JPS62246408A - Control method for deep hole drilling cycle - Google Patents

Control method for deep hole drilling cycle

Info

Publication number
JPS62246408A
JPS62246408A JP8964386A JP8964386A JPS62246408A JP S62246408 A JPS62246408 A JP S62246408A JP 8964386 A JP8964386 A JP 8964386A JP 8964386 A JP8964386 A JP 8964386A JP S62246408 A JPS62246408 A JP S62246408A
Authority
JP
Japan
Prior art keywords
load
spindle
axis
deep hole
return operation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8964386A
Other languages
Japanese (ja)
Inventor
Shinichi Isobe
磯部 信一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP8964386A priority Critical patent/JPS62246408A/en
Publication of JPS62246408A publication Critical patent/JPS62246408A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q16/00Equipment for precise positioning of tool or work into particular locations not otherwise provided for
    • B23Q16/003Equipment for precise positioning of tool or work into particular locations not otherwise provided for with means to return a tool back, after its withdrawal movement, to the previous working position

Abstract

PURPOSE:To eliminate a wasteful return operation and enable quick machining by making return control on the understanding that chips have accumulated, when the actual load value of a spindle has exceeded an initial load multiplied by a predetermined value. CONSTITUTION:A load detecting means 21 for a spindle Amp 20 detects an actual load working on a spindle 44 and outputs the load to an NC device 10. And the load comparator 14 of the NC device 10 reads out an initial load stored in a memory means 13 and compares an actual load with a value resulting from the initial load multiplied by a predetermined value. If the actual load has exceeded the initial load so multiplied, the comparator 14 detects the load on the understanding that chips from a drill 45 have accumulated, outputs a return signal 'OC' to a return operation control means 15 and makes a return operation for a Z-axis via a control means 11, a servo Amp 30 and a Z-axis feed motor 41, thereby eliminating a wasteful return operation and enabling quick machining.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は数値制御工作機械における深穴ドリルサイクル
制御方式に関し、特に、スピンドルの負荷を検出して戻
し動作をするようにした深穴ドリルサイクル制御方式に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a deep hole drill cycle control method in a numerically controlled machine tool, and in particular, a deep hole drill cycle in which the spindle load is detected and the return operation is performed. Regarding control method.

〔従来の技術〕[Conventional technology]

数値制御工作機械で深穴ドリル加工を行うにはJISで
決められたGコードを用いる方式が使用されている。
To perform deep hole drilling with a numerically controlled machine tool, a method using G codes determined by JIS is used.

この例を第4図に示す。第4図はJIS  B6314
における固定サイクル(Ga4)の加工例を示す図であ
る。図において、45はドリルであり、点線はドリル示
早送りで、実線は切削送りで動くことを表し、qは一回
当たりの切込量を表す。図のようにドリル45はXY方
向の位置決めを早送りで行い、Z軸方向に穴加工開始点
上早送りで下降し、一定量(q)切削加工を行い、切り
屑を排除するために一旦加工開始点まで上昇し、さらに
加工中断点まで早送りで下降して次の加工を行う。この
ように何度も間欠送りをおこなって加工を完了する。こ
のような加ニブログラムは国際規格130 1056、
米国規格EIA  R3−274にも規定され広く使用
されている。
An example of this is shown in FIG. Figure 4 is JIS B6314
It is a figure which shows the processing example of the fixed cycle (Ga4) in. In the figure, 45 is a drill, the dotted line indicates rapid traverse of the drill, the solid line indicates movement by cutting feed, and q indicates the depth of cut per operation. As shown in the figure, the drill 45 performs positioning in the X and Y directions with rapid traverse, then descends in the Z-axis direction with rapid traverse above the hole drilling start point, performs a certain amount (q) of cutting, and once starts machining to remove chips. The machine moves up to the point, then descends in rapid traverse to the machining interruption point, and performs the next machining. Machining is completed by performing intermittent feeding many times in this way. Such a Canadian program conforms to International Standard 130 1056,
It is also specified in the American standard EIA R3-274 and is widely used.

