WO2020255682A1 - Rotation detector, and motor comprising same - Google Patents

Rotation detector, and motor comprising same Download PDF

Info

Publication number
WO2020255682A1
WO2020255682A1 PCT/JP2020/021554 JP2020021554W WO2020255682A1 WO 2020255682 A1 WO2020255682 A1 WO 2020255682A1 JP 2020021554 W JP2020021554 W JP 2020021554W WO 2020255682 A1 WO2020255682 A1 WO 2020255682A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
rotation
detector
encoder
flux passing
Prior art date
Application number
PCT/JP2020/021554
Other languages
French (fr)
Japanese (ja)
Inventor
旭生 揚原
晃太 来嶋
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019173399A external-priority patent/JP2022116385A/en
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2020255682A1 publication Critical patent/WO2020255682A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements

Definitions

  • the present disclosure relates to a rotation detector and a motor equipped with the rotation detector.
  • an encoder has been widely used as a rotation detector for detecting the rotation speed or rotation angle of the rotation axis of a motor. Further, a servomotor that controls the drive so that the rotation speed or the rotation angle detected by the encoder approaches the target value is widely used in industrial applications.
  • an encoder using a magnetic detector element having a magnetic material whose magnetization is inverted by the large Barkhausen effect has been conventionally known (for example, Patent Documents 1 to 3). See).
  • the magnetic detector element is a sensor element in which a voltage is induced across the magnetic flux when the direction of the magnetic flux flowing inside the magnetic detector changes. The induced voltage drives the encoder.
  • An object of the present disclosure is to realize a rotation detector capable of detecting the amount of rotation of a rotation shaft of a motor with a simple configuration and a motor provided with the rotation detector.
  • the rotation detector according to the present disclosure is a rotation detector that detects the amount of rotation of the rotation shaft of the motor, and includes a magnetic detection element composed of a magnetic material and an induction coil, and a magnetic detection element.
  • a magnetic material including at least a magnetic shielding plate that is integrally mounted on a rotating shaft and has a magnetic flux passing portion, and magnets that do not change their relative positions with respect to the magnetic detection element and have a plurality of magnetic poles having different polarities.
  • magnets and magnetic detectors can be arranged in the rotation detector without being greatly restricted, the degree of freedom in designing the rotation detector can be improved, and the design cost can be reduced.
  • the motor according to the present disclosure includes at least a rotor having a rotating shaft, a stator provided coaxially with the rotor and at a predetermined distance from the rotor, and a rotation detector attached to the rotating shaft. Be prepared.
  • the design cost of the motor can be reduced. Further, the rotational state of the motor can be reliably controlled.
  • the degree of freedom in designing the rotation detector can be improved and the design cost can be reduced.
  • the design cost of the motor can be reduced.
  • FIG. It is a schematic block diagram of the functional block of a signal processing circuit. It is sectional drawing of another magnetic encoder. It is a schematic diagram which shows the flow of the magnetic flux in a magnetic encoder with the rotation of a rotating shaft. It is a schematic diagram which shows the flow of the magnetic flux in a magnetic encoder with the rotation of a rotating shaft. It is a schematic diagram which shows the flow of the magnetic flux in a magnetic encoder with the rotation of a rotating shaft. It is a schematic diagram which shows the relationship between the rotation angle of a rotation shaft, and the output voltage of a magnetic detector element.
  • FIG. 1 It is another schematic diagram which shows the relationship between the rotation angle of a rotation shaft, and the output voltage of a magnetic detector element. It is a schematic diagram which shows the flow of the magnetic flux in the 1st magnetic encoder which concerns on modification 1.
  • FIG. It is a schematic diagram which shows the flow of the magnetic flux in the 1st magnetic encoder which concerns on modification 1.
  • FIG. 1 is a schematic diagram which shows the flow of the magnetic flux in the 1st magnetic encoder which concerns on modification 1.
  • FIG. It is a schematic diagram which shows the flow of the magnetic flux in the 2nd magnetic encoder which concerns on modification 1.
  • FIG. 2nd magnetic encoder which concerns on modification 1.
  • FIG. 2nd magnetic encoder It is a schematic diagram which shows the flow of the magnetic flux in the 2nd magnetic encoder which concerns on modification 1.
  • FIG. 2nd magnetic encoder It is a schematic diagram which shows the flow of the magnetic flux in the 3rd magnetic encoder which concerns on modification 1.
  • FIG. 2 It is a schematic diagram which shows the flow of the magnetic flux in the 3rd magnetic encoder which concerns on modification 1.
  • FIG. 2 It is a schematic diagram which shows the flow of the magnetic flux in the 3rd magnetic encoder which concerns on modification 1.
  • FIG. It is a schematic diagram which shows the arrangement relation of the magnetic shielding plate and the magnetic detection element which concerns on Embodiment 2.
  • FIG. It is a schematic diagram which shows the arrangement relationship of another magnetic shielding plate and magnet which concerns on modification 2.
  • FIG. It is a schematic diagram which shows the magnetic pole arrangement of the 1st magnet which concerns on modification 3.
  • FIG. 16 It is a figure which shows the relationship between the rotation angle of a rotation shaft, and the output voltage of a magnetic detector element. It is a schematic diagram which looked at another magnetic encoder which concerns on Embodiment 3 from the top. It is a figure which shows the relationship between the rotation angle of the rotation shaft in the magnetic encoder shown in FIG. 16 and the output voltage of a magnetic detector element. It is sectional drawing of the rotary encoder which concerns on Embodiment 3. FIG. It is sectional drawing of another rotary encoder which concerns on Embodiment 3.
  • FIG. It is a schematic diagram which looked at the 1st magnetic encoder which concerns on modification 5 from above. It is a figure which shows the relationship between the rotation angle of the rotation shaft in the magnetic encoder shown in FIG.
  • FIG. 5 is a schematic view of the magnetic encoder according to the fourth embodiment as viewed from above. It is a schematic diagram which shows the operating state of the magnetic encoder shown in FIG. 41A. It is sectional drawing of the rotary encoder which concerns on Embodiment 4. FIG. It is sectional drawing of another rotary encoder which concerns on Embodiment 4. FIG. It is a schematic diagram which looked at the magnetic encoder which concerns on modification 9 from above. It is a figure which shows the relationship between the rotation angle of the rotation shaft in the magnetic encoder shown in FIG. 43, and the output voltage of a magnetic detector element. It is a schematic diagram which looked at another magnetic encoder which concerns on modification 9 from above.
  • FIG. 45 It is a figure which shows the relationship between the rotation angle of the rotation shaft in the magnetic encoder shown in FIG. 45, and the output voltage of a magnetic detector element. It is a schematic diagram which looked at the 1st magnetic encoder which concerns on modification 10 from above. It is a schematic diagram which shows the operating state of the magnetic encoder shown in FIG. 47A. It is a schematic diagram which looked at the 2nd magnetic encoder which concerns on modification 10 from above. It is sectional drawing of the rotary encoder which concerns on modification 10. It is sectional drawing of another rotary encoder which concerns on modification 10. It is a schematic diagram which looked at the 3rd magnetic encoder which concerns on modification 10 from above.
  • FIG. 1 is a schematic cross-sectional view of the motor 300 according to the first embodiment. Note that FIG. 1 schematically illustrates the structure of the motor 300, and the actual shape and dimensions are different.
  • the motor 300 includes a motor case 10, a pair of brackets 21 and 22, a rotor 30, a stator 40, a pair of bearings 51 and 52, and a rotary encoder 100.
  • the radial direction of the motor case 10 is referred to as a radial direction
  • the circumferential direction of the motor case 10 is referred to as a circumferential direction
  • the axial direction of the rotating shaft 32 provided on the rotor 30 is referred to as an axial direction.
  • the radial direction of the motor case 10 is the same as the radial direction of the magnetic shielding plate 70 and the rotating plate 130.
  • the side on which the rotary encoder 100 is provided may be referred to as an upper side or an upper side, and the opposite side thereof may be referred to as a lower side or a lower side.
  • the surface at a position facing the inside of the motor case 10 may be referred to as an inner surface, and the surface at a position facing the outside of the motor case 10 may be referred to as an outer surface.
  • the motor case 10 is a tubular metal member with both ends open.
  • a rotor 30, a stator 40, and a pair of bearings 51 and 52 are housed inside the motor case 10.
  • An elastic body such as an O-ring may be provided at the contact portion between the motor case 10 and the brackets 21 and 22. By doing so, the airtightness inside the motor case 10 can be maintained.
  • the pair of brackets 21 and 22 are flat plate-shaped metal members provided so as to cover the openings at both ends of the motor case 10, and are specifically iron members.
  • the rotor 30 is housed inside the motor case 10.
  • the rotor 30 has a rotating shaft 32 at the axis of the rotor core 31. Further, a plurality of magnets (not shown) are arranged along the outer periphery of the rotor core 31. Magnets adjacent to each other have different polarities.
  • the motor 300 is a so-called IPM (Interior Permanent Magnet) motor in which a plurality of magnets are embedded in the rotor core 31.
  • the rotating shaft 32 is provided so as to penetrate the bracket 21 and project to the outside of the motor case 10.
  • a load (not shown) that is rotationally driven in accordance with the rotation of the rotating shaft 32 is connected to the portion of the rotating shaft 32 that protrudes from the bracket 21 of the rotating shaft 32.
  • the stator 40 is housed inside the motor case 10 and is provided on the outer side of the rotor 30 in the radial direction at a predetermined distance from the rotor 30.
  • the stator 40 includes a yoke 41 fixed to the inner surface of the motor case 10, a plurality of salient poles (not shown) provided at predetermined intervals along the circumferential direction of the yoke 41, and a plurality of protrusions. It is composed of a plurality of coils 42 wound around each of the poles.
  • the pair of bearings 51 and 52 are attached to the inner surfaces of the pair of brackets 21 and 22, respectively, and rotatably support the rotating shaft 32.
  • the rotary encoder 100 is attached to a rotating shaft 32 protruding outward from the upper surface of the bracket 22.
  • the rotary encoder 100 has an optical encoder 110 and a magnetic encoder 120. The configuration of the rotary encoder 100 will be described in detail later.
  • the encoder case 150 is a bottomed tubular part.
  • the encoder case 150 is attached and fixed to the upper surface of the bracket 22 so as to surround the rotary encoder 100.
  • the encoder case 150 is formed of a ferromagnetic metal, for example, an iron plate material.
  • the encoder case 150 plays a role of mechanically protecting the rotary encoder 100 and preventing liquid such as oil or water from adhering to the rotary encoder 100.
  • a circuit board 140 supported by the encoder frame 155 is provided inside the encoder case 150.
  • the encoder frame 155 is provided so as to surround the rotary plate 130 on the radial outer side of the rotary plate 130, which will be described later.
  • the lower end of the encoder frame 155 is attached to the bracket 22.
  • the circuit board 140 is attached to the upper end of the encoder frame 155.
  • the plurality of coils 42 provided on the stator 40 are divided into three sets having a predetermined arrangement relationship.
  • a three-phase current having a phase difference of 120 ° in electrical angle flows through each set of coils 42 and is excited, and a rotating magnetic field is generated in the stator 40.
  • Torque is generated by an interaction between the rotating magnetic field and the magnetic field generated by the magnet provided in the rotor 30, and the rotating shaft 32 is supported by the bearings 51 and 52 to rotate.
  • the motor control unit 310 is electrically connected to each of the rotary encoder 100 and the plurality of coils 42.
  • the phase and the amount of current flowing through the plurality of coils 42 are corrected based on the rotation position and the amount of rotation of the rotation shaft 32 detected by the rotary encoder 100.
  • the rotational state of the motor 300 can be controlled to a desired state.
  • the movement amount and locus of the load (not shown) connected to the rotating shaft 32 can be controlled to a desired value.
  • the "rotation amount” means the “rotation speed” indicating how many rotations the rotation shaft 32 has rotated, and the rotation from a predetermined origin position according to the arrangement of the magnetic detector 90 and the magnets 80a and 80b described later.
  • the "rotational position” means an angle at which the rotation shaft 32 is rotated from a predetermined origin position.
  • the “rotation position” refers to the angle at which the rotation shaft 32 rotates from the origin position within one rotation.
  • the information of the origin position the information set corresponding to the reflection pattern of the optical encoder is recorded in the encoder or the control device. Further, the information on the origin position can be roughly known from the detection signal of the magnetic detector 90 provided in the magnetic encoder 120. Information set corresponding to the reflection pattern of the optical encoder is recorded in the encoder or control device.
  • the rotary encoder 100 includes an optical encoder 110, a magnetic encoder 120, a circuit board 140, and a signal processing circuit 200.
  • the rotary encoder 100 is an absolute encoder that detects a rotation position or a rotation amount with reference to a determined origin position. Since the absolute encoder can identify all the rotation positions according to the resolution within one rotation, the rotation angle from the origin position can be easily detected.
  • the optical encoder 110 detects the rotation position of the rotation shaft 32.
  • the optical encoder 110 may also detect the amount of rotation of the rotating shaft 32.
  • the magnetic encoder 120 detects the amount of rotation of the rotating shaft 32 based on the detection signal of the magnetic detecting element 90.
  • the optical encoder 110 may be referred to as a rotation position detector 110
  • the rotary encoder 100 may be referred to as a rotation detector 100.
  • the optical encoder 110 is a reflective encoder having a light emitting / receiving element 111, a rotating plate 130, and a slit plate 112 arranged on the upper surface of the rotating plate 130.
  • the rotary plate 130 is rotationally and integrally attached to the rotary shaft 32.
  • the rotary plate 130 is shared with the magnetic encoder 120.
  • the rotating plate 130 is made of a material that allows magnetic flux to pass through, for example, a non-magnetic metal such as aluminum, a resin, or the like.
  • the light receiving / receiving element 111 is attached to the lower surface of the circuit board 140.
  • the slit plate 112 is provided with a reflection pattern 112a for reflecting the light from the light receiving / receiving element 111.
  • the reflection pattern 112a has an annular shape, and a plurality of mask patterns (not shown) for reflecting the light from the light receiving / receiving element 111 are provided along the circumferential direction. Therefore, when the light receiving / emitting element 111 emits light, the light is periodically reflected toward the light receiving / emitting element 111 according to the rotation of the rotating plate 130, and the light receiving / receiving element 111 generates a time-modulated light receiving signal. To do. By arithmetically processing the received signal by the signal processing circuit 200 attached to the circuit board 140, the rotational position of the rotating plate 130 and the rotating shaft 32 is detected.
  • the magnetic encoder 120 has two magnets 80a and 80b, a magnetic shielding plate 70, and a magnetic detector 90. Further, the magnetic encoder 120 shares the rotary plate 130 with the optical encoder 110.
  • the two magnets 80a and 80b are attached and fixed to the outer surface of the bracket 22 at intervals in the radial direction.
  • the two magnets 80a and 80b are arranged so that the directions of the magnetic poles along the circumferential direction are different from each other. Further, the two magnets 80a and 80b are fixedly arranged near the outer periphery of the magnetic shielding plate 70 with a radial distance from the rotating shaft 32.
  • the magnetic shielding plate 70 is a disk-shaped member made of a material that shields magnetism such as iron.
  • the magnetic shielding plate 70 is attached to the lower surface of the rotating plate 130 and is integrally rotated with the rotating shaft 32. Further, the magnetic shielding plate 70 is arranged at a distance in the axial direction from the magnets 80a and 80b.
  • the magnetic flux passing portion 70b (see FIG. 4C) is formed in the magnetic shielding plate 70 by partially cutting out the outer peripheral portion thereof. Further, with respect to the axial direction, a magnetic flux passing portion 70a (see FIG. 4B) that penetrates the magnetic shielding plate 70 in the thickness direction, that is, in the axial direction is formed on the side opposite to the magnetic flux passing portion 70b with the rotating shaft 32 interposed therebetween. There is.
  • the magnetic shielding plate 70 rotates together with the rotating shaft 32 and the rotating plate 130, the magnetic flux passing portions 70a and 70b are attached to the rotating plate 130 so that the magnetic flux passing portions 70a and 70b pass between the magnets 80a and 80b and the magnetic detector 90, respectively. Has been done.
  • the magnetic detector 90 is composed of a Wiegand wire 90a and an induction coil 90b provided around the Wiegand wire 90a.
  • the Wiegand wire 90a is a magnetic material having different magnetic permeability between the axis and the outside.
  • the Wiegand wire 90a exhibits a large bulkhausen effect when a magnetic field of a predetermined value or more is applied to the inside of the induction coil 90b along the longitudinal direction of the magnetic detector 90, and the magnetization direction is the longitudinal direction of the magnetic detector 90. Align to one side.
  • the magnetization direction of the wigant wire 90a is dramatically reversed and a voltage pulse is induced at both ends of the induction coil 90b. It is configured to be.
  • the magnetic detector 90 is mounted on the circuit board 140.
  • the magnetic detector 90 is fixedly arranged on the side opposite to the magnets 80a and 80b with the magnetic shielding plate 70 interposed therebetween in the axial direction.
  • the magnetic detector 90 is fixedly arranged near the outer periphery of the magnetic shielding plate 70 at a predetermined distance in the radial direction from the rotating shaft 32.
  • the longitudinal direction of the magnetic detector 90 that is, the direction connecting one end and the other end of the magnetic detector 90 is substantially equal to the longitudinal direction of each of the magnets 80a and 80b.
  • the two magnets 80a and 80b and the magnetic detector 90 are fixedly arranged, respectively. That is, the two magnets 80a and 80b are arranged inside the encoder case 150 without changing their relative positions with respect to the magnetic detector 90.
  • FIG. 2 is a schematic configuration diagram of a functional block of the signal processing circuit 200.
  • the signal processing circuit 200 calculates the rotation position and the amount of rotation of the rotation shaft 32 based on the detection signals of the optical encoder 110 and the magnetic encoder 120, respectively.
  • the signal processing circuit 200 is attached to the upper surface of the circuit board 140, and is electrically connected to the light receiving / receiving element 111 and the magnetic detector 90.
  • the signal processing circuit 200 receives an optical signal processing circuit 210 that receives a light receiving signal from the light receiving / receiving element 111 and performs arithmetic processing thereof, and receives a detection signal of the magnetic detection element 90 and performs arithmetic processing thereof.
  • the optical signal processing circuit 210, and the signal output from the magnetic signal processing circuit 220 and output the rotation position and the amount of rotation to the outside of the signal processing circuit 200. It has an I / O unit 224 which is an interface unit of the above. In the specification of the present application, illustration and description of the internal configuration of the optical signal processing circuit 210 will be omitted.
  • the signal processing circuit 200 is electrically connected to a power supply 230 provided outside the rotary encoder 100. During normal operation, the driving power of each of the light receiving / receiving element 111, the optical signal processing circuit 210, and the magnetic signal processing circuit 220 is supplied from the power supply 230.
  • the optical signal processing circuit 210 and the light emitting / receiving element 111 do not operate.
  • the magnetic signal processing circuit 220 is driven by the electric power supplied from the magnetic detector 90. That is, the magnetic encoder 120 is driven by the electric power supplied from the magnetic detector 90.
  • the optical signal processing circuit 210 calculates the rotation position of the rotation shaft 32 based on the light receiving signal from the light receiving / receiving element 111.
  • the magnetic signal processing circuit 220 calculates the amount of rotation of the rotating shaft 32 based on the detection signal of the magnetic detection element 90.
  • the optical signal processing circuit 210 may be provided with a storage unit (not shown) to store the rotation amount information. Good.
  • the phase and the amount of the current flowing through the motor 300 are corrected based on the rotation position and the amount of rotation of the rotation shaft 32 calculated by the signal processing circuit 200, and the rotation state of the motor 300 becomes a desired state. Be controlled.
  • the magnetic signal processing circuit 220 has at least a voltage conversion unit 221, a signal processing unit 222, and a storage unit 223.
  • a functional block other than these, for example, a communication unit (not shown) for exchanging data with the optical signal processing circuit 210 may be provided.
  • each voltage pulse is rectified and then input to each capacitor (not shown) provided according to the polarity of the voltage. In this way, the electric charge is accumulated in the capacitor, and the voltage corresponding to the capacity of the capacitor is output to the next stage.
  • the voltage conversion method is not particularly limited to this, and various methods can be applied. Further, various methods can be appropriately applied to the method for determining the polarity of the voltage pulse and the method for separating signals according to the polarity.
  • the output signal of the voltage conversion unit 221 is input to the signal processing unit 222, and the amount of rotation of the rotating shaft 32 is calculated according to the number of times the voltage pulse generated by the magnetic detector 90 is generated.
  • the output signal of the signal processing unit 222 is stored in the storage unit 223.
  • the storage unit 223 is usually composed of a non-volatile memory.
  • the drive power of the signal processing unit 222 and the storage unit 223 is supplied from the voltage conversion unit 221.
  • the driving power source is a capacitor in which electric charges are accumulated according to the voltage pulse output from the magnetic detection element 90.
  • the magnetic encoder 120 is a battery-less encoder configured so that it can be driven without supplying power from an external power source.
  • the voltage conversion unit 221 and the signal processing unit 222, the storage unit 223, and the I / O unit 224 are each composed of a single electronic component or a combination of electronic components mounted on the circuit board 140, or an IC. It is composed of a combination of (integrated circuit) and / or LSI (large-scale integrated circuit).
  • the multi-rotation information of the rotation shaft 32 is obtained by reading out the rotation amount information stored in the storage unit 223 and synthesizing it with the rotation position information calculated by the optical encoder 110.
  • This synthesis is performed in I / O section 224.
  • the multi-rotation information S corresponding to the integrated rotation angle of the rotation shaft 32 is expressed by the formula. It can be expressed in the form shown in (1).
  • the multi-rotation information S may be stored in the storage unit 223.
  • the motor 300 is a servomotor used for the joint axis of the robot arm
  • the amount of movement of the tip of the robot arm can be calculated based on the multi-rotation information S.
  • the optical encoder 110 detects both the rotation position and the rotation amount of the rotation shaft 32, the multi-rotation information S may be calculated only from the detection result of the optical encoder 110.
  • the arrangement of the rotary encoder 100, particularly the magnetic encoder 120, is not particularly limited to the example shown in FIG.
  • FIG. 3 is a schematic cross-sectional view of another magnetic encoder.
  • the magnetic encoder 60 shown in FIG. 3 differs from the configuration shown in FIG. 1 in the following points.
  • the magnetic shielding plate 70 is attached to the boss 160.
  • the boss 160 is rotationally and integrally attached to the rotating shaft 32 by a screw screw (not shown). Therefore, also in this case, the magnetic shielding plate 70 rotates with the rotation of the rotating shaft 32.
  • the magnetic detector 90 and the signal processing circuit 200 are attached to the lower surface of the circuit board 140.
  • optical encoder 110 is not shown in FIG. However, for example, by attaching the rotary plate 130 in which the slit plate 112 is arranged above the magnetic shielding plate 70 to the rotary shaft 32 and attaching the light emitting / receiving element 111 to the lower surface of the circuit board 140, the optical type The encoder 110 may be configured.
  • FIGS. 4A to 5B are schematic views showing the flow of magnetic flux in the magnetic encoder as the rotation shaft rotates.
  • FIG. 5A is a schematic diagram showing the relationship between the rotation angle of the rotation shaft and the output voltage of the magnetic detector element.
  • FIG. 5B is another schematic view showing the relationship between the rotation angle of the rotation shaft and the output voltage of the magnetic detector.
  • FIG. 4A shows the internal arrangement of the magnetic encoder 60 as viewed from above.
  • FIG. 4B shows the internal arrangement of the magnetic encoder 60 as viewed from below.
  • FIG. 4C shows the internal arrangement when the magnetic shielding plate 70 is rotated 180 degrees from the state shown in FIG. 4B.
  • the drawings shown in FIGS. 4A, 4B, 4C, 5A, 5B, and the second embodiment and the first modification described below are based on the configuration of the magnetic encoder 60 shown in FIG. Shown. Further, in the magnetic encoder 60, components other than the magnets 80a and 80b, the magnetic shielding plate 70, the magnetic detector 90, and the boss 160 are not shown.
  • the magnetic shielding plate 70 rotates, and the magnetic flux passing portion 70a is between the magnet 80a and the magnetic detector 90, specifically, the magnetic flux passing portion 70a when viewed from the axial direction.
  • the magnet 80a and the magnetic detector 90 move to a position where they overlap each other.
  • the magnetic flux passing portion 70a is provided on the outer peripheral side of the magnetic shielding plate 70, and is configured as an opening that penetrates the magnetic shielding plate 70 in the axial direction. Further, at the positions shown in FIGS. 4A and 4B, the magnet 80a is located below the magnetic flux passing portion 70a. On the other hand, the position of the magnet 80b on the magnetic shielding plate 70 is defined so that the magnet 80b is located below the magnetic shielding plate 70. Therefore, the magnetic flux generated by the magnet 80a flows from the N pole through the magnetic flux passing portion 70a inside the magnetic detection element 90 and reaches the S pole. That is, the magnetic flux flows from one end to the other end of the magnetic detector 90. Therefore, a pulsed voltage is induced across the induction coil 90b of the magnetic detector 90, and the voltage pulse generated at this time is regarded as a positive voltage pulse.
  • the magnetic shield plate 70 When the magnetic shield plate 70 is rotated clockwise from the positions shown in FIGS. 4A and 4B, for example, the magnetic shield plate 70 is arranged between the magnets 80a and 80b and the magnetic detector 90. Become. As a result, the magnetic flux generated by the magnets 80a and 80b is shielded by the magnetic shielding plate 70 and does not flow inside the magnetic detection element 90. In this case, no voltage is induced across the induction coil 90b of the magnetic detector 90.
  • the magnetic flux passing portion 70b arranged so as to face the magnetic flux passing portion 70a in the radial direction with the rotating shaft 32 sandwiched is moved from the axial direction. Seen, it moves to a position where it overlaps with the magnet 80b and the magnetic detector 90.
  • the magnetic flux passing portion 70b is configured as a notch formed from the outer periphery of the magnetic shielding plate 70 toward the inside. Further, at the position shown in FIG. 4C, the magnet 80b is located below the magnetic flux passing portion 70b. On the other hand, the position of the magnet 80a on the magnetic shielding plate 70 is defined so that the magnet 80a is located below the magnetic shielding plate 70.
  • the magnet 80a and the magnet 80b are arranged so that the directions of the magnetic poles along the circumferential direction are different from each other. Therefore, in the case shown in FIG. 4C, the magnetic flux flows from the other end to one end of the magnetic detector 90. Therefore, a voltage pulse having the opposite polarity to the voltage generated in FIG. 4B, that is, a negative voltage pulse is induced at both ends of the induction coil 90b of the magnetic detector 90.
  • both positive and negative voltage pulses are output from the magnetic detector 90 while the rotating shaft 32 rotates 360 degrees.
  • the period A corresponds to the period during which the magnetic flux passing portion 70a passes through the position shown in FIG. 4B, including the front and back.
  • the period B corresponds to the period during which the magnetic flux passing portion 70b passes through the position shown in FIG. 4C, including the front and back.
  • the widths t1 and t2 of the voltage pulses output from the magnetic detector 90 are derived from the magnetic detector 90 and the magnetic signal processing circuit 220, and are not so affected by the rotation speed of the magnetic shield plate 70. ..
  • the rotary encoder (rotation detector) 100 has a magnetic encoder 60 or a magnetic encoder 120.
  • the rotary encoder 100 detects the amount of rotation of the rotation shaft 32 of the motor 300.
  • the magnetic encoders 60 and 120 are rotationally and integrally attached to the rotating shaft 32 and the magnetic detection element 90 composed of the Wiegand wire 90a which is a magnetic material and the induction coil 90b.
  • the magnetic encoders 60 and 120 include at least a magnetic shielding plate 70 having magnetic flux passing portions 70a and 70b and two magnets 80a and 80b.
  • the positions of the two magnets 80a and 80b do not change relative to the magnetic detector 90.
  • the two magnets 80a and 80b have magnetic poles having different polarities from each other. That is, the two magnets 80a and 80b have an north pole and an south pole, respectively.
  • the Wiegand wire 90a is configured to exhibit a large Barkhausen effect when a magnetic field of a predetermined value or higher is applied.
  • the magnetic detection element 90, the magnetic shielding plate 70, and the two magnets 80a and 80b are arranged in this order with a distance from each other when viewed from a predetermined direction, in this case, an axial direction.
  • a magnetic shielding plate 70 having magnetic flux passing portions 70a and 70b and rotatably configured together with the rotating shaft 32 is provided between the magnets 80a and 80b and the magnetic detector 90.
  • the arrangement relationship between the magnets 80a and 80b and the magnetic detector 90 is not greatly restricted. As a result, the degree of freedom in designing the rotary encoder 100 can be improved, and the design cost or component cost can be reduced.
  • the magnetic encoders 60 and 120 can be driven by the voltage induced in the magnetic detector 90. That is, the magnetic encoders 60 and 120 can be driven even when the power supply 230 for driving the rotary encoder 100 does not supply electric power for some reason. During one rotation of the rotating shaft 32, the magnetic detector 90 generates a plurality of voltage pulses. Therefore, it is not necessary to use an expensive magnet to obtain the amount of power generation required to drive the magnetic encoders 60 and 120. As a result, the costs of the magnetic encoders 60 and 120, and thus the rotary encoder 100, can be reduced.
  • the Wiegand wire 90a exhibits a large Barkhausen effect when a magnetic field of a predetermined value or more is applied, the magnetization direction is reversed, and voltage pulses are induced at both ends of the induction coil 90b. At this time, the reversal speed in the magnetization direction depends on the magnetic properties of the Wiegand wire 90a and does not depend on the rotation speed of the rotation shaft 32.
  • the magnitude of the voltage pulse generated by the magnetic detector 90 can be set to a predetermined value regardless of the rotation speed of the rotating shaft 32. can do. For example, even at a low speed rotation in which a sufficient amount of power generation cannot be obtained only by electromagnetic induction depending on the rotation speed, sufficient power can be obtained from the magnetic detector element 90 to drive the magnetic encoders 60 and 120.
  • Both ends of the magnetic detector 90 are located in a plane orthogonal to the axial direction.
  • the magnetic shielding plate 70 is a plate-shaped member located in a plane orthogonal to the axial direction.
  • the magnetic poles of the two magnets 80a and 80b are arranged in a plane orthogonal to the axial direction.
  • the magnetic flux generated in the magnets 80a and 80b, respectively, and upward in the axial direction passes through the magnetic flux passing portions 70a and 70b of the magnetic shielding plate 70, and is surely inside the magnetic detection element 90. It will flow. As a result, the amount of rotation can be reliably detected, and sufficient electric power for driving the magnetic encoders 60 and 120 can be obtained from the magnetic detector element 90.
  • the magnetic shielding plate 70 is a member for controlling the passage and blocking of magnetic flux generated in the magnets 80a and 80b and flowing in the axial direction. Therefore, the magnetic shielding plate 70 does not necessarily have to be located in a plane orthogonal to the axial direction, but may be located in a plane intersecting the axial direction.
  • the rotary plate 130 when the material of the rotary plate 130 is lighter than the material used for the magnetic shield plate 70, for example, when the magnetic shield plate 70 is an iron-based material, the rotary plate 130 is an aluminum plate, so that the motor 300 Load can be reduced.
  • the magnetic flux passing portions 70a and 70b move to positions where they overlap with the magnets 80a and 80b and the magnetic detector 90 when viewed from the axial direction in accordance with the rotation of the rotating shaft 32, the magnetic flux passing portions 70a and 70b are generated by the magnets 80a and 80b.
  • the magnetic flux flows to the magnetic detector 90 through the magnetic flux passing portions 70a and 70b. In this case, a voltage is induced across the magnetic detector 90.
  • the magnetic flux passing portions 70a and 70b are located at other positions, the magnetic flux generated by the magnets 80a and 80b is generated because the magnetic shielding plate 70 exists between each of the magnets 80a and 80b and the magnetic detector 90. Is shielded by the magnetic shielding plate 70 and does not reach the magnetic detection element 90, and no voltage is induced across the magnetic detection element 90.
  • the magnetic flux passing portions 70a and 70b are formed on the magnetic shielding plate 70 at predetermined intervals in the outer peripheral direction.
  • the magnetic flux passing portions 70a and 70b adjacent to each other move to positions where they overlap each other when viewed from the axial direction with the magnetic detector 90 and the magnets 80a and 80b, respectively, they pass through one of the magnetic flux passing portions 70a and flow to the magnetic detector 90.
  • the direction of the magnetic flux and the direction of the magnetic flux that passes through the other magnetic flux passing portion 70b and flows to the magnetic detector 90 are different from each other.
  • the magnetic encoders 60 and 120 of the rotary encoder 100 By configuring the magnetic encoders 60 and 120 of the rotary encoder 100 in this way, when the magnetic flux passing portions 70a and 70b adjacent to each other pass between the magnetic detection element 90 and the magnets 80a and 80b, respectively, they are magnetic. Voltage pulses having different polarities are generated at both ends of the detection element 90. As a result, for example, when the rotating shaft 32 continues to rotate in the clockwise direction, the amount of rotation of the rotating shaft 32 is detected based on the polarity and the number of occurrences of the voltage pulses generated at both ends of the magnetic detector 90. can do. While the rotating shaft 32 makes one rotation, the voltage is induced in the magnetic detector 90 multiple times, but it is possible to obtain sufficient power to drive the magnetic encoders 60 and 120 with the induced voltage for one rotation. it can.
  • the two magnets 80a and 80b are arranged near the outer periphery of the magnetic shielding plate 70 at predetermined intervals along the radial direction, that is, the radial direction of the magnetic shielding plate 70.
  • the two magnets 80a and 80b have different magnetic pole directions in the circumferential direction, that is, in the outer peripheral direction of the magnetic shielding plate 70, in the magnets 80a and 80b adjacent to each other.
  • the two magnets 80a and 80b By arranging the two magnets 80a and 80b in this way, for example, when the magnetic flux passing portions 70a and 70b pass between the magnetic detector 90 and the magnets 80a and 80b, respectively, the magnetic flux generated from one of the magnets is generated. Only can pass through the magnetic flux passage. Further, in the two magnets 80a and 80b, the directions of the magnetic poles along the outer peripheral direction of the magnetic shielding plate 70 are different from each other. Therefore, when the rotating shaft 32 continues to rotate in the clockwise direction, the magnetic detector 90 The polarity of the voltage pulse generated at both ends changes periodically, and the amount of rotation of the rotating shaft 32 can be detected based on the polarity and the number of occurrences.
  • the magnetic flux passing portions 70a and 70b are preferably at least one of a notch formed so as to go inward from the outer circumference of the magnetic shielding plate 70 and an opening that penetrates the magnetic shielding plate 70 in the axial direction.
  • the magnetic flux passing portions 70a and 70b can be easily formed.
  • the magnetic flux generated by the magnets 80a and 80b can be reliably passed through.
  • the rotary encoder 100 has a magnetic signal processing circuit 220.
  • the magnetic signal processing circuit 220 includes a voltage conversion unit 221, a signal processing unit 222, a storage unit 223, and an I / O unit 224.
  • the voltage conversion unit 221 rectifies the voltage generated across the magnetic detector 90 and converts it into a predetermined voltage.
  • the signal processing unit 222 calculates the amount of rotation of the rotating shaft 32 according to the number of times a predetermined voltage is generated.
  • the storage unit 223 stores the amount of rotation calculated by the signal processing unit 222.
  • the I / O unit 224 processes the signal output from the optical signal processing circuit 210 and the signal output from the magnetic signal processing circuit 220, and outputs the rotation position and rotation amount of the signal processing circuit 200 to the outside. In this case, the driving power of the signal processing unit 222 and the storage unit 223 is supplied from the voltage conversion unit 221.
  • the magnetic encoders 60 and 120 of the rotary encoder 100 By configuring the magnetic encoders 60 and 120 of the rotary encoder 100 in this way, the amount of rotation of the rotating shaft 32 is detected based on the voltage generated at both ends of the magnetic detector 90 in response to the rotation of the magnetic shielding plate 70. can do. Further, by storing the rotation amount, it is possible to feed back to the rotation control of the motor 300. Further, since the drive power is supplied from the voltage conversion unit 221 that converts the voltage generated at both ends of the magnetic detector 90 to the signal processing unit 222 and the storage unit 223, the power supply 230 does not supply power to the rotary encoder 100. In some cases, the magnetic encoders 60 and 120 can be driven.
  • the rotary encoder 100 of the present embodiment further includes an optical encoder (optical rotation detector) 110 that detects the rotation position of the rotation shaft 32.
  • optical encoder optical rotation detector
  • the rotary encoder 100 is connected to an external power supply 230.
  • the rotary encoder 100 detects the amount of rotation of the rotary shaft 32 and also detects the rotational position of the rotary shaft 32 by the optical encoder 110.
  • the rotary encoder 100 When power is not supplied from the power supply 230 to the rotary encoder 100, the rotary encoder 100 detects the amount of rotation of the rotary shaft 32 by supplying drive power from the voltage conversion unit 221 to the signal processing unit 222 and the storage unit 223. ..
  • the rotary encoder 100 By configuring the rotary encoder 100 in this way, it is possible to obtain multi-rotation information S regarding the rotation shaft 32. Further, the rotation state of the motor 300 can be controlled to a desired state based on the multi-rotation information S.
  • the rotary encoder (rotation detector) 100 of the present embodiment is a rotation detector 100 that detects the amount of rotation of the rotation shaft 32 of the motor 300, and is guided by the wigant wire (magnetic material) 90a.
  • the position relative to the magnetic detection element 90 composed of the coil 90b, the magnetic shielding plate 70 which is integrally mounted on the rotating shaft 32 and has the magnetic flux passing portions 70a and 70b, and the magnetic detection element 90 does not change.
  • the wigant wire (magnetic material) 90a exhibits a large bulkhausen effect when a magnetic field of a predetermined value or more is applied, and has at least magnets 80a and 80b having a plurality of magnetic poles having different polarities.
  • the magnetic detection element 90, the magnetic shielding plate 70, and the magnets 80a and 80b are arranged in this order with the magnetic detection element 90, the magnetic shielding plate 70, and the magnets 80a and 80b spaced apart from each other.
  • magnets and magnetic detectors can be arranged in the rotation detector without being greatly restricted, the degree of freedom in designing the rotation detector can be improved, and the design cost can be reduced.
  • the motor 300 includes a rotor 30 having a rotating shaft 32, a stator 40 provided coaxially with the rotor 30 and at a predetermined distance in the radial direction from the rotor 30, and a rotating shaft 32. At least includes a rotary encoder 100 mounted on the.
  • the cost of the rotary encoder 100 and thus the motor 300 can be reduced.
  • the rotational state of the motor 300 can be reliably controlled.
  • ⁇ Modification example 1> 6A, 6B, and 6C are schematic views showing the flow of magnetic flux in the first magnetic encoder according to the first modification.
  • FIGS. 6A to 8C show the internal arrangement of the magnetic encoder 60 as viewed from below.
  • 6B, 7B, and 8B show the internal arrangement of the magnetic encoder 60 as viewed from above.
  • 6C, 7C, and 8C show the internal arrangement when the magnetic shielding plate 70 is rotated 180 degrees from the state shown in FIGS. 6B, 7B, and 8B, respectively.
  • the configuration shown in FIGS. 6A, 6B, and 6C is different from the configuration shown in the first embodiment in that the magnetic flux passing portions 70c and 70d are openings, respectively. Further, the magnetic flux passing portions 70c and 70d are arranged asymmetrically in the radial direction with the rotating shaft 32 interposed therebetween. Specifically, the magnetic flux passing portion 70c is located closer to the rotation axis 32 than the magnetic flux passing portion 70d, and the length in the longitudinal direction thereof is longer than the length in the longitudinal direction of the magnetic flux passing portion 70d.
  • the two magnets 81a and 81b are arranged at predetermined intervals along the outer peripheral direction of the magnetic shielding plate 70 when viewed from the axial direction.
  • the polarities of the magnetic poles facing each other in the two magnets 81a and 81b are different from each other.
  • the magnetic flux passing portion 70d passes between the magnetic detection element 90 and the magnets 81a and 81b
  • the magnetic flux passes from the north pole of the magnet 81b through the magnetic flux passing portion 70d and passes through the magnetic detection element 70d. It flows into one end of 90. Further, it passes through the inside of the magnetic detection element 90 and flows into the S pole of the magnet 81a from the other end of the magnetic detection element 90.
  • the magnetic flux passing portion 70c passes between the magnetic detection element 90 and the magnets 81a and 81b
  • the magnetic flux passes through the magnetic flux passing portion 70c from the N pole of the magnet 81a and is magnetic. It flows into the other end of the detection element 90. Further, it passes through the inside of the magnetic detection element 90 and flows from one end of the magnetic detection element 90 into the S pole of the magnet 81b.
  • the same effect as that of the configuration shown in the first embodiment can be obtained. Further, as compared with the configuration shown in the first embodiment, since the two magnets 81a and 81b can be arranged at intervals, the mounting arrangement of the magnets 81a and 81b becomes easy.
  • FIGS. 7A, 7B, and 7C are schematic views showing the flow of magnetic flux in the second magnetic encoder according to the first modification.
  • the configuration shown in FIGS. 7A, 7B, and 7C is such that the magnetic flux passing portions 70e, 70e, and 70f are three notches provided at predetermined intervals along the outer peripheral direction of the magnetic shielding plate 70. It is different from the configuration shown in the first embodiment.
  • the magnetic flux passing portion 70f is formed wider in the circumferential direction than the other two magnetic flux passing portions 70e. When viewed from the axial direction, the angle formed by the center of the magnetic flux passing portion 70f and the center of one magnetic flux passing portion 70e is substantially the angle formed by the center of the magnetic flux passing portion 70f and the center of the other magnetic flux passing portion 70e. equal.
  • the arrangement of the two magnets 82a and 82b is the same as the configuration shown in FIGS. 6A, 6B and 6C. However, the two magnets 82a and 82b are arranged closer to the rotation axis 32 than the positions shown in FIGS. 6A, 6B and 6C. The longitudinal direction of each of the two magnets 82a and 82b is the radial direction. The magnetic detector 90 is also arranged closer to the rotation axis 32 than the positions shown in FIGS. 6A, 6B, and 6C.
  • the magnetic flux passing portion 70f passes between the magnetic detection element 90 and the magnets 82a and 82b, the magnetic flux passes from the north pole of the magnet 82b through the magnetic flux passing portion 70f and is magnetic. It flows into one end of the detection element 90. Further, it passes through the inside of the magnetic detection element 90 and flows from the other end of the magnetic detection element 90 into the S pole of the magnet 82a.
  • the same effect as that of the configuration shown in the first embodiment can be obtained.
  • the two magnets 82a and 82b can be arranged at intervals, so that the magnets 82a and 82b can be easily mounted and arranged.
  • FIGS. 8A, 8B, and 8C are schematic views showing the flow of magnetic flux in the third magnetic encoder according to the first modification.
  • the magnetic shielding plate 70 may be provided with one magnetic flux passing portion 70g, and the magnetic detection element 90 may be arranged coaxially with the rotating shaft 32.
  • the magnetic flux passing portion 70g passes between the magnets 83a and 83b and the magnetic detection element 90
  • voltage pulses are induced at both ends of the magnetic detection element 90, and the rotation shaft 32 is based on the number of occurrences. The amount of rotation can be detected.
  • FIG. 9 is a schematic view showing the arrangement relationship between the magnetic shielding plate and the magnetic detector element according to the second embodiment.
  • the components other than the magnetic shielding plate 70 and the magnetic detector 90 in the magnetic encoder 60 are omitted, and only a part of the magnetic detector 90 is shown.
  • the configuration shown in FIG. 9 is different from the configuration shown in the first embodiment in that a plurality of magnetic detector elements 90 are arranged along the outer peripheral direction of the magnetic shielding plate 70.
  • two magnets are fixedly arranged on the side opposite to the magnetic detector 90 with the magnetic shielding plate 70 interposed therebetween.
  • the arrangement of the two magnets (not shown) is the same as shown in FIG. That is, the two magnets are attached and fixed to the outer surface of the bracket 22 at intervals in the radial direction.
  • the two magnets are arranged so that the directions of the magnetic poles along the circumferential direction are different from each other.
  • the longitudinal direction of one magnetic detector 90 is substantially equal to the longitudinal direction of the two magnets.
  • a plurality of magnetic flux passing portions 70h and 70i are formed on the magnetic shielding plate 70 according to the number of magnetic detector elements 90 arranged and the arrangement interval in the circumferential direction.
  • one of the magnetic flux passing portions 70i is a notch formed so as to go inward from the outer circumference of the magnetic shielding plate 70.
  • the other magnetic flux passing portion 70h is an opening formed inward in the radial direction with respect to the magnetic flux passing portion.
  • the magnetic flux passing portion 70i configured as a notch passes between the magnet and the magnetic detection element 90, the magnetic flux generated by the magnet located on the outer side in the radial direction flows inside the magnetic detection element 90 to perform magnetic detection.
  • a voltage pulse is generated across the element 90.
  • the magnetic flux passing portion 70h configured as an opening passes between the magnet and the magnetic detector 90, the magnetic flux generated by the magnet located inside in the radial direction flows inside the magnetic detector 90 and becomes magnetic.
  • Another voltage pulse having the opposite polarity to the voltage pulse described above is generated at both ends of the detection element 90.
  • the same effect as that of the configuration shown in the first embodiment can be obtained. Further, not only the amount of rotation of the rotation shaft 32 but also the change in the rotation direction can be detected based on the polarity of the voltage pulse generated by the magnetic detector 90.
  • the magnetic detection elements 90 adjacent to each other are arranged so as to avoid positions separated by 180 degrees in the circumferential direction.
  • the magnetic encoder 60 is designed so that the number of magnetic pole sets having different polarities is larger than the number of magnetic detector elements 90.
  • FIG. 10A is a schematic view showing the arrangement relationship between the magnetic shielding plate and the magnet according to the second modification.
  • FIG. 10B is a schematic view showing the arrangement relationship between the magnet and another magnetic shielding plate according to the second modification.
  • the magnetic encoder 60 components other than the magnetic shielding plates 71 and 72, the magnets 80a and 80b, and the rotating plate 130 are not shown. Only a part of the magnets 80a and 80b is shown. The magnets 80a and 80b are the same as those shown in FIG.
  • the magnetic flux passing portions 71a and 71b are formed by forming the magnetic shielding plate 71 in an annular shape and alternately providing the portions having different inner diameters and the portions having different outer diameters. May be good.
  • the magnetic shielding plate 71 is fixedly arranged on the surface of the rotating plate 130.
