the operation of the CNC unit 30 by executing various programs such as the machining program 122 (control program).
  • the machining program 122 defines various instructions for realizing machining of the workpiece.
  • the processor 101 reads the machining program 122 from the storage device 120 or the ROM 102 into the RAM 103 based on the reception of the execution instruction of the machining program 122.
  • the RAM 103 functions as a working memory and temporarily stores various data necessary for executing the machining program 122.
  • a LAN, an antenna, or the like is connected to the communication interface 104.
  • the CNC unit 30 exchanges data with an external device (for example, a server) via the communication interface 104.
  • the CNC unit 30 may be configured so that the machining program 122 can be downloaded from the external device.
  • the fieldbus controller 105 is an interface for realizing communication with various units connected to the fieldbus. Examples of units connected to the fieldbus include a CPU unit 20, an I / O unit 40, and the like.
  • the storage device 120 is, for example, a storage medium such as a hard disk or a flash memory.
  • the storage device 120 stores the machining program 122 and the like.
  • the storage location of the processing program 122 is not limited to the storage device 120, and may be stored in a storage area of the processor 101 (for example, a cache memory), a ROM 102, a RAM 103, an external device (for example, a server), or the like.
  • the machining program 122 may be provided by being incorporated into a part of an arbitrary program, not as a single program. In this case, the machining process by the machining program 122 is realized in cooperation with an arbitrary program. Even a program that does not include such a part of the modules does not deviate from the purpose of the machining program 122 according to the present embodiment. Further, some or all of the functions provided by the machining program 122 may be realized by dedicated hardware. Further, the machine tool 10 may be configured in the form of a so-called cloud service in which at least one server executes a part of the processing of the machining program 122.
  • FIG. 8 is a diagram showing an example of the functional configuration of the machine tool 10.
  • the machine tool 10 includes a control device 50, a rotary drive unit 160, a position drive unit 162, and a brake mechanism 110 as main hardware configurations.
  • the control device 50 is composed of, for example, a CPU unit 20 and a CNC unit 30.
  • the rotation drive unit 160 is a mechanism for controlling the rotation of the spindle 132 (see FIG. 1).
  • the rotation drive unit 160 includes the above-mentioned servo driver 111R (see FIG. 1) and the above-mentioned servomotor 112R (see FIG. 1).
  • the position drive unit 162 is a mechanism for changing the relative position of the boring tool 134 with respect to the work by moving at least one position of the spindle 132 and the above-mentioned table 136 (see FIG. 1).
  • the position drive unit 162 includes the above-mentioned servo drivers 111X to 111Z (see FIG. 1) and the above-mentioned servo motors 112X to 112Z (see FIG. 1).
  • the CNC unit 30 includes a machining control unit 152 and a brake control unit 154 as functional configurations.
  • the machining control unit 152 controls the servo drivers 111R, 111X to 111Z according to a predetermined machining program 122 to machine the workpiece.
  • the brake control unit 154 outputs a lock command for enabling the brake mechanism 110, a lock release command for disabling the brake mechanism 110, and the like to the CPU unit 20 in response to a command being executed by the machining program 122. To do.
  • the lock command and the lock release command are input to, for example, the PLC program 72 in the CPU unit 20.
  • the brake control unit 154 enables the lock of the brake mechanism 110 when the machine tool 10 stops abnormally during the boring process of the work, and maintains the lock of the servomotor 112Y which is responsible for the feed drive in the gravity direction.
  • the abnormality to be detected is, for example, the occurrence of an earthquake or a power outage.
  • An earthquake is detected, for example, based on the fact that the output value of an acceleration sensor mounted on the machine tool 10 exceeds a predetermined value.
  • the power failure is detected by, for example, a power failure detection circuit mounted on the machine tool 10.
  • the PLC program 72 invalidates the lock of the servomotor 112Y by the brake mechanism 110 when the lock release command is received from the CNC unit 30. More specifically, the CPU unit 20 starts supplying electric power to the brake mechanism 110 and generates an electromagnetic force in the coil of the brake mechanism 110. Due to the electromagnetic force, the brake is separated from the servomotor 112Y, and the servomotor 112Y can rotate.
  • the PLC program 72 enables the PLC program 72 to lock the servomotor 112Y by the brake mechanism 110 when a lock command is received from the CNC unit 30. More specifically, the CPU unit 20 stops the supply of electric power to the brake mechanism 110 and eliminates the electromagnetic force generated in the coil of the brake mechanism 110. When the electromagnetic force disappears, the brake comes into contact with the servomotor 112Y, and the servomotor 112Y cannot rotate.
  • FIG. 9 is a flowchart showing the flow of boring processing.
  • the process shown in FIG. 9 is realized by the control device 50 of the machine tool 10 (typically, the processor 101 of the CNC unit 30) executing the above-mentioned machining program 122 (see FIG. 8). In other aspects, some or all of the processing may be performed by circuit elements or other hardware.
  • control device 50 sequentially executes the processing of each step shown in FIG.
  • step S110 in the control device 50, is the current position of the boring tool 134 and the machining position of the work W (that is, the boring position) at the time of the next boring machining the same in the direction of gravity? Judge whether or not.
  • the control device 50 determines that the current position of the boring tool 134 and the boring position at the time of the next boring process are the same in the direction of gravity (YES in step S110)
  • the control device 50 switches the control to step S112. If not (NO in step S110), the control device 50 switches control to step S114.
  • step S112 the control device 50 feeds and drives the boring tool 134 toward the machining start position defined in the current execution line of the machining program 122. At this time, since it is not necessary for the control device 50 to feed and drive the boring tool 134 in the gravity direction (Y direction), the control device 50 feeds and drives the boring tool 134 only in the X direction.
  • step S114 the control device 50 unlocks the servomotor 112Y by the brake mechanism 110 so that the spindle 132 can be fed and driven in the direction of gravity.
  • step S116 the control device 50 feeds and drives the boring tool 134 toward the machining start position defined in the current execution line of the machining program 122. At this time, the control device 50 feeds and drives the boring tool 134 in the X direction and the Y direction.
  • step S118 the control device 50 controls the brake mechanism 110 and locks the feed drive of the servomotor 112Y. As a result, the boring tool 134 becomes immobile in the direction of gravity (Y direction).
  • step S120 the control device 50 controls the servomotor 112R and the servomotor 112Z, and feeds and drives the boring tool 134 in the Z direction while rotationally driving it. As a result, boring of the work is started.
  • step S122 the control device 50 feeds and drives the boring tool 134 in the X direction by controlling the servomotor 112X, and eliminates the contact between the work W and the boring tool 134.
  • step S124 the control device 50 controls the servomotor 112Z and pulls out the boring tool 134 from the work.
  • the machine tool 10 feeds and drives the boring tool 134 in the X direction to eliminate the contact between the work W and the boring tool 134. This eliminates the need to unlock the servomotor 112Y when the boring tool 134 is pulled out of the work W. As a result, the machine tool 10 can shorten the machining time and can surely prevent the boring tool 134 from falling due to a power failure or an error.
  • the boring tool 134 since the boring tool 134 is pulled out from the work W after the contact between the boring tool 134 and the work W is eliminated, the boring tool 134 does not damage the work W and the boring tool 134 is prevented from being damaged. It comes off.
  • 10 machine tools 20 CPU units, 30 CNC units, 40 I / O units, 50 control devices, 51,101 processors, 52,102 ROMs, 53,103 RAMs, 54,104 communication interfaces, 55,105 fieldbus controllers, 59,109 internal bus, 70,120 storage device, 72 PLC program, 110 brake mechanism, 111R, 111X, 111Y, 111Z servo driver, 112R, 112X, 112Y, 112Z servo motor, 113 moving body, 122 machining program, 131 spindle Head, 132 spindle, 133 housing, 134 boring tool, 136 table, 152 machining control unit, 154 brake control unit, 160 rotation drive unit, 162 position drive unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Geometry (AREA)
  • Numerical Control (AREA)
  • Drilling And Boring (AREA)

Abstract

A machine tool (100) according to the present invention comprises: a rotational drive part (112R) for rotationally driving a main shaft; a first motor (112X) for altering the relative position of a tool with respect to a workpiece in the horizontal direction; a second motor (112Y) for altering said relative position in the gravitational direction; a third motor (112Z) for altering said relative position in a direction orthogonal to both the horizontal direction and the gravitational direction; and a brake mechanism (110) for locking the driving of the second motor (112Y). A control unit (50) of the machine tool (100) executes: a process for locking the driving of the second motor (112Y); a process for bore-machining the workpiece while keeping the second motor (112Y) locked; a process for, once said machining is complete, controlling the first motor (112X) and releasing contact between the workpiece and the tool while keeping the second motor (112Y) locked; and a process for, once said process is complete, withdrawing the tool from the workpiece while keeping the second motor (112Y) locked.