第5図に同様な加ニブログラムの例を示す。第5図の加
工例ではドリルが加工開始点まで戻らず、一定量(d)
のみ戻る点が第4図の加工例と異なる。
FIG. 5 shows an example of a similar Canadian program. In the machining example shown in Figure 5, the drill does not return to the machining start point, and a certain amount (d)
This differs from the processing example shown in FIG. 4 in that only the curvature returns.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、このような方式は広く使用され、有用な方式で
あるが、プログラマ−は常に、安全を見込んで切込量を
設定せざるを得ない。その結果ドリルは必要以上の下降
、上昇動作を行うこととなり、その分加工時間が長くな
る。さらに、プログラマ−は加工時間を短くするために
切込量(q)を出来るだけ太き(しなければならないが
、一方、安全上切込量(q)は太き(取る必要があり、
切込量を決めるには相当の知識と経験を必要とし、その
分プログラマ−に負担がかかるという問題があった・ 本発明の目的は上記問題点を解決し、実際に切屑の排除
が必要になった場合にのみドリルを上昇させるように構
成した深穴ドリルサイクル制御方式を提供することにあ
る。
However, while such a system is widely used and useful, the programmer must always set the depth of cut with safety in mind. As a result, the drill has to perform lowering and raising operations more than necessary, and the machining time increases accordingly. Furthermore, the programmer must make the depth of cut (q) as thick as possible in order to shorten the machining time;
Determining the depth of cut requires a considerable amount of knowledge and experience, which places a burden on the programmer.The purpose of the present invention is to solve the above-mentioned problems and to eliminate the need for actually removing chips. To provide a deep hole drilling cycle control system configured to raise a drill only when the

〔問題を解決するための手段〕[Means to solve the problem]

本発明では上記問題点を解決するために少なくともXY
テーブルとZ軸を制御するする軸制御手段と、スピンド
ルを制御するスピンドル制御手段を備えてなる深穴ドリ
ルサイクル制御方式において、 ドリルサイクル中の該スピンドルの負荷を検出する負荷
検出手段と、該負荷検出手段によって検出された前記ス
ピンドルの初期負荷を記憶する初期負荷記憶手段と、記
憶された前記スピンドルの初期負荷に一定値を乗じた値
とスピンドルの実負荷を比較する負荷比較手段と、該実
負荷が前記初期負荷に一定数を乗じた値を越えたときZ
軸の戻し工程を行うように制御する戻し動作制御手段と
、を有することを特徴とする深穴ドリルサイクル制御方
式が 提供される。
In order to solve the above problems, the present invention provides at least XY
A deep hole drill cycle control method comprising an axis control means for controlling a table and a Z-axis, and a spindle control means for controlling a spindle, comprising: a load detection means for detecting a load on the spindle during a drill cycle; initial load storage means for storing the initial load of the spindle detected by the detection means; load comparison means for comparing the stored initial load of the spindle multiplied by a constant value with the actual load of the spindle; When the load exceeds the initial load multiplied by a certain number, Z
A deep hole drill cycle control system is provided, comprising a return operation control means for controlling a shaft return process.

〔作用〕[Effect]

加工開始点近傍では切屑の排除は順調に行われわれるの
で、スピンドルの初期負荷は実際の加工のための切削負
荷のみである。
Since chips are removed smoothly near the machining start point, the initial load on the spindle is only the cutting load for actual machining.

これに対し、実負荷は加工負荷に切屑の溜まったための
負荷が加算される。
On the other hand, the actual load is the machining load plus the load due to the accumulation of chips.

従って、スピンドルの初期負荷と実負荷を比較して実負
荷の値が初期負荷に一定値を乗じた値を越えたときは切
屑が溜まってきたことを表すのでこれを検出して、戻し
制御を行う。初期負荷に対して一定値を乗じるのは切屑
に無関係な負荷変動やノイズの影響を排除するためであ
る。
Therefore, when the initial load of the spindle and the actual load are compared, and the actual load value exceeds the value obtained by multiplying the initial load by a certain value, this indicates that chips have accumulated, so this is detected and the return control is performed. conduct. The reason for multiplying the initial load by a constant value is to eliminate the influence of load fluctuations and noise unrelated to chips.

〔実施例〕〔Example〕

以下本発明の一実施例を図面に基ずいて説明する。 An embodiment of the present invention will be described below based on the drawings.