  • the rotary plate 130 is rotationally and integrally connected to the rotary shaft 32. As the rotating plate 130 rotates together with the rotating shaft 32, the magnetic flux passing portions 71a and 71b move so as to pass between the magnets 80a and 80b and the magnetic detector 90, respectively.
  • the magnetic flux passing portion 71a passes between the magnets 80a and 80b and the magnetic detector 90 (not shown), the magnetic flux generated by the magnet 80a is shielded by the magnetic shielding plate 71.
  • the magnetic flux passing portion 71b passes between the magnets 80a and 80b and the magnetic detector 90 (not shown), the magnetic flux generated by the magnet 80b is shielded by the magnetic shielding plate 71.
  • a plate material made of a quadrangular magnetic material in a plan view is attached to the rotating plate 130 at a predetermined interval in the circumferential direction to form a substantially annular magnetic shielding plate 72. You may do so.
  • the magnetic flux passing portions 72a and 72b are configured by arranging the plate members adjacent to each other at a predetermined interval in the radial direction.
  • the plate material made of a magnetic material may have a shape other than a quadrangle, and may be, for example, an ellipse.
  • the magnetic shielding plates 71 and 72 shown in FIGS. 10A and 10B are applied to the magnetic encoders 60 and 120, the same effect as that of the configurations shown in the first and second embodiments can be obtained. Further, according to the present embodiment, it is possible to reduce the amount of the magnetic material used that shields the flow of the magnetic flux to the magnetic detector 90. Therefore, the cost of the magnetic encoder 120 and thus the rotary encoder 100 can be reduced.
  • the total mass of the magnetic shielding plates 71 and 72 can be reduced as compared with the configuration shown in the first embodiment. Therefore, the load on the motor 300 can be reduced.
  • the magnetic shielding plate 72 shown in FIG. 10B is configured by appropriately attaching a plate material having the same shape to the rotating plate 130. Therefore, the design becomes easy. Therefore, the design man-hours and design cost of the magnetic shielding plate 72 can be reduced.
  • FIG. 11A is a schematic view showing the magnetic pole arrangement of the magnet according to the modified example 3.
  • FIG. 11B is a schematic view showing the magnetic pole arrangement of the second magnet according to the third modification.
  • FIG. 11C is a schematic view showing the magnetic pole arrangement of the third magnet according to the third modification.
  • FIGS. 11B and 11C only a part of the magnetic poles is shown in FIGS. 11B and 11C, and the others are omitted.
  • two magnetic pole pairs of N pole and S pole may be formed on one magnet 84.
  • the two magnets 80a and 80b shown in FIGS. 4A to 4C may be replaced with the magnet 84 shown in FIG. 11A.
  • the present invention is not limited to this, and the magnets may have a plurality of sets of magnetic poles having different polarities from each other.
  • FIGS. 10A and 10B an example in which a plurality of pair of magnets 80a and 80b are arranged along the outer peripheral direction of the magnetic shielding plate 70 is shown, but as shown in FIG. 11B, the magnets 85 are formed in an annular shape. , May be arranged coaxially with the rotating shaft 32. In this case, in the magnet 85, magnetic poles having different polarities are alternately arranged along the radial direction.
  • the magnet 86 may be configured to further have a plurality of magnetic poles arranged along the radial direction with respect to the structure shown in FIG. 11B.
  • the magnetic poles adjacent to each other in the radial direction are arranged so that their polarities are different from each other.
  • the magnets 85 and 86 are arranged coaxially with the rotating shaft 32.
  • magnets having the shapes shown in FIGS. 11A to 11C may be appropriately applied to the magnetic encoders 60 and 120. In these cases as well, the same effects as those of the configurations shown in the first and second embodiments can be obtained. Further, since the number of magnets to be arranged can be reduced, the man-hours and assembly cost of the magnetic encoders 60 and 120, and eventually the rotary encoder 100 can be reduced.
  • magnets 84 to 86 shown in FIGS. 11A to 11C may be formed by using a plurality of magnets magnetized in a single pole. In that case, the magnets may be arranged at intervals from each other.
  • FIG. 12A is a schematic view of the magnetic encoder according to the modified example 4 as viewed from above.
  • FIG. 12B is a schematic view of another magnetic encoder according to the modified example 4 as viewed from above.
  • the illustration of parts other than the magnets 80a, 80b, 86, the magnetic shielding plate 70, and the magnetic detector 90 is omitted in FIGS. 12A and 12B.
  • the north pole of the magnet 80a and the south pole of the magnet 80b that is, magnetic poles having different polarities are arranged along the radial direction.
  • the south pole of the magnet 80a and the north pole of the magnet 80b are arranged along the radial direction.
  • north poles and south poles are alternately arranged along the circumferential direction, and south poles and north poles are arranged adjacent to each other in the radial direction. Further, both ends of the magnetic detector 90 are arranged along the radial direction.
  • the magnetization direction of the Wiegand wire 90a is reversed when a magnetic field of a predetermined value or more is applied in the longitudinal direction thereof.
  • the line connecting both ends of the magnetic detector 90 in other words, the longitudinal direction of the Wiegand wire 90a is arranged so as to be parallel to the tangential direction of the outer circumference of the rotating plate 130. Has been done.
  • the magnetic flux generated by the magnet flows into the magnetic detector element 90 while changing its direction as the rotating shaft 32 rotates.
  • the magnetic field inside the magnetic detector 90 reverses the magnetization direction of the wigant wire 90a during the period when the magnetic flux passing portion passes below the magnetic detector 90. It may not reach the strength required to make it. In this case, the voltage pulse is not generated by the magnetic detector 90, and the rotation amount may not be detected correctly.
  • the longitudinal direction of the Wiegand wire 90a and the direction of the magnetic flux always generally match even during the rotation of the rotating shaft 32.
  • the magnetization direction of the wigant wire 90a can be reliably reversed, and the magnetic detection element 90 can generate a voltage pulse. Therefore, the amount of rotation of the rotating shaft 32 can be reliably detected without missing detection.
  • one magnetic detector 90 is arranged, but as shown in the second modification, a plurality of magnetic detectors 90 may be arranged. Needless to say, the arrangement, shape, and number of magnets and magnetic flux passing portions are appropriately changed accordingly.
  • FIG. 13 is a schematic view of the magnetic encoder according to the third embodiment as viewed from above.
  • FIG. 14 is a perspective view of the magnetic encoder according to the third embodiment.
  • FIG. 15 is a diagram showing the relationship between the rotation angle of the rotation shaft and the output voltage of the magnetic detector element.
  • the magnetic encoder 120 shown in the present embodiment is different from the configuration shown in the first embodiment in the following points.
  • the magnetic detector 90 is arranged closer to the rotating shaft 32 (not shown) than the magnetic shielding plate 73 in the radial direction. Seen from the radial direction, the magnetic detector 90, the magnetic shielding plate 73, and the magnet 87a or the magnet 87b are arranged in this order with a distance from each other.
  • the magnetic detector 90 is arranged so that the line connecting both ends thereof is parallel to the axial direction. Further, the two magnets 87a and 87b are arranged 90 degrees or more apart along the circumferential direction. The south and north poles of the two magnets 87a and 87b are arranged parallel to the axial direction. In the two magnets 87a and 87b, the arrangement of the magnetic poles is opposite to each other.
  • the magnetic shielding plate 73 is provided so as to surround the rotating shaft 32.
  • the magnetic shielding plate 73 has a cylindrical shape extending in the axial direction. Since the magnetic shielding plate 73 is cut out in the axial direction, one magnetic flux passing portion 73a is provided.
  • the magnetic shielding plate 73 is rotationally and integrally attached to the rotating shaft 32 by a member (not shown). As shown in FIG. 14, the magnetic flux passing portion 73a passes between the magnetic detection element 90 and the magnets 87a and 87b by rotating the magnetic shielding plate 73 with the rotation of the rotating shaft 32. And the same as shown in the second embodiment.
  • the longitudinal direction of the Wiegand wire 90a is parallel to the axial direction.
  • the Wiegand wire 90a is magnetized by the magnetic flux flowing in this direction, and a voltage pulse is generated in the magnetic detector 90.
  • the magnetic detector 90 generates one positive voltage pulse and one negative voltage pulse. This is the same as shown in the first embodiment.
  • the amount of rotation of the rotating shaft 32 is calculated by the magnetic signal processing circuit 220 based on the number of times the voltage pulse is generated, as shown in the first embodiment.
  • FIG. 16 is a schematic view of another magnetic encoder 120 according to the third embodiment as viewed from above.
  • FIG. 17 is a diagram showing the relationship between the rotation angle of the rotation axis in the magnetic encoder 120 shown in FIG. 16 and the output voltage of the magnetic detector element.
  • the magnetic encoder 120 shown in FIG. 16 is different from the magnetic encoder 120 shown in FIGS. 13 and 14 in that two magnetic flux passing portions 73a and 73b are formed on the magnetic shielding plate 73.
  • the magnetic flux passing portions 73a and 73b are provided 180 degrees apart along the circumferential direction.
  • the magnetic encoder 120 may be configured in this way.
  • the magnetic detector 90 while the rotation shaft 32 makes one rotation, the magnetic detector 90 generates a positive electrode voltage pulse and a negative electrode voltage pulse twice, respectively.
  • the amount of rotation can be reliably detected and sufficient power can be secured to drive the magnetic encoder.
  • the change in the rotation direction can be detected.
  • the degree of freedom in arranging the magnets 87a and 87b and the magnetic detector 90 is increased. Therefore, it is possible to suppress an increase in the design cost of the rotary encoder 100.
  • FIG. 18A is a schematic cross-sectional view of the rotary encoder 100 according to the third embodiment.
  • FIG. 18B is a schematic cross-sectional view of another rotary encoder 100 according to the third embodiment.
  • the magnetic encoder 120 shown in the present embodiment may be arranged on the side close to the motor 300, and the optical encoder 110 may be arranged above the magnetic encoder 120.
  • the optical encoder 110 may be arranged on the side close to the motor 300, and the magnetic encoder 120 may be arranged above the optical encoder 110.
  • the reflection pattern 112a may be arranged inside the magnetic shielding plate 73 in the radial direction.
  • the magnetic detection element 90 and the signal processing circuit 200 are electrically connected via wiring 170.
  • the magnetic detection element 90, the magnetic shielding plate 73, and the magnets 87a and 87b are arranged along the radial direction. This increases the degree of freedom in arranging these parts in the radial direction. Therefore, the size of the rotary encoder 100 including the magnetic encoder 120 can be reduced in the radial direction.
  • the magnetic detection element 90, the magnetic shielding plate 70, and the magnets 80a and 80b are arranged along the axial direction. This increases the degree of freedom in arranging these parts in the axial direction. Therefore, it is possible to reduce the size of the rotary encoder including the magnetic encoder in the axial direction. This also applies to the case where the arrangement relationship shown in the second embodiment is applied to the magnetic encoder 120.
  • FIG. 19 is a schematic view of the first magnetic encoder 120 according to the modified example 5 as viewed from above.
  • FIG. 20 is a diagram showing the relationship between the rotation angle of the rotation axis in the magnetic encoder 120 shown in FIG. 19 and the output voltage of the magnetic detector element.
  • FIG. 21 is a schematic view of the second magnetic encoder 120 according to the modified example 5 as viewed from above.
  • FIG. 22 is a diagram showing the relationship between the rotation angle of the rotation axis in the magnetic encoder 120 shown in FIG. 21 and the output voltage of the magnetic detector element.
  • the upper graph shows the output voltage of the magnetic detector 90
  • the lower graph shows the output voltage of the magnetic detector 91.
  • FIG. 23 is a schematic view of the third magnetic encoder 120 according to the modified example 5 as viewed from above.
  • FIG. 24 is a diagram showing the relationship between the rotation angle of the rotation axis in the magnetic encoder 120 shown in FIG. 23 and the output voltage of the magnetic detector element.
  • FIG. 25 is a schematic view of the fourth magnetic encoder 120 according to the modified example 5 as viewed from above.
  • FIG. 26 is a diagram showing the relationship between the rotation angle of the rotation axis in the magnetic encoder 120 shown in FIG. 25 and the output voltage of the magnetic detection element.
  • the upper graph shows the output voltage of the magnetic detector 90
  • the center graph shows the output voltage of the magnetic detector 91
  • the lower graph shows the output voltage of the magnetic detector 92.
  • FIGS. 19, 21, 23, and 25 the illustration of components other than the magnetic detector elements 90 to 92, the magnetic shielding plate 73, and the magnets 87a to 87f is omitted.
  • the configuration according to this modification is different from the configuration shown in the third embodiment in that a plurality of magnetic detection elements 90, 91 or magnetic detection elements 90 to 92 are arranged at intervals along the circumferential direction.
  • a pair of magnets are arranged on opposite sides of one magnetic detector element with the magnetic shielding plate 73 interposed therebetween.
  • the two paired magnets are arranged at intervals in the circumferential direction. Therefore, in the example shown in FIGS. 19 and 21, two magnetic detector elements 90 and 91 and four magnets 87a to 87d are arranged, and in the example shown in FIGS. 23 and 25, three magnetic detector elements 90. -92 and six magnets 87a-87f are arranged.
  • Two paired magnets for example, magnets 87a and 87b, have magnetic poles arranged in opposite directions along the axial direction.
  • one magnetic flux passing portion 73a is provided on the magnetic shielding plate
  • two magnetic flux passing portions 73a and 73b are provided on the magnetic shielding plate in the circumferential direction. They are provided 180 degrees apart from each other.
  • the magnetic shielding plate 73 rotates and the magnetic flux passing portion passes in the vicinity of one magnetic detection element, the magnetic flux generated by one of the two paired magnets passes inside the magnetic detection element and magnetically detects. A voltage pulse is generated in the element. Further, after this, the magnetic flux generated by the other magnet passes inside the magnetic detection element, and a voltage pulse is generated in the magnetic detection element. Since the arrangement of the magnetic poles of the two magnets is opposite in the axial direction, the direction of the magnetic flux flowing through the magnetic detector is also opposite.
  • FIG. 27 is a schematic view of the first magnetic encoder according to the modified example 6 as viewed from above.
  • FIG. 28 is a diagram showing the relationship between the rotation angle of the rotation axis in the magnetic encoder shown in FIG. 27 and the output voltage of the magnetic detector element.
  • FIG. 29 is a schematic view of the second magnetic encoder according to the modified example 6 as viewed from above.
  • FIG. 30 is a diagram showing the relationship between the rotation angle of the rotation axis in the magnetic encoder shown in FIG. 29 and the output voltage of the magnetic detector element.
  • FIG. 31 is a schematic view of the third magnetic encoder according to the modified example 6 as viewed from above.
  • FIGS. 30 and 32 is a diagram showing the relationship between the rotation angle of the rotation axis in the magnetic encoder shown in FIG. 31 and the output voltage of the magnetic detector element.
  • the upper graph shows the output voltage of the magnetic detection element 90
  • the center graph shows the output voltage of the magnetic detection element 91
  • the lower graph shows the output voltage of the magnetic detection element 92.
  • illustration of components other than the magnetic detector elements 90 to 92, the magnetic shielding plate 74, the magnets 87a to 87c, and the magnet 87g is omitted in FIGS. 27, 29, and 31.
  • the configuration according to this modification is that a plurality of magnetic shielding plates 741 and 742 are provided coaxially with the rotating shaft 32 (not shown) and at intervals in the radial direction to form the magnetic shielding plate 74.
  • the magnetic shielding plates 741 and 742 are rotationally and integrally attached to the rotating shaft 32, the relative positions between the magnetic flux passing portions 741a and 742a provided respectively do not change even during the rotation of the rotating shaft 32. Further, the relative positions between the magnetic flux passing portions 741a, 741b, 742a, and 742b do not change.
  • the magnetic detector elements 90 to 92 are arranged between the magnetic shield plate 741 and the magnetic shield plate 742 in the radial direction, and are arranged closer to the rotation shaft 32 than the magnetic shield plate 741.
  • the number of magnetic detector elements is 1, 3, and 3 in the examples shown in FIGS. 27, 29, and 31, respectively.
  • the magnetic detector elements adjacent to each other are arranged 120 degrees apart along the circumferential direction.
  • the magnetic flux passing portions 741a and 742a are formed on the magnetic shielding plates 741 and 742, respectively.
  • the magnetic flux passing portion 741a formed on the magnetic shielding plate 741 and the magnetic flux passing portion 742a formed on the magnetic shielding plate 742 are arranged at a predetermined angle along the circumferential direction, in this case, 180 degrees apart.
  • the magnetic flux passing portions 741a and 741b are formed on the magnetic shielding plate 741, and the magnetic flux passing portions 742a and 742b are formed on the magnetic shielding plate 742, respectively.
  • the magnetic flux passing portions 741a and 741b formed on the magnetic shielding plate 741 are arranged 180 degrees apart along the circumferential direction.
  • the magnetic flux passing portions 742a and 742b formed on the magnetic shielding plate 742 are arranged 180 degrees apart along the circumferential direction.
  • the magnetic flux passing portions 741a and 742a formed on the magnetic shielding plates 741 and 742, respectively, are arranged 90 degrees apart along the circumferential direction.
  • the magnetic flux passing portions 741b and 742b are arranged 90 degrees apart along the circumferential direction.
  • the magnet 87g is located inside the magnetic shielding plate 142, specifically near the rotating shaft 32, and the magnets 87a to 87c are located outside the magnetic shielding plate 741.
  • the magnets 87a to 87c have magnetic poles arranged in the same direction along the axial direction.
  • the arrangement and number of magnets located outside the magnetic shielding plate 741 are determined according to the arrangement and number of magnetic detector elements.
  • the magnet 87a, the magnetic detector 90, and the magnet 87g are arranged in a straight line along the radial direction when viewed from above.
  • magnets located on the outer side in the radial direction of the magnetic shielding plate 741 and adjacent to each other, for example, magnets 87a and 87b, are arranged 120 degrees apart along the circumferential direction.
  • voltage pulses having different polarities are generated twice in one magnetic detector element.
  • the number of sets of voltage pulses having different polarities generated during one rotation of the rotating shaft 32 increases according to the number of magnetic detector elements or magnetic flux passing portions. For example, as shown in FIGS. 29 and 31, when there are three magnetic detector elements and a total of four magnetic flux passing portions, as shown in FIGS. 30 and 32, the polarity is polar during one rotation of the rotating shaft 32. Different voltage pulses are generated 6 times each. However, the timing at which the voltage pulse is generated differs depending on the arrangement relationship between the plurality of magnetic flux passing portions.
  • the magnetic flux surely flows inside the magnetic detection element and a voltage pulse is generated. ..
  • the amount of rotation can be detected based on the number of times this voltage pulse is generated.
  • FIG. 33 is a schematic view of the magnetic encoder according to the modified example 7 as viewed from above.
  • FIG. 34 is a diagram showing the relationship between the rotation angle of the rotation axis in the magnetic encoder shown in FIG. 33 and the output voltage of the magnetic detector element.
  • FIG. 35 is a schematic view of another magnetic encoder according to the modified example 7 as viewed from above.
  • FIG. 36 is a diagram showing the relationship between the rotation angle of the rotation axis in the magnetic encoder shown in FIG. 35 and the output voltage of the magnetic detector element.
  • the upper graph shows the output voltage of the magnetic detector 90
  • the lower graph shows the output voltage of the magnetic detector 91.
  • FIG. 34 the upper graph shows the output voltage of the magnetic detector 90, and the lower graph shows the output voltage of the magnetic detector 91.
  • the upper graph shows the output voltage of the magnetic detector 90
  • the center graph shows the output voltage of the magnetic detector 91
  • the lower graph shows the output voltage of the magnetic detector 92.
  • the drawings of components other than the magnetic detector elements 90 to 92, the magnetic shielding plate 75, the magnets 87a and 87b, and the magnets 87h to 87k are omitted in FIGS. 33 and 35.
  • the configuration according to the present modification is shown in the third embodiment in that a plurality of magnetic shielding plates 751, 752 and magnetic shielding plates 753 are provided at intervals in the axial direction to form the magnetic shielding plate 75.
  • these magnetic shielding plates are rotationally and integrally attached to the rotating shaft 32, the relative positions between the magnetic flux passing portions provided in the respective rotating shafts 32 do not change even during the rotation of the rotating shaft 32.
  • the relative positions between the magnetic flux passing portions 751a and 752a provided on the magnetic shielding plates 751 and 752, respectively, do not change.
  • the relative positions between the magnetic flux passing portions 751a to 753a provided on the magnetic shielding plates 751 to 753 do not change.
  • the magnetic detector element is provided for each of the plurality of magnetic shielding plates.
  • the magnetic detection elements 90 and 91 are provided corresponding to the magnetic shielding plates 751 and 752, respectively.
  • the magnetic detector elements 90 to 92 are provided corresponding to the magnetic shielding plates 751 to 753, respectively.
  • the magnetic detector elements 90 to 92 are arranged closer to the rotation axis 32 than the corresponding magnetic shielding plate in the radial direction.
  • a magnetic flux passing portion is formed at one location corresponding to each of the plurality of magnetic shielding plates.
  • the magnetic flux passing portions formed on the magnetic shielding plates different from each other are arranged at a predetermined angle along the circumferential direction.
  • the magnetic flux passing portions 751a and 752a formed on the magnetic shielding plates 751 and 752, respectively are arranged 90 degrees apart along the circumferential direction.
  • the magnetic flux passing portions 751a to 753a formed on the magnetic shielding plates 751 to 753 are arranged 60 degrees apart along the circumferential direction.
  • the magnetic detector elements 90 to 92 are arranged closer to the rotation axis 32 than the corresponding magnetic shielding plate in the radial direction.
  • a pair of magnets are arranged at intervals from each other on the radial outer side of a plurality of magnetic shielding plates.
  • the two magnets 87a and 87b provided on the outer side in the radial direction of the magnetic shielding plate 751 are arranged 180 degrees apart along the circumferential direction.
  • the arrangement of magnetic poles along the axial direction is opposite to each other.
  • Such a relationship also applies to the two magnets 87h and 87i provided on the radial outer side of the magnetic shielding plate 752 and the two magnets 87j and 87k provided on the radial outer side of the magnetic shielding plate 753.
  • two or three magnets are arranged side by side along the axial direction.
  • the magnets 87a and 87h are arranged side by side along the axial direction.
  • the magnets 87b and 87i are arranged side by side along the axial direction.
  • the magnets 87a, 87h, and 87j are arranged side by side along the axial direction.
  • Magnets 87b, 87i, 87k are arranged side by side along the axial direction.
  • Magnets arranged in the axial direction have the same arrangement of magnetic poles along the axial direction.
  • a plurality of magnetic shielding plates are arranged side by side in the axial direction, and the magnetic detection element and the magnet are arranged accordingly.
  • the magnetic flux surely flows inside the magnetic detector element, and a voltage pulse is generated.
  • the amount of rotation can be detected based on the number of times this voltage pulse is generated.
  • a plurality of magnetic detector elements and magnetic flux passing portions are arranged, and the arrangement relationship between them is specified as shown in this modification. As a result, the same effect as that of the configurations shown in the modified examples 5 and 6 can be obtained.
  • the rotary encoder 100 including the magnetic encoder 120 shown in this modification is used without increasing the size of the motor 300. , The above-mentioned effect can be achieved.
  • FIG. 37 is a perspective view of the first magnetic encoder according to the modified example 8.
  • FIG. 38 is a perspective view of the second magnetic encoder according to the modified example 8.
  • FIG. 39 is a perspective view of the third magnetic encoder according to the modified example 8.
  • FIG. 40 is a perspective view of the fourth magnetic encoder according to the modified example 8.
  • the components other than the magnetic detector 90, the magnetic shielding plates 73, 75, and the magnets 88a to 88f are not shown in FIGS. 37 to 40.
  • the magnets 87a to 87k shown in the third embodiment and the modified examples 5 to 7 each have two poles, an north pole and an south pole.
  • the magnets 87a to 87k are rod-shaped magnets extending in the axial direction.
  • the magnets 87a to 87k are configured so that the axial length of one magnet is substantially the same as the axial length of one magnetic detector element.
  • the size and arrangement of the magnets are not particularly limited to this, and for example, the configuration shown in this modification may be used.
  • a set of magnets shorter in the axial direction than the magnetic detector 90 is arranged in the axial direction, and magnetic flux is applied from the south pole or north pole of one magnet toward the north pole or south pole of the other magnet. May flow.
  • a voltage pulse is generated when this magnetic flux flows inside the magnetic detector 90.
  • the amount of magnetic flux applied to the magnetic detector 90 can be increased.
  • the generation and omission of the voltage pulse is reduced, and the detection reliability of the rotation amount is improved.
  • the set of magnets 88a and 88c and the set of magnets 88b and 88d apply to the above-mentioned relationship.
  • the set of magnets 88a and 88c is arranged 180 degrees apart from the set of magnets 88b and 88d along the circumferential direction.
  • magnets shorter in the axial direction than the magnetic detector element may be opposed to each other in the radial direction.
  • the two magnets 88e and 88f may face each other in the radial direction, but may be arranged at positions deviated from each other in the axial direction. By doing so, the space for arranging the magnets can be reduced, and the magnetic encoder 120 can be miniaturized. In this case, the magnetic flux generated by each of the two magnets 88e and 88f flows inside the magnetic detector 90 through the magnetic flux passing portion 73a.
  • the magnetic flux passing portions shown in the third embodiment and the modified examples 5 to 7 are formed by cutting out the magnetic shielding plate from the upper end to the lower end in the axial direction.
  • the shape of the magnetic flux passing portion is not particularly limited to this, and may be, for example, the shape shown in this modification.
  • the magnetic flux passing portions 73c and 73d may be formed by cutting out the magnetic shielding plate 73 halfway along the axial direction from each of the upper end and the lower end. In this case, the magnetic flux passing portions 73c and 73d are arranged apart in the axial direction. Further, as shown in FIG. 40, two magnetic shielding plates 751 and 752 are arranged in the axial direction, and the magnetic flux passing portion 751a formed on the magnetic shielding plate 751 and the magnetic flux passing portion 752a formed on the magnetic shielding plate 752 are arranged. They may be arranged at a predetermined angle along the circumferential direction. In the example shown in FIG.
  • the arrangement and the number of magnets 88a to 88d are the same as those shown in FIG. 37. By doing so, the amount of magnetic flux applied to the magnetic detector 90 can be increased. As a result, the generation and omission of the voltage pulse is reduced, and the detection reliability of the rotation amount is improved. Further, the path of the magnetic flux flowing through the magnetic detector 90 is the same as shown in FIG. 37. Further, in the example shown in FIG. 40, the arrangement and the number of magnets 88e and 88f are the same as those shown in FIG. 38. By doing so, the space for arranging the magnets can be reduced. Therefore, the magnetic encoder 120 can be miniaturized. The path of the magnetic flux flowing through the magnetic detector 90 is the same as shown in FIG. 38. In this case, the magnetic flux generated by one magnet flows inside one magnetic detector element through one magnetic flux passing portion. For example, the magnetic flux generated by the magnet 88f flows inside the magnetic detector 90 through the magnetic flux passing portion 751a, and a voltage pulse is generated.
  • FIG. 41A is a schematic view of the magnetic encoder 120 according to the fourth embodiment as viewed from above.
  • FIG. 41B is a schematic diagram showing an operating state of the magnetic encoder 120 shown in FIG. 41A.
  • illustration of components other than the magnetic detector 90, the magnetic shielding plate 76, and the magnets 89a and 89b is omitted in FIGS. 41A and 41B.
  • the magnet is arranged on the lower side in the axial direction of the magnetic detection element. Therefore, in each of the drawings shown below, the magnetic detection element is shown only by the Wiegand wire and the induction coil. To do.
  • the magnetic encoder 120 shown in the present embodiment is different from the magnetic encoder 120 shown in the first and third embodiments in the following points.
  • the magnetic shielding plate 76 is provided so as to surround the rotating shaft 32 in succession to the annular and plate-shaped second portion 762 located in a plane intersecting the axial direction. It has a cylindrical first portion 761 extending into. The first portion 761 extends axially from the outer peripheral edge of the second portion 762.
  • Magnetic flux passing portions 761a and 762a are provided in the first and second portions 761 and 762, respectively.
  • the magnetic flux passing portion 761a is formed by partially cutting out from the upper end to the lower end along the axial direction.
  • the magnetic flux passing portion 762a is formed by cutting out a portion of about 1/4 along the circumferential direction.
  • the magnetic flux passing portion 761a formed in the first portion 761 and the magnetic flux passing portion 762a formed in the second portion 762 are arranged at a predetermined angle along the circumferential direction, in this case, 180 degrees apart. Has been done.
  • the magnet 89a is arranged on the side opposite to the magnetic detector 90, that is, on the radial side of the magnetic shielding plate 76, with the first portion 761 interposed therebetween.
  • the magnet 89b is arranged on the side opposite to the magnetic detection element 90, that is, on the lower side in the axial direction of the magnetic shielding plate 76, with the second portion 762 interposed therebetween. Seen from above, the magnet 89b is arranged radially inside the first portion 761. Seen from above, the two magnets 89a and 89b are arranged so that they are parallel to each other and their magnetic poles are located in a plane orthogonal to the axial direction. However, in each magnet, the arrangement directions of the magnetic poles are opposite.
  • the magnetic detector 90 is arranged at both ends in a plane orthogonal to the axial direction, and its longitudinal direction is substantially parallel to the arrangement direction of the magnetic poles of the magnets 89a and 89b.
  • the magnetic flux generated by the magnet 89b passes through the magnetic flux passing portion 762a provided in the second portion 762 and is inside the magnetic detector 90. A voltage pulse is generated. At this time, the magnetic flux generated by the magnet 89a is shielded by the first portion 761 and does not reach the magnetic detection element 90. Further, when the rotating shaft 32 rotates, the magnetic flux generated by the magnets 89a and 89b is shielded by the first portion 761 and the second portion 762, so that the magnetic flux does not flow to the magnetic detector 90 and no voltage pulse is generated.
  • the magnetic flux generated by the magnet 89a passes through the magnetic flux passing portion 761a provided in the first portion 761 and flows inside the magnetic detector 90, and a voltage pulse is generated. ..
  • This voltage pulse has the opposite polarity to the previously generated voltage pulse.
  • the magnetic flux generated by the magnet 89b is shielded by the second portion 762 and does not reach the magnetic detector 90.
  • a voltage pulse is periodically generated in the magnetic detector 90.
  • the amount of rotation of the rotating shaft 32 is detected based on the number of times this voltage pulse is generated.
  • the magnetic detection element 90, the second portion of the magnetic shielding plate 76, and the magnet 89b are arranged at intervals along the axial direction, and the magnetic detection element 90 and the magnetism
  • the first portion 761 of the shielding plate 76 and the magnet 89a are arranged at intervals along the radial direction.
  • the rotary encoder 100 including the magnetic encoder 120 of the present embodiment is useful when it is desired to reduce the size of the rotary encoder 100 to some extent in both the axial direction and the radial direction.
  • FIG. 42A is a schematic cross-sectional view of the rotary encoder according to the fourth embodiment.
  • FIG. 42B is a schematic cross-sectional view of another rotary encoder according to the fourth embodiment.
  • the magnetic encoder 120 shown in the present embodiment into the rotary encoder 100, a plurality of arrangements can be considered.
  • the magnetic encoder 120 may be arranged on the side close to the motor 300, and the optical encoder 110 may be arranged above the magnetic encoder 120.
  • the optical encoder 110 may be arranged on the side close to the motor 300, and the magnetic encoder 120 may be arranged above the optical encoder 110.
  • the reflection pattern 112a may be arranged inside the first portion 761 of the magnetic shielding plate 76 in the radial direction.
  • the magnet 89b is arranged on the upper side in the axial direction of the magnetic shielding plate 76.
  • the magnetic detector 90 and the signal processing circuit 200 are electrically connected via wiring 170.
  • FIG. 43 is a schematic view of the magnetic encoder 120 according to the modified example 9 as viewed from above.
  • FIG. 44 is a diagram showing the relationship between the rotation angle of the rotation axis in the magnetic encoder 120 shown in FIG. 43 and the output voltage of the magnetic detector element.
  • FIG. 45 is a schematic view of another magnetic encoder 120 according to the modified example 9 as viewed from above.
  • FIG. 46 is a diagram showing the relationship between the rotation angle of the rotation axis in the magnetic encoder 120 shown in FIG. 45 and the output voltage of the magnetic detector element.
  • the upper graph shows the output voltage of the magnetic detector element 90
  • the lower graph shows the output voltage of the magnetic detector 91.
  • illustration of components other than the magnetic detector elements 90 and 91, the magnetic shielding plate 76, and the magnets 83a, 83b, 89a, 89b is omitted in FIGS. 43 and 45.
  • the magnetic encoder 120 shown in FIG. 43 is different from the encoder shown in the fourth embodiment in that two magnetic detection elements are provided.
  • a pair of magnets 89a and 89b are arranged for each of the magnetic detector elements 90 and 91.
  • One magnet 89a is arranged on the opposite side of the magnetic detector 90 with the first portion 761 interposed therebetween.
  • the other magnet 89b is arranged on the opposite side of the magnetic detection element 90 with the second portion 762 interposed therebetween.
  • the arrangement relationship of the magnets 89a and 89b corresponding to the magnetic detector 91 is the same as this. Seen from above, the magnet 89b is arranged radially inside the first portion 761.
  • the two paired magnets 89a and 89b are arranged so that they are parallel to each other and their magnetic poles are located in a plane orthogonal to the axial direction. However, in each magnet, the arrangement directions of the magnetic poles are opposite.
  • the magnetic encoder 120 may be configured in this way.
  • the magnetic detectors 90 and 91 generate one positive voltage pulse and one negative voltage pulse, respectively.
  • the amount of rotation can be reliably detected and sufficient power can be secured to drive the magnetic encoder 120.
  • the degree of freedom in arranging the magnets 89a and 89b and the magnetic detectors 90 and 91 is increased. Therefore, it is possible to suppress an increase in the design cost of the rotary encoder 100.
  • the magnetic shielding plate 73 may have a shape as shown in the third embodiment.
  • the magnetic detector 90 is arranged near the rotating shaft 32 when viewed from the axial direction.
  • the two magnets 83a and 83b are arranged so as to be parallel to each other and their respective magnetic poles are located in a plane orthogonal to the axial direction. However, in each magnet, the arrangement directions of the magnetic poles are opposite.
  • the two magnets 83a and 83b are arranged on the radial outer side of the magnetic shielding plate 73. In addition, they are arranged 180 degrees apart along the circumferential direction.
  • the magnetic detector 90 when the magnetic flux generated by one magnet flows through the magnetic detector 90, the magnetic flux generated by the other magnet is shielded by the magnetic shielding plate 73. Therefore, as shown in FIG. 46, while the rotation shaft 32 makes one rotation, the magnetic detector 90 generates one positive electrode voltage pulse and one negative electrode voltage pulse, and based on the number of occurrences, the rotation shaft 32 occurs. The amount of rotation of is detected.
  • FIG. 47A is a schematic view of the first magnetic encoder 120 according to the modified example 10 as viewed from above.
  • FIG. 47B is a schematic diagram showing an operating state of the magnetic encoder 120 shown in FIG. 47A.
  • FIG. 48 is a schematic view of the second magnetic encoder 120 according to the modified example 10 as viewed from above.
  • FIG. 49A is a schematic cross-sectional view of the rotary encoder 100 according to the modified example 10.
  • FIG. 49B is a schematic cross-sectional view of another rotary encoder 100 according to the modified example 10.
  • FIG. 50 is a schematic view of the third magnetic encoder 120 according to the modified example 10 as viewed from above.
  • FIG. 51 is a diagram showing the relationship between the rotation angle of the rotation axis in the magnetic encoder 120 shown in FIG. 50 and the output voltage of the magnetic detector element.
  • FIGS. 47A, 48, and 50 For convenience of explanation, the drawings of components other than the magnetic detector elements 90 and 91, the magnetic shielding plate 77, and the magnets 89c to 89e are omitted in FIGS. 47A, 48, and 50. Further, in FIGS. 49A and 49B, the configuration of the magnetic encoder 120 is the same as that shown in FIG. 48.
  • the magnetic encoder 120 shown in this modification is different from the magnetic encoder 120 shown in the fourth embodiment and the ninth modification in the following points.
  • the magnetic shielding plate 77 is provided so as to surround the rotating shaft 32 in succession to the annular and plate-shaped second portion 772 located in a plane intersecting the axial direction, and extends in the axial direction. It has a cylindrical first portion 771. The first portion 771 extends axially from the inner peripheral edge of the second portion 772.
  • the magnet 89d or the magnet 89e is arranged radially inside the first portion 771 of the magnetic shielding plate 77.
  • the magnet 89c is arranged radially outside the first portion 771 of the magnetic shielding plate 77.
  • the magnetic encoder 120 may be configured in this way.
  • the magnetic detector 90 has a positive voltage pulse and a negative electrode while the rotation shaft 32 makes one rotation. Each voltage pulse is generated once.
  • the degree of freedom in arranging the magnet and the magnetic detector element is increased. Therefore, it is possible to suppress an increase in the design cost of the rotary encoder 100.
  • the two magnetic detector elements 90 and 91 may be arranged so as to face each other in the radial direction with the first portion of the magnetic shielding plate 77 interposed therebetween.
  • magnets 89c are arranged at intervals in the axial direction for each of the magnetic detector elements 90 and 91.
  • the magnet 89e located inside the first portion 771 in the radial direction may be an annular shape.
  • a plurality of magnetic poles are arranged along the circumferential direction so that the polarities of the magnetic poles adjacent to each other are different. By doing so, the distance between the magnet 89e and the first portion 771 can be reduced. Therefore, the magnetic encoder 120, and thus the rotary encoder 100, can be miniaturized in the radial direction.
  • the magnetic encoder 120 may be arranged on the side close to the motor 300, and the optical encoder 110 may be arranged above the magnetic encoder 120.
  • the optical encoder 110 may be arranged on the side close to the motor 300, and the magnetic encoder 120 may be arranged above the optical encoder 110.
  • the reflection pattern 112a may be arranged radially inside the first portion 771 of the magnetic shielding plate 77.
  • the magnetic detector 90 and the signal processing circuit 200 are electrically connected via wiring 170.
  • FIG. 52 is a schematic view of the magnetic encoder according to the modified example 11 as viewed from above.
  • FIG. 53 is a diagram showing the relationship between the rotation angle of the rotation axis in the magnetic encoder shown in FIG. 52 and the output voltage of the magnetic detector element.
  • FIG. 54 is a schematic view of the second magnetic encoder according to the modified example 11 as viewed from above.
  • FIG. 55 is a diagram showing the relationship between the rotation angle of the rotation axis in the magnetic encoder shown in FIG. 54 and the output voltage of the magnetic detector element.
  • FIG. 56 is a schematic view of the third magnetic encoder according to the modified example 11 as viewed from above.
  • FIG. 57 is a diagram showing the relationship between the rotation angle of the rotation axis in the magnetic encoder shown in FIG. 56 and the output voltage of the magnetic detector element.
  • FIG. 58 is a schematic view of the fourth magnetic encoder according to the modified example 11 as viewed from above.
  • FIG. 59 is a diagram showing the relationship between the rotation angle of the rotation axis in the magnetic encoder shown in FIG. 58 and the output voltage of the magnetic detector element.
  • FIG. 60 is a schematic view of the fifth magnetic encoder according to the modified example 11 as viewed from above.
  • FIG. 61 is a diagram showing the relationship between the rotation angle of the rotation axis in the magnetic encoder shown in FIG. 60 and the output voltage of the magnetic detector element.
  • FIG. 62 is a schematic view of the sixth magnetic encoder according to the modified example 11 as viewed from above.
  • FIG. 63 is a diagram showing the relationship between the rotation angle of the rotation axis in the magnetic encoder shown in FIG. 62 and the output voltage of the magnetic detector element.
  • the upper graph shows the output voltage of the magnetic detector 90
  • the center graph shows the output voltage of the magnetic detector 91.
  • the graph shows the output voltage of the magnetic detector 92, respectively.
  • FIGS. 52, 54, 56, 58, 60, and 62 the components other than the magnetic detector elements 90 to 92, the magnetic shielding plates 76, 77, and the magnets 89a to 89c, 89e are shown. Omit.
  • the configuration according to this modification is different from the configuration shown in the fourth embodiment and the modifications 9 and 10 in that three magnetic detector elements 90 to 92 are provided at intervals in the circumferential direction.
  • the magnetic detector elements adjacent to each other are arranged 120 degrees apart in the circumferential direction.
  • magnets 89a are arranged on the outer side in the radial direction with the first portion 761 of the magnetic shielding plate 76 sandwiched between one magnetic detection element.
  • a magnet 89b is arranged on the lower side in the axial direction with the second portion 762 interposed therebetween.
  • magnets 89e are arranged radially inside one magnetic detector element with the first portion 771 of the magnetic shielding plate 77 interposed therebetween.
  • a magnet 89c is arranged on the lower side in the axial direction with the second portion 772 interposed therebetween.
  • the magnet 89e has an annular shape as shown in FIGS. 48 and 50, and a plurality of magnetic poles are arranged along the circumferential direction so that the polarities of the adjacent magnetic poles are different from each other.
  • magnetic flux passing portions 761a and 762a are provided in the first portion 761 and the second portion 762 of the magnetic shielding plate 76, respectively, and they face each other in the radial direction when viewed from above. That is, they are arranged 180 degrees apart along the circumferential direction.
  • a positive electrode voltage pulse and a negative electrode voltage pulse are generated once in each of the magnetic detector elements 90 to 92 while the rotation shaft 32 makes one rotation. ..
  • two magnetic flux passing portions 761a and 761b are provided in the first portion 761 of the magnetic shielding plate 76.
  • Two magnetic flux passing portions 762a and 762b are provided in the second portion 762. Seen from above, the two magnetic flux passing portions 761a and 761b are arranged so as to face each other in the radial direction.
  • the two magnetic flux passing portions 762a and 762b are arranged so as to face each other in the radial direction.
  • the magnetic flux passing portion provided in the first portion 761 and the magnetic flux passing portion provided in the second portion 762 adjacent thereto are arranged 90 degrees apart along the circumferential direction. In the configuration shown in FIG.
  • two magnetic flux passing portions 771a and 771b are provided in the first portion 771 of the magnetic shielding plate 77.
  • Two magnetic flux passing portions 772a and 772b are provided in the second portion 772. Seen from above, the two magnetic flux passing portions 771a and 771b are arranged so as to face each other in the radial direction.
  • the two magnetic flux passing portions 772a and 772b are arranged so as to face each other in the radial direction.
  • the magnetic flux passing portion provided in the first portion 771 and the magnetic flux passing portion provided in the second portion 772 adjacent thereto are arranged 90 degrees apart along the circumferential direction.
  • each magnetic flux passing portion 761a to 761d are provided in the first portion 761 of the magnetic shielding plate 76.
  • the second portion 762 is provided with four magnetic flux passing portions 762a to 762d. Seen from above, the four magnetic flux passing portions 761a to 761d are arranged 90 degrees apart along the circumferential direction. The four magnetic flux passing portions 762a to 762d are arranged 90 degrees apart along the circumferential direction. Further, the magnetic flux passing portion provided in the first portion 761 and the magnetic flux passing portion provided in the second portion 762 adjacent thereto are arranged at a distance of 45 degrees along the circumferential direction. In the configuration shown in FIG.
  • four magnetic flux passing portions 771a to 771d are provided in the first portion 771 of the magnetic shielding plate 77.
  • the second portion 772 is provided with four magnetic flux passing portions 772a to 772d. Seen from above, the four magnetic flux passing portions 771a to 771d are arranged 90 degrees apart along the circumferential direction.
  • the four magnetic flux passing portions 772a to 772d are arranged 90 degrees apart along the circumferential direction.
  • the magnetic flux passing portion provided in the first portion 771 and the magnetic flux passing portion provided in the second portion 772 adjacent thereto are arranged at a distance of 45 degrees along the circumferential direction.
  • a positive voltage pulse and a negative voltage pulse are generated in each of the magnetic detector elements 90 to 92 during one rotation of the rotating shaft 32, respectively. Occurs 4 times each.
  • the same effect as that of the configurations shown in the fourth embodiment and the ninth and tenth modifications can be obtained. That is, the amount of rotation can be reliably detected and sufficient power can be secured to drive the magnetic encoder 120. In addition, the degree of freedom in arranging magnets and magnetic detector elements is increased. Therefore, it is possible to suppress an increase in the design cost of the rotary encoder 100.
  • the same effect as that of the configuration shown in the modification 5 can be further enhanced. That is, not only the amount of rotation of the rotation shaft 32 but also the change in the rotation direction can be detected. During one rotation of the rotating shaft 32, voltage pulses are generated in each of the magnetic detector elements 90 to 92. Therefore, the redundancy of the detected data is ensured. Further, the stability of the electric power for driving the magnetic encoder 120 can be improved. Further, by increasing the number of magnetic detector elements, it is possible to obtain detailed information on the angle range in which the rotation shaft 32 is rotated from the origin position in the rotation amount. Therefore, the rotational state of the motor 300 can be controlled more precisely. Further, when the power supply 230 for driving the rotary encoder 100 is stopped and then returned again, the multi-rotation information S can be corrected with high accuracy.
  • the rotational state of the motor 300 can be controlled more precisely. Further, when the power supply 230 for driving the rotary encoder 100 is stopped and then returned again, the multi-rotation information S can be corrected with high accuracy.
  • the motor case 10 shown in FIG. 1 may have a bottomed tubular shape. In that case, for example, one of the brackets 21 and 22 is omitted. If the bracket 22 is omitted, the rotary encoder 100 is attached to the bottom wall of the motor case 10. In this case as well, it is necessary to take measures for magnetic shielding in the encoder case 150 and the motor case 10 so that the magnetic flux from the rotor 30 and the stator 40 does not leak to the rotary encoder 100.
  • the optical encoder 110 is a reflective encoder, it may be a transmissive encoder.
  • the light receiving element may be arranged on the lower surface of the circuit board 140
  • the light emitting element may be arranged on the upper surface of the bracket 22, and the slit plate 112 may be provided with a transmission pattern.
  • the light emitting element may be arranged on the lower surface of the circuit board 140, and the light receiving element may be arranged on the upper surface of the bracket 22. In this case, it is necessary to electrically connect the signal processing circuit 200 and the output terminal of the light receiving element by using wiring or the like.
  • the IPM motor has been described as an example, but it goes without saying that the rotary encoder 100 shown in the present specification can be applied to other types of motors.
  • the combination of the magnetic detection element, the magnetic shielding plate, and the magnet can also be used as a power generation mechanism that generates electric power according to the rotation of the rotating shaft 32.
  • the power generation mechanism can be used as a power supply source for driving the optical encoder 110.
  • the rotation detector of the present disclosure can detect the amount of rotation of the rotating shaft with a simple configuration. Therefore, it is useful for application to a rotary encoder of a servo motor.