Description

工作機械、工作機械の制御方法、および、工作機械の制御プログラムMachine tools, machine tool control methods, and machine tool control programs
 本開示は、工作機械におけるボーリング加工を制御するための技術に関する。 This disclosure relates to a technique for controlling boring in a machine tool.
 ボーリング加工を行うことが可能な工作機械が普及している。ボーリング加工とは、ワークに穴を形成する加工や、形成された穴を研磨する加工の総称である。ボーリング加工は、内径加工とも呼ばれる。 Machine tools capable of boring are widespread. Boring is a general term for processing to form holes in a work and polishing the formed holes. Boring is also called inner diameter machining.
 理解を容易にするために、以下では、水平面上の一方向を「Z方向」と称し、重力方向を「Y方向」と称し、Z方向およびY方向の両方に直交する方向を「X方向」と称する。 For ease of understanding, in the following, one direction on the horizontal plane is referred to as "Z direction", the direction of gravity is referred to as "Y direction", and the direction orthogonal to both Z direction and Y direction is referred to as "X direction". It is called.
 水平方向(Z方向)にボーリング加工を行う場合、工作機械は、まず、X方向用のサーボモータと、Y方向用のサーボモータとを制御し、XY方向において主軸を送り駆動する。次に、工作機械は、Z方向用のサーボモータを制御し、水平方向に主軸を送り駆動する。これにより、ワークが水平方向に切削されていき、ワークに穴が形成される。 When boring in the horizontal direction (Z direction), the machine tool first controls the servomotor for the X direction and the servomotor for the Y direction, and feeds and drives the spindle in the XY direction. Next, the machine tool controls the servomotor for the Z direction and feeds and drives the spindle in the horizontal direction. As a result, the work is cut in the horizontal direction, and holes are formed in the work.
 ボーリング加工中に停電が起きた場合には、重力方向における主軸の保持力が保てず、主軸が重力方向に落下してしまう。その結果、主軸に装着されているボーリング工具がワークと接触し、ボーリング工具が破損してしまう。 If a power failure occurs during boring, the holding force of the spindle in the direction of gravity cannot be maintained, and the spindle will fall in the direction of gravity. As a result, the boring tool mounted on the spindle comes into contact with the work, and the boring tool is damaged.
 このような破損を防ぐための技術に関し、特許文献1(特開昭61-252041号公報)は、重力方向用のサーボモータに対してブレーキ機構を設けている工作機械を開示している。当該工作機械は、ボーリング加工中において重力方向の主軸の送り駆動をロックする。これにより、当該工作機械は、停電時における主軸の落下を防止する。 Regarding a technique for preventing such damage, Patent Document 1 (Japanese Patent Laid-Open No. 61-252041) discloses a machine tool provided with a brake mechanism for a servomotor for the direction of gravity. The machine tool locks the feed drive of the spindle in the direction of gravity during boring. As a result, the machine tool prevents the spindle from falling during a power failure.
特開昭61-252041号公報Japanese Unexamined Patent Publication No. 61-252041
 ところで、ボーリング工具とワークとが接触した状態で、ボーリング工具がワークから引き抜かれると、ボーリング工具が破損したり、ワークが傷ついてしまう可能性がある。そのため、ボーリング工具は、ワークとの接触を解消した上でワークから引き抜かれる必要がある。 By the way, if the boring tool is pulled out from the work while the boring tool is in contact with the work, the boring tool may be damaged or the work may be damaged. Therefore, the boring tool needs to be pulled out from the work after eliminating the contact with the work.
 ボーリング工具とワークとの接触を解消する方法としては、様々な方法が考えられる。一例として、工作機械は、ブレーキ機構のロックを解除した上でボーリング工具を送り駆動することで、ボーリング工具とワークとの接触を解消する。しかしながら、この方法では、ロックの解除中に停電が起きる可能性があり、その場合には、主軸が落下してしまう。その結果、ボーリング工具が破損してしまう。したがって、重力方向におけるボーリング工具の送り駆動をロックした状態でボーリング工具をワークから引き抜くことが可能な技術が望まれている。 Various methods can be considered as a method of eliminating the contact between the boring tool and the work. As an example, the machine tool releases the lock of the brake mechanism and then feeds and drives the boring tool to eliminate the contact between the boring tool and the work. However, with this method, a power failure may occur during unlocking, in which case the spindle will fall. As a result, the boring tool is damaged. Therefore, there is a demand for a technique capable of pulling out the boring tool from the work in a state where the feed drive of the boring tool in the direction of gravity is locked.
 本開示の一例では、工作機械は、ワークのボーリング加工に用いられる工具を取り付けることが可能な主軸と、上記ワークを固定するためのテーブルと、上記主軸を回転駆動するための回転駆動部と、上記主軸および上記テーブルの少なくとも一方の位置を移動することで、上記ワークに対する上記工具の相対位置を変化させるための位置駆動部とを備える。上記位置駆動部は、上記相対位置を水平方向に変化させるための第1モータと、上記相対位置を重力方向に変化させるための第2モータと、上記相対位置を上記水平方向と上記重力方向との両方に直交する方向に変化させるための第3モータとを含む。上記工作機械は、上記第2モータの駆動をロックするためのブレーキ機構と、上記工作機械を制御するための制御装置とをさらに備える。上記制御装置は、上記第1モータおよび上記第2モータを制御し、所定の加工開始位置に上記工具を移動する処理と、上記加工開始位置に上記工具を移動する処理が完了した後に上記ブレーキ機構を制御し、上記第2モータの駆動をロックする処理と、上記第2モータのロックを維持した状態で上記回転駆動部および上記第3モータを制御し、上記ワークのボーリング加工を実行する処理と、上記ワークのボーリング加工が完了した後に上記第1モータを制御し、上記第2モータのロックを維持した状態で上記ワークと上記工具との接触を解消する処理と、上記解消する処理が完了した後に上記第3モータを制御し、上記第2モータのロックを維持した状態で上記ワークから上記工具を引き抜く処理とを実行する。 In one example of the present disclosure, a machine tool includes a spindle to which a tool used for boring of a workpiece can be attached, a table for fixing the workpiece, and a rotary drive unit for rotationally driving the spindle. A position driving unit for changing the relative position of the tool with respect to the work is provided by moving at least one position of the spindle and the table. The position driving unit includes a first motor for changing the relative position in the horizontal direction, a second motor for changing the relative position in the gravity direction, and the relative position in the horizontal direction and the gravity direction. It includes a third motor for changing in a direction orthogonal to both of the above. The machine tool further includes a brake mechanism for locking the drive of the second motor and a control device for controlling the machine tool. The control device controls the first motor and the second motor, and after the process of moving the tool to a predetermined machining start position and the process of moving the tool to the machining start position are completed, the brake mechanism A process of controlling the drive of the second motor to lock the drive of the second motor, and a process of controlling the rotary drive unit and the third motor while maintaining the lock of the second motor to execute the boring process of the work. After the boring process of the work is completed, the process of controlling the first motor and canceling the contact between the work and the tool while maintaining the lock of the second motor and the process of canceling the contact are completed. Later, the third motor is controlled, and the process of pulling out the tool from the work is executed while the lock of the second motor is maintained.
 本開示の一例では、上記制御装置は、さらに、上記工具を上記ワークから引き抜く処理が終了した後で、かつ、上記ワークの次のボーリング加工を開始する前において、上記ワークの前回の加工位置と、上記ワークの次の加工位置とが、重力方向において異なる場合には、上記第2モータのロックを解除する処理を実行する。 In one example of the present disclosure, the control device is further set to the previous machining position of the work after the process of pulling out the tool from the work is completed and before the next boring of the work is started. If the next machining position of the work is different in the direction of gravity, the process of unlocking the second motor is executed.
 本開示の一例では、上記制御装置は、さらに、上記工具を上記ワークから引き抜く処理が終了した後で、かつ、上記ワークの次のボーリング加工を開始する前において、上記ワークの前回の加工位置と、上記ワークの次の加工位置とが、重力方向において同じ場合には、上記第2モータのロックを維持する処理を実行する。 In one example of the present disclosure, the control device is further set to the previous machining position of the work after the process of pulling out the tool from the work is completed and before the next boring of the work is started. If the next machining position of the work is the same in the direction of gravity, the process of maintaining the lock of the second motor is executed.
 本開示の一例では、上記制御装置は、さらに、上記ワークのボーリング加工中において上記工作機械が異常停止した場合には、上記第2モータのロックを維持する処理を実行する。 In one example of the present disclosure, the control device further executes a process of maintaining the lock of the second motor when the machine tool stops abnormally during the boring process of the work.
 本開示の一例では、上記制御装置は、上記ワークのボーリング加工が完了した後で、かつ、上記第1モータを制御する前に、上記工具の刃を重力方向とは異なる方向に向ける処理を実行する。 In one example of the present disclosure, the control device executes a process of directing the blade of the tool in a direction different from the direction of gravity after the boring process of the work is completed and before controlling the first motor. To do.
 本開示の他の例では、工作機械の制御方法が提供される。上記工作機械は、ワークのボーリング加工に用いられる工具を取り付けることが可能な主軸と、上記ワークを固定するためのテーブルと、上記主軸を回転駆動するための回転駆動部と、上記主軸および上記テーブルの少なくとも一方の位置を移動することで、上記ワークに対する上記工具の相対位置を変化させるための位置駆動部とを備える。上記位置駆動部は、上記相対位置を水平方向に変化させるための第1モータと、上記相対位置を重力方向に変化させるための第2モータと、上記相対位置を上記水平方向と上記重力方向との両方に直交する方向に変化させるための第3モータとを含む。上記工作機械は、上記第2モータの駆動をロックするためのブレーキ機構をさらに備える。上記制御方法は、上記第1モータおよび上記第2モータを制御し、所定の加工開始位置に上記工具を移動するステップと、上記移動するステップが完了した後に上記ブレーキ機構を制御し、上記第2モータの駆動をロックするステップと、上記第2モータのロックを維持した状態で上記回転駆動部および上記第3モータを制御し、上記ワークのボーリング加工を実行するステップと、上記ワークのボーリング加工が完了した後に上記第1モータを制御し、上記第2モータのロックを維持した状態で上記ワークと上記工具との接触を解消するステップと、上記解消するステップが完了した後に上記第3モータを制御し、上記第2モータのロックを維持した状態で上記ワークから上記工具を引き抜くステップとを備える。 In another example of the present disclosure, a method of controlling a machine tool is provided. The machine tool includes a spindle to which a tool used for boring of a workpiece can be attached, a table for fixing the workpiece, a rotary drive unit for rotationally driving the spindle, and the spindle and the table. A position driving unit for changing the relative position of the tool with respect to the work is provided by moving at least one position of the above. The position driving unit includes a first motor for changing the relative position in the horizontal direction, a second motor for changing the relative position in the gravity direction, and the relative position in the horizontal direction and the gravity direction. It includes a third motor for changing in a direction orthogonal to both of the above. The machine tool further includes a braking mechanism for locking the drive of the second motor. The control method controls the first motor and the second motor, controls the step of moving the tool to a predetermined machining start position, and controls the brake mechanism after the moving step is completed, and controls the second motor. The step of locking the drive of the motor, the step of controlling the rotary drive unit and the third motor while maintaining the lock of the second motor, and executing the boring of the work, and the boring of the work After the completion, the first motor is controlled, and the third motor is controlled after the step of canceling the contact between the work and the tool while maintaining the lock of the second motor and the step of canceling the contact are completed. Then, the step of pulling out the tool from the work while maintaining the lock of the second motor is provided.