第1図に本発明の一実施例のブロック構成図を示す。図
において、10は数値制御装置(CNC)であり、軸制
御手段11、スピンドル制御手段12、初期負荷記憶手
段13、負荷比較手段14、戻し動作制御手段15を有
する。軸制御手段11は軸指令信号を受け、XYテーブ
ル、Z軸の移動指令信号を出力する。スピンドル制御手
段12は数値制御装置lO内部のスピンドル指令信号を
受けてスピンドルモータを駆動するための速度指令信号
を出力する。初期負荷記憶手段13は穴加工の最初の切
屑が外部に順調に排除されておりドリル加工のための切
削負荷のみがかかっている状態での負荷(本実施例では
負荷電流)を記憶する。負荷比較手段14は加工の初期
負荷電流と実際の実負荷電流とを比較し、実負荷電流が
初期負荷電流値に一定数を乗じた値を越えたとき、戻し
動作制御手段15へ信号OCを出す。戻し動作制御手段
15は負荷比較手段14からの信号OCを受けて、Z軸
の戻し動作を行う。
FIG. 1 shows a block diagram of an embodiment of the present invention. In the figure, numeral 10 denotes a numerical control device (CNC), which includes axis control means 11, spindle control means 12, initial load storage means 13, load comparison means 14, and return operation control means 15. The axis control means 11 receives the axis command signals and outputs movement command signals for the XY table and the Z axis. The spindle control means 12 receives a spindle command signal inside the numerical control device IO and outputs a speed command signal for driving the spindle motor. The initial load storage means 13 stores the load (load current in this embodiment) in a state in which the first chips of hole drilling have been smoothly removed to the outside and only the cutting load for drilling is applied. The load comparison means 14 compares the initial load current of machining with the actual actual load current, and when the actual load current exceeds a value obtained by multiplying the initial load current value by a certain number, it sends a signal OC to the return operation control means 15. put out. The return operation control means 15 receives the signal OC from the load comparison means 14 and performs a Z-axis return operation.

20はスピンドルアンプであり、スピンドル制御手段1
2からの速度指令信号を受けて後述のスピンドルモータ
42を駆動する。又、負荷比較手段21を内蔵し、負荷
比較手段21は後述のスピンドルモータ42の負荷電流
を検出して、初期負荷記憶手段13と負荷比較手段14
へ出力する。
20 is a spindle amplifier, and spindle control means 1
In response to a speed command signal from 2, a spindle motor 42, which will be described later, is driven. Further, a load comparison means 21 is built in, and the load comparison means 21 detects a load current of a spindle motor 42, which will be described later, and stores the initial load storage means 13 and the load comparison means 14.
Output to.

30はサーボアンプであり軸制御手段11からの指令に
よって、Z軸の送りモータ41を駆動する。機械のXY
テーブルを駆動するX軸送りモータ、Y輸送リモータを
駆動するサーボアンプは省略しである。
30 is a servo amplifier which drives the Z-axis feed motor 41 in response to commands from the axis control means 11. Machine XY
The X-axis feed motor that drives the table and the servo amplifier that drives the Y transport remoter are omitted.

40はドリル加工を行うマシニングセンタ等の機械であ
り、Z軸を駆動するZ軸用送りモータ41、スピンドル
を駆動するスピンドルモータ42、Z軸43、スピンド
ル44、ドリル加工を行うドリル45、加工すべきワー
ク46、XYの位置決めをするXYテーブル47等から
構成されている。
Reference numeral 40 denotes a machine such as a machining center that performs drilling, including a Z-axis feed motor 41 that drives the Z-axis, a spindle motor 42 that drives the spindle, a Z-axis 43, a spindle 44, a drill 45 that performs drilling, and a It consists of a workpiece 46, an XY table 47 for XY positioning, and the like.

次に、本実施例の動作について、フローチャート図を基
に述べる。第2図に本実施例のフローチャート図を示す
。図において、ステップはSl、S2、S3のように表
す。
Next, the operation of this embodiment will be described based on a flow chart. FIG. 2 shows a flowchart of this embodiment. In the figure, steps are represented as Sl, S2, and S3.