Abstract

A rotation detector that detects the amount of rotation of a rotating shaft in a motor, the rotation detector comprising: a magnetism-detecting element configured from a magnetic body and an inductive coil; a magnetism-shielding plate attached to the rotating shaft so as to rotate integrally, the magnetism-shielding plate having a magnetic-flux-transmitting part; and a magnet having a plurality of magnetic poles with mutually different polarities, the magnet being such that the relative position thereof with respect to the magnetism-detecting element does not change. The magnetic body exhibits a high Barkhausen effect when a magnetic field of a prescribed amount or higher is applied. When viewed from a prescribed direction, the magnetism-detecting element, the magnetism-shielding plate, and the magnet are arranged in the stated order with gaps formed between each of the magnetism-detecting element, the magnetism-shielding plate, and the magnet.

Description

回転検出器及びそれを備えたモータRotation detector and motor equipped with it
 本開示は、回転検出器及びそれを備えたモータに関する。 The present disclosure relates to a rotation detector and a motor equipped with the rotation detector.
 従来、モータの回転軸の回転速度または回転角度を検出する回転検出器としてエンコーダが広く用いられている。また、エンコーダで検出された回転速度あるいは回転角度を目標値に近づけるように駆動制御を行うサーボモータが産業用途で広く用いられている。 Conventionally, an encoder has been widely used as a rotation detector for detecting the rotation speed or rotation angle of the rotation axis of a motor. Further, a servomotor that controls the drive so that the rotation speed or the rotation angle detected by the encoder approaches the target value is widely used in industrial applications.
 近年、機器の省電力化の観点から、外部電源を使用せずにエンコーダを駆動させる要請が高まりつつある。 In recent years, from the viewpoint of power saving of equipment, there is an increasing demand for driving an encoder without using an external power supply.
 このような、いわゆる、バッテリーレスエンコーダを実現する手法として、大バルクハウゼン効果により磁化反転する磁性体を有する磁気検出素子を用いたエンコーダが、従来、知られている(例えば、特許文献1~3を参照)。磁気検出素子は、内部を流れる磁束の向きが変化すると、その両端に電圧が誘起されるセンサ素子である。誘起された電圧によりエンコーダが駆動される。 As a method for realizing such a so-called batteryless encoder, an encoder using a magnetic detector element having a magnetic material whose magnetization is inverted by the large Barkhausen effect has been conventionally known (for example, Patent Documents 1 to 3). See). The magnetic detector element is a sensor element in which a voltage is induced across the magnetic flux when the direction of the magnetic flux flowing inside the magnetic detector changes. The induced voltage drives the encoder.
 特許文献1~3に開示される従来の構成では、固定配置された磁気検出素子に対して磁石を回転させることで、磁気検出素子の内部を流れる磁束の向きを変化させていた。 In the conventional configuration disclosed in Patent Documents 1 to 3, the direction of the magnetic flux flowing inside the magnetic detection element is changed by rotating the magnet with respect to the fixedly arranged magnetic detection element.
 しかし、この場合、磁石の形状・磁極数、また、回転方向を検出するために追加されるセンサの配置を工夫する必要がある。これにより、設計コストの増大または設計自由度の減少を招いていた。 However, in this case, it is necessary to devise the shape of the magnet, the number of magnetic poles, and the arrangement of the sensors added to detect the rotation direction. This has led to an increase in design cost or a decrease in design freedom.
独国特許発明第10259223号明細書German Patent Invention No. 10259223 日本国特許第5769879号公報Japanese Patent No. 5769879 日本国特許第5964117号公報Japanese Patent No. 5964117
 本開示はかかる点に鑑みてなされたものである。本開示の目的は、簡便な構成でモータの回転軸の回転量を検出可能な回転検出器及びそれを備えたモータを実現することにある。 This disclosure has been made in view of this point. An object of the present disclosure is to realize a rotation detector capable of detecting the amount of rotation of a rotation shaft of a motor with a simple configuration and a motor provided with the rotation detector.
 上記の目的を達成するために、本開示に係る回転検出器は、モータの回転軸の回転量を検出する回転検出器であって、磁性体と誘導コイルとで構成された磁気検出素子と、回転軸に回転一体に取付けられ、磁束通過部を有する磁気遮蔽板と、磁気検出素子に対して相対位置が変化せず、互いに異なる極性の複数の磁極を有する磁石と、を少なくとも備え、磁性体は、所定以上の磁界が印加されると大バルクハウゼン効果を発現し、所定の方向から見て、磁気検出素子と磁気遮蔽板と磁石とは互いに間隔をあけて、磁気検出素子、磁気遮蔽板、磁石の順に配置されている。 In order to achieve the above object, the rotation detector according to the present disclosure is a rotation detector that detects the amount of rotation of the rotation shaft of the motor, and includes a magnetic detection element composed of a magnetic material and an induction coil, and a magnetic detection element. A magnetic material including at least a magnetic shielding plate that is integrally mounted on a rotating shaft and has a magnetic flux passing portion, and magnets that do not change their relative positions with respect to the magnetic detection element and have a plurality of magnetic poles having different polarities. When a magnetic field of more than a predetermined value is applied, a large bulkhausen effect is exhibited, and when viewed from a predetermined direction, the magnetic detection element, the magnetic shielding plate, and the magnet are spaced apart from each other, and the magnetic detection element and the magnetic shielding plate are separated from each other. , Magnets are arranged in this order.
 この構成によれば、回転検出器内で大きな制約を受けずに磁石及び磁気検出素子を配置でき、回転検出器の設計自由度が向上し、設計コストを低減できる。 According to this configuration, magnets and magnetic detectors can be arranged in the rotation detector without being greatly restricted, the degree of freedom in designing the rotation detector can be improved, and the design cost can be reduced.
 本開示に係るモータは、回転軸を有する回転子と、回転子と同軸にかつ回転子と所定の間隔をあけて設けられた固定子と、回転軸に取付けられた回転検出器と、を少なくとも備える。 The motor according to the present disclosure includes at least a rotor having a rotating shaft, a stator provided coaxially with the rotor and at a predetermined distance from the rotor, and a rotation detector attached to the rotating shaft. Be prepared.
 この構成によれば、モータの設計コストを低減できる。さらに、モータの回転状態を確実に制御することができる。 According to this configuration, the design cost of the motor can be reduced. Further, the rotational state of the motor can be reliably controlled.
 本開示の回転検出器によれば、回転検出器の設計自由度が向上し、設計コストを低減できる。本開示のモータによれば、モータの設計コストを低減できる。 According to the rotation detector of the present disclosure, the degree of freedom in designing the rotation detector can be improved and the design cost can be reduced. According to the motor of the present disclosure, the design cost of the motor can be reduced.
実施形態1に係るモータの断面模式図である。It is sectional drawing of the motor which concerns on Embodiment 1. FIG. 信号処理回路の機能ブロックの概略構成図である。It is a schematic block diagram of the functional block of a signal processing circuit. 別の磁気式エンコーダの断面模式図である。It is sectional drawing of another magnetic encoder. 回転軸の回転に伴う磁気式エンコーダ内での磁束の流れを示す模式図である。It is a schematic diagram which shows the flow of the magnetic flux in a magnetic encoder with the rotation of a rotating shaft. 回転軸の回転に伴う磁気式エンコーダ内での磁束の流れを示す模式図である。It is a schematic diagram which shows the flow of the magnetic flux in a magnetic encoder with the rotation of a rotating shaft. 回転軸の回転に伴う磁気式エンコーダ内での磁束の流れを示す模式図である。It is a schematic diagram which shows the flow of the magnetic flux in a magnetic encoder with the rotation of a rotating shaft. 回転軸の回転角度と磁気検出素子の出力電圧との関係を示す模式図である。It is a schematic diagram which shows the relationship between the rotation angle of a rotation shaft, and the output voltage of a magnetic detector element. 回転軸の回転角度と磁気検出素子の出力電圧との関係を示す他の模式図である。It is another schematic diagram which shows the relationship between the rotation angle of a rotation shaft, and the output voltage of a magnetic detector element. 変形例1に係る第1の磁気式エンコーダ内での磁束の流れを示す模式図である。It is a schematic diagram which shows the flow of the magnetic flux in the 1st magnetic encoder which concerns on modification 1. FIG. 変形例1に係る第1の磁気式エンコーダ内での磁束の流れを示す模式図である。It is a schematic diagram which shows the flow of the magnetic flux in the 1st magnetic encoder which concerns on modification 1. FIG. 変形例1に係る第1の磁気式エンコーダ内での磁束の流れを示す模式図である。It is a schematic diagram which shows the flow of the magnetic flux in the 1st magnetic encoder which concerns on modification 1. FIG. 変形例1に係る第2の磁気式エンコーダ内での磁束の流れを示す模式図である。It is a schematic diagram which shows the flow of the magnetic flux in the 2nd magnetic encoder which concerns on modification 1. FIG. 変形例1に係る第2の磁気式エンコーダ内での磁束の流れを示す模式図である。It is a schematic diagram which shows the flow of the magnetic flux in the 2nd magnetic encoder which concerns on modification 1. FIG. 変形例1に係る第2の磁気式エンコーダ内での磁束の流れを示す模式図である。It is a schematic diagram which shows the flow of the magnetic flux in the 2nd magnetic encoder which concerns on modification 1. FIG. 変形例1に係る第3の磁気式エンコーダ内での磁束の流れを示す模式図である。It is a schematic diagram which shows the flow of the magnetic flux in the 3rd magnetic encoder which concerns on modification 1. FIG. 変形例1に係る第3の磁気式エンコーダ内での磁束の流れを示す模式図である。It is a schematic diagram which shows the flow of the magnetic flux in the 3rd magnetic encoder which concerns on modification 1. FIG. 変形例1に係る第3の磁気式エンコーダ内での磁束の流れを示す模式図である。It is a schematic diagram which shows the flow of the magnetic flux in the 3rd magnetic encoder which concerns on modification 1. FIG. 実施形態2に係る磁気遮蔽板と磁気検出素子との配置関係を示す模式図である。It is a schematic diagram which shows the arrangement relation of the magnetic shielding plate and the magnetic detection element which concerns on Embodiment 2. 変形例2に係る磁気遮蔽板と磁石との配置関係を示す模式図である。It is a schematic diagram which shows the arrangement relation of the magnetic shielding plate and a magnet which concerns on modification 2. 変形例2に係る別の磁気遮蔽板と磁石との配置関係を示す模式図である。It is a schematic diagram which shows the arrangement relationship of another magnetic shielding plate and magnet which concerns on modification 2. FIG. 変形例3に係る第1の磁石の磁極配列を示す模式図である。It is a schematic diagram which shows the magnetic pole arrangement of the 1st magnet which concerns on modification 3. 変形例3に係る第2の磁石の磁極配列を示す模式図である。It is a schematic diagram which shows the magnetic pole arrangement of the 2nd magnet which concerns on modification 3. 変形例3に係る第3の磁石の磁極配列を示す模式図である。It is a schematic diagram which shows the magnetic pole arrangement of the 3rd magnet which concerns on modification 3. 変形例4に係る磁気式エンコーダを上から見た模式図である。It is a schematic diagram which looked at the magnetic encoder which concerns on modification 4 from above. 変形例4に係る別の磁気式エンコーダを上から見た模式図である。It is a schematic diagram which looked at another magnetic encoder which concerns on modification 4 from above. 実施形態3に係る磁気式エンコーダを上から見た模式図である。It is a schematic diagram which looked at the magnetic encoder which concerns on Embodiment 3 from above. 実施形態3に係る磁気式エンコーダの斜視図である。It is a perspective view of the magnetic encoder which concerns on Embodiment 3. 回転軸の回転角度と磁気検出素子の出力電圧との関係を示す図である。It is a figure which shows the relationship between the rotation angle of a rotation shaft, and the output voltage of a magnetic detector element. 実施形態3に係る別の磁気式エンコーダを上から見た模式図である。It is a schematic diagram which looked at another magnetic encoder which concerns on Embodiment 3 from the top. 図16に示す磁気式エンコーダにおける回転軸の回転角度と磁気検出素子の出力電圧との関係を示す図である。It is a figure which shows the relationship between the rotation angle of the rotation shaft in the magnetic encoder shown in FIG. 16 and the output voltage of a magnetic detector element. 実施形態3に係るロータリーエンコーダの断面模式図である。It is sectional drawing of the rotary encoder which concerns on Embodiment 3. FIG. 実施形態3に係る別のロータリーエンコーダの断面模式図である。It is sectional drawing of another rotary encoder which concerns on Embodiment 3. FIG. 変形例5に係る第1の磁気式エンコーダを上から見た模式図である。It is a schematic diagram which looked at the 1st magnetic encoder which concerns on modification 5 from above. 図19に示す磁気式エンコーダにおける回転軸の回転角度と磁気検出素子の出力電圧との関係を示す図である。It is a figure which shows the relationship between the rotation angle of the rotation shaft in the magnetic encoder shown in FIG. 19 and the output voltage of a magnetic detector element. 変形例5に係る第2の磁気式エンコーダを上から見た模式図である。It is a schematic diagram which looked at the 2nd magnetic encoder which concerns on modification 5 from above. 図21に示す磁気式エンコーダにおける回転軸の回転角度と磁気検出素子の出力電圧との関係を示す図である。It is a figure which shows the relationship between the rotation angle of the rotation shaft in the magnetic encoder shown in FIG. 21 and the output voltage of a magnetic detector element. 変形例5に係る第3の磁気式エンコーダを上から見た模式図である。It is a schematic diagram which looked at the 3rd magnetic encoder which concerns on modification 5 from above. 図23に示す磁気式エンコーダにおける回転軸の回転角度と磁気検出素子の出力電圧との関係を示す図である。It is a figure which shows the relationship between the rotation angle of the rotation shaft in the magnetic encoder shown in FIG. 23, and the output voltage of a magnetic detector element. 変形例5に係る第4の磁気式エンコーダを上から見た模式図である。It is a schematic diagram which looked at the 4th magnetic encoder which concerns on modification 5 from above. 図25に示す磁気式エンコーダにおける回転軸の回転角度と磁気検出素子の出力電圧との関係を示す図である。It is a figure which shows the relationship between the rotation angle of the rotation shaft in the magnetic encoder shown in FIG. 25, and the output voltage of a magnetic detector element. 変形例6に係る第1の磁気式エンコーダを上から見た模式図である。It is a schematic diagram which looked at the 1st magnetic encoder which concerns on modification 6 from above. 図27に示す磁気式エンコーダにおける回転軸の回転角度と磁気検出素子の出力電圧との関係を示す図である。It is a figure which shows the relationship between the rotation angle of the rotation axis in the magnetic encoder shown in FIG. 27, and the output voltage of a magnetic detector element. 変形例6に係る第2の磁気式エンコーダを上から見た模式図である。It is a schematic diagram which looked at the 2nd magnetic encoder which concerns on modification 6 from above. 図29に示す磁気式エンコーダにおける回転軸の回転角度と磁気検出素子の出力電圧との関係を示す図である。It is a figure which shows the relationship between the rotation angle of the rotation shaft in the magnetic encoder shown in FIG. 29, and the output voltage of a magnetic detector element. 変形例6に係る第3の磁気式エンコーダを上から見た模式図である。It is a schematic diagram which looked at the 3rd magnetic encoder which concerns on modification 6 from above. 図31に示す磁気式エンコーダにおける回転軸の回転角度と磁気検出素子の出力電圧との関係を示す図である。It is a figure which shows the relationship between the rotation angle of the rotation shaft in the magnetic encoder shown in FIG. 31 and the output voltage of a magnetic detector element. 変形例7に係る磁気式エンコーダを上から見た模式図である。It is a schematic diagram which looked at the magnetic encoder which concerns on modification 7 from above. 図33に示す磁気式エンコーダにおける回転軸の回転角度と磁気検出素子の出力電圧との関係を示す図である。It is a figure which shows the relationship between the rotation angle of the rotation shaft in the magnetic encoder shown in FIG. 33, and the output voltage of a magnetic detector element. 変形例7に係る別の磁気式エンコーダを上から見た模式図である。It is a schematic diagram which looked at another magnetic encoder which concerns on modification 7 from above. 図35に示す磁気式エンコーダにおける回転軸の回転角度と磁気検出素子の出力電圧との関係を示す図である。It is a figure which shows the relationship between the rotation angle of the rotation shaft in the magnetic encoder shown in FIG. 35, and the output voltage of a magnetic detector element. 変形例8に係る第1の磁気式エンコーダの斜視図である。It is a perspective view of the 1st magnetic encoder which concerns on modification 8. 変形例8に係る第2の磁気式エンコーダの斜視図である。It is a perspective view of the 2nd magnetic encoder which concerns on modification 8. 変形例8に係る第3の磁気式エンコーダの斜視図である。It is a perspective view of the 3rd magnetic encoder which concerns on modification 8. 変形例8に係る第4の磁気式エンコーダの斜視図である。It is a perspective view of the 4th magnetic encoder which concerns on modification 8. 実施形態4に係る磁気式エンコーダを上から見た模式図である。FIG. 5 is a schematic view of the magnetic encoder according to the fourth embodiment as viewed from above. 図41Aに示す磁気式エンコーダの動作状態を示す模式図である。It is a schematic diagram which shows the operating state of the magnetic encoder shown in FIG. 41A. 実施形態4に係るロータリーエンコーダの断面模式図である。It is sectional drawing of the rotary encoder which concerns on Embodiment 4. FIG. 実施形態4に係る別のロータリーエンコーダの断面模式図である。It is sectional drawing of another rotary encoder which concerns on Embodiment 4. FIG. 変形例9に係る磁気式エンコーダを上から見た模式図である。It is a schematic diagram which looked at the magnetic encoder which concerns on modification 9 from above. 図43に示す磁気式エンコーダにおける回転軸の回転角度と磁気検出素子の出力電圧との関係を示す図である。It is a figure which shows the relationship between the rotation angle of the rotation shaft in the magnetic encoder shown in FIG. 43, and the output voltage of a magnetic detector element. 変形例9に係る別の磁気式エンコーダを上から見た模式図である。It is a schematic diagram which looked at another magnetic encoder which concerns on modification 9 from above. 図45に示す磁気式エンコーダにおける回転軸の回転角度と磁気検出素子の出力電圧との関係を示す図である。It is a figure which shows the relationship between the rotation angle of the rotation shaft in the magnetic encoder shown in FIG. 45, and the output voltage of a magnetic detector element. 変形例10に係る第1の磁気式エンコーダを上から見た模式図である。It is a schematic diagram which looked at the 1st magnetic encoder which concerns on modification 10 from above. 図47Aに示す磁気式エンコーダの動作状態を示す模式図である。It is a schematic diagram which shows the operating state of the magnetic encoder shown in FIG. 47A. 変形例10に係る第2の磁気式エンコーダを上から見た模式図である。It is a schematic diagram which looked at the 2nd magnetic encoder which concerns on modification 10 from above. 変形例10に係るロータリーエンコーダの断面模式図である。It is sectional drawing of the rotary encoder which concerns on modification 10. 変形例10に係る別のロータリーエンコーダの断面模式図である。It is sectional drawing of another rotary encoder which concerns on modification 10. 変形例10に係る第3の磁気式エンコーダを上から見た模式図である。It is a schematic diagram which looked at the 3rd magnetic encoder which concerns on modification 10 from above. 図50に示す磁気式エンコーダにおける回転軸の回転角度と磁気検出素子の出力電圧との関係を示す図である。It is a figure which shows the relationship between the rotation angle of the rotation axis in the magnetic encoder shown in FIG. 50, and the output voltage of a magnetic detector element. 変形例11に係る第1の磁気式エンコーダを上から見た模式図である。It is a schematic diagram which looked at the 1st magnetic encoder which concerns on modification 11 from above. 図52に示す磁気式エンコーダにおける回転軸の回転角度と磁気検出素子の出力電圧との関係を示す図である。It is a figure which shows the relationship between the rotation angle of the rotation shaft in the magnetic encoder shown in FIG. 52, and the output voltage of a magnetic detector element. 変形例11に係る第2の磁気式エンコーダを上から見た模式図である。It is a schematic diagram which looked at the 2nd magnetic encoder which concerns on modification 11 from above. 図54に示す磁気式エンコーダにおける回転軸の回転角度と磁気検出素子の出力電圧との関係を示す図である。It is a figure which shows the relationship between the rotation angle of the rotation shaft in the magnetic encoder shown in FIG. 54, and the output voltage of a magnetic detector element. 変形例11に係る第3の磁気式エンコーダを上から見た模式図である。It is a schematic diagram which looked at the 3rd magnetic encoder which concerns on modification 11 from above. 図56に示す磁気式エンコーダにおける回転軸の回転角度と磁気検出素子の出力電圧との関係を示す図である。It is a figure which shows the relationship between the rotation angle of the rotation shaft in the magnetic encoder shown in FIG. 56, and the output voltage of a magnetic detector element. 変形例11に係る第4の磁気式エンコーダを上から見た模式図である。It is a schematic diagram which looked at the 4th magnetic encoder which concerns on modification 11 from above. 図58に示す磁気式エンコーダにおける回転軸の回転角度と磁気検出素子の出力電圧との関係を示す図である。It is a figure which shows the relationship between the rotation angle of the rotation shaft in the magnetic encoder shown in FIG. 58, and the output voltage of a magnetic detector element. 変形例11に係る第5の磁気式エンコーダを上から見た模式図である。It is a schematic diagram which looked at the 5th magnetic encoder which concerns on modification 11 from above. 図60に示す磁気式エンコーダにおける回転軸の回転角度と磁気検出素子の出力電圧との関係を示す図である。It is a figure which shows the relationship between the rotation angle of the rotation shaft in the magnetic encoder shown in FIG. 60, and the output voltage of a magnetic detector element. 変形例11に係る第6の磁気式エンコーダを上から見た模式図である。It is a schematic diagram which looked at the 6th magnetic encoder which concerns on modification 11 from above. 図62に示す磁気式エンコーダにおける回転軸の回転角度と磁気検出素子の出力電圧との関係を示す図である。It is a figure which shows the relationship between the rotation angle of the rotation shaft in the magnetic encoder shown in FIG. 62, and the output voltage of a magnetic detector element.
 以下、本開示の実施形態を図面に基づいて詳細に説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本開示、その適用物或いはその用途を制限することを意図するものでは全くない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The following description of preferred embodiments is merely exemplary and is not intended to limit the disclosure, its applications or its uses.
 (実施形態1)
 [モータの構成]
 図1は、実施形態1に係るモータ300の断面模式図である。なお、図1は、モータ300の構造を模式的に図示しているものであって、実際の形状及び寸法は異なっている。
(Embodiment 1)
[Motor configuration]
FIG. 1 is a schematic cross-sectional view of the motor 300 according to the first embodiment. Note that FIG. 1 schematically illustrates the structure of the motor 300, and the actual shape and dimensions are different.
 モータ300は、モータケース10と、一対のブラケット21,22と、回転子30と、固定子40と、一対の軸受51,52と、ロータリーエンコーダ100とを備えている。なお、以降の説明において、モータケース10の半径方向を径方向と、モータケース10の円周方向を周方向と、回転子30に設けられた回転軸32の軸線方向を軸方向と、それぞれ呼ぶことがある。なお、モータケース10の半径方向は磁気遮蔽板70及び回転板130の半径方向と同じである。また、軸方向において、ロータリーエンコーダ100が設けられた側を上または上側と、その反対側を下または下側とそれぞれ呼ぶことがある。モータ300の各部品または部材において、モータケース10の内部に面した位置にある面を内面と、モータケース10の外部に面した位置にある面を外面とそれぞれ呼ぶことがある。 The motor 300 includes a motor case 10, a pair of brackets 21 and 22, a rotor 30, a stator 40, a pair of bearings 51 and 52, and a rotary encoder 100. In the following description, the radial direction of the motor case 10 is referred to as a radial direction, the circumferential direction of the motor case 10 is referred to as a circumferential direction, and the axial direction of the rotating shaft 32 provided on the rotor 30 is referred to as an axial direction. Sometimes. The radial direction of the motor case 10 is the same as the radial direction of the magnetic shielding plate 70 and the rotating plate 130. Further, in the axial direction, the side on which the rotary encoder 100 is provided may be referred to as an upper side or an upper side, and the opposite side thereof may be referred to as a lower side or a lower side. In each component or member of the motor 300, the surface at a position facing the inside of the motor case 10 may be referred to as an inner surface, and the surface at a position facing the outside of the motor case 10 may be referred to as an outer surface.
 モータケース10は、両端が開口された筒状の金属部材である。モータケース10の内部に回転子30と固定子40と一対の軸受51,52とが収容されている。なお、モータケース10とブラケット21,22との当接部分には、Oリング等の弾性体が設けられるようにしてもよい。このようにすることで、モータケース10内の気密を保つことができる。 The motor case 10 is a tubular metal member with both ends open. A rotor 30, a stator 40, and a pair of bearings 51 and 52 are housed inside the motor case 10. An elastic body such as an O-ring may be provided at the contact portion between the motor case 10 and the brackets 21 and 22. By doing so, the airtightness inside the motor case 10 can be maintained.
 一対のブラケット21,22は、モータケース10の両端の開口をそれぞれ覆うように設けられた平板状の金属部材であり、具体的には鉄製の部材である。 The pair of brackets 21 and 22 are flat plate-shaped metal members provided so as to cover the openings at both ends of the motor case 10, and are specifically iron members.
 回転子30はモータケース10の内部に収容されている。回転子30は、回転子コア31の軸心に回転軸32を有している。また、回転子コア31には、その外周に沿って図示しない複数の磁石が配置されている。互いに隣り合う磁石は磁極の極性が異なっている。モータ300は、回転子コア31の内部に複数の磁石が埋め込まれた、いわゆるIPM(Interior Permanent Magnet)モータである。 The rotor 30 is housed inside the motor case 10. The rotor 30 has a rotating shaft 32 at the axis of the rotor core 31. Further, a plurality of magnets (not shown) are arranged along the outer periphery of the rotor core 31. Magnets adjacent to each other have different polarities. The motor 300 is a so-called IPM (Interior Permanent Magnet) motor in which a plurality of magnets are embedded in the rotor core 31.
 回転軸32は、ブラケット21を貫通して、モータケース10の外部に突出するように設けられている。回転軸32には、回転軸32のブラケット21から突出した部分に回転軸32の回転に応じて回転駆動される負荷(図示せず)が連結される。 The rotating shaft 32 is provided so as to penetrate the bracket 21 and project to the outside of the motor case 10. A load (not shown) that is rotationally driven in accordance with the rotation of the rotating shaft 32 is connected to the portion of the rotating shaft 32 that protrudes from the bracket 21 of the rotating shaft 32.
 固定子40は、モータケース10の内部に収容され、かつ回転子30の径方向外側に回転子30と所定の間隔をあけて設けられている。固定子40は、モータケース10の内側面に固定されたヨーク41と、ヨーク41の周方向に沿って所定の間隔をあけて設けられた複数の突極(図示せず)と、複数の突極のそれぞれに巻回された複数のコイル42とで構成されている。 The stator 40 is housed inside the motor case 10 and is provided on the outer side of the rotor 30 in the radial direction at a predetermined distance from the rotor 30. The stator 40 includes a yoke 41 fixed to the inner surface of the motor case 10, a plurality of salient poles (not shown) provided at predetermined intervals along the circumferential direction of the yoke 41, and a plurality of protrusions. It is composed of a plurality of coils 42 wound around each of the poles.
 一対の軸受51,52は、一対のブラケット21,22の内面にそれぞれ取付けられ、回転軸32を回転可能に支持している。 The pair of bearings 51 and 52 are attached to the inner surfaces of the pair of brackets 21 and 22, respectively, and rotatably support the rotating shaft 32.
 ロータリーエンコーダ100は、ブラケット22の上面から外部に突出した回転軸32に取り付けられている。ロータリーエンコーダ100は、光学式エンコーダ110と磁気式エンコーダ120とを有している。ロータリーエンコーダ100の構成については後で詳述する。 The rotary encoder 100 is attached to a rotating shaft 32 protruding outward from the upper surface of the bracket 22. The rotary encoder 100 has an optical encoder 110 and a magnetic encoder 120. The configuration of the rotary encoder 100 will be described in detail later.
 エンコーダケース150は、有底筒状の部品である。エンコーダケース150は、ロータリーエンコーダ100を囲むように、ブラケット22の上面に取付け固定されている。なお、エンコーダケース150の外部からの磁界の影響を防ぐため、エンコーダケース150は、強磁性体金属、例えば、鉄の板材によって形成される。エンコーダケース150は、ロータリーエンコーダ100を機械的に保護するとともに、これらにオイルまたは水分等の液体が付着するのを防止する役割を果たしている。エンコーダケース150の内部には、エンコーダフレーム155に支持された回路基板140が設けられている。エンコーダフレーム155は、後で述べる回転板130の径方向外側に、回転板130を囲むように設けられている。エンコーダフレーム155の下端部はブラケット22に取り付けられている。エンコーダフレーム155の上端部に回路基板140が取り付けられている。 The encoder case 150 is a bottomed tubular part. The encoder case 150 is attached and fixed to the upper surface of the bracket 22 so as to surround the rotary encoder 100. In order to prevent the influence of the magnetic field from the outside of the encoder case 150, the encoder case 150 is formed of a ferromagnetic metal, for example, an iron plate material. The encoder case 150 plays a role of mechanically protecting the rotary encoder 100 and preventing liquid such as oil or water from adhering to the rotary encoder 100. A circuit board 140 supported by the encoder frame 155 is provided inside the encoder case 150. The encoder frame 155 is provided so as to surround the rotary plate 130 on the radial outer side of the rotary plate 130, which will be described later. The lower end of the encoder frame 155 is attached to the bracket 22. The circuit board 140 is attached to the upper end of the encoder frame 155.
 次に、モータ300の動作及びその制御について説明する。 Next, the operation of the motor 300 and its control will be described.
 固定子40に設けられた複数のコイル42は所定の配置関係にある3組に分けられている。それぞれのコイル42の組に互いに電気角で120°の位相差を有する3相の電流が流れて励磁され、固定子40に回転磁界が発生する。この回転磁界と、回転子30に設けられた磁石が発生する磁界との間で相互作用を生じてトルクが発生し、回転軸32が軸受51,52に支持されて回転する。 The plurality of coils 42 provided on the stator 40 are divided into three sets having a predetermined arrangement relationship. A three-phase current having a phase difference of 120 ° in electrical angle flows through each set of coils 42 and is excited, and a rotating magnetic field is generated in the stator 40. Torque is generated by an interaction between the rotating magnetic field and the magnetic field generated by the magnet provided in the rotor 30, and the rotating shaft 32 is supported by the bearings 51 and 52 to rotate.
 モータ制御部310は、ロータリーエンコーダ100と複数のコイル42のそれぞれとに電気的に接続されている。ロータリーエンコーダ100で検出された回転軸32の回転位置及び回転量に基づいて、複数のコイル42に流れる電流の位相や電流量を補正する。これにより、モータ300の回転状態を所望の状態に制御することができる。また、回転軸32に連結された負荷(図示せず)の移動量及び軌跡を所望の値に制御できる。 The motor control unit 310 is electrically connected to each of the rotary encoder 100 and the plurality of coils 42. The phase and the amount of current flowing through the plurality of coils 42 are corrected based on the rotation position and the amount of rotation of the rotation shaft 32 detected by the rotary encoder 100. Thereby, the rotational state of the motor 300 can be controlled to a desired state. Further, the movement amount and locus of the load (not shown) connected to the rotating shaft 32 can be controlled to a desired value.
 ここで、「回転量」とは、回転軸32が何回転したかを表わす「回転数」と、後で述べる磁気検出素子90と磁石80a,80bとの配置に応じて所定の原点位置から回転軸32が回転した角度範囲とを含む情報をいう。また、「回転位置」とは、所定の原点位置から回転軸32が回転した角度のことをいう。「回転位置」は、本実施形態では、1回転以内に原点位置から回転軸32が回転した角度のことをいう。なお、原点位置の情報は、光学式エンコーダの反射パターンに対応して設定された情報がエンコーダまたは制御機器に記録されている。また、原点位置の情報は、磁気式エンコーダ120に設けられた磁気検出素子90の検出信号から大まかに知ることができる。光学式エンコーダの反射パターンに対応して設定された情報がエンコーダまたは制御機器に記録されている。 Here, the "rotation amount" means the "rotation speed" indicating how many rotations the rotation shaft 32 has rotated, and the rotation from a predetermined origin position according to the arrangement of the magnetic detector 90 and the magnets 80a and 80b described later. Information including the angle range in which the shaft 32 is rotated. Further, the "rotational position" means an angle at which the rotation shaft 32 is rotated from a predetermined origin position. In the present embodiment, the "rotation position" refers to the angle at which the rotation shaft 32 rotates from the origin position within one rotation. As for the information of the origin position, the information set corresponding to the reflection pattern of the optical encoder is recorded in the encoder or the control device. Further, the information on the origin position can be roughly known from the detection signal of the magnetic detector 90 provided in the magnetic encoder 120. Information set corresponding to the reflection pattern of the optical encoder is recorded in the encoder or control device.
 [ロータリーエンコーダ及び磁気式エンコーダの構成]
 図1に示すように、ロータリーエンコーダ100は、光学式エンコーダ110と、磁気式エンコーダ120と、回路基板140と、信号処理回路200とを有している。ロータリーエンコーダ100は、決められた原点位置を基準として回転位置または回転量を検出するアブソリュートエンコーダである。アブソリュートエンコーダは、一回転内の分解能に応じたすべての回転位置が識別可能である為、原点位置からの回転角が容易に検出できる。
[Structure of rotary encoder and magnetic encoder]
As shown in FIG. 1, the rotary encoder 100 includes an optical encoder 110, a magnetic encoder 120, a circuit board 140, and a signal processing circuit 200. The rotary encoder 100 is an absolute encoder that detects a rotation position or a rotation amount with reference to a determined origin position. Since the absolute encoder can identify all the rotation positions according to the resolution within one rotation, the rotation angle from the origin position can be easily detected.
 光学式エンコーダ110は、回転軸32の回転位置を検出する。なお、光学式エンコーダ110が回転軸32の回転量も併せて検出するようにしてもよい。磁気式エンコーダ120は、磁気検出素子90での検出信号に基づいて回転軸32の回転量を検出する。なお、以降の説明において、光学式エンコーダ110を回転位置検出器110と、ロータリーエンコーダ100を回転検出器100とそれぞれ呼ぶことがある。 The optical encoder 110 detects the rotation position of the rotation shaft 32. The optical encoder 110 may also detect the amount of rotation of the rotating shaft 32. The magnetic encoder 120 detects the amount of rotation of the rotating shaft 32 based on the detection signal of the magnetic detecting element 90. In the following description, the optical encoder 110 may be referred to as a rotation position detector 110, and the rotary encoder 100 may be referred to as a rotation detector 100.
 光学式エンコーダ110は、受発光素子111と、回転板130と、回転板130の上面に配置されたスリット板112とを有する反射形エンコーダである。回転板130は、回転軸32に回転一体に取り付けられている。回転板130は、磁気式エンコーダ120と共有される。回転板130は、磁束を通過させる材質、例えば、アルミニウム等の非磁性体金属や樹脂等からなる。 The optical encoder 110 is a reflective encoder having a light emitting / receiving element 111, a rotating plate 130, and a slit plate 112 arranged on the upper surface of the rotating plate 130. The rotary plate 130 is rotationally and integrally attached to the rotary shaft 32. The rotary plate 130 is shared with the magnetic encoder 120. The rotating plate 130 is made of a material that allows magnetic flux to pass through, for example, a non-magnetic metal such as aluminum, a resin, or the like.
 受発光素子111は回路基板140の下面に取り付けられている。スリット板112には、受発光素子111からの光を反射するための反射パターン112aが設けられている。反射パターン112aは円環状であり、受発光素子111からの光を反射するための複数のマスクパターン(図示せず)が周方向に沿って設けられている。このため、受発光素子111が発光すると、その光が回転板130の回転に応じて受発光素子111に向けて周期的に反射され、受発光素子111は時間的に変調された受光信号を発生する。この受光信号を回路基板140に取り付けられた信号処理回路200で演算処理することにより、回転板130、ひいては回転軸32の回転位置が検出される。 The light receiving / receiving element 111 is attached to the lower surface of the circuit board 140. The slit plate 112 is provided with a reflection pattern 112a for reflecting the light from the light receiving / receiving element 111. The reflection pattern 112a has an annular shape, and a plurality of mask patterns (not shown) for reflecting the light from the light receiving / receiving element 111 are provided along the circumferential direction. Therefore, when the light receiving / emitting element 111 emits light, the light is periodically reflected toward the light receiving / emitting element 111 according to the rotation of the rotating plate 130, and the light receiving / receiving element 111 generates a time-modulated light receiving signal. To do. By arithmetically processing the received signal by the signal processing circuit 200 attached to the circuit board 140, the rotational position of the rotating plate 130 and the rotating shaft 32 is detected.
 磁気式エンコーダ120は、2つの磁石80a,80bと磁気遮蔽板70と磁気検出素子90とを有している。また、磁気式エンコーダ120は光学式エンコーダ110と回転板130を共有している。 The magnetic encoder 120 has two magnets 80a and 80b, a magnetic shielding plate 70, and a magnetic detector 90. Further, the magnetic encoder 120 shares the rotary plate 130 with the optical encoder 110.
 2つの磁石80a,80bは、径方向に互いに間隔をあけてブラケット22の外面に取付け固定されている。2つの磁石80a,80bは、周方向に沿った磁極の向きが互いに異なるように配置されている。また、2つの磁石80a,80bは、磁気遮蔽板70の外周近くに、回転軸32と径方向に間隔をあけて固定配置されている。 The two magnets 80a and 80b are attached and fixed to the outer surface of the bracket 22 at intervals in the radial direction. The two magnets 80a and 80b are arranged so that the directions of the magnetic poles along the circumferential direction are different from each other. Further, the two magnets 80a and 80b are fixedly arranged near the outer periphery of the magnetic shielding plate 70 with a radial distance from the rotating shaft 32.
 磁気遮蔽板70は、鉄等の磁気を遮蔽する材料からなる円板状の部材でる。磁気遮蔽板70は、回転板130の下面に取付けられて、回転軸32に回転一体に構成されている。また、磁気遮蔽板70は、磁石80a,80bと軸方向に間隔をあけて配置されている。 The magnetic shielding plate 70 is a disk-shaped member made of a material that shields magnetism such as iron. The magnetic shielding plate 70 is attached to the lower surface of the rotating plate 130 and is integrally rotated with the rotating shaft 32. Further, the magnetic shielding plate 70 is arranged at a distance in the axial direction from the magnets 80a and 80b.
 磁気遮蔽板70には、その外周部分を一部切り欠くことで磁束通過部70b(図4Cを参照)が形成されている。また、軸方向に関し、回転軸32を挟んで磁束通過部70bと反対側に磁気遮蔽板70を厚さ方向、つまり、軸方向に貫通する磁束通過部70a(図4Bを参照)が形成されている。磁気遮蔽板70は、回転軸32及び回転板130とともに回転する場合、磁束通過部70a,70bが、それぞれ、磁石80a,80bと磁気検出素子90との間を通過するように回転板130に取付けられている。 The magnetic flux passing portion 70b (see FIG. 4C) is formed in the magnetic shielding plate 70 by partially cutting out the outer peripheral portion thereof. Further, with respect to the axial direction, a magnetic flux passing portion 70a (see FIG. 4B) that penetrates the magnetic shielding plate 70 in the thickness direction, that is, in the axial direction is formed on the side opposite to the magnetic flux passing portion 70b with the rotating shaft 32 interposed therebetween. There is. When the magnetic shielding plate 70 rotates together with the rotating shaft 32 and the rotating plate 130, the magnetic flux passing portions 70a and 70b are attached to the rotating plate 130 so that the magnetic flux passing portions 70a and 70b pass between the magnets 80a and 80b and the magnetic detector 90, respectively. Has been done.
 磁気検出素子90は、ウィーガントワイヤ90aとその周りに設けられた誘導コイル90bとで構成される。ウィーガントワイヤ90aは、軸心と外側で透磁率が異なる磁性体である。ウィーガントワイヤ90aは、所定値以上の磁界が磁気検出素子90の長手方向に沿って誘導コイル90bの内部に印加されると大バルクハウゼン効果を発現し、磁化方向が磁気検出素子90の長手方向の一方に向かうように揃う。また、磁気検出素子90の長手方向に沿って誘導コイル90bの内部に流れる磁束の向きが変化すると、ウィーガントワイヤ90aの磁化方向が跳躍的に反転して誘導コイル90bの両端に電圧パルスが誘起されるように構成されている。 The magnetic detector 90 is composed of a Wiegand wire 90a and an induction coil 90b provided around the Wiegand wire 90a. The Wiegand wire 90a is a magnetic material having different magnetic permeability between the axis and the outside. The Wiegand wire 90a exhibits a large bulkhausen effect when a magnetic field of a predetermined value or more is applied to the inside of the induction coil 90b along the longitudinal direction of the magnetic detector 90, and the magnetization direction is the longitudinal direction of the magnetic detector 90. Align to one side. Further, when the direction of the magnetic flux flowing inside the induction coil 90b changes along the longitudinal direction of the magnetic detector 90, the magnetization direction of the wigant wire 90a is dramatically reversed and a voltage pulse is induced at both ends of the induction coil 90b. It is configured to be.
 磁気検出素子90は、回路基板140に実装されている。磁気検出素子90は、軸方向に関し、磁気遮蔽板70を挟んで磁石80a,80bと反対側に固定配置されている。磁気検出素子90は、磁気遮蔽板70の外周近くに、回転軸32と径方向に所定の間隔をあけて固定配置されている。磁気検出素子90の長手方向、つまり、磁気検出素子の一端と他端とを結ぶ方向は、磁石80a,80bのそれぞれの長手方向に実質的に等しい。2つの磁石80a,80b及び磁気検出素子90はそれぞれ固定配置されている。つまり、2つの磁石80a,80bは磁気検出素子90に対して相対位置が変化せずにエンコーダケース150の内部に配置されている。 The magnetic detector 90 is mounted on the circuit board 140. The magnetic detector 90 is fixedly arranged on the side opposite to the magnets 80a and 80b with the magnetic shielding plate 70 interposed therebetween in the axial direction. The magnetic detector 90 is fixedly arranged near the outer periphery of the magnetic shielding plate 70 at a predetermined distance in the radial direction from the rotating shaft 32. The longitudinal direction of the magnetic detector 90, that is, the direction connecting one end and the other end of the magnetic detector 90 is substantially equal to the longitudinal direction of each of the magnets 80a and 80b. The two magnets 80a and 80b and the magnetic detector 90 are fixedly arranged, respectively. That is, the two magnets 80a and 80b are arranged inside the encoder case 150 without changing their relative positions with respect to the magnetic detector 90.
 図2は、信号処理回路200の機能ブロックの概略構成図である。信号処理回路200は、光学式エンコーダ110及び磁気式エンコーダ120のそれぞれの検出信号に基づいて、回転軸32の回転位置及び回転量を算出する。信号処理回路200は、回路基板140の上面に取り付けられており、受発光素子111及び磁気検出素子90と電気的に接続されている。 FIG. 2 is a schematic configuration diagram of a functional block of the signal processing circuit 200. The signal processing circuit 200 calculates the rotation position and the amount of rotation of the rotation shaft 32 based on the detection signals of the optical encoder 110 and the magnetic encoder 120, respectively. The signal processing circuit 200 is attached to the upper surface of the circuit board 140, and is electrically connected to the light receiving / receiving element 111 and the magnetic detector 90.
 図2に示すように、信号処理回路200は、受発光素子111からの受光信号を受け取ってこれを演算処理する光学信号処理回路210と、磁気検出素子90の検出信号を受け取ってこれを演算処理する磁気信号処理回路220と、光学信号処理回路210から出力される信号と磁気信号処理回路220から出力される信号とを処理して信号処理回路200の外部に回転位置と回転量を出力するためのインターフェース部であるI/O部224を有している。なお、本願明細書では、光学信号処理回路210の内部構成については図示及び説明を省略する。 As shown in FIG. 2, the signal processing circuit 200 receives an optical signal processing circuit 210 that receives a light receiving signal from the light receiving / receiving element 111 and performs arithmetic processing thereof, and receives a detection signal of the magnetic detection element 90 and performs arithmetic processing thereof. To process the signal output from the magnetic signal processing circuit 220, the optical signal processing circuit 210, and the signal output from the magnetic signal processing circuit 220, and output the rotation position and the amount of rotation to the outside of the signal processing circuit 200. It has an I / O unit 224 which is an interface unit of the above. In the specification of the present application, illustration and description of the internal configuration of the optical signal processing circuit 210 will be omitted.
 信号処理回路200は、ロータリーエンコーダ100の外部に設けられた電源230に電気的に接続されている。通常の動作時には、受発光素子111、光学信号処理回路210及び磁気信号処理回路220のそれぞれの駆動電力は電源230から供給される。 The signal processing circuit 200 is electrically connected to a power supply 230 provided outside the rotary encoder 100. During normal operation, the driving power of each of the light receiving / receiving element 111, the optical signal processing circuit 210, and the magnetic signal processing circuit 220 is supplied from the power supply 230.
 一方、また、電源230から信号処理回路200に電力が供給されない、いわゆる無給電状態となったときには、光学信号処理回路210及び受発光素子111は動作しない。しかし、磁気信号処理回路220は、磁気検出素子90から供給された電力で駆動される。つまり、磁気式エンコーダ120は、磁気検出素子90から供給された電力で駆動される。 On the other hand, when power is not supplied from the power supply 230 to the signal processing circuit 200, that is, when there is no power supply, the optical signal processing circuit 210 and the light emitting / receiving element 111 do not operate. However, the magnetic signal processing circuit 220 is driven by the electric power supplied from the magnetic detector 90. That is, the magnetic encoder 120 is driven by the electric power supplied from the magnetic detector 90.
 光学信号処理回路210は、受発光素子111からの受光信号に基づいて、回転軸32の回転位置を算出する。磁気信号処理回路220は、磁気検出素子90の検出信号に基づいて、回転軸32の回転量を算出する。なお、光学式エンコーダ110が回転軸32の回転位置と回転量の両方を検出する場合は、光学信号処理回路210に図示しない記憶部を設け、これに回転量の情報を記憶するようにしてもよい。 The optical signal processing circuit 210 calculates the rotation position of the rotation shaft 32 based on the light receiving signal from the light receiving / receiving element 111. The magnetic signal processing circuit 220 calculates the amount of rotation of the rotating shaft 32 based on the detection signal of the magnetic detection element 90. When the optical encoder 110 detects both the rotation position and the rotation amount of the rotation shaft 32, the optical signal processing circuit 210 may be provided with a storage unit (not shown) to store the rotation amount information. Good.
 信号処理回路200で算出された回転軸32の回転位置及び回転量に基づいて、前述したように、モータ300に流れる電流の位相及び電流量が補正され、モータ300の回転状態が所望の状態に制御される。 As described above, the phase and the amount of the current flowing through the motor 300 are corrected based on the rotation position and the amount of rotation of the rotation shaft 32 calculated by the signal processing circuit 200, and the rotation state of the motor 300 becomes a desired state. Be controlled.
 図2に示すように、磁気信号処理回路220は、電圧変換部221と信号処理部222と記憶部223とを少なくとも有している。なお、これら以外の機能ブロック、例えば、光学信号処理回路210とデータをやり取りする通信部(図示せず)等が設けられていてもよい。 As shown in FIG. 2, the magnetic signal processing circuit 220 has at least a voltage conversion unit 221, a signal processing unit 222, and a storage unit 223. In addition, a functional block other than these, for example, a communication unit (not shown) for exchanging data with the optical signal processing circuit 210 may be provided.
 後で詳述するように、磁気遮蔽板70の回転に応じて、磁石80a,80bで発生した磁束が磁気検出素子90に流れると、磁気検出素子90の誘導コイル90bの両端に電圧パルスが誘起される。磁気検出素子90から出力された電圧パルスは、電圧変換部221に入力されて、所定の電圧に変換される。具体的には、電圧パルスはそれぞれ整流された後、電圧の極性に応じて、それぞれ設けられた図示しないコンデンサに入力される。こうして、コンデンサに電荷が蓄積され、コンデンサの容量に応じた電圧が次段に出力される。なお、電圧変換の手法は、特にこれに限定されず、種々の手法を適用しうる。また、電圧パルスの極性判別方法及び極性に応じた信号の分別手法も適宜、種々の手法を適用しうる。 As will be described in detail later, when the magnetic flux generated by the magnets 80a and 80b flows through the magnetic detector 90 in response to the rotation of the magnetic shield plate 70, voltage pulses are induced at both ends of the induction coil 90b of the magnetic detector 90. Will be done. The voltage pulse output from the magnetic detector 90 is input to the voltage conversion unit 221 and converted into a predetermined voltage. Specifically, each voltage pulse is rectified and then input to each capacitor (not shown) provided according to the polarity of the voltage. In this way, the electric charge is accumulated in the capacitor, and the voltage corresponding to the capacity of the capacitor is output to the next stage. The voltage conversion method is not particularly limited to this, and various methods can be applied. Further, various methods can be appropriately applied to the method for determining the polarity of the voltage pulse and the method for separating signals according to the polarity.
 電圧変換部221の出力信号は信号処理部222に入力され、磁気検出素子90で発生した電圧パルスの発生回数に応じて、回転軸32の回転量が算出される。信号処理部222の出力信号は、記憶部223に保存される。なお、記憶部223は、通常、不揮発性メモリにより構成される。 The output signal of the voltage conversion unit 221 is input to the signal processing unit 222, and the amount of rotation of the rotating shaft 32 is calculated according to the number of times the voltage pulse generated by the magnetic detector 90 is generated. The output signal of the signal processing unit 222 is stored in the storage unit 223. The storage unit 223 is usually composed of a non-volatile memory.
 なお、前述した一連の信号処理を実行するにあたって、信号処理部222、及び記憶部223の駆動電力は、電圧変換部221から供給される。具体的には、磁気検出素子90から出力された電圧パルスに応じて電荷が蓄積されたコンデンサが駆動電源となる。つまり、磁気式エンコーダ120は、外部電源からの電力供給無しで駆動可能に構成されたバッテリレスのエンコーダである。 In executing the series of signal processing described above, the drive power of the signal processing unit 222 and the storage unit 223 is supplied from the voltage conversion unit 221. Specifically, the driving power source is a capacitor in which electric charges are accumulated according to the voltage pulse output from the magnetic detection element 90. That is, the magnetic encoder 120 is a battery-less encoder configured so that it can be driven without supplying power from an external power source.
 なお、電圧変換部221、信号処理部222、記憶部223及びI/O部224は、それぞれ回路基板140に実装された単一の電子部品または電子部品の組み合わせで構成されるか、あるいは、IC(集積回路)及び/またはLSI(大規模集積回路)の組み合わせで構成される。 The voltage conversion unit 221 and the signal processing unit 222, the storage unit 223, and the I / O unit 224 are each composed of a single electronic component or a combination of electronic components mounted on the circuit board 140, or an IC. It is composed of a combination of (integrated circuit) and / or LSI (large-scale integrated circuit).
 また、記憶部223に保存された回転量の情報を読み出して、光学式エンコーダ110で算出された回転位置の情報と合成することにより、回転軸32の多回転情報を得ることができる。この合成はI/O部224にて行われる。例えば、ある時点における原点位置からの回転位置をθとし、モータ300の起動時からの回転軸32の回転数をnとすると、回転軸32の積算回転角度に相当する多回転情報Sは、式(1)に示す形で表現できる。 Further, by reading out the rotation amount information stored in the storage unit 223 and synthesizing it with the rotation position information calculated by the optical encoder 110, it is possible to obtain the multi-rotation information of the rotation shaft 32. This synthesis is performed in I / O section 224. For example, assuming that the rotation position from the origin position at a certain point in time is θ and the rotation number of the rotation shaft 32 from the start of the motor 300 is n, the multi-rotation information S corresponding to the integrated rotation angle of the rotation shaft 32 is expressed by the formula. It can be expressed in the form shown in (1).