 本開示の他の例では、工作機械の制御プログラムが提供される。上記工作機械は、ワークのボーリング加工に用いられる工具を取り付けることが可能な主軸と、上記ワークを固定するためのテーブルと、上記主軸を回転駆動するための回転駆動部と、上記主軸および上記テーブルの少なくとも一方の位置を移動することで、上記ワークに対する上記工具の相対位置を変化させるための位置駆動部とを備える。上記位置駆動部は、上記相対位置を水平方向に変化させるための第1モータと、上記相対位置を重力方向に変化させるための第2モータと、上記相対位置を上記水平方向と上記重力方向との両方に直交する方向に変化させるための第3モータとを含む。上記工作機械は、上記第2モータの駆動をロックするためのブレーキ機構をさらに備える。上記制御プログラムは、上記工作機械に、上記第1モータおよび上記第2モータを制御し、所定の加工開始位置に上記工具を移動するステップと、上記移動するステップが完了した後に上記ブレーキ機構を制御し、上記第2モータの駆動をロックするステップと、上記第2モータのロックを維持した状態で上記回転駆動部および上記第3モータを制御し、上記ワークのボーリング加工を実行するステップと、上記ワークのボーリング加工が完了した後に上記第1モータを制御し、上記第2モータのロックを維持した状態で上記ワークと上記工具との接触を解消するステップと、上記解消するステップが完了した後に上記第3モータを制御し、上記第2モータのロックを維持した状態で上記ワークから上記工具を引き抜くステップとを実行させる。 In another example of the present disclosure, a machine tool control program is provided. The machine tool includes a spindle to which a tool used for boring of a workpiece can be attached, a table for fixing the workpiece, a rotary drive unit for rotationally driving the spindle, and the spindle and the table. A position driving unit for changing the relative position of the tool with respect to the work is provided by moving at least one position of the above. The position driving unit includes a first motor for changing the relative position in the horizontal direction, a second motor for changing the relative position in the gravity direction, and the relative position in the horizontal direction and the gravity direction. It includes a third motor for changing in a direction orthogonal to both of the above. The machine tool further includes a braking mechanism for locking the drive of the second motor. The control program controls the first motor and the second motor to the machine tool, and controls the brake mechanism after the step of moving the tool to a predetermined machining start position and the step of moving the tool are completed. Then, a step of locking the drive of the second motor, a step of controlling the rotary drive unit and the third motor while maintaining the lock of the second motor, and a step of executing the boring process of the work, and the above. After the boring process of the work is completed, the first motor is controlled, and the contact between the work and the tool is released while the lock of the second motor is maintained, and after the release step is completed, the above is performed. The third motor is controlled, and the step of pulling out the tool from the work is executed while the lock of the second motor is maintained.
 本発明の上記および他の目的、特徴、局面および利点は、添付の図面と関連して理解される本発明に関する次の詳細な説明から明らかとなるであろう。 The above and other objectives, features, aspects and advantages of the present invention will become apparent from the following detailed description of the present invention as understood in connection with the accompanying drawings.
工作機械の装置構成の一例を示す図である。It is a figure which shows an example of the device structure of a machine tool. ボーリング加工の工程を時系列に示す図である。It is a figure which shows the process of boring processing in chronological order. 図2に引き続くボーリング加工の工程を時系列に示す図である。It is a figure which shows the process of boring processing following FIG. 2 in chronological order. N回目のボーリング加工時のボーリング位置と、N+1回目のボーリング加工時のボーリング位置とが、重力方向において同じ場合におけるボーリング加工の流れを示す図である。It is a figure which shows the flow of the boring processing when the boring position at the time of the Nth boring processing and the boring position at the time of N + 1th boring processing are the same in the direction of gravity. N回目のボーリング加工時のボーリング位置と、N+1回目のボーリング加工時のボーリング位置とが、重力方向において異なる場合におけるボーリング加工の流れを示す図である。It is a figure which shows the flow of the boring processing when the boring position at the time of the Nth boring processing and the boring position at the time of N + 1th boring processing are different in the direction of gravity. CPU(Central Processing Unit)ユニットのハードウェア構成の一例を示す模式図である。It is a schematic diagram which shows an example of the hardware composition of a CPU (Central Processing Unit) unit. CNC(Computer Numerical Control)ユニットのハードウェア構成の一例を示す模式図である。It is a schematic diagram which shows an example of the hardware configuration of a CNC (Computer Numerical Control) unit. 工作機械の機能構成の一例を示す図である。It is a figure which shows an example of the functional structure of a machine tool. ボーリング加工の流れを示すフローチャートである。It is a flowchart which shows the flow of boring processing.
 以下、図面を参照しつつ、本発明に従う各実施の形態について説明する。以下の説明では、同一の部品および構成要素には同一の符号を付してある。それらの名称および機能も同じである。したがって、これらについての詳細な説明は繰り返さない。なお、以下で説明される各実施の形態および各変形例は、適宜選択的に組み合わされてもよい。 Hereinafter, each embodiment according to the present invention will be described with reference to the drawings. In the following description, the same parts and components are designated by the same reference numerals. Their names and functions are the same. Therefore, the detailed description of these will not be repeated. In addition, each embodiment and each modification described below may be selectively combined as appropriate.
 <A.工作機械10の構成>
 まず、図1を参照して、工作機械10の装置構成について説明する。図1は、工作機械10の装置構成の一例を示す図である。
<A. Configuration of machine tool 10>
First, the apparatus configuration of the machine tool 10 will be described with reference to FIG. FIG. 1 is a diagram showing an example of a device configuration of the machine tool 10.
 図1には、マシニングセンタとしての工作機械10が示されている。以下では、マシニングセンタとしての工作機械10について説明するが、工作機械10は、マシニングセンタに限定されない。たとえば、工作機械10は、旋盤であってもよいし、その他の切削機械や研削機械であってもよい。典型的には、工作機械10は、工具が水平方向に取り付けられる横形のマシニングセンタである。 FIG. 1 shows a machine tool 10 as a machining center. Hereinafter, the machine tool 10 as a machining center will be described, but the machine tool 10 is not limited to the machining center. For example, the machine tool 10 may be a lathe, another cutting machine, or a grinding machine. Typically, the machine tool 10 is a horizontal machining center on which tools are mounted horizontally.
 図1に示されるように、工作機械10は、制御装置50と、ブレーキ機構110と、サーボドライバ111R,111X~111Zと、サーボモータ112R,112X~112Zと、移動体113と、主軸頭131と、ボーリング工具134と、テーブル136とを含む。 As shown in FIG. 1, the machine tool 10 includes a control device 50, a brake mechanism 110, servo drivers 111R, 111X to 111Z, servomotors 112R, 112X to 112Z, a moving body 113, and a spindle head 131. , The boring tool 134 and the table 136.
 本明細書でいう「制御装置50」とは、工作機械10を制御する装置を意味する。制御装置50の装置構成は、任意である。制御装置50は、単体の制御ユニットで構成されてもよいし、複数の制御ユニットで構成されてもよい。図1の例では、制御装置50は、PLC(Programmable Logic Controller)としてのCPUユニット20と、CNCユニット30と、I/O(Input Output)ユニット40とで構成されている。CPUユニット20、CNCユニット30、I/Oユニット40は、フィールドバスBに接続されており、フィールドバスBを介して互いに通信を行う。 The "control device 50" as used herein means a device that controls the machine tool 10. The device configuration of the control device 50 is arbitrary. The control device 50 may be composed of a single control unit or a plurality of control units. In the example of FIG. 1, the control device 50 is composed of a CPU unit 20 as a PLC (Programmable Logic Controller), a CNC unit 30, and an I / O (Input Output) unit 40. The CPU unit 20, the CNC unit 30, and the I / O unit 40 are connected to the fieldbus B and communicate with each other via the fieldbus B.
 また、以下の説明では、ボーリング工具134が穴を開ける方向(すなわち、紙面の左右方向)を「Z方向」と称し、重力方向(すなわち、紙面の上下方向)を「Y方向」と称し、Z方向およびY方向の両方に直交する方向を「X方向」と称する。 Further, in the following description, the direction in which the boring tool 134 makes a hole (that is, the left-right direction of the paper surface) is referred to as "Z direction", and the direction of gravity (that is, the vertical direction of the paper surface) is referred to as "Y direction". The direction orthogonal to both the direction and the Y direction is referred to as the "X direction".
 主軸頭131は、主軸132と、ハウジング133とで構成されている。主軸132は、ハウジング133の内部に配置されている。主軸132には、被加工物であるワークWを加工するための工具が装着される。図1の例では、ワークWのボーリング加工に用いられるボーリング工具134が主軸132に装着されている。ボーリング工具134は、工具軸から突出した1つの刃を有する。 The spindle head 131 is composed of a spindle 132 and a housing 133. The spindle 132 is arranged inside the housing 133. A tool for machining the work W, which is a work piece, is mounted on the spindle 132. In the example of FIG. 1, a boring tool 134 used for boring of the work W is mounted on the spindle 132. The boring tool 134 has one blade protruding from the tool shaft.
 CPUユニット20は、予め準備されているPLCプログラムに従って、制御装置50を構成する各種ユニットを制御する。当該PLCプログラムは、たとえば、ラダープログラムで記述されている。 The CPU unit 20 controls various units constituting the control device 50 according to a PLC program prepared in advance. The PLC program is described by, for example, a ladder program.
 CNCユニット30は、CPUユニット20からの加工開始指令を受けたことに基づいて、予め準備されている加工プログラムの実行を開始し、当該加工プログラムに従ってサーボドライバ111R,111X~111Zを制御することで、テーブル136に固定されるワークWを加工する。当該加工プログラムは、たとえば、NC(Numerical Control)プログラムで記述されている。 The CNC unit 30 starts executing a machining program prepared in advance based on the machining start command from the CPU unit 20, and controls the servo drivers 111R, 111X to 111Z according to the machining program. , The work W fixed to the table 136 is processed. The machining program is described by, for example, an NC (Numerical Control) program.
 サーボドライバ111Rは、CNCユニット30から目標回転速度の入力を逐次的に受け、サーボモータ112R(回転駆動部)を制御する。サーボモータ112Rは、Z方向の軸を中心として主軸132を回転駆動する。より具体的には、サーボドライバ111Rは、サーボモータ112Rの回転角度を検知するためのエンコーダ(図示しない)のフィードバック信号からサーボモータ112Rの実回転速度を算出し、当該実回転速度が目標回転速度よりも小さい場合にはサーボモータ112Rの回転速度を上げ、当該実回転速度が目標回転速度よりも大きい場合にはサーボモータ112Rの回転速度を下げる。このように、サーボドライバ111Rは、サーボモータ112Rの回転速度のフィードバックを逐次的に受けながらサーボモータ112Rの回転速度を目標回転速度に近付ける。 The servo driver 111R sequentially receives the input of the target rotation speed from the CNC unit 30 and controls the servo motor 112R (rotation drive unit). The servomotor 112R rotationally drives the spindle 132 around the axis in the Z direction. More specifically, the servo driver 111R calculates the actual rotation speed of the servo motor 112R from the feedback signal of an encoder (not shown) for detecting the rotation angle of the servo motor 112R, and the actual rotation speed is the target rotation speed. If it is smaller than, the rotation speed of the servomotor 112R is increased, and if the actual rotation speed is larger than the target rotation speed, the rotation speed of the servomotor 112R is decreased. In this way, the servo driver 111R brings the rotation speed of the servomotor 112R closer to the target rotation speed while sequentially receiving feedback of the rotation speed of the servomotor 112R.
 サーボドライバ111Xは、CNCユニット30から目標位置の入力を逐次的に受け、サーボモータ112X(第1モータ)を制御する。サーボモータ112Xは、主軸頭131が取り付けられている移動体113をボールネジ(図示しない)を介して送り駆動し、X方向の任意の位置に主軸132を送り駆動する。より具体的には、サーボドライバ111Xは、サーボモータ112Xの回転角度を検知するためのエンコーダ(図示しない)のフィードバック信号から移動体113の実位置を算出し、当該実位置が目標位置よりも小さい場合にはサーボモータ112Xの実位置を上げ、当該実位置が目標位置よりも大きい場合にはサーボモータ112Xの実位置を下げる。このように、サーボドライバ111Xは、サーボモータ112Xの実位置のフィードバックを逐次的に受けながらサーボモータ112Xの実位置を目標位置に近付ける。これにより、サーボドライバ111Xは、X方向の任意の位置に主軸132を送り駆動する。 The servo driver 111X sequentially receives the input of the target position from the CNC unit 30 and controls the servo motor 112X (first motor). The servomotor 112X feeds and drives the moving body 113 to which the spindle head 131 is attached via a ball screw (not shown), and feeds and drives the spindle 132 to an arbitrary position in the X direction. More specifically, the servo driver 111X calculates the actual position of the moving body 113 from the feedback signal of the encoder (not shown) for detecting the rotation angle of the servomotor 112X, and the actual position is smaller than the target position. In this case, the actual position of the servomotor 112X is raised, and when the actual position is larger than the target position, the actual position of the servomotor 112X is lowered. In this way, the servo driver 111X brings the actual position of the servomotor 112X closer to the target position while sequentially receiving feedback of the actual position of the servomotor 112X. As a result, the servo driver 111X feeds and drives the spindle 132 to an arbitrary position in the X direction.
 サーボドライバ111Yは、CNCユニット30から目標位置の入力を逐次的に受け、サーボモータ112Y(第2モータ)を制御する。サーボモータ112Yは、主軸頭131が取り付けられている移動体113をボールネジ(図示しない)を介して送り駆動し、Y方向の任意の位置に主軸132を送り駆動する。サーボドライバ111Yによるサーボモータ112Yの制御方法は、サーボドライバ111Xと同様であるので、その説明については繰り返さない。 The servo driver 111Y sequentially receives the input of the target position from the CNC unit 30 and controls the servo motor 112Y (second motor). The servomotor 112Y feeds and drives the moving body 113 to which the spindle head 131 is attached via a ball screw (not shown), and feeds and drives the spindle 132 to an arbitrary position in the Y direction. Since the method of controlling the servomotor 112Y by the servo driver 111Y is the same as that of the servo driver 111X, the description thereof will not be repeated.