Slではまずドリルが穴加工開始点まで早送りでアプロ
ーチする。
In Sl, the drill first approaches the hole drilling start point in rapid traverse.

S2ではドリル加工の開始が行われる。実際にスピンド
ル44の回転が開始される。
In S2, drilling is started. Rotation of the spindle 44 is actually started.

S3ではドリルが切り込まれ一定時間初期負倚電流が測
定し、読み取り、初期負荷記憶手段13に記憶される。
In S3, the drill is cut in, and the initial negative current is measured for a certain period of time, read, and stored in the initial load storage means 13.

S4ではドリルが穴底に達したか否かが判断される。Y
ESのときはS9へ進みドリルはドリル加工開始点へ戻
り加工は終了する。NOのときは次の85へ進む。
In S4, it is determined whether the drill has reached the bottom of the hole. Y
If it is ES, the process advances to S9 and the drill returns to the drilling start point and the machining ends. If NO, proceed to the next step 85.

S5では実負荷電流(I3)と初期負荷電流(xr)に
一定数(α)を掛けたもの(α・工、)が比較される。
In S5, the actual load current (I3) and the initial load current (xr) multiplied by a constant number (α) are compared.

この一定数(α)は約1.1〜1.2程度の値が一般的
である。勿論この値はワークの材質、加工条件等によっ
て異なる。負荷電流がこの値(α・I、)より小さいと
きはS4へもどる。負荷電流の値がこの値(α・If)
より大きい時はS6へ進む。
This constant number (α) generally has a value of about 1.1 to 1.2. Of course, this value varies depending on the material of the workpiece, processing conditions, etc. When the load current is smaller than this value (α·I,), the process returns to S4. The value of the load current is this value (α・If)
If it is larger, proceed to S6.

S6では負荷電流(11)が初期電流(If)に一定数
(α)、を乗じた値(α・If)より大である場合であ
り、戻し動作制御手段15によって戻し動作が行われる
。戻し動作は一定量の場合と、穴加工開始点まで戻る場
合とがあり、数値制御装置内部のパラメータ等により切
り換えることができる。戻し動作が終了すると87へ進
む。
In S6, the load current (11) is larger than the value (α·If) obtained by multiplying the initial current (If) by a constant number (α), and the return operation control means 15 performs the return operation. The return operation can be a fixed amount or return to the starting point of hole machining, and can be switched by parameters etc. inside the numerical control device. When the return operation is completed, the process advances to 87.

S7では加工中断点まで早送りで戻り、ドリル加工を再
開し、次に、S4へ戻る。
In S7, the process rapidly returns to the machining interruption point, resumes drilling, and then returns to S4.

このように、初期電流に一定数を乗じた値と実負荷電流
を比較し、実負荷電流の値がこの値を越えたとき、即ち
、切り屑が詰まってきた場合のみ戻し動作をさせるので
、無駄な戻し動作が不要となり、加工速度が早くなり、
又、プログラムも容易となる。
In this way, the value obtained by multiplying the initial current by a certain number is compared with the actual load current, and the return operation is performed only when the value of the actual load current exceeds this value, that is, when chips become clogged. There is no need for unnecessary return movements, and machining speed is increased.
Also, programming becomes easier.

次に、本実施例のハードウェアの構成を図面に基ずいて
述べる。第3図に本実施1例のハードウェアのブロック
構成図を示す。図において、■は全体を制御するCPU
、2は制御プログラムを記憶させたROM、3は各種の
パラメータ、データを記憶するRAM、4はデータを表
示するCRT、5はデータを入力するためのキーボード
、6はテープリーグ等の入カニニットであり、7は外部
との信号のやりとりを行うインターフェイス、51は機
械の操作を行うための機械操作盤である。
Next, the hardware configuration of this embodiment will be described based on the drawings. FIG. 3 shows a block diagram of the hardware of the first embodiment. In the figure, ■ is the CPU that controls the whole
, 2 is a ROM that stores control programs, 3 is a RAM that stores various parameters and data, 4 is a CRT that displays data, 5 is a keyboard for inputting data, and 6 is an input unit such as a tape league. 7 is an interface for exchanging signals with the outside, and 51 is a machine operation panel for operating the machine.