 S=θ+2πn ・・・(1)
 多回転情報Sを記憶部223に保存するようにしてもよい。モータ300がロボットアームの関節軸に用いられるサーボモータである場合は、多回転情報Sに基づいてロボットアームの先端の移動量を算出できる。光学式エンコーダ110が回転軸32の回転位置と回転量の両方を検出する場合は、多回転情報Sは光学式エンコーダ110の検出結果のみから算出してもよい。
S = θ + 2πn ・ ・ ・ (1)
The multi-rotation information S may be stored in the storage unit 223. When the motor 300 is a servomotor used for the joint axis of the robot arm, the amount of movement of the tip of the robot arm can be calculated based on the multi-rotation information S. When the optical encoder 110 detects both the rotation position and the rotation amount of the rotation shaft 32, the multi-rotation information S may be calculated only from the detection result of the optical encoder 110.
 ロータリーエンコーダ100、特に磁気式エンコーダ120の配置は、図1に示した例に特に限定されない。 The arrangement of the rotary encoder 100, particularly the magnetic encoder 120, is not particularly limited to the example shown in FIG.
 図3は、別の磁気式エンコーダの断面模式図である。図3に示す磁気式エンコーダ60は、以下の点で図1に示す構成と異なる。 FIG. 3 is a schematic cross-sectional view of another magnetic encoder. The magnetic encoder 60 shown in FIG. 3 differs from the configuration shown in FIG. 1 in the following points.
 まず、磁気遮蔽板70がボス160に取り付けられている。ボス160はビスねじ(図示せず)により回転軸32に回転一体に取り付けられている。従って、この場合も、磁気遮蔽板70は回転軸32の回転とともに回転する。磁気検出素子90及び信号処理回路200が回路基板140の下面に取り付けられている。 First, the magnetic shielding plate 70 is attached to the boss 160. The boss 160 is rotationally and integrally attached to the rotating shaft 32 by a screw screw (not shown). Therefore, also in this case, the magnetic shielding plate 70 rotates with the rotation of the rotating shaft 32. The magnetic detector 90 and the signal processing circuit 200 are attached to the lower surface of the circuit board 140.
 磁気式エンコーダ60をこのように構成しても、回転量を前述したように検出することができる。 Even if the magnetic encoder 60 is configured in this way, the amount of rotation can be detected as described above.
 なお、図3において、光学式エンコーダ110の図示を省略している。しかし、例えば、磁気遮蔽板70の上方に、前述のスリット板112が配置された回転板130を回転軸32に取り付け、かつ、回路基板140の下面に受発光素子111を取り付けることで、光学式エンコーダ110を構成してもよい。 Note that the optical encoder 110 is not shown in FIG. However, for example, by attaching the rotary plate 130 in which the slit plate 112 is arranged above the magnetic shielding plate 70 to the rotary shaft 32 and attaching the light emitting / receiving element 111 to the lower surface of the circuit board 140, the optical type The encoder 110 may be configured.
 [ロータリーエンコーダの回転量検出動作]
 図4A~図5Bを用いてロータリーエンコーダの回転量検出動作について説明する。図4A~図4Cは、回転軸の回転に伴う磁気式エンコーダ内での磁束の流れを示す模式図である。図5Aは、回転軸の回転角度と磁気検出素子の出力電圧との関係を示す模式図である。図5Bは、回転軸の回転角度と磁気検出素子の出力電圧との関係を示す他の模式図である。
[Rotary encoder rotation detection operation]
The rotation amount detection operation of the rotary encoder will be described with reference to FIGS. 4A to 5B. 4A to 4C are schematic views showing the flow of magnetic flux in the magnetic encoder as the rotation shaft rotates. FIG. 5A is a schematic diagram showing the relationship between the rotation angle of the rotation shaft and the output voltage of the magnetic detector element. FIG. 5B is another schematic view showing the relationship between the rotation angle of the rotation shaft and the output voltage of the magnetic detector.
 図4Aは、上から見た磁気式エンコーダ60の内部配置を示す。図4Bは、下から見た磁気式エンコーダ60の内部配置を示す。図4Cは、図4Bに示す状態から磁気遮蔽板70が180度回転した場合の内部配置を示す。説明の便宜上、図4A,図4B,図4C,図5A,図5B及び以降に説明する実施形態2及び変形例1に示す各図面は、図3に示す磁気式エンコーダ60の構成に基づいて図示している。また、磁気式エンコーダ60において、磁石80a,80bと磁気遮蔽板70と磁気検出素子90とボス160以外の構成部品の図示を省略している。 FIG. 4A shows the internal arrangement of the magnetic encoder 60 as viewed from above. FIG. 4B shows the internal arrangement of the magnetic encoder 60 as viewed from below. FIG. 4C shows the internal arrangement when the magnetic shielding plate 70 is rotated 180 degrees from the state shown in FIG. 4B. For convenience of explanation, the drawings shown in FIGS. 4A, 4B, 4C, 5A, 5B, and the second embodiment and the first modification described below are based on the configuration of the magnetic encoder 60 shown in FIG. Shown. Further, in the magnetic encoder 60, components other than the magnets 80a and 80b, the magnetic shielding plate 70, the magnetic detector 90, and the boss 160 are not shown.
 図4A,図4Bに示すように、磁気遮蔽板70が回転して、磁束通過部70aが磁石80aと磁気検出素子90との間、具体的には、軸方向から見て、磁束通過部70aが磁石80a及び磁気検出素子90と互いに重なり合う位置に移動した場合を考える。 As shown in FIGS. 4A and 4B, the magnetic shielding plate 70 rotates, and the magnetic flux passing portion 70a is between the magnet 80a and the magnetic detector 90, specifically, the magnetic flux passing portion 70a when viewed from the axial direction. Consider the case where the magnet 80a and the magnetic detector 90 move to a position where they overlap each other.
 磁束通過部70aは、磁気遮蔽板70の外周側に設けられ、磁気遮蔽板70と軸方向に貫通する開口として構成されている。また、図4A,図4Bに示す位置において、磁束通過部70aは、磁石80aがその下方に位置する。一方、磁石80bが磁気遮蔽板70の下方に位置するように磁気遮蔽板70での位置が規定されている。このため、磁石80aで発生した磁束は、N極から、磁束通過部70aを通じて磁気検出素子90の内部を流れ、S極に到達する。つまり、磁気検出素子90の一端から他端に向けて磁束が流れる。従って、磁気検出素子90の誘導コイル90bの両端にパルス状の電圧が誘起され、このときに発生する電圧パルスを正の電圧パルスとする。 The magnetic flux passing portion 70a is provided on the outer peripheral side of the magnetic shielding plate 70, and is configured as an opening that penetrates the magnetic shielding plate 70 in the axial direction. Further, at the positions shown in FIGS. 4A and 4B, the magnet 80a is located below the magnetic flux passing portion 70a. On the other hand, the position of the magnet 80b on the magnetic shielding plate 70 is defined so that the magnet 80b is located below the magnetic shielding plate 70. Therefore, the magnetic flux generated by the magnet 80a flows from the N pole through the magnetic flux passing portion 70a inside the magnetic detection element 90 and reaches the S pole. That is, the magnetic flux flows from one end to the other end of the magnetic detector 90. Therefore, a pulsed voltage is induced across the induction coil 90b of the magnetic detector 90, and the voltage pulse generated at this time is regarded as a positive voltage pulse.
 磁気遮蔽板70が、図4A,図4Bに示す位置から、例えば、時計回り方向に回転すると、磁石80a,80bと磁気検出素子90との間には、磁気遮蔽板70が配置されることになる。これにより、磁石80a,80bで発生した磁束は、磁気遮蔽板70で遮蔽され、磁気検出素子90の内部を流れなくなる。この場合、磁気検出素子90の誘導コイル90bの両端には電圧が誘起されない。 When the magnetic shield plate 70 is rotated clockwise from the positions shown in FIGS. 4A and 4B, for example, the magnetic shield plate 70 is arranged between the magnets 80a and 80b and the magnetic detector 90. Become. As a result, the magnetic flux generated by the magnets 80a and 80b is shielded by the magnetic shielding plate 70 and does not flow inside the magnetic detection element 90. In this case, no voltage is induced across the induction coil 90b of the magnetic detector 90.
 磁気遮蔽板70がさらに時計回り方向に回転すると、図4Cに示すように、回転軸32を挟んで、径方向に磁束通過部70aと対向して配置された磁束通過部70bが、軸方向から見て磁石80b及び磁気検出素子90と互いに重なり合う位置に移動する。なお、磁束通過部70bは、磁気遮蔽板70の外周から内側に向かって形成された切り欠きとして構成されている。また、図4Cに示す位置において、磁束通過部70bは、磁石80bがその下方に位置する。一方、磁石80aが磁気遮蔽板70の下方に位置するように磁気遮蔽板70での位置が規定されている。 When the magnetic shielding plate 70 further rotates in the clockwise direction, as shown in FIG. 4C, the magnetic flux passing portion 70b arranged so as to face the magnetic flux passing portion 70a in the radial direction with the rotating shaft 32 sandwiched is moved from the axial direction. Seen, it moves to a position where it overlaps with the magnet 80b and the magnetic detector 90. The magnetic flux passing portion 70b is configured as a notch formed from the outer periphery of the magnetic shielding plate 70 toward the inside. Further, at the position shown in FIG. 4C, the magnet 80b is located below the magnetic flux passing portion 70b. On the other hand, the position of the magnet 80a on the magnetic shielding plate 70 is defined so that the magnet 80a is located below the magnetic shielding plate 70.
 前述したように、磁石80aと磁石80bは、周方向に沿った磁極の向きが互いに異なるように配置されている。このため、図4Cに示す場合には、磁気検出素子90の他端から一端に向けて磁束が流れる。従って、磁気検出素子90の誘導コイル90bの両端には、図4Bで発生した電圧と逆極性の電圧パルス、つまり、負の電圧パルスが誘起される。 As described above, the magnet 80a and the magnet 80b are arranged so that the directions of the magnetic poles along the circumferential direction are different from each other. Therefore, in the case shown in FIG. 4C, the magnetic flux flows from the other end to one end of the magnetic detector 90. Therefore, a voltage pulse having the opposite polarity to the voltage generated in FIG. 4B, that is, a negative voltage pulse is induced at both ends of the induction coil 90b of the magnetic detector 90.
 このように、回転軸32とともに磁気遮蔽板70が回転し、磁束通過部70a,70bが磁石80a,80bと磁気検出素子90との間をそれぞれ通過すると、磁気検出素子90に極性の異なる電圧が誘起される。従って、図5Aに示すように、回転軸32が360度回転する間に、磁気検出素子90から正負両方の電圧パルスが出力される。なお、図5Aにおいて、期間Aは、前後を含めて、磁束通過部70aが図4Bに示す位置を通過する期間に対応する。期間Bは、前後を含めて、磁束通過部70bが図4Cに示す位置を通過する期間に対応している。図5Bに示すように、磁気検出素子90から出力される電圧パルスの幅t1、t2は、磁気検出素子90及び磁気信号処理回路220に由来し、磁気遮蔽板70の回転速度にはあまり影響されない。 In this way, when the magnetic shielding plate 70 rotates together with the rotating shaft 32 and the magnetic flux passing portions 70a and 70b pass between the magnets 80a and 80b and the magnetic detector 90, respectively, a voltage having a different polarity is applied to the magnetic detector 90. Induced. Therefore, as shown in FIG. 5A, both positive and negative voltage pulses are output from the magnetic detector 90 while the rotating shaft 32 rotates 360 degrees. In FIG. 5A, the period A corresponds to the period during which the magnetic flux passing portion 70a passes through the position shown in FIG. 4B, including the front and back. The period B corresponds to the period during which the magnetic flux passing portion 70b passes through the position shown in FIG. 4C, including the front and back. As shown in FIG. 5B, the widths t1 and t2 of the voltage pulses output from the magnetic detector 90 are derived from the magnetic detector 90 and the magnetic signal processing circuit 220, and are not so affected by the rotation speed of the magnetic shield plate 70. ..
 [効果等]
 以上説明したように、本実施形態に係るロータリーエンコーダ(回転検出器)100は、磁気式エンコーダ60または磁気式エンコーダ120を有している。ロータリーエンコーダ100は、モータ300の回転軸32の回転量を検出する。磁気式エンコーダ60,120は、磁性体であるウィーガントワイヤ90aと誘導コイル90bとで構成された磁気検出素子90と、回転軸32に回転一体に取付けられる。磁気式エンコーダ60,120は、磁束通過部70a,70bを有する磁気遮蔽板70と、2つの磁石80a,80bと、を少なくとも備えている。
[Effects, etc.]
As described above, the rotary encoder (rotation detector) 100 according to the present embodiment has a magnetic encoder 60 or a magnetic encoder 120. The rotary encoder 100 detects the amount of rotation of the rotation shaft 32 of the motor 300. The magnetic encoders 60 and 120 are rotationally and integrally attached to the rotating shaft 32 and the magnetic detection element 90 composed of the Wiegand wire 90a which is a magnetic material and the induction coil 90b. The magnetic encoders 60 and 120 include at least a magnetic shielding plate 70 having magnetic flux passing portions 70a and 70b and two magnets 80a and 80b.
 2つの磁石80a,80bは、磁気検出素子90に対して相対位置が変化しない。2つの磁石80a,80bは、互いに異なる極性の磁極を有している。つまり、2つの磁石80a,80bは、N極とS極とをそれぞれ有している。 The positions of the two magnets 80a and 80b do not change relative to the magnetic detector 90. The two magnets 80a and 80b have magnetic poles having different polarities from each other. That is, the two magnets 80a and 80b have an north pole and an south pole, respectively.
 ウィーガントワイヤ90aは、所定以上の磁界が印加されると大バルクハウゼン効果を発現するように構成されている。 The Wiegand wire 90a is configured to exhibit a large Barkhausen effect when a magnetic field of a predetermined value or higher is applied.
 所定の方向、この場合は軸方向から見て、磁気検出素子90と磁気遮蔽板70と2つの磁石80a,80bとは互いに間隔をあけてこの順に配置されている。 The magnetic detection element 90, the magnetic shielding plate 70, and the two magnets 80a and 80b are arranged in this order with a distance from each other when viewed from a predetermined direction, in this case, an axial direction.
 本実施形態によれば、磁石80a,80bと磁気検出素子90との間に、磁束通過部70a,70bを有し、回転軸32とともに回転可能に構成された磁気遮蔽板70を設けることで、磁石80a,80bと磁気検出素子90との配置関係に大きな制約を受けない。このことにより、ロータリーエンコーダ100の設計自由度が向上し、設計コストまたは部品コストを低減できる。 According to the present embodiment, a magnetic shielding plate 70 having magnetic flux passing portions 70a and 70b and rotatably configured together with the rotating shaft 32 is provided between the magnets 80a and 80b and the magnetic detector 90. The arrangement relationship between the magnets 80a and 80b and the magnetic detector 90 is not greatly restricted. As a result, the degree of freedom in designing the rotary encoder 100 can be improved, and the design cost or component cost can be reduced.
 また、磁気検出素子90に誘起された電圧により、磁気式エンコーダ60,120を駆動することができる。つまり、ロータリーエンコーダ100を駆動する電源230から何らかの理由で電力が供給されない場合にも、磁気式エンコーダ60,120を駆動することができる。回転軸32が1回転する間に、磁気検出素子90で複数回の電圧パルスが発生する。このため、磁気式エンコーダ60,120を駆動するのに必要な発電量を得るのに高価な磁石を用いずに済む。このことにより、磁気式エンコーダ60,120、ひいてはロータリーエンコーダ100のコストを低減できる。 Further, the magnetic encoders 60 and 120 can be driven by the voltage induced in the magnetic detector 90. That is, the magnetic encoders 60 and 120 can be driven even when the power supply 230 for driving the rotary encoder 100 does not supply electric power for some reason. During one rotation of the rotating shaft 32, the magnetic detector 90 generates a plurality of voltage pulses. Therefore, it is not necessary to use an expensive magnet to obtain the amount of power generation required to drive the magnetic encoders 60 and 120. As a result, the costs of the magnetic encoders 60 and 120, and thus the rotary encoder 100, can be reduced.
 なお、電源230からロータリーエンコーダ100に電力が供給されない場合として、停電または電源230がバッテリーの場合はその消耗等が挙げられる。モータ300が連結された設備を移動させる場合も、モータ300を含めて電力供給を停止するため、ロータリーエンコーダ100に電力が供給されない。 As a case where power is not supplied from the power supply 230 to the rotary encoder 100, there is a power failure or consumption of the power supply 230 when it is a battery. Even when the equipment to which the motor 300 is connected is moved, the power supply including the motor 300 is stopped, so that the power is not supplied to the rotary encoder 100.
 また、前述したように、ウィーガントワイヤ90aは、所定以上の磁界が加わることで大バルクハウゼン効果を発現してその磁化方向が反転し、誘導コイル90bの両端に電圧パルスが誘起される。このとき、磁化方向の反転速度は、ウィーガントワイヤ90aの磁気的性質に依存し、回転軸32の回転速度には依存しない。 Further, as described above, the Wiegand wire 90a exhibits a large Barkhausen effect when a magnetic field of a predetermined value or more is applied, the magnetization direction is reversed, and voltage pulses are induced at both ends of the induction coil 90b. At this time, the reversal speed in the magnetization direction depends on the magnetic properties of the Wiegand wire 90a and does not depend on the rotation speed of the rotation shaft 32.
 従って、磁気検出素子90をウィーガントワイヤ90aと誘導コイル90bとで構成することで、回転軸32の回転速度に依存せず、磁気検出素子90で発生する電圧パルスの大きさを所定の値とすることができる。例えば、回転速度に依存した電磁誘導のみでは十分な発電量が得られない程度の低速回転においても、磁気式エンコーダ60,120を駆動するのに十分な電力が磁気検出素子90から得られる。 Therefore, by configuring the magnetic detector 90 with the Wiegand wire 90a and the induction coil 90b, the magnitude of the voltage pulse generated by the magnetic detector 90 can be set to a predetermined value regardless of the rotation speed of the rotating shaft 32. can do. For example, even at a low speed rotation in which a sufficient amount of power generation cannot be obtained only by electromagnetic induction depending on the rotation speed, sufficient power can be obtained from the magnetic detector element 90 to drive the magnetic encoders 60 and 120.
 磁気検出素子90の両端は、軸方向と直交する平面内に位置している。磁気遮蔽板70は、軸方向と直交する平面内に位置する板状の部材である。2つの磁石80a,80bの磁極のそれぞれは、軸方向と直交する平面内に配列されている。 Both ends of the magnetic detector 90 are located in a plane orthogonal to the axial direction. The magnetic shielding plate 70 is a plate-shaped member located in a plane orthogonal to the axial direction. The magnetic poles of the two magnets 80a and 80b are arranged in a plane orthogonal to the axial direction.
 このようにすることで、磁石80a,80bでそれぞれ発生し、軸方向で上方に向かう磁束が、磁気遮蔽板70の磁束通過部70a,70bを通過して、磁気検出素子90の内部に確実に流れるようになる。このことにより、回転量を確実に検出できるとともに、磁気式エンコーダ60,120を駆動するのに十分な電力が磁気検出素子90から得られる。 By doing so, the magnetic flux generated in the magnets 80a and 80b, respectively, and upward in the axial direction passes through the magnetic flux passing portions 70a and 70b of the magnetic shielding plate 70, and is surely inside the magnetic detection element 90. It will flow. As a result, the amount of rotation can be reliably detected, and sufficient electric power for driving the magnetic encoders 60 and 120 can be obtained from the magnetic detector element 90.
 なお、磁気遮蔽板70は、磁石80a,80bで発生し、軸方向に流れる磁束の通過と遮断を制御するための部材である。よって、磁気遮蔽板70は、必ずしも軸方向と直交する平面内に位置する必要はなく、軸方向と交差する平面内に位置していればよい。 The magnetic shielding plate 70 is a member for controlling the passage and blocking of magnetic flux generated in the magnets 80a and 80b and flowing in the axial direction. Therefore, the magnetic shielding plate 70 does not necessarily have to be located in a plane orthogonal to the axial direction, but may be located in a plane intersecting the axial direction.
 また、回転板130の材質を磁気遮蔽板70に用いられる材料よりも軽量なもの、例えば、磁気遮蔽板70を鉄系材料とする場合に、回転板130をアルミ板とすることで、モータ300の負荷を低減できる。 Further, when the material of the rotary plate 130 is lighter than the material used for the magnetic shield plate 70, for example, when the magnetic shield plate 70 is an iron-based material, the rotary plate 130 is an aluminum plate, so that the motor 300 Load can be reduced.
 また、回転軸32の回転に応じて、磁束通過部70a,70bが、磁石80a,80b及び磁気検出素子90と軸方向から見て互いに重なる位置にそれぞれ移動した場合、磁石80a,80bで発生した磁束が、磁束通過部70a,70bを通じて磁気検出素子90に流れる。この場合、磁気検出素子90の両端に電圧が誘起される。一方、磁束通過部70a,70bがこれ以外の位置にある場合、磁石80a,80bのそれぞれと磁気検出素子90との間には磁気遮蔽板70が存在するため、磁石80a,80bで発生した磁束は、磁気遮蔽板70で遮蔽されて磁気検出素子90に到達せず、磁気検出素子90の両端に電圧は誘起されない。 Further, when the magnetic flux passing portions 70a and 70b move to positions where they overlap with the magnets 80a and 80b and the magnetic detector 90 when viewed from the axial direction in accordance with the rotation of the rotating shaft 32, the magnetic flux passing portions 70a and 70b are generated by the magnets 80a and 80b. The magnetic flux flows to the magnetic detector 90 through the magnetic flux passing portions 70a and 70b. In this case, a voltage is induced across the magnetic detector 90. On the other hand, when the magnetic flux passing portions 70a and 70b are located at other positions, the magnetic flux generated by the magnets 80a and 80b is generated because the magnetic shielding plate 70 exists between each of the magnets 80a and 80b and the magnetic detector 90. Is shielded by the magnetic shielding plate 70 and does not reach the magnetic detection element 90, and no voltage is induced across the magnetic detection element 90.
 従って、磁気検出素子90の両端に発生した電圧をモニターし、電圧パルスの発生回数をカウントすることで、回転軸32の回転量を検出することが可能となる。 Therefore, by monitoring the voltage generated at both ends of the magnetic detector 90 and counting the number of times the voltage pulse is generated, it is possible to detect the amount of rotation of the rotating shaft 32.
 磁束通過部70a,70bは、外周方向に所定の間隔をあけて磁気遮蔽板70に形成されている。互いに隣り合う磁束通過部70a,70bがそれぞれ磁気検出素子90及び磁石80a,80bと軸方向から見て互いに重なる位置に移動した場合、一方の磁束通過部70aを通過して磁気検出素子90に流れる磁束の向きと、他方の磁束通過部70bを通過して磁気検出素子90に流れる磁束の向きとは互いに異なる。 The magnetic flux passing portions 70a and 70b are formed on the magnetic shielding plate 70 at predetermined intervals in the outer peripheral direction. When the magnetic flux passing portions 70a and 70b adjacent to each other move to positions where they overlap each other when viewed from the axial direction with the magnetic detector 90 and the magnets 80a and 80b, respectively, they pass through one of the magnetic flux passing portions 70a and flow to the magnetic detector 90. The direction of the magnetic flux and the direction of the magnetic flux that passes through the other magnetic flux passing portion 70b and flows to the magnetic detector 90 are different from each other.
 ロータリーエンコーダ100の磁気式エンコーダ60,120をこのように構成することで、互いに隣り合う磁束通過部70a,70bがそれぞれ磁気検出素子90と磁石80a,80bとの間を通過した場合には、磁気検出素子90の両端には、互いに異なる極性の電圧パルスが発生する。このことにより、例えば、回転軸32が時計回り方向に回転し続ける場合には、磁気検出素子90の両端に発生した電圧パルスの極性と発生回数とに基づいて、回転軸32の回転量を検出することができる。回転軸32が1回転する間に、磁気検出素子90に複数回、電圧が誘起されるが、1回転分の誘起電圧で磁気式エンコーダ60,120を駆動するのに十分な電力を得ることができる。 By configuring the magnetic encoders 60 and 120 of the rotary encoder 100 in this way, when the magnetic flux passing portions 70a and 70b adjacent to each other pass between the magnetic detection element 90 and the magnets 80a and 80b, respectively, they are magnetic. Voltage pulses having different polarities are generated at both ends of the detection element 90. As a result, for example, when the rotating shaft 32 continues to rotate in the clockwise direction, the amount of rotation of the rotating shaft 32 is detected based on the polarity and the number of occurrences of the voltage pulses generated at both ends of the magnetic detector 90. can do. While the rotating shaft 32 makes one rotation, the voltage is induced in the magnetic detector 90 multiple times, but it is possible to obtain sufficient power to drive the magnetic encoders 60 and 120 with the induced voltage for one rotation. it can.
 2つの磁石80a,80bは、磁気遮蔽板70の外周近くに、径方向、つまり、磁気遮蔽板70の半径方向に沿って所定の間隔をあけて配置されている。2つの磁石80a,80bは、互いに隣り合う磁石80a,80bにおいて、周方向、つまり、磁気遮蔽板70の外周方向に沿った磁極の向きが互いに異なる。 The two magnets 80a and 80b are arranged near the outer periphery of the magnetic shielding plate 70 at predetermined intervals along the radial direction, that is, the radial direction of the magnetic shielding plate 70. The two magnets 80a and 80b have different magnetic pole directions in the circumferential direction, that is, in the outer peripheral direction of the magnetic shielding plate 70, in the magnets 80a and 80b adjacent to each other.
 2つの磁石80a,80bをこのように配置することで、例えば、磁束通過部70a,70bがそれぞれ磁気検出素子90と磁石80a,80bとの間を通過した場合に、一方の磁石から発生した磁束のみが磁束通過部を通過するようにできる。また、2つの磁石80a,80bにおいて、磁気遮蔽板70の外周方向に沿った磁極の向きが互いに異なっているため、回転軸32が時計回り方向に回転し続ける場合には、磁気検出素子90の両端に発生した電圧パルスの極性が周期的に変化し、当該極性と発生回数とに基づいて、回転軸32の回転量を検出することができる。 By arranging the two magnets 80a and 80b in this way, for example, when the magnetic flux passing portions 70a and 70b pass between the magnetic detector 90 and the magnets 80a and 80b, respectively, the magnetic flux generated from one of the magnets is generated. Only can pass through the magnetic flux passage. Further, in the two magnets 80a and 80b, the directions of the magnetic poles along the outer peripheral direction of the magnetic shielding plate 70 are different from each other. Therefore, when the rotating shaft 32 continues to rotate in the clockwise direction, the magnetic detector 90 The polarity of the voltage pulse generated at both ends changes periodically, and the amount of rotation of the rotating shaft 32 can be detected based on the polarity and the number of occurrences.
 磁束通過部70a,70bは、磁気遮蔽板70の外周から内側に向かうように形成された切り欠き及び磁気遮蔽板70を軸方向に貫通する開口の少なくともいずれかであることが好ましい。 The magnetic flux passing portions 70a and 70b are preferably at least one of a notch formed so as to go inward from the outer circumference of the magnetic shielding plate 70 and an opening that penetrates the magnetic shielding plate 70 in the axial direction.
 このようにすることで、磁束通過部70a,70bを簡便に形成することができる。また、磁石80a,80bで発生した磁束を確実に通過させることができる。 By doing so, the magnetic flux passing portions 70a and 70b can be easily formed. In addition, the magnetic flux generated by the magnets 80a and 80b can be reliably passed through.
 ロータリーエンコーダ100は、磁気信号処理回路220を有している。磁気信号処理回路220は、電圧変換部221と、信号処理部222と、記憶部223と、I/O部224と、を備えている。電圧変換部221は、磁気検出素子90の両端に発生した電圧を整流し、所定の電圧に変換する。信号処理部222は、所定の電圧の発生回数に応じて回転軸32の回転量を算出する。記憶部223は、信号処理部222で算出された回転量を保存する。I/O部224は、光学信号処理回路210から出力される信号と磁気信号処理回路220から出力される信号とを処理して信号処理回路200の回転位置と回転量を外部に出力する。この場合、信号処理部222と記憶部223の駆動電力は、電圧変換部221から供給される。 The rotary encoder 100 has a magnetic signal processing circuit 220. The magnetic signal processing circuit 220 includes a voltage conversion unit 221, a signal processing unit 222, a storage unit 223, and an I / O unit 224. The voltage conversion unit 221 rectifies the voltage generated across the magnetic detector 90 and converts it into a predetermined voltage. The signal processing unit 222 calculates the amount of rotation of the rotating shaft 32 according to the number of times a predetermined voltage is generated. The storage unit 223 stores the amount of rotation calculated by the signal processing unit 222. The I / O unit 224 processes the signal output from the optical signal processing circuit 210 and the signal output from the magnetic signal processing circuit 220, and outputs the rotation position and rotation amount of the signal processing circuit 200 to the outside. In this case, the driving power of the signal processing unit 222 and the storage unit 223 is supplied from the voltage conversion unit 221.
 ロータリーエンコーダ100の磁気式エンコーダ60,120をこのように構成することで、磁気遮蔽板70の回転に応じて磁気検出素子90の両端に発生した電圧に基づいて、回転軸32の回転量を検出することができる。また、当該回転量を記憶することで、モータ300の回転制御にフィードバックすることができる。さらに、磁気検出素子90の両端に発生した電圧を変換する電圧変換部221から信号処理部222、及び記憶部223に駆動電力が供給されることで、電源230からロータリーエンコーダ100に電力が供給されない場合にも磁気式エンコーダ60,120を駆動することができる。 By configuring the magnetic encoders 60 and 120 of the rotary encoder 100 in this way, the amount of rotation of the rotating shaft 32 is detected based on the voltage generated at both ends of the magnetic detector 90 in response to the rotation of the magnetic shielding plate 70. can do. Further, by storing the rotation amount, it is possible to feed back to the rotation control of the motor 300. Further, since the drive power is supplied from the voltage conversion unit 221 that converts the voltage generated at both ends of the magnetic detector 90 to the signal processing unit 222 and the storage unit 223, the power supply 230 does not supply power to the rotary encoder 100. In some cases, the magnetic encoders 60 and 120 can be driven.
 本実施形態のロータリーエンコーダ100は、回転軸32の回転位置を検出する光学式エンコーダ(光学式回転検出器)110をさらに備えている。 The rotary encoder 100 of the present embodiment further includes an optical encoder (optical rotation detector) 110 that detects the rotation position of the rotation shaft 32.
 ロータリーエンコーダ100は外部に設けられた電源230に接続されている。電源230からロータリーエンコーダ100に電力が供給される場合は、ロータリーエンコーダ100は、回転軸32の回転量を検出するとともに光学式エンコーダ110により回転軸32の回転位置を検出する。 The rotary encoder 100 is connected to an external power supply 230. When power is supplied from the power supply 230 to the rotary encoder 100, the rotary encoder 100 detects the amount of rotation of the rotary shaft 32 and also detects the rotational position of the rotary shaft 32 by the optical encoder 110.
 電源230からロータリーエンコーダ100に電力が供給されない場合は、電圧変換部221から信号処理部222、及び記憶部223に駆動電力を供給することで、ロータリーエンコーダ100は回転軸32の回転量を検出する。 When power is not supplied from the power supply 230 to the rotary encoder 100, the rotary encoder 100 detects the amount of rotation of the rotary shaft 32 by supplying drive power from the voltage conversion unit 221 to the signal processing unit 222 and the storage unit 223. ..
 ロータリーエンコーダ100をこのように構成することで、回転軸32に関する多回転情報Sを得ることができる。また、多回転情報Sに基づいて、モータ300の回転状態を所望の状態に制御できる。 By configuring the rotary encoder 100 in this way, it is possible to obtain multi-rotation information S regarding the rotation shaft 32. Further, the rotation state of the motor 300 can be controlled to a desired state based on the multi-rotation information S.
 さらに、電源230からロータリーエンコーダ100に電力が供給されない場合であっても、磁気検出素子90で発生した電圧パルスに基づいて電圧変換部221から信号処理部222、及び記憶部223に駆動電力を供給することで、磁気式エンコーダ60,120により回転軸32の回転量を検出できる。このことにより、電力供給が再開された場合に、光学式エンコーダ110で検出された回転位置と、それまでに検出されて記憶部223に保存された回転量とに基づいて、多回転情報Sを正しい値に補正することができる。 Further, even when power is not supplied from the power supply 230 to the rotary encoder 100, drive power is supplied from the voltage conversion unit 221 to the signal processing unit 222 and the storage unit 223 based on the voltage pulse generated by the magnetic detector 90. By doing so, the amount of rotation of the rotating shaft 32 can be detected by the magnetic encoders 60 and 120. As a result, when the power supply is restarted, the multi-rotation information S is generated based on the rotation position detected by the optical encoder 110 and the rotation amount detected so far and stored in the storage unit 223. It can be corrected to the correct value.
 以上のように、本実施の形態のロータリーエンコーダ(回転検出器)100は、モータ300の回転軸32の回転量を検出する回転検出器100であって、ウィーガントワイヤ(磁性体)90aと誘導コイル90bとで構成された磁気検出素子90と、回転軸32に回転一体に取付けられ、磁束通過部70a,70bを有する磁気遮蔽板70と、磁気検出素子90に対して相対位置が変化せず、互いに異なる極性の複数の磁極を有する磁石80a,80bと、を少なくとも備え、ウィーガントワイヤ(磁性体)90aは、所定以上の磁界が印加されると大バルクハウゼン効果を発現し、所定の方向から見て、磁気検出素子90と磁気遮蔽板70と磁石80a,80bとは互いに間隔をあけて、磁気検出素子90、磁気遮蔽板70、磁石80a,80bの順に配置されている。 As described above, the rotary encoder (rotation detector) 100 of the present embodiment is a rotation detector 100 that detects the amount of rotation of the rotation shaft 32 of the motor 300, and is guided by the wigant wire (magnetic material) 90a. The position relative to the magnetic detection element 90 composed of the coil 90b, the magnetic shielding plate 70 which is integrally mounted on the rotating shaft 32 and has the magnetic flux passing portions 70a and 70b, and the magnetic detection element 90 does not change. The wigant wire (magnetic material) 90a exhibits a large bulkhausen effect when a magnetic field of a predetermined value or more is applied, and has at least magnets 80a and 80b having a plurality of magnetic poles having different polarities. The magnetic detection element 90, the magnetic shielding plate 70, and the magnets 80a and 80b are arranged in this order with the magnetic detection element 90, the magnetic shielding plate 70, and the magnets 80a and 80b spaced apart from each other.
 これにより、回転検出器内で大きな制約を受けずに磁石及び磁気検出素子を配置でき、回転検出器の設計自由度が向上し、設計コストを低減できる。 As a result, magnets and magnetic detectors can be arranged in the rotation detector without being greatly restricted, the degree of freedom in designing the rotation detector can be improved, and the design cost can be reduced.
 本実施形態に係るモータ300は、回転軸32を有する回転子30と、回転子30と同軸にかつ回転子30と径方向に所定の間隔をあけて設けられた固定子40と、回転軸32に取付けられたロータリーエンコーダ100と、を少なくとも備えている。 The motor 300 according to the present embodiment includes a rotor 30 having a rotating shaft 32, a stator 40 provided coaxially with the rotor 30 and at a predetermined distance in the radial direction from the rotor 30, and a rotating shaft 32. At least includes a rotary encoder 100 mounted on the.
 本実施形態によれば、ロータリーエンコーダ100、ひいてはモータ300のコストを低減できる。また、モータ300の回転状態を確実に制御することができる。 According to this embodiment, the cost of the rotary encoder 100 and thus the motor 300 can be reduced. In addition, the rotational state of the motor 300 can be reliably controlled.
 <変形例1>
 図6A,図6B,図6Cは、変形例1に係る第1の磁気式エンコーダ内での磁束の流れを示す模式図をである。
<Modification example 1>
6A, 6B, and 6C are schematic views showing the flow of magnetic flux in the first magnetic encoder according to the first modification.
 なお、以降に示す図面を説明するにあたって、実施形態1と同様の箇所については同一の符号を付して詳細な説明を省略する。また、磁石81a~83bと磁気遮蔽板70と磁気検出素子90とボス160以外の構成部品の図示を省略しているのは、図3と同様である。また、図6A~図8Cのそれぞれにおいて、図6A,図7A,図8Aは、下から見た磁気式エンコーダ60の内部配置を示す。図6B,図7B,図8Bは、上から見た磁気式エンコーダ60の内部配置を示す。図6C,図7C,図8Cは、図6B,図7B,図8Bに示す状態から磁気遮蔽板70が180度回転した場合の内部配置をそれぞれ示す。 In explaining the drawings shown below, the same parts as those in the first embodiment are designated by the same reference numerals and detailed description thereof will be omitted. Further, it is the same as in FIG. 3 that the components other than the magnets 81a to 83b, the magnetic shielding plate 70, the magnetic detector 90, and the boss 160 are not shown. Further, in FIGS. 6A to 8C, FIGS. 6A, 7A, and 8A show the internal arrangement of the magnetic encoder 60 as viewed from below. 6B, 7B, and 8B show the internal arrangement of the magnetic encoder 60 as viewed from above. 6C, 7C, and 8C show the internal arrangement when the magnetic shielding plate 70 is rotated 180 degrees from the state shown in FIGS. 6B, 7B, and 8B, respectively.
 まず、図6A,図6B,図6Cに示す構成は、磁束通過部70c,70dがそれぞれ開口である点で、実施形態1に示す構成と異なる。また、磁束通過部70c,70dは、回転軸32を挟んで径方向に非対称に配置されている。具体的には、磁束通過部70cは磁束通過部70dよりも回転軸32に近い場所に位置し、かつその長手方向の長さは、磁束通過部70dの長手方向の長さよりも長い。 First, the configuration shown in FIGS. 6A, 6B, and 6C is different from the configuration shown in the first embodiment in that the magnetic flux passing portions 70c and 70d are openings, respectively. Further, the magnetic flux passing portions 70c and 70d are arranged asymmetrically in the radial direction with the rotating shaft 32 interposed therebetween. Specifically, the magnetic flux passing portion 70c is located closer to the rotation axis 32 than the magnetic flux passing portion 70d, and the length in the longitudinal direction thereof is longer than the length in the longitudinal direction of the magnetic flux passing portion 70d.
 2つの磁石81a,81bは、軸方向から見て、磁気遮蔽板70の外周方向に沿って所定の間隔をあけて配置されている。2つの磁石81a,81bにおいて対向する磁極の極性は互いに異なっている。 The two magnets 81a and 81b are arranged at predetermined intervals along the outer peripheral direction of the magnetic shielding plate 70 when viewed from the axial direction. The polarities of the magnetic poles facing each other in the two magnets 81a and 81b are different from each other.
 図6Bに示すように、磁束通過部70dが磁気検出素子90と磁石81a,81bとの間を通過する場合、磁束は、磁石81bのN極から磁束通過部70dを通過して、磁気検出素子90の一端に流れ込む。さらに磁気検出素子90の内部を通過して、磁気検出素子90の他端から磁石81aのS極に流れ込む。一方、図6Cに示すように、磁束通過部70cが磁気検出素子90と磁石81a,81bとの間を通過する場合、磁束は、磁石81aのN極から磁束通過部70cを通過して、磁気検出素子90の他端に流れ込む。さらに磁気検出素子90の内部を通過して、磁気検出素子90の一端から磁石81bのS極に流れ込む。 As shown in FIG. 6B, when the magnetic flux passing portion 70d passes between the magnetic detection element 90 and the magnets 81a and 81b, the magnetic flux passes from the north pole of the magnet 81b through the magnetic flux passing portion 70d and passes through the magnetic detection element 70d. It flows into one end of 90. Further, it passes through the inside of the magnetic detection element 90 and flows into the S pole of the magnet 81a from the other end of the magnetic detection element 90. On the other hand, as shown in FIG. 6C, when the magnetic flux passing portion 70c passes between the magnetic detection element 90 and the magnets 81a and 81b, the magnetic flux passes through the magnetic flux passing portion 70c from the N pole of the magnet 81a and is magnetic. It flows into the other end of the detection element 90. Further, it passes through the inside of the magnetic detection element 90 and flows from one end of the magnetic detection element 90 into the S pole of the magnet 81b.
 図6A,図6B,図6Cに示す構成によれば、実施形態1に示す構成が奏するのと同様の効果を奏することができる。また、実施形態1に示す構成に比べて、2つの磁石81a,81bの間隔をあけて配置できるため、磁石81a,81bの実装配置が容易となる。 According to the configurations shown in FIGS. 6A, 6B, and 6C, the same effect as that of the configuration shown in the first embodiment can be obtained. Further, as compared with the configuration shown in the first embodiment, since the two magnets 81a and 81b can be arranged at intervals, the mounting arrangement of the magnets 81a and 81b becomes easy.
 図7A,図7B,図7Cは、変形例1に係る第2の磁気式エンコーダ内での磁束の流れを示す模式図である。図7A,図7B,図7Cに示す構成は、磁束通過部70e,70e,70fが磁気遮蔽板70の外周方向に沿って所定の間隔を開けて設けられた3つの切り欠きである点で、実施形態1に示す構成と異なる。磁束通過部70fは、他の2つの磁束通過部70eよりも周方向に広く形成されている。軸方向から見て、磁束通過部70fの中心と一方の磁束通過部70eの中心とがなす角度は、磁束通過部70fの中心と他方の磁束通過部70eの中心とがなす角度に実質的に等しい。2つの磁石82a,82bの配置は、図6A,図6B,図6Cに示す構成と同様である。しかし、図6A,図6B,図6Cに示す位置よりも回転軸32に近い側に2つの磁石82a,82bが配置されている。2つの磁石82a,82bはそれぞれ、長手方向が径方向となっている。磁気検出素子90も図6A,図6B,図6Cに示す位置よりも回転軸32に近い側に配置されている。 7A, 7B, and 7C are schematic views showing the flow of magnetic flux in the second magnetic encoder according to the first modification. The configuration shown in FIGS. 7A, 7B, and 7C is such that the magnetic flux passing portions 70e, 70e, and 70f are three notches provided at predetermined intervals along the outer peripheral direction of the magnetic shielding plate 70. It is different from the configuration shown in the first embodiment. The magnetic flux passing portion 70f is formed wider in the circumferential direction than the other two magnetic flux passing portions 70e. When viewed from the axial direction, the angle formed by the center of the magnetic flux passing portion 70f and the center of one magnetic flux passing portion 70e is substantially the angle formed by the center of the magnetic flux passing portion 70f and the center of the other magnetic flux passing portion 70e. equal. The arrangement of the two magnets 82a and 82b is the same as the configuration shown in FIGS. 6A, 6B and 6C. However, the two magnets 82a and 82b are arranged closer to the rotation axis 32 than the positions shown in FIGS. 6A, 6B and 6C. The longitudinal direction of each of the two magnets 82a and 82b is the radial direction. The magnetic detector 90 is also arranged closer to the rotation axis 32 than the positions shown in FIGS. 6A, 6B, and 6C.
 図7Bに示すように、2つの磁束通過部70eが磁気検出素子90の両端をそれぞれ通過する場合、磁束は、磁石82aのN極から一方の磁束通過部70eを通過して、磁気検出素子90の他端に流れ込む。磁気検出素子90の内部を通過して、磁気検出素子90の一端から及び他方の磁束通過部70eへ、さらに磁石82bのS極に流れ込む。一方、図7Cに示すように、磁束通過部70fが磁気検出素子90と磁石82a,82bとの間を通過する場合、磁束は、磁石82bのN極から磁束通過部70fを通過して、磁気検出素子90の一端に流れ込む。さらに磁気検出素子90の内部を通過して、磁気検出素子90の他端から磁石82aのS極に流れ込む。 As shown in FIG. 7B, when the two magnetic flux passing portions 70e pass through both ends of the magnetic detector 90, the magnetic flux passes from the N pole of the magnet 82a through one magnetic flux passing portion 70e and passes through the magnetic detector 90. It flows into the other end of. It passes through the inside of the magnetic detector 90, flows from one end of the magnetic detector 90, to the magnetic flux passing portion 70e of the other, and further flows into the S pole of the magnet 82b. On the other hand, as shown in FIG. 7C, when the magnetic flux passing portion 70f passes between the magnetic detection element 90 and the magnets 82a and 82b, the magnetic flux passes from the north pole of the magnet 82b through the magnetic flux passing portion 70f and is magnetic. It flows into one end of the detection element 90. Further, it passes through the inside of the magnetic detection element 90 and flows from the other end of the magnetic detection element 90 into the S pole of the magnet 82a.
 図7A,図7B,図7Cに示す構成によれば、実施形態1に示す構成が奏するのと同様の効果を奏することができる。また、図6A,図6B,図6Cに示す構成と同様に、2つの磁石82a,82bの間隔をあけて配置できるため、磁石82a,82bの実装配置が容易となる。 According to the configurations shown in FIGS. 7A, 7B, and 7C, the same effect as that of the configuration shown in the first embodiment can be obtained. Further, as in the configuration shown in FIGS. 6A, 6B, and 6C, the two magnets 82a and 82b can be arranged at intervals, so that the magnets 82a and 82b can be easily mounted and arranged.
 図8A,図8B,図8Cは、変形例1に係る第3の磁気式エンコーダ内での磁束の流れを示す模式図である。なお、図8A,図8B,図8Cに示すように、磁気遮蔽板70に磁束通過部70gを1箇所設け、かつ磁気検出素子90を回転軸32と同軸に配置するようにしてもよい。この場合も、磁束通過部70gが磁石83a,83bと磁気検出素子90との間を通過する際に、磁気検出素子90の両端に電圧パルスが誘起され、その発生回数に基づいて回転軸32の回転量を検出することができる。 8A, 8B, and 8C are schematic views showing the flow of magnetic flux in the third magnetic encoder according to the first modification. As shown in FIGS. 8A, 8B, and 8C, the magnetic shielding plate 70 may be provided with one magnetic flux passing portion 70g, and the magnetic detection element 90 may be arranged coaxially with the rotating shaft 32. Also in this case, when the magnetic flux passing portion 70g passes between the magnets 83a and 83b and the magnetic detection element 90, voltage pulses are induced at both ends of the magnetic detection element 90, and the rotation shaft 32 is based on the number of occurrences. The amount of rotation can be detected.
 (実施形態2)
 図9は、実施形態2に係る磁気遮蔽板と磁気検出素子との配置関係を示す模式図である。説明の便宜上、磁気式エンコーダ60における磁気遮蔽板70と磁気検出素子90以外の構成部品の図示を省略しており、かつ磁気検出素子90は一部のみを図示している。
(Embodiment 2)
FIG. 9 is a schematic view showing the arrangement relationship between the magnetic shielding plate and the magnetic detector element according to the second embodiment. For convenience of explanation, the components other than the magnetic shielding plate 70 and the magnetic detector 90 in the magnetic encoder 60 are omitted, and only a part of the magnetic detector 90 is shown.
 図9に示す構成は、磁気検出素子90が磁気遮蔽板70の外周方向に沿って複数配置されている点で、実施形態1に示す構成と異なる。なお、図示しないが、磁気遮蔽板70を挟んで磁気検出素子90と反対側に2つの磁石が固定配置されている。図示しない2つの磁石の配置は、図3に示すのと同様である。すなわち、2つの磁石は、径方向に互いに間隔をあけてブラケット22の外面に取付け固定されている。2つの磁石は、周方向に沿った磁極の向きが互いに異なるように配置されている。1つの磁気検出素子90の長手方向は、2つの磁石の長手方向に実質的に等しい。 The configuration shown in FIG. 9 is different from the configuration shown in the first embodiment in that a plurality of magnetic detector elements 90 are arranged along the outer peripheral direction of the magnetic shielding plate 70. Although not shown, two magnets are fixedly arranged on the side opposite to the magnetic detector 90 with the magnetic shielding plate 70 interposed therebetween. The arrangement of the two magnets (not shown) is the same as shown in FIG. That is, the two magnets are attached and fixed to the outer surface of the bracket 22 at intervals in the radial direction. The two magnets are arranged so that the directions of the magnetic poles along the circumferential direction are different from each other. The longitudinal direction of one magnetic detector 90 is substantially equal to the longitudinal direction of the two magnets.
 また、磁気検出素子90の配置個数及び周方向での配置間隔に応じて、磁気遮蔽板70に複数の磁束通過部70h,70iが形成されている。互いに隣り合う磁束通過部70h,70iのうち、一方の磁束通過部70iは、磁気遮蔽板70の外周から内側に向かうように形成された切り欠きである。他方の磁束通過部70hは、磁束通過部よりも径方向で内側に形成された開口である。 Further, a plurality of magnetic flux passing portions 70h and 70i are formed on the magnetic shielding plate 70 according to the number of magnetic detector elements 90 arranged and the arrangement interval in the circumferential direction. Of the magnetic flux passing portions 70h and 70i adjacent to each other, one of the magnetic flux passing portions 70i is a notch formed so as to go inward from the outer circumference of the magnetic shielding plate 70. The other magnetic flux passing portion 70h is an opening formed inward in the radial direction with respect to the magnetic flux passing portion.
 切り欠きとして構成された磁束通過部70iが磁石と磁気検出素子90との間を通過する場合、径方向で外側に位置する磁石で発生した磁束が磁気検出素子90の内部に流れて、磁気検出素子90の両端に電圧パルスが発生する。一方、開口として構成された磁束通過部70hが磁石と磁気検出素子90との間を通過する場合、径方向で内側に位置する磁石で発生した磁束が磁気検出素子90の内部に流れて、磁気検出素子90の両端に、前述した電圧パルスと逆の極性を有する別の電圧パルスが発生する。 When the magnetic flux passing portion 70i configured as a notch passes between the magnet and the magnetic detection element 90, the magnetic flux generated by the magnet located on the outer side in the radial direction flows inside the magnetic detection element 90 to perform magnetic detection. A voltage pulse is generated across the element 90. On the other hand, when the magnetic flux passing portion 70h configured as an opening passes between the magnet and the magnetic detector 90, the magnetic flux generated by the magnet located inside in the radial direction flows inside the magnetic detector 90 and becomes magnetic. Another voltage pulse having the opposite polarity to the voltage pulse described above is generated at both ends of the detection element 90.
 本実施形態によれば、実施形態1に示す構成が奏するのと同様の効果を奏することができる。また、回転軸32の回転量だけでなく、磁気検出素子90で発生した電圧パルスの極性に基づいて、回転方向の変化も検出することができる。 According to the present embodiment, the same effect as that of the configuration shown in the first embodiment can be obtained. Further, not only the amount of rotation of the rotation shaft 32 but also the change in the rotation direction can be detected based on the polarity of the voltage pulse generated by the magnetic detector 90.
 回転軸32が時計回り方向から反時計回り方向に回転方向を変えるような場合、磁気式エンコーダ60に含まれる磁気検出素子90が1つのみでは、回転方向の変化を検出することができなかった。 When the rotation axis 32 changes the rotation direction from the clockwise direction to the counterclockwise direction, the change in the rotation direction could not be detected by only one magnetic detection element 90 included in the magnetic encoder 60. ..
 一方、本実施形態によれば、磁気遮蔽板70の外周方向に沿って磁気検出素子90を複数配置することで、回転軸32の回転量だけでなく回転方向の変化も検出することができる。なお、回転方向を精度良く判定するためには、互いに隣り合う磁気検出素子90は、周方向に180度離れた位置を避けて配置されるのが好ましい。 On the other hand, according to the present embodiment, by arranging a plurality of magnetic detector elements 90 along the outer peripheral direction of the magnetic shielding plate 70, it is possible to detect not only the amount of rotation of the rotation shaft 32 but also the change in the rotation direction. In order to accurately determine the rotation direction, it is preferable that the magnetic detection elements 90 adjacent to each other are arranged so as to avoid positions separated by 180 degrees in the circumferential direction.
 本実施形態によれば、回転軸32が1回転する間に、複数の磁気検出素子90のそれぞれで電圧パルスが発生するため、検出されたデータの冗長性が確保される。さらに、磁気式エンコーダ60を駆動する電力の安定性を高められる。 According to the present embodiment, since voltage pulses are generated in each of the plurality of magnetic detection elements 90 while the rotation shaft 32 makes one rotation, the redundancy of the detected data is ensured. Further, the stability of the electric power for driving the magnetic encoder 60 can be improved.
 なお、互いに極性の異なる磁極の組が、磁気検出素子90の個数よりも多くなるように磁気式エンコーダ60は設計される。 The magnetic encoder 60 is designed so that the number of magnetic pole sets having different polarities is larger than the number of magnetic detector elements 90.
 このようにすることで、1つの磁気検出素子90に関して、回転軸32が1回転する間に極性の異なる電圧パルスをそれぞれ発生させることができ、回転方向の変化を容易に検出できる。 By doing so, with respect to one magnetic detector 90, voltage pulses having different polarities can be generated during one rotation of the rotation shaft 32, and changes in the rotation direction can be easily detected.
 <変形例2>
 図10Aは、変形例2に係る磁気遮蔽板と磁石との配置関係を示す模式図である。図10Bは、変形例2に係る別の磁気遮蔽板と磁石との配置関係を示す模式図である。磁気式エンコーダ60において、磁気遮蔽板71,72と磁石80a,80bと回転板130以外の構成部品の図示を省略している。磁石80a,80bは一部のみを図示している。なお、磁石80a,80bは、図2に示すのと同様である。
<Modification 2>
FIG. 10A is a schematic view showing the arrangement relationship between the magnetic shielding plate and the magnet according to the second modification. FIG. 10B is a schematic view showing the arrangement relationship between the magnet and another magnetic shielding plate according to the second modification. In the magnetic encoder 60, components other than the magnetic shielding plates 71 and 72, the magnets 80a and 80b, and the rotating plate 130 are not shown. Only a part of the magnets 80a and 80b is shown. The magnets 80a and 80b are the same as those shown in FIG.