 サーボドライバ111Zは、CNCユニット30から目標位置の入力を逐次的に受け、サーボモータ112Z(第3モータ)を制御する。サーボモータ112Zは、主軸頭131が取り付けられている移動体113をボールネジ(図示しない)を介して送り駆動し、Z方向の任意の位置に主軸132を送り駆動する。サーボドライバ111Zによるサーボモータ112Zの制御方法は、サーボドライバ111Xと同様であるので、その説明については繰り返さない。 The servo driver 111Z sequentially receives input of the target position from the CNC unit 30 and controls the servo motor 112Z (third motor). The servomotor 112Z feeds and drives the moving body 113 to which the spindle head 131 is attached via a ball screw (not shown), and feeds and drives the spindle 132 to an arbitrary position in the Z direction. Since the method of controlling the servomotor 112Z by the servo driver 111Z is the same as that of the servo driver 111X, the description thereof will not be repeated.
 CPUユニット20は、I/Oユニット40を介してブレーキ機構110に制御指令を出力し、重力方向用のサーボモータ112Yの送り駆動をロックしたり、サーボモータ112Yのロックを解除したりする。ブレーキ機構110は、たとえば、電磁ブレーキ、電磁クラッチ、または、サーボモータ112Yの送り駆動をロックすることが可能なその他のハード機構である。ブレーキ機構110がサーボモータ112Yの送り駆動をロックしている場合、停電が発生したとしても、移動体113は落下しない。これにより、ボーリング工具134の破損が防止される。 The CPU unit 20 outputs a control command to the brake mechanism 110 via the I / O unit 40 to lock the feed drive of the servomotor 112Y for the gravity direction and unlock the servomotor 112Y. The brake mechanism 110 is, for example, an electromagnetic brake, an electromagnetic clutch, or other hard mechanism capable of locking the feed drive of the servomotor 112Y. When the brake mechanism 110 locks the feed drive of the servomotor 112Y, the moving body 113 does not fall even if a power failure occurs. This prevents the boring tool 134 from being damaged.
 なお、上述では、工作機械10が、主軸132を送り駆動することで、ボーリング工具134に対するワークWの相対位置を変える構成について説明を行ったが、工作機械10は、ワークWの固定装置であるテーブル136を送り駆動ことで当該相対位置を変えてもよいし、主軸132とテーブル136との両方を送り駆動することで当該相対位置を変えてもよい。すなわち、サーボモータ112Xは、主軸132をX方向に送り駆動するように構成されてもよいし、テーブル136をX方向に送り駆動するように構成されてもよい。サーボモータ112Yは、主軸132をY方向に送り駆動するように構成されてもよいし、テーブル136をY方向に送り駆動するように構成されてもよい。サーボモータ112Zは、主軸132をZ方向に送り駆動するように構成されてもよいし、テーブル136をZ方向に送り駆動するように構成されてもよい。 In the above description, the configuration in which the machine tool 10 changes the relative position of the work W with respect to the boring tool 134 by feeding and driving the spindle 132 has been described. However, the machine tool 10 is a fixing device for the work W. The relative position may be changed by feeding and driving the table 136, or the relative position may be changed by feeding and driving both the spindle 132 and the table 136. That is, the servomotor 112X may be configured to feed and drive the spindle 132 in the X direction, or may be configured to feed and drive the table 136 in the X direction. The servomotor 112Y may be configured to feed and drive the spindle 132 in the Y direction, or may be configured to feed and drive the table 136 in the Y direction. The servomotor 112Z may be configured to feed and drive the spindle 132 in the Z direction, or may be configured to feed and drive the table 136 in the Z direction.
 <B.ボーリング加工>
 図2および図3を参照して、ボーリング加工の工程について説明する。図2および図3は、ボーリング加工の工程を時系列に示す図である。
<B. Boring process>
The boring process will be described with reference to FIGS. 2 and 3. 2 and 3 are diagrams showing the boring process in chronological order.
 ステップS1において、工作機械10の制御装置50は、ブレーキ機構110によるサーボモータ112Yのロックを解除し、重力方向(Y方向)に主軸132を送り駆動できる状態にする。その後、制御装置50は、サーボモータ112X,112Yを制御し、XY方向においてボーリング工具134を送り駆動する。これにより、ボーリング工具134は、所定の加工開始位置に移動する。 In step S1, the control device 50 of the machine tool 10 unlocks the servomotor 112Y by the brake mechanism 110, and feeds and drives the spindle 132 in the gravity direction (Y direction). After that, the control device 50 controls the servomotors 112X and 112Y, and feeds and drives the boring tool 134 in the XY directions. As a result, the boring tool 134 moves to a predetermined machining start position.
 ステップS2において、制御装置50は、所定の加工開始位置にボーリング工具134を移動する処理が完了したとする。このことに基づいて、制御装置50は、ブレーキ機構110を制御し、サーボモータ112Yの送り駆動をロックする。これにより、ボーリング工具134は、重力方向(Y方向)において不動となる。 In step S2, it is assumed that the control device 50 has completed the process of moving the boring tool 134 to the predetermined machining start position. Based on this, the control device 50 controls the brake mechanism 110 and locks the feed drive of the servomotor 112Y. As a result, the boring tool 134 becomes immobile in the direction of gravity (Y direction).
 ステップS3において、制御装置50は、サーボモータ112Yのロックを維持した状態で、サーボモータ112Rおよびサーボモータ112Zを制御し、ワークWのボーリング加工を実行する。これにより、ボーリング工具134は、回転しながらZ方向にワークWを掘り進む。 In step S3, the control device 50 controls the servomotor 112R and the servomotor 112Z while maintaining the lock of the servomotor 112Y, and executes the boring process of the work W. As a result, the boring tool 134 digs the work W in the Z direction while rotating.
 ステップS4において、ワークWに対するボーリング加工が完了したとする。ここでいう「ボーリング加工の完了」とは、1つの内径(穴)の形成が完了したことを意味する。ボーリング工具134の刃は、工具軸から出っ張っているため、ボーリング加工が完了した時点では、刃部分のみがワークWと接触している。この接触を解消するためには、ボーリング工具134を送り駆動する必要があるが、Y方向(重力方向)の送り駆動についてはロックがかかっているため、制御装置50は、X方向の送り駆動のみでボーリング工具134とワークWとの接触を解消する。すなわち、制御装置50は、ワークWのボーリング加工が完了した後にサーボモータ112Xを制御し、サーボモータ112Yのロックを維持した状態でワークWとボーリング工具134との接触を解消する。このとき、制御装置50は、ボーリング工具134の刃がワークWの内径表面から離れる方向にサーボモータ112Xを送り駆動する。 It is assumed that the boring process for the work W is completed in step S4. The term "completion of boring" as used herein means that the formation of one inner diameter (hole) has been completed. Since the blade of the boring tool 134 protrudes from the tool shaft, only the blade portion is in contact with the work W when the boring process is completed. In order to eliminate this contact, it is necessary to feed and drive the boring tool 134, but since the feed drive in the Y direction (gravity direction) is locked, the control device 50 only feeds and drives in the X direction. The contact between the boring tool 134 and the work W is eliminated. That is, the control device 50 controls the servomotor 112X after the boring process of the work W is completed, and eliminates the contact between the work W and the boring tool 134 while maintaining the lock of the servomotor 112Y. At this time, the control device 50 feeds and drives the servomotor 112X in the direction in which the blade of the boring tool 134 is separated from the inner diameter surface of the work W.
 なお、仕様によっては、ボーリング加工の完了時において、ボーリング工具134の刃がY方向(重力方向)に向いていることがある。この場合には、ボーリング工具134がX方向に送り駆動されるだけでは、ボーリング工具134とワークWとの接触が解消されない。そのため、ボーリング工具134の刃がY方向(重力方向)を向いている場合には、制御装置50は、ボーリング工具134の刃をY方向(重力方向)とは異なる方向に向け、その上で、ボーリング工具134をX方向に送り駆動し、ボーリング工具134とワークWとの接触を解消する。典型的には、制御装置50は、ボーリング工具134の刃をX方向の正側に向け、その上でX方向の負側にボーリング工具134を移動する。あるいは、制御装置50は、ボーリング工具134の刃をX方向の負側に向け、その上でX方向の正側にボーリング工具134を移動する。これにより、ボーリング工具134とワークWとの接触が、より確実に解消される。 Depending on the specifications, the blade of the boring tool 134 may be oriented in the Y direction (gravity direction) when the boring process is completed. In this case, the contact between the boring tool 134 and the work W is not eliminated only by feeding and driving the boring tool 134 in the X direction. Therefore, when the blade of the boring tool 134 is oriented in the Y direction (gravity direction), the control device 50 directs the blade of the boring tool 134 in a direction different from the Y direction (gravity direction), and then, The boring tool 134 is fed and driven in the X direction to eliminate the contact between the boring tool 134 and the work W. Typically, the control device 50 directs the blade of the boring tool 134 to the positive side in the X direction and then moves the boring tool 134 to the negative side in the X direction. Alternatively, the control device 50 directs the blade of the boring tool 134 toward the negative side in the X direction, and then moves the boring tool 134 to the positive side in the X direction. As a result, the contact between the boring tool 134 and the work W is more reliably eliminated.
 ステップS5において、制御装置50は、サーボモータ112Zを制御し、サーボモータ112Yのロックを維持した状態でワークWからボーリング工具134を引き抜く。 In step S5, the control device 50 controls the servomotor 112Z and pulls out the boring tool 134 from the work W while maintaining the lock of the servomotor 112Y.
 以上のように、制御装置50は、ボーリング加工が終了した際に、ボーリング工具134をX方向に送り駆動し、ワークWとボーリング工具134との接触を解消する。これにより、ボーリング工具134がワークWから引き抜かれる際に、サーボモータ112Yのロックを解除する必要がなくなる。その結果、工作機械10は、加工時間を短縮することができ、かつ、停電やエラーなどに伴うボーリング工具134の落下を確実に防ぐことができる。 As described above, when the boring process is completed, the control device 50 feeds and drives the boring tool 134 in the X direction to eliminate the contact between the work W and the boring tool 134. This eliminates the need to unlock the servomotor 112Y when the boring tool 134 is pulled out of the work W. As a result, the machine tool 10 can shorten the machining time and can surely prevent the boring tool 134 from falling due to a power failure or an error.
 また、ボーリング工具134とワークWとの接触が解消された上で、ボーリング工具134がワークWから引き抜かれるので、ボーリング工具134がワークWを傷付けずに済み、かつ、ボーリング工具134の破損も防がれる。 Further, since the boring tool 134 is pulled out from the work W after the contact between the boring tool 134 and the work W is eliminated, the boring tool 134 does not damage the work W and the boring tool 134 is prevented from being damaged. It comes off.
 <C.連続するボーリング加工>
 以下では、図4および図5を参照して、N回目のボーリング加工からN+1回目のボーリング加工に移る際におけるブレーキ機構110の制御について説明する。なお、「N」は、1以上の整数を表わす。
<C. Continuous boring process>
Hereinafter, the control of the brake mechanism 110 when shifting from the Nth boring process to the N + 1th boring process will be described with reference to FIGS. 4 and 5. In addition, "N" represents an integer of 1 or more.
 図4は、N回目のボーリング加工時のボーリング位置と、N+1回目のボーリング加工時のボーリング位置とが、重力方向において同じ場合におけるボーリング加工の流れを示す図である。 FIG. 4 is a diagram showing a flow of boring processing when the boring position at the Nth boring processing and the boring position at the N + 1th boring processing are the same in the direction of gravity.
 ステップS11において、ボーリング工具134をワークWから引き抜く処理が終了し、N回目のボーリング加工が終了したとする。図4の例では、N回目のボーリング加工により、ワークWの加工位置Pにおいて穴が形成されている。 It is assumed that in step S11, the process of pulling out the boring tool 134 from the work W is completed, and the Nth boring process is completed. In the example of FIG. 4, a hole is formed at the machining position P of the work W by the Nth boring process.
 加工プログラムにおいて、引き続きボーリング加工を行うように規定されているとする。この場合、制御装置50は、加工プログラムから次の加工位置PX(座標値)を取得し、N回目のボーリング加工時における加工位置Pと、N+1回目のボーリング加工時における加工位置PXとを重力方向(Y方向)に関して比較する。本例では、加工位置Pと加工位置PXとが重力方向において同じであったとする。この場合、ステップS12において、制御装置50は、サーボモータ112Yのロック状態を維持したまま、X方向についてのみボーリング工具134の位置合わせを行う。 It is assumed that the processing program stipulates that boring processing should be continued. In this case, the control device 50 acquires the next machining position PX (coordinate value) from the machining program, and sets the machining position P at the Nth boring machining and the machining position PX at the N + 1th boring machining in the direction of gravity. Compare with respect to (Y direction). In this example, it is assumed that the machining position P and the machining position PX are the same in the direction of gravity. In this case, in step S12, the control device 50 aligns the boring tool 134 only in the X direction while maintaining the locked state of the servomotor 112Y.
 その後、ステップS13において、制御装置50は、N+1回目のボーリング加工を開始し、ワークWの加工位置PXに穴を形成する。 After that, in step S13, the control device 50 starts the N + 1th boring process and forms a hole at the processing position PX of the work W.