8は軸制御を行う軸制御回路で各軸毎に軸の位置制御回
路等が含まれている。30はサーボユニットであり、軸
制御回路8の指令を受けてZ輸送りモータ41を駆動す
る。X及びY軸用の軸制御回路、サーボアンプ、モータ
は省略しである。
Reference numeral 8 denotes an axis control circuit for controlling the axis, which includes an axis position control circuit and the like for each axis. A servo unit 30 drives the Z transport motor 41 in response to commands from the axis control circuit 8. Axis control circuits, servo amplifiers, and motors for the X and Y axes are omitted.

9はスピンドル制御回路であり、指令値をDA変換する
DA変換器等を内蔵している。20はスピンドルアンプ
であり、スピンドル制御回路9の指令を受けてスピンド
ルモータ42を駆動し、負荷比較手段21を内蔵し、ス
ピンドルモータ42の負荷電流を検出する 上記の実施例では負荷としてスピンドルの負荷電流を用
いたが負荷を検出するのは他の手段、例えば、加工時の
音、振動、主軸の歪等を検出して実施することもできる
Reference numeral 9 denotes a spindle control circuit, which includes a DA converter and the like for converting a command value into a DA converter. Reference numeral 20 denotes a spindle amplifier, which drives the spindle motor 42 in response to commands from the spindle control circuit 9, has a built-in load comparison means 21, and detects the load current of the spindle motor 42.In the above embodiment, the load of the spindle is used as the load. Although current is used, the load can also be detected by other means, such as sound during machining, vibration, distortion of the main shaft, etc.

さらに、従来の切込量をプログラムで大きめに指定して
、一定の範囲では負荷を検出して戻し動作を行わせ、一
定の範囲を越えた所ではプログラムで戻し動作を行うこ
ともできる。
Furthermore, it is also possible to specify a larger depth of cut than in the past using a program, detect the load and perform a return operation within a certain range, and perform a return operation using the program when the cut exceeds a certain range.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明では主軸の実負荷が初期負荷
に一定値を乗じた値を越えたときに戻し動作を行うので
、無駄な戻し動作がな(加工が早く行われ、又、プログ
ラムも容易になる。
As described above, in the present invention, the return operation is performed when the actual load on the spindle exceeds the value obtained by multiplying the initial load by a certain value, so there is no unnecessary return operation (machining is performed quickly, and the program It also becomes easier.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のブロック構成図であり、 第2図は上記実施例のフローチャート図であり第3図は
上記実施例のハードウェアのブロック構成図であり、 第4図は従来例としてのJIS  B6314における
固定サイクル(Ga4)の加工例を示す図であり、 第5図は従来例としての深穴加工サイクル加工例を示す
図である。 1−・−・・・・CPU 2−・−・・−ROM 3・−・・RAM 8・・・・・・・軸制御回路 9・・・・・・−主軸制御回路 10・−・−数値制御装置(CNC) 11・・−一−−−・軸制御手段 12−−−−−−−・スピンドル制御手段13・−・・
−・・初期負荷記憶手段 14・−・−・−負荷比較手段 15−・・−戻し動作制御手段 20−・・−スピンドルアンプ 30・・・−・−サーボアンプ 40−・・・・機械 41・・−・・・−・Z輸送リモータ 42・・・−・スピンドルモータ 45・・・・・・・ドリル 47−−−−−・・XYテーブル 出願人   ファナック株式会社 代理人   弁理士  服部毅巖 第3図 第4図 第5図
FIG. 1 is a block configuration diagram of an embodiment of the present invention, FIG. 2 is a flowchart diagram of the above embodiment, FIG. 3 is a block diagram of hardware of the above embodiment, and FIG. 4 is a block diagram of the hardware of the above embodiment. FIG. 5 is a diagram showing an example of fixed cycle (Ga4) machining according to JIS B6314 as a conventional example, and FIG. 5 is a diagram showing an example of deep hole machining cycle machining as a conventional example. 1-- CPU 2--ROM 3-- RAM 8--Axis control circuit 9--Spindle control circuit 10-- Numerical control device (CNC) 11...-1--Axis control means 12--Spindle control means 13...
--- Initial load storage means 14 --- Load comparison means 15 --- Return operation control means 20 --- Spindle amplifier 30 --- Servo amplifier 40 --- Machine 41 ·································································································································. Figure 3 Figure 4 Figure 5