 図10Aに示すように、磁気遮蔽板71を環状に形成し、かつ互いに内径が異なる部分と互いに外径が異なる部分と交互に設けることで、磁束通過部71a,71bが形成されるようにしてもよい。この場合、回転板130の表面に磁気遮蔽板71が固定配置される。回転板130が回転軸32に回転一体に連結される。回転軸32とともに回転板130が回転することで、磁束通過部71a,71bが磁石80a,80bと磁気検出素子90との間をそれぞれ通過するように移動する。磁束通過部71aが磁石80a,80bと図示しない磁気検出素子90との間を通過する際、磁石80aで発生した磁束は磁気遮蔽板71に遮蔽される。同様に、磁束通過部71bが磁石80a,80bと図示しない磁気検出素子90との間を通過する際、磁石80bで発生した磁束は磁気遮蔽板71に遮蔽される。 As shown in FIG. 10A, the magnetic flux passing portions 71a and 71b are formed by forming the magnetic shielding plate 71 in an annular shape and alternately providing the portions having different inner diameters and the portions having different outer diameters. May be good. In this case, the magnetic shielding plate 71 is fixedly arranged on the surface of the rotating plate 130. The rotary plate 130 is rotationally and integrally connected to the rotary shaft 32. As the rotating plate 130 rotates together with the rotating shaft 32, the magnetic flux passing portions 71a and 71b move so as to pass between the magnets 80a and 80b and the magnetic detector 90, respectively. When the magnetic flux passing portion 71a passes between the magnets 80a and 80b and the magnetic detector 90 (not shown), the magnetic flux generated by the magnet 80a is shielded by the magnetic shielding plate 71. Similarly, when the magnetic flux passing portion 71b passes between the magnets 80a and 80b and the magnetic detector 90 (not shown), the magnetic flux generated by the magnet 80b is shielded by the magnetic shielding plate 71.
 図10Bに示すように、平面視で四角形の磁性体からなる板材を、周方向に所定の間隔をあけて回転板130に貼り付けることで、実質的に環状の磁気遮蔽板72が構成されるようにしてもよい。この場合、互いに隣り合う板材を径方向に所定の間隔だけずらして配置することで磁束通過部72a,72bが構成される。なお、磁性体からなる板材は、四角形以外の形状でもよく、例えば、楕円形でもよい。 As shown in FIG. 10B, a plate material made of a quadrangular magnetic material in a plan view is attached to the rotating plate 130 at a predetermined interval in the circumferential direction to form a substantially annular magnetic shielding plate 72. You may do so. In this case, the magnetic flux passing portions 72a and 72b are configured by arranging the plate members adjacent to each other at a predetermined interval in the radial direction. The plate material made of a magnetic material may have a shape other than a quadrangle, and may be, for example, an ellipse.
 図10A,図10Bに示す磁気遮蔽板71,72を磁気式エンコーダ60,120に適用した場合も、実施形態1,2に示す構成が奏するのと同様の効果を奏することができる。また、本実施形態によれば、磁気検出素子90への磁束の流れを遮蔽する磁性体を使用する量を減らすことができる。よって、磁気式エンコーダ120、ひいてはロータリーエンコーダ100のコストを低減できる。 When the magnetic shielding plates 71 and 72 shown in FIGS. 10A and 10B are applied to the magnetic encoders 60 and 120, the same effect as that of the configurations shown in the first and second embodiments can be obtained. Further, according to the present embodiment, it is possible to reduce the amount of the magnetic material used that shields the flow of the magnetic flux to the magnetic detector 90. Therefore, the cost of the magnetic encoder 120 and thus the rotary encoder 100 can be reduced.
 本変形例によれば、磁気遮蔽板71,72のトータルの質量を実施形態1等に示す構成に比べて減らすことができる。よって、モータ300の負荷を低減できる。 According to this modification, the total mass of the magnetic shielding plates 71 and 72 can be reduced as compared with the configuration shown in the first embodiment. Therefore, the load on the motor 300 can be reduced.
 図10Bに示す磁気遮蔽板72は、同じ形状の板材を適宜、回転板130に貼り付けて構成される。このため、設計が容易となる。したがって、磁気遮蔽板72の設計工数及び設計コストが低減できる。 The magnetic shielding plate 72 shown in FIG. 10B is configured by appropriately attaching a plate material having the same shape to the rotating plate 130. Therefore, the design becomes easy. Therefore, the design man-hours and design cost of the magnetic shielding plate 72 can be reduced.
 <変形例3>
 図11Aは、変形例3に係る磁石の磁極配列を示す模式図である。図11Bは、変形例3に係る第2の磁石の磁極配列を示す模式図である。図11Cは、変形例3に係る第3の磁石の磁極配列を示す模式図である。なお、説明の便宜上、図11B,図11Cにおいて、磁極の一部のみを図示し、他は省略している。
<Modification example 3>
FIG. 11A is a schematic view showing the magnetic pole arrangement of the magnet according to the modified example 3. FIG. 11B is a schematic view showing the magnetic pole arrangement of the second magnet according to the third modification. FIG. 11C is a schematic view showing the magnetic pole arrangement of the third magnet according to the third modification. For convenience of explanation, only a part of the magnetic poles is shown in FIGS. 11B and 11C, and the others are omitted.
 図11Aに示すように、1つの磁石84にN極、S極の磁極対を2つ形成するようにしてもよい。例えば、図4A~図4Cに示す2つの磁石80a,80bを、図11Aに示す磁石84に置き換えてもよい。また、これに限らず、磁石が互いに極性の異なる磁極を複数組有するようにしてもよい。 As shown in FIG. 11A, two magnetic pole pairs of N pole and S pole may be formed on one magnet 84. For example, the two magnets 80a and 80b shown in FIGS. 4A to 4C may be replaced with the magnet 84 shown in FIG. 11A. Further, the present invention is not limited to this, and the magnets may have a plurality of sets of magnetic poles having different polarities from each other.
 また、図10A,図10Bでは、一対の磁石80a,80bを磁気遮蔽板70の外周方向に沿って複数配置する例を示したが、図11Bに示すように、磁石85を環状に形成するとともに、回転軸32と同軸に配置するようにしてもよい。この場合、磁石85において、互いに極性の異なる磁極が径方向に沿って交互に配列される。 Further, in FIGS. 10A and 10B, an example in which a plurality of pair of magnets 80a and 80b are arranged along the outer peripheral direction of the magnetic shielding plate 70 is shown, but as shown in FIG. 11B, the magnets 85 are formed in an annular shape. , May be arranged coaxially with the rotating shaft 32. In this case, in the magnet 85, magnetic poles having different polarities are alternately arranged along the radial direction.
 また、図11Bに示す構造に対して、図11Cに示すように、半径方向に沿って配列された複数の磁極をさらに有するように磁石86を構成してもよい。この場合、径方向で互いに隣り合う磁極は、極性が互いに異なるように配列される。なお、磁石85,86は、回転軸32と同軸に配置される。 Further, as shown in FIG. 11C, the magnet 86 may be configured to further have a plurality of magnetic poles arranged along the radial direction with respect to the structure shown in FIG. 11B. In this case, the magnetic poles adjacent to each other in the radial direction are arranged so that their polarities are different from each other. The magnets 85 and 86 are arranged coaxially with the rotating shaft 32.
 磁気遮蔽板70に形成された磁束通過部の形状や配置に応じて、図11A~図11Cに示す形状の磁石を適宜、磁気式エンコーダ60,120に適用するようにしてもよい。これらの場合も実施形態1,2に示す構成が奏するのと同様の効果を奏することができる。また、配置される磁石の個数を減らせるため、磁気式エンコーダ60,120、ひいてはロータリーエンコーダ100の組立工数や組立コストを低減できる。 Depending on the shape and arrangement of the magnetic flux passing portion formed on the magnetic shielding plate 70, magnets having the shapes shown in FIGS. 11A to 11C may be appropriately applied to the magnetic encoders 60 and 120. In these cases as well, the same effects as those of the configurations shown in the first and second embodiments can be obtained. Further, since the number of magnets to be arranged can be reduced, the man-hours and assembly cost of the magnetic encoders 60 and 120, and eventually the rotary encoder 100 can be reduced.
 なお、単極に着磁された複数の磁石を用いて、図11A~図11Cに示す磁石84~86を構成するようにしてもよい。その場合、それぞれの磁石が互いに間隔をあけて配置されていてもよい。 Note that magnets 84 to 86 shown in FIGS. 11A to 11C may be formed by using a plurality of magnets magnetized in a single pole. In that case, the magnets may be arranged at intervals from each other.
 <変形例4>
 図12Aは、変形例4に係る磁気式エンコーダを上から見た模式図である。図12Bは、変形例4に係る別の磁気式エンコーダを上から見た模式図である。なお、説明の便宜上、図12A,12Bにおいて、磁石80a,80b,86と磁気遮蔽板70と磁気検出素子90以外の部品の図示を省略する。
<Modification example 4>
FIG. 12A is a schematic view of the magnetic encoder according to the modified example 4 as viewed from above. FIG. 12B is a schematic view of another magnetic encoder according to the modified example 4 as viewed from above. For convenience of explanation, the illustration of parts other than the magnets 80a, 80b, 86, the magnetic shielding plate 70, and the magnetic detector 90 is omitted in FIGS. 12A and 12B.
 図12A,図12Bに示す本変形例の構成では、磁石80aのN極と磁石80bのS極とが、つまり互いに極性の異なる磁極が径方向に沿って配列されている。同様に、磁石80aのS極と磁石80bのN極とが径方向に沿って配列されている。磁石86は、周方向に沿ってN極とS極とが交互に配置されるとともに、径方向でS極とN極とが隣り合って配置されている。さらに、磁気検出素子90の両端が径方向に沿って配置されている。 In the configuration of this modified example shown in FIGS. 12A and 12B, the north pole of the magnet 80a and the south pole of the magnet 80b, that is, magnetic poles having different polarities are arranged along the radial direction. Similarly, the south pole of the magnet 80a and the north pole of the magnet 80b are arranged along the radial direction. In the magnet 86, north poles and south poles are alternately arranged along the circumferential direction, and south poles and north poles are arranged adjacent to each other in the radial direction. Further, both ends of the magnetic detector 90 are arranged along the radial direction.
 磁石80a,80b,86の磁極及び磁気検出素子90をこのように配置することで、磁気検出素子90の一端から他端に向けて確実に磁束が流れるようにすることができる。これについてさらに説明する。 By arranging the magnetic poles of the magnets 80a, 80b, 86 and the magnetic detector 90 in this way, it is possible to ensure that the magnetic flux flows from one end to the other end of the magnetic detector 90. This will be described further.
 前述したように、ウィーガントワイヤ90aは、その長手方向に所定以上の磁界が加わることで磁化方向が反転する。一方、実施形態1及び実施形態2に示す例では、磁気検出素子90の両端を結ぶ線、言い換えると、ウィーガントワイヤ90aの長手方向は回転板130の外周の接線方向と平行となるように配置されている。 As described above, the magnetization direction of the Wiegand wire 90a is reversed when a magnetic field of a predetermined value or more is applied in the longitudinal direction thereof. On the other hand, in the examples shown in the first and second embodiments, the line connecting both ends of the magnetic detector 90, in other words, the longitudinal direction of the Wiegand wire 90a is arranged so as to be parallel to the tangential direction of the outer circumference of the rotating plate 130. Has been done.
 このような場合、磁石で発生した磁束は、回転軸32の回転とともにその向きを変えつつ、磁気検出素子90の内部に流れ込む。しかし、磁気検出素子90のサイズまたは磁極間の距離によっては、磁束通過部が磁気検出素子90の下方を通過する期間に、磁気検出素子90の内部の磁界がウィーガントワイヤ90aの磁化方向を反転させるのに必要な強度に達しないことがある。この場合、磁気検出素子90で電圧パルスが発生せず、回転量が正しく検出されないおそれがある。 In such a case, the magnetic flux generated by the magnet flows into the magnetic detector element 90 while changing its direction as the rotating shaft 32 rotates. However, depending on the size of the magnetic detector 90 or the distance between the magnetic poles, the magnetic field inside the magnetic detector 90 reverses the magnetization direction of the wigant wire 90a during the period when the magnetic flux passing portion passes below the magnetic detector 90. It may not reach the strength required to make it. In this case, the voltage pulse is not generated by the magnetic detector 90, and the rotation amount may not be detected correctly.
 一方、本変形例によれば、ウィーガントワイヤ90aの長手方向と磁束の向きとが回転軸32の回転中も常におおむね一致する。このことにより、磁束通過部70gが磁気検出素子90の下方を通過する期間に、確実にウィーガントワイヤ90aの磁化方向を反転させて、磁気検出素子90で電圧パルスを発生させることができる。よって、検出抜けが起こらずに回転軸32の回転量を確実に検出することができる。 On the other hand, according to this modification, the longitudinal direction of the Wiegand wire 90a and the direction of the magnetic flux always generally match even during the rotation of the rotating shaft 32. As a result, during the period when the magnetic flux passing portion 70g passes below the magnetic detection element 90, the magnetization direction of the wigant wire 90a can be reliably reversed, and the magnetic detection element 90 can generate a voltage pulse. Therefore, the amount of rotation of the rotating shaft 32 can be reliably detected without missing detection.
 なお、本変形例では、磁気検出素子90が1個配置される例を示したが、変形例2に示すように、複数個の磁気検出素子90が配置されていてもよい。これに応じて、磁石や磁束通過部の配置や形状や個数が適宜変更されることは言うまでもない。 In this modification, one magnetic detector 90 is arranged, but as shown in the second modification, a plurality of magnetic detectors 90 may be arranged. Needless to say, the arrangement, shape, and number of magnets and magnetic flux passing portions are appropriately changed accordingly.
 (実施形態3)
 図13は、実施形態3に係る磁気式エンコーダを上から見た模式図である。図14は、実施形態3に係る磁気式エンコーダの斜視図である。図15は、回転軸の回転角度と磁気検出素子の出力電圧との関係を示す図である。
(Embodiment 3)
FIG. 13 is a schematic view of the magnetic encoder according to the third embodiment as viewed from above. FIG. 14 is a perspective view of the magnetic encoder according to the third embodiment. FIG. 15 is a diagram showing the relationship between the rotation angle of the rotation shaft and the output voltage of the magnetic detector element.
 なお、説明の便宜上、図13~図15において、磁気検出素子90と磁気遮蔽板73と磁石87a,87b以外の構成部品の図示を省略する。 For convenience of explanation, illustration of components other than the magnetic detector element 90, the magnetic shielding plate 73, and the magnets 87a and 87b is omitted in FIGS. 13 to 15.
 本実施形態に示す磁気式エンコーダ120は、以下の点で実施形態1に示す構成と異なる。 The magnetic encoder 120 shown in the present embodiment is different from the configuration shown in the first embodiment in the following points.
 まず、磁気検出素子90は、径方向に関し、磁気遮蔽板73よりも回転軸32(図示せず)に近い側に配置されている。径方向から見て、磁気検出素子90と、磁気遮蔽板73と、磁石87aまたは磁石87bとは互いに間隔をあけてこの順に配置されている。 First, the magnetic detector 90 is arranged closer to the rotating shaft 32 (not shown) than the magnetic shielding plate 73 in the radial direction. Seen from the radial direction, the magnetic detector 90, the magnetic shielding plate 73, and the magnet 87a or the magnet 87b are arranged in this order with a distance from each other.
 次に、磁気検出素子90は、その両端を結ぶ線が軸方向と平行となるように配置されている。さらに、2つの磁石87a,87bが周方向に沿って90度以上離れて配置されている。2つの磁石87a,87bのS極とN極は、軸方向と平行に配列されている。2つの磁石87a,87bにおいて、磁極の配列はそれぞれ反対となっている。磁気遮蔽板73は、回転軸32を囲むように設けられている。磁気遮蔽板73は、軸方向に延びる円筒状である。磁気遮蔽板73が軸方向に切り欠かれることで、1箇所の磁束通過部73aが設けられている。 Next, the magnetic detector 90 is arranged so that the line connecting both ends thereof is parallel to the axial direction. Further, the two magnets 87a and 87b are arranged 90 degrees or more apart along the circumferential direction. The south and north poles of the two magnets 87a and 87b are arranged parallel to the axial direction. In the two magnets 87a and 87b, the arrangement of the magnetic poles is opposite to each other. The magnetic shielding plate 73 is provided so as to surround the rotating shaft 32. The magnetic shielding plate 73 has a cylindrical shape extending in the axial direction. Since the magnetic shielding plate 73 is cut out in the axial direction, one magnetic flux passing portion 73a is provided.
 磁気遮蔽板73は、図示しない部材によって回転軸32に回転一体に取り付けられている。回転軸32の回転とともに、図14に示すように、磁気遮蔽板73が回転することで、磁束通過部73aが磁気検出素子90と磁石87a,87bとの間を通過することは、実施形態1及び実施形態2に示すのと同様である。 The magnetic shielding plate 73 is rotationally and integrally attached to the rotating shaft 32 by a member (not shown). As shown in FIG. 14, the magnetic flux passing portion 73a passes between the magnetic detection element 90 and the magnets 87a and 87b by rotating the magnetic shielding plate 73 with the rotation of the rotating shaft 32. And the same as shown in the second embodiment.
 ただし、本実施形態では、ウィーガントワイヤ90aの長手方向は軸方向と平行である。この方向に流れる磁束によってウィーガントワイヤ90aが磁化され、磁気検出素子90で電圧パルスが発生する。その結果、図15に示すように、回転軸32が1回転する間に、磁気検出素子90には、正極性の電圧パルスと負極性の電圧パルスがそれぞれ1回ずつ発生する。これは、実施形態1に示すのと同様である。電圧パルスの発生回数に基づいて、磁気信号処理回路220で回転軸32の回転量が算出されるのも実施形態1に示すのと同様である。 However, in the present embodiment, the longitudinal direction of the Wiegand wire 90a is parallel to the axial direction. The Wiegand wire 90a is magnetized by the magnetic flux flowing in this direction, and a voltage pulse is generated in the magnetic detector 90. As a result, as shown in FIG. 15, while the rotation shaft 32 makes one rotation, the magnetic detector 90 generates one positive voltage pulse and one negative voltage pulse. This is the same as shown in the first embodiment. The amount of rotation of the rotating shaft 32 is calculated by the magnetic signal processing circuit 220 based on the number of times the voltage pulse is generated, as shown in the first embodiment.
 図16は、実施形態3に係る別の磁気式エンコーダ120を上から見た模式図である。図17は、図16に示す磁気式エンコーダ120における回転軸の回転角度と磁気検出素子の出力電圧との関係を示す図である。 FIG. 16 is a schematic view of another magnetic encoder 120 according to the third embodiment as viewed from above. FIG. 17 is a diagram showing the relationship between the rotation angle of the rotation axis in the magnetic encoder 120 shown in FIG. 16 and the output voltage of the magnetic detector element.
 図16に示す磁気式エンコーダ120は、磁気遮蔽板73に2箇所の磁束通過部73a,73bが形成されている点で図13,図14に示す磁気式エンコーダ120と異なる。磁束通過部73a,73bは周方向に沿って180度離れてそれぞれ設けられている。 The magnetic encoder 120 shown in FIG. 16 is different from the magnetic encoder 120 shown in FIGS. 13 and 14 in that two magnetic flux passing portions 73a and 73b are formed on the magnetic shielding plate 73. The magnetic flux passing portions 73a and 73b are provided 180 degrees apart along the circumferential direction.
 磁気式エンコーダ120をこのように構成してもよい。この場合、図17に示すように、回転軸32が1回転する間に、磁気検出素子90には、正極性の電圧パルスと負極性の電圧パルスがそれぞれ2回ずつ発生する。このことにより、回転量を確実に検出できるとともに磁気式エンコーダを駆動するのに十分な電力を確保できる。また、回転方向の変化を検出できる。また、磁石87a,87bや磁気検出素子90の配置の自由度が高められる。よって、ロータリーエンコーダ100の設計コストが増加するのを抑制できる。 The magnetic encoder 120 may be configured in this way. In this case, as shown in FIG. 17, while the rotation shaft 32 makes one rotation, the magnetic detector 90 generates a positive electrode voltage pulse and a negative electrode voltage pulse twice, respectively. As a result, the amount of rotation can be reliably detected and sufficient power can be secured to drive the magnetic encoder. Moreover, the change in the rotation direction can be detected. In addition, the degree of freedom in arranging the magnets 87a and 87b and the magnetic detector 90 is increased. Therefore, it is possible to suppress an increase in the design cost of the rotary encoder 100.
 図18Aは、実施形態3に係るロータリーエンコーダ100の断面模式図である。図18Bは、実施形態3に係る別のロータリーエンコーダ100の断面模式図である。本実施形態に示す磁気式エンコーダ120をロータリーエンコーダ100に組み込むにあたって、その配置は複数考えられる。例えば、図18Aに示すように、モータ300に近い側に磁気式エンコーダ120を、その上方に光学式エンコーダ110をそれぞれ配置してもよい。図18Bに示すように、モータ300に近い側に光学式エンコーダ110を、その上方に磁気式エンコーダ120をそれぞれ配置してもよい。なお、図18A,図18Bに示す構成において、反射パターン112aを磁気遮蔽板73の径方向内側に配置するようにしてもよい。なお、図18A,18Bに示す例では、磁気検出素子90と信号処理回路200とは配線170を介して電気的に接続されている。 FIG. 18A is a schematic cross-sectional view of the rotary encoder 100 according to the third embodiment. FIG. 18B is a schematic cross-sectional view of another rotary encoder 100 according to the third embodiment. When incorporating the magnetic encoder 120 shown in the present embodiment into the rotary encoder 100, a plurality of arrangements can be considered. For example, as shown in FIG. 18A, the magnetic encoder 120 may be arranged on the side close to the motor 300, and the optical encoder 110 may be arranged above the magnetic encoder 120. As shown in FIG. 18B, the optical encoder 110 may be arranged on the side close to the motor 300, and the magnetic encoder 120 may be arranged above the optical encoder 110. In the configuration shown in FIGS. 18A and 18B, the reflection pattern 112a may be arranged inside the magnetic shielding plate 73 in the radial direction. In the example shown in FIGS. 18A and 18B, the magnetic detection element 90 and the signal processing circuit 200 are electrically connected via wiring 170.
 本実施形態の磁気式エンコーダ120は、磁気検出素子90と磁気遮蔽板73と磁石87a,87bとが径方向に沿って配置されている。このことにより、径方向に関するこれら部品の配置の自由度が高められる。よって、磁気式エンコーダ120を含むロータリーエンコーダ100のサイズを径方向に小さくすることが可能となる。一方、実施形態1に示す磁気式エンコーダ120は、磁気検出素子90と磁気遮蔽板70と磁石80a,80bとが軸方向に沿って配置されている。このことにより、軸方向に関するこれら部品の配置の自由度が高められる。よって、磁気式エンコーダを含むロータリーエンコーダのサイズを軸方向に小さくすることが可能となる。これは実施形態2に示す配置関係を磁気式エンコーダ120に適用した場合にも同様である。 In the magnetic encoder 120 of the present embodiment, the magnetic detection element 90, the magnetic shielding plate 73, and the magnets 87a and 87b are arranged along the radial direction. This increases the degree of freedom in arranging these parts in the radial direction. Therefore, the size of the rotary encoder 100 including the magnetic encoder 120 can be reduced in the radial direction. On the other hand, in the magnetic encoder 120 shown in the first embodiment, the magnetic detection element 90, the magnetic shielding plate 70, and the magnets 80a and 80b are arranged along the axial direction. This increases the degree of freedom in arranging these parts in the axial direction. Therefore, it is possible to reduce the size of the rotary encoder including the magnetic encoder in the axial direction. This also applies to the case where the arrangement relationship shown in the second embodiment is applied to the magnetic encoder 120.
 モータ300の種類または用途によっては、ロータリーエンコーダ100のサイズを軸方向に小型化したい場合または径方向に小型化したい場合等、複数の要請がある。以降に示す変形例を含め、本願明細書に開示されたロータリーエンコーダ100は、このような要請を満たすことができる。 Depending on the type or application of the motor 300, there are multiple requests such as when the size of the rotary encoder 100 is to be reduced in the axial direction or when it is desired to be reduced in the radial direction. The rotary encoder 100 disclosed in the present specification, including the modifications shown below, can satisfy such a requirement.
 <変形例5>
 図19は、変形例5に係る第1の磁気式エンコーダ120を上から見た模式図である。図20は、図19に示す磁気式エンコーダ120における回転軸の回転角度と磁気検出素子の出力電圧との関係を示す図である。図21は、変形例5に係る第2の磁気式エンコーダ120を上から見た模式図である。図22は、図21に示す磁気式エンコーダ120における回転軸の回転角度と磁気検出素子の出力電圧との関係を示す図である。図20,図22において、上側のグラフは磁気検出素子90の出力電圧を、下側のグラフは磁気検出素子91の出力電圧をそれぞれ示している。図23は、変形例5に係る第3の磁気式エンコーダ120を上から見た模式図である。図24は、図23に示す磁気式エンコーダ120における回転軸の回転角度と磁気検出素子の出力電圧との関係を示す図である。図25は、変形例5に係る第4の磁気式エンコーダ120を上から見た模式図である。図26は、図25に示す磁気式エンコーダ120における回転軸の回転角度と磁気検出素子の出力電圧との関係を示す図である。図24,26において、上側のグラフは磁気検出素子90の出力電圧を、中央のグラフは磁気検出素子91の出力電圧を、下側のグラフは磁気検出素子92の出力電圧をそれぞれ示している。説明の便宜上、図19,図21,図23,図25において、磁気検出素子90~92と磁気遮蔽板73と磁石87a~87f以外の構成部品の図示を省略する。
<Modification 5>
FIG. 19 is a schematic view of the first magnetic encoder 120 according to the modified example 5 as viewed from above. FIG. 20 is a diagram showing the relationship between the rotation angle of the rotation axis in the magnetic encoder 120 shown in FIG. 19 and the output voltage of the magnetic detector element. FIG. 21 is a schematic view of the second magnetic encoder 120 according to the modified example 5 as viewed from above. FIG. 22 is a diagram showing the relationship between the rotation angle of the rotation axis in the magnetic encoder 120 shown in FIG. 21 and the output voltage of the magnetic detector element. In FIGS. 20 and 22, the upper graph shows the output voltage of the magnetic detector 90, and the lower graph shows the output voltage of the magnetic detector 91. FIG. 23 is a schematic view of the third magnetic encoder 120 according to the modified example 5 as viewed from above. FIG. 24 is a diagram showing the relationship between the rotation angle of the rotation axis in the magnetic encoder 120 shown in FIG. 23 and the output voltage of the magnetic detector element. FIG. 25 is a schematic view of the fourth magnetic encoder 120 according to the modified example 5 as viewed from above. FIG. 26 is a diagram showing the relationship between the rotation angle of the rotation axis in the magnetic encoder 120 shown in FIG. 25 and the output voltage of the magnetic detection element. In FIGS. 24 and 26, the upper graph shows the output voltage of the magnetic detector 90, the center graph shows the output voltage of the magnetic detector 91, and the lower graph shows the output voltage of the magnetic detector 92. For convenience of explanation, in FIGS. 19, 21, 23, and 25, the illustration of components other than the magnetic detector elements 90 to 92, the magnetic shielding plate 73, and the magnets 87a to 87f is omitted.
 本変形例に係る構成は、磁気検出素子90,91または磁気検出素子90~92が周方向に沿って互いに間隔をあけて複数配置されている点で、実施形態3に示す構成と異なる。1つの磁気検出素子に対し、磁気遮蔽板73を挟んで一対の磁石が反対側に配置されている。対となる2つの磁石は周方向に互いに間隔をあけて配置されている。従って、図19,図21に示す例では、2個の磁気検出素子90,91及び4個の磁石87a~87dが配置され、図23,図25に示す例では、3個の磁気検出素子90~92及び6個の磁石87a~87fが配置されている。対となる2つの磁石、例えば、磁石87a,87bは軸方向に沿った磁極の配列が互いに逆方向である。なお、図19,23に示す例では、磁気遮蔽板に1個所の磁束通過部73aが、図21,25に示す例では、磁気遮蔽板に2個所の磁束通過部73a,73bが周方向に180度離れて、それぞれ設けられている。 The configuration according to this modification is different from the configuration shown in the third embodiment in that a plurality of magnetic detection elements 90, 91 or magnetic detection elements 90 to 92 are arranged at intervals along the circumferential direction. A pair of magnets are arranged on opposite sides of one magnetic detector element with the magnetic shielding plate 73 interposed therebetween. The two paired magnets are arranged at intervals in the circumferential direction. Therefore, in the example shown in FIGS. 19 and 21, two magnetic detector elements 90 and 91 and four magnets 87a to 87d are arranged, and in the example shown in FIGS. 23 and 25, three magnetic detector elements 90. -92 and six magnets 87a-87f are arranged. Two paired magnets, for example, magnets 87a and 87b, have magnetic poles arranged in opposite directions along the axial direction. In the examples shown in FIGS. 19 and 23, one magnetic flux passing portion 73a is provided on the magnetic shielding plate, and in the examples shown in FIGS. 21 and 25, two magnetic flux passing portions 73a and 73b are provided on the magnetic shielding plate in the circumferential direction. They are provided 180 degrees apart from each other.
 磁気遮蔽板73が回転して、磁束通過部が1つの磁気検出素子の近傍を通過するとき、対となる2つの磁石の一方で発生した磁束が、磁気検出素子の内部を通過し、磁気検出素子に電圧パルスが発生する。また、この後に、他方の磁石で発生した磁束が、磁気検出素子の内部を通過し、磁気検出素子に電圧パルスが発生する。2つの磁石は、軸方向に関し磁極の配列が逆であるため、磁気検出素子に流れる磁束の向きも逆となる。 When the magnetic shielding plate 73 rotates and the magnetic flux passing portion passes in the vicinity of one magnetic detection element, the magnetic flux generated by one of the two paired magnets passes inside the magnetic detection element and magnetically detects. A voltage pulse is generated in the element. Further, after this, the magnetic flux generated by the other magnet passes inside the magnetic detection element, and a voltage pulse is generated in the magnetic detection element. Since the arrangement of the magnetic poles of the two magnets is opposite in the axial direction, the direction of the magnetic flux flowing through the magnetic detector is also opposite.
 このため、1つの磁気検出素子において、回転軸32が1回転する間に、互いに極性の異なる1組の電圧パルスが磁束通過部の整数倍だけ発生する。 Therefore, in one magnetic detector element, while the rotation shaft 32 makes one rotation, a set of voltage pulses having different polarities is generated by an integral multiple of the magnetic flux passing portion.
 本変形例によれば、変形例1に示したのと同様に、回転軸32の回転量だけでなく回転方向の変化も検出することができる。回転軸32が1回転する間に、複数の磁気検出素子90~92のそれぞれで電圧パルスが発生するため、検出されたデータの冗長性が確保される。さらに、磁気式エンコーダ120を駆動する電力の安定性を高められる。また、磁気検出素子及び磁束通過部の個数を増やすことで、回転量のうち、原点位置から回転軸が回転した角度範囲の情報を細かく取得することができる。よって、モータ300の回転状態をより精密に制御できる。ロータリーエンコーダ100を駆動する電源230が停止した後に再度復帰した場合、多回転情報Sを精度良く補正することができる。 According to this modification, not only the amount of rotation of the rotation shaft 32 but also the change in the rotation direction can be detected as shown in the modification 1. Since voltage pulses are generated in each of the plurality of magnetic detector elements 90 to 92 during one rotation of the rotation shaft 32, the redundancy of the detected data is ensured. Further, the stability of the electric power for driving the magnetic encoder 120 can be improved. Further, by increasing the number of the magnetic detector element and the magnetic flux passing portion, it is possible to obtain detailed information on the angle range in which the rotation axis is rotated from the origin position in the rotation amount. Therefore, the rotational state of the motor 300 can be controlled more precisely. When the power supply 230 for driving the rotary encoder 100 is stopped and then returned again, the multi-rotation information S can be corrected with high accuracy.
 なお、1つの磁気検出素子に関し、2つの磁石を互いに磁極の配列方向が逆になるように配置することで、回転軸32が1回転する間に極性の異なる電圧パルスを当該磁気検出素子にそれぞれ発生させることができる。よって、回転方向の変化を容易に検出できる。 Regarding one magnetic detector element, by arranging the two magnets so that the arrangement directions of the magnetic poles are opposite to each other, voltage pulses having different polarities are sent to the magnetic detector element during one rotation of the rotating shaft 32. Can be generated. Therefore, the change in the rotation direction can be easily detected.
 <変形例6>
 図27は、変形例6に係る第1の磁気式エンコーダを上から見た模式図である。図28は、図27に示す磁気式エンコーダにおける回転軸の回転角度と磁気検出素子の出力電圧との関係を示す図である。図29は、変形例6に係る第2の磁気式エンコーダを上から見た模式図である。図30は、図29に示す磁気式エンコーダにおける回転軸の回転角度と磁気検出素子の出力電圧との関係を示す図である。図31は、変形例6に係る第3の磁気式エンコーダを上から見た模式図である。図32は、図31に示す磁気式エンコーダにおける回転軸の回転角度と磁気検出素子の出力電圧との関係を示す図である。なお、図30,32において、上側のグラフは磁気検出素子90の出力電圧を、中央のグラフは磁気検出素子91の出力電圧を、下側のグラフは磁気検出素子92の出力電圧をそれぞれ示している。説明の便宜上、図27,29,31において、磁気検出素子90~92と磁気遮蔽板74と磁石87a~87c及び磁石87g以外の構成部品の図示を省略する。
<Modification 6>
FIG. 27 is a schematic view of the first magnetic encoder according to the modified example 6 as viewed from above. FIG. 28 is a diagram showing the relationship between the rotation angle of the rotation axis in the magnetic encoder shown in FIG. 27 and the output voltage of the magnetic detector element. FIG. 29 is a schematic view of the second magnetic encoder according to the modified example 6 as viewed from above. FIG. 30 is a diagram showing the relationship between the rotation angle of the rotation axis in the magnetic encoder shown in FIG. 29 and the output voltage of the magnetic detector element. FIG. 31 is a schematic view of the third magnetic encoder according to the modified example 6 as viewed from above. FIG. 32 is a diagram showing the relationship between the rotation angle of the rotation axis in the magnetic encoder shown in FIG. 31 and the output voltage of the magnetic detector element. In FIGS. 30 and 32, the upper graph shows the output voltage of the magnetic detection element 90, the center graph shows the output voltage of the magnetic detection element 91, and the lower graph shows the output voltage of the magnetic detection element 92. There is. For convenience of explanation, illustration of components other than the magnetic detector elements 90 to 92, the magnetic shielding plate 74, the magnets 87a to 87c, and the magnet 87g is omitted in FIGS. 27, 29, and 31.
 本変形例に係る構成は、磁気遮蔽板741,742が、回転軸32(図示せず)と同軸にかつ径方向に間隔をあけて複数設けられて磁気遮蔽板74を構成している点で、実施形態3に示す構成と異なる。磁気遮蔽板741,742は、回転軸32に回転一体に取り付けられているため、回転軸32の回転中も、それぞれに設けられた磁束通過部741a,742a間の相対位置は変わらない。また、磁束通過部741a,741b,742a,742b間の相対位置も変わらない。 The configuration according to this modification is that a plurality of magnetic shielding plates 741 and 742 are provided coaxially with the rotating shaft 32 (not shown) and at intervals in the radial direction to form the magnetic shielding plate 74. , Different from the configuration shown in the third embodiment. Since the magnetic shielding plates 741 and 742 are rotationally and integrally attached to the rotating shaft 32, the relative positions between the magnetic flux passing portions 741a and 742a provided respectively do not change even during the rotation of the rotating shaft 32. Further, the relative positions between the magnetic flux passing portions 741a, 741b, 742a, and 742b do not change.
 磁気検出素子90~92は、径方向に関し、磁気遮蔽板741と磁気遮蔽板742との間に配置されるとともに、磁気遮蔽板741よりも回転軸32に近い側に配置されている。磁気検出素子の個数は、図27,29,31に示す例でそれぞれ1個、3個、3個である。また、磁気検出素子が複数個ある場合、互いに隣り合う磁気検出素子は、周方向に沿って120度離れて配置されている。 The magnetic detector elements 90 to 92 are arranged between the magnetic shield plate 741 and the magnetic shield plate 742 in the radial direction, and are arranged closer to the rotation shaft 32 than the magnetic shield plate 741. The number of magnetic detector elements is 1, 3, and 3 in the examples shown in FIGS. 27, 29, and 31, respectively. When there are a plurality of magnetic detector elements, the magnetic detector elements adjacent to each other are arranged 120 degrees apart along the circumferential direction.
 図27及び図29に示す例では、磁気遮蔽板741,742に磁束通過部741a,742aがそれぞれ形成されている。磁気遮蔽板741に形成された磁束通過部741aと磁気遮蔽板742に形成された磁束通過部742aは、周方向に沿って所定の角度、この場合は180度だけ離れて配置されている。 In the examples shown in FIGS. 27 and 29, the magnetic flux passing portions 741a and 742a are formed on the magnetic shielding plates 741 and 742, respectively. The magnetic flux passing portion 741a formed on the magnetic shielding plate 741 and the magnetic flux passing portion 742a formed on the magnetic shielding plate 742 are arranged at a predetermined angle along the circumferential direction, in this case, 180 degrees apart.
 図31に示す例では、磁気遮蔽板741に磁束通過部741a,741bがそれぞれ形成され、磁気遮蔽板742に磁束通過部742a,742bがそれぞれ形成されている。磁気遮蔽板741に形成された磁束通過部741a,741bは、周方向に沿って180度だけ離れて配置されている。磁気遮蔽板742に形成された磁束通過部742a,742bは、周方向に沿って180度だけ離れて配置されている。磁気遮蔽板741,742にそれぞれ形成された磁束通過部741a,742aは、周方向に沿って90度だけ離れて配置されている。磁束通過部741b,742bは、周方向に沿って90度だけ離れて配置されている。 In the example shown in FIG. 31, the magnetic flux passing portions 741a and 741b are formed on the magnetic shielding plate 741, and the magnetic flux passing portions 742a and 742b are formed on the magnetic shielding plate 742, respectively. The magnetic flux passing portions 741a and 741b formed on the magnetic shielding plate 741 are arranged 180 degrees apart along the circumferential direction. The magnetic flux passing portions 742a and 742b formed on the magnetic shielding plate 742 are arranged 180 degrees apart along the circumferential direction. The magnetic flux passing portions 741a and 742a formed on the magnetic shielding plates 741 and 742, respectively, are arranged 90 degrees apart along the circumferential direction. The magnetic flux passing portions 741b and 742b are arranged 90 degrees apart along the circumferential direction.
 径方向で見て、磁石87gは磁気遮蔽板142の内側、具体的には回転軸32の近くに位置し、磁石87a~87cは磁気遮蔽板741の外側に位置する。図29及び図31に示す例では、磁石87a~87cは、軸方向に沿った磁極の配列が互いに同方向である。 Seen in the radial direction, the magnet 87g is located inside the magnetic shielding plate 142, specifically near the rotating shaft 32, and the magnets 87a to 87c are located outside the magnetic shielding plate 741. In the examples shown in FIGS. 29 and 31, the magnets 87a to 87c have magnetic poles arranged in the same direction along the axial direction.
 磁気検出素子の配置、個数に応じて、磁気遮蔽板741の外側に位置する磁石の配置、個数が決定される。例えば、図27に示す例では、磁気検出素子90が1個で、これに対し、磁気遮蔽板741を挟んで径方向で反対側に1個の磁石87aが配置される。磁石87aと磁気検出素子90と磁石87gとは、上から見て径方向に沿って一直線上に配置される。図29,31に示す例では、磁気遮蔽板741の径方向外側に位置し、互いに隣り合う磁石、例えば、磁石87aと磁石87bは、周方向に沿って120度離れて配置されている。 The arrangement and number of magnets located outside the magnetic shielding plate 741 are determined according to the arrangement and number of magnetic detector elements. For example, in the example shown in FIG. 27, there is one magnetic detection element 90, and one magnet 87a is arranged on the opposite side in the radial direction with the magnetic shielding plate 741 interposed therebetween. The magnet 87a, the magnetic detector 90, and the magnet 87g are arranged in a straight line along the radial direction when viewed from above. In the example shown in FIGS. 29 and 31, magnets located on the outer side in the radial direction of the magnetic shielding plate 741 and adjacent to each other, for example, magnets 87a and 87b, are arranged 120 degrees apart along the circumferential direction.
 回転軸32の回転とともに、1つの磁気検出素子の近傍を1つの磁束通過部が通過するときは、1つの磁石で発生した磁束が、磁気検出素子の内部に流れて電圧パルスが発生する。径方向で磁気検出素子の内側に位置する磁束通過部を通過する磁束の向きは、外側に位置する磁束通過部を通過する磁束の向きと反対である。このため、回転軸32が1回転する間に、1つの磁気検出素子には、極性の異なる電圧パルスが磁束通過部の個数に応じてそれぞれ発生する。具体的には、それぞれの磁気遮蔽板741,742に1箇所ずつ磁束通過部が設けられる場合は、回転軸32が1回転する間に、1つの磁気検出素子に極性の異なる電圧パルスが1回ずつ発生し、2箇所ずつ設けられる場合には、1つの磁気検出素子に極性の異なる電圧パルスが2回ずつ発生する。また、回転軸32が1回転する間に発生する極性の異なる電圧パルスの組は、磁気検出素子または磁束通過部の個数に応じて増加する。例えば、図29、図31に示すように、磁気検出素子が3個、磁束通過部の個数が計4個の場合、図30、32に示すように、回転軸32が1回転する間に極性の異なる電圧パルスがそれぞれ6回ずつ発生する。但し、電圧パルスが発生するタイミングは複数の磁束通過部間の配置関係によって異なる。 When one magnetic flux passing portion passes in the vicinity of one magnetic detector element with the rotation of the rotating shaft 32, the magnetic flux generated by one magnet flows inside the magnetic detector element to generate a voltage pulse. The direction of the magnetic flux passing through the magnetic flux passing portion located inside the magnetic detector element in the radial direction is opposite to the direction of the magnetic flux passing through the magnetic flux passing portion located outside. Therefore, while the rotation shaft 32 makes one rotation, voltage pulses having different polarities are generated in one magnetic detector element according to the number of magnetic flux passing portions. Specifically, when each of the magnetic shielding plates 741 and 742 is provided with one magnetic flux passing portion, one voltage pulse having a different polarity is applied to one magnetic detector element once while the rotating shaft 32 makes one rotation. When they are generated one by one and provided at two places each, voltage pulses having different polarities are generated twice in one magnetic detector element. Further, the number of sets of voltage pulses having different polarities generated during one rotation of the rotating shaft 32 increases according to the number of magnetic detector elements or magnetic flux passing portions. For example, as shown in FIGS. 29 and 31, when there are three magnetic detector elements and a total of four magnetic flux passing portions, as shown in FIGS. 30 and 32, the polarity is polar during one rotation of the rotating shaft 32. Different voltage pulses are generated 6 times each. However, the timing at which the voltage pulse is generated differs depending on the arrangement relationship between the plurality of magnetic flux passing portions.
 本変形例によれば、複数の磁気遮蔽板を同軸に配置し、磁気検出素子及び磁石をこれに応じて配置することで、磁気検出素子の内部に確実に磁束が流れ、電圧パルスが発生する。また、この電圧パルスの発生回数に基づいて回転量を検出できる。 According to this modification, by arranging a plurality of magnetic shielding plates coaxially and arranging the magnetic detection element and the magnet accordingly, the magnetic flux surely flows inside the magnetic detection element and a voltage pulse is generated. .. In addition, the amount of rotation can be detected based on the number of times this voltage pulse is generated.
 複数の磁気検出素子及び磁束通過部を配置し、また、これらの配置関係を本変形例に示すように規定することで、変形例5に示す構成が奏するのと同様の効果を奏することができる。 By arranging a plurality of magnetic detector elements and magnetic flux passing portions, and by defining the arrangement relationship between them as shown in this modification, it is possible to obtain the same effect as the configuration shown in modification 5. ..
 <変形例7>
 図33は、変形例7に係る磁気式エンコーダを上から見た模式図である。図34は、図33に示す磁気式エンコーダにおける回転軸の回転角度と磁気検出素子の出力電圧との関係を示す図である。図35は、変形例7に係る別の磁気式エンコーダを上から見た模式図である。図36は、図35に示す磁気式エンコーダにおける回転軸の回転角度と磁気検出素子の出力電圧との関係を示す図である。図34において、上側のグラフは磁気検出素子90の出力電圧を、下側のグラフは磁気検出素子91の出力電圧をそれぞれ示している。図36において、上側のグラフは磁気検出素子90の出力電圧を、中央のグラフは磁気検出素子91の出力電圧を、下側のグラフは磁気検出素子92の出力電圧をそれぞれ示している。なお、説明の便宜上、図33,図35において、磁気検出素子90~92と磁気遮蔽板75と磁石87a,87b及び磁石87h~87k以外の構成部品の図示を省略する。
<Modification 7>
FIG. 33 is a schematic view of the magnetic encoder according to the modified example 7 as viewed from above. FIG. 34 is a diagram showing the relationship between the rotation angle of the rotation axis in the magnetic encoder shown in FIG. 33 and the output voltage of the magnetic detector element. FIG. 35 is a schematic view of another magnetic encoder according to the modified example 7 as viewed from above. FIG. 36 is a diagram showing the relationship between the rotation angle of the rotation axis in the magnetic encoder shown in FIG. 35 and the output voltage of the magnetic detector element. In FIG. 34, the upper graph shows the output voltage of the magnetic detector 90, and the lower graph shows the output voltage of the magnetic detector 91. In FIG. 36, the upper graph shows the output voltage of the magnetic detector 90, the center graph shows the output voltage of the magnetic detector 91, and the lower graph shows the output voltage of the magnetic detector 92. For convenience of explanation, the drawings of components other than the magnetic detector elements 90 to 92, the magnetic shielding plate 75, the magnets 87a and 87b, and the magnets 87h to 87k are omitted in FIGS. 33 and 35.
 本変形例に係る構成は、軸方向に互いに間隔をあけて複数の磁気遮蔽板751,752、磁気遮蔽板753が設けられて磁気遮蔽板75が構成されている点で、実施形態3に示す構成と異なる。なお、これらの磁気遮蔽板は、回転軸32に回転一体に取り付けられているため、回転軸32の回転中もそれぞれに設けられた磁束通過部間の相対位置は変わらない。例えば、図33に示す例では、磁気遮蔽板751,752のそれぞれに設けられた磁束通過部751a,752a間の相対位置は変わらない。図35に示す例では、磁気遮蔽板751~753のそれぞれに設けられた磁束通過部751a~753a間の相対位置は変わらない。 The configuration according to the present modification is shown in the third embodiment in that a plurality of magnetic shielding plates 751, 752 and magnetic shielding plates 753 are provided at intervals in the axial direction to form the magnetic shielding plate 75. Different from the configuration. Since these magnetic shielding plates are rotationally and integrally attached to the rotating shaft 32, the relative positions between the magnetic flux passing portions provided in the respective rotating shafts 32 do not change even during the rotation of the rotating shaft 32. For example, in the example shown in FIG. 33, the relative positions between the magnetic flux passing portions 751a and 752a provided on the magnetic shielding plates 751 and 752, respectively, do not change. In the example shown in FIG. 35, the relative positions between the magnetic flux passing portions 751a to 753a provided on the magnetic shielding plates 751 to 753 do not change.
 磁気検出素子は、複数の磁気遮蔽板のそれぞれに対して設けられている。例えば、図33に示す例では、磁気検出素子90,91は、磁気遮蔽板751,752にそれぞれ対応して設けられている。図35に示す例では、磁気検出素子90~92は、磁気遮蔽板751~753にそれぞれ対応して設けられている。磁気検出素子90~92は、径方向に関し、対応する磁気遮蔽板よりも回転軸32に近い側に配置されている。 The magnetic detector element is provided for each of the plurality of magnetic shielding plates. For example, in the example shown in FIG. 33, the magnetic detection elements 90 and 91 are provided corresponding to the magnetic shielding plates 751 and 752, respectively. In the example shown in FIG. 35, the magnetic detector elements 90 to 92 are provided corresponding to the magnetic shielding plates 751 to 753, respectively. The magnetic detector elements 90 to 92 are arranged closer to the rotation axis 32 than the corresponding magnetic shielding plate in the radial direction.
 複数の磁気遮蔽板のそれぞれに対応して1箇所ずつ磁束通過部が形成されている。複数の磁気遮蔽板のうち、互いに異なる磁気遮蔽板にそれぞれ形成された磁束通過部は、周方向に沿って所定の角度だけ離れて配置されている。例えば、図33に示す例では、磁気遮蔽板751,752にそれぞれ形成された磁束通過部751a,752aは、周方向に沿って90度だけ離れて配置されている。図35に示す例では、磁気遮蔽板751~753にそれぞれ形成された磁束通過部751a~753aは、周方向に沿って60度だけ離れて配置されている。また、磁気検出素子90~92は、径方向に関し、対応する磁気遮蔽板よりも回転軸32に近い側に配置されている。 A magnetic flux passing portion is formed at one location corresponding to each of the plurality of magnetic shielding plates. Among the plurality of magnetic shielding plates, the magnetic flux passing portions formed on the magnetic shielding plates different from each other are arranged at a predetermined angle along the circumferential direction. For example, in the example shown in FIG. 33, the magnetic flux passing portions 751a and 752a formed on the magnetic shielding plates 751 and 752, respectively, are arranged 90 degrees apart along the circumferential direction. In the example shown in FIG. 35, the magnetic flux passing portions 751a to 753a formed on the magnetic shielding plates 751 to 753 are arranged 60 degrees apart along the circumferential direction. Further, the magnetic detector elements 90 to 92 are arranged closer to the rotation axis 32 than the corresponding magnetic shielding plate in the radial direction.
 また、一対の磁石が複数の磁気遮蔽板の径方向外側に互いに間隔をあけて配置されている。例えば、磁気遮蔽板751の径方向外側に設けられた2つの磁石87a,87bは周方向に沿って180度だけ離れて配置されている。これら2つの磁石87a,87bは、軸方向に沿った磁極の配列が互いに逆方向である。このような関係は、磁気遮蔽板752の径方向外側に設けられた2つの磁石87h,87iや磁気遮蔽板753の径方向外側に設けられた2つの磁石87j,87kにもあてはまる。 Further, a pair of magnets are arranged at intervals from each other on the radial outer side of a plurality of magnetic shielding plates. For example, the two magnets 87a and 87b provided on the outer side in the radial direction of the magnetic shielding plate 751 are arranged 180 degrees apart along the circumferential direction. In these two magnets 87a and 87b, the arrangement of magnetic poles along the axial direction is opposite to each other. Such a relationship also applies to the two magnets 87h and 87i provided on the radial outer side of the magnetic shielding plate 752 and the two magnets 87j and 87k provided on the radial outer side of the magnetic shielding plate 753.
 さらに、2つまたは3つの磁石が軸方向に沿って並んで配置されている。例えば、図33に示す例では、磁石87a,87hが軸方向に沿って並んで配置されている。磁石87b,87iが軸方向に沿って並んで配置されている。図35に示す例では、磁石87a,87h,87jが軸方向に沿って並んで配置されている。磁石87b,87i,87kが軸方向に沿って並んで配置されている。軸方向に並ぶ磁石は、軸方向に沿った磁極の配列が同じ方向である。 Furthermore, two or three magnets are arranged side by side along the axial direction. For example, in the example shown in FIG. 33, the magnets 87a and 87h are arranged side by side along the axial direction. The magnets 87b and 87i are arranged side by side along the axial direction. In the example shown in FIG. 35, the magnets 87a, 87h, and 87j are arranged side by side along the axial direction. Magnets 87b, 87i, 87k are arranged side by side along the axial direction. Magnets arranged in the axial direction have the same arrangement of magnetic poles along the axial direction.
 磁気検出素子と磁気遮蔽板と磁石とをこのように配置することで、回転軸32が1回転する間に1つの磁気検出素子において、正極性及び負極性の電あるパルスがそれぞれ1回ずつ発生する。なお、電圧パルスが発生するタイミングが複数の磁束通過部間の配置関係によって異なることは、変形例6に示すのと同様である。 By arranging the magnetic detector element, the magnetic shield plate, and the magnet in this way, one positive electrode and one negative electrode electric pulse are generated in one magnetic detector element while the rotation shaft 32 makes one rotation. To do. It should be noted that the timing at which the voltage pulse is generated differs depending on the arrangement relationship between the plurality of magnetic flux passing portions, as shown in the modified example 6.
 本変形例によれば、複数の磁気遮蔽板を軸方向に並べて配置し、磁気検出素子及び磁石をこれに応じて配置する。これにより、変形例6に示すのと同様に、磁気検出素子の内部に確実に磁束が流れ、電圧パルスが発生する。この電圧パルスの発生回数に基づいて回転量を検出できる。 According to this modification, a plurality of magnetic shielding plates are arranged side by side in the axial direction, and the magnetic detection element and the magnet are arranged accordingly. As a result, as shown in the modified example 6, the magnetic flux surely flows inside the magnetic detector element, and a voltage pulse is generated. The amount of rotation can be detected based on the number of times this voltage pulse is generated.
 複数の磁気検出素子及び磁束通過部を配置し、また、これらの配置関係を本変形例に示すように規定する。これにより、変形例5,6に示した構成が奏するのと同様の効果を奏することができる。 A plurality of magnetic detector elements and magnetic flux passing portions are arranged, and the arrangement relationship between them is specified as shown in this modification. As a result, the same effect as that of the configurations shown in the modified examples 5 and 6 can be obtained.
 モータ300のサイズの制約が径方向に厳しい一方、軸方向には緩やかである場合、本変形例に示す磁気式エンコーダ120を含むロータリーエンコーダ100を用いることで、モータ300のサイズを大きくすることなく、前述の効果を奏することができる。 When the size constraint of the motor 300 is strict in the radial direction but loose in the axial direction, the rotary encoder 100 including the magnetic encoder 120 shown in this modification is used without increasing the size of the motor 300. , The above-mentioned effect can be achieved.
 <変形例8>
 図37は、変形例8に係る第1の磁気式エンコーダの斜視図である。図38は、変形例8に係る第2の磁気式エンコーダの斜視図である。図39は、変形例8に係る第3の磁気式エンコーダの斜視図である。図40は、変形例8に係る第4の磁気式エンコーダの斜視図である。説明の便宜上、図37~図40において、磁気検出素子90と磁気遮蔽板73,75と磁石88a~88f以外の構成部品の図示を省略する。