 以上のように、制御装置50は、ボーリング工具134をワークWから引き抜く処理が終了した後で、かつ、ワークWの次のボーリング加工を開始する前において、ワークWの前回の加工位置と、ワークWの次の加工位置とが、重力方向において同じ場合には、ブレーキ機構110によるサーボモータ112Yのロック状態を維持する。これにより、制御装置50は、N回目のボーリング加工からN+1回目のボーリング加工に移る際にブレーキ機構110のロックを解除せずに済み、加工時間を短縮することができる。 As described above, the control device 50 sets the previous machining position of the work W and the work before the process of pulling out the boring tool 134 from the work W and before the start of the next boring of the work W. When the next machining position of W is the same in the direction of gravity, the locked state of the servomotor 112Y by the brake mechanism 110 is maintained. As a result, the control device 50 does not have to unlock the brake mechanism 110 when moving from the Nth boring process to the N + 1th boring process, and the processing time can be shortened.
 図5は、N回目のボーリング加工時のボーリング位置と、N+1回目のボーリング加工時のボーリング位置とが、重力方向において異なる場合におけるボーリング加工の流れを示す図である。 FIG. 5 is a diagram showing a flow of boring processing when the boring position at the Nth boring processing and the boring position at the N + 1th boring processing are different in the direction of gravity.
 ステップS21において、ボーリング工具134をワークWから引き抜く処理が終了し、N回目のボーリング加工が終了したとする。図5の例では、N回目のボーリング加工により、ワークWの加工位置Pにおいて穴が形成されている。 It is assumed that in step S21, the process of pulling out the boring tool 134 from the work W is completed, and the Nth boring process is completed. In the example of FIG. 5, a hole is formed at the machining position P of the work W by the Nth boring process.
 加工プログラムにおいて、引き続きボーリング加工を行うように規定されているとする。この場合、制御装置50は、加工プログラムから次の加工位置PY(座標値)を取得し、N回目のボーリング加工時における加工位置Pと、N+1回目のボーリング加工時における加工位置PYとを重力方向に関して比較する。本例では、加工位置Pと加工位置PYとが重力方向において異なっていたとする。この場合、制御装置50は、サーボモータ112Yのロックを解除する。 It is assumed that the processing program stipulates that boring processing should be continued. In this case, the control device 50 acquires the next machining position PY (coordinate value) from the machining program, and sets the machining position P at the Nth boring machining and the machining position PY at the N + 1th boring machining in the direction of gravity. Compare with respect to. In this example, it is assumed that the machining position P and the machining position PY are different in the direction of gravity. In this case, the control device 50 unlocks the servomotor 112Y.
 その後、ステップS22において、制御装置50は、X方向およびY方向についてボーリング工具134の位置合わせを行う。制御装置50は、当該位置合わせが完了したことに基づいて、再び、サーボモータ112Yの送り駆動をロックする。 After that, in step S22, the control device 50 aligns the boring tool 134 in the X direction and the Y direction. The control device 50 locks the feed drive of the servomotor 112Y again based on the completion of the alignment.
 その後、ステップS23において、制御装置50は、N+1回目のボーリング加工を開始し、ワークWの加工位置PYに穴を形成する。 After that, in step S23, the control device 50 starts the N + 1th boring process and forms a hole at the processing position PY of the work W.
 以上のように、制御装置50は、ボーリング工具134をワークWから引き抜く処理が終了した後で、かつ、ワークWの次のボーリング加工を開始する前において、ワークWの前回の加工位置と、ワークWの次の加工位置とが、重力方向において異なる場合には、ブレーキ機構110によるサーボモータ112Yのロック状態を解除する。これにより、制御装置50は、N回目のボーリング加工からN+1回目のボーリング加工に移る際に、重力方向においてボーリング位置を任意に変えることができる。 As described above, the control device 50 sets the previous machining position of the work W and the work before the process of pulling out the boring tool 134 from the work W and before the start of the next boring of the work W. When the next machining position of W is different in the direction of gravity, the locked state of the servomotor 112Y by the brake mechanism 110 is released. As a result, the control device 50 can arbitrarily change the boring position in the direction of gravity when shifting from the Nth boring process to the N + 1th boring process.
 <D.CPUユニット20のハードウェア構成>
 次に、図6を参照して、CPUユニット20のハードウェア構成について説明する。図6は、CPUユニット20のハードウェア構成の一例を示す模式図である。
<D. Hardware configuration of CPU unit 20>
Next, the hardware configuration of the CPU unit 20 will be described with reference to FIG. FIG. 6 is a schematic view showing an example of the hardware configuration of the CPU unit 20.
 CPUユニット20は、プロセッサ51と、ROM(Read Only Memory)52と、RAM(Random Access Memory)53と、通信インターフェイス54と、フィールドバスコントローラ55と、記憶装置70とを含む。これらのコンポーネントは、内部バス59に接続される。 The CPU unit 20 includes a processor 51, a ROM (Read Only Memory) 52, a RAM (Random Access Memory) 53, a communication interface 54, a fieldbus controller 55, and a storage device 70. These components are connected to the internal bus 59.
 プロセッサ51は、たとえば、少なくとも1つの集積回路によって構成される。集積回路は、たとえば、少なくとも1つのCPU(Central Processing Unit)、少なくとも1つのGPU(Graphics Processing Unit)、少なくとも1つのASIC(Application Specific Integrated Circuit)、少なくとも1つのFPGA(Field Programmable Gate Array)、またはそれらの組み合わせなどによって構成され得る。 The processor 51 is composed of, for example, at least one integrated circuit. The integrated circuit is, for example, at least one CPU (Central Processing Unit), at least one GPU (Graphics Processing Unit), at least one ASIC (Application Specific Integrated Circuit), at least one FPGA (Field Programmable Gate Array), or them. It may be composed of a combination of.
 プロセッサ51は、PLCプログラム72などの各種プログラムを実行することでCPUユニット20の動作を制御する。PLCプログラム72は、工作機械10内の各種装置を制御するための命令を規定している。プロセッサ51は、PLCプログラム72の実行命令を受け付けたことに基づいて、記憶装置70またはROM52からRAM53にPLCプログラム72を読み出す。RAM53は、ワーキングメモリとして機能し、PLCプログラム72の実行に必要な各種データを一時的に格納する。 The processor 51 controls the operation of the CPU unit 20 by executing various programs such as the PLC program 72. The PLC program 72 defines instructions for controlling various devices in the machine tool 10. The processor 51 reads the PLC program 72 from the storage device 70 or the ROM 52 into the RAM 53 based on the reception of the execution instruction of the PLC program 72. The RAM 53 functions as a working memory and temporarily stores various data necessary for executing the PLC program 72.
 通信インターフェイス54には、LAN(Local Area Network)やアンテナなどが接続される。CPUユニット20は、通信インターフェイス54を介して外部機器(たとえば、サーバー)とデータをやり取りする。CPUユニット20は、当該外部機器からPLCプログラム72をダウンロードできるように構成されてもよい。 A LAN (Local Area Network), an antenna, or the like is connected to the communication interface 54. The CPU unit 20 exchanges data with an external device (for example, a server) via the communication interface 54. The CPU unit 20 may be configured so that the PLC program 72 can be downloaded from the external device.
 フィールドバスコントローラ55は、フィールドバスに接続される各種ユニットとの通信を実現するためのインターフェイスである。当該フィールドバスに接続されるユニットの一例として、CNCユニット30、I/Oユニット40などが挙げられる。 The fieldbus controller 55 is an interface for realizing communication with various units connected to the fieldbus. Examples of the unit connected to the fieldbus include a CNC unit 30 and an I / O unit 40.
 記憶装置70は、たとえば、ハードディスクやフラッシュメモリなどの記憶媒体である。記憶装置70は、PLCプログラム72などを格納する。PLCプログラム72の格納場所は、記憶装置70に限定されず、プロセッサ51の記憶領域(たとえば、キャッシュメモリなど)、ROM52、RAM53、外部機器(たとえば、サーバー)などに格納されていてもよい。 The storage device 70 is, for example, a storage medium such as a hard disk or a flash memory. The storage device 70 stores the PLC program 72 and the like. The storage location of the PLC program 72 is not limited to the storage device 70, and may be stored in a storage area of the processor 51 (for example, a cache memory), a ROM 52, a RAM 53, an external device (for example, a server), or the like.
 <E.CNCユニット30のハードウェア構成>
 次に、図7を参照して、CNCユニット30のハードウェア構成について説明する。図7は、CNCユニット30のハードウェア構成の一例を示す模式図である。
<E. Hardware configuration of CNC unit 30>
Next, the hardware configuration of the CNC unit 30 will be described with reference to FIG. 7. FIG. 7 is a schematic view showing an example of the hardware configuration of the CNC unit 30.
 CNCユニット30は、プロセッサ101と、ROM102と、RAM103と、通信インターフェイス104と、フィールドバスコントローラ105と、記憶装置120とを含む。これらのコンポーネントは、内部バス109に接続される。 The CNC unit 30 includes a processor 101, a ROM 102, a RAM 103, a communication interface 104, a fieldbus controller 105, and a storage device 120. These components are connected to the internal bus 109.
 プロセッサ101は、たとえば、少なくとも1つの集積回路によって構成される。集積回路は、たとえば、少なくとも1つのCPU、少なくとも1つのGPU、少なくとも1つのASIC、少なくとも1つのFPGA、またはそれらの組み合わせなどによって構成され得る。 The processor 101 is composed of, for example, at least one integrated circuit. An integrated circuit may consist of, for example, at least one CPU, at least one GPU, at least one ASIC, at least one FPGA, or a combination thereof.
 プロセッサ101は、加工プログラム122(制御プログラム)などの各種プログラムを実行することでCNCユニット30の動作を制御する。加工プログラム122は、ワークの加工を実現するための各種命令を規定している。プロセッサ101は、加工プログラム122の実行命令を受け付けたことに基づいて、記憶装置120またはROM102からRAM103に加工プログラム122を読み出す。RAM103は、ワーキングメモリとして機能し、加工プログラム122の実行に必要な各種データを一時的に格納する。 The processor 101 controls the operation of the CNC unit 30 by executing various programs such as the machining program 122 (control program). The machining program 122 defines various instructions for realizing machining of the workpiece. The processor 101 reads the machining program 122 from the storage device 120 or the ROM 102 into the RAM 103 based on the reception of the execution instruction of the machining program 122. The RAM 103 functions as a working memory and temporarily stores various data necessary for executing the machining program 122.
 通信インターフェイス104には、LANやアンテナなどが接続される。CNCユニット30は、通信インターフェイス104を介して外部機器(たとえば、サーバー)とデータをやり取りする。CNCユニット30は、当該外部機器から加工プログラム122をダウンロードできるように構成されてもよい。 A LAN, an antenna, or the like is connected to the communication interface 104. The CNC unit 30 exchanges data with an external device (for example, a server) via the communication interface 104. The CNC unit 30 may be configured so that the machining program 122 can be downloaded from the external device.
 フィールドバスコントローラ105は、フィールドバスに接続される各種ユニットとの通信を実現するためのインターフェイスである。当該フィールドバスに接続されるユニットの一例として、CPUユニット20、I/Oユニット40などが挙げられる。 The fieldbus controller 105 is an interface for realizing communication with various units connected to the fieldbus. Examples of units connected to the fieldbus include a CPU unit 20, an I / O unit 40, and the like.
 記憶装置120は、たとえば、ハードディスクやフラッシュメモリなどの記憶媒体である。記憶装置120は、加工プログラム122などを格納する。加工プログラム122の格納場所は、記憶装置120に限定されず、プロセッサ101の記憶領域(たとえば、キャッシュメモリなど)、ROM102、RAM103、外部機器(たとえば、サーバー)などに格納されていてもよい。 The storage device 120 is, for example, a storage medium such as a hard disk or a flash memory. The storage device 120 stores the machining program 122 and the like. The storage location of the processing program 122 is not limited to the storage device 120, and may be stored in a storage area of the processor 101 (for example, a cache memory), a ROM 102, a RAM 103, an external device (for example, a server), or the like.
 加工プログラム122は、単体のプログラムとしてではなく、任意のプログラムの一部に組み込まれて提供されてもよい。この場合、加工プログラム122による加工処理は、任意のプログラムと協働して実現される。このような一部のモジュールを含まないプログラムであっても、本実施の形態に従う加工プログラム122の趣旨を逸脱するものではない。さらに、加工プログラム122によって提供される機能の一部または全部は、専用のハードウェアによって実現されてもよい。さらに、少なくとも1つのサーバーが加工プログラム122の処理の一部を実行する所謂クラウドサービスのような形態で工作機械10が構成されてもよい。 The machining program 122 may be provided by being incorporated into a part of an arbitrary program, not as a single program. In this case, the machining process by the machining program 122 is realized in cooperation with an arbitrary program. Even a program that does not include such a part of the modules does not deviate from the purpose of the machining program 122 according to the present embodiment. Further, some or all of the functions provided by the machining program 122 may be realized by dedicated hardware. Further, the machine tool 10 may be configured in the form of a so-called cloud service in which at least one server executes a part of the processing of the machining program 122.
 <F.工作機械10の機能構成>
 図8を参照して、工作機械10の機能構成について説明する。図8は、工作機械10の機能構成の一例を示す図である。
<F. Functional configuration of machine tool 10>