Claims (5)

【特許請求の範囲】[Claims] (1)少なくともXYテーブルとZ軸を制御するする軸
制御手段と、スピンドルを制御するスピンドル制御手段
を備えてなる深穴ドリルサイクル制御方式において、 ドリルサイクル中の該スピンドルの負荷を検出する負荷
検出手段と、 該負荷検出手段によって検出された前記スピンドルの初
期負荷を記憶する初期負荷記憶手段と、記憶された前記
スピンドルの初期負荷に一定値を乗じた値とスピンドル
の実負荷を比較する負荷比較手段と、 該実負荷が前記初期負荷に一定数を乗じた値を越えたと
きZ軸の戻し工程を行うように制御する戻し動作制御手
段と、 を有することを特徴とする深穴ドリルサイクル制御方式
(1) In a deep hole drill cycle control system comprising at least an axis control means for controlling an XY table and a Z axis, and a spindle control means for controlling a spindle, a load detection method for detecting the load on the spindle during a drill cycle means, initial load storage means for storing the initial load of the spindle detected by the load detection means, and load comparison means for comparing the stored initial load of the spindle multiplied by a constant value with the actual load of the spindle. A deep hole drill cycle control characterized by comprising: means for controlling a return operation to perform a return process of the Z axis when the actual load exceeds a value obtained by multiplying the initial load by a certain number. method.
(2)前記スピンドルの初期負荷と前記スピンドルの実
負荷はスピンドルモータの負荷電流から検出されるよう
に構成したことを特長とする特許請求の範囲第1項記載
の深穴ドリルサイクル制御方式。
(2) The deep hole drilling cycle control method according to claim 1, characterized in that the initial load of the spindle and the actual load of the spindle are detected from the load current of a spindle motor.
(3)前記スピンドルの初期負荷と前記スピンドルの実
負荷の検出はサーボユニットでディジィタル信号として
検出するように構成した特許請求の範囲第1項又は第2
項の深穴ドリルサイクル制御方式。
(3) The detection of the initial load on the spindle and the actual load on the spindle is configured to be detected as a digital signal by a servo unit.
Deep hole drilling cycle control method.
(4)前記戻し動作制御手段はZ軸を穴明け開始点まで
戻すように構成したことを特徴とする特許請求の範囲第
1項、第2項又は第3項の深穴ドリルサイクル制御方式
(4) The deep hole drilling cycle control method according to claim 1, 2 or 3, wherein the return operation control means is configured to return the Z axis to the drilling start point.
(5)前記戻し動作制御手段はZ軸を所定量戻すように
構成したことを特徴とする特許請求の範囲第1項、第2
項又は第3項の深穴ドリルサイクル制御方式。
(5) The return operation control means is configured to return the Z-axis by a predetermined amount.
Deep hole drill cycle control method as described in Section 3 or Section 3.
JP8964386A 1986-04-18 1986-04-18 Control method for deep hole drilling cycle Pending JPS62246408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8964386A JPS62246408A (en) 1986-04-18 1986-04-18 Control method for deep hole drilling cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8964386A JPS62246408A (en) 1986-04-18 1986-04-18 Control method for deep hole drilling cycle

Publications (1)

Publication Number Publication Date
JPS62246408A true JPS62246408A (en) 1987-10-27

Family

ID=13976451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8964386A Pending JPS62246408A (en) 1986-04-18 1986-04-18 Control method for deep hole drilling cycle

Country Status (1)

Country Link
JP (1) JPS62246408A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04240011A (en) * 1991-01-16 1992-08-27 Fanuc Ltd Perforating method
EP1083023A2 (en) * 1999-09-10 2001-03-14 Yoshiaki Kakino Numerical control apparatus for nc machine tool
WO2003101651A1 (en) * 2002-05-31 2003-12-11 Horkos Corp. Boring control method
WO2008001735A1 (en) * 2006-06-29 2008-01-03 Mitsubishi Heavy Industries, Ltd. Deep hole drilling apparatus
JP5631467B1 (en) * 2013-09-06 2014-11-26 株式会社牧野フライス製作所 Drilling method and numerical control device
JP2020204933A (en) * 2019-06-18 2020-12-24 Dmg森精機株式会社 Machine tool, control method for machine tool, and control program for machine tool
WO2022045162A1 (en) * 2020-08-31 2022-03-03 ファナック株式会社 Numerical control device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5340745A (en) * 1976-09-24 1978-04-13 Sakai Chem Ind Co Ltd Organophosphorus compound and chlorine-containing resin composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5340745A (en) * 1976-09-24 1978-04-13 Sakai Chem Ind Co Ltd Organophosphorus compound and chlorine-containing resin composition