<Modification 8>
FIG. 37 is a perspective view of the first magnetic encoder according to the modified example 8. FIG. 38 is a perspective view of the second magnetic encoder according to the modified example 8. FIG. 39 is a perspective view of the third magnetic encoder according to the modified example 8. FIG. 40 is a perspective view of the fourth magnetic encoder according to the modified example 8. For convenience of explanation, the components other than the magnetic detector 90, the magnetic shielding plates 73, 75, and the magnets 88a to 88f are not shown in FIGS. 37 to 40.
 実施形態3及び変形例5~7に示した磁石87a~87kは、いずれもN極とS極の2極を有する。磁石87a~87kは、軸方向に延びる棒状の磁石である。磁石87a~87kは、1つの磁石の軸方向の長さが1つの磁気検出素子の軸方向の長さとほぼ同じになるように構成されている。しかし、磁石のサイズや配置は特にこれに限定されず、例えば、本変形例に示す構成であってもよい。 The magnets 87a to 87k shown in the third embodiment and the modified examples 5 to 7 each have two poles, an north pole and an south pole. The magnets 87a to 87k are rod-shaped magnets extending in the axial direction. The magnets 87a to 87k are configured so that the axial length of one magnet is substantially the same as the axial length of one magnetic detector element. However, the size and arrangement of the magnets are not particularly limited to this, and for example, the configuration shown in this modification may be used.
 図37に示すように、磁気検出素子90よりも軸方向に短い一組の磁石を軸方向に並べ、一方の磁石のS極またはN極から他方の磁石のN極またはS極に向けて磁束が流れるようにしてもよい。この磁束が磁気検出素子90の内部に流れることで電圧パルスが発生する。このようにすることで、磁気検出素子90に加えられる磁束量を増加させることができる。このことにより、電圧パルスの発生抜けが減少し、回転量の検出信頼性が向上する。なお、図37に示す例では、磁石88a,88cの組、また、磁石88b,88dの組が前述した関係に当てはまる。磁石88a,88cの組は、磁石88b,88dの組と周方向に沿って180度離れて配置されている。 As shown in FIG. 37, a set of magnets shorter in the axial direction than the magnetic detector 90 is arranged in the axial direction, and magnetic flux is applied from the south pole or north pole of one magnet toward the north pole or south pole of the other magnet. May flow. A voltage pulse is generated when this magnetic flux flows inside the magnetic detector 90. By doing so, the amount of magnetic flux applied to the magnetic detector 90 can be increased. As a result, the generation and omission of the voltage pulse is reduced, and the detection reliability of the rotation amount is improved. In the example shown in FIG. 37, the set of magnets 88a and 88c and the set of magnets 88b and 88d apply to the above-mentioned relationship. The set of magnets 88a and 88c is arranged 180 degrees apart from the set of magnets 88b and 88d along the circumferential direction.
 また、磁気検出素子よりも軸方向に短い磁石を径方向で対向させるようにしてもよい。例えば、図38に示すように、2つの磁石88e,88fを径方向で対向させる一方、軸方向に外れた位置に配置してもよい。このようにすることで、磁石の配置スペースを削減でき、磁気式エンコーダ120を小型化できる。なお、この場合、2つの磁石88e,88fのそれぞれで発生した磁束は磁束通過部73aを通って磁気検出素子90の内部に流れる。 Further, magnets shorter in the axial direction than the magnetic detector element may be opposed to each other in the radial direction. For example, as shown in FIG. 38, the two magnets 88e and 88f may face each other in the radial direction, but may be arranged at positions deviated from each other in the axial direction. By doing so, the space for arranging the magnets can be reduced, and the magnetic encoder 120 can be miniaturized. In this case, the magnetic flux generated by each of the two magnets 88e and 88f flows inside the magnetic detector 90 through the magnetic flux passing portion 73a.
 また、実施形態3及び変形例5~7に示した磁束通過部は、いずれも磁気遮蔽板を上端から下端まで軸方向に切り欠くことで形成されている。しかし、磁束通過部の形状は特にこれに限定されず、例えば、本変形例に示す形状であってもよい。 Further, the magnetic flux passing portions shown in the third embodiment and the modified examples 5 to 7 are formed by cutting out the magnetic shielding plate from the upper end to the lower end in the axial direction. However, the shape of the magnetic flux passing portion is not particularly limited to this, and may be, for example, the shape shown in this modification.
 図39に示すように、磁気遮蔽板73が上端及び下端のそれぞれから軸方向に沿って途中まで切り欠かれることで、磁束通過部73c,73dが形成されてもよい。この場合、磁束通過部73c,73dは軸方向に離間して配置される。また、図40に示すように、軸方向に2つの磁気遮蔽板751,752を並べ、磁気遮蔽板751に形成された磁束通過部751aと磁気遮蔽板752に形成された磁束通過部752aとが周方向に沿って所定の角度だけ離れて配置されていてもよい。なお、図39に示す例では、磁石88a~88dの配置及び個数は図37に示すのと同様である。このようにすることで、磁気検出素子90に加えられる磁束量を増加させることができる。このことにより、電圧パルスの発生抜けが減少し、回転量の検出信頼性が向上する。また、磁気検出素子90に流れる磁束の経路も図37に示すのと同様である。また、図40に示す例では、磁石88e,88fの配置や個数は図38に示すのと同様である。このようにすることで、磁石の配置スペースを削減できる。よって、磁気式エンコーダ120を小型化できる。磁気検出素子90に流れる磁束の経路も図38に示すのと同様である。この場合、1つの磁石で発生した磁束は1つの磁束通過部を通って1つの磁気検出素子の内部に流れる。例えば、磁石88fで発生した磁束が磁束通過部751aを通って磁気検出素子90の内部に流れ、電圧パルスが発生する。 As shown in FIG. 39, the magnetic flux passing portions 73c and 73d may be formed by cutting out the magnetic shielding plate 73 halfway along the axial direction from each of the upper end and the lower end. In this case, the magnetic flux passing portions 73c and 73d are arranged apart in the axial direction. Further, as shown in FIG. 40, two magnetic shielding plates 751 and 752 are arranged in the axial direction, and the magnetic flux passing portion 751a formed on the magnetic shielding plate 751 and the magnetic flux passing portion 752a formed on the magnetic shielding plate 752 are arranged. They may be arranged at a predetermined angle along the circumferential direction. In the example shown in FIG. 39, the arrangement and the number of magnets 88a to 88d are the same as those shown in FIG. 37. By doing so, the amount of magnetic flux applied to the magnetic detector 90 can be increased. As a result, the generation and omission of the voltage pulse is reduced, and the detection reliability of the rotation amount is improved. Further, the path of the magnetic flux flowing through the magnetic detector 90 is the same as shown in FIG. 37. Further, in the example shown in FIG. 40, the arrangement and the number of magnets 88e and 88f are the same as those shown in FIG. 38. By doing so, the space for arranging the magnets can be reduced. Therefore, the magnetic encoder 120 can be miniaturized. The path of the magnetic flux flowing through the magnetic detector 90 is the same as shown in FIG. 38. In this case, the magnetic flux generated by one magnet flows inside one magnetic detector element through one magnetic flux passing portion. For example, the magnetic flux generated by the magnet 88f flows inside the magnetic detector 90 through the magnetic flux passing portion 751a, and a voltage pulse is generated.
 (実施形態4)
 図41Aは、実施形態4に係る磁気式エンコーダ120を上から見た模式図である。図41Bは、図41Aに示す磁気式エンコーダ120の動作状態を示す模式図である。なお、説明の便宜上、図41A,41Bにおいて、磁気検出素子90と磁気遮蔽板76と磁石89a,89b以外の構成部品の図示を省略する。本実施形態及び後で述べる変形例9~11では、磁気検出素子の軸方向下側に磁石が配置されるため、以降に示す各図面において、磁気検出素子をウィーガントワイヤと誘導コイルのみで図示する。
(Embodiment 4)
FIG. 41A is a schematic view of the magnetic encoder 120 according to the fourth embodiment as viewed from above. FIG. 41B is a schematic diagram showing an operating state of the magnetic encoder 120 shown in FIG. 41A. For convenience of explanation, illustration of components other than the magnetic detector 90, the magnetic shielding plate 76, and the magnets 89a and 89b is omitted in FIGS. 41A and 41B. In this embodiment and the modifications 9 to 11 described later, the magnet is arranged on the lower side in the axial direction of the magnetic detection element. Therefore, in each of the drawings shown below, the magnetic detection element is shown only by the Wiegand wire and the induction coil. To do.
 本実施形態に示す磁気式エンコーダ120は、以下の点で実施形態1や実施形態3に示す磁気式エンコーダ120と異なる。 The magnetic encoder 120 shown in the present embodiment is different from the magnetic encoder 120 shown in the first and third embodiments in the following points.
 まず、磁気遮蔽板76は、軸方向と交差する平面内に位置する円環状でかつ板状の第2の部分762と、これに連続して、回転軸32を囲むように設けられ、軸方向に延びる円筒状の第1の部分761とを有している。第1の部分761は第2の部分762の外周縁から軸方向に延びている。 First, the magnetic shielding plate 76 is provided so as to surround the rotating shaft 32 in succession to the annular and plate-shaped second portion 762 located in a plane intersecting the axial direction. It has a cylindrical first portion 761 extending into. The first portion 761 extends axially from the outer peripheral edge of the second portion 762.
 第1及び第2の部分761,762に磁束通過部761a,762aがそれぞれ設けられている。第1の部分761では、一部が軸方向に沿って上端から下端まで切り欠かれることで磁束通過部761aが形成されている。第2の部分762では、周方向に沿って約1/4の部分が切り欠かれることで磁束通過部762aが形成されている。また、第1の部分761に形成された磁束通過部761aと第2の部分762に形成された磁束通過部762aとは、周方向に沿って所定の角度、この場合は180度だけ離れて配置されている。 Magnetic flux passing portions 761a and 762a are provided in the first and second portions 761 and 762, respectively. In the first portion 761, the magnetic flux passing portion 761a is formed by partially cutting out from the upper end to the lower end along the axial direction. In the second portion 762, the magnetic flux passing portion 762a is formed by cutting out a portion of about 1/4 along the circumferential direction. Further, the magnetic flux passing portion 761a formed in the first portion 761 and the magnetic flux passing portion 762a formed in the second portion 762 are arranged at a predetermined angle along the circumferential direction, in this case, 180 degrees apart. Has been done.
 2つの棒状の磁石89a,89bが配置されている。磁石89aは、第1の部分761を挟んで磁気検出素子90と反対側、つまり、磁気遮蔽板76の径方向外側に配置されている。磁石89bは、第2の部分762を挟んで磁気検出素子90と反対側、つまり、磁気遮蔽板76の軸方向下側に配置されている。上から見て、磁石89bは、第1の部分761の径方向内側に配置されている。上から見て、2つの磁石89a,89bは互いに平行となるようにかつそれぞれの磁極が軸方向と直交する平面内に位置するように配置されている。ただし、それぞれの磁石において、磁極の配列方向は逆向きである。 Two rod-shaped magnets 89a and 89b are arranged. The magnet 89a is arranged on the side opposite to the magnetic detector 90, that is, on the radial side of the magnetic shielding plate 76, with the first portion 761 interposed therebetween. The magnet 89b is arranged on the side opposite to the magnetic detection element 90, that is, on the lower side in the axial direction of the magnetic shielding plate 76, with the second portion 762 interposed therebetween. Seen from above, the magnet 89b is arranged radially inside the first portion 761. Seen from above, the two magnets 89a and 89b are arranged so that they are parallel to each other and their magnetic poles are located in a plane orthogonal to the axial direction. However, in each magnet, the arrangement directions of the magnetic poles are opposite.
 磁気検出素子90は、実施形態1,2と同様に、その両端が軸方向と直交する平面内に配置されており、その長手方向は磁石89a,89bの磁極の配列方向とほぼ平行である。 Similar to the first and second embodiments, the magnetic detector 90 is arranged at both ends in a plane orthogonal to the axial direction, and its longitudinal direction is substantially parallel to the arrangement direction of the magnetic poles of the magnets 89a and 89b.
 回転軸32(図示せず)が回転すると、図41Bに示すように、磁石89bで発生した磁束が第2の部分762に設けられた磁束通過部762aを通過して、磁気検出素子90の内部に流れ、電圧パルスが発生する。このとき、磁石89aで発生した磁束は、第1の部分761で遮蔽され、磁気検出素子90に到達しない。さらに回転軸32が回転すると、磁石89a,89bでそれぞれ発生した磁束は第1の部分761及び第2の部分762に遮蔽されて、磁気検出素子90に磁束が流れず、電圧パルスは発生しない。さらに回転軸32が回転すると、今度は、磁石89aで発生した磁束が第1の部分761に設けられた磁束通過部761aを通過して、磁気検出素子90の内部に流れ、電圧パルスが発生する。この電圧パルスは、前に発生した電圧パルスと逆の極性である。このとき、磁石89bで発生した磁束は、第2の部分762で遮蔽され、磁気検出素子90に到達しない。 When the rotating shaft 32 (not shown) rotates, as shown in FIG. 41B, the magnetic flux generated by the magnet 89b passes through the magnetic flux passing portion 762a provided in the second portion 762 and is inside the magnetic detector 90. A voltage pulse is generated. At this time, the magnetic flux generated by the magnet 89a is shielded by the first portion 761 and does not reach the magnetic detection element 90. Further, when the rotating shaft 32 rotates, the magnetic flux generated by the magnets 89a and 89b is shielded by the first portion 761 and the second portion 762, so that the magnetic flux does not flow to the magnetic detector 90 and no voltage pulse is generated. When the rotating shaft 32 further rotates, the magnetic flux generated by the magnet 89a passes through the magnetic flux passing portion 761a provided in the first portion 761 and flows inside the magnetic detector 90, and a voltage pulse is generated. .. This voltage pulse has the opposite polarity to the previously generated voltage pulse. At this time, the magnetic flux generated by the magnet 89b is shielded by the second portion 762 and does not reach the magnetic detector 90.
 このような動作を繰り返すことにより、磁気検出素子90に周期的に電圧パルスが発生する。この電圧パルスの発生回数に基づいて、回転軸32の回転量が検出される。 By repeating such an operation, a voltage pulse is periodically generated in the magnetic detector 90. The amount of rotation of the rotating shaft 32 is detected based on the number of times this voltage pulse is generated.
 本実施形態の磁気式エンコーダ120は、磁気検出素子90と磁気遮蔽板76の第2の部分と磁石89bとが軸方向に沿って互いに間隔をあけて配置されるとともに、磁気検出素子90と磁気遮蔽板76の第1の部分761と磁石89aとが径方向に沿って互いに間隔をあけて配置されている。 In the magnetic encoder 120 of the present embodiment, the magnetic detection element 90, the second portion of the magnetic shielding plate 76, and the magnet 89b are arranged at intervals along the axial direction, and the magnetic detection element 90 and the magnetism The first portion 761 of the shielding plate 76 and the magnet 89a are arranged at intervals along the radial direction.
 このことにより、径方向及び軸方向に関するこれらの部品の配置の自由度が高められる。これにより、磁気式エンコーダ120を含むロータリーエンコーダ100のサイズを径方向及び軸方向に小さくすることが可能となる。ただし、実施形態1,2に示す磁気式エンコーダ120に比べて、軸方向に関するこれらの部品の配置の自由度は小さくなる。実施形態3に示す磁気式エンコーダ120に比べて、径方向に関するこれらの部品の配置の自由度は小さくなる。 This increases the degree of freedom in arranging these parts in the radial and axial directions. This makes it possible to reduce the size of the rotary encoder 100 including the magnetic encoder 120 in the radial direction and the axial direction. However, as compared with the magnetic encoder 120 shown in the first and second embodiments, the degree of freedom in arranging these parts in the axial direction is smaller. Compared to the magnetic encoder 120 shown in the third embodiment, the degree of freedom in arranging these parts in the radial direction is smaller.
 本実施形態の磁気式エンコーダ120を含むロータリーエンコーダ100は、ロータリーエンコーダ100のサイズを軸方向にも径方向にもある程度小型化したい場合に有用である。 The rotary encoder 100 including the magnetic encoder 120 of the present embodiment is useful when it is desired to reduce the size of the rotary encoder 100 to some extent in both the axial direction and the radial direction.
 図42Aは、実施形態4に係るロータリーエンコーダの断面模式図である。図42Bは、実施形態4に係る別のロータリーエンコーダの断面模式図である。なお、本実施形態に示す磁気式エンコーダ120をロータリーエンコーダ100に組み込むにあたって、その配置は複数考えられる。例えば、図42Aに示すように、モータ300に近い側に磁気式エンコーダ120を、その上方に光学式エンコーダ110をそれぞれ配置してもよい。図42Bに示すように、モータ300に近い側に光学式エンコーダ110を、その上方に磁気式エンコーダ120をそれぞれ配置してもよい。なお、図42A,図42Bに示す構成において、反射パターン112aを磁気遮蔽板76の第1の部分761の径方向内側に配置するようにしてもよい。図42Bに示す構成では、磁石89bは、磁気遮蔽板76の軸方向上側に配置される。磁気検出素子90と信号処理回路200とは配線170を介して電気的に接続されている。 FIG. 42A is a schematic cross-sectional view of the rotary encoder according to the fourth embodiment. FIG. 42B is a schematic cross-sectional view of another rotary encoder according to the fourth embodiment. When incorporating the magnetic encoder 120 shown in the present embodiment into the rotary encoder 100, a plurality of arrangements can be considered. For example, as shown in FIG. 42A, the magnetic encoder 120 may be arranged on the side close to the motor 300, and the optical encoder 110 may be arranged above the magnetic encoder 120. As shown in FIG. 42B, the optical encoder 110 may be arranged on the side close to the motor 300, and the magnetic encoder 120 may be arranged above the optical encoder 110. In the configuration shown in FIGS. 42A and 42B, the reflection pattern 112a may be arranged inside the first portion 761 of the magnetic shielding plate 76 in the radial direction. In the configuration shown in FIG. 42B, the magnet 89b is arranged on the upper side in the axial direction of the magnetic shielding plate 76. The magnetic detector 90 and the signal processing circuit 200 are electrically connected via wiring 170.
 <変形例9>
 図43は、変形例9に係る磁気式エンコーダ120を上から見た模式図である。図44は、図43に示す磁気式エンコーダ120における回転軸の回転角度と磁気検出素子の出力電圧との関係を示す図である。図45は、変形例9に係る別の磁気式エンコーダ120を上から見た模式図である。図46は、図45に示す磁気式エンコーダ120における回転軸の回転角度と磁気検出素子の出力電圧との関係を示す図である。なお、図44において、上側のグラフは磁気検出素子90の出力電圧を、下側のグラフは磁気検出素子91の出力電圧をそれぞれ示している。説明の便宜上、図43,図45において、磁気検出素子90,91と磁気遮蔽板76と磁石83a,83b,89a,89b以外の構成部品の図示を省略する。
<Modification 9>
FIG. 43 is a schematic view of the magnetic encoder 120 according to the modified example 9 as viewed from above. FIG. 44 is a diagram showing the relationship between the rotation angle of the rotation axis in the magnetic encoder 120 shown in FIG. 43 and the output voltage of the magnetic detector element. FIG. 45 is a schematic view of another magnetic encoder 120 according to the modified example 9 as viewed from above. FIG. 46 is a diagram showing the relationship between the rotation angle of the rotation axis in the magnetic encoder 120 shown in FIG. 45 and the output voltage of the magnetic detector element. In FIG. 44, the upper graph shows the output voltage of the magnetic detector element 90, and the lower graph shows the output voltage of the magnetic detector 91. For convenience of explanation, illustration of components other than the magnetic detector elements 90 and 91, the magnetic shielding plate 76, and the magnets 83a, 83b, 89a, 89b is omitted in FIGS. 43 and 45.
 図43に示す磁気式エンコーダ120は、磁気検出素子が2つ設けられている点で実施形態4に示すエンコーダと異なる。磁気検出素子90,91のそれぞれに対して、一対の磁石89a,89bが配置されている。一方の磁石89aは、第1の部分761を挟んで磁気検出素子90と反対側に配置されている。他方の磁石89bは、第2の部分762を挟んで磁気検出素子90と反対側に配置されている。磁気検出素子91に対応する磁石89a,89bの配置関係もこれと同様である。上から見て、磁石89bは、第1の部分761の径方向内側に配置されている。上から見て、対となる2つの磁石89a,89bは互いに平行となるようにかつそれぞれの磁極が軸方向と直交する平面内に位置するように配置されている。ただし、それぞれの磁石において、磁極の配列方向は逆向きである。 The magnetic encoder 120 shown in FIG. 43 is different from the encoder shown in the fourth embodiment in that two magnetic detection elements are provided. A pair of magnets 89a and 89b are arranged for each of the magnetic detector elements 90 and 91. One magnet 89a is arranged on the opposite side of the magnetic detector 90 with the first portion 761 interposed therebetween. The other magnet 89b is arranged on the opposite side of the magnetic detection element 90 with the second portion 762 interposed therebetween. The arrangement relationship of the magnets 89a and 89b corresponding to the magnetic detector 91 is the same as this. Seen from above, the magnet 89b is arranged radially inside the first portion 761. When viewed from above, the two paired magnets 89a and 89b are arranged so that they are parallel to each other and their magnetic poles are located in a plane orthogonal to the axial direction. However, in each magnet, the arrangement directions of the magnetic poles are opposite.
 磁気式エンコーダ120をこのように構成してもよい。この場合、図44に示すように、回転軸が1回転する間に、磁気検出素子90,91には、正極性の電圧パルスと負極性の電圧パルスがそれぞれ1回ずつ発生する。このことにより、回転量を確実に検出できるとともに磁気式エンコーダ120を駆動するのに十分な電力を確保できる。また、磁石89a,89b及び磁気検出素子90,91の配置の自由度が高められる。したがって、ロータリーエンコーダ100の設計コストが増加するのを抑制できる。 The magnetic encoder 120 may be configured in this way. In this case, as shown in FIG. 44, while the rotation shaft makes one rotation, the magnetic detectors 90 and 91 generate one positive voltage pulse and one negative voltage pulse, respectively. As a result, the amount of rotation can be reliably detected and sufficient power can be secured to drive the magnetic encoder 120. In addition, the degree of freedom in arranging the magnets 89a and 89b and the magnetic detectors 90 and 91 is increased. Therefore, it is possible to suppress an increase in the design cost of the rotary encoder 100.
 また、複数の磁気検出素子及び磁束通過部を配置し、これらの配置関係を本変形例に示すように規定することで、変形例5に示す構成が奏するのと同様の効果を奏することができる。 Further, by arranging a plurality of magnetic detector elements and magnetic flux passing portions and defining the arrangement relationship between them as shown in this modification, it is possible to obtain the same effect as the configuration shown in modification 5. ..
 なお、図45に示すように、磁気遮蔽板73を実施形態3に示すような形状としてもよい。この場合、磁気検出素子90は、軸方向から見て、回転軸32の近くに配置される。また、2つの磁石83a,83bは互いに平行となるようにかつそれぞれの磁極が軸方向と直交する平面内に位置するように配置されている。ただし、それぞれの磁石において、磁極の配列方向は逆向きである。また、上から見て、2つの磁石83a,83bは磁気遮蔽板73の径方向外側に配置される。また、周方向に沿って180度離れて配置される。この場合、一方の磁石で発生した磁束が磁気検出素子90を流れるときは、他方の磁石で発生した磁束は磁気遮蔽板73で遮蔽される。よって、図46に示すように、回転軸32が1回転する間に、磁気検出素子90に正極性及び負極性の電圧パルスがそれぞれ1回ずつ発生し、この発生回数に基づいて、回転軸32の回転量が検出される。 Note that, as shown in FIG. 45, the magnetic shielding plate 73 may have a shape as shown in the third embodiment. In this case, the magnetic detector 90 is arranged near the rotating shaft 32 when viewed from the axial direction. Further, the two magnets 83a and 83b are arranged so as to be parallel to each other and their respective magnetic poles are located in a plane orthogonal to the axial direction. However, in each magnet, the arrangement directions of the magnetic poles are opposite. Further, when viewed from above, the two magnets 83a and 83b are arranged on the radial outer side of the magnetic shielding plate 73. In addition, they are arranged 180 degrees apart along the circumferential direction. In this case, when the magnetic flux generated by one magnet flows through the magnetic detector 90, the magnetic flux generated by the other magnet is shielded by the magnetic shielding plate 73. Therefore, as shown in FIG. 46, while the rotation shaft 32 makes one rotation, the magnetic detector 90 generates one positive electrode voltage pulse and one negative electrode voltage pulse, and based on the number of occurrences, the rotation shaft 32 occurs. The amount of rotation of is detected.
 <変形例10>
 図47Aは、変形例10に係る第1の磁気式エンコーダ120を上から見た模式図である。図47Bは、図47Aに示す磁気式エンコーダ120の動作状態を示す模式図である。図48は、変形例10に係る第2の磁気式エンコーダ120を上から見た模式図である。図49Aは、変形例10に係るロータリーエンコーダ100の断面模式図である。図49Bは、変形例10に係る別のロータリーエンコーダ100の断面模式図である。図50は、変形例10に係る第3の磁気式エンコーダ120を上から見た模式図である。図51は、図50に示す磁気式エンコーダ120における回転軸の回転角度と磁気検出素子の出力電圧との関係を示す図である。
<Modification example 10>
FIG. 47A is a schematic view of the first magnetic encoder 120 according to the modified example 10 as viewed from above. FIG. 47B is a schematic diagram showing an operating state of the magnetic encoder 120 shown in FIG. 47A. FIG. 48 is a schematic view of the second magnetic encoder 120 according to the modified example 10 as viewed from above. FIG. 49A is a schematic cross-sectional view of the rotary encoder 100 according to the modified example 10. FIG. 49B is a schematic cross-sectional view of another rotary encoder 100 according to the modified example 10. FIG. 50 is a schematic view of the third magnetic encoder 120 according to the modified example 10 as viewed from above. FIG. 51 is a diagram showing the relationship between the rotation angle of the rotation axis in the magnetic encoder 120 shown in FIG. 50 and the output voltage of the magnetic detector element.
 なお、説明の便宜上、図47A,図48,図50において、磁気検出素子90,91と磁気遮蔽板77と磁石89c~89e以外の構成部品の図示を省略する。また、図49A,図49Bにおいて、磁気式エンコーダ120の構成は、図48に示すのと同様である。 For convenience of explanation, the drawings of components other than the magnetic detector elements 90 and 91, the magnetic shielding plate 77, and the magnets 89c to 89e are omitted in FIGS. 47A, 48, and 50. Further, in FIGS. 49A and 49B, the configuration of the magnetic encoder 120 is the same as that shown in FIG. 48.
 本変形例に示す磁気式エンコーダ120は、以下の点で実施形態4及び変形例9に示す磁気式エンコーダ120と異なる。 The magnetic encoder 120 shown in this modification is different from the magnetic encoder 120 shown in the fourth embodiment and the ninth modification in the following points.
 磁気遮蔽板77は、軸方向と交差する平面内に位置する円環状でかつ板状の第2の部分772と、これに連続して、回転軸32を囲むように設けられ、軸方向に延びる円筒状の第1の部分771とを有している。第1の部分771は第2の部分772の内周縁から軸方向に延びている。磁石89dまたは磁石89eが磁気遮蔽板77の第1の部分771の径方向内側に配置されている。磁石89cが磁気遮蔽板77の第1の部分771の径方向外側に配置されている。 The magnetic shielding plate 77 is provided so as to surround the rotating shaft 32 in succession to the annular and plate-shaped second portion 772 located in a plane intersecting the axial direction, and extends in the axial direction. It has a cylindrical first portion 771. The first portion 771 extends axially from the inner peripheral edge of the second portion 772. The magnet 89d or the magnet 89e is arranged radially inside the first portion 771 of the magnetic shielding plate 77. The magnet 89c is arranged radially outside the first portion 771 of the magnetic shielding plate 77.
 磁気式エンコーダ120をこのように構成してもよく、図47A及び図48に示す構成では、回転軸32が1回転する間に、磁気検出素子90には、正極性の電圧パルスと負極性の電圧パルスがそれぞれ1回ずつ発生する。このことにより、回転量を確実に検出できるとともに磁気式エンコーダ120を駆動するのに十分な電力を確保できる。また、磁石及び磁気検出素子の配置の自由度が高められる。よって、ロータリーエンコーダ100の設計コストが増加するのを抑制できる。 The magnetic encoder 120 may be configured in this way. In the configurations shown in FIGS. 47A and 48, the magnetic detector 90 has a positive voltage pulse and a negative electrode while the rotation shaft 32 makes one rotation. Each voltage pulse is generated once. As a result, the amount of rotation can be reliably detected and sufficient power can be secured to drive the magnetic encoder 120. In addition, the degree of freedom in arranging the magnet and the magnetic detector element is increased. Therefore, it is possible to suppress an increase in the design cost of the rotary encoder 100.
 また、図50に示すように、磁気遮蔽板77の第1の部分を挟んで2つの磁気検出素子90,91を径方向に対向して配置するようにしてもよい。この場合、磁気検出素子90,91のそれぞれに対して、軸方向に間隔をあけて磁石89cが配置される。 Further, as shown in FIG. 50, the two magnetic detector elements 90 and 91 may be arranged so as to face each other in the radial direction with the first portion of the magnetic shielding plate 77 interposed therebetween. In this case, magnets 89c are arranged at intervals in the axial direction for each of the magnetic detector elements 90 and 91.
 このようにすることで、図51に示すように、回転軸32が1回転する間に、磁気検出素子90,91のそれぞれに、正極性の電圧パルスと負極性の電圧パルスがそれぞれ1回ずつ発生する。このことにより、変形例5及び変形例9に示す構成が奏するのと同様の効果を奏することができる。 By doing so, as shown in FIG. 51, a positive voltage pulse and a negative voltage pulse are generated once for each of the magnetic detector elements 90 and 91 during one rotation of the rotating shaft 32. appear. As a result, the same effect as that of the configurations shown in the modified example 5 and the modified example 9 can be obtained.
 また、図48,50に示すように、第1の部分771の径方向内側に位置する磁石89eを円環状としてもよい。この場合、磁極は、互いに隣り合う磁極の極性が異なるように、周方向に沿って複数配列される。このようにすることで、磁石89eと第1の部分771との間隔を小さくできる。したがって、磁気式エンコーダ120、ひいてはロータリーエンコーダ100を径方向に小型化できる。 Further, as shown in FIGS. 48 and 50, the magnet 89e located inside the first portion 771 in the radial direction may be an annular shape. In this case, a plurality of magnetic poles are arranged along the circumferential direction so that the polarities of the magnetic poles adjacent to each other are different. By doing so, the distance between the magnet 89e and the first portion 771 can be reduced. Therefore, the magnetic encoder 120, and thus the rotary encoder 100, can be miniaturized in the radial direction.
 なお、本変形例に示す磁気式エンコーダ120をロータリーエンコーダ100に組み込むにあたって、その配置は複数考えられる。例えば、図49Aに示すように、モータ300に近い側に磁気式エンコーダ120を、その上方に光学式エンコーダ110をそれぞれ配置してもよい。図49Bに示すように、モータ300に近い側に光学式エンコーダ110を、その上方に磁気式エンコーダ120をそれぞれ配置してもよい。なお、図49A,図49Bに示す構成において、反射パターン112aを磁気遮蔽板77の第1の部分771の径方向内側に配置するようにしてもよい。磁気検出素子90と信号処理回路200とは配線170を介して電気的に接続されている。 When incorporating the magnetic encoder 120 shown in this modification into the rotary encoder 100, a plurality of arrangements can be considered. For example, as shown in FIG. 49A, the magnetic encoder 120 may be arranged on the side close to the motor 300, and the optical encoder 110 may be arranged above the magnetic encoder 120. As shown in FIG. 49B, the optical encoder 110 may be arranged on the side close to the motor 300, and the magnetic encoder 120 may be arranged above the optical encoder 110. In the configuration shown in FIGS. 49A and 49B, the reflection pattern 112a may be arranged radially inside the first portion 771 of the magnetic shielding plate 77. The magnetic detector 90 and the signal processing circuit 200 are electrically connected via wiring 170.
 <変形例11>
 図52は、変形例11に係る磁気式エンコーダを上から見た模式図である。図53は、図52に示す磁気式エンコーダにおける回転軸の回転角度と磁気検出素子の出力電圧との関係を示す図である。図54は、変形例11に係る第2の磁気式エンコーダを上から見た模式図である。図55は、図54に示す磁気式エンコーダにおける回転軸の回転角度と磁気検出素子の出力電圧との関係を示す図である。図56は、変形例11に係る第3の磁気式エンコーダを上から見た模式図である。図57は、図56に示す磁気式エンコーダにおける回転軸の回転角度と磁気検出素子の出力電圧との関係を示す図である。図58は、変形例11に係る第4の磁気式エンコーダを上から見た模式図である。図59は、図58に示す磁気式エンコーダにおける回転軸の回転角度と磁気検出素子の出力電圧との関係を示す図である。図60は、変形例11に係る第5の磁気式エンコーダを上から見た模式図である。図61は、図60に示す磁気式エンコーダにおける回転軸の回転角度と磁気検出素子の出力電圧との関係を示す図である。図62は、変形例11に係る第6の磁気式エンコーダを上から見た模式図である。図63は、図62に示す磁気式エンコーダにおける回転軸の回転角度と磁気検出素子の出力電圧との関係を示す図である。なお、図53,図55,図57,図59,図61,図63において、上側のグラフは磁気検出素子90の出力電圧を、中央のグラフは磁気検出素子91の出力電圧を、下側のグラフは磁気検出素子92の出力電圧をそれぞれ示している。説明の便宜上、図52,図54,図56,図58,図60,図62において、磁気検出素子90~92と磁気遮蔽板76,77と磁石89a~89c,89e以外の構成部品の図示を省略する。
<Modification 11>
FIG. 52 is a schematic view of the magnetic encoder according to the modified example 11 as viewed from above. FIG. 53 is a diagram showing the relationship between the rotation angle of the rotation axis in the magnetic encoder shown in FIG. 52 and the output voltage of the magnetic detector element. FIG. 54 is a schematic view of the second magnetic encoder according to the modified example 11 as viewed from above. FIG. 55 is a diagram showing the relationship between the rotation angle of the rotation axis in the magnetic encoder shown in FIG. 54 and the output voltage of the magnetic detector element. FIG. 56 is a schematic view of the third magnetic encoder according to the modified example 11 as viewed from above. FIG. 57 is a diagram showing the relationship between the rotation angle of the rotation axis in the magnetic encoder shown in FIG. 56 and the output voltage of the magnetic detector element. FIG. 58 is a schematic view of the fourth magnetic encoder according to the modified example 11 as viewed from above. FIG. 59 is a diagram showing the relationship between the rotation angle of the rotation axis in the magnetic encoder shown in FIG. 58 and the output voltage of the magnetic detector element. FIG. 60 is a schematic view of the fifth magnetic encoder according to the modified example 11 as viewed from above. FIG. 61 is a diagram showing the relationship between the rotation angle of the rotation axis in the magnetic encoder shown in FIG. 60 and the output voltage of the magnetic detector element. FIG. 62 is a schematic view of the sixth magnetic encoder according to the modified example 11 as viewed from above. FIG. 63 is a diagram showing the relationship between the rotation angle of the rotation axis in the magnetic encoder shown in FIG. 62 and the output voltage of the magnetic detector element. In FIGS. 53, 55, 57, 59, 61, and 63, the upper graph shows the output voltage of the magnetic detector 90, and the center graph shows the output voltage of the magnetic detector 91. The graph shows the output voltage of the magnetic detector 92, respectively. For convenience of explanation, in FIGS. 52, 54, 56, 58, 60, and 62, the components other than the magnetic detector elements 90 to 92, the magnetic shielding plates 76, 77, and the magnets 89a to 89c, 89e are shown. Omit.
 本変形例に係る構成は、磁気検出素子90~92が、周方向に互いに間隔をあけて3つ設けられている点で実施形態4及び変形例9,10に示す構成と異なる。なお、本変形例において、互いに隣り合う磁気検出素子は周方向に120度離れて配置されている。 The configuration according to this modification is different from the configuration shown in the fourth embodiment and the modifications 9 and 10 in that three magnetic detector elements 90 to 92 are provided at intervals in the circumferential direction. In this modification, the magnetic detector elements adjacent to each other are arranged 120 degrees apart in the circumferential direction.
 また、図52,54,56に示す構成では、1つの磁気検出素子に対し、磁気遮蔽板76の第1の部分761を挟んで径方向外側に磁石89aが配置されている。第2の部分762を挟んで軸方向下側に磁石89bが配置されている。図58,60,62に示す構成では、1つの磁気検出素子に対し、磁気遮蔽板77の第1の部分771を挟んで径方向内側に磁石89eが配置されている。第2の部分772を挟んで軸方向下側に磁石89cが配置されている。磁石89eは図48,50に示すのと同様に円環状で、互いに隣り合う磁極の極性が異なるように周方向に沿って複数の磁極が配列される。 Further, in the configuration shown in FIGS. 52, 54, and 56, magnets 89a are arranged on the outer side in the radial direction with the first portion 761 of the magnetic shielding plate 76 sandwiched between one magnetic detection element. A magnet 89b is arranged on the lower side in the axial direction with the second portion 762 interposed therebetween. In the configurations shown in FIGS. 58, 60, and 62, magnets 89e are arranged radially inside one magnetic detector element with the first portion 771 of the magnetic shielding plate 77 interposed therebetween. A magnet 89c is arranged on the lower side in the axial direction with the second portion 772 interposed therebetween. The magnet 89e has an annular shape as shown in FIGS. 48 and 50, and a plurality of magnetic poles are arranged along the circumferential direction so that the polarities of the adjacent magnetic poles are different from each other.
 図52,58に示す構成では、磁気遮蔽板76の第1の部分761及び第2の部分762に磁束通過部761a,762aがそれぞれ設けられ、これらは、上から見て、径方向で対向して、つまり、周方向に沿って180度離れて配置されている。 In the configuration shown in FIGS. 52 and 58, magnetic flux passing portions 761a and 762a are provided in the first portion 761 and the second portion 762 of the magnetic shielding plate 76, respectively, and they face each other in the radial direction when viewed from above. That is, they are arranged 180 degrees apart along the circumferential direction.
 このことにより、図53,59に示すように、回転軸32が1回転する間に、磁気検出素子90~92のそれぞれに、正極性の電圧パルスと負極性の電圧パルスが1回ずつ発生する。 As a result, as shown in FIGS. 53 and 59, a positive electrode voltage pulse and a negative electrode voltage pulse are generated once in each of the magnetic detector elements 90 to 92 while the rotation shaft 32 makes one rotation. ..
 図54に示す構成では、磁気遮蔽板76の第1の部分761に2つの磁束通過部761a,761bが設けられている。第2の部分762に2つの磁束通過部762a,762bが設けられている。上から見て、2つの磁束通過部761a,761bは径方向で対向して配置されている。2つの磁束通過部762a,762bは径方向で対向して配置されている。第1の部分761に設けられた磁束通過部とこれに近接する第2の部分762に設けられた磁束通過部とは、周方向に沿って90度離れて配置されている。図60に示す構成では、磁気遮蔽板77の第1の部分771に2つの磁束通過部771a,771bが設けられている。第2の部分772に2つの磁束通過部772a,772bが設けられている。上から見て、2つの磁束通過部771a,771bは径方向で対向して配置されている。2つの磁束通過部772a,772bは径方向で対向して配置されている。第1の部分771に設けられた磁束通過部とこれに近接する第2の部分772に設けられた磁束通過部とは、周方向に沿って90度離れて配置されている。 In the configuration shown in FIG. 54, two magnetic flux passing portions 761a and 761b are provided in the first portion 761 of the magnetic shielding plate 76. Two magnetic flux passing portions 762a and 762b are provided in the second portion 762. Seen from above, the two magnetic flux passing portions 761a and 761b are arranged so as to face each other in the radial direction. The two magnetic flux passing portions 762a and 762b are arranged so as to face each other in the radial direction. The magnetic flux passing portion provided in the first portion 761 and the magnetic flux passing portion provided in the second portion 762 adjacent thereto are arranged 90 degrees apart along the circumferential direction. In the configuration shown in FIG. 60, two magnetic flux passing portions 771a and 771b are provided in the first portion 771 of the magnetic shielding plate 77. Two magnetic flux passing portions 772a and 772b are provided in the second portion 772. Seen from above, the two magnetic flux passing portions 771a and 771b are arranged so as to face each other in the radial direction. The two magnetic flux passing portions 772a and 772b are arranged so as to face each other in the radial direction. The magnetic flux passing portion provided in the first portion 771 and the magnetic flux passing portion provided in the second portion 772 adjacent thereto are arranged 90 degrees apart along the circumferential direction.
 このようにすることで、図55,61に示すように、回転軸32が1回転する間に、磁気検出素子90~92のそれぞれに、正極性の電圧パルスと負極性の電圧パルスがそれぞれ2回ずつ発生する。 By doing so, as shown in FIGS. 55 and 61, two positive voltage pulses and two negative voltage pulses are generated in each of the magnetic detector elements 90 to 92 during one rotation of the rotating shaft 32. Occurs once.
 図56に示す構成では、磁気遮蔽板76の第1の部分761に4つの磁束通過部761a~761dが設けられている。第2の部分762に4つの磁束通過部762a~762dが設けられている。上から見て、4つの磁束通過部761a~761dは周方向に沿って90度ずつ離れて配置されている。4つの磁束通過部762a~762dは周方向に沿って90度ずつ離れて配置されている。また、第1の部分761に設けられた磁束通過部とこれに近接する第2の部分762に設けられた磁束通過部とは、周方向に沿って45度離れて配置されている。図62に示す構成では、磁気遮蔽板77の第1の部分771に4つの磁束通過部771a~771dが設けられている。第2の部分772に4つの磁束通過部772a~772dが設けられている。上から見て、4つの磁束通過部771a~771dは周方向に沿って90度ずつ離れて配置されている。4つの磁束通過部772a~772dは周方向に沿って90度ずつ離れて配置されている。第1の部分771に設けられた磁束通過部とこれに近接する第2の部分772に設けられた磁束通過部とは、周方向に沿って45度離れて配置されている。 In the configuration shown in FIG. 56, four magnetic flux passing portions 761a to 761d are provided in the first portion 761 of the magnetic shielding plate 76. The second portion 762 is provided with four magnetic flux passing portions 762a to 762d. Seen from above, the four magnetic flux passing portions 761a to 761d are arranged 90 degrees apart along the circumferential direction. The four magnetic flux passing portions 762a to 762d are arranged 90 degrees apart along the circumferential direction. Further, the magnetic flux passing portion provided in the first portion 761 and the magnetic flux passing portion provided in the second portion 762 adjacent thereto are arranged at a distance of 45 degrees along the circumferential direction. In the configuration shown in FIG. 62, four magnetic flux passing portions 771a to 771d are provided in the first portion 771 of the magnetic shielding plate 77. The second portion 772 is provided with four magnetic flux passing portions 772a to 772d. Seen from above, the four magnetic flux passing portions 771a to 771d are arranged 90 degrees apart along the circumferential direction. The four magnetic flux passing portions 772a to 772d are arranged 90 degrees apart along the circumferential direction. The magnetic flux passing portion provided in the first portion 771 and the magnetic flux passing portion provided in the second portion 772 adjacent thereto are arranged at a distance of 45 degrees along the circumferential direction.
 このようにすることで、図57,図63に示すように、回転軸32が1回転する間に、磁気検出素子90~92のそれぞれに、正極性の電圧パルスと負極性の電圧パルスがそれぞれ4回ずつ発生する。 By doing so, as shown in FIGS. 57 and 63, a positive voltage pulse and a negative voltage pulse are generated in each of the magnetic detector elements 90 to 92 during one rotation of the rotating shaft 32, respectively. Occurs 4 times each.
 本変形例によれば、実施形態4及び変形例9,10に示す構成が奏するのと同様の効果を奏することができる。つまり、回転量を確実に検出できるとともに磁気式エンコーダ120を駆動するのに十分な電力を確保できる。また、磁石や磁気検出素子の配置の自由度が高められる。したがって、ロータリーエンコーダ100の設計コストが増加するのを抑制できる。 According to this modification, the same effect as that of the configurations shown in the fourth embodiment and the ninth and tenth modifications can be obtained. That is, the amount of rotation can be reliably detected and sufficient power can be secured to drive the magnetic encoder 120. In addition, the degree of freedom in arranging magnets and magnetic detector elements is increased. Therefore, it is possible to suppress an increase in the design cost of the rotary encoder 100.
 3つの磁気検出素子90~92を配置することで、変形例5に示す構成が奏するのと同様の効果をさらに高められる。つまり、回転軸32の回転量だけでなく回転方向の変化も検出することができる。回転軸32が1回転する間に、磁気検出素子90~92のそれぞれで電圧パルスが発生する。このため、検出されたデータの冗長性が確保される。さらに、磁気式エンコーダ120を駆動する電力の安定性を高められる。また、磁気検出素子の個数を増やすことで、回転量のうち、原点位置から回転軸32が回転した角度範囲の情報を細かく取得することができる。よって、モータ300の回転状態をより精密に制御できる。また、ロータリーエンコーダ100を駆動する電源230が停止した後に、再度復帰した場合、多回転情報Sを精度良く補正することができる。 By arranging the three magnetic detector elements 90 to 92, the same effect as that of the configuration shown in the modification 5 can be further enhanced. That is, not only the amount of rotation of the rotation shaft 32 but also the change in the rotation direction can be detected. During one rotation of the rotating shaft 32, voltage pulses are generated in each of the magnetic detector elements 90 to 92. Therefore, the redundancy of the detected data is ensured. Further, the stability of the electric power for driving the magnetic encoder 120 can be improved. Further, by increasing the number of magnetic detector elements, it is possible to obtain detailed information on the angle range in which the rotation shaft 32 is rotated from the origin position in the rotation amount. Therefore, the rotational state of the motor 300 can be controlled more precisely. Further, when the power supply 230 for driving the rotary encoder 100 is stopped and then returned again, the multi-rotation information S can be corrected with high accuracy.
 また、磁束通過部の個数を増やすことで、回転量のうち、原点位置から回転軸32が回転した角度範囲の情報を細かく取得することができる。よって、モータ300の回転状態をより精密に制御できる。また、ロータリーエンコーダ100を駆動する電源230が停止した後に、再度復帰した場合、多回転情報Sを精度良く補正することができる。 Further, by increasing the number of magnetic flux passing portions, it is possible to obtain detailed information on the angle range in which the rotating shaft 32 is rotated from the origin position in the amount of rotation. Therefore, the rotational state of the motor 300 can be controlled more precisely. Further, when the power supply 230 for driving the rotary encoder 100 is stopped and then returned again, the multi-rotation information S can be corrected with high accuracy.
 (その他の実施形態)
 なお、変形例1~11を含む実施形態1~4に示す各構成要素を適宜組み合わせて、新たな実施形態とすることもできる。
(Other embodiments)
It should be noted that each component shown in the first to fourth embodiments including the first to eleventh modifications can be appropriately combined to form a new embodiment.
 図1に示すモータケース10は有底筒状であってもよい。その場合、例えば、ブラケット21,22のいずれかが省略される。ブラケット22が省略される場合、ロータリーエンコーダ100はモータケース10の底壁に取り付けられる。この場合も、回転子30や固定子40からの磁束がロータリーエンコーダ100に漏れないように、エンコーダケース150やモータケース10に磁気遮蔽用の対策を施す必要がある。 The motor case 10 shown in FIG. 1 may have a bottomed tubular shape. In that case, for example, one of the brackets 21 and 22 is omitted. If the bracket 22 is omitted, the rotary encoder 100 is attached to the bottom wall of the motor case 10. In this case as well, it is necessary to take measures for magnetic shielding in the encoder case 150 and the motor case 10 so that the magnetic flux from the rotor 30 and the stator 40 does not leak to the rotary encoder 100.
 光学式エンコーダ110を反射形エンコーダとしたが、透過形エンコーダとしてもよい。例えば、受光素子を回路基板140の下面に、発光素子をブラケット22の上面にそれぞれ配置し、また、スリット板112に透過パターンが設けられてもよい。この場合、受光素子と発光素子との間に光を遮る部材、具体的には磁気遮蔽板を配置しないようにする必要がある。また、回転板130を発光素子からの光を透過させる材質にするか、透過パターンの直下で回転板130を除去する必要がある。なお、発光素子を回路基板140の下面に、受光素子をブラケット22の上面にそれぞれ配置してもよい。この場合、信号処理回路200と受光素子の出力端子とを配線等を用いて電気的に接続する必要がある。 Although the optical encoder 110 is a reflective encoder, it may be a transmissive encoder. For example, the light receiving element may be arranged on the lower surface of the circuit board 140, the light emitting element may be arranged on the upper surface of the bracket 22, and the slit plate 112 may be provided with a transmission pattern. In this case, it is necessary not to arrange a member that blocks light, specifically, a magnetic shielding plate, between the light receiving element and the light emitting element. Further, it is necessary to make the rotating plate 130 a material that allows light from the light emitting element to be transmitted, or to remove the rotating plate 130 directly under the transmission pattern. The light emitting element may be arranged on the lower surface of the circuit board 140, and the light receiving element may be arranged on the upper surface of the bracket 22. In this case, it is necessary to electrically connect the signal processing circuit 200 and the output terminal of the light receiving element by using wiring or the like.
 また、図1では、IPMモータを例に取って説明したが、本願明細書に示すロータリーエンコーダ100が他の種類のモータにも適用可能であることは言うまでもない。 Further, in FIG. 1, the IPM motor has been described as an example, but it goes without saying that the rotary encoder 100 shown in the present specification can be applied to other types of motors.
 また、本願明細書に示す磁気式エンコーダ120のうち、磁気検出素子と磁気遮蔽板と磁石との組み合わせは、回転軸32の回転に応じて電力を発生させる発電機構として利用することもできる。前述したように、何らかの理由でロータリーエンコーダ100を駆動する電源230から電力が供給されなくなった場合、光学式エンコーダ110を駆動する電力の供給源として当該発電機構を利用することも可能である。 Further, among the magnetic encoders 120 shown in the present specification, the combination of the magnetic detection element, the magnetic shielding plate, and the magnet can also be used as a power generation mechanism that generates electric power according to the rotation of the rotating shaft 32. As described above, when the power supply 230 for driving the rotary encoder 100 is no longer supplied with electric power for some reason, the power generation mechanism can be used as a power supply source for driving the optical encoder 110.
 本開示の回転検出器は、簡便な構成で回転軸の回転量を検出できる。したがって、サーボモータのロータリーエンコーダに適用する上で有用である。 The rotation detector of the present disclosure can detect the amount of rotation of the rotating shaft with a simple configuration. Therefore, it is useful for application to a rotary encoder of a servo motor.
10 モータケース
21,22 ブラケット
30 回転子
31 回転子コア
32 回転軸
40 固定子
41 ヨーク
42 コイル
51,52 軸受
60 磁気式エンコーダ
70,71,72,73,74,75,76,77 磁気遮蔽板
741,742 磁気遮蔽板(同軸配置)
751,752,753 磁気遮蔽板(軸方向配置)
761,771 磁気遮蔽板の第1の部分(円筒状の部分)
762,772 磁気遮蔽板の第1の部分(板状の部分)
70a,70b,70c,70d,70e,70f,70g,70h,70i 磁束通過部
71a,71b,72a,72b 磁束通過部
73a,73b 磁束通過部
741a,741b,742a,742b,751a,752a,753a,761a,761b,761c,761d,762a,762b,762c,762d,771a,771b,771c,771d,772a,772b,772c,772d 磁束通過部
80a,80b,81a,81b,82a,82b,83a,83b,84,85,86,87a,87b,87c,87d,87e,87h,87i,87j,87k,88a,88b,88c,88e,88f,89a,89b,89c,89d,89e 磁石
90,91,92 磁気検出素子
90a ウィーガントワイヤ(磁性体)
90b,91b,92b 誘導コイル
100 ロータリーエンコーダ(回転検出器)
110 光学式エンコーダ(回転位置検出器)
120 磁気式エンコーダ
130 回転板
140 回路基板
150 エンコーダケース
155 エンコーダフレーム
160 ボス
170 配線
200 信号処理回路
210 光学信号処理回路
220 磁気信号処理回路
221 電圧変換部
222 信号処理部
223 記憶部
224 I/O部
230 電源
300 モータ
310 モータ制御部
10 Motor case 21, 22 Bracket 30 Rotor 31 Rotor core 32 Rotating shaft 40 Stator 41 York 42 Coil 51, 52 Bearing 60 Magnetic encoder 70, 71, 72, 73, 74, 75, 76, 77 Magnetic shielding plate 741,742 Magnetic shielding plate (coaxial arrangement)
751, 752, 753 Magnetic shielding plate (axial arrangement)
761,771 First part of magnetic shielding plate (cylindrical part)
762,772 First part of magnetic shielding plate (plate-shaped part)
70a, 70b, 70c, 70d, 70e, 70f, 70g, 70h, 70i Magnetic flux passing part 71a, 71b, 72a, 72b Magnetic flux passing part 73a, 73b Magnetic flux passing part 741a, 741b, 742a, 742b, 751a, 752a, 753a, 761a, 761b, 761c, 761d, 762a, 762b, 762c, 762d, 771a, 771b, 771c, 771d, 772a, 772b, 772c, 772d Magnetic flux passing parts 80a, 80b, 81a, 81b, 82a, 82b, 83a, 83b, 84, 85, 86, 87a, 87b, 87c, 87d, 87e, 87h, 87i, 87j, 87k, 88a, 88b, 88c, 88e, 88f, 89a, 89b, 89c, 89d, 89e Magnet 90, 91, 92 Magnetic Detection element 90a Weigant wire (magnetic material)
90b, 91b, 92b Induction coil 100 Rotary encoder (rotation detector)
110 Optical encoder (rotational position detector)
120 Magnetic encoder 130 Rotating plate 140 Circuit board 150 Encoder case 155 Encoder frame 160 Boss 170 Wiring 200 Signal processing circuit 210 Optical signal processing circuit 220 Magnetic signal processing circuit 221 Voltage conversion unit 222 Signal processing unit 223 Storage unit 224 I / O unit 230 Power supply 300 Motor 310 Motor control unit