The functional configuration of the machine tool 10 will be described with reference to FIG. FIG. 8 is a diagram showing an example of the functional configuration of the machine tool 10.
 工作機械10は、主要なハードウェア構成として、制御装置50と、回転駆動部160と、位置駆動部162と、ブレーキ機構110とを含む。制御装置50は、たとえば、CPUユニット20と、CNCユニット30とで構成される。 The machine tool 10 includes a control device 50, a rotary drive unit 160, a position drive unit 162, and a brake mechanism 110 as main hardware configurations. The control device 50 is composed of, for example, a CPU unit 20 and a CNC unit 30.
 回転駆動部160は、主軸132(図1参照)の回転を制御する機構である。一例として、回転駆動部160は、上述のサーボドライバ111R(図1参照)と、上述のサーボモータ112R(図1参照)とで構成される。 The rotation drive unit 160 is a mechanism for controlling the rotation of the spindle 132 (see FIG. 1). As an example, the rotation drive unit 160 includes the above-mentioned servo driver 111R (see FIG. 1) and the above-mentioned servomotor 112R (see FIG. 1).
 位置駆動部162は、主軸132と上述のテーブル136(図1参照)との少なくとも一方の位置を移動することで、ワークに対するボーリング工具134の相対位置を変化させる機構である。一例として、位置駆動部162は、上述のサーボドライバ111X~111Z(図1参照)と、上述のサーボモータ112X~112Z(図1参照)とで構成される。 The position drive unit 162 is a mechanism for changing the relative position of the boring tool 134 with respect to the work by moving at least one position of the spindle 132 and the above-mentioned table 136 (see FIG. 1). As an example, the position drive unit 162 includes the above-mentioned servo drivers 111X to 111Z (see FIG. 1) and the above-mentioned servo motors 112X to 112Z (see FIG. 1).
 CNCユニット30は、機能構成として、加工制御部152と、ブレーキ制御部154とを含む。 The CNC unit 30 includes a machining control unit 152 and a brake control unit 154 as functional configurations.
 加工制御部152は、予め定められた加工プログラム122に従って、サーボドライバ111R,111X~111Zを制御し、ワークを加工する。 The machining control unit 152 controls the servo drivers 111R, 111X to 111Z according to a predetermined machining program 122 to machine the workpiece.
 ブレーキ制御部154は、加工プログラム122で実行中の命令に応じて、ブレーキ機構110を有効にするためのロック指令や、ブレーキ機構110を無効にするためのロック解除指令などをCPUユニット20に出力する。ロック指令やロック解除指令は、たとえば、CPUユニット20におけるPLCプログラム72に入力される。 The brake control unit 154 outputs a lock command for enabling the brake mechanism 110, a lock release command for disabling the brake mechanism 110, and the like to the CPU unit 20 in response to a command being executed by the machining program 122. To do. The lock command and the lock release command are input to, for example, the PLC program 72 in the CPU unit 20.
 また、ブレーキ制御部154は、ワークのボーリング加工中において工作機械10が異常停止した場合には、ブレーキ機構110のロックを有効にし、重力方向の送り駆動を担うサーボモータ112Yのロックを維持する。検知対象の異常は、たとえば、地震の発生や停電などである。地震は、たとえば、工作機械10に搭載される加速度センサの出力値が所定値を超えたことに基づいて検知される。停電は、たとえば、工作機械10に搭載される停電検知回路によって検知される。異常発生時において、サーボモータ112Yのロックを維持することで、ボーリング工具134の落下をより確実に防ぐことができる。 Further, the brake control unit 154 enables the lock of the brake mechanism 110 when the machine tool 10 stops abnormally during the boring process of the work, and maintains the lock of the servomotor 112Y which is responsible for the feed drive in the gravity direction. The abnormality to be detected is, for example, the occurrence of an earthquake or a power outage. An earthquake is detected, for example, based on the fact that the output value of an acceleration sensor mounted on the machine tool 10 exceeds a predetermined value. The power failure is detected by, for example, a power failure detection circuit mounted on the machine tool 10. By maintaining the lock of the servomotor 112Y when an abnormality occurs, it is possible to more reliably prevent the boring tool 134 from falling.
 PLCプログラム72は、CNCユニット30からロック解除指令を受けた場合には、ブレーキ機構110によるサーボモータ112Yのロックを無効にする。より具体的には、CPUユニット20は、ブレーキ機構110への電力の供給を開始し、ブレーキ機構110のコイルに電磁力を発生させる。当該電磁力により、ブレーキがサーボモータ112Yから離れ、サーボモータ112Yが回転可能となる。 The PLC program 72 invalidates the lock of the servomotor 112Y by the brake mechanism 110 when the lock release command is received from the CNC unit 30. More specifically, the CPU unit 20 starts supplying electric power to the brake mechanism 110 and generates an electromagnetic force in the coil of the brake mechanism 110. Due to the electromagnetic force, the brake is separated from the servomotor 112Y, and the servomotor 112Y can rotate.
 一方で、PLCプログラム72は、PLCプログラム72は、CNCユニット30からロック指令を受けた場合には、ブレーキ機構110によるサーボモータ112Yのロックを有効にする。より具体的には、CPUユニット20は、ブレーキ機構110への電力の供給を停止し、ブレーキ機構110のコイルに発生している電磁力を消失させる。当該電磁力が消失すると、ブレーキがサーボモータ112Yに接触し、サーボモータ112Yが回転不可能となる。 On the other hand, the PLC program 72 enables the PLC program 72 to lock the servomotor 112Y by the brake mechanism 110 when a lock command is received from the CNC unit 30. More specifically, the CPU unit 20 stops the supply of electric power to the brake mechanism 110 and eliminates the electromagnetic force generated in the coil of the brake mechanism 110. When the electromagnetic force disappears, the brake comes into contact with the servomotor 112Y, and the servomotor 112Y cannot rotate.
 <G.ボーリング加工に係るフローチャート>
 図9を参照して、ボーリング加工のフローについて説明する。図9は、ボーリング加工の流れを示すフローチャートである。
<G. Flowchart related to boring process>
The flow of boring processing will be described with reference to FIG. FIG. 9 is a flowchart showing the flow of boring processing.
 図9に示される処理は、工作機械10の制御装置50(典型的には、CNCユニット30のプロセッサ101)が上述の加工プログラム122(図8参照)を実行することにより実現される。他の局面において、処理の一部または全部が、回路素子またはその他のハードウェアによって実行されてもよい。 The process shown in FIG. 9 is realized by the control device 50 of the machine tool 10 (typically, the processor 101 of the CNC unit 30) executing the above-mentioned machining program 122 (see FIG. 8). In other aspects, some or all of the processing may be performed by circuit elements or other hardware.
 制御装置50は、加工プログラム122に規定されるボーリング加工命令が実行されると、図9に示される各ステップの処理を順次実行する。 When the boring machining command specified in the machining program 122 is executed, the control device 50 sequentially executes the processing of each step shown in FIG.
 より具体的には、ステップS110において、制御装置50は、ボーリング工具134の現在位置と、次のボーリング加工時におけるワークWの加工位置(すなわち、ボーリング位置)とが、重力方向において同じであるか否かを判断する。制御装置50は、ボーリング工具134の現在位置と、次のボーリング加工時におけるボーリング位置とが、重力方向において同じであると判断した場合(ステップS110においてYES)、制御をステップS112に切り替える。そうでない場合には(ステップS110においてNO)、制御装置50は、制御をステップS114に切り替える。 More specifically, in step S110, in the control device 50, is the current position of the boring tool 134 and the machining position of the work W (that is, the boring position) at the time of the next boring machining the same in the direction of gravity? Judge whether or not. When the control device 50 determines that the current position of the boring tool 134 and the boring position at the time of the next boring process are the same in the direction of gravity (YES in step S110), the control device 50 switches the control to step S112. If not (NO in step S110), the control device 50 switches control to step S114.
 ステップS112において、制御装置50は、加工プログラム122の現在の実行行に規定される加工開始位置に向けてボーリング工具134を送り駆動する。このとき、制御装置50は、重力方向(Y方向)にはボーリング工具134を送り駆動する必要がないので、X方向についてのみボーリング工具134を送り駆動する。 In step S112, the control device 50 feeds and drives the boring tool 134 toward the machining start position defined in the current execution line of the machining program 122. At this time, since it is not necessary for the control device 50 to feed and drive the boring tool 134 in the gravity direction (Y direction), the control device 50 feeds and drives the boring tool 134 only in the X direction.
 ステップS114において、制御装置50は、ブレーキ機構110によるサーボモータ112Yのロックを解除し、主軸132を重力方向に送り駆動できる状態にする。 In step S114, the control device 50 unlocks the servomotor 112Y by the brake mechanism 110 so that the spindle 132 can be fed and driven in the direction of gravity.
 ステップS116において、制御装置50は、加工プログラム122の現在の実行行に規定される加工開始位置に向けてボーリング工具134を送り駆動する。このとき、制御装置50は、X方向およびY方向についてボーリング工具134を送り駆動する。 In step S116, the control device 50 feeds and drives the boring tool 134 toward the machining start position defined in the current execution line of the machining program 122. At this time, the control device 50 feeds and drives the boring tool 134 in the X direction and the Y direction.
 ステップS118において、制御装置50は、ブレーキ機構110を制御し、サーボモータ112Yの送り駆動をロックする。これにより、ボーリング工具134は、重力方向(Y方向)において不動となる。 In step S118, the control device 50 controls the brake mechanism 110 and locks the feed drive of the servomotor 112Y. As a result, the boring tool 134 becomes immobile in the direction of gravity (Y direction).
 ステップS120において、制御装置50は、サーボモータ112Rおよびサーボモータ112Zを制御し、ボーリング工具134を回転駆動しながらZ方向に送り駆動する。これにより、ワークのボーリング加工が開始される。 In step S120, the control device 50 controls the servomotor 112R and the servomotor 112Z, and feeds and drives the boring tool 134 in the Z direction while rotationally driving it. As a result, boring of the work is started.
 ステップS122において、ワークのボーリング加工が完了したとする。このことに基づいて、制御装置50は、制御装置50は、サーボモータ112Xを制御することでX方向にボーリング工具134を送り駆動し、ワークWとボーリング工具134との接触を解消する。 It is assumed that the boring process of the work is completed in step S122. Based on this, the control device 50 feeds and drives the boring tool 134 in the X direction by controlling the servomotor 112X, and eliminates the contact between the work W and the boring tool 134.
 ステップS124において、制御装置50は、サーボモータ112Zを制御し、ボーリング工具134をワークから引き抜く。 In step S124, the control device 50 controls the servomotor 112Z and pulls out the boring tool 134 from the work.
 <H.まとめ>
 以上のように、工作機械10は、ボーリング加工が終了した際に、ボーリング工具134をX方向に送り駆動し、ワークWとボーリング工具134との接触を解消する。これにより、ボーリング工具134がワークWから引き抜かれる際に、サーボモータ112Yのロックを解除する必要がなくなる。その結果、工作機械10は、加工時間を短縮することができ、かつ、停電やエラーなどに伴うボーリング工具134の落下を確実に防ぐことができる。
<H. Summary>
As described above, when the boring process is completed, the machine tool 10 feeds and drives the boring tool 134 in the X direction to eliminate the contact between the work W and the boring tool 134. This eliminates the need to unlock the servomotor 112Y when the boring tool 134 is pulled out of the work W. As a result, the machine tool 10 can shorten the machining time and can surely prevent the boring tool 134 from falling due to a power failure or an error.
 また、ボーリング工具134とワークWとの接触が解消された上で、ボーリング工具134がワークWから引き抜かれるので、ボーリング工具134がワークWを傷付けずに済み、かつ、ボーリング工具134の破損も防がれる。 Further, since the boring tool 134 is pulled out from the work W after the contact between the boring tool 134 and the work W is eliminated, the boring tool 134 does not damage the work W and the boring tool 134 is prevented from being damaged. It comes off.
 今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。 It should be considered that the embodiments disclosed this time are exemplary in all respects and are not restrictive. The scope of the present invention is shown by the claims rather than the above description, and it is intended that all modifications within the meaning and scope equivalent to the claims are included.
 10 工作機械、20 CPUユニット、30 CNCユニット、40 I/Oユニット、50 制御装置、51,101 プロセッサ、52,102 ROM、53,103 RAM、54,104 通信インターフェイス、55,105 フィールドバスコントローラ、59,109 内部バス、70,120 記憶装置、72 PLCプログラム、110 ブレーキ機構、111R,111X,111Y,111Z サーボドライバ、112R,112X,112Y,112Z サーボモータ、113 移動体、122 加工プログラム、131 主軸頭、132 主軸、133 ハウジング、134 ボーリング工具、136 テーブル、152 加工制御部、154 ブレーキ制御部、160 回転駆動部、162 位置駆動部。 10 machine tools, 20 CPU units, 30 CNC units, 40 I / O units, 50 control devices, 51,101 processors, 52,102 ROMs, 53,103 RAMs, 54,104 communication interfaces, 55,105 fieldbus controllers, 59,109 internal bus, 70,120 storage device, 72 PLC program, 110 brake mechanism, 111R, 111X, 111Y, 111Z servo driver, 112R, 112X, 112Y, 112Z servo motor, 113 moving body, 122 machining program, 131 spindle Head, 132 spindle, 133 housing, 134 boring tool, 136 table, 152 machining control unit, 154 brake control unit, 160 rotation drive unit, 162 position drive unit.