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04240011A (en) * 1991-01-16 1992-08-27 Fanuc Ltd Perforating method
EP1083023A3 (en) * 1999-09-10 2005-12-28 Yoshiaki Kakino Numerical control apparatus for nc machine tool
EP1083023A2 (en) * 1999-09-10 2001-03-14 Yoshiaki Kakino Numerical control apparatus for nc machine tool
US6344724B1 (en) 1999-09-10 2002-02-05 Yoshiaki Kakino Numerical control apparatus for NC machine tool
EP1514625A4 (en) * 2002-05-31 2008-07-30 Horkos Corp Boring control method
EP1514625A1 (en) * 2002-05-31 2005-03-16 Horkos Corp. Boring control method
KR100734200B1 (en) * 2002-05-31 2007-07-02 호코스 가부시키가이샤 Boring control method
WO2003101651A1 (en) * 2002-05-31 2003-12-11 Horkos Corp. Boring control method
WO2008001735A1 (en) * 2006-06-29 2008-01-03 Mitsubishi Heavy Industries, Ltd. Deep hole drilling apparatus
KR101084517B1 (en) 2006-06-29 2011-11-18 미츠비시 쥬고교 가부시키가이샤 Deep hole drilling apparatus
JP5631467B1 (en) * 2013-09-06 2014-11-26 株式会社牧野フライス製作所 Drilling method and numerical control device
JP2020204933A (en) * 2019-06-18 2020-12-24 Dmg森精機株式会社 Machine tool, control method for machine tool, and control program for machine tool
WO2020255902A1 (en) * 2019-06-18 2020-12-24 Dmg森精機株式会社 Machine tool, method for controlling machine tool, and program for controlling machine tool
CN114007787A (en) * 2019-06-18 2022-02-01 德马吉森精机株式会社 Machine tool, machine tool control method, and machine tool control program
CN114007787B (en) * 2019-06-18 2023-11-10 德马吉森精机株式会社 Machine tool, control method for machine tool, and control program for machine tool
WO2022045162A1 (en) * 2020-08-31 2022-03-03 ファナック株式会社 Numerical control device

Similar Documents

Publication Publication Date Title
JPH0775936A (en) Machining system by drill
EP2028573A2 (en) Numerical controller with program resuming function
WO2007074748A1 (en) Machine tool and its program conversion method
JPH07186007A (en) Control device for machine tool
JPS62237504A (en) Numerical controller
JPS62246408A (en) Control method for deep hole drilling cycle
JP4216808B2 (en) Numerical controller
US4698573A (en) Numerically controlled working process
JPH0725006B2 (en) Tool withdrawal method and apparatus for numerically controlled machine tool
JP3749222B2 (en) Numerical controller
EP0412164A1 (en) Test operation control system
JP2006506719A (en) Machine tool and method of operating machine tool
JPH06335841A (en) Numerical control device and numerically controlled working method
JPH11202926A (en) Method and device for feed speed control in numerical control
JPH0453649A (en) Irregular revolution speed cutting method
WO1992009018A1 (en) Method for executing auxiliary function in numerical control equipment
JP2880211B2 (en) Tool load monitoring control method
JPH0751992A (en) Drilling work method
JPH0854915A (en) Machining load monitor system
US5162714A (en) Numerical control device for transfer machines
JPS58171242A (en) Nc apparatus with adaptive control function
JPH04240011A (en) Perforating method
JPH0885044A (en) Working load monitoring system
JPH02279256A (en) Detecting device for wear and breakdown of tool
WO2022239155A1 (en) Numerical control device and computer-readable storage medium