Claims (20)

  1. モータの回転軸の回転量を検出する回転検出器であって、
    磁性体と誘導コイルとで構成された磁気検出素子と、
    前記回転軸に回転一体に取付けられ、磁束通過部を有する磁気遮蔽板と、
    前記磁気検出素子に対して相対位置が変化せず、互いに異なる極性の複数の磁極を有する磁石と、を少なくとも備え、
    前記磁性体は、所定以上の磁界が印加されると大バルクハウゼン効果を発現し、
    所定の方向から見て、前記磁気検出素子と前記磁気遮蔽板と前記磁石とは互いに間隔をあけて、前記磁気検出素子、前記磁気遮蔽板、前記磁石の順に配置されている回転検出器。
    A rotation detector that detects the amount of rotation of the rotation shaft of a motor.
    A magnetic detector composed of a magnetic material and an induction coil,
    A magnetic shielding plate that is integrally mounted on the rotating shaft and has a magnetic flux passing portion,
    A magnet having a plurality of magnetic poles having different polarities from each other without changing its relative position with respect to the magnetic detection element is provided at least.
    The magnetic material exhibits a large Barkhausen effect when a magnetic field of a predetermined value or higher is applied.
    A rotation detector in which the magnetic detector element, the magnetic shield plate, and the magnet are arranged in this order in the order of the magnetic detector element, the magnetic shield plate, and the magnet when viewed from a predetermined direction.
  2. 前記磁気検出素子の両端は、前記回転軸の軸線方向である軸方向と直交する平面内に位置している請求項1に記載の回転検出器。 The rotation detector according to claim 1, wherein both ends of the magnetic detector element are located in a plane orthogonal to the axial direction which is the axial direction of the rotation axis.
  3. 前記磁気遮蔽板は、前記軸方向と交差する平面内に位置する板状の部分を有している請求項2に記載の回転検出器。 The rotation detector according to claim 2, wherein the magnetic shielding plate has a plate-shaped portion located in a plane intersecting the axial direction.
  4. 前記複数の磁極は、前記軸方向と直交する平面内に配列されている請求項3に記載の回転検出器。 The rotation detector according to claim 3, wherein the plurality of magnetic poles are arranged in a plane orthogonal to the axial direction.
  5. 前記複数の磁極のうち互いに極性の異なる少なくとも1組の磁極が、前記モータの半径方向である径方向に沿って配列されている請求項4に記載の回転検出器。 The rotation detector according to claim 4, wherein at least one set of magnetic poles having different polarities among the plurality of magnetic poles are arranged along the radial direction which is the radial direction of the motor.
  6. 前記磁気検出素子の両端が、前記径方向に沿って配置されている請求項5に記載の回転検出器。 The rotation detector according to claim 5, wherein both ends of the magnetic detector element are arranged along the radial direction.
  7. 前記磁気検出素子は、前記軸方向と直交する平面内に複数配置され、
    前記複数の磁極のうち互いに極性の異なる磁極の組は、前記磁気検出素子の個数よりも多い請求項3~6のいずれか1項に記載の回転検出器。
    A plurality of the magnetic detector elements are arranged in a plane orthogonal to the axial direction.
    The rotation detector according to any one of claims 3 to 6, wherein the set of magnetic poles having different polarities among the plurality of magnetic poles is larger than the number of magnetic detector elements.
  8. 前記磁気遮蔽板は、前記板状の部分に連続して、前記回転軸を囲むように設けられ、前記軸方向に延びる円筒状の部分をさらに有し、
    前記磁束通過部は、前記円筒状の部分を前記軸方向に切り欠いた部分を含み、
    前記板状の部分に形成された磁束通過部と前記円筒状の部分に形成された磁束通過部とは、前記回転軸の外周方向である周方向に沿って所定の角度だけ離れて配置されており、
    前記磁石は、
    前記モータの半径方向である径方向から見て、前記磁気遮蔽板を挟んで前記磁気検出素子と反対側に配置された一の磁石と、
    前記軸方向から見て、前記磁気遮蔽板を挟んで前記磁気検出素子と反対側に配置された他の磁石と、を少なくとも含む請求項3~7のいずれか1項に記載の回転検出器。
    The magnetic shielding plate is provided continuously with the plate-shaped portion so as to surround the rotation axis, and further has a cylindrical portion extending in the axial direction.
    The magnetic flux passing portion includes a portion obtained by cutting out the cylindrical portion in the axial direction.
    The magnetic flux passing portion formed in the plate-shaped portion and the magnetic flux passing portion formed in the cylindrical portion are arranged at a predetermined angle along the circumferential direction which is the outer peripheral direction of the rotation axis. Cylinder,
    The magnet is
    When viewed from the radial direction, which is the radial direction of the motor, one magnet arranged on the side opposite to the magnetic detector element with the magnetic shield plate interposed therebetween.
    The rotation detector according to any one of claims 3 to 7, further comprising at least another magnet arranged on the side opposite to the magnetic detector element with the magnetic shield plate interposed therebetween when viewed from the axial direction.
  9. 前記磁気検出素子は、前記モータの半径方向である径方向に関し、前記磁気遮蔽板よりも前記回転軸に近い側に配置され、
    前記磁気検出素子は、その両端を結ぶ線が前記回転軸の軸線方向である軸方向と平行となるように配置されている請求項1に記載の回転検出器。
    The magnetic detector element is arranged closer to the rotation axis than the magnetic shield plate in the radial direction which is the radial direction of the motor.
    The rotation detector according to claim 1, wherein the magnetic detector is arranged so that a line connecting both ends thereof is parallel to an axial direction which is an axial direction of the rotation axis.
  10. 前記複数の磁石のうち互いに極性の異なる少なくとも1組の磁極は、前記軸方向と平行に配列されている請求項9に記載の回転検出器。 The rotation detector according to claim 9, wherein at least one set of magnetic poles having different polarities among the plurality of magnets are arranged in parallel with the axial direction.
  11. 前記磁気遮蔽板は、前記回転軸を囲むように設けられ、前記軸方向に延びる円筒状であり、
    前記磁束通過部は、前記磁気遮蔽板を前記軸方向に切り欠いた部分を含む請求項10に記載の回転検出器。
    The magnetic shielding plate is provided so as to surround the rotation axis, and has a cylindrical shape extending in the axial direction.
    The rotation detector according to claim 10, wherein the magnetic flux passing portion includes a portion of the magnetic shielding plate cut out in the axial direction.
  12. 前記磁気遮蔽板は、前記回転軸と同軸にかつ前記径方向に間隔をあけて複数設けられており、
    前記磁気検出素子は、前記径方向に関し、複数の前記磁気遮蔽板のうちの少なくとも1つの磁気遮蔽板よりも前記回転軸に近い側に配置され、
    複数の前記磁気遮蔽板のそれぞれに前記磁束通過部が形成されており、
    複数の前記磁気遮蔽板のうち、互いに異なる磁気遮蔽板にそれぞれ形成された磁束通過部は、前記回転軸の外周方向である周方向に沿って所定の角度だけ離れて配置されている請求項11に記載の回転検出器。
    A plurality of the magnetic shielding plates are provided coaxially with the rotation axis and at intervals in the radial direction.
    The magnetic detector element is arranged on the side closer to the rotation axis than at least one of the plurality of magnetic shield plates in the radial direction.
    The magnetic flux passing portion is formed in each of the plurality of magnetic shielding plates.
    11. Of the plurality of magnetic shielding plates, the magnetic flux passing portions formed on different magnetic shielding plates are arranged apart by a predetermined angle along the circumferential direction which is the outer peripheral direction of the rotation axis. The rotation detector described in.
  13. 前記磁気遮蔽板は、前記軸方向に互いに間隔をあけて複数設けられており、
    前記磁気検出素子は、複数の前記磁気遮蔽板のそれぞれに対して設けられ、かつ前記径方向に関し、前記磁気遮蔽板よりも前記回転軸に近い側に配置され、
    複数の前記磁気遮蔽板のそれぞれに前記磁束通過部が形成されており、
    複数の前記磁気遮蔽板のうち、互いに異なる磁気遮蔽板にそれぞれ形成された磁束通過部は、前記回転軸の外周方向である周方向に沿って所定の角度だけ離れて配置されている請求項11に記載の回転検出器。
    A plurality of the magnetic shielding plates are provided at intervals in the axial direction.
    The magnetic detection element is provided for each of the plurality of magnetic shielding plates, and is arranged on the side closer to the rotation axis than the magnetic shielding plate in the radial direction.
    The magnetic flux passing portion is formed in each of the plurality of magnetic shielding plates.
    11. Of the plurality of magnetic shielding plates, the magnetic flux passing portions formed on different magnetic shielding plates are arranged apart by a predetermined angle along the circumferential direction which is the outer peripheral direction of the rotation axis. The rotation detector described in.
  14. 前記磁気検出素子は互いに間隔をあけて複数配置されており、
    前記複数の磁極のうち互いに極性の異なる磁極の組は、前記磁気検出素子の個数よりも多い請求項9~13のいずれか1項に記載の回転検出器。
    A plurality of the magnetic detector elements are arranged at intervals from each other.
    The rotation detector according to any one of claims 9 to 13, wherein the set of magnetic poles having different polarities among the plurality of magnetic poles is larger than the number of magnetic detector elements.
  15. 前記回転軸の回転に応じて、前記磁束通過部が前記磁石及び前記磁気検出素子と前記所定の方向から見て互いに重なる位置に移動した場合に、前記磁石で発生した磁束が、前記磁束通過部を通じて前記磁気検出素子の一端から他端に向けて流れることで、前記磁気検出素子に電圧パルスが発生する請求項1~14のいずれか1項に記載の回転検出器。 When the magnetic flux passing portion moves to a position where the magnet and the magnetic detector element overlap each other when viewed from the predetermined direction in accordance with the rotation of the rotating shaft, the magnetic flux generated by the magnet is the magnetic flux passing portion. The rotation detector according to any one of claims 1 to 14, wherein a voltage pulse is generated in the magnetic detection element by flowing from one end to the other end of the magnetic detection element.
  16. 前記磁気検出素子に発生した電圧パルスを整流し、所定の電圧に変換する電圧変換部と、
    前記電圧パルスの発生回数に応じて前記回転軸の回転量を算出する信号処理部と、
    前記信号処理部で算出された前記回転量を保存する記憶部と、
    前記回転量に応じた信号を外部に出力するI/O部と、をさらに備える請求項15に記載の回転検出器。
    A voltage converter that rectifies the voltage pulse generated in the magnetic detector element and converts it into a predetermined voltage.
    A signal processing unit that calculates the amount of rotation of the rotating shaft according to the number of times the voltage pulse is generated, and
    A storage unit that stores the rotation amount calculated by the signal processing unit, and
    The rotation detector according to claim 15, further comprising an I / O unit that outputs a signal corresponding to the rotation amount to the outside.
  17. 前記磁気検出素子は複数設けられており、
    前記信号処理部は、互いに異なる前記磁気検出素子でそれぞれ発生した電圧パルスの極性に基づいて、前記回転軸の回転方向を判定する請求項16に記載の回転検出器。
    A plurality of the magnetic detector elements are provided.
    The rotation detector according to claim 16, wherein the signal processing unit determines the rotation direction of the rotation axis based on the polarities of voltage pulses generated by the magnetic detection elements that are different from each other.
  18. 前記回転軸の回転位置を検出する光学式回転検出器をさらに備えた請求項16または17に記載の回転検出器。 The rotation detector according to claim 16 or 17, further comprising an optical rotation detector for detecting the rotation position of the rotation shaft.
  19. 前記回転検出器は電源に接続されており、
    前記電源から前記回転検出器に電力が供給される場合は、前記回転検出器は、前記回転軸の回転量を検出するとともに前記光学式回転検出器により前記回転軸の回転位置を検出し、
    前記電源から前記回転検出器に電力が供給されない場合は、前記回転検出器は、前記電圧変換部から前記信号処理部、及び前記記憶部に駆動電力を供給することで、前記回転軸の回転量を検出する請求項18に記載の回転検出器。
    The rotation detector is connected to a power source and
    When power is supplied from the power source to the rotation detector, the rotation detector detects the amount of rotation of the rotation shaft and the optical rotation detector detects the rotation position of the rotation shaft.
    When power is not supplied from the power source to the rotation detector, the rotation detector supplies driving power from the voltage conversion unit to the signal processing unit and the storage unit, whereby the amount of rotation of the rotation shaft. The rotation detector according to claim 18.
  20. 回転軸を有する回転子と、
    前記回転子と同軸にかつ前記回転子と所定の間隔をあけて設けられた固定子と、
    前記回転軸に取付けられた請求項1~19のいずれか1項に記載の回転検出器と、を少なくとも備えたモータ。
    A rotor with a rotation axis and
    A stator provided coaxially with the rotor and at a predetermined distance from the rotor,
    A motor including at least the rotation detector according to any one of claims 1 to 19, which is attached to the rotating shaft.
PCT/JP2020/021554 2019-06-21 2020-06-01 Rotation detector, and motor comprising same WO2020255682A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-115853 2019-06-21
JP2019115853 2019-06-21
JP2019173399A JP2022116385A (en) 2019-06-21 2019-09-24 Rotation detector and motor having the same
JP2019-173399 2019-09-24