Claims (7)

  1.  工作機械であって、
     ワークのボーリング加工に用いられる工具を取り付けることが可能な主軸と、
     前記ワークを固定するためのテーブルと、
     前記主軸を回転駆動するための回転駆動部と、
     前記主軸および前記テーブルの少なくとも一方の位置を移動することで、前記ワークに対する前記工具の相対位置を変化させるための位置駆動部とを備え、
     前記位置駆動部は、
      前記相対位置を水平方向に変化させるための第1モータと、
      前記相対位置を重力方向に変化させるための第2モータと、
      前記相対位置を前記水平方向と前記重力方向との両方に直交する方向に変化させるための第3モータとを含み、
     前記第2モータの駆動をロックするためのブレーキ機構と、
     前記工作機械を制御するための制御装置とをさらに備え、
     前記制御装置は、
      前記第1モータおよび前記第2モータを制御し、所定の加工開始位置に前記工具を移動する処理と、
      前記加工開始位置に前記工具を移動する処理が完了した後に前記ブレーキ機構を制御し、前記第2モータの駆動をロックする処理と、
      前記第2モータのロックを維持した状態で前記回転駆動部および前記第3モータを制御し、前記ワークのボーリング加工を実行する処理と、
      前記ワークのボーリング加工が完了した後に前記第1モータを制御し、前記第2モータのロックを維持した状態で前記ワークと前記工具との接触を解消する処理と、
      前記解消する処理が完了した後に前記第3モータを制御し、前記第2モータのロックを維持した状態で前記ワークから前記工具を引き抜く処理とを実行する、工作機械。
    It ’s a machine tool,
    A spindle to which tools used for boring of workpieces can be attached,
    A table for fixing the work and
    A rotary drive unit for rotationally driving the spindle and
    A position driving unit for changing the relative position of the tool with respect to the work by moving at least one position of the spindle and the table is provided.
    The position drive unit
    A first motor for changing the relative position in the horizontal direction,
    A second motor for changing the relative position in the direction of gravity,
    Including a third motor for changing the relative position in a direction orthogonal to both the horizontal direction and the gravity direction.
    A brake mechanism for locking the drive of the second motor and
    Further equipped with a control device for controlling the machine tool,
    The control device is
    A process of controlling the first motor and the second motor to move the tool to a predetermined machining start position, and
    A process of controlling the brake mechanism and locking the drive of the second motor after the process of moving the tool to the machining start position is completed, and a process of locking the drive of the second motor.
    A process of controlling the rotary drive unit and the third motor while maintaining the lock of the second motor to execute boring of the workpiece.
    A process of controlling the first motor after the boring process of the work is completed and eliminating contact between the work and the tool while maintaining the lock of the second motor.
    A machine tool that controls the third motor after the process of eliminating the problem is completed, and executes a process of pulling out the tool from the work while maintaining the lock of the second motor.
  2.  前記制御装置は、さらに、前記工具を前記ワークから引き抜く処理が終了した後で、かつ、前記ワークの次のボーリング加工を開始する前において、前記ワークの前回の加工位置と、前記ワークの次の加工位置とが、重力方向において異なる場合には、前記第2モータのロックを解除する処理を実行する、請求項1に記載の工作機械。 The control device further performs the previous machining position of the work and the next machining position of the work after the process of pulling out the tool from the work is completed and before the next boring of the work is started. The machine tool according to claim 1, wherein the process of unlocking the second motor is executed when the machining position is different in the direction of gravity.
  3.  前記制御装置は、さらに、前記工具を前記ワークから引き抜く処理が終了した後で、かつ、前記ワークの次のボーリング加工を開始する前において、前記ワークの前回の加工位置と、前記ワークの次の加工位置とが、重力方向において同じ場合には、前記第2モータのロックを維持する処理を実行する、請求項1または2に記載の工作機械。 The control device further performs the previous machining position of the work and the next machining position of the work after the process of pulling out the tool from the work is completed and before the next boring of the work is started. The machine tool according to claim 1 or 2, wherein when the machining positions are the same in the direction of gravity, the process of maintaining the lock of the second motor is executed.
  4.  前記制御装置は、さらに、前記ワークのボーリング加工中において前記工作機械が異常停止した場合には、前記第2モータのロックを維持する処理を実行する、請求項1~3のいずれか1項に記載の工作機械。 According to any one of claims 1 to 3, the control device further executes a process of maintaining the lock of the second motor when the machine tool stops abnormally during the boring process of the work. The machine tool described.
  5.  前記制御装置は、前記ワークのボーリング加工が完了した後で、かつ、前記第1モータを制御する前に、前記工具の刃を重力方向とは異なる方向に向ける処理を実行する、請求項1~4のいずれか1項に記載の工作機械。 The control device executes a process of directing the blade of the tool in a direction different from the direction of gravity after the boring of the work is completed and before controlling the first motor. The machine tool according to any one of 4.
  6.  工作機械の制御方法であって、
     前記工作機械は、
      ワークのボーリング加工に用いられる工具を取り付けることが可能な主軸と、
      前記ワークを固定するためのテーブルと、
      前記主軸を回転駆動するための回転駆動部と、
      前記主軸および前記テーブルの少なくとも一方の位置を移動することで、前記ワークに対する前記工具の相対位置を変化させるための位置駆動部とを備え、
     前記位置駆動部は、
      前記相対位置を水平方向に変化させるための第1モータと、
      前記相対位置を重力方向に変化させるための第2モータと、
      前記相対位置を前記水平方向と前記重力方向との両方に直交する方向に変化させるための第3モータとを含み、
      前記第2モータの駆動をロックするためのブレーキ機構をさらに備え、
     前記制御方法は、
      前記第1モータおよび前記第2モータを制御し、所定の加工開始位置に前記工具を移動するステップと、
      前記移動するステップが完了した後に前記ブレーキ機構を制御し、前記第2モータの駆動をロックするステップと、
      前記第2モータのロックを維持した状態で前記回転駆動部および前記第3モータを制御し、前記ワークのボーリング加工を実行するステップと、
      前記ワークのボーリング加工が完了した後に前記第1モータを制御し、前記第2モータのロックを維持した状態で前記ワークと前記工具との接触を解消するステップと、
      前記解消するステップが完了した後に前記第3モータを制御し、前記第2モータのロックを維持した状態で前記ワークから前記工具を引き抜くステップとを備える、制御方法。
    It is a control method for machine tools.
    The machine tool
    A spindle to which tools used for boring of workpieces can be attached,
    A table for fixing the work and
    A rotary drive unit for rotationally driving the spindle and
    A position driving unit for changing the relative position of the tool with respect to the work by moving at least one position of the spindle and the table is provided.
    The position drive unit
    A first motor for changing the relative position in the horizontal direction,
    A second motor for changing the relative position in the direction of gravity,
    Including a third motor for changing the relative position in a direction orthogonal to both the horizontal direction and the gravity direction.
    A brake mechanism for locking the drive of the second motor is further provided.
    The control method is
    A step of controlling the first motor and the second motor to move the tool to a predetermined machining start position, and
    A step of controlling the brake mechanism and locking the drive of the second motor after the moving step is completed, and a step of locking the drive of the second motor.
    A step of controlling the rotary drive unit and the third motor while maintaining the lock of the second motor to execute boring of the work.
    A step of controlling the first motor after the boring process of the work is completed and releasing the contact between the work and the tool while maintaining the lock of the second motor.
    A control method comprising a step of controlling the third motor after the step of solving the problem is completed and pulling out the tool from the work while maintaining the lock of the second motor.
  7.  工作機械の制御プログラムであって、
     前記工作機械は、
      ワークのボーリング加工に用いられる工具を取り付けることが可能な主軸と、
      前記ワークを固定するためのテーブルと、
      前記主軸を回転駆動するための回転駆動部と、
      前記主軸および前記テーブルの少なくとも一方の位置を移動することで、前記ワークに対する前記工具の相対位置を変化させるための位置駆動部とを備え、
     前記位置駆動部は、
      前記相対位置を水平方向に変化させるための第1モータと、
      前記相対位置を重力方向に変化させるための第2モータと、
      前記相対位置を前記水平方向と前記重力方向との両方に直交する方向に変化させるための第3モータとを含み、
      前記第2モータの駆動をロックするためのブレーキ機構をさらに備え、
     前記制御プログラムは、前記工作機械に、
      前記第1モータおよび前記第2モータを制御し、所定の加工開始位置に前記工具を移動するステップと、
      前記移動するステップが完了した後に前記ブレーキ機構を制御し、前記第2モータの駆動をロックするステップと、
      前記第2モータのロックを維持した状態で前記回転駆動部および前記第3モータを制御し、前記ワークのボーリング加工を実行するステップと、
      前記ワークのボーリング加工が完了した後に前記第1モータを制御し、前記第2モータのロックを維持した状態で前記ワークと前記工具との接触を解消するステップと、
      前記解消するステップが完了した後に前記第3モータを制御し、前記第2モータのロックを維持した状態で前記ワークから前記工具を引き抜くステップとを実行させる、制御プログラム。
    A machine tool control program
    The machine tool
    A spindle to which tools used for boring of workpieces can be attached,
    A table for fixing the work and
    A rotary drive unit for rotationally driving the spindle and
    A position driving unit for changing the relative position of the tool with respect to the work by moving at least one position of the spindle and the table is provided.
    The position drive unit
    A first motor for changing the relative position in the horizontal direction,
    A second motor for changing the relative position in the direction of gravity,
    Including a third motor for changing the relative position in a direction orthogonal to both the horizontal direction and the gravity direction.
    A brake mechanism for locking the drive of the second motor is further provided.
    The control program is applied to the machine tool.
    A step of controlling the first motor and the second motor to move the tool to a predetermined machining start position, and
    A step of controlling the brake mechanism and locking the drive of the second motor after the moving step is completed, and a step of locking the drive of the second motor.
    A step of controlling the rotary drive unit and the third motor while maintaining the lock of the second motor to execute boring of the work.
    A step of controlling the first motor after the boring process of the work is completed and releasing the contact between the work and the tool while maintaining the lock of the second motor.
    A control program that controls the third motor after the step of solving the problem is completed, and executes a step of pulling out the tool from the work while maintaining the lock of the second motor.
PCT/JP2020/023327 2019-06-18 2020-06-15 Machine tool, method for controlling machine tool, and program for controlling machine tool WO2020255902A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080044575.7A CN114007787B (en) 2019-06-18 2020-06-15 Machine tool, control method for machine tool, and control program for machine tool

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-112581 2019-06-18
JP2019112581A JP6678799B1 (en) 2019-06-18 2019-06-18 Machine tool, machine tool control method, and machine tool control program

Publications (1)

Publication Number Publication Date
WO2020255902A1 true WO2020255902A1 (en) 2020-12-24

Family

ID=70057945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023327 WO2020255902A1 (en) 2019-06-18 2020-06-15 Machine tool, method for controlling machine tool, and program for controlling machine tool

Country Status (3)

Country Link
JP (1) JP6678799B1 (en)
CN (1) CN114007787B (en)
WO (1) WO2020255902A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI826888B (en) * 2021-03-19 2023-12-21 日商國際電氣股份有限公司 Management device, data processing method, program, semiconductor device manufacturing method and processing system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61252041A (en) * 1985-04-30 1986-11-10 Toyoda Mach Works Ltd Numerical control machine tool
JPS62246408A (en) * 1986-04-18 1987-10-27 Fanuc Ltd Control method for deep hole drilling cycle
JPH01205907A (en) * 1988-02-08 1989-08-18 Michio Nagaseko Nc control in twist drill feed/return on drilling machine
JPH0486149U (en) * 1990-11-30 1992-07-27
JPH09168909A (en) * 1995-10-31 1997-06-30 Kwan Soon Jang Drive controller of drill tap manufacture machine main spindle
JP2001079731A (en) * 1999-09-10 2001-03-27 Yoshiaki Kakino Control method for numerically controlled (nc) machine tool
JP2003131701A (en) * 2001-10-19 2003-05-09 Fanuc Ltd Servo motor control unit for preventing fall of gravity axis
JP2006082199A (en) * 2004-09-17 2006-03-30 Makino J Kk Tapping tool with drill bit and screw hole machining method
JP2015097045A (en) * 2013-11-15 2015-05-21 ファナック株式会社 Motor controller for protecting tool and workpiece in emergency stop

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0486149A (en) * 1990-07-30 1992-03-18 Hitachi Denshi Ltd Modem speed control system
JP3805635B2 (en) * 2001-03-21 2006-08-02 昭和飛行機工業株式会社 Tanker
JP4272667B2 (en) * 2006-09-21 2009-06-03 日立ビアメカニクス株式会社 Drilling method and laser processing machine
JP5357419B2 (en) * 2007-11-29 2013-12-04 三菱重工業株式会社 Machine Tools
EP3187290B1 (en) * 2014-08-29 2023-08-02 Citizen Watch Co., Ltd. Method for machining a workpiece by a machine tool
JP6562545B2 (en) * 2015-07-14 2019-08-21 Dmg森精機株式会社 lathe
US10744567B2 (en) * 2015-09-10 2020-08-18 Citizen Watch Co., Ltd. Control device for machine tool and machine tool
JP2018185606A (en) * 2017-04-25 2018-11-22 ファナック株式会社 Control device and control method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61252041A (en) * 1985-04-30 1986-11-10 Toyoda Mach Works Ltd Numerical control machine tool
JPS62246408A (en) * 1986-04-18 1987-10-27 Fanuc Ltd Control method for deep hole drilling cycle
JPH01205907A (en) * 1988-02-08 1989-08-18 Michio Nagaseko Nc control in twist drill feed/return on drilling machine
JPH0486149U (en) * 1990-11-30 1992-07-27
JPH09168909A (en) * 1995-10-31 1997-06-30 Kwan Soon Jang Drive controller of drill tap manufacture machine main spindle
JP2001079731A (en) * 1999-09-10 2001-03-27 Yoshiaki Kakino Control method for numerically controlled (nc) machine tool
JP2003131701A (en) * 2001-10-19 2003-05-09 Fanuc Ltd Servo motor control unit for preventing fall of gravity axis
JP2006082199A (en) * 2004-09-17 2006-03-30 Makino J Kk Tapping tool with drill bit and screw hole machining method
JP2015097045A (en) * 2013-11-15 2015-05-21 ファナック株式会社 Motor controller for protecting tool and workpiece in emergency stop

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI826888B (en) * 2021-03-19 2023-12-21 日商國際電氣股份有限公司 Management device, data processing method, program, semiconductor device manufacturing method and processing system

Also Published As

Publication number Publication date
JP2020204933A (en) 2020-12-24
JP6678799B1 (en) 2020-04-08
CN114007787B (en) 2023-11-10
CN114007787A (en) 2022-02-01

Similar Documents

Publication Publication Date Title
JP5253493B2 (en) Machining method and machine tool
JP5008674B2 (en) Method for reducing vibration generated during machining of machine elements or workpieces
WO2012101789A1 (en) Numerical control device
US20180129190A1 (en) Machine tool and parameter adjustment method therefor
JP6407810B2 (en) Machining system that adjusts machining tool rotation speed and workpiece feed speed
TWM543137U (en) Tool servo control system
US9631632B2 (en) Impeller having blade having blade surface made up of line elements and method of machining the impeller
WO2020255902A1 (en) Machine tool, method for controlling machine tool, and program for controlling machine tool
JP6814458B2 (en) Collision detection device for machine tools equipped with a contact release device
JP4362095B2 (en) Numerical controller
JP7448637B2 (en) Machine tool control device, control system, and control method
WO1988002676A1 (en) Polygon manufacturing tool
JPH0857738A (en) Loader device
US20140364993A1 (en) Control method for machine tool
JP2011161542A (en) Machine tool and polygon machining method
WO2022149322A1 (en) Machine tool, method for estimating force acting on tool, and program for estimating force acting on tool
JP6756601B2 (en) Control device and control method for machine tools with C-axis function
JPH11202926A (en) Method and device for feed speed control in numerical control
JP7085076B1 (en) Machine tools, control methods, and control programs
US20190391565A1 (en) Numerical controller
JP6640822B2 (en) Numerical control unit
WO2022202601A1 (en) Machine tool, machine tool control method, and machine tool control program
JP2004030422A (en) Control method for machine tool equipped with rotary tool turret
JP6919427B2 (en) Machine tools, machine tool control methods, and machine tool control programs
JP7128975B1 (en) Machine tool, control method and control program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20826159

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20826159

Country of ref document: EP

Kind code of ref document: A1