Publications (1)

Publication Number Publication Date
WO2020255682A1 true WO2020255682A1 (en) 2020-12-24

Family

ID=74037096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021554 WO2020255682A1 (en) 2019-06-21 2020-06-01 Rotation detector, and motor comprising same

Country Status (1)

Country Link
WO (1) WO2020255682A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220196442A1 (en) * 2020-12-18 2022-06-23 Texas Instruments Incorporated Capacitive-sensing rotary encoder

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4217512A (en) * 1978-04-19 1980-08-12 Robert Bosch Gmbh Apparatus for generating a pulse when a first member passes a second member using permanent magnets with different strengths
JPS56132018A (en) * 1980-02-22 1981-10-16 Bosch Gmbh Robert Pulse oscillator
JPS5767821A (en) * 1980-10-16 1982-04-24 Sumitomo Electric Ind Ltd Measuring device for rotational frequency
JPH04122378U (en) * 1991-03-15 1992-11-02 株式会社トーキン pulse generator
JP2008014799A (en) * 2006-07-06 2008-01-24 Yaskawa Electric Corp Absolute value encoder device
DE102009019719A1 (en) * 2009-05-05 2010-11-11 Attosensor Gmbh Energy-independent magnetic detection arrangement for detecting absolute positions and rotation of e.g. hollow shaft, has magnets arranged on radius of carrier element such that shaft rotation is divided into angular sections

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4217512A (en) * 1978-04-19 1980-08-12 Robert Bosch Gmbh Apparatus for generating a pulse when a first member passes a second member using permanent magnets with different strengths
JPS56132018A (en) * 1980-02-22 1981-10-16 Bosch Gmbh Robert Pulse oscillator
JPS5767821A (en) * 1980-10-16 1982-04-24 Sumitomo Electric Ind Ltd Measuring device for rotational frequency
JPH04122378U (en) * 1991-03-15 1992-11-02 株式会社トーキン pulse generator
JP2008014799A (en) * 2006-07-06 2008-01-24 Yaskawa Electric Corp Absolute value encoder device
DE102009019719A1 (en) * 2009-05-05 2010-11-11 Attosensor Gmbh Energy-independent magnetic detection arrangement for detecting absolute positions and rotation of e.g. hollow shaft, has magnets arranged on radius of carrier element such that shaft rotation is divided into angular sections

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220196442A1 (en) * 2020-12-18 2022-06-23 Texas Instruments Incorporated Capacitive-sensing rotary encoder
US11747174B2 (en) * 2020-12-18 2023-09-05 Texas Instruments Incorporated Capacitive-sensing rotary encoder

Similar Documents

Publication Publication Date Title
JP5880577B2 (en) Motor, motor system and motor encoder
JP4592435B2 (en) Small motor with encoder
JP5216462B2 (en) Rotary encoder and operation method thereof
JP5666886B2 (en) Rotary encoder
JP5895774B2 (en) motor
JP6020184B2 (en) motor
JP4169536B2 (en) Actuator
JP6511137B2 (en) Brushless motor
JP5128120B2 (en) Rotation sensor
EP2938971A1 (en) Integrated multi-turn absolute position sensor for high pole count motors
JP6221676B2 (en) Starter generator with signal output function for engine control
WO2020255682A1 (en) Rotation detector, and motor comprising same
WO2021044758A1 (en) Rotation detector and motor equipped with same
JP5802297B2 (en) Motion detection device
JPWO2005040730A1 (en) Rotation angle detector
JP5511748B2 (en) Motion detection device
WO2021215076A1 (en) Rotation detector
JPWO2021044758A5 (en)
JP5421198B2 (en) Rotation angle detector
JP6165480B2 (en) PM stepping motor
JP4336070B2 (en) Rotary position detector
JP2022116385A (en) Rotation detector and motor having the same
JPH1164354A (en) Rotational speed detector
JP2018054573A (en) Encoder device, driving device, stage device, and robot device
JP2022079329A (en) Encoder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20826601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20826601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP