WO2021215076A1 - Rotation detector - Google Patents

Rotation detector Download PDF

Info

Publication number
WO2021215076A1
WO2021215076A1 PCT/JP2021/004505 JP2021004505W WO2021215076A1 WO 2021215076 A1 WO2021215076 A1 WO 2021215076A1 JP 2021004505 W JP2021004505 W JP 2021004505W WO 2021215076 A1 WO2021215076 A1 WO 2021215076A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotation
magnet
power generation
magnetic sensor
power
Prior art date
Application number
PCT/JP2021/004505
Other languages
French (fr)
Japanese (ja)
Inventor
優紀 田中
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202180028950.3A priority Critical patent/CN115427764A/en
Priority to JP2022516852A priority patent/JPWO2021215076A1/ja
Publication of WO2021215076A1 publication Critical patent/WO2021215076A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train

Definitions

  • This disclosure relates to a rotation detector.
  • the present disclosure particularly relates to a rotation detector that detects the rotation of a rotating shaft.
  • Patent Document 1 includes a disk-shaped magnet provided on a shaft and three power generation units composed of a magnetic wire and a pickup coil, and the three power generation units are configured on the end face side of the magnet.
  • a rotation detector is disclosed, which is arranged on each of a plurality of sides of a virtual triangle.
  • an object of the present disclosure is to provide a rotation detector that can be easily miniaturized.
  • the rotation detector includes a first magnet and a second magnet that rotate together with a rotation shaft and are arranged with a first phase difference from each other in the rotation direction of the rotation shaft, and the first magnet and the first magnet.
  • One or more power generation elements that generate power by changing the magnetic field due to the rotation of the second magnet with the rotation axis, and the magnetic field generated by the first magnet that operates based on the power generated by the one or more power generation elements.
  • a plurality of magnetic sensors for detecting the magnetic field generated by the second magnet the first magnet has a first north pole and a radial inner side of the rotation axis from the first north pole.
  • the second magnet has a first S pole arranged in, and the second magnet is arranged inward of the second S pole and the second S pole in the radial direction of the rotation axis. It has the north pole of.
  • the size can be easily reduced.
  • FIG. 1 is a diagram showing a motor including a rotation detector according to the first embodiment. It is a figure which shows the substrate and the rotating plate of the rotation detector of FIG.
  • FIG. 3 is a block diagram showing a functional configuration of the rotation detector of FIG.
  • FIG. 4 is a diagram for explaining a determination operation of the rotation detector of FIG. 1 when the rotation axis is rotated counterclockwise.
  • FIG. 5 is a diagram for explaining a determination operation of the rotation detector of FIG. 1 when the rotation axis is rotated clockwise.
  • FIG. 6 is a diagram showing a table showing the states of one or more power generation elements and the first to fourth magnetic sensors at each rotation position.
  • FIG. 7 is a diagram showing a table showing a predetermined displacement of a predetermined rotation position of the rotation shaft.
  • FIG. 8 is a diagram showing a rotation detector according to the second embodiment.
  • FIG. 9 is a diagram showing a modified example of the rotation detector according to the second embodiment.
  • FIG. 10 is a diagram showing a rotation detector according to the third embodiment.
  • FIG. 11 is a diagram showing a modified example of the rotation detector according to the third embodiment.
  • FIG. 12 is a diagram showing a rotating plate of the rotation detector according to the fourth embodiment.
  • FIG. 13 is a diagram showing a rotating plate of the rotation detector according to the fifth embodiment.
  • FIG. 14 is a diagram showing another example of the arrangement of the first magnet and the second magnet.
  • FIG. 15 is a diagram showing another example of arrangement of one or more power generation elements.
  • FIG. 16 is a diagram showing another example of the arrangement of the plurality of magnetic sensors.
  • FIG. 17 is a diagram showing a rotation detector according to another embodiment.
  • FIG. 18 is a diagram showing a rotation detector according to another embodiment.
  • each figure is a schematic view and is not necessarily exactly illustrated.
  • substantially the same configuration is designated by the same reference numerals, and duplicate description will be omitted or simplified.
  • FIG. 1 is a diagram showing a motor 1 including a rotation detector 14 according to the first embodiment.
  • FIG. 2 is a diagram showing a substrate 18 and a rotating plate 16 of the rotation detector 14 of FIG. In FIG. 2, (a) shows the substrate 18 of the rotation detector 14 of FIG. 1, and (b) shows the rotating plate 16 of the rotation detector 14 of FIG. In FIG. 1, the case 12 is shown in cross section.
  • the configuration of the rotation detector 14 according to the first embodiment and the motor 1 including the rotation detector 14 will be described with reference to FIGS. 1 and 2.
  • the motor 1 includes a main body 4, a rotor 6, a stator 8, a rotating shaft 10, a case 12, and a rotation detector 14.
  • the axial direction of the rotating shaft 10 is the direction indicated by the arrow X in FIG.
  • the radial direction of the rotating shaft 10 is the direction indicated by the arrow Y in FIG.
  • the circumferential direction of the rotating shaft 10 is the direction indicated by the arrow Z in FIG.
  • the radial and circumferential directions of the rotating shaft 10 are orthogonal to the axial direction.
  • the rotor 6 and the stator 8 are housed in the main body 4.
  • the rotor 6 rotates with respect to the stator 8.
  • the rotating shaft 10 has a rod shape such as a columnar shape.
  • the rotating shaft 10 is fixed to the rotor 6.
  • the rotating shaft 10 rotates around the axis A of the rotating shaft 10.
  • the rotation direction of the rotation shaft 10 coincides with the circumferential direction of the rotation shaft 10 (see arrow Z in FIG. 2).
  • a rotation detector 14 is provided at one end of the rotation shaft 10 in the axial direction.
  • a load (not shown) or the like that is rotationally driven by the rotation of the rotating shaft 10 is attached to the other end of the rotating shaft 10 in the axial direction.
  • the rotating shaft 10 is made of a magnetic metal such as iron.
  • the case 12 is attached to the main body 4 so as to cover one end of the rotating shaft 10 in the axial direction and the rotation detector 14.
  • the case 12 is made of a magnetic metal such as iron.
  • the rotation detector 14 detects the rotation of the rotation shaft 10. Specifically, the rotation detector 14 detects the rotation position of the rotation shaft 10, the rotation direction of the rotation shaft 10, the rotation speed of the rotation shaft 10, and the like.
  • the rotation detector 14 is an absolute encoder. As described above, the rotation detector 14 is provided at one end of the rotation shaft 10 in the axial direction. As shown in FIGS. 1 and 2, the rotation detector 14 includes a rotating plate 16, a substrate 18, a first magnet 20, a second magnet 22, and one or more power generation elements (24, 26) described later. , A plurality of magnetic sensors (46, 48, 50, 52) described later, and a control circuit 36.
  • the rotating plate 16 extends in a direction orthogonal to the axial direction of the rotating shaft 10.
  • the rotating plate 16 has a disk shape having a main surface extending in a direction orthogonal to the axial direction of the rotating shaft 10.
  • the rotating plate 16 is circular when viewed from the axial direction of the rotating shaft 10.
  • the rotary plate 16 is attached to one end of the rotary shaft 10 in the axial direction.
  • the axis of the rotating plate 16 and the axis A of the rotating shaft 10 coincide with each other.
  • the rotating plate 16 rotates together with the rotating shaft 10.
  • the substrate 18 extends in a direction orthogonal to the axial direction of the rotating shaft 10.
  • the substrate 18 has a disk shape having a main surface extending in a direction orthogonal to the axial direction of the rotating shaft 10.
  • the substrate 18 is circular when viewed from the axial direction of the rotating shaft 10.
  • the substrate 18 is arranged at a distance from one end of the rotating shaft 10 and the rotating plate 16 in the axial direction of the rotating shaft 10, and faces the rotating plate 16.
  • the axis of the substrate 18 and the axis A of the rotating shaft 10 coincide with each other.
  • the substrate 18 is fixed to the inner surface of the case 12 and does not rotate together with the rotating shaft 10.
  • the first magnet 20 and the second magnet 22 are arranged with a first phase difference from each other in the rotation direction of the rotation shaft 10.
  • the first phase difference is 90 °.
  • the first magnet 20 and the second magnet 22 are arranged at positions shifted by 90 ° in the rotation direction of the rotation shaft 10.
  • the first phase difference extends in the radial direction of the rotating shaft 10 and passes through the center in the width direction of the first magnet 20 and the center line B extends in the radial direction of the rotating shaft 10 and extends in the width direction of the second magnet 22. It is an angle formed by the center line C passing through the center of.
  • the first phase difference passes through the center of the first magnet 20 in the direction orthogonal to the direction in which the magnetic poles of the first magnet 20 are lined up (the radial direction of the rotating shaft 10), and is in the radial direction of the rotating shaft 10.
  • a center line C extending in the radial direction of the rotating shaft 10 and passing through the center of the second magnet 22 in a direction orthogonal to the direction in which the magnetic poles of the second magnet 22 are lined up (the radial direction of the rotating shaft 10). It is the angle that makes a difference.
  • the first magnet 20 is a rod-shaped magnet that extends in the radial direction of the rotating shaft 10.
  • the first magnet 20 is arranged on the main surface of the rotating plate 16 on the substrate 18 side.
  • the first magnet 20 has an N pole and an S pole arranged inward in the radial direction of the rotation shaft 10 with respect to the N pole. In this way, the first magnet 20 is arranged so that the north pole and the south pole are aligned in the radial direction of the rotating shaft 10.
  • the rotating shaft 10 rotates, the first magnet 20 rotates together with the rotating plate 16, the second magnet 22, and the rotating shaft 10.
  • the second magnet 22 is a rod-shaped magnet that extends in the radial direction of the rotating shaft 10.
  • the second magnet 22 is arranged on the main surface of the rotating plate 16 on the substrate 18 side.
  • the second magnet 22 is arranged with a first phase difference from the first magnet 20 as described above.
  • the second magnet 22 is arranged at a distance from the first magnet 20 in the rotation direction of the rotation shaft 10.
  • the second magnet 22 is arranged side by side with the first magnet 20 in the direction of the rotation axis 10.
  • the second magnet 22 has an S pole and an N pole arranged inward in the radial direction of the rotation shaft 10 with respect to the S pole. In this way, the second magnet 22 is arranged so that the north pole and the south pole are aligned in the radial direction of the rotating shaft 10.
  • One or more power generation elements include a first power generation element 24 and a second power generation element 26.
  • the first power generation element 24 and the second power generation element 26 generate power by changing the magnetic field due to the rotation of the first magnet 20 and the second magnet 22 together with the rotation shaft 10.
  • the first power generation element 24 and the second power generation element 26 are arranged with a second phase difference from each other in the rotation direction of the rotation shaft 10.
  • the second phase difference is 180 °, and the first power generation element 24 and the second power generation element 26 are arranged at positions shifted by 180 ° in the rotation direction of the rotation shaft 10.
  • the second phase difference extends in the radial direction of the rotating shaft 10 and extends in the radial direction of the rotating shaft 10 with the center line D passing through the center (axis center) of the first magnetic sensing portion 38 (described later). 2 This is the angle formed by the center line E passing through the center (axis center) of the magnetically sensitive portion 42 (described later).
  • the second phase difference and the first phase difference are different.
  • the first power generation element 24 extends in the radial direction of the rotating shaft 10 and is arranged on the main surface of the substrate 18 on the opposite side of the rotating shaft 10 (opposite to the rotating plate 16).
  • the first power generation element 24 has a first magnetic sensitive portion 38 and a first coil 40 wound around the first magnetic sensitive portion 38.
  • the first magnetic sensing portion 38 is a magnetic material extending in the radial direction of the rotating shaft 10.
  • the first magnetic sensing portion 38 is located on the side opposite to the rotating plate 16 of the substrate 18.
  • the first magnetic sensing portion 38 is a magnetic material that exhibits a large Barkhausen effect, and is a Wiegand wire extending in the radial direction of the rotating shaft 10.
  • the Wiegand wire is a magnetic material whose magnetization direction is aligned so as to be one of the longitudinal directions when a magnetic field of a predetermined value or more is applied along the longitudinal direction of the Wiegand wire.
  • the magnetization direction of the Wiegand wire is dramatically reversed, and voltage pulses are induced at both ends of the coil wound around the Wiegand wire. In this way, the first power generation element 24 generates power.
  • the second power generation element 26 extends in the radial direction of the rotating shaft 10 and is arranged on the main surface of the substrate 18 on the opposite side of the rotating shaft 10 (opposite to the rotating plate 16).
  • the second power generation element 26 has a second magnetic sensitive portion 42 and a second coil 44 wound around the second magnetic sensitive portion 42.
  • the second magnetic sensitive portion 42 is a magnetic material extending in the radial direction of the rotating shaft 10.
  • the second magnetic sensitive portion 42 is located on the side opposite to the rotating plate 16 of the substrate 18.
  • the second magnetic sensitive portion 42 is a magnetic material that exhibits a large Barkhausen effect, and is a Wiegand wire that extends in the radial direction of the rotation axis 10.
  • the second power generation element 26 generates power in the same manner as the first power generation element 24.
  • the plurality of magnetic sensors include a first magnetic sensor 46, a second magnetic sensor 48, a third magnetic sensor 50, and a fourth magnetic sensor 52.
  • Each of the first magnetic sensor 46, the second magnetic sensor 48, the third magnetic sensor 50, and the fourth magnetic sensor 52 operates based on the power from the first power generation element 24 when the first power generation element 24 generates power. Then, the magnetic field generated by the first magnet 20 and the magnetic field generated by the second magnet 22 are detected.
  • Each of the first magnetic sensor 46, the second magnetic sensor 48, the third magnetic sensor 50, and the fourth magnetic sensor 52 operates based on the power from the second power generation element 26 when the second power generation element 26 generates power. Then, the magnetic field generated by the first magnet 20 and the magnetic field generated by the second magnet 22 are detected.
  • the first magnetic sensor 46, the second magnetic sensor 48, the third magnetic sensor 50, and the fourth magnetic sensor 52 are arranged on the main surface of the substrate 18 on the rotating shaft 10 side (rotating plate 16 side).
  • the first magnetic sensor 46, the second magnetic sensor 48, the third magnetic sensor 50, and the fourth magnetic sensor 52 are arranged with a phase difference in the rotation direction of the rotation shaft 10.
  • the first magnetic sensor 46, the second magnetic sensor 48, the third magnetic sensor 50, and the fourth magnetic sensor 52 are arranged side by side in the rotation direction of the rotation shaft 10.
  • the first magnetic sensor 46, the second magnetic sensor 48, the third magnetic sensor 50, and the fourth magnetic sensor 52 overlap with the first power generation element 24 and the second power generation element 26 when viewed from the axial direction of the rotating shaft 10. It doesn't become.
  • the first magnetic sensor 46 is arranged with a phase difference of 120 ° from the first magnetic sensing portion 38, and is arranged with a phase difference of 60 ° from the second magnetic sensing portion 42.
  • the second magnetic sensor 48 is arranged with a phase difference of 60 ° from the first magnetic sensing portion 38, and is arranged with a phase difference of 120 ° from the second magnetic sensing portion 42, and is arranged with a phase difference of 120 °. It is arranged with a phase difference of 60 ° from the sensor 46.
  • the third magnetic sensor 50 is arranged with a phase difference of 60 ° from the first magnetic sensing portion 38, and is arranged with a phase difference of 120 ° from the second magnetic sensing portion 42, and is arranged with a phase difference of 120 °. It is arranged with a phase difference of 180 ° from the sensor 46.
  • the fourth magnetic sensor 52 is arranged with a phase difference of 120 ° from the first magnetic sensing portion 38, and is arranged with a phase difference of 60 ° from the second magnetic sensing portion 42, and is arranged with a phase difference of 60 °. It is arranged with a phase difference of 120 ° from the sensor 46.
  • the control circuit 36 is arranged at the center of the main surface of the substrate 18 on the rotating shaft 10 side (rotating plate 16 side).
  • the control circuit 36 is electrically connected to the first power generation element 24 and the like. Details of the control circuit 36 will be described later.
  • FIG. 3 is a block diagram showing a functional configuration of the rotation detector 14 of FIG. The functional configuration of the rotation detector 14 will be described with reference to FIG.
  • the control circuit 36 includes a full-wave rectifier unit 54, a voltage regulator 56, a disconnection diagnosis unit 58, and a backflow prevention switch 60.
  • the full-wave rectifying unit 54 is connected to the first power generation element 24 and rectifies the voltage pulse generated by the first power generation element 24.
  • the voltage regulator 56 outputs a constant voltage with the ground potential as the reference potential and the voltage between the terminals of the capacitor charged by the output voltage of the full-wave rectifying unit 54 as the input voltage.
  • the output voltage of the voltage regulator 56 is supplied to the first magnetic sensor 46, the second magnetic sensor 48, the third magnetic sensor 50, the fourth magnetic sensor 52, the information processing unit 82 (described later), and the like (black in FIG. 3). See diamond).
  • the voltage is output from the voltage regulator 56 during the period when the first power generation element 24 generates power and generates a voltage pulse.
  • the voltage from the voltage regulator 56 is the first magnetic sensor 46, the second magnetic sensor 48, the third magnetic sensor 50, and the fourth magnetic sensor. It is supplied to 52, the information processing unit 82, and the like, and these operate.
  • the voltage regulator 56 is an LDO (Low Drop Out) regulator.
  • the disconnection diagnosis unit 58 is connected to the input terminal of the full-wave rectifier unit 54 to diagnose the presence or absence of disconnection.
  • the backflow prevention switch 60 is connected in series between the full-wave rectifying unit 54 and the voltage regulator 56 to prevent current from flowing from the voltage regulator 56 to the full-wave rectifying unit 54.
  • the control circuit 36 further includes a full-wave rectifier unit 62, a voltage regulator 64, a disconnection diagnosis unit 66, and a backflow prevention switch 68.
  • the full-wave rectifying unit 62 is connected to the second power generation element 26 and rectifies the voltage pulse generated by the second power generation element 26.
  • the voltage regulator 64 outputs a constant voltage with the ground potential as the reference potential and the voltage between the terminals of the capacitor charged by the output voltage of the full-wave rectifying unit 62 as the input voltage.
  • the output voltage of the voltage regulator 64 is supplied to the first magnetic sensor 46, the second magnetic sensor 48, the third magnetic sensor 50, the fourth magnetic sensor 52, the information processing unit 82 (described later), and the like (black in FIG. 3). See diamond).
  • the voltage is output from the voltage regulator 64 during the period when the second power generation element 26 generates power and generates a voltage pulse.
  • the voltage from the voltage regulator 64 is the first magnetic sensor 46, the second magnetic sensor 48, the third magnetic sensor 50, and the fourth magnetic sensor. It is supplied to 52, the information processing unit 82, and the like, and these operate.
  • the voltage regulator 64 is an LDO (Low Drop Out) regulator.
  • the disconnection diagnosis unit 66 is connected to the input terminal of the full-wave rectifier unit 62 to diagnose the presence or absence of disconnection.
  • the backflow prevention switch 68 is connected in series between the full-wave rectifying unit 62 and the voltage regulator 64 to prevent current from flowing from the voltage regulator 64 to the full-wave rectifying unit 62.
  • the control circuit 36 further includes a comparator 70, 72, 74, 76, 78, 80, an information processing unit 82, a storage unit 84, and a communication unit 86.
  • the comparator 70 receives the detection signal of the first magnetic sensor 46, compares it with a predetermined voltage value, and outputs the output voltage, which is the comparison result, to the information processing unit 82.
  • the comparator 72 receives the detection signal of the second magnetic sensor 48, compares it with a predetermined voltage value, and outputs the output voltage, which is the comparison result, to the information processing unit 82.
  • the comparator 74 receives the detection signal of the third magnetic sensor 50, compares it with a predetermined voltage value, and outputs the output voltage, which is the comparison result, to the information processing unit 82.
  • the comparator 76 receives the detection signal of the fourth magnetic sensor 52, compares it with a predetermined voltage value, and outputs the output voltage, which is the comparison result, to the information processing unit 82.
  • the comparator 78 receives the output voltage of the voltage regulator 56, compares it with a predetermined voltage value, and outputs the output voltage, which is the comparison result, to the information processing unit 82.
  • the comparator 80 receives the output voltage of the voltage regulator 64, compares it with a predetermined voltage value, and outputs the output voltage, which is the comparison result, to the information processing unit 82.
  • the information processing unit 82 uses the power generation information indicating which of the one or more power generation elements has generated power and the detection information including the detection results of the first to fourth magnetic sensors 46, 48, 50, 52 to rotate the axis of rotation. At least one of the rotation position and the rotation direction of 10 may be determined, and the determination result may be stored in the storage unit 84. Preferably, the information processing unit 82 determines both the rotation position and the rotation direction of the rotation shaft 10, and stores the determination result in the storage unit 84. The information processing unit 82 determines which of the one or more power generation elements generated power, that is, which of the first power generation element 24 and the second power generation element 26 generated power, based on the output voltages from the comparators 78 and 80. do. The information processing unit 82 determines the detection results of the first to fourth magnetic sensors 46, 48, 50, and 52 based on the output voltages from the comparators 70, 72, 74, and 76.
  • the information processing unit 82 determines the rotation position of the rotation shaft 10 using the detection information each time one or more power generation elements generate power.
  • the information processing unit 82 stores the determined rotation position of the rotation shaft 10 in the storage unit 84.
  • the information processing unit 82 counts used to calculate the rotation speed of the rotation shaft 10 based on the rotation position of the rotation shaft 10 determined this time and the rotation position of the rotation shaft 10 previously determined stored in the storage unit 84.
  • the value is updated and the count value is stored in the storage unit 84.
  • the information processing unit 82 increments the count value each time the rotation shaft 10 makes one rotation counterclockwise.
  • the information processing unit 82 decrements the count value each time the rotation shaft 10 makes one rotation clockwise.
  • clockwise means clockwise when viewed from the side opposite to the rotating plate 16 of the substrate 18 in the axial direction of the rotating shaft 10.
  • the counterclockwise direction means a counterclockwise direction when viewed from the side opposite to the rotating plate 16 of the substrate 18 in the axial direction of the rotating shaft 10. The same applies to the following description.
  • the information processing unit 82 associates the rotation position of the rotation shaft 10 with the power generation information and stores it in the storage unit 84. As a result, the rotational position of the rotating shaft 10 when the first power generation element 24 and the second power generation element 26 generate power can be known.
  • the storage unit 84 stores the rotation position, rotation direction, and the like of the rotation shaft 10.
  • the storage unit 84 is composed of a non-volatile memory such as FRAM (Ferroelectric Random Access Memory, registered trademark).
  • the communication unit 86 is connected to an ASIC (Application Specific Integrated Circuit, an integrated circuit for a specific purpose) so as to be able to communicate by wire or wirelessly.
  • ASIC Application Specific Integrated Circuit
  • FIG. 4 is a diagram for explaining the determination operation of the rotation detector 14 of FIG. 1 when the rotation shaft 10 is rotated counterclockwise
  • FIG. 4A is a diagram in which the arrow F is located at the position I.
  • (B) is the state where the arrow F is located at the position II
  • (c) is the state where the arrow F is located at the position III
  • (d) is the state where the arrow F is located at the position IV.
  • 5A and 5B are views for explaining the determination operation of the rotation detector 14 of FIG. 1 when the rotation shaft 10 is rotated clockwise
  • FIG. 5A is a diagram in which the arrow F is located at the position V.
  • FIG. 6 is a diagram showing a table showing the states of one or more power generation elements and the first to fourth magnetic sensors 46, 48, 50, 52 at each rotation position.
  • CCW Counter ClockWise
  • CW LockWise
  • FIG. 7 is a diagram showing a table showing a predetermined displacement of a predetermined rotation position of the rotation shaft 10.
  • a position between the first magnet 20 and the second magnet 22 in the rotation direction of the rotation shaft 10 is indicated by a virtual arrow F. .. Specifically, the arrow F is at a position having a phase difference of 45 ° from the first magnet 20 and a position having a phase difference of 45 ° from the second magnet 22 in the rotation direction of the rotation shaft 10. ..
  • the direction in which the first power generation element 24 is arranged when viewed from the axial center (center in the radial direction) of the substrate 18 is 0 ° (360 °) in the rotation direction of the rotation shaft 10.
  • the position of 330 ° is referred to as position I
  • the position of 240 ° is referred to as position II
  • the position of 150 ° is referred to as position III
  • the position of 60 ° is referred to as position IV.
  • the position of 30 ° will be referred to as position V
  • the position of 120 ° will be referred to as position VI
  • the position of 210 ° will be referred to as position VII
  • the position of 300 ° will be referred to as position VIII.
  • the first power generation element 24 is magnetized by the first magnet 20 whose north pole is located outside the south pole, and the second power generation element 26 has the north pole located outside the south pole.
  • the state of being magnetized by the first magnet 20 is described as a HIGH state.
  • the first power generation element 24 is magnetized by the second magnet 22 whose S pole is located outside the N pole, and the second power generation element 26 has the S pole located outside the N pole.
  • the state of being magnetized by the second magnet 22 is described as a LOW state.
  • the first power generation element 24 and the second power generation element 26 generate power when the state changes from the HIGH state to the LOW state and when the state changes from the LOW state to the HIGH state.
  • FIG. 6 the case of transitioning from the HIGH state to the LOW state to generate electricity is indicated by ⁇ , and the case of transitioning from the LOW state to the HIGH state to generate electricity is indicated by ⁇ .
  • the first magnetic sensor 46 When the first magnet 20 or the second magnet 22 is located near the first magnetic sensor 46, the first magnetic sensor 46 outputs a high level signal, and the first magnet 20 and the second magnet 22 Is not located in the vicinity of the first magnetic sensor 46, the first magnetic sensor 46 will be described as outputting a low level signal.
  • the second magnetic sensor 48 outputs a high level signal, and the first magnet 20 and the second magnet When 22 is not located in the vicinity of the second magnetic sensor 48, the second magnetic sensor 48 will be described as outputting a low level signal.
  • the third magnetic sensor 50 When the first magnet 20 or the second magnet 22 is located in the vicinity of the third magnetic sensor 50, the third magnetic sensor 50 outputs a high level signal, and the first magnet 20 and the second magnet 22 are second. 3 When not located in the vicinity of the magnetic sensor 50, the third magnetic sensor 50 will be described as outputting a low level signal.
  • the fourth magnetic sensor 52 When the first magnet 20 or the second magnet 22 is located in the vicinity of the fourth magnetic sensor 52, the fourth magnetic sensor 52 outputs a high level signal, and the first magnet 20 and the second magnet 22 are second. 4 When not located in the vicinity of the magnetic sensor 52, the fourth magnetic sensor 52 will be described as outputting a low level signal.
  • the HIGH state, the LOW state, the high level and the low level are displayed as H, L, h, and l, respectively.
  • the second magnet 22 is located near the first power generation element 24, and the first power generation element 24 is magnetized by the second magnet 22. ..
  • the first power generation element 24 transitions from the HIGH state to the LOW state and generates power.
  • the second power generation element 26 remains in the LOW state and does not generate power.
  • at least a part of the first magnet 20 is within a range of 30 ° centered on the first magnetic sensitive portion 38 in the rotating direction of the rotating shaft 10. Is located, the first magnet 20 will be described as being located in the vicinity of the first power generation element 24.
  • the second magnet 22 When at least a part of the second magnet 22 is located within a range of 30 ° centered on the first magnetic sensing portion 38, it is assumed that the second magnet 22 is located in the vicinity of the first power generation element 24. explain. The same applies to the second power generation element 26.
  • the first to fourth magnetic sensors 46, 48, 50, 52 operate based on the electric power from the first power generation element 24.
  • the first magnet 20 is located near the third magnetic sensor 50. Therefore, the third magnetic sensor 50 outputs a high level signal.
  • the first magnet 20 and the second magnet 22 are not located in the vicinity of the first magnetic sensor 46, the second magnetic sensor 48, and the fourth magnetic sensor 52, and the first magnetic sensor 46 and the second magnetic sensor The 48 and the fourth magnetic sensor 52 output a low level signal.
  • the first magnet 20 when viewed from the axial direction of the rotating shaft 10, at least a part of the first magnet 20 is within a range of 30 ° centered on the third magnetic sensor 50 in the rotating direction of the rotating shaft 10. If it is located, the first magnet 20 will be described as being located in the vicinity of the third magnetic sensor 50. When at least a part of the second magnet 22 is located within a range of 30 ° centered on the third magnetic sensor 50, it is assumed that the second magnet 22 is located in the vicinity of the third magnetic sensor 50. do. The same applies to the first magnetic sensor 46, the second magnetic sensor 48, and the fourth magnetic sensor 52.
  • the first power generation element 24 when the arrow F is located at the position I, the first power generation element 24 generates power, the second power generation element 26 does not generate power, the third magnetic sensor 50 outputs a high level signal, and the third magnetic sensor 50 outputs a high level signal.
  • the 1 magnetic sensor 46, the 2nd magnetic sensor 48, and the 4th magnetic sensor 52 output a low level signal. Therefore, in the information processing unit 82, the first power generation element 24 is generating power, the second power generation element 26 is not generating power, the third magnetic sensor 50 outputs a high level signal, and the first magnetic sensor 46 , The second magnetic sensor 48, and the fourth magnetic sensor 52 output a low level signal, it is determined that the arrow F is located near the position I.
  • the first magnet 20 is located near the second power generation element 26, and the second magnet 20 is located.
  • the power generation element 26 is magnetized by the first magnet 20.
  • the second power generation element 26 transitions from the LOW state to the HIGH state and generates power.
  • the first power generation element 24 remains in the LOW state and does not generate power.
  • the first to fourth magnetic sensors 46, 48, 50, 52 operate based on the electric power from the second power generation element 26.
  • the second magnet 22 is located near the third magnetic sensor 50. Therefore, the third magnetic sensor 50 outputs a high level signal.
  • the first magnet 20 and the second magnet 22 are not located in the vicinity of the first magnetic sensor 46, the second magnetic sensor 48, and the fourth magnetic sensor 52, and the first magnetic sensor 46 and the second magnetic sensor The 48 and the fourth magnetic sensor 52 output a low level signal.
  • the second power generation element 26 when the arrow F is located at the position II, the second power generation element 26 generates power, the first power generation element 24 does not generate power, the third magnetic sensor 50 outputs a high level signal, and the third magnetic sensor 50 outputs a high level signal.
  • the 1 magnetic sensor 46, the 2nd magnetic sensor 48, and the 4th magnetic sensor 52 output a low level signal. Therefore, in the information processing unit 82, the second power generation element 26 is generating power, the first power generation element 24 is not generating power, the third magnetic sensor 50 outputs a high level signal, and the first magnetic sensor 46 , The second magnetic sensor 48, and the fourth magnetic sensor 52 output a low level signal, it is determined that the arrow F is located in the vicinity of the position II.
  • the second magnet 22 is located near the second power generation element 26, and the second magnet 22 is located.
  • the power generation element 26 is magnetized by the second magnet 22.
  • the second power generation element 26 transitions from the HIGH state to the LOW state and generates power.
  • the first power generation element 24 remains in the LOW state and does not generate power.
  • the first to fourth magnetic sensors 46, 48, 50, 52 operate based on the electric power from the second power generation element 26.
  • the first magnet 20 is located near the first magnetic sensor 46. Therefore, the first magnetic sensor 46 outputs a high level signal.
  • the first magnet 20 and the second magnet 22 are not located in the vicinity of the second magnetic sensor 48, the third magnetic sensor 50, and the fourth magnetic sensor 52, and the second magnetic sensor 48 and the third magnetic sensor The 50 and the fourth magnetic sensor 52 output a low level signal.
  • the second power generation element 26 when the arrow F is located at the position III, the second power generation element 26 generates power, the first power generation element 24 does not generate power, the first magnetic sensor 46 outputs a high level signal, and the first The 2 magnetic sensor 48, the 3rd magnetic sensor 50, and the 4th magnetic sensor 52 output a low level signal. Therefore, in the information processing unit 82, the second power generation element 26 is generating power, the first power generation element 24 is not generating power, the first magnetic sensor 46 outputs a high level signal, and the second magnetic sensor 48 , The third magnetic sensor 50, and the fourth magnetic sensor 52 output a low level signal, it is determined that the arrow F is located in the vicinity of the position III.
  • the first magnet 20 is located near the first power generation element 24, and the first magnet 20 is located.
  • the power generation element 24 is magnetized by the first magnet 20.
  • the first power generation element 24 transitions from the LOW state to the HIGH state and generates power.
  • the second power generation element 26 remains in the LOW state and does not generate power.
  • the first to fourth magnetic sensors 46, 48, 50, 52 operate based on the electric power from the first power generation element 24.
  • the second magnet 22 is located near the first magnetic sensor 46. Therefore, the first magnetic sensor 46 outputs a high level signal.
  • the first magnet 20 and the second magnet 22 are not located in the vicinity of the second magnetic sensor 48, the third magnetic sensor 50, and the fourth magnetic sensor 52, and the second magnetic sensor 48 and the third magnetic sensor The 50 and the fourth magnetic sensor 52 output a low level signal.
  • the first power generation element 24 when the arrow F is located at the position IV, the first power generation element 24 generates power, the second power generation element 26 does not generate power, the first magnetic sensor 46 outputs a high level signal, and the second The 2 magnetic sensor 48, the 3rd magnetic sensor 50, and the 4th magnetic sensor 52 output a low level signal. Therefore, in the information processing unit 82, the first power generation element 24 is generating power, the second power generation element 26 is not generating power, the first magnetic sensor 46 outputs a high level signal, and the second magnetic sensor 48 , The third magnetic sensor 50, and the fourth magnetic sensor 52 output a low level signal, it is determined that the arrow F is located in the vicinity of the position IV.
  • the first power generation element 24 When the rotating shaft 10 further rotates counterclockwise and the arrow F is repositioned at the position I as shown in FIG. 4A, the first power generation element 24 generates power and the second power generation as described above.
  • the element 26 does not generate electricity
  • the third magnetic sensor 50 outputs a high level signal
  • the first magnetic sensor 46, the second magnetic sensor 48, and the fourth magnetic sensor 52 output a low level signal.
  • the information processing unit 82 increments the count value of the rotation speed. Specifically, the information processing unit 82 adds 1 to the count value of the current rotation speed. As a result, when the initial value of the count value is 0, the count value becomes 1, and it can be seen that the rotation axis 10 has rotated once counterclockwise. When the rotation shaft 10 further rotates once counterclockwise, the information processing unit 82 further adds 1 and the count value becomes 2. As a result, it can be seen that the rotation shaft 10 has rotated twice counterclockwise.
  • the first magnet 20 is located near the first power generation element 24, and the first power generation element 24 is magnetized by the first magnet 20. ..
  • the first power generation element 24 transitions from the LOW state to the HIGH state and generates power.
  • the second power generation element 26 remains in the HIGH state and does not generate power.
  • the first to fourth magnetic sensors 46, 48, 50, 52 operate based on the electric power from the first power generation element 24.
  • the second magnet 22 is located in the vicinity of the second magnetic sensor 48. Therefore, the second magnetic sensor 48 outputs a high level signal.
  • the first magnet 20 and the second magnet 22 are not located in the vicinity of the first magnetic sensor 46, the third magnetic sensor 50, and the fourth magnetic sensor 52, and the first magnetic sensor 46 and the third magnetic sensor 22 are not located.
  • the 50 and the fourth magnetic sensor 52 output a low level signal.
  • the first power generation element 24 when the arrow F is located at the position V, the first power generation element 24 generates power, the second power generation element 26 does not generate power, the second magnetic sensor 48 outputs a high level signal, and the second The 1 magnetic sensor 46, the 3rd magnetic sensor 50, and the 4th magnetic sensor 52 output a low level signal. Therefore, in the information processing unit 82, the first power generation element 24 is generating power, the second power generation element 26 is not generating power, the second magnetic sensor 48 outputs a high level signal, and the first magnetic sensor 46 , The third magnetic sensor 50, and the fourth magnetic sensor 52 output a low level signal, it is determined that the arrow F is located in the vicinity of the position V.
  • the second magnet 22 is located near the second power generation element 26, and the second power generation is performed.
  • the element 26 is magnetized by the second magnet 22.
  • the second power generation element 26 transitions from the HIGH state to the LOW state and generates power.
  • the first power generation element 24 remains in the HIGH state and does not generate power.
  • the first to fourth magnetic sensors 46 to 52 operate based on the electric power from the second power generation element 26.
  • the first magnet 20 is located in the vicinity of the second magnetic sensor 48. Therefore, the second magnetic sensor 48 outputs a high level signal.
  • the first magnet 20 and the second magnet 22 are not located in the vicinity of the first magnetic sensor 46, the third magnetic sensor 50, and the fourth magnetic sensor 52, and the first magnetic sensor 46 and the third magnetic sensor 22 are not located.
  • the 50 and the fourth magnetic sensor 52 output a low level signal.
  • the second power generation element 26 when the arrow F is located at the position VI, the second power generation element 26 generates power, the first power generation element 24 does not generate power, the second magnetic sensor 48 outputs a high level signal, and the second The 1 magnetic sensor 46, the 3rd magnetic sensor 50, and the 4th magnetic sensor 52 output a low level signal. Therefore, in the information processing unit 82, the second power generation element 26 is generating power, the first power generation element 24 is not generating power, the second magnetic sensor 48 outputs a high level signal, and the first magnetic sensor 46 , The third magnetic sensor 50, and the fourth magnetic sensor 52 output a low level signal, it is determined that the arrow F is located in the vicinity of the position VI.
  • the first magnet 20 is located near the second power generation element 26 and the second power generation is performed.
  • the element 26 is magnetized by the first magnet 20.
  • the second power generation element 26 transitions from the LOW state to the HIGH state and generates power.
  • the first power generation element 24 remains in the HIGH state and does not generate power.
  • the first to fourth magnetic sensors 46, 48, 50, 52 operate based on the electric power from the second power generation element 26.
  • the arrow F is located at position VII
  • the second magnet 22 is located near the fourth magnetic sensor 52. Therefore, the fourth magnetic sensor 52 outputs a high level signal.
  • the first magnet 20 and the second magnet 22 are not located in the vicinity of the first magnetic sensor 46, the second magnetic sensor 48, and the third magnetic sensor 50, and the first magnetic sensor 46 and the second magnetic sensor are not located.
  • the 48 and the third magnetic sensor 50 output a low level signal.
  • the second power generation element 26 when the arrow F is located at the position VII, the second power generation element 26 generates power, the first power generation element 24 does not generate power, the fourth magnetic sensor 52 outputs a high level signal, and the second The 1 magnetic sensor 46, the 2nd magnetic sensor 48, and the 3rd magnetic sensor 50 output a low level signal. Therefore, in the information processing unit 82, the second power generation element 26 is generating power, the first power generation element 24 is not generating power, the fourth magnetic sensor 52 outputs a high level signal, and the first magnetic sensor 46 , The second magnetic sensor 48, and the third magnetic sensor 50 output a low level signal, it is determined that the arrow F is located in the vicinity of the position VII.
  • the second magnet 22 is located near the first power generation element 24 and the first power generation is performed.
  • the element 24 is magnetized by the second magnet 22.
  • the first power generation element 24 transitions from the HIGH state to the LOW state and generates power.
  • the second power generation element 26 remains in the HIGH state and does not generate power.
  • the first to fourth magnetic sensors 46, 48, 50, 52 operate based on the electric power from the first power generation element 24.
  • the arrow F is located at position VIII
  • the first magnet 20 is located near the fourth magnetic sensor 52. Therefore, the fourth magnetic sensor 52 outputs a high level signal.
  • the first magnet 20 and the second magnet 22 are not located in the vicinity of the first magnetic sensor 46, the second magnetic sensor 48, and the third magnetic sensor 50, and the first magnetic sensor 46 and the second magnetic sensor are not located.
  • the 48 and the third magnetic sensor 50 output a low level signal.
  • the first power generation element 24 when the arrow F is located at the position VIII, the first power generation element 24 generates power, the second power generation element 26 does not generate power, the fourth magnetic sensor 52 outputs a high level signal, and the second The 1 magnetic sensor 46, the 2nd magnetic sensor 48, and the 3rd magnetic sensor 50 output a low level signal. Therefore, in the information processing unit 82, the first power generation element 24 is generating power, the second power generation element 26 is not generating power, the fourth magnetic sensor 52 outputs a high level signal, and the first magnetic sensor 46 , The second magnetic sensor 48, and the third magnetic sensor 50 output a low level signal, it is determined that the arrow F is located near the position VIII.
  • the first power generation element 24 When the rotating shaft 10 further rotates clockwise and the arrow F is repositioned at the position V as shown in FIG. 5A, the first power generation element 24 generates power and the second power generation element generates power as described above. 26 does not generate electricity, the second magnetic sensor 48 outputs a high level signal, and the first magnetic sensor 46, the third magnetic sensor 50, and the fourth magnetic sensor 52 output a low level signal.
  • the information processing unit 82 decrements the count value of the rotation speed. Specifically, the information processing unit 82 subtracts 1 from the current count value. As a result, when the initial value of the count value is 0, the count value becomes -1, and it can be seen that the rotation axis 10 has rotated once clockwise. When the rotation shaft 10 further rotates once clockwise, the information processing unit 82 further subtracts 1 and the count value becomes -2. As a result, it can be seen that the rotating shaft 10 has rotated twice clockwise.
  • the information processing unit 82 determines which of the first power generation element 24 and the second power generation element 26 is generating power, and the first magnetic sensor 46, the second magnetic sensor 48, and the third. Based on the detection results of the magnetic sensor 50 and the fourth magnetic sensor 52, the position of the arrow F, that is, the rotation position of the rotation shaft 10 and the rotation direction are determined.
  • FIG. 7 is a diagram showing a table showing a predetermined displacement of a predetermined rotation position of the rotation shaft 10.
  • the displacement that the rotating shaft 10 can take is predetermined.
  • the rotation position this time indicates the rotation position of the rotation shaft 10 determined this time, and indicates the rotation position after displacement.
  • the previous rotation position is a rotation position stored in the storage unit 84 that was determined last time, and indicates a rotation position before displacement.
  • the previous first power generation indicates the rotation position when the first power generation element 24 last generated power before being located at the rotation position after the displacement.
  • the previous second power generation indicates the rotation position when the second power generation element 26 last generated power before being located at the rotation position after the displacement.
  • the displacement where the rotation position of the previous time is the position V, the rotation position of the previous time is the position VIII, the rotation position of the first power generation of the previous time is the position VIII, and the rotation position of the second power generation of the previous time is the position VII is determined.
  • the count is decremented.
  • the displacement is defined such that the rotation position is position I this time, the rotation position last time is position IV, the rotation position of the first power generation last time is position IV, and the rotation position of the second power generation last time is position III.
  • the position of the arrow F is displaced from the position IV to the position I, the count is incremented.
  • the position of the arrow F is displaced in this way, it can be seen that the arrow F has passed in the order of the position III, the position IV, and the position I, and it can be seen that the rotation axis 10 has rotated clockwise.
  • the displacement is defined in which the rotation position this time is the position I, the rotation position last time is the position V, the rotation position of the first power generation last time is the position V, and the rotation position of the second power generation last time is the position VII.
  • the count is incremented.
  • the displacement is defined such that the rotation position this time is the position I, the rotation position last time is the position V, the rotation position of the first power generation last time is the position V, and the rotation position of the second power generation last time is the position III.
  • the count is incremented.
  • the displacement is defined in which the rotation position this time is the position V, the previous rotation position is the position VII, the rotation of the first power generation last time is the position I, and the rotation position of the second power generation last time is the position VII.
  • the count is decremented.
  • the displacement is defined in which the rotation position this time is the position V, the previous rotation position is the position VII, the rotation position of the first power generation last time is the position IV, and the rotation position of the second power generation last time is the position VII.
  • the count is decremented.
  • the arrow F is displaced in this way, it can be seen that the arrow F has passed in the order of position IV, position VI, position VII, position VIII, and position V.
  • the first power generation element 24 should generate power when the arrow F is located at the position VIII, but the rotation position of the first power generation last time is the position IV. From this, it can be seen that the first power generation element 24 did not generate power when the arrow F was located at the position VIII, that is, RUNT was generated.
  • a predetermined displacement of the rotation position of the rotation shaft 10 is defined.
  • the information processing unit 82 determines that the rotation position is the position I this time and the rotation position is the position VIII last time, the displacement from the position VIII to the position I is not in the chart shown in FIG. Therefore, in the information processing unit 82, the displacement from the previously determined rotation position of the rotation shaft 10 stored in the storage unit 84 to the rotation position of the rotation shaft 10 determined this time is other than a predetermined displacement determined in advance. It is a displacement and is judged as an error.
  • the information processing unit 82 stores error information related to the error in the storage unit 84.
  • the rotation detector 14 according to the first embodiment has been described above.
  • the rotation detector 14 in the present embodiment has the first magnet 20 and the second magnet 22 which rotate together with the rotation shaft 10 and are arranged with a first phase difference in the rotation direction of the rotation shaft 10, and the first magnet. It operates based on one or more power generation elements generated by the change in the magnetic field caused by the rotation of the magnet 20 and the second magnet 22 together with the rotating shaft 10, and the power generated by one or more power generation elements, and is generated by the first magnet 20.
  • the first to fourth magnetic sensors 46, 48, 50, 52 for detecting the magnetic field generated by the second magnet 22 and the magnetic field generated by the second magnet 22 are provided, and the first magnet 20 has an N pole and a rotation axis 10 more than the N pole.
  • the second magnet 22 has an S pole arranged inward in the radial direction of the magnet 22 and an N pole arranged inward in the radial direction of the rotation shaft 10 with respect to the S pole. ..
  • the first magnet 20 and the second magnet 22 are arranged with a first phase difference from each other in the rotation direction of the rotation shaft 10, and the first magnet 20 has an N pole and a rotation axis rather than the N pole.
  • the second magnet 22 has an S pole arranged inward in the radial direction of 10 and an N pole arranged inward in the radial direction of the rotation shaft 10 with respect to the S pole. ..
  • one or more power generation elements generate power by changing the magnetic field due to the rotation of the first magnet 20 and the second magnet 22 together with the rotating shaft 10, and the first to fourth magnetic sensors 46, 48, 50, 52 generate electricity.
  • the first to fourth magnetic sensors 46, 48, 50, 52 can be operated by at least one power generation element to detect the rotation position of the rotation shaft 10, so that the rotation detector 14 can be easily miniaturized. Can be transformed into.
  • one or more power generation elements include a first power generation element 24 and a second power generation element 26 that are arranged with a second phase difference from each other in the rotation direction of the rotation shaft 10. Have.
  • the number of times of power generation can be increased by rotating the first magnet 20 and the second magnet 22 together with the rotating shaft 10. Therefore, the number of times that the first to fourth magnetic sensors 46, 48, 50, 52 operate can be increased. As a result, it is possible to prevent the accuracy of detecting the rotation of the rotation shaft 10 from being lowered.
  • the first phase difference and the second phase difference are different.
  • the number of times of power generation due to the rotation of the first magnet 20 and the second magnet 22 together with the rotating shaft 10 can be further increased. Therefore, the number of times that the first to fourth magnetic sensors 46, 48, 50, 52 operate can be further increased. As a result, it is possible to further suppress a decrease in the accuracy of detecting the rotation of the rotation shaft 10.
  • the first to fourth magnetic sensors 46, 48, 50, 52 are arranged with a phase difference in the rotation direction of the rotation shaft 10, and the axial direction of the rotation shaft 10 When viewed from, it does not overlap with one or more power generation elements.
  • the rotation detector 14 in the present embodiment detects the power generation information indicating which of the one or more power generation elements generated power and the detection results of the first to fourth magnetic sensors 46, 48, 50, 52.
  • An information processing unit 82 that determines the rotation position and rotation direction of the rotation shaft 10 by using information, and a storage unit 84 that stores the rotation position and rotation direction of the rotation shaft 10 are further provided.
  • the rotation position (segment within one rotation such as positions I to VIII) and the rotation direction of the rotation shaft 10 can be uniquely determined, and the detected rotation position and rotation direction can be stored.
  • the information processing unit 82 determines and determines the rotation position of the rotation shaft 10 by using the detection information each time one or more power generation elements generate power.
  • the rotation position of the rotation shaft 10 is stored in the storage unit 84, and the rotation shaft 10 is stored based on the rotation position of the rotation shaft 10 determined this time and the rotation position of the rotation shaft 10 previously determined stored in the storage unit 84.
  • the count value used to calculate the number of revolutions of is updated.
  • the rotation shaft is updated by updating the count value used for calculating the rotation speed of the rotation shaft 10 based on the rotation position of the rotation shaft 10 determined this time and the rotation position of the rotation shaft 10 determined last time.
  • the number of rotations of 10 can be calculated.
  • the information processing unit 82 displaces the rotation shaft 10 determined this time from the rotation position of the rotation shaft 10 previously determined stored in the storage unit 84 to the rotation position. However, if the displacement is other than the predetermined displacement, it is determined that the displacement is an error, and the error information related to the error is stored in the storage unit 84.
  • the displacement of the rotating shaft 10 determined this time from the previously determined rotational position of the rotating shaft 10 to the rotational position of the rotating shaft 10 determined this time is a displacement other than a predetermined predetermined displacement, it is determined as an error. Therefore, it is possible to detect an abnormality such as that one or more power generation elements do not generate power normally and the rotation position is determined.
  • the information processing unit 82 determines the rotation position of the rotation shaft 10 using the detection information, and associates the rotation position of the rotation shaft 10 with the power generation information to store the storage unit 84. To memorize.
  • the rotation detector 14 further includes a substrate 18 extending in a direction orthogonal to the axial direction of the rotating shaft 10 and arranged at an interval from one end in the axial direction of the rotating shaft 10.
  • the first to fourth magnetic sensors 46, 48, 50, 52 are arranged on the main surface of the substrate 18 on the rotating shaft 10 side, and one or more power generating elements are on the main surface of the substrate 18 opposite to the rotating shaft 10. Is placed in.
  • the first to fourth magnetic sensors 46, 48, 50, 52 can be easily arranged near the first magnet 20 and the second magnet 22 that rotate together with the rotation shaft 10. Therefore, the first to fourth magnetic sensors 46, 48, 50, and 52 make it easier to detect the magnetic fields generated by the first magnet 20 and the second magnet 22.
  • FIG. 8 is a diagram showing a rotation detector 14a according to the second embodiment.
  • the control circuit 36 and the like are not shown, and the reflection pattern 92 is shown in cross section.
  • the rotation detector 14a is mainly different from the rotation detector 14 in that it further includes a reflective optical sensor 88. In the following description, the differences from the rotation detector 14 will be mainly described.
  • the rotation detector 14a further includes a reflection type optical sensor 88.
  • the optical sensor 88 is an optical encoder having a light receiving / receiving element 90 and a reflection pattern 92 and detecting the rotational position of the rotating shaft 10.
  • the light emitting / receiving element 90 is arranged on the main surface of the substrate 18 on the rotating plate 16 side, and operates based on the electric power from an external power source (not shown).
  • the light emitting / receiving element 90 is arranged outside the first to fourth magnetic sensors 46, 48, 50, 52 in the radial direction of the rotating shaft 10.
  • the light receiving / receiving element 90 faces the reflection pattern 92 in the axial direction of the rotating shaft 10 and emits light toward the reflection pattern 92.
  • the light receiving / receiving element 90 receives the light reflected by the reflection pattern 92.
  • the light reflected by the reflection pattern 92 changes according to the rotation position of the rotation shaft 10.
  • the optical sensor 88 detects the rotational position of the rotating shaft 10 based on the light reflected by the reflection pattern 92.
  • the light emitting / receiving element 90 corresponds to the light emitting element and the light receiving element.
  • the reflection pattern 92 is arranged on the main surface of the rotating plate 16 on the substrate 18 side.
  • the reflection pattern 92 is arranged along the rotation direction of the rotation shaft 10 and is annular.
  • the reflection pattern 92 has a reflection region that easily reflects light and a non-reflection region that hardly reflects light.
  • the reflective regions and the non-reflective regions are alternately arranged in the rotation direction of the rotation shaft 10.
  • the first magnet 20 and the second magnet 22 are arranged on the main surface of the rotating plate 16 opposite to the substrate 18.
  • the first magnet 20 and the second magnet 22 are arranged so as to overlap the reflection pattern 92 when viewed from the axial direction of the rotating shaft 10.
  • the information processing unit 82 is stored in the storage unit 84 when the optical sensor 88 changes from a non-power supply state in which power is not supplied from an external power source to a power supply state in which power is supplied from an external power source.
  • the rotation position of the rotation shaft 10 is determined based on the latest rotation position of the rotation shaft 10 and the rotation position of the rotation shaft 10 detected by the optical sensor 88.
  • the rotation position of the rotation shaft 10 is determined, and the determined rotation position of the rotation shaft 10 is stored in the storage unit 84.
  • the latest rotation position stored in the storage unit 84 is the position before the rotation shaft 10 rotates within the range in which the first power generation element 24 and the second power generation element 26 do not generate power. Therefore, there is a difference between the rotation position detected by the optical sensor 88 and the latest rotation position stored in the storage unit 84.
  • the information processing unit 82 updates the latest rotation position stored in the storage unit 84 based on the rotation position detected by the optical sensor 88, and the latest rotation position stored in the storage unit 84. And the rotation position detected by the optical sensor 88 are matched. As described above, the information processing unit 82 has the rotation shaft 10 based on the latest rotation position of the rotation shaft 10 stored in the storage unit 84 and the rotation position of the rotation shaft 10 detected by the optical sensor 88. The rotation position of is determined, and the latest rotation position stored in the storage unit 84 is updated according to the determination result.
  • the rotation position of the rotation shaft 10 determined by the information processing unit 82 based on the detection information should substantially match the rotation position detected by the optical sensor 88.
  • the information processing unit 82 determines. Judge as an error.
  • FIG. 9 is a diagram showing a modified example of the rotation detector 14a according to the second embodiment.
  • the first magnet 20 and the second magnet 22 may be arranged on the main surface of the rotating plate 16 on the substrate 18 side.
  • the first magnet 20 and the second magnet 22 are arranged inward of the reflection pattern 92 in the radial direction of the rotating shaft 10.
  • the first magnet 20 and the second magnet 22 may be arranged outside the reflection pattern 92 in the radial direction of the rotating shaft 10.
  • the rotation detector 14a according to the second embodiment has been described above.
  • the rotation detector 14a in the present embodiment includes a light receiving / receiving element 90 that is driven based on the electric power from the power source, and further includes an optical sensor 88 that detects the rotational position of the rotating shaft 10.
  • An optical sensor When the 88 is in the power supply state in which the power is supplied from the power supply from the non-power supply state in which the power supply is not received from the power supply, the information processing unit 82 changes the latest rotating shaft 10 stored in the storage unit 84. The rotation position of the rotation shaft 10 is determined based on the rotation position of the rotation shaft 10 and the rotation position of the rotation shaft 10 detected by the optical sensor 88.
  • the information processing unit 82 has a rotation shaft based on the latest rotation position of the rotation shaft 10 stored in the storage unit 84 and the rotation position of the rotation shaft 10 detected by the optical sensor 88.
  • the rotation position of 10 is determined. Therefore, the rotation position of the rotation shaft 10 can be detected more accurately.
  • the information processing unit 82 determines the rotation position of the rotation shaft 10 using the detection information and the rotation position of the rotation shaft 10 detected by the optical sensor 88. If the difference is larger than the predetermined value, it is determined as an error.
  • FIG. 10 is a diagram showing a rotation detector 14b according to the third embodiment.
  • the control circuit 36 and the like are not shown, and the transmission pattern 102 is shown in cross section.
  • the rotation detector 14b is mainly different from the rotation detector 14 in that it further includes a transmissive optical sensor 94. In the following description, the differences from the rotation detector 14 will be mainly described.
  • the rotation detector 14b further includes a transmission type optical sensor 94.
  • the optical sensor 94 is an optical encoder having a substrate 96, a light emitting element 98, a light receiving element 100, and a transmission pattern 102, and detecting the rotational position of the rotating shaft 10.
  • the substrate 96 is arranged on the side of the rotating plate 16 opposite to the substrate 18 in the axial direction of the rotating shaft 10, and faces the rotating plate 16 at intervals.
  • the substrate 96 is electrically connected to the substrate 18 via the connector 104.
  • the light emitting element 98 is arranged on the main surface of the substrate 96 on the rotating plate 16 side.
  • the light emitting element 98 faces the transmission pattern 102 in the axial direction of the rotation shaft 10 and emits light toward the transmission pattern 102.
  • the rotating plate 16 transmits light from the light emitting element 98.
  • the light receiving element 100 is arranged on the main surface of the substrate 18 on the rotating plate 16 side.
  • the light receiving element 100 is arranged outside the first to fourth magnetic sensors 46, 48, 50, 52 in the radial direction of the rotating shaft 10.
  • the light receiving element 100 faces the transmission pattern 102 in the axial direction of the rotating shaft 10.
  • the light receiving element 100 receives the light emitted from the light emitting element 98 and transmitted by the transmission pattern 102.
  • the light transmitted by the transmission pattern 102 changes according to the rotation position of the rotation shaft 10.
  • the optical sensor 94 detects the rotational position of the rotating shaft 10 based on the light transmitted by the transmission pattern 102.
  • the transmission pattern 102 is arranged on the main surface of the rotating plate 16 on the substrate 18 side.
  • the transmission pattern 102 is arranged along the rotation direction of the rotation shaft 10 and is annular.
  • the transmission pattern 102 has a plurality of slits (not shown) that allow light to pass through.
  • the plurality of slits are arranged side by side in the rotation direction of the rotation shaft 10.
  • the first magnet 20 and the second magnet 22 are arranged on the main surface of the rotating plate 16 opposite to the substrate 18.
  • the information processing unit 82 changes from a non-power supply state in which the optical sensor 94 does not receive power from an external power source to a power supply state in which power is supplied from an external power source.
  • the rotation position of the rotation shaft 10 is determined based on the latest rotation position of the rotation shaft 10 stored in the storage unit 84 and the rotation position of the rotation shaft 10 detected by the optical sensor 94. ..
  • the information processing unit 82 differs between the rotation position of the rotation shaft 10 determined based on the detection information and the rotation position detected by the optical sensor 94 in the power supply state. However, if it is larger than a predetermined value, it is determined as an error.
  • FIG. 11 is a diagram showing a modified example of the rotation detector 14b according to the third embodiment.
  • the first magnet 20 and the second magnet 22 may be arranged on the main surface of the rotating plate 16 on the substrate 18 side.
  • the first magnet 20 and the second magnet 22 are arranged inward of the transmission pattern 102 in the radial direction of the rotating shaft 10.
  • the first magnet 20 and the second magnet 22 may be arranged outside the transmission pattern 102 in the radial direction of the rotating shaft 10.
  • the rotation detector 14b according to the third embodiment has been described above.
  • the rotation detector 14b it has the same action and effect as the rotation detector 14a.
  • FIG. 12 is a diagram showing a rotating plate 16 of the rotation detector 14c according to the fourth embodiment.
  • the rotation detector 14c is mainly different from the rotation detector 14 in that it further has a first counterweight 106 and a second counterweight 108. In the following description, the differences from the rotation detector 14 will be mainly described.
  • the rotation detector 14c further has a first counterweight 106 and a second counterweight 108.
  • the first counterweight 106, the second counterweight 108, the first magnet 20, and the second magnet 22 have the same weight as each other.
  • the position of the center of gravity of the first counterweight 106, the second counterweight 108, the first magnet 20 and the second magnet 22 is located on the axis A of the rotation axis 10.
  • the first counterweight 106 has a phase difference of 180 ° from the first magnet 20 and a phase difference of 90 ° from the second magnet 22, and has a main surface of the rotating plate 16 on the substrate 18 side. It is located in.
  • the second counterweight 108 has a phase difference of 90 ° from the first magnet 20 and has a phase difference of 180 ° from the second magnet 22 and is arranged on the main surface of the rotating plate 16 on the substrate 18 side.
  • the rotation detector 14c according to the fourth embodiment has been described above.
  • the rotation detector 14c in the present embodiment further includes a first counterweight 106 and a second counterweight 108.
  • the position of the center of gravity of the first magnet 20, the second magnet 22, the first counterweight 106, and the second counterweight 108 is located on the axis A of the rotation axis 10. Arranged to be located.
  • the rotation axis 10 Since the position of the center of gravity of the first magnet 20, the second magnet 22, the first counterweight 106, and the second counterweight 108 is located on the axis A of the rotation axis 10, the rotation axis 10 It is possible to prevent the rotation from becoming unbalanced.
  • FIG. 13 is a diagram showing a rotating plate 16 of the rotation detector 14d according to the fifth embodiment.
  • the rotation detector 14d is mainly the rotation detector 14c in that it has a first counterweight 110 instead of the first counterweight 106 and a second counterweight 112 instead of the second counterweight 108. Different to. In the following description, the differences from the rotation detector 14c will be mainly described.
  • the rotation detector 14d has a first counterweight 110 instead of the first counterweight 106 and a second counterweight 112 instead of the second counterweight 108.
  • the first counterweight 110 and the second counterweight 112 are members containing a magnetic material as a main component and containing 50% or more of the magnetic material.
  • the first counterweight 110 is a magnet having an N pole and an S pole located inward in the radial direction of the rotation shaft 10 with respect to the N pole.
  • the second counterweight 112 is a magnet having an S pole and an N pole located inward in the radial direction of the rotation shaft 10 with respect to the S pole.
  • the rotation detector 14d according to the fifth embodiment has been described above.
  • the first counterweight 110 and the second counterweight 112 are members containing 50% or more of magnetic material.
  • the angle interval is adjusted by equalizing the angle interval in which the voltage pulse induced at both ends of the first coil 40 wound around the first magnetic sensitive portion 38 (Wiegand wire) is generated. Can be done.
  • the angle interval can be adjusted by equalizing the angle interval in which the voltage pulse induced at both ends of the second coil 44 wound around the second magnetic sensitive portion 42 (Wiegand wire) is generated. ..
  • the first counterweight 110 and the second counterweight 112 do not have to be magnets, and may be members whose main component is a magnetic material.
  • FIG. 14A and 14B are views showing another example of the arrangement of the first magnet and the second magnet, in which FIG. 14A is an arrangement in which the first phase difference is 45 °, and FIG. 14B is an arrangement in which the first phase difference is 130.
  • the arrangement in which ° is, (c) shows the arrangement in which the first phase difference is 180 °.
  • the first phase difference may be smaller than 90 ° or 45 °.
  • the first phase difference may be larger than 90 °, may be 130 ° as shown in FIG. 14 (b), or may be 180 ° as shown in FIG. 14 (c). ..
  • the rotation detectors 14 to 14d have the first power generation element 24 and the second power generation element 26, and the second phase difference between the first power generation element 24 and the second power generation element 26 is 180.
  • the case of ° has been described, but the present invention is not limited to this.
  • 15A and 15B are views showing another example of the arrangement of one or more power generation elements, in which FIG. 15A is an arrangement in which the second phase difference is 90 °, and FIG. 15B is an arrangement in which the second phase difference is 120 °.
  • (C) is an arrangement in which the second phase difference is 150 °
  • (d) is an arrangement in which the second phase difference is 60 °
  • (e) is an arrangement in which the second power generation element 26 is not provided. Is shown.
  • the second phase difference may be 90 ° as shown in FIG. 15 (a) or 120 ° as shown in FIG. 15 (b).
  • the second phase difference may be 150 ° as shown in FIG. 15 (c) or 60 ° as shown in FIG. 15 (d).
  • the rotation detector does not have to have the second power generation element 26.
  • the information processing unit may determine the rotation position and rotation direction of the rotation axis based on the detection results of a plurality of magnetic sensors without using the power generation information.
  • FIG. 16A and 16B are views showing another example of arrangement of a plurality of magnetic sensors, in which FIG. 16A is an arrangement in which the rotation detector does not have the fourth magnetic sensor 52, and FIG. 16B is an arrangement in which the rotation detector is arranged.
  • the arrangement without the first magnetic sensor 46 and the fourth magnetic sensor 52, (c) shows the arrangement in which the rotation detector further has the third power generation element 116.
  • the rotation detector does not have to have the fourth magnetic sensor 52.
  • FIG. 16A shows the arrangement in which the rotation detector does not have to have the fourth magnetic sensor 52.
  • the rotation detector may not have the first magnetic sensor 46 and the fourth magnetic sensor 52. As shown in FIG. 16 (c), the rotation detector is arranged at a position having a phase difference of 135 ° from the first power generation element 24 and a phase difference of 45 ° from the second power generation element 26. 3
  • the power generation element 116 may be further provided.
  • FIG. 17 is a diagram showing a rotation detector according to another embodiment. As shown in FIG. 17, the rotation detector does not have the second power generation element 26, the second magnetic sensor 48, and the third magnetic sensor 50, and the first magnet 20 and the second magnet 22 are the first.
  • the phase difference may be 130 °.
  • FIG. 18 is a diagram showing a rotation detector according to another embodiment, and in FIG. 18A, the first to fourth magnetic sensors 46, 48, 50, 52 are opposite to the rotating plate 16 of the substrate 18.
  • the configuration (b) arranged on the main surface on the side shows the configuration in which the first power generation element 24 and the second power generation element 26 are arranged on the main surface of the substrate 18 on the rotating plate 16 side.
  • the first to fourth magnetic sensors 46, 48, 50, 52 may be arranged on the main surface of the substrate 18 opposite to the rotating plate 16.
  • the first power generation element 24 and the second power generation element 26 are arranged on the main surface of the substrate 18 on the rotating plate 16 side, and the control circuit 36 is connected to the rotating plate 16 of the substrate 18. May be placed on the opposite main surface.
  • the rotation detector according to the present disclosure can be used for detecting the rotation of the rotating shaft of a motor that rotationally drives a load.
  • Rotating shaft 12 Case 14, 14a, 14b, 14c, 14d Rotation detector 16 Rotating plate 18 Substrate 20 1st magnet 22 2nd magnet 24 1st power generation element 26 2nd power generation element 36 Control circuit 38 1st magnetic sensor 40 1st coil 42 2nd magnetic sensor 44 2nd coil 46 1st magnetic sensor 48 2nd magnetic sensor 50 3rd magnetic sensor 52 4th magnetic sensor 54 Full-wave rectifier 56 Voltage Regulator 58 Disconnection diagnosis unit 60 Backflow prevention switch 62 Full-wave rectifier 64 Voltage regulator 66 Disconnection diagnosis unit 68 Backflow prevention switch 70, 72, 74, 76, 78, 80 Comparator 82 Information processing unit 84 Storage unit 86 Communication unit 88, 94 Optical sensor 90 Light receiving element 92 Reflection pattern 96 Substrate 98 Light emitting element 100 Light receiving element 102 Transmission pattern 104 Connector 106,110 1st counter weight 108, 112 2nd counter weight

Abstract

This rotation detector comprises a first magnet and second magnet that rotate together with a rotating shaft and are disposed with a first phase difference in the rotation direction of the rotating shaft, one or more power generation elements that generate power as a result of the magnetic field fluctuation produced by the rotation of the first magnet and second magnet together with the rotating shaft, and first to fourth magnetic sensors that operate on the basis of the power generated by the one or more power generation elements and detect the magnetic field generated by the first magnet and the magnetic field generated by the second magnet. The first magnet has a north pole and a south pole disposed further inward in the radial direction of the rotating shaft than the north pole. The second magnet has a south pole and a north pole disposed further inward in the radial direction of the rotating shaft than the south pole.

Description

回転検出器Rotation detector
 本開示は、回転検出器に関する。本開示は、特に回転軸の回転を検出する回転検出器に関する。 This disclosure relates to a rotation detector. The present disclosure particularly relates to a rotation detector that detects the rotation of a rotating shaft.
 従来、モータの回転軸の回転を検出する回転検出器が知られている。たとえば、特許文献1には、シャフトに設けられた円板形状の磁石と、磁性ワイヤおよびピックアップコイルで構成される3つの発電部とを備え、3つの発電部は、磁石の端面側に構成された仮想的な三角形の複数の辺にそれぞれ配置されている回転検出器が開示されている。 Conventionally, a rotation detector that detects the rotation of the rotation shaft of a motor is known. For example, Patent Document 1 includes a disk-shaped magnet provided on a shaft and three power generation units composed of a magnetic wire and a pickup coil, and the three power generation units are configured on the end face side of the magnet. A rotation detector is disclosed, which is arranged on each of a plurality of sides of a virtual triangle.
 しかしながら、特許文献1の回転検出器は、3つ以上の発電部が必要であり、小型化が困難である。 However, the rotation detector of Patent Document 1 requires three or more power generation units, and it is difficult to reduce the size.
日本国特許第6336232号公報Japanese Patent No. 6336232
 そこで、本開示は、容易に小型化できる回転検出器を提供することを目的とする。 Therefore, an object of the present disclosure is to provide a rotation detector that can be easily miniaturized.
 本開示の一態様に係る回転検出器は、回転軸とともに回転し、前記回転軸の回転方向に互いに第1位相差を持って配置される第1磁石および第2磁石と、前記第1磁石および前記第2磁石が前記回転軸とともに回転することによる磁界の変化によって発電する1以上の発電素子と、前記1以上の発電素子が発電した電力に基づいて動作し、前記第1磁石によって発生する磁界および前記第2磁石によって発生する磁界を検出する複数の磁気センサとを備え、前記第1磁石は、第1のN極と、前記第1のN極よりも前記回転軸の径方向の内方に配置される第1のS極とを有し、前記第2磁石は、第2のS極と、前記第2のS極よりも前記回転軸の径方向の内方に配置される第2のN極とを有する。 The rotation detector according to one aspect of the present disclosure includes a first magnet and a second magnet that rotate together with a rotation shaft and are arranged with a first phase difference from each other in the rotation direction of the rotation shaft, and the first magnet and the first magnet. One or more power generation elements that generate power by changing the magnetic field due to the rotation of the second magnet with the rotation axis, and the magnetic field generated by the first magnet that operates based on the power generated by the one or more power generation elements. And a plurality of magnetic sensors for detecting the magnetic field generated by the second magnet, the first magnet has a first north pole and a radial inner side of the rotation axis from the first north pole. The second magnet has a first S pole arranged in, and the second magnet is arranged inward of the second S pole and the second S pole in the radial direction of the rotation axis. It has the north pole of.
 本開示の一態様に係る回転検出器によれば、容易に小型化できる。 According to the rotation detector according to one aspect of the present disclosure, the size can be easily reduced.
図1は、実施の形態1に係る回転検出器を備えるモータを示す図である。FIG. 1 is a diagram showing a motor including a rotation detector according to the first embodiment. 図1の回転検出器の基板及び回転板を示す図である。It is a figure which shows the substrate and the rotating plate of the rotation detector of FIG. 図3は、図1の回転検出器の機能構成を示すブロック図である。FIG. 3 is a block diagram showing a functional configuration of the rotation detector of FIG. 図4は、回転軸が反時計回りに回転した場合における、図1の回転検出器の判定動作を説明するための図である。FIG. 4 is a diagram for explaining a determination operation of the rotation detector of FIG. 1 when the rotation axis is rotated counterclockwise. 図5は、回転軸が時計回りに回転した場合における、図1の回転検出器の判定動作を説明するための図である。FIG. 5 is a diagram for explaining a determination operation of the rotation detector of FIG. 1 when the rotation axis is rotated clockwise. 図6は、各回転位置における1以上の発電素子および第1~第4磁気センサの状態を示す表を示す図である。FIG. 6 is a diagram showing a table showing the states of one or more power generation elements and the first to fourth magnetic sensors at each rotation position. 図7は、予め定められた回転軸の回転位置の所定の変位を示す表を示す図である。FIG. 7 is a diagram showing a table showing a predetermined displacement of a predetermined rotation position of the rotation shaft. 図8は、実施の形態2に係る回転検出器を示す図である。FIG. 8 is a diagram showing a rotation detector according to the second embodiment. 図9は、実施の形態2に係る回転検出器の変形例を示す図である。FIG. 9 is a diagram showing a modified example of the rotation detector according to the second embodiment. 図10は、実施の形態3に係る回転検出器を示す図である。FIG. 10 is a diagram showing a rotation detector according to the third embodiment. 図11は、実施の形態3に係る回転検出器の変形例を示す図である。FIG. 11 is a diagram showing a modified example of the rotation detector according to the third embodiment. 図12は、実施の形態4に係る回転検出器の回転板を示す図である。FIG. 12 is a diagram showing a rotating plate of the rotation detector according to the fourth embodiment. 図13は、実施の形態5に係る回転検出器の回転板を示す図である。FIG. 13 is a diagram showing a rotating plate of the rotation detector according to the fifth embodiment. 図14は、第1磁石および第2磁石の配置の他の例を示す図である。FIG. 14 is a diagram showing another example of the arrangement of the first magnet and the second magnet. 図15は、1以上の発電素子の配置の他の例を示す図である。FIG. 15 is a diagram showing another example of arrangement of one or more power generation elements. 図16は、複数の磁気センサの配置の他の例を示す図である。FIG. 16 is a diagram showing another example of the arrangement of the plurality of magnetic sensors. 図17は、他の実施の形態に係る回転検出器を示す図である。FIG. 17 is a diagram showing a rotation detector according to another embodiment. 図18は、その他の実施の形態に係る回転検出器を示す図である。FIG. 18 is a diagram showing a rotation detector according to another embodiment.
 以下、本開示の実施の形態について説明する。なお、以下に説明する実施の形態は、いずれも本開示の一具体例を示すものである。したがって、以下の実施の形態で示される、数値、構成要素、構成要素の配置位置及び接続形態、並びに、工程及び工程の順序等は、一例であって本開示を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, embodiments of the present disclosure will be described. It should be noted that all of the embodiments described below show a specific example of the present disclosure. Therefore, the numerical values, the components, the arrangement positions and connection forms of the components, the steps, the order of the steps, and the like shown in the following embodiments are examples, and are not intended to limit the present disclosure. Therefore, among the components in the following embodiments, the components not described in the independent claims indicating the highest level concept of the present disclosure will be described as arbitrary components.
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。なお、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。 Also, each figure is a schematic view and is not necessarily exactly illustrated. In each figure, substantially the same configuration is designated by the same reference numerals, and duplicate description will be omitted or simplified.
 [実施の形態1]
 (回転検出器の構成)
 以下、実施の形態1に係る回転検出器14について、図面を参照しながら説明する。
[Embodiment 1]
(Configuration of rotation detector)
Hereinafter, the rotation detector 14 according to the first embodiment will be described with reference to the drawings.
 図1は、実施の形態1に係る回転検出器14を備えるモータ1を示す図である。図2は、図1の回転検出器14の基板18及び回転板16を示す図である。図2において、(a)は、図1の回転検出器14の基板18を示し、(b)は、図1の回転検出器14の回転板16を示す。なお、図1では、ケース12を断面で示している。図1および図2を参照して、実施の形態1に係る回転検出器14、および回転検出器14を備えるモータ1の構成について説明する。 FIG. 1 is a diagram showing a motor 1 including a rotation detector 14 according to the first embodiment. FIG. 2 is a diagram showing a substrate 18 and a rotating plate 16 of the rotation detector 14 of FIG. In FIG. 2, (a) shows the substrate 18 of the rotation detector 14 of FIG. 1, and (b) shows the rotating plate 16 of the rotation detector 14 of FIG. In FIG. 1, the case 12 is shown in cross section. The configuration of the rotation detector 14 according to the first embodiment and the motor 1 including the rotation detector 14 will be described with reference to FIGS. 1 and 2.
 図1に示すように、モータ1は、本体4と、回転子6と、固定子8と、回転軸10と、ケース12と、回転検出器14とを備える。なお、回転軸10の軸方向とは、図1の矢印Xで示す方向である。回転軸10の径方向とは、図2の矢印Yで示す方向である。回転軸10の周方向とは、図2の矢印Zで示す方向である。回転軸10の径方向及び周方向は、軸方向と直交する。 As shown in FIG. 1, the motor 1 includes a main body 4, a rotor 6, a stator 8, a rotating shaft 10, a case 12, and a rotation detector 14. The axial direction of the rotating shaft 10 is the direction indicated by the arrow X in FIG. The radial direction of the rotating shaft 10 is the direction indicated by the arrow Y in FIG. The circumferential direction of the rotating shaft 10 is the direction indicated by the arrow Z in FIG. The radial and circumferential directions of the rotating shaft 10 are orthogonal to the axial direction.
 回転子6および固定子8は、本体4に収容されている。回転子6は、固定子8に対して回転する。 The rotor 6 and the stator 8 are housed in the main body 4. The rotor 6 rotates with respect to the stator 8.
 回転軸10は、円柱状等の棒状である。回転軸10は、回転子6に固定されている。回転軸10は、回転軸10の軸心A回りに回転する。たとえば、回転軸10は、モータ1に電力が供給されると、当該電力に基づいて、回転子6とともに軸心Aを回転中心として回転する。回転軸10の回転方向は、回転軸10の周方向と一致する(図2の矢印Zを参照)。回転軸10の軸方向の一端部には、回転検出器14が設けられている。回転軸10の軸方向の他端部には、回転軸10の回転によって回転駆動される負荷(図示せず)等が取り付けられる。たとえば、回転軸10は、鉄等の磁性体金属によって形成されている。 The rotating shaft 10 has a rod shape such as a columnar shape. The rotating shaft 10 is fixed to the rotor 6. The rotating shaft 10 rotates around the axis A of the rotating shaft 10. For example, when electric power is supplied to the motor 1, the rotating shaft 10 rotates with the rotor 6 about the axis A as the center of rotation based on the electric power. The rotation direction of the rotation shaft 10 coincides with the circumferential direction of the rotation shaft 10 (see arrow Z in FIG. 2). A rotation detector 14 is provided at one end of the rotation shaft 10 in the axial direction. A load (not shown) or the like that is rotationally driven by the rotation of the rotating shaft 10 is attached to the other end of the rotating shaft 10 in the axial direction. For example, the rotating shaft 10 is made of a magnetic metal such as iron.
 ケース12は、回転軸10の軸方向の一端部、および回転検出器14を覆うように、本体4に取り付けられている。たとえば、ケース12は、鉄等の磁性体金属によって形成されている。 The case 12 is attached to the main body 4 so as to cover one end of the rotating shaft 10 in the axial direction and the rotation detector 14. For example, the case 12 is made of a magnetic metal such as iron.
 回転検出器14は、回転軸10の回転を検出する。具体的には、回転検出器14は、回転軸10の回転位置、回転軸10の回転方向、および回転軸10の回転数等を検出する。たとえば、回転検出器14は、アブソリュートエンコーダである。回転検出器14は、上述したように、回転軸10の軸方向の一端部に設けられている。図1および図2に示すように、回転検出器14は、回転板16と、基板18と、第1磁石20と、第2磁石22と、後述する1以上の発電素子(24,26)と、後述する複数の磁気センサ(46,48,50,52)と、制御回路36とを有する。 The rotation detector 14 detects the rotation of the rotation shaft 10. Specifically, the rotation detector 14 detects the rotation position of the rotation shaft 10, the rotation direction of the rotation shaft 10, the rotation speed of the rotation shaft 10, and the like. For example, the rotation detector 14 is an absolute encoder. As described above, the rotation detector 14 is provided at one end of the rotation shaft 10 in the axial direction. As shown in FIGS. 1 and 2, the rotation detector 14 includes a rotating plate 16, a substrate 18, a first magnet 20, a second magnet 22, and one or more power generation elements (24, 26) described later. , A plurality of magnetic sensors (46, 48, 50, 52) described later, and a control circuit 36.
 回転板16は、回転軸10の軸方向に直交する方向に延びる。具体的には、回転板16は、回転軸10の軸方向に直交する方向に延びる主面を有する円板状である。回転板16は、回転軸10の軸方向から見たとき円形である。回転板16は、回転軸10の軸方向の一端部に取り付けられている。回転板16の軸心と回転軸10の軸心Aとは、一致している。回転板16は、回転軸10とともに回転する。 The rotating plate 16 extends in a direction orthogonal to the axial direction of the rotating shaft 10. Specifically, the rotating plate 16 has a disk shape having a main surface extending in a direction orthogonal to the axial direction of the rotating shaft 10. The rotating plate 16 is circular when viewed from the axial direction of the rotating shaft 10. The rotary plate 16 is attached to one end of the rotary shaft 10 in the axial direction. The axis of the rotating plate 16 and the axis A of the rotating shaft 10 coincide with each other. The rotating plate 16 rotates together with the rotating shaft 10.
 基板18は、回転軸10の軸方向に直交する方向に延びる。具体的には、基板18は、回転軸10の軸方向に直交する方向に延びる主面を有する円板状である。基板18は、回転軸10の軸方向から見たとき円形である。基板18は、回転軸10の軸方向において、回転軸10の一端部および回転板16と間隔を空けて配置され、回転板16と対向している。基板18の軸心と回転軸10の軸心Aとは、一致している。基板18は、ケース12の内面に固定されており、回転軸10とともに回転しない。 The substrate 18 extends in a direction orthogonal to the axial direction of the rotating shaft 10. Specifically, the substrate 18 has a disk shape having a main surface extending in a direction orthogonal to the axial direction of the rotating shaft 10. The substrate 18 is circular when viewed from the axial direction of the rotating shaft 10. The substrate 18 is arranged at a distance from one end of the rotating shaft 10 and the rotating plate 16 in the axial direction of the rotating shaft 10, and faces the rotating plate 16. The axis of the substrate 18 and the axis A of the rotating shaft 10 coincide with each other. The substrate 18 is fixed to the inner surface of the case 12 and does not rotate together with the rotating shaft 10.
 第1磁石20および第2磁石22は、回転軸10の回転方向において、互いに第1位相差を持って配置されている。第1位相差は、90°である。第1磁石20および第2磁石22は、回転軸10の回転方向において、90°ずれた位置に配置されている。ここでは、第1位相差は、回転軸10の径方向に延びかつ第1磁石20の幅方向の中心を通る中心線Bと、回転軸10の径方向に延びかつ第2磁石22の幅方向の中心を通る中心線Cとがなす角度である。言い換えると、ここでは、第1位相差は、第1磁石20の磁極が並ぶ方向(回転軸10の径方向)に直交する方向における第1磁石20の中心を通り、かつ回転軸10の径方向に延びる中心線Bと、第2磁石22の磁極が並ぶ方向(回転軸10の径方向)に直交する方向における第2磁石22の中心を通り、かつ回転軸10の径方向に延びる中心線Cとがなす角度である。 The first magnet 20 and the second magnet 22 are arranged with a first phase difference from each other in the rotation direction of the rotation shaft 10. The first phase difference is 90 °. The first magnet 20 and the second magnet 22 are arranged at positions shifted by 90 ° in the rotation direction of the rotation shaft 10. Here, the first phase difference extends in the radial direction of the rotating shaft 10 and passes through the center in the width direction of the first magnet 20 and the center line B extends in the radial direction of the rotating shaft 10 and extends in the width direction of the second magnet 22. It is an angle formed by the center line C passing through the center of. In other words, here, the first phase difference passes through the center of the first magnet 20 in the direction orthogonal to the direction in which the magnetic poles of the first magnet 20 are lined up (the radial direction of the rotating shaft 10), and is in the radial direction of the rotating shaft 10. A center line C extending in the radial direction of the rotating shaft 10 and passing through the center of the second magnet 22 in a direction orthogonal to the direction in which the magnetic poles of the second magnet 22 are lined up (the radial direction of the rotating shaft 10). It is the angle that makes a difference.
 第1磁石20は、回転軸10の径方向に延びかつ棒状の磁石である。第1磁石20は、回転板16の基板18側の主面に配置されている。第1磁石20は、N極と、当該N極よりも回転軸10の径方向の内方に配置されるS極とを有する。このように、第1磁石20は、回転軸10の径方向にN極とS極とが並ぶように、配置されている。第1磁石20は、回転軸10が回転すると、回転板16、第2磁石22、および回転軸10とともに回転する。 The first magnet 20 is a rod-shaped magnet that extends in the radial direction of the rotating shaft 10. The first magnet 20 is arranged on the main surface of the rotating plate 16 on the substrate 18 side. The first magnet 20 has an N pole and an S pole arranged inward in the radial direction of the rotation shaft 10 with respect to the N pole. In this way, the first magnet 20 is arranged so that the north pole and the south pole are aligned in the radial direction of the rotating shaft 10. When the rotating shaft 10 rotates, the first magnet 20 rotates together with the rotating plate 16, the second magnet 22, and the rotating shaft 10.
 第2磁石22は、回転軸10の径方向に延びかつ棒状の磁石である。第2磁石22は、回転板16の基板18側の主面に配置されている。第2磁石22は、上述したように第1磁石20と第1位相差を持って配置されている。第2磁石22は、回転軸10の回転方向において、第1磁石20と間隔を空けて配置されている。第2磁石22は、回転軸10方向に第1磁石20と並んで配置されている。第2磁石22は、S極と、当該S極よりも回転軸10の径方向の内方に配置されるN極とを有する。このように、第2磁石22は、回転軸10の径方向にN極とS極とが並ぶように、配置されている。第2磁石22は、回転軸10が回転すると、回転板16、第1磁石20、および回転軸10とともに回転する。 The second magnet 22 is a rod-shaped magnet that extends in the radial direction of the rotating shaft 10. The second magnet 22 is arranged on the main surface of the rotating plate 16 on the substrate 18 side. The second magnet 22 is arranged with a first phase difference from the first magnet 20 as described above. The second magnet 22 is arranged at a distance from the first magnet 20 in the rotation direction of the rotation shaft 10. The second magnet 22 is arranged side by side with the first magnet 20 in the direction of the rotation axis 10. The second magnet 22 has an S pole and an N pole arranged inward in the radial direction of the rotation shaft 10 with respect to the S pole. In this way, the second magnet 22 is arranged so that the north pole and the south pole are aligned in the radial direction of the rotating shaft 10. When the rotating shaft 10 rotates, the second magnet 22 rotates together with the rotating plate 16, the first magnet 20, and the rotating shaft 10.
 1以上の発電素子は、第1発電素子24と、第2発電素子26とを有する。第1発電素子24および第2発電素子26は、第1磁石20および第2磁石22が回転軸10とともに回転することによる磁界の変化によって、発電する。第1発電素子24および第2発電素子26は、回転軸10の回転方向において、互いに第2位相差を持って配置されている。第2位相差は、180°であり、第1発電素子24および第2発電素子26は、回転軸10の回転方向において、180°ずれた位置に配置されている。ここでは、第2位相差は、回転軸10の径方向に延びかつ第1感磁部38(後述)の中心(軸心)を通る中心線Dと、回転軸10の径方向に延びかつ第2感磁部42(後述)の中心(軸心)を通る中心線Eとがなす角度である。第2位相差と第1位相差とは異なっている。 One or more power generation elements include a first power generation element 24 and a second power generation element 26. The first power generation element 24 and the second power generation element 26 generate power by changing the magnetic field due to the rotation of the first magnet 20 and the second magnet 22 together with the rotation shaft 10. The first power generation element 24 and the second power generation element 26 are arranged with a second phase difference from each other in the rotation direction of the rotation shaft 10. The second phase difference is 180 °, and the first power generation element 24 and the second power generation element 26 are arranged at positions shifted by 180 ° in the rotation direction of the rotation shaft 10. Here, the second phase difference extends in the radial direction of the rotating shaft 10 and extends in the radial direction of the rotating shaft 10 with the center line D passing through the center (axis center) of the first magnetic sensing portion 38 (described later). 2 This is the angle formed by the center line E passing through the center (axis center) of the magnetically sensitive portion 42 (described later). The second phase difference and the first phase difference are different.
 第1発電素子24は、回転軸10の径方向に延び、基板18の回転軸10とは反対側(回転板16とは反対側)の主面に配置されている。第1発電素子24は、第1感磁部38と、第1感磁部38に巻回される第1コイル40とを有する。第1感磁部38は、回転軸10の径方向に延びる磁性体である。第1感磁部38は、基板18の回転板16とは反対側に位置している。たとえば、第1感磁部38は、大バルクハウゼン効果を発現させる磁性体であり、回転軸10の径方向に延びるウィーガントワイヤである。ウィーガントワイヤは、所定値以上の磁界がウィーガントワイヤの長手方向に沿って印加されると、磁化方向が長手方向の一方に向かうように揃う磁性体である。ウィーガントワイヤの長手方向に沿って流れる磁束の向きが変化すると、ウィーガントワイヤの磁化方向が跳躍的に反転し、ウィーガントワイヤに巻回されているコイルの両端に電圧パルスが誘起される。このようにして、第1発電素子24は、発電する。 The first power generation element 24 extends in the radial direction of the rotating shaft 10 and is arranged on the main surface of the substrate 18 on the opposite side of the rotating shaft 10 (opposite to the rotating plate 16). The first power generation element 24 has a first magnetic sensitive portion 38 and a first coil 40 wound around the first magnetic sensitive portion 38. The first magnetic sensing portion 38 is a magnetic material extending in the radial direction of the rotating shaft 10. The first magnetic sensing portion 38 is located on the side opposite to the rotating plate 16 of the substrate 18. For example, the first magnetic sensing portion 38 is a magnetic material that exhibits a large Barkhausen effect, and is a Wiegand wire extending in the radial direction of the rotating shaft 10. The Wiegand wire is a magnetic material whose magnetization direction is aligned so as to be one of the longitudinal directions when a magnetic field of a predetermined value or more is applied along the longitudinal direction of the Wiegand wire. When the direction of the magnetic flux flowing along the longitudinal direction of the Wiegand wire changes, the magnetization direction of the Wiegand wire is dramatically reversed, and voltage pulses are induced at both ends of the coil wound around the Wiegand wire. In this way, the first power generation element 24 generates power.
 第2発電素子26は、回転軸10の径方向に延び、基板18の回転軸10とは反対側(回転板16とは反対側)の主面に配置されている。第2発電素子26は、第2感磁部42と、第2感磁部42に巻回される第2コイル44とを有する。第2感磁部42は、回転軸10の径方向に延びる磁性体である。第2感磁部42は、基板18の回転板16とは反対側に位置している。たとえば、第2感磁部42は、大バルクハウゼン効果(large Barkhausen effect)を発現させる磁性体であり、回転軸10の径方向に延びるウィーガントワイヤ(Wiegand wire)である。第2発電素子26は、第1発電素子24と同じように発電する。 The second power generation element 26 extends in the radial direction of the rotating shaft 10 and is arranged on the main surface of the substrate 18 on the opposite side of the rotating shaft 10 (opposite to the rotating plate 16). The second power generation element 26 has a second magnetic sensitive portion 42 and a second coil 44 wound around the second magnetic sensitive portion 42. The second magnetic sensitive portion 42 is a magnetic material extending in the radial direction of the rotating shaft 10. The second magnetic sensitive portion 42 is located on the side opposite to the rotating plate 16 of the substrate 18. For example, the second magnetic sensitive portion 42 is a magnetic material that exhibits a large Barkhausen effect, and is a Wiegand wire that extends in the radial direction of the rotation axis 10. The second power generation element 26 generates power in the same manner as the first power generation element 24.
 複数の磁気センサは、第1磁気センサ46と、第2磁気センサ48と、第3磁気センサ50と、第4磁気センサ52とを有する。第1磁気センサ46、第2磁気センサ48、第3磁気センサ50、および第4磁気センサ52の各々は、第1発電素子24が発電した場合、第1発電素子24からの電力に基づいて動作し、第1磁石20によって発生する磁界および第2磁石22によって発生する磁界を検出する。第1磁気センサ46、第2磁気センサ48、第3磁気センサ50、および第4磁気センサ52の各々は、第2発電素子26が発電した場合、第2発電素子26からの電力に基づいて動作し、第1磁石20によって発生する磁界および第2磁石22によって発生する磁界を検出する。 The plurality of magnetic sensors include a first magnetic sensor 46, a second magnetic sensor 48, a third magnetic sensor 50, and a fourth magnetic sensor 52. Each of the first magnetic sensor 46, the second magnetic sensor 48, the third magnetic sensor 50, and the fourth magnetic sensor 52 operates based on the power from the first power generation element 24 when the first power generation element 24 generates power. Then, the magnetic field generated by the first magnet 20 and the magnetic field generated by the second magnet 22 are detected. Each of the first magnetic sensor 46, the second magnetic sensor 48, the third magnetic sensor 50, and the fourth magnetic sensor 52 operates based on the power from the second power generation element 26 when the second power generation element 26 generates power. Then, the magnetic field generated by the first magnet 20 and the magnetic field generated by the second magnet 22 are detected.
 第1磁気センサ46、第2磁気センサ48、第3磁気センサ50、および第4磁気センサ52は、基板18の回転軸10側(回転板16側)の主面に配置されている。第1磁気センサ46、第2磁気センサ48、第3磁気センサ50、および第4磁気センサ52は、回転軸10の回転方向に位相差を持って配置されている。第1磁気センサ46、第2磁気センサ48、第3磁気センサ50、および第4磁気センサ52は、回転軸10の回転方向に並んで配置されている。第1磁気センサ46、第2磁気センサ48、第3磁気センサ50、および第4磁気センサ52は、回転軸10の軸方向から見たとき、第1発電素子24および第2発電素子26と重ならない。具体的には、第1磁気センサ46は、第1感磁部38と120°の位相差を持って配置されており、第2感磁部42と60°の位相差を持って配置されている。第2磁気センサ48は、第1感磁部38と60°の位相差を持って配置されており、第2感磁部42と120°の位相差を持って配置されており、第1磁気センサ46と60°の位相差を持って配置されている。第3磁気センサ50は、第1感磁部38と60°の位相差を持って配置されており、第2感磁部42と120°の位相差を持って配置されており、第1磁気センサ46と180°の位相差を持って配置されている。第4磁気センサ52は、第1感磁部38と120°の位相差を持って配置されており、第2感磁部42と60°の位相差を持って配置されており、第1磁気センサ46と120°の位相差を持って配置されている。 The first magnetic sensor 46, the second magnetic sensor 48, the third magnetic sensor 50, and the fourth magnetic sensor 52 are arranged on the main surface of the substrate 18 on the rotating shaft 10 side (rotating plate 16 side). The first magnetic sensor 46, the second magnetic sensor 48, the third magnetic sensor 50, and the fourth magnetic sensor 52 are arranged with a phase difference in the rotation direction of the rotation shaft 10. The first magnetic sensor 46, the second magnetic sensor 48, the third magnetic sensor 50, and the fourth magnetic sensor 52 are arranged side by side in the rotation direction of the rotation shaft 10. The first magnetic sensor 46, the second magnetic sensor 48, the third magnetic sensor 50, and the fourth magnetic sensor 52 overlap with the first power generation element 24 and the second power generation element 26 when viewed from the axial direction of the rotating shaft 10. It doesn't become. Specifically, the first magnetic sensor 46 is arranged with a phase difference of 120 ° from the first magnetic sensing portion 38, and is arranged with a phase difference of 60 ° from the second magnetic sensing portion 42. There is. The second magnetic sensor 48 is arranged with a phase difference of 60 ° from the first magnetic sensing portion 38, and is arranged with a phase difference of 120 ° from the second magnetic sensing portion 42, and is arranged with a phase difference of 120 °. It is arranged with a phase difference of 60 ° from the sensor 46. The third magnetic sensor 50 is arranged with a phase difference of 60 ° from the first magnetic sensing portion 38, and is arranged with a phase difference of 120 ° from the second magnetic sensing portion 42, and is arranged with a phase difference of 120 °. It is arranged with a phase difference of 180 ° from the sensor 46. The fourth magnetic sensor 52 is arranged with a phase difference of 120 ° from the first magnetic sensing portion 38, and is arranged with a phase difference of 60 ° from the second magnetic sensing portion 42, and is arranged with a phase difference of 60 °. It is arranged with a phase difference of 120 ° from the sensor 46.
 制御回路36は、基板18の回転軸10側(回転板16側)の主面の中央に配置されている。制御回路36は、第1発電素子24等と電気的に接続されている。制御回路36の詳細については、後述する。 The control circuit 36 is arranged at the center of the main surface of the substrate 18 on the rotating shaft 10 side (rotating plate 16 side). The control circuit 36 is electrically connected to the first power generation element 24 and the like. Details of the control circuit 36 will be described later.
 図3は、図1の回転検出器14の機能構成を示すブロック図である。図3を参照して、回転検出器14の機能構成について説明する。 FIG. 3 is a block diagram showing a functional configuration of the rotation detector 14 of FIG. The functional configuration of the rotation detector 14 will be described with reference to FIG.
 制御回路36は、全波整流部54と、電圧レギュレータ56と、断線診断部58と、逆流防止スイッチ60とを有する。 The control circuit 36 includes a full-wave rectifier unit 54, a voltage regulator 56, a disconnection diagnosis unit 58, and a backflow prevention switch 60.
 全波整流部54は、第1発電素子24に接続されており、第1発電素子24で発電された電圧パルスを整流する。 The full-wave rectifying unit 54 is connected to the first power generation element 24 and rectifies the voltage pulse generated by the first power generation element 24.
 電圧レギュレータ56は、グランド電位を基準電位とし、全波整流部54の出力電圧で充電されたキャパシタの端子間電圧を入力電圧として、一定の電圧を出力する。電圧レギュレータ56の出力電圧は、第1磁気センサ46、第2磁気センサ48、第3磁気センサ50、第4磁気センサ52、および情報処理部82(後述)等に供給される(図3の黒いひし形を参照)。電圧レギュレータ56から電圧が出力されるのは、第1発電素子24が発電して電圧パルスを発生させている期間である。すなわち、第1発電素子24が発電して電圧パルスを発生させている期間において、電圧レギュレータ56からの電圧が第1磁気センサ46、第2磁気センサ48、第3磁気センサ50、第4磁気センサ52、および情報処理部82等に供給され、これらが動作する。たとえば、電圧レギュレータ56は、LDO(Low Drop Out)レギュレータである。 The voltage regulator 56 outputs a constant voltage with the ground potential as the reference potential and the voltage between the terminals of the capacitor charged by the output voltage of the full-wave rectifying unit 54 as the input voltage. The output voltage of the voltage regulator 56 is supplied to the first magnetic sensor 46, the second magnetic sensor 48, the third magnetic sensor 50, the fourth magnetic sensor 52, the information processing unit 82 (described later), and the like (black in FIG. 3). See diamond). The voltage is output from the voltage regulator 56 during the period when the first power generation element 24 generates power and generates a voltage pulse. That is, during the period in which the first power generation element 24 generates power and generates a voltage pulse, the voltage from the voltage regulator 56 is the first magnetic sensor 46, the second magnetic sensor 48, the third magnetic sensor 50, and the fourth magnetic sensor. It is supplied to 52, the information processing unit 82, and the like, and these operate. For example, the voltage regulator 56 is an LDO (Low Drop Out) regulator.
 断線診断部58は、全波整流部54の入力端子に接続され、断線の有無を診断する。 The disconnection diagnosis unit 58 is connected to the input terminal of the full-wave rectifier unit 54 to diagnose the presence or absence of disconnection.
 逆流防止スイッチ60は、全波整流部54と電圧レギュレータ56との間に直列に接続され、電圧レギュレータ56から全波整流部54に電流が流れることを防止する。 The backflow prevention switch 60 is connected in series between the full-wave rectifying unit 54 and the voltage regulator 56 to prevent current from flowing from the voltage regulator 56 to the full-wave rectifying unit 54.
 制御回路36は、全波整流部62と、電圧レギュレータ64と、断線診断部66と、逆流防止スイッチ68とをさらに有する。 The control circuit 36 further includes a full-wave rectifier unit 62, a voltage regulator 64, a disconnection diagnosis unit 66, and a backflow prevention switch 68.
 全波整流部62は、第2発電素子26に接続されており、第2発電素子26で発電された電圧パルスを整流する。 The full-wave rectifying unit 62 is connected to the second power generation element 26 and rectifies the voltage pulse generated by the second power generation element 26.
 電圧レギュレータ64は、グランド電位を基準電位とし、全波整流部62の出力電圧で充電されたキャパシタの端子間電圧を入力電圧として、一定の電圧を出力する。電圧レギュレータ64の出力電圧は、第1磁気センサ46、第2磁気センサ48、第3磁気センサ50、第4磁気センサ52、および情報処理部82(後述)等に供給される(図3の黒いひし形を参照)。電圧レギュレータ64から電圧が出力されるのは、第2発電素子26が発電して電圧パルスを発生させている期間である。すなわち、第2発電素子26が発電して電圧パルスを発生させている期間において、電圧レギュレータ64からの電圧が第1磁気センサ46、第2磁気センサ48、第3磁気センサ50、第4磁気センサ52、および情報処理部82等に供給され、これらが動作する。たとえば、電圧レギュレータ64は、LDO(Low Drop Out)レギュレータである。 The voltage regulator 64 outputs a constant voltage with the ground potential as the reference potential and the voltage between the terminals of the capacitor charged by the output voltage of the full-wave rectifying unit 62 as the input voltage. The output voltage of the voltage regulator 64 is supplied to the first magnetic sensor 46, the second magnetic sensor 48, the third magnetic sensor 50, the fourth magnetic sensor 52, the information processing unit 82 (described later), and the like (black in FIG. 3). See diamond). The voltage is output from the voltage regulator 64 during the period when the second power generation element 26 generates power and generates a voltage pulse. That is, during the period in which the second power generation element 26 generates power and generates a voltage pulse, the voltage from the voltage regulator 64 is the first magnetic sensor 46, the second magnetic sensor 48, the third magnetic sensor 50, and the fourth magnetic sensor. It is supplied to 52, the information processing unit 82, and the like, and these operate. For example, the voltage regulator 64 is an LDO (Low Drop Out) regulator.
 断線診断部66は、全波整流部62の入力端子に接続され、断線の有無を診断する。 The disconnection diagnosis unit 66 is connected to the input terminal of the full-wave rectifier unit 62 to diagnose the presence or absence of disconnection.
 逆流防止スイッチ68は、全波整流部62と電圧レギュレータ64との間に直列に接続され、電圧レギュレータ64から全波整流部62に電流が流れることを防止する。 The backflow prevention switch 68 is connected in series between the full-wave rectifying unit 62 and the voltage regulator 64 to prevent current from flowing from the voltage regulator 64 to the full-wave rectifying unit 62.
 制御回路36は、コンパレータ70,72,74,76,78,80と、情報処理部82と、記憶部84と、通信部86とをさらに有する。 The control circuit 36 further includes a comparator 70, 72, 74, 76, 78, 80, an information processing unit 82, a storage unit 84, and a communication unit 86.
 コンパレータ70は、第1磁気センサ46の検出信号を受信して所定の電圧値と比較し、比較結果である出力電圧を、情報処理部82に出力する。コンパレータ72は、第2磁気センサ48の検出信号を受け取って所定の電圧値と比較し、比較結果である出力電圧を、情報処理部82に出力する。コンパレータ74は、第3磁気センサ50の検出信号を受け取って所定の電圧値と比較し、比較結果である出力電圧を、情報処理部82に出力する。コンパレータ76は、第4磁気センサ52の検出信号を受け取って所定の電圧値と比較し、比較結果である出力電圧を、情報処理部82に出力する。 The comparator 70 receives the detection signal of the first magnetic sensor 46, compares it with a predetermined voltage value, and outputs the output voltage, which is the comparison result, to the information processing unit 82. The comparator 72 receives the detection signal of the second magnetic sensor 48, compares it with a predetermined voltage value, and outputs the output voltage, which is the comparison result, to the information processing unit 82. The comparator 74 receives the detection signal of the third magnetic sensor 50, compares it with a predetermined voltage value, and outputs the output voltage, which is the comparison result, to the information processing unit 82. The comparator 76 receives the detection signal of the fourth magnetic sensor 52, compares it with a predetermined voltage value, and outputs the output voltage, which is the comparison result, to the information processing unit 82.
 コンパレータ78は、電圧レギュレータ56の出力電圧を受け取って所定の電圧値と比較し、比較結果である出力電圧を、情報処理部82に出力する。コンパレータ80は、電圧レギュレータ64の出力電圧を受け取って所定の電圧値と比較し、比較結果である出力電圧を、情報処理部82に出力する。 The comparator 78 receives the output voltage of the voltage regulator 56, compares it with a predetermined voltage value, and outputs the output voltage, which is the comparison result, to the information processing unit 82. The comparator 80 receives the output voltage of the voltage regulator 64, compares it with a predetermined voltage value, and outputs the output voltage, which is the comparison result, to the information processing unit 82.
 情報処理部82は、1以上の発電素子のいずれが発電したかを示す発電情報と第1~第4磁気センサ46,48,50,52の検出結果とを含む検出情報を用いて、回転軸10の回転位置および回転方向の少なくとも一方を判定し、判定結果を記憶部84に記憶させればよい。好ましくは、情報処理部82は、回転軸10の回転位置および回転方向の両方を判定し、判定結果を記憶部84に記憶させる。情報処理部82は、コンパレータ78,80からの出力電圧に基づいて、1以上の発電素子のいずれが発電したか、すなわち第1発電素子24および第2発電素子26のいずれが発電したかを判定する。情報処理部82は、コンパレータ70,72,74,76からの出力電圧に基づいて、第1~第4磁気センサ46,48,50,52のそれぞれの検出結果を判定する。 The information processing unit 82 uses the power generation information indicating which of the one or more power generation elements has generated power and the detection information including the detection results of the first to fourth magnetic sensors 46, 48, 50, 52 to rotate the axis of rotation. At least one of the rotation position and the rotation direction of 10 may be determined, and the determination result may be stored in the storage unit 84. Preferably, the information processing unit 82 determines both the rotation position and the rotation direction of the rotation shaft 10, and stores the determination result in the storage unit 84. The information processing unit 82 determines which of the one or more power generation elements generated power, that is, which of the first power generation element 24 and the second power generation element 26 generated power, based on the output voltages from the comparators 78 and 80. do. The information processing unit 82 determines the detection results of the first to fourth magnetic sensors 46, 48, 50, and 52 based on the output voltages from the comparators 70, 72, 74, and 76.
 情報処理部82は、1以上の発電素子のいずれかが発電を行う度に、検出情報を用いて回転軸10の回転位置を判定する。情報処理部82は、判定した回転軸10の回転位置を記憶部84に記憶させる。情報処理部82は、今回判定した回転軸10の回転位置と、記憶部84に記憶されている前回判定した回転軸10の回転位置とに基づいて、回転軸10の回転数の算出に用いるカウント値を更新し、カウント値を記憶部84に記憶させる。詳細は後述するが、情報処理部82は、回転軸10が反時計回りに1回転する度に、カウント値をインクリメントする。一方、情報処理部82は、回転軸10が時計回りに1回転する度に、カウント値をデクリメントする。このように、情報処理部82は、カウント値を更新することによって、回転軸10の回転数を算出する。なお、時計回りとは、回転軸10の軸方向において、基板18の回転板16とは反対側から見たときの時計回りを意味する。反時計回りとは、回転軸10の軸方向において、基板18の回転板16とは反対側から見たときの反時計回りを意味する。以下の説明においても同様である。 The information processing unit 82 determines the rotation position of the rotation shaft 10 using the detection information each time one or more power generation elements generate power. The information processing unit 82 stores the determined rotation position of the rotation shaft 10 in the storage unit 84. The information processing unit 82 counts used to calculate the rotation speed of the rotation shaft 10 based on the rotation position of the rotation shaft 10 determined this time and the rotation position of the rotation shaft 10 previously determined stored in the storage unit 84. The value is updated and the count value is stored in the storage unit 84. Although the details will be described later, the information processing unit 82 increments the count value each time the rotation shaft 10 makes one rotation counterclockwise. On the other hand, the information processing unit 82 decrements the count value each time the rotation shaft 10 makes one rotation clockwise. In this way, the information processing unit 82 calculates the rotation speed of the rotation shaft 10 by updating the count value. Note that clockwise means clockwise when viewed from the side opposite to the rotating plate 16 of the substrate 18 in the axial direction of the rotating shaft 10. The counterclockwise direction means a counterclockwise direction when viewed from the side opposite to the rotating plate 16 of the substrate 18 in the axial direction of the rotating shaft 10. The same applies to the following description.
 また、情報処理部82は、回転軸10の回転位置と発電情報とを関連付けて、記憶部84に記憶させる。これによって、第1発電素子24および第2発電素子26が発電したときの回転軸10の回転位置がわかる。 Further, the information processing unit 82 associates the rotation position of the rotation shaft 10 with the power generation information and stores it in the storage unit 84. As a result, the rotational position of the rotating shaft 10 when the first power generation element 24 and the second power generation element 26 generate power can be known.
 記憶部84は、回転軸10の回転位置および回転方向等を記憶する。たとえば、記憶部84は、FRAM(Ferroelectric Random Access Memory、登録商標)等の不揮発性メモリによって構成される。 The storage unit 84 stores the rotation position, rotation direction, and the like of the rotation shaft 10. For example, the storage unit 84 is composed of a non-volatile memory such as FRAM (Ferroelectric Random Access Memory, registered trademark).
 通信部86は、ASIC(Application Specific Integrated Circuit、特定用途向け集積回路)と有線または無線で通信可能に接続されている。 The communication unit 86 is connected to an ASIC (Application Specific Integrated Circuit, an integrated circuit for a specific purpose) so as to be able to communicate by wire or wirelessly.
 以上、実施の形態1に係る回転検出器14、および回転検出器14を備えるモータ1の構成について説明した。 The configuration of the rotation detector 14 according to the first embodiment and the motor 1 including the rotation detector 14 has been described above.
 (回転検出器の判定動作)
 次に、実施の形態1に係る回転検出器14の判定動作の一例について説明する。
(Judgment operation of rotation detector)
Next, an example of the determination operation of the rotation detector 14 according to the first embodiment will be described.
 図4は、回転軸10が反時計回りに回転した場合における、図1の回転検出器14の判定動作を説明するための図であって、(a)は、矢印Fが位置Iに位置している状態、(b)は、矢印Fが位置IIに位置している状態、(c)は、矢印Fが位置IIIに位置している状態、(d)は、矢印Fが位置IVに位置している状態を示す。図5は、回転軸10が時計回りに回転した場合における、図1の回転検出器14の判定動作を説明するための図であって、(a)は、矢印Fが位置Vに位置している状態、(b)は、矢印Fが位置VIに位置している状態、(c)は、矢印Fが位置VIIに位置している状態、(d)は、矢印Fが位置VIIIに位置している状態を示す。図6は、各回転位置における1以上の発電素子および第1~第4磁気センサ46,48,50,52の状態を示す表を示す図である。図6において、CCW(Counter ClockWise)は、反時計回りを示し、CW(ClockWise)は、時計回りを示している。図7は、予め定められた回転軸10の回転位置の所定の変位を示す表を示す図である。 FIG. 4 is a diagram for explaining the determination operation of the rotation detector 14 of FIG. 1 when the rotation shaft 10 is rotated counterclockwise, and FIG. 4A is a diagram in which the arrow F is located at the position I. (B) is the state where the arrow F is located at the position II, (c) is the state where the arrow F is located at the position III, and (d) is the state where the arrow F is located at the position IV. Indicates the state of being. 5A and 5B are views for explaining the determination operation of the rotation detector 14 of FIG. 1 when the rotation shaft 10 is rotated clockwise, and FIG. 5A is a diagram in which the arrow F is located at the position V. (B) is the state where the arrow F is located at the position VI, (c) is the state where the arrow F is located at the position VII, and (d) is the state where the arrow F is located at the position VIII. Indicates the state of FIG. 6 is a diagram showing a table showing the states of one or more power generation elements and the first to fourth magnetic sensors 46, 48, 50, 52 at each rotation position. In FIG. 6, CCW (Counter ClockWise) indicates a counterclockwise direction, and CW (ClockWise) indicates a clockwise direction. FIG. 7 is a diagram showing a table showing a predetermined displacement of a predetermined rotation position of the rotation shaft 10.
 なお、以下の説明では、図4および図5に示すように、回転軸10の回転方向における第1磁石20と第2磁石22との中間の位置を、仮想的な矢印Fで示して説明する。具体的には、矢印Fは、回転軸10の回転方向において、第1磁石20と45°の位相差を持った位置にあり、第2磁石22と45°の位相差を持った位置にある。 In the following description, as shown in FIGS. 4 and 5, a position between the first magnet 20 and the second magnet 22 in the rotation direction of the rotation shaft 10 is indicated by a virtual arrow F. .. Specifically, the arrow F is at a position having a phase difference of 45 ° from the first magnet 20 and a position having a phase difference of 45 ° from the second magnet 22 in the rotation direction of the rotation shaft 10. ..
 基板18の軸心(径方向の中心)から見たときに第1発電素子24が配置されている方向(図2のD参照)を、回転軸10の回転方向における0°(360°)とし、330°の位置を位置Iとし、240°の位置を位置IIとし、150°の位置を位置IIIとし、60°の位置を位置IVとして説明する。30°の位置を位置Vとし、120°の位置を位置VIとし、210°の位置を位置VIIとし、300°の位置を位置VIIIとして説明する。 The direction in which the first power generation element 24 is arranged (see D in FIG. 2) when viewed from the axial center (center in the radial direction) of the substrate 18 is 0 ° (360 °) in the rotation direction of the rotation shaft 10. , The position of 330 ° is referred to as position I, the position of 240 ° is referred to as position II, the position of 150 ° is referred to as position III, and the position of 60 ° is referred to as position IV. The position of 30 ° will be referred to as position V, the position of 120 ° will be referred to as position VI, the position of 210 ° will be referred to as position VII, and the position of 300 ° will be referred to as position VIII.
 第1発電素子24が、N極がS極よりも外側に位置している第1磁石20によって磁化されている状態、および第2発電素子26が、N極がS極よりも外側に位置している第1磁石20によって磁化されている状態を、HIGH状態として説明する。第1発電素子24が、S極がN極よりも外側に位置している第2磁石22によって磁化されている状態、および第2発電素子26が、S極がN極よりも外側に位置している第2磁石22によって磁化されている状態を、LOW状態として説明する。第1発電素子24および第2発電素子26は、HIGH状態からLOW状態に遷移した場合、およびLOW状態からHIGH状態に遷移した場合に、発電する。図6では、HIGH状態からLOW状態に遷移して発電する場合を●で示し、LOW状態からHIGH状態に遷移して発電する場合を〇で示す。 The first power generation element 24 is magnetized by the first magnet 20 whose north pole is located outside the south pole, and the second power generation element 26 has the north pole located outside the south pole. The state of being magnetized by the first magnet 20 is described as a HIGH state. The first power generation element 24 is magnetized by the second magnet 22 whose S pole is located outside the N pole, and the second power generation element 26 has the S pole located outside the N pole. The state of being magnetized by the second magnet 22 is described as a LOW state. The first power generation element 24 and the second power generation element 26 generate power when the state changes from the HIGH state to the LOW state and when the state changes from the LOW state to the HIGH state. In FIG. 6, the case of transitioning from the HIGH state to the LOW state to generate electricity is indicated by ●, and the case of transitioning from the LOW state to the HIGH state to generate electricity is indicated by ◯.
 また、第1磁石20または第2磁石22が第1磁気センサ46の近傍に位置している場合、第1磁気センサ46は、highレベルの信号を出力し、第1磁石20および第2磁石22が第1磁気センサ46の近傍に位置していない場合、第1磁気センサ46は、lowレベルの信号を出力するとして説明する。同様に、第1磁石20または第2磁石22が第2磁気センサ48の近傍に位置している場合、第2磁気センサ48は、highレベルの信号を出力し、第1磁石20および第2磁石22が第2磁気センサ48の近傍に位置していない場合、第2磁気センサ48は、lowレベルの信号を出力するとして説明する。第1磁石20または第2磁石22が第3磁気センサ50の近傍に位置している場合、第3磁気センサ50は、highレベルの信号を出力し、第1磁石20および第2磁石22が第3磁気センサ50の近傍に位置していない場合、第3磁気センサ50は、lowレベルの信号を出力するとして説明する。第1磁石20または第2磁石22が第4磁気センサ52の近傍に位置している場合、第4磁気センサ52は、highレベルの信号を出力し、第1磁石20および第2磁石22が第4磁気センサ52の近傍に位置していない場合、第4磁気センサ52は、lowレベルの信号を出力するとして説明する。図6では、HIGH状態、LOW状態、highレベル及びlowレベルを、それぞれH、L、h、及びlと表示している。 When the first magnet 20 or the second magnet 22 is located near the first magnetic sensor 46, the first magnetic sensor 46 outputs a high level signal, and the first magnet 20 and the second magnet 22 Is not located in the vicinity of the first magnetic sensor 46, the first magnetic sensor 46 will be described as outputting a low level signal. Similarly, when the first magnet 20 or the second magnet 22 is located in the vicinity of the second magnetic sensor 48, the second magnetic sensor 48 outputs a high level signal, and the first magnet 20 and the second magnet When 22 is not located in the vicinity of the second magnetic sensor 48, the second magnetic sensor 48 will be described as outputting a low level signal. When the first magnet 20 or the second magnet 22 is located in the vicinity of the third magnetic sensor 50, the third magnetic sensor 50 outputs a high level signal, and the first magnet 20 and the second magnet 22 are second. 3 When not located in the vicinity of the magnetic sensor 50, the third magnetic sensor 50 will be described as outputting a low level signal. When the first magnet 20 or the second magnet 22 is located in the vicinity of the fourth magnetic sensor 52, the fourth magnetic sensor 52 outputs a high level signal, and the first magnet 20 and the second magnet 22 are second. 4 When not located in the vicinity of the magnetic sensor 52, the fourth magnetic sensor 52 will be described as outputting a low level signal. In FIG. 6, the HIGH state, the LOW state, the high level and the low level are displayed as H, L, h, and l, respectively.
 まず、図4を参照して、回転軸10が反時計回りに回転する場合について説明する。この場合、矢印Fが、位置I、位置II、位置III、および位置IVに位置したときに、第1発電素子24および第2発電素子26の一方が発電する。 First, a case where the rotation shaft 10 rotates counterclockwise will be described with reference to FIG. In this case, when the arrow F is located at the position I, the position II, the position III, and the position IV, one of the first power generation element 24 and the second power generation element 26 generates power.
 たとえば、矢印Fが0°の位置に位置しており、第1発電素子24がHIGH状態であり、第2発電素子26がLOW状態である場合から、回転軸10が反時計回りに回転する場合について説明する。 For example, when the arrow F is located at the position of 0 °, the first power generation element 24 is in the HIGH state, and the second power generation element 26 is in the LOW state, the rotation shaft 10 rotates counterclockwise. Will be described.
 図4の(a)に示すように、矢印Fが位置Iに位置すると、第1発電素子24の近傍に第2磁石22が位置し、第1発電素子24が第2磁石22によって磁化される。これによって、第1発電素子24は、HIGH状態からLOW状態に遷移し、発電する。一方、第2発電素子26は、LOW状態のままであり、発電しない。なお、ここでは、回転軸10の軸方向から見たときに、回転軸10の回転方向において、第1感磁部38を中心とする30°の範囲内に、第1磁石20の少なくとも一部が位置している場合、第1発電素子24の近傍に第1磁石20が位置しているとして説明する。第1感磁部38を中心とする30°の範囲内に、第2磁石22の少なくとも一部が位置している場合、第1発電素子24の近傍に第2磁石22が位置しているとして説明する。第2発電素子26についても同様である。 As shown in FIG. 4A, when the arrow F is located at the position I, the second magnet 22 is located near the first power generation element 24, and the first power generation element 24 is magnetized by the second magnet 22. .. As a result, the first power generation element 24 transitions from the HIGH state to the LOW state and generates power. On the other hand, the second power generation element 26 remains in the LOW state and does not generate power. Here, when viewed from the axial direction of the rotating shaft 10, at least a part of the first magnet 20 is within a range of 30 ° centered on the first magnetic sensitive portion 38 in the rotating direction of the rotating shaft 10. Is located, the first magnet 20 will be described as being located in the vicinity of the first power generation element 24. When at least a part of the second magnet 22 is located within a range of 30 ° centered on the first magnetic sensing portion 38, it is assumed that the second magnet 22 is located in the vicinity of the first power generation element 24. explain. The same applies to the second power generation element 26.
 第1発電素子24が発電することによって、第1~第4磁気センサ46,48,50,52は、第1発電素子24からの電力に基づいて動作する。矢印Fが位置Iに位置しているとき、第3磁気センサ50の近傍には第1磁石20が位置している。したがって、第3磁気センサ50は、highレベルの信号を出力する。一方、第1磁気センサ46、第2磁気センサ48、および第4磁気センサ52の近傍には第1磁石20および第2磁石22が位置しておらず、第1磁気センサ46、第2磁気センサ48、および第4磁気センサ52は、lowレベルの信号を出力する。なお、ここでは、回転軸10の軸方向から見たときに、回転軸10の回転方向において、第3磁気センサ50を中心とする30°の範囲内に、第1磁石20の少なくとも一部が位置している場合、第3磁気センサ50の近傍に第1磁石20が位置しているとして説明する。第3磁気センサ50を中心とする30°の範囲内に、第2磁石22の少なくとも一部が位置している場合、第3磁気センサ50の近傍に第2磁石22が位置しているとして説明する。第1磁気センサ46、第2磁気センサ48、および第4磁気センサ52についても同様である。 When the first power generation element 24 generates electric power, the first to fourth magnetic sensors 46, 48, 50, 52 operate based on the electric power from the first power generation element 24. When the arrow F is located at the position I, the first magnet 20 is located near the third magnetic sensor 50. Therefore, the third magnetic sensor 50 outputs a high level signal. On the other hand, the first magnet 20 and the second magnet 22 are not located in the vicinity of the first magnetic sensor 46, the second magnetic sensor 48, and the fourth magnetic sensor 52, and the first magnetic sensor 46 and the second magnetic sensor The 48 and the fourth magnetic sensor 52 output a low level signal. Here, when viewed from the axial direction of the rotating shaft 10, at least a part of the first magnet 20 is within a range of 30 ° centered on the third magnetic sensor 50 in the rotating direction of the rotating shaft 10. If it is located, the first magnet 20 will be described as being located in the vicinity of the third magnetic sensor 50. When at least a part of the second magnet 22 is located within a range of 30 ° centered on the third magnetic sensor 50, it is assumed that the second magnet 22 is located in the vicinity of the third magnetic sensor 50. do. The same applies to the first magnetic sensor 46, the second magnetic sensor 48, and the fourth magnetic sensor 52.
 図6に示すように、矢印Fが位置Iに位置すると、第1発電素子24は発電し、第2発電素子26は発電せず、第3磁気センサ50はhighレベルの信号を出力し、第1磁気センサ46、第2磁気センサ48、および第4磁気センサ52はlowレベルの信号を出力する。したがって、情報処理部82は、第1発電素子24が発電しており、第2発電素子26が発電しておらず、第3磁気センサ50がhighレベルの信号を出力し、第1磁気センサ46、第2磁気センサ48、および第4磁気センサ52がlowレベルの信号を出力している場合、矢印Fが位置Iの近傍に位置していると判定する。 As shown in FIG. 6, when the arrow F is located at the position I, the first power generation element 24 generates power, the second power generation element 26 does not generate power, the third magnetic sensor 50 outputs a high level signal, and the third magnetic sensor 50 outputs a high level signal. The 1 magnetic sensor 46, the 2nd magnetic sensor 48, and the 4th magnetic sensor 52 output a low level signal. Therefore, in the information processing unit 82, the first power generation element 24 is generating power, the second power generation element 26 is not generating power, the third magnetic sensor 50 outputs a high level signal, and the first magnetic sensor 46 , The second magnetic sensor 48, and the fourth magnetic sensor 52 output a low level signal, it is determined that the arrow F is located near the position I.
 回転軸10がさらに反時計回りに回転し、図4の(b)に示すように、矢印Fが位置IIに位置すると、第2発電素子26の近傍に第1磁石20が位置し、第2発電素子26が第1磁石20によって磁化される。これによって、第2発電素子26は、LOW状態からHIGH状態に遷移し、発電する。一方、第1発電素子24は、LOW状態のままであり、発電しない。 When the rotating shaft 10 further rotates counterclockwise and the arrow F is located at position II as shown in FIG. 4B, the first magnet 20 is located near the second power generation element 26, and the second magnet 20 is located. The power generation element 26 is magnetized by the first magnet 20. As a result, the second power generation element 26 transitions from the LOW state to the HIGH state and generates power. On the other hand, the first power generation element 24 remains in the LOW state and does not generate power.
 第2発電素子26が発電することによって、第1~第4磁気センサ46,48,50,52は、第2発電素子26からの電力に基づいて動作する。矢印Fが位置IIに位置しているとき、第3磁気センサ50の近傍には第2磁石22が位置している。したがって、第3磁気センサ50は、highレベルの信号を出力する。一方、第1磁気センサ46、第2磁気センサ48、および第4磁気センサ52の近傍には第1磁石20および第2磁石22が位置しておらず、第1磁気センサ46、第2磁気センサ48、および第4磁気センサ52は、lowレベルの信号を出力する。 When the second power generation element 26 generates electric power, the first to fourth magnetic sensors 46, 48, 50, 52 operate based on the electric power from the second power generation element 26. When the arrow F is located at position II, the second magnet 22 is located near the third magnetic sensor 50. Therefore, the third magnetic sensor 50 outputs a high level signal. On the other hand, the first magnet 20 and the second magnet 22 are not located in the vicinity of the first magnetic sensor 46, the second magnetic sensor 48, and the fourth magnetic sensor 52, and the first magnetic sensor 46 and the second magnetic sensor The 48 and the fourth magnetic sensor 52 output a low level signal.
 図6に示すように、矢印Fが位置IIに位置すると、第2発電素子26は発電し、第1発電素子24は発電せず、第3磁気センサ50はhighレベルの信号を出力し、第1磁気センサ46、第2磁気センサ48、および第4磁気センサ52はlowレベルの信号を出力する。したがって、情報処理部82は、第2発電素子26が発電しており、第1発電素子24が発電しておらず、第3磁気センサ50がhighレベルの信号を出力し、第1磁気センサ46、第2磁気センサ48、および第4磁気センサ52がlowレベルの信号を出力している場合、矢印Fが位置IIの近傍に位置していると判定する。 As shown in FIG. 6, when the arrow F is located at the position II, the second power generation element 26 generates power, the first power generation element 24 does not generate power, the third magnetic sensor 50 outputs a high level signal, and the third magnetic sensor 50 outputs a high level signal. The 1 magnetic sensor 46, the 2nd magnetic sensor 48, and the 4th magnetic sensor 52 output a low level signal. Therefore, in the information processing unit 82, the second power generation element 26 is generating power, the first power generation element 24 is not generating power, the third magnetic sensor 50 outputs a high level signal, and the first magnetic sensor 46 , The second magnetic sensor 48, and the fourth magnetic sensor 52 output a low level signal, it is determined that the arrow F is located in the vicinity of the position II.
 回転軸10がさらに反時計回りに回転し、図4の(c)に示すように、矢印Fが位置IIIに位置すると、第2発電素子26の近傍に第2磁石22が位置し、第2発電素子26が第2磁石22によって磁化される。これによって、第2発電素子26は、HIGH状態からLOW状態に遷移し、発電する。一方、第1発電素子24は、LOW状態のままであり、発電しない。 When the rotating shaft 10 further rotates counterclockwise and the arrow F is located at position III as shown in FIG. 4 (c), the second magnet 22 is located near the second power generation element 26, and the second magnet 22 is located. The power generation element 26 is magnetized by the second magnet 22. As a result, the second power generation element 26 transitions from the HIGH state to the LOW state and generates power. On the other hand, the first power generation element 24 remains in the LOW state and does not generate power.
 第2発電素子26が発電することによって、第1~第4磁気センサ46,48,50,52は、第2発電素子26からの電力に基づいて動作する。矢印Fが位置IIIに位置しているとき、第1磁気センサ46の近傍には第1磁石20が位置している。したがって、第1磁気センサ46は、highレベルの信号を出力する。一方、第2磁気センサ48、第3磁気センサ50、および第4磁気センサ52の近傍には第1磁石20および第2磁石22が位置しておらず、第2磁気センサ48、第3磁気センサ50、および第4磁気センサ52は、lowレベルの信号を出力する。 When the second power generation element 26 generates electric power, the first to fourth magnetic sensors 46, 48, 50, 52 operate based on the electric power from the second power generation element 26. When the arrow F is located at position III, the first magnet 20 is located near the first magnetic sensor 46. Therefore, the first magnetic sensor 46 outputs a high level signal. On the other hand, the first magnet 20 and the second magnet 22 are not located in the vicinity of the second magnetic sensor 48, the third magnetic sensor 50, and the fourth magnetic sensor 52, and the second magnetic sensor 48 and the third magnetic sensor The 50 and the fourth magnetic sensor 52 output a low level signal.
 図6に示すように、矢印Fが位置IIIに位置すると、第2発電素子26は発電し、第1発電素子24は発電せず、第1磁気センサ46はhighレベルの信号を出力し、第2磁気センサ48、第3磁気センサ50、および第4磁気センサ52はlowレベルの信号を出力する。したがって、情報処理部82は、第2発電素子26が発電しており、第1発電素子24が発電しておらず、第1磁気センサ46がhighレベルの信号を出力し、第2磁気センサ48、第3磁気センサ50、および第4磁気センサ52がlowレベルの信号を出力している場合、矢印Fが位置IIIの近傍に位置していると判定する。 As shown in FIG. 6, when the arrow F is located at the position III, the second power generation element 26 generates power, the first power generation element 24 does not generate power, the first magnetic sensor 46 outputs a high level signal, and the first The 2 magnetic sensor 48, the 3rd magnetic sensor 50, and the 4th magnetic sensor 52 output a low level signal. Therefore, in the information processing unit 82, the second power generation element 26 is generating power, the first power generation element 24 is not generating power, the first magnetic sensor 46 outputs a high level signal, and the second magnetic sensor 48 , The third magnetic sensor 50, and the fourth magnetic sensor 52 output a low level signal, it is determined that the arrow F is located in the vicinity of the position III.
 回転軸10がさらに反時計回りに回転し、図4の(d)に示すように、矢印Fが位置IVに位置すると、第1発電素子24の近傍に第1磁石20が位置し、第1発電素子24が第1磁石20によって磁化される。これによって、第1発電素子24は、LOW状態からHIGH状態に遷移し、発電する。一方、第2発電素子26は、LOW状態のままであり、発電しない。 When the rotating shaft 10 further rotates counterclockwise and the arrow F is located at the position IV as shown in FIG. 4D, the first magnet 20 is located near the first power generation element 24, and the first magnet 20 is located. The power generation element 24 is magnetized by the first magnet 20. As a result, the first power generation element 24 transitions from the LOW state to the HIGH state and generates power. On the other hand, the second power generation element 26 remains in the LOW state and does not generate power.
 第1発電素子24が発電することによって、第1~第4磁気センサ46,48,50,52は、第1発電素子24からの電力に基づいて動作する。矢印Fが位置IVに位置しているとき、第1磁気センサ46の近傍には第2磁石22が位置している。したがって、第1磁気センサ46は、highレベルの信号を出力する。一方、第2磁気センサ48、第3磁気センサ50、および第4磁気センサ52の近傍には第1磁石20および第2磁石22が位置しておらず、第2磁気センサ48、第3磁気センサ50、および第4磁気センサ52は、lowレベルの信号を出力する。 When the first power generation element 24 generates electric power, the first to fourth magnetic sensors 46, 48, 50, 52 operate based on the electric power from the first power generation element 24. When the arrow F is located at position IV, the second magnet 22 is located near the first magnetic sensor 46. Therefore, the first magnetic sensor 46 outputs a high level signal. On the other hand, the first magnet 20 and the second magnet 22 are not located in the vicinity of the second magnetic sensor 48, the third magnetic sensor 50, and the fourth magnetic sensor 52, and the second magnetic sensor 48 and the third magnetic sensor The 50 and the fourth magnetic sensor 52 output a low level signal.
 図6に示すように、矢印Fが位置IVに位置すると、第1発電素子24は発電し、第2発電素子26は発電せず、第1磁気センサ46はhighレベルの信号を出力し、第2磁気センサ48、第3磁気センサ50、および第4磁気センサ52はlowレベルの信号を出力する。したがって、情報処理部82は、第1発電素子24が発電しており、第2発電素子26が発電しておらず、第1磁気センサ46がhighレベルの信号を出力し、第2磁気センサ48、第3磁気センサ50、および第4磁気センサ52がlowレベルの信号を出力している場合、矢印Fが位置IVの近傍に位置していると判定する。 As shown in FIG. 6, when the arrow F is located at the position IV, the first power generation element 24 generates power, the second power generation element 26 does not generate power, the first magnetic sensor 46 outputs a high level signal, and the second The 2 magnetic sensor 48, the 3rd magnetic sensor 50, and the 4th magnetic sensor 52 output a low level signal. Therefore, in the information processing unit 82, the first power generation element 24 is generating power, the second power generation element 26 is not generating power, the first magnetic sensor 46 outputs a high level signal, and the second magnetic sensor 48 , The third magnetic sensor 50, and the fourth magnetic sensor 52 output a low level signal, it is determined that the arrow F is located in the vicinity of the position IV.
 回転軸10がさらに反時計回りに回転し、図4の(a)に示すように、矢印Fが位置Iに再度位置すると、上述したように、第1発電素子24が発電し、第2発電素子26が発電せず、第3磁気センサ50がhighレベルの信号を出力し、第1磁気センサ46、第2磁気センサ48、および第4磁気センサ52がlowレベルの信号を出力する。 When the rotating shaft 10 further rotates counterclockwise and the arrow F is repositioned at the position I as shown in FIG. 4A, the first power generation element 24 generates power and the second power generation as described above. The element 26 does not generate electricity, the third magnetic sensor 50 outputs a high level signal, and the first magnetic sensor 46, the second magnetic sensor 48, and the fourth magnetic sensor 52 output a low level signal.
 情報処理部82は、矢印Fが位置IVから位置Iに変位した場合には、回転数のカウント値をインクリメントする。具体的には、情報処理部82は、現在の回転数のカウント値に1を加算する。これによって、カウント値の初期値が0であった場合、カウント値が1となり、回転軸10が反時計回りに1回転したことがわかる。情報処理部82は、回転軸10がさらに反時計回りに1回転した場合には、さらに1を加算し、カウント値は、2となる。これによって、回転軸10が反時計回りに2回転したことがわかる。 When the arrow F is displaced from the position IV to the position I, the information processing unit 82 increments the count value of the rotation speed. Specifically, the information processing unit 82 adds 1 to the count value of the current rotation speed. As a result, when the initial value of the count value is 0, the count value becomes 1, and it can be seen that the rotation axis 10 has rotated once counterclockwise. When the rotation shaft 10 further rotates once counterclockwise, the information processing unit 82 further adds 1 and the count value becomes 2. As a result, it can be seen that the rotation shaft 10 has rotated twice counterclockwise.
 図5を参照して、回転軸10が時計回りに回転する場合について説明する。この場合、矢印Fが、位置V、位置VI、位置VII、および位置VIIIに位置したときに、第1発電素子24および第2発電素子26の一方が発電する。 A case where the rotating shaft 10 rotates clockwise will be described with reference to FIG. In this case, when the arrow F is located at the position V, the position VI, the position VII, and the position VIII, one of the first power generation element 24 and the second power generation element 26 generates power.
 たとえば、矢印Fが0°の位置に位置しており、第1発電素子24がLOW状態であり、第2発電素子26がHIGH状態である場合から、回転軸10が時計回りに回転する場合について説明する。 For example, from the case where the arrow F is located at the position of 0 °, the first power generation element 24 is in the LOW state, and the second power generation element 26 is in the HIGH state, the rotation shaft 10 rotates clockwise. explain.
 図5の(a)に示すように、矢印Fが位置Vに位置すると、第1発電素子24の近傍に第1磁石20が位置し、第1発電素子24が第1磁石20によって磁化される。これによって、第1発電素子24は、LOW状態からHIGH状態に遷移し、発電する。一方、第2発電素子26は、HIGH状態のままであり、発電しない。 As shown in FIG. 5A, when the arrow F is located at the position V, the first magnet 20 is located near the first power generation element 24, and the first power generation element 24 is magnetized by the first magnet 20. .. As a result, the first power generation element 24 transitions from the LOW state to the HIGH state and generates power. On the other hand, the second power generation element 26 remains in the HIGH state and does not generate power.
 第1発電素子24が発電することによって、第1~第4磁気センサ46,48,50,52は、第1発電素子24からの電力に基づいて動作する。矢印Fが位置Vに位置しているとき、第2磁気センサ48の近傍には第2磁石22が位置している。したがって、第2磁気センサ48は、highレベルの信号を出力する。一方、第1磁気センサ46、第3磁気センサ50、および第4磁気センサ52の近傍には第1磁石20および第2磁石22が位置しておらず、第1磁気センサ46、第3磁気センサ50、および第4磁気センサ52は、lowレベルの信号を出力する。 When the first power generation element 24 generates electric power, the first to fourth magnetic sensors 46, 48, 50, 52 operate based on the electric power from the first power generation element 24. When the arrow F is located at the position V, the second magnet 22 is located in the vicinity of the second magnetic sensor 48. Therefore, the second magnetic sensor 48 outputs a high level signal. On the other hand, the first magnet 20 and the second magnet 22 are not located in the vicinity of the first magnetic sensor 46, the third magnetic sensor 50, and the fourth magnetic sensor 52, and the first magnetic sensor 46 and the third magnetic sensor 22 are not located. The 50 and the fourth magnetic sensor 52 output a low level signal.
 図6に示すように、矢印Fが位置Vに位置すると、第1発電素子24は発電し、第2発電素子26は発電せず、第2磁気センサ48はhighレベルの信号を出力し、第1磁気センサ46、第3磁気センサ50、および第4磁気センサ52はlowレベルの信号を出力する。したがって、情報処理部82は、第1発電素子24が発電しており、第2発電素子26が発電しておらず、第2磁気センサ48がhighレベルの信号を出力し、第1磁気センサ46、第3磁気センサ50、および第4磁気センサ52がlowレベルの信号を出力している場合、矢印Fが位置Vの近傍に位置していると判定する。 As shown in FIG. 6, when the arrow F is located at the position V, the first power generation element 24 generates power, the second power generation element 26 does not generate power, the second magnetic sensor 48 outputs a high level signal, and the second The 1 magnetic sensor 46, the 3rd magnetic sensor 50, and the 4th magnetic sensor 52 output a low level signal. Therefore, in the information processing unit 82, the first power generation element 24 is generating power, the second power generation element 26 is not generating power, the second magnetic sensor 48 outputs a high level signal, and the first magnetic sensor 46 , The third magnetic sensor 50, and the fourth magnetic sensor 52 output a low level signal, it is determined that the arrow F is located in the vicinity of the position V.
 回転軸10がさらに時計回りに回転し、図5の(b)に示すように、矢印Fが位置VIに位置すると、第2発電素子26の近傍に第2磁石22が位置し、第2発電素子26が第2磁石22によって磁化される。これによって、第2発電素子26は、HIGH状態からLOW状態に遷移し、発電する。一方、第1発電素子24は、HIGH状態のままであり、発電しない。 When the rotating shaft 10 further rotates clockwise and the arrow F is located at the position VI as shown in FIG. 5 (b), the second magnet 22 is located near the second power generation element 26, and the second power generation is performed. The element 26 is magnetized by the second magnet 22. As a result, the second power generation element 26 transitions from the HIGH state to the LOW state and generates power. On the other hand, the first power generation element 24 remains in the HIGH state and does not generate power.
 第2発電素子26が発電することによって、第1~第4磁気センサ46~52は、第2発電素子26からの電力に基づいて動作する。矢印Fが位置VIに位置しているとき、第2磁気センサ48の近傍には第1磁石20が位置している。したがって、第2磁気センサ48は、highレベルの信号を出力する。一方、第1磁気センサ46、第3磁気センサ50、および第4磁気センサ52の近傍には第1磁石20および第2磁石22が位置しておらず、第1磁気センサ46、第3磁気センサ50、および第4磁気センサ52は、lowレベルの信号を出力する。 When the second power generation element 26 generates electric power, the first to fourth magnetic sensors 46 to 52 operate based on the electric power from the second power generation element 26. When the arrow F is located at the position VI, the first magnet 20 is located in the vicinity of the second magnetic sensor 48. Therefore, the second magnetic sensor 48 outputs a high level signal. On the other hand, the first magnet 20 and the second magnet 22 are not located in the vicinity of the first magnetic sensor 46, the third magnetic sensor 50, and the fourth magnetic sensor 52, and the first magnetic sensor 46 and the third magnetic sensor 22 are not located. The 50 and the fourth magnetic sensor 52 output a low level signal.
 図6に示すように、矢印Fが位置VIに位置すると、第2発電素子26は発電し、第1発電素子24は発電せず、第2磁気センサ48はhighレベルの信号を出力し、第1磁気センサ46、第3磁気センサ50、および第4磁気センサ52はlowレベルの信号を出力する。したがって、情報処理部82は、第2発電素子26が発電しており、第1発電素子24が発電しておらず、第2磁気センサ48がhighレベルの信号を出力し、第1磁気センサ46、第3磁気センサ50、および第4磁気センサ52がlowレベルの信号を出力している場合、矢印Fが位置VIの近傍に位置していると判定する。 As shown in FIG. 6, when the arrow F is located at the position VI, the second power generation element 26 generates power, the first power generation element 24 does not generate power, the second magnetic sensor 48 outputs a high level signal, and the second The 1 magnetic sensor 46, the 3rd magnetic sensor 50, and the 4th magnetic sensor 52 output a low level signal. Therefore, in the information processing unit 82, the second power generation element 26 is generating power, the first power generation element 24 is not generating power, the second magnetic sensor 48 outputs a high level signal, and the first magnetic sensor 46 , The third magnetic sensor 50, and the fourth magnetic sensor 52 output a low level signal, it is determined that the arrow F is located in the vicinity of the position VI.
 回転軸10がさらに時計回りに回転し、図5の(c)に示すように、矢印Fが位置VIIに位置すると、第2発電素子26の近傍に第1磁石20が位置し、第2発電素子26が第1磁石20によって磁化される。これによって、第2発電素子26は、LOW状態からHIGH状態に遷移し、発電する。一方、第1発電素子24は、HIGH状態のままであり、発電しない。 When the rotating shaft 10 further rotates clockwise and the arrow F is located at the position VII as shown in FIG. 5 (c), the first magnet 20 is located near the second power generation element 26 and the second power generation is performed. The element 26 is magnetized by the first magnet 20. As a result, the second power generation element 26 transitions from the LOW state to the HIGH state and generates power. On the other hand, the first power generation element 24 remains in the HIGH state and does not generate power.
 第2発電素子26が発電することによって、第1~第4磁気センサ46,48,50,52は、第2発電素子26からの電力に基づいて動作する。矢印Fが位置VIIに位置しているとき、第4磁気センサ52の近傍には第2磁石22が位置している。したがって、第4磁気センサ52は、highレベルの信号を出力する。一方、第1磁気センサ46、第2磁気センサ48、および第3磁気センサ50の近傍には第1磁石20および第2磁石22が位置しておらず、第1磁気センサ46、第2磁気センサ48、および第3磁気センサ50は、lowレベルの信号を出力する。 When the second power generation element 26 generates electric power, the first to fourth magnetic sensors 46, 48, 50, 52 operate based on the electric power from the second power generation element 26. When the arrow F is located at position VII, the second magnet 22 is located near the fourth magnetic sensor 52. Therefore, the fourth magnetic sensor 52 outputs a high level signal. On the other hand, the first magnet 20 and the second magnet 22 are not located in the vicinity of the first magnetic sensor 46, the second magnetic sensor 48, and the third magnetic sensor 50, and the first magnetic sensor 46 and the second magnetic sensor are not located. The 48 and the third magnetic sensor 50 output a low level signal.
 図6に示すように、矢印Fが位置VIIに位置すると、第2発電素子26は発電し、第1発電素子24は発電せず、第4磁気センサ52はhighレベルの信号を出力し、第1磁気センサ46、第2磁気センサ48、および第3磁気センサ50はlowレベルの信号を出力する。したがって、情報処理部82は、第2発電素子26が発電しており、第1発電素子24が発電しておらず、第4磁気センサ52がhighレベルの信号を出力し、第1磁気センサ46、第2磁気センサ48、および第3磁気センサ50がlowレベルの信号を出力している場合、矢印Fが位置VIIの近傍に位置していると判定する。 As shown in FIG. 6, when the arrow F is located at the position VII, the second power generation element 26 generates power, the first power generation element 24 does not generate power, the fourth magnetic sensor 52 outputs a high level signal, and the second The 1 magnetic sensor 46, the 2nd magnetic sensor 48, and the 3rd magnetic sensor 50 output a low level signal. Therefore, in the information processing unit 82, the second power generation element 26 is generating power, the first power generation element 24 is not generating power, the fourth magnetic sensor 52 outputs a high level signal, and the first magnetic sensor 46 , The second magnetic sensor 48, and the third magnetic sensor 50 output a low level signal, it is determined that the arrow F is located in the vicinity of the position VII.
 回転軸10がさらに時計回りに回転し、図5の(d)に示すように、矢印Fが位置VIIIに位置すると、第1発電素子24の近傍に第2磁石22が位置し、第1発電素子24が第2磁石22によって磁化される。これによって、第1発電素子24は、HIGH状態からLOW状態に遷移し、発電する。一方、第2発電素子26は、HIGH状態のままであり、発電しない。 When the rotating shaft 10 further rotates clockwise and the arrow F is located at the position VIII as shown in FIG. 5D, the second magnet 22 is located near the first power generation element 24 and the first power generation is performed. The element 24 is magnetized by the second magnet 22. As a result, the first power generation element 24 transitions from the HIGH state to the LOW state and generates power. On the other hand, the second power generation element 26 remains in the HIGH state and does not generate power.
 第1発電素子24が発電することによって、第1~第4磁気センサ46,48,50,52は、第1発電素子24からの電力に基づいて動作する。矢印Fが位置VIIIに位置しているとき、第4磁気センサ52の近傍には第1磁石20が位置している。したがって、第4磁気センサ52は、highレベルの信号を出力する。一方、第1磁気センサ46、第2磁気センサ48、および第3磁気センサ50の近傍には第1磁石20および第2磁石22が位置しておらず、第1磁気センサ46、第2磁気センサ48、および第3磁気センサ50は、lowレベルの信号を出力する。 When the first power generation element 24 generates electric power, the first to fourth magnetic sensors 46, 48, 50, 52 operate based on the electric power from the first power generation element 24. When the arrow F is located at position VIII, the first magnet 20 is located near the fourth magnetic sensor 52. Therefore, the fourth magnetic sensor 52 outputs a high level signal. On the other hand, the first magnet 20 and the second magnet 22 are not located in the vicinity of the first magnetic sensor 46, the second magnetic sensor 48, and the third magnetic sensor 50, and the first magnetic sensor 46 and the second magnetic sensor are not located. The 48 and the third magnetic sensor 50 output a low level signal.
 図6に示すように、矢印Fが位置VIIIに位置すると、第1発電素子24は発電し、第2発電素子26は発電せず、第4磁気センサ52はhighレベルの信号を出力し、第1磁気センサ46、第2磁気センサ48、および第3磁気センサ50はlowレベルの信号を出力する。したがって、情報処理部82は、第1発電素子24が発電しており、第2発電素子26が発電しておらず、第4磁気センサ52がhighレベルの信号を出力し、第1磁気センサ46、第2磁気センサ48、および第3磁気センサ50がlowレベルの信号を出力している場合、矢印Fが位置VIIIの近傍に位置していると判定する。 As shown in FIG. 6, when the arrow F is located at the position VIII, the first power generation element 24 generates power, the second power generation element 26 does not generate power, the fourth magnetic sensor 52 outputs a high level signal, and the second The 1 magnetic sensor 46, the 2nd magnetic sensor 48, and the 3rd magnetic sensor 50 output a low level signal. Therefore, in the information processing unit 82, the first power generation element 24 is generating power, the second power generation element 26 is not generating power, the fourth magnetic sensor 52 outputs a high level signal, and the first magnetic sensor 46 , The second magnetic sensor 48, and the third magnetic sensor 50 output a low level signal, it is determined that the arrow F is located near the position VIII.
 回転軸10がさらに時計回りに回転し、図5の(a)に示すように、矢印Fが位置Vに再度位置すると、上述したように、第1発電素子24が発電し、第2発電素子26が発電せず、第2磁気センサ48がhighレベルの信号を出力し、第1磁気センサ46、第3磁気センサ50、および第4磁気センサ52がlowレベルの信号を出力する。 When the rotating shaft 10 further rotates clockwise and the arrow F is repositioned at the position V as shown in FIG. 5A, the first power generation element 24 generates power and the second power generation element generates power as described above. 26 does not generate electricity, the second magnetic sensor 48 outputs a high level signal, and the first magnetic sensor 46, the third magnetic sensor 50, and the fourth magnetic sensor 52 output a low level signal.
 情報処理部82は、矢印Fが位置VIIIから位置Vに変位した場合には、回転数のカウント値をデクリメントする。具体的には、情報処理部82は、現在のカウント値から1を減算する。これによって、カウント値の初期値が0であった場合、カウント値が-1となり、回転軸10が時計回りに1回転したことがわかる。情報処理部82は、回転軸10がさらに時計回りに1回転した場合には、さらに1を減算し、カウント値は、-2となる。これによって、回転軸10が時計回りに2回転したことがわかる。 When the arrow F is displaced from the position VIII to the position V, the information processing unit 82 decrements the count value of the rotation speed. Specifically, the information processing unit 82 subtracts 1 from the current count value. As a result, when the initial value of the count value is 0, the count value becomes -1, and it can be seen that the rotation axis 10 has rotated once clockwise. When the rotation shaft 10 further rotates once clockwise, the information processing unit 82 further subtracts 1 and the count value becomes -2. As a result, it can be seen that the rotating shaft 10 has rotated twice clockwise.
 上述したように、情報処理部82は、第1発電素子24および第2発電素子26のうちのいずれの発電素子が発電しているか、および第1磁気センサ46、第2磁気センサ48、第3磁気センサ50、および第4磁気センサ52の検出結果に基づいて、矢印Fの位置すなわち回転軸10の回転位置、および回転方向を判定する。 As described above, the information processing unit 82 determines which of the first power generation element 24 and the second power generation element 26 is generating power, and the first magnetic sensor 46, the second magnetic sensor 48, and the third. Based on the detection results of the magnetic sensor 50 and the fourth magnetic sensor 52, the position of the arrow F, that is, the rotation position of the rotation shaft 10 and the rotation direction are determined.
 次に、回転軸10の回転位置の変位が、予め定められた所定の変位以外の変位である場合にエラーと判定する判定動作について説明する。 Next, a determination operation for determining an error when the displacement of the rotation position of the rotation shaft 10 is a displacement other than a predetermined displacement will be described.
 図7は、予め定められた回転軸10の回転位置の所定の変位を示す表を示す図である。言い換えると、図7には、回転軸10がとり得る変位が予め定められている。図7に示す表において、今回回転位置とは、今回判定した回転軸10の回転位置を示しており、変位後の回転位置を示している。前回回転位置とは、記憶部84に記憶されている前回判定した回転位置であり、変位前の回転位置を示している。前回第1発電とは、変位後の回転位置に位置する前に、第1発電素子24が最後に発電したときの回転位置を示している。前回第2発電とは、変位後の回転位置に位置する前に、第2発電素子26が最後に発電したときの回転位置を示す。 FIG. 7 is a diagram showing a table showing a predetermined displacement of a predetermined rotation position of the rotation shaft 10. In other words, in FIG. 7, the displacement that the rotating shaft 10 can take is predetermined. In the table shown in FIG. 7, the rotation position this time indicates the rotation position of the rotation shaft 10 determined this time, and indicates the rotation position after displacement. The previous rotation position is a rotation position stored in the storage unit 84 that was determined last time, and indicates a rotation position before displacement. The previous first power generation indicates the rotation position when the first power generation element 24 last generated power before being located at the rotation position after the displacement. The previous second power generation indicates the rotation position when the second power generation element 26 last generated power before being located at the rotation position after the displacement.
 図7に示すように、今回回転位置が位置Vとなり、前回回転位置が位置VIIIとなり、前回第1発電の回転位置が位置VIIIとなり、前回第2発電の回転位置が位置VIIとなる変位が定められている。この場合、矢印Fの位置が位置VIIIから位置Vに変位しているので、カウントがデクリメントされる。矢印Fの位置がこのように変位した場合、矢印Fが、位置VII、位置VIII、および位置Vの順番に通過したことがわかり、回転軸10が反時計回りに回転していたことがわかる。 As shown in FIG. 7, the displacement where the rotation position of the previous time is the position V, the rotation position of the previous time is the position VIII, the rotation position of the first power generation of the previous time is the position VIII, and the rotation position of the second power generation of the previous time is the position VII is determined. Has been done. In this case, since the position of the arrow F is displaced from the position VIII to the position V, the count is decremented. When the position of the arrow F is displaced in this way, it can be seen that the arrow F has passed in the order of the position VII, the position VIII, and the position V, and it can be seen that the rotation axis 10 has rotated counterclockwise.
 また、今回回転位置が位置Iとなり、前回回転位置が位置IVとなり、前回第1発電の回転位置が位置IVとなり、前回第2発電の回転位置が位置IIIとなる変位が定められている。この場合、矢印Fの位置が位置IVから位置Iに変位しているので、カウントがインクリメントされる。矢印Fの位置がこのように変位した場合、矢印Fが、位置III、位置IV、および位置Iの順番に通過したことがわかり、回転軸10が時計回りに回転していたことがわかる。 In addition, the displacement is defined such that the rotation position is position I this time, the rotation position last time is position IV, the rotation position of the first power generation last time is position IV, and the rotation position of the second power generation last time is position III. In this case, since the position of the arrow F is displaced from the position IV to the position I, the count is incremented. When the position of the arrow F is displaced in this way, it can be seen that the arrow F has passed in the order of the position III, the position IV, and the position I, and it can be seen that the rotation axis 10 has rotated clockwise.
 また、今回回転位置が位置Iとなり、前回回転位置が位置Vとなり、前回第1発電の回転位置が位置Vとなり、前回第2発電の回転位置が位置VIIとなる変位が定められている。この場合、矢印Fが位置Iに位置しているので、カウントがインクリメントされる。矢印Fの位置がこのように変位した場合、矢印Fが位置VII、位置VIII、位置V、および位置Iの順番に通過したことがわかり、回転軸10が時計回りに回転した後、反転して反時計回りに回転していたことがわかる。 Further, the displacement is defined in which the rotation position this time is the position I, the rotation position last time is the position V, the rotation position of the first power generation last time is the position V, and the rotation position of the second power generation last time is the position VII. In this case, since the arrow F is located at the position I, the count is incremented. When the position of the arrow F is displaced in this way, it is found that the arrow F has passed in the order of position VII, position VIII, position V, and position I, and the rotation axis 10 is rotated clockwise and then inverted. It can be seen that it was rotating counterclockwise.
 また、今回回転位置が位置Iとなり、前回回転位置が位置Vとなり、前回第1発電の回転位置が位置Vとなり、前回第2発電の回転位置が位置IIIとなる変位が定められている。この場合、矢印Fが位置Iに位置しているので、カウントがインクリメントされる。矢印Fの位置がこのように変位した場合、矢印Fが位置III、位置IV、位置I、位置V、および位置Iの順番に通過したことがわかり、回転軸10が反時計回りに回転した後、反転して時計回りに回転し、さらに反転して反時計回りに回転していたことがわかる。 Further, the displacement is defined such that the rotation position this time is the position I, the rotation position last time is the position V, the rotation position of the first power generation last time is the position V, and the rotation position of the second power generation last time is the position III. In this case, since the arrow F is located at the position I, the count is incremented. When the position of the arrow F is displaced in this way, it is found that the arrow F has passed in the order of position III, position IV, position I, position V, and position I, and after the rotation axis 10 has rotated counterclockwise. It can be seen that it was inverted and rotated clockwise, and then inverted and rotated counterclockwise.
 また、今回回転位置が位置Vとなり、前回回転位置が位置VIIとなり、前回第1発電の回転が位置Iとなり、前回第2発電の回転位置が位置VIIとなる変位が定められている。この場合、矢印Fが位置Vに位置しているので、カウントがデクリメントされる。矢印Fの位置がこのように変位した場合、矢印Fが位置I、位置II、位置III、位置VII、位置VIII、および位置Vの順番に通過したことがわかり、回転軸10が反時計回りに回転した後、反転して時計回りに回転していたことがわかる。 Further, the displacement is defined in which the rotation position this time is the position V, the previous rotation position is the position VII, the rotation of the first power generation last time is the position I, and the rotation position of the second power generation last time is the position VII. In this case, since the arrow F is located at the position V, the count is decremented. When the position of the arrow F is displaced in this way, it is found that the arrow F has passed in the order of position I, position II, position III, position VII, position VIII, and position V, and the rotation axis 10 is counterclockwise. It can be seen that after rotating, it was reversed and rotated clockwise.
 また、今回回転位置が位置Vとなり、前回回転位置が位置VIIとなり、前回第1発電の回転位置が位置IVとなり、前回第2発電の回転位置が位置VIIとなる変位が定められている。この場合、矢印Fが位置Vに位置しているので、カウントがデクリメントされる。矢印Fがこのように変位した場合、矢印Fが位置IV、位置VI、位置VII、位置VIII、および位置Vの順番に通過したことがわかる。本来、このように矢印Fが変位した場合には、第1発電素子24は、矢印Fが位置VIIIに位置したときに発電するはずであるが、前回第1発電の回転位置が位置IVであることから、矢印Fが位置VIIIに位置した際に第1発電素子24が発電していなかったことすなわちRUNTが発生していたことがわかる。 Further, the displacement is defined in which the rotation position this time is the position V, the previous rotation position is the position VII, the rotation position of the first power generation last time is the position IV, and the rotation position of the second power generation last time is the position VII. In this case, since the arrow F is located at the position V, the count is decremented. When the arrow F is displaced in this way, it can be seen that the arrow F has passed in the order of position IV, position VI, position VII, position VIII, and position V. Originally, when the arrow F is displaced in this way, the first power generation element 24 should generate power when the arrow F is located at the position VIII, but the rotation position of the first power generation last time is the position IV. From this, it can be seen that the first power generation element 24 did not generate power when the arrow F was located at the position VIII, that is, RUNT was generated.
 上述したように、図7に示す表には、回転軸10の回転位置の所定の変位が定められている。たとえば、情報処理部82は、今回回転位置が位置Iであり、前回回転位置が位置VIIIであると判定した場合、位置VIIIから位置Iへの変位は、図7に示す図表にはない。したがって、情報処理部82は、記憶部84に記憶されている前回判定した回転軸10の回転位置から、今回判定した回転軸10の回転位置への変位が、予め定められた所定の変位以外の変位であり、エラーと判定する。情報処理部82は、当該エラーに関するエラー情報を記憶部84に記憶させる。 As described above, in the table shown in FIG. 7, a predetermined displacement of the rotation position of the rotation shaft 10 is defined. For example, when the information processing unit 82 determines that the rotation position is the position I this time and the rotation position is the position VIII last time, the displacement from the position VIII to the position I is not in the chart shown in FIG. Therefore, in the information processing unit 82, the displacement from the previously determined rotation position of the rotation shaft 10 stored in the storage unit 84 to the rotation position of the rotation shaft 10 determined this time is other than a predetermined displacement determined in advance. It is a displacement and is judged as an error. The information processing unit 82 stores error information related to the error in the storage unit 84.
 以上、実施の形態1に係る回転検出器14について説明した。 The rotation detector 14 according to the first embodiment has been described above.
 以上、本実施の形態における回転検出器14は、回転軸10とともに回転し、回転軸10の回転方向に第1位相差を持って配置される第1磁石20および第2磁石22と、第1磁石20および第2磁石22が回転軸10とともに回転することによる磁界の変化によって発電する1以上の発電素子と、1以上の発電素子が発電した電力に基づいて動作し、第1磁石20によって発生する磁界および第2磁石22によって発生する磁界を検出する第1~第4磁気センサ46,48,50,52とを備え、第1磁石20は、N極と、当該N極よりも回転軸10の径方向の内方に配置されるS極とを有し、第2磁石22は、S極と、当該S極よりも回転軸10の径方向の内方に配置されるN極とを有する。 As described above, the rotation detector 14 in the present embodiment has the first magnet 20 and the second magnet 22 which rotate together with the rotation shaft 10 and are arranged with a first phase difference in the rotation direction of the rotation shaft 10, and the first magnet. It operates based on one or more power generation elements generated by the change in the magnetic field caused by the rotation of the magnet 20 and the second magnet 22 together with the rotating shaft 10, and the power generated by one or more power generation elements, and is generated by the first magnet 20. The first to fourth magnetic sensors 46, 48, 50, 52 for detecting the magnetic field generated by the second magnet 22 and the magnetic field generated by the second magnet 22 are provided, and the first magnet 20 has an N pole and a rotation axis 10 more than the N pole. The second magnet 22 has an S pole arranged inward in the radial direction of the magnet 22 and an N pole arranged inward in the radial direction of the rotation shaft 10 with respect to the S pole. ..
 これによれば、第1磁石20および第2磁石22は、回転軸10の回転方向に互いに第1位相差を持って配置され、第1磁石20は、N極と、N極よりも回転軸10の径方向の内方に配置されるS極とを有し、第2磁石22は、S極と、S極よりも回転軸10の径方向の内方に配置されるN極とを有する。また、1以上の発電素子は、第1磁石20および第2磁石22が回転軸10とともに回転することによる磁界の変化によって発電し、第1~第4磁気センサ46,48,50,52は、1以上の発電素子が発電した電力に基づいて動作し、第1磁石20によって発生する磁界および第2磁石22によって発生する磁界を検出する。このように、少なくとも1個の発電素子によって、第1~第4磁気センサ46,48,50,52を動作させ、回転軸10の回転位置等を検出できるので、回転検出器14を容易に小型化できる。 According to this, the first magnet 20 and the second magnet 22 are arranged with a first phase difference from each other in the rotation direction of the rotation shaft 10, and the first magnet 20 has an N pole and a rotation axis rather than the N pole. The second magnet 22 has an S pole arranged inward in the radial direction of 10 and an N pole arranged inward in the radial direction of the rotation shaft 10 with respect to the S pole. .. Further, one or more power generation elements generate power by changing the magnetic field due to the rotation of the first magnet 20 and the second magnet 22 together with the rotating shaft 10, and the first to fourth magnetic sensors 46, 48, 50, 52 generate electricity. It operates based on the power generated by one or more power generation elements, and detects a magnetic field generated by the first magnet 20 and a magnetic field generated by the second magnet 22. In this way, the first to fourth magnetic sensors 46, 48, 50, 52 can be operated by at least one power generation element to detect the rotation position of the rotation shaft 10, so that the rotation detector 14 can be easily miniaturized. Can be transformed into.
 また、本実施の形態における回転検出器14において、1以上の発電素子は、回転軸10の回転方向に互いに第2位相差を持って配置される第1発電素子24および第2発電素子26を有する。 Further, in the rotation detector 14 of the present embodiment, one or more power generation elements include a first power generation element 24 and a second power generation element 26 that are arranged with a second phase difference from each other in the rotation direction of the rotation shaft 10. Have.
 これによれば、第1磁石20および第2磁石22が回転軸10とともに回転することによる発電の回数を増やせる。よって、第1~第4磁気センサ46,48,50,52が動作する回数を増やせる。これによって、回転軸10の回転の検出の精度が低下することを抑制できる。 According to this, the number of times of power generation can be increased by rotating the first magnet 20 and the second magnet 22 together with the rotating shaft 10. Therefore, the number of times that the first to fourth magnetic sensors 46, 48, 50, 52 operate can be increased. As a result, it is possible to prevent the accuracy of detecting the rotation of the rotation shaft 10 from being lowered.
 また、本実施の形態における回転検出器14において、第1位相差と第2位相差とは異なる。 Further, in the rotation detector 14 of the present embodiment, the first phase difference and the second phase difference are different.
 これによれば、第1磁石20および第2磁石22が回転軸10とともに回転することによる発電の回数をさらに増やせる。よって、第1~第4磁気センサ46,48,50,52が動作する回数をさらに増やせる。これによって、回転軸10の回転の検出の精度が低下することをさらに抑制できる。 According to this, the number of times of power generation due to the rotation of the first magnet 20 and the second magnet 22 together with the rotating shaft 10 can be further increased. Therefore, the number of times that the first to fourth magnetic sensors 46, 48, 50, 52 operate can be further increased. As a result, it is possible to further suppress a decrease in the accuracy of detecting the rotation of the rotation shaft 10.
 また、本実施の形態における回転検出器14において、第1~第4磁気センサ46,48,50,52は、回転軸10の回転方向に位相差を持って配置され、回転軸10の軸方向から見たときに1以上の発電素子と重ならない。 Further, in the rotation detector 14 of the present embodiment, the first to fourth magnetic sensors 46, 48, 50, 52 are arranged with a phase difference in the rotation direction of the rotation shaft 10, and the axial direction of the rotation shaft 10 When viewed from, it does not overlap with one or more power generation elements.
 これによれば、回転軸10の回転の検出の精度が低下することをさらに抑制できる。 According to this, it is possible to further suppress a decrease in the accuracy of detecting the rotation of the rotating shaft 10.
 また、本実施の形態における回転検出器14は、1以上の発電素子のいずれが発電したかを示す発電情報と第1~第4磁気センサ46,48,50,52の検出結果とを含む検出情報を用いて、回転軸10の回転位置および回転方向を判定する情報処理部82と、回転軸10の回転位置および回転方向を記憶する記憶部84とをさらに備える。 Further, the rotation detector 14 in the present embodiment detects the power generation information indicating which of the one or more power generation elements generated power and the detection results of the first to fourth magnetic sensors 46, 48, 50, 52. An information processing unit 82 that determines the rotation position and rotation direction of the rotation shaft 10 by using information, and a storage unit 84 that stores the rotation position and rotation direction of the rotation shaft 10 are further provided.
 これによれば、回転軸10の回転位置(位置I~VIIIなどの1回転内におけるセグメント)および回転方向を一意的に決定でき、検出した回転位置および回転方向を記憶しておくことができる。 According to this, the rotation position (segment within one rotation such as positions I to VIII) and the rotation direction of the rotation shaft 10 can be uniquely determined, and the detected rotation position and rotation direction can be stored.
 また、本実施の形態における回転検出器14において、情報処理部82は、1以上の発電素子のいずれかが発電する度に、検出情報を用いて回転軸10の回転位置を判定し、判定した回転軸10の回転位置を記憶部84に記憶させ、今回判定した回転軸10の回転位置と、記憶部84に記憶されている前回判定した回転軸10の回転位置とに基づいて、回転軸10の回転数の算出に用いるカウント値を更新する。 Further, in the rotation detector 14 of the present embodiment, the information processing unit 82 determines and determines the rotation position of the rotation shaft 10 by using the detection information each time one or more power generation elements generate power. The rotation position of the rotation shaft 10 is stored in the storage unit 84, and the rotation shaft 10 is stored based on the rotation position of the rotation shaft 10 determined this time and the rotation position of the rotation shaft 10 previously determined stored in the storage unit 84. The count value used to calculate the number of revolutions of is updated.
 これによれば、今回判定した回転軸10の回転位置と、前回判定した回転軸10の回転位置とに基づいて、回転軸10の回転数の算出に用いるカウント値を更新することによって、回転軸10の回転数を算出できる。 According to this, the rotation shaft is updated by updating the count value used for calculating the rotation speed of the rotation shaft 10 based on the rotation position of the rotation shaft 10 determined this time and the rotation position of the rotation shaft 10 determined last time. The number of rotations of 10 can be calculated.
 また、本実施の形態における回転検出器14において、情報処理部82は、記憶部84に記憶されている前回判定した回転軸10の回転位置から、今回判定した回転軸10の回転位置への変位が、予め定められた所定の変位以外の変位である場合、エラーと判定し、当該エラーに関するエラー情報を記憶部84に記憶させる。 Further, in the rotation detector 14 of the present embodiment, the information processing unit 82 displaces the rotation shaft 10 determined this time from the rotation position of the rotation shaft 10 previously determined stored in the storage unit 84 to the rotation position. However, if the displacement is other than the predetermined displacement, it is determined that the displacement is an error, and the error information related to the error is stored in the storage unit 84.
 これによれば、前回判定した回転軸10の回転位置から、今回判定した回転軸10の回転位置への変位が、予め定められた所定の変位以外の変位である場合、エラーと判定される。したがって、1以上の発電素子が正常に発電せず回転位置の判定が行われなったこと等の異常を検出できる。 According to this, if the displacement of the rotating shaft 10 determined this time from the previously determined rotational position of the rotating shaft 10 to the rotational position of the rotating shaft 10 determined this time is a displacement other than a predetermined predetermined displacement, it is determined as an error. Therefore, it is possible to detect an abnormality such as that one or more power generation elements do not generate power normally and the rotation position is determined.
 また、本実施の形態における回転検出器14において、情報処理部82は、検出情報を用いて回転軸10の回転位置を判定し、回転軸10の回転位置と発電情報とを関連付けて記憶部84に記憶させる。 Further, in the rotation detector 14 of the present embodiment, the information processing unit 82 determines the rotation position of the rotation shaft 10 using the detection information, and associates the rotation position of the rotation shaft 10 with the power generation information to store the storage unit 84. To memorize.
 これによれば、1以上の発電素子が発電したときの回転軸10の回転位置を記憶しておくことができる。 According to this, it is possible to store the rotation position of the rotation shaft 10 when one or more power generation elements generate power.
 また、本実施の形態における回転検出器14において、回転軸10の軸方向と直交する方向に延び、かつ回転軸10の軸方向の一端部と間隔を空けて配置される基板18をさらに備え、第1~第4磁気センサ46,48,50,52は、基板18の回転軸10側の主面に配置され、1以上の発電素子は、基板18の回転軸10とは反対側の主面に配置される。 Further, the rotation detector 14 according to the present embodiment further includes a substrate 18 extending in a direction orthogonal to the axial direction of the rotating shaft 10 and arranged at an interval from one end in the axial direction of the rotating shaft 10. The first to fourth magnetic sensors 46, 48, 50, 52 are arranged on the main surface of the substrate 18 on the rotating shaft 10 side, and one or more power generating elements are on the main surface of the substrate 18 opposite to the rotating shaft 10. Is placed in.
 これによれば、第1~第4磁気センサ46,48,50,52を、回転軸10とともに回転する第1磁石20および第2磁石22の近くに配置し易くなる。したがって、第1~第4磁気センサ46,48,50,52によって、第1磁石20および第2磁石22による磁界を検出し易くなる。 According to this, the first to fourth magnetic sensors 46, 48, 50, 52 can be easily arranged near the first magnet 20 and the second magnet 22 that rotate together with the rotation shaft 10. Therefore, the first to fourth magnetic sensors 46, 48, 50, and 52 make it easier to detect the magnetic fields generated by the first magnet 20 and the second magnet 22.
 [実施の形態2]
 次に、実施の形態2について説明する。
[Embodiment 2]
Next, the second embodiment will be described.
 図8は、実施の形態2に係る回転検出器14aを示す図である。なお、図8では、制御回路36等の図示を省略し、反射パターン92を断面で示す。回転検出器14aは、反射型の光学式センサ88をさらに有している点において、回転検出器14と主に異なる。以下の説明では、回転検出器14との相違点を中心に説明する。 FIG. 8 is a diagram showing a rotation detector 14a according to the second embodiment. In FIG. 8, the control circuit 36 and the like are not shown, and the reflection pattern 92 is shown in cross section. The rotation detector 14a is mainly different from the rotation detector 14 in that it further includes a reflective optical sensor 88. In the following description, the differences from the rotation detector 14 will be mainly described.
 図8に示すように、回転検出器14aは、反射型の光学式センサ88をさらに有している。光学式センサ88は、受発光素子90と、反射パターン92とを有し、回転軸10の回転位置を検出する光学式のエンコーダである。 As shown in FIG. 8, the rotation detector 14a further includes a reflection type optical sensor 88. The optical sensor 88 is an optical encoder having a light receiving / receiving element 90 and a reflection pattern 92 and detecting the rotational position of the rotating shaft 10.
 受発光素子90は、基板18の回転板16側の主面に配置されており、外部の電源(図示せず)からの電力に基づいて動作する。受発光素子90は、回転軸10の径方向において、第1~第4磁気センサ46,48,50,52よりも外方に配置されている。受発光素子90は、回転軸10の軸方向において、反射パターン92と対向しており、反射パターン92に向かって光を発する。受発光素子90は、反射パターン92によって反射した光を受光する。反射パターン92によって反射する光は、回転軸10の回転位置に応じて変化する。光学式センサ88は、反射パターン92によって反射される光に基づいて、回転軸10の回転位置を検出する。この実施の形態では、受発光素子90が、発光素子および受光素子に相当する。 The light emitting / receiving element 90 is arranged on the main surface of the substrate 18 on the rotating plate 16 side, and operates based on the electric power from an external power source (not shown). The light emitting / receiving element 90 is arranged outside the first to fourth magnetic sensors 46, 48, 50, 52 in the radial direction of the rotating shaft 10. The light receiving / receiving element 90 faces the reflection pattern 92 in the axial direction of the rotating shaft 10 and emits light toward the reflection pattern 92. The light receiving / receiving element 90 receives the light reflected by the reflection pattern 92. The light reflected by the reflection pattern 92 changes according to the rotation position of the rotation shaft 10. The optical sensor 88 detects the rotational position of the rotating shaft 10 based on the light reflected by the reflection pattern 92. In this embodiment, the light emitting / receiving element 90 corresponds to the light emitting element and the light receiving element.
 反射パターン92は、回転板16の基板18側の主面に配置されている。反射パターン92は、回転軸10の回転方向に沿って配置され、環状である。たとえば、反射パターン92は、光を反射し易い反射領域と、光を反射し難い非反射領域とを有する。たとえば、反射領域および非反射領域は、回転軸10の回転方向に交互に配置されている。 The reflection pattern 92 is arranged on the main surface of the rotating plate 16 on the substrate 18 side. The reflection pattern 92 is arranged along the rotation direction of the rotation shaft 10 and is annular. For example, the reflection pattern 92 has a reflection region that easily reflects light and a non-reflection region that hardly reflects light. For example, the reflective regions and the non-reflective regions are alternately arranged in the rotation direction of the rotation shaft 10.
 第1磁石20および第2磁石22は、回転板16の基板18とは反対側の主面に配置されている。第1磁石20および第2磁石22は、回転軸10の軸方向から見たとき、反射パターン92と重なるように配置されている。 The first magnet 20 and the second magnet 22 are arranged on the main surface of the rotating plate 16 opposite to the substrate 18. The first magnet 20 and the second magnet 22 are arranged so as to overlap the reflection pattern 92 when viewed from the axial direction of the rotating shaft 10.
 情報処理部82は、光学式センサ88が外部の電源から電力の供給を受けていない無給電状態から外部の電源から電力の供給を受けている給電状態になった場合、記憶部84に記憶されている最新の回転軸10の回転位置と、光学式センサ88によって検出された回転軸10の回転位置とに基づいて、回転軸10の回転位置を判定する。 The information processing unit 82 is stored in the storage unit 84 when the optical sensor 88 changes from a non-power supply state in which power is not supplied from an external power source to a power supply state in which power is supplied from an external power source. The rotation position of the rotation shaft 10 is determined based on the latest rotation position of the rotation shaft 10 and the rotation position of the rotation shaft 10 detected by the optical sensor 88.
 たとえば、無給電状態で、第1発電素子24または第2発電素子26が発電し、回転軸10の回転位置が判定され、判定された回転軸10の回転位置が記憶部84に記憶された後、第1発電素子24および第2発電素子26が発電しない範囲で回転軸10が回転し、給電状態になった場合を考える。この場合、記憶部84に記憶されている最新の回転位置は、第1発電素子24および第2発電素子26が発電しない範囲で回転軸10が回転する前の位置である。したがって、光学式センサ88によって検出される回転位置と、記憶部84に記憶されている最新の回転位置とに、差異が生じる。したがって、情報処理部82は、記憶部84に記憶されている最新の回転位置を、光学式センサ88によって検出された回転位置に基づいて更新し、記憶部84に記憶されている最新の回転位置と、光学式センサ88によって検出された回転位置とを一致させる。このように、情報処理部82は、記憶部84に記憶されている最新の回転軸10の回転位置と、光学式センサ88によって検出された回転軸10の回転位置とに基づいて、回転軸10の回転位置を判定し、判定結果に応じて記憶部84に記憶されている最新の回転位置を更新する。 For example, after the first power generation element 24 or the second power generation element 26 generates power in a non-powered state, the rotation position of the rotation shaft 10 is determined, and the determined rotation position of the rotation shaft 10 is stored in the storage unit 84. Consider a case where the rotating shaft 10 rotates within a range in which the first power generation element 24 and the second power generation element 26 do not generate power, and the power is supplied. In this case, the latest rotation position stored in the storage unit 84 is the position before the rotation shaft 10 rotates within the range in which the first power generation element 24 and the second power generation element 26 do not generate power. Therefore, there is a difference between the rotation position detected by the optical sensor 88 and the latest rotation position stored in the storage unit 84. Therefore, the information processing unit 82 updates the latest rotation position stored in the storage unit 84 based on the rotation position detected by the optical sensor 88, and the latest rotation position stored in the storage unit 84. And the rotation position detected by the optical sensor 88 are matched. As described above, the information processing unit 82 has the rotation shaft 10 based on the latest rotation position of the rotation shaft 10 stored in the storage unit 84 and the rotation position of the rotation shaft 10 detected by the optical sensor 88. The rotation position of is determined, and the latest rotation position stored in the storage unit 84 is updated according to the determination result.
 給電状態では、情報処理部82が検出情報に基づいて判定した回転軸10の回転位置と、光学式センサ88によって検出された回転位置とは実質的に一致するはずである。情報処理部82は、給電状態において、検出情報に基づいて判定した回転軸10の回転位置と、光学式センサ88によって検出された回転位置との差異が、所定の値よりも大きい場合には、エラーと判定する。 In the power supply state, the rotation position of the rotation shaft 10 determined by the information processing unit 82 based on the detection information should substantially match the rotation position detected by the optical sensor 88. When the difference between the rotation position of the rotation shaft 10 determined based on the detection information and the rotation position detected by the optical sensor 88 in the power supply state is larger than a predetermined value, the information processing unit 82 determines. Judge as an error.
 図9は、実施の形態2に係る回転検出器14aの変形例を示す図である。図9に示すように、第1磁石20および第2磁石22は、回転板16の基板18側の主面に配置されていてもよい。この場合、たとえば、第1磁石20および第2磁石22は、回転軸10の径方向において、反射パターン92よりも内方に配置される。なお、第1磁石20および第2磁石22は、回転軸10の径方向において、反射パターン92よりも外方に配置されてもよい。 FIG. 9 is a diagram showing a modified example of the rotation detector 14a according to the second embodiment. As shown in FIG. 9, the first magnet 20 and the second magnet 22 may be arranged on the main surface of the rotating plate 16 on the substrate 18 side. In this case, for example, the first magnet 20 and the second magnet 22 are arranged inward of the reflection pattern 92 in the radial direction of the rotating shaft 10. The first magnet 20 and the second magnet 22 may be arranged outside the reflection pattern 92 in the radial direction of the rotating shaft 10.
 以上、実施の形態2に係る回転検出器14aについて説明した。 The rotation detector 14a according to the second embodiment has been described above.
 以上、本実施の形態における回転検出器14aは、電源からの電力に基づいて駆動する受発光素子90を有し、回転軸10の回転位置を検出する光学式センサ88をさらに備え、光学式センサ88が電源から電力の供給を受けていない無給電状態から電源から電力の供給を受けている給電状態になった場合、情報処理部82は、記憶部84に記憶されている最新の回転軸10の回転位置と、光学式センサ88によって検出された回転軸10の回転位置とに基づいて、回転軸10の回転位置を判定する。 As described above, the rotation detector 14a in the present embodiment includes a light receiving / receiving element 90 that is driven based on the electric power from the power source, and further includes an optical sensor 88 that detects the rotational position of the rotating shaft 10. An optical sensor. When the 88 is in the power supply state in which the power is supplied from the power supply from the non-power supply state in which the power supply is not received from the power supply, the information processing unit 82 changes the latest rotating shaft 10 stored in the storage unit 84. The rotation position of the rotation shaft 10 is determined based on the rotation position of the rotation shaft 10 and the rotation position of the rotation shaft 10 detected by the optical sensor 88.
 これによれば、情報処理部82は、記憶部84に記憶されている最新の回転軸10の回転位置と、光学式センサ88によって検出された回転軸10の回転位置とに基づいて、回転軸10の回転位置を判定する。したがって、回転軸10の回転位置をより精度よく検出できる。 According to this, the information processing unit 82 has a rotation shaft based on the latest rotation position of the rotation shaft 10 stored in the storage unit 84 and the rotation position of the rotation shaft 10 detected by the optical sensor 88. The rotation position of 10 is determined. Therefore, the rotation position of the rotation shaft 10 can be detected more accurately.
 また、本実施の形態における回転検出器14aにおいて、情報処理部82は、検出情報を用いて判定した回転軸10の回転位置と、光学式センサ88によって検出された回転軸10の回転位置との差異が所定の値よりも大きい場合、エラーと判定する。 Further, in the rotation detector 14a of the present embodiment, the information processing unit 82 determines the rotation position of the rotation shaft 10 using the detection information and the rotation position of the rotation shaft 10 detected by the optical sensor 88. If the difference is larger than the predetermined value, it is determined as an error.
 これによれば、情報処理部82が判定した回転軸10の回転位置と、光学式センサ88によって検出された回転軸10の回転位置との差異が所定の値よりも大きい場合、エラーと判定される。したがって、エラーと判定された場合、情報処理部82による判定および光学式センサ88による検出のいずれかが誤っていると推定できる。 According to this, if the difference between the rotation position of the rotation shaft 10 determined by the information processing unit 82 and the rotation position of the rotation shaft 10 detected by the optical sensor 88 is larger than a predetermined value, it is determined as an error. NS. Therefore, when it is determined that an error occurs, it can be estimated that either the determination by the information processing unit 82 or the detection by the optical sensor 88 is incorrect.
 [実施の形態3]
 次に、実施の形態3について説明する。
[Embodiment 3]
Next, the third embodiment will be described.
 図10は、実施の形態3に係る回転検出器14bを示す図である。なお、図10では、制御回路36等の図示を省略し、透過パターン102を断面で示す。回転検出器14bは、透過型の光学式センサ94をさらに有している点において、回転検出器14と主に異なる。以下の説明では、回転検出器14との相違点を中心に説明する。 FIG. 10 is a diagram showing a rotation detector 14b according to the third embodiment. In FIG. 10, the control circuit 36 and the like are not shown, and the transmission pattern 102 is shown in cross section. The rotation detector 14b is mainly different from the rotation detector 14 in that it further includes a transmissive optical sensor 94. In the following description, the differences from the rotation detector 14 will be mainly described.
 図10に示すように、回転検出器14bは、透過型の光学式センサ94をさらに有している。光学式センサ94は、基板96と、発光素子98と、受光素子100と、透過パターン102とを有し、回転軸10の回転位置を検出する光学式のエンコーダである。 As shown in FIG. 10, the rotation detector 14b further includes a transmission type optical sensor 94. The optical sensor 94 is an optical encoder having a substrate 96, a light emitting element 98, a light receiving element 100, and a transmission pattern 102, and detecting the rotational position of the rotating shaft 10.
 基板96は、回転軸10の軸方向において、回転板16の基板18とは反対側に配置されており、回転板16と間隔を空けて対向している。基板96は、コネクタ104を介して基板18と電気的に接続されている。 The substrate 96 is arranged on the side of the rotating plate 16 opposite to the substrate 18 in the axial direction of the rotating shaft 10, and faces the rotating plate 16 at intervals. The substrate 96 is electrically connected to the substrate 18 via the connector 104.
 発光素子98は、基板96の回転板16側の主面に配置されている。発光素子98は、回転軸10の軸方向において、透過パターン102と対向しており、透過パターン102に向かって光を発する。なお、回転板16は、発光素子98からの光を透過する。 The light emitting element 98 is arranged on the main surface of the substrate 96 on the rotating plate 16 side. The light emitting element 98 faces the transmission pattern 102 in the axial direction of the rotation shaft 10 and emits light toward the transmission pattern 102. The rotating plate 16 transmits light from the light emitting element 98.
 受光素子100は、基板18の回転板16側の主面に配置されている。受光素子100は、回転軸10の径方向において、第1~第4磁気センサ46,48,50,52よりも外方に配置されている。受光素子100は、回転軸10の軸方向において、透過パターン102と対向している。受光素子100は、発光素子98から出射されかつ透過パターン102によって透過された光を受光する。透過パターン102によって透過される光は、回転軸10の回転位置に応じて変化する。光学式センサ94は、透過パターン102によって透過される光に基づいて、回転軸10の回転位置を検出する。 The light receiving element 100 is arranged on the main surface of the substrate 18 on the rotating plate 16 side. The light receiving element 100 is arranged outside the first to fourth magnetic sensors 46, 48, 50, 52 in the radial direction of the rotating shaft 10. The light receiving element 100 faces the transmission pattern 102 in the axial direction of the rotating shaft 10. The light receiving element 100 receives the light emitted from the light emitting element 98 and transmitted by the transmission pattern 102. The light transmitted by the transmission pattern 102 changes according to the rotation position of the rotation shaft 10. The optical sensor 94 detects the rotational position of the rotating shaft 10 based on the light transmitted by the transmission pattern 102.
 透過パターン102は、回転板16の基板18側の主面に配置されている。透過パターン102は、回転軸10の回転方向に沿って配置され、環状である。たとえば、透過パターン102は、光を透過させる複数のスリット(図示せず)を有する。たとえば、複数のスリットは、回転軸10の回転方向に並んで配置されている。 The transmission pattern 102 is arranged on the main surface of the rotating plate 16 on the substrate 18 side. The transmission pattern 102 is arranged along the rotation direction of the rotation shaft 10 and is annular. For example, the transmission pattern 102 has a plurality of slits (not shown) that allow light to pass through. For example, the plurality of slits are arranged side by side in the rotation direction of the rotation shaft 10.
 第1磁石20および第2磁石22は、回転板16の基板18とは反対側の主面に配置されている。 The first magnet 20 and the second magnet 22 are arranged on the main surface of the rotating plate 16 opposite to the substrate 18.
 情報処理部82は、回転検出器14aの場合と同様に、光学式センサ94が外部の電源から電力の供給を受けていない無給電状態から外部の電源から電力の供給を受けている給電状態になった場合、記憶部84に記憶されている最新の回転軸10の回転位置と、光学式センサ94によって検出された回転軸10の回転位置とに基づいて、回転軸10の回転位置を判定する。 Similar to the case of the rotation detector 14a, the information processing unit 82 changes from a non-power supply state in which the optical sensor 94 does not receive power from an external power source to a power supply state in which power is supplied from an external power source. In that case, the rotation position of the rotation shaft 10 is determined based on the latest rotation position of the rotation shaft 10 stored in the storage unit 84 and the rotation position of the rotation shaft 10 detected by the optical sensor 94. ..
 また、情報処理部82は、回転検出器14aの場合と同様に、給電状態において、検出情報に基づいて判定した回転軸10の回転位置と、光学式センサ94によって検出された回転位置との差異が、所定の値よりも大きい場合には、エラーと判定する。 Further, as in the case of the rotation detector 14a, the information processing unit 82 differs between the rotation position of the rotation shaft 10 determined based on the detection information and the rotation position detected by the optical sensor 94 in the power supply state. However, if it is larger than a predetermined value, it is determined as an error.
 図11は、実施の形態3に係る回転検出器14bの変形例を示す図である。図11に示すように、第1磁石20および第2磁石22は、回転板16の基板18側の主面に配置されていてもよい。この場合、たとえば、第1磁石20および第2磁石22は、回転軸10の径方向において、透過パターン102よりも内方に配置される。なお、第1磁石20および第2磁石22は、回転軸10の径方向において、透過パターン102よりも外方に配置されてもよい。 FIG. 11 is a diagram showing a modified example of the rotation detector 14b according to the third embodiment. As shown in FIG. 11, the first magnet 20 and the second magnet 22 may be arranged on the main surface of the rotating plate 16 on the substrate 18 side. In this case, for example, the first magnet 20 and the second magnet 22 are arranged inward of the transmission pattern 102 in the radial direction of the rotating shaft 10. The first magnet 20 and the second magnet 22 may be arranged outside the transmission pattern 102 in the radial direction of the rotating shaft 10.
 以上、実施の形態3に係る回転検出器14bについて説明した。 The rotation detector 14b according to the third embodiment has been described above.
 回転検出器14bによれば、回転検出器14aと同様の作用効果を奏する。 According to the rotation detector 14b, it has the same action and effect as the rotation detector 14a.
 [実施の形態4]
 次に、実施の形態4について説明する。
[Embodiment 4]
Next, the fourth embodiment will be described.
 図12は、実施の形態4に係る回転検出器14cの回転板16を示す図である。回転検出器14cは、第1カウンターウェイト106と、第2カウンターウェイト108とをさらに有する点において、回転検出器14と主に異なる。以下の説明では、回転検出器14との相違点を中心に説明する。 FIG. 12 is a diagram showing a rotating plate 16 of the rotation detector 14c according to the fourth embodiment. The rotation detector 14c is mainly different from the rotation detector 14 in that it further has a first counterweight 106 and a second counterweight 108. In the following description, the differences from the rotation detector 14 will be mainly described.
 図12に示すように、回転検出器14cは、第1カウンターウェイト106と、第2カウンターウェイト108とをさらに有する。第1カウンターウェイト106、第2カウンターウェイト108、第1磁石20、および第2磁石22は、相互に同じ重さである。第1カウンターウェイト106および第2カウンターウェイト108は、第1カウンターウェイト106と第2カウンターウェイト108と第1磁石20と第2磁石22とによる重心の位置が、回転軸10の軸心A上に位置するように配置されている。具体的には、第1カウンターウェイト106は、第1磁石20と180°の位相差を持ち、かつ第2磁石22と90°の位相差を持って、回転板16の基板18側の主面に配置されている。第2カウンターウェイト108は、第1磁石20と90°の位相差を持ち、かつ第2磁石22と180°の位相差を持って回転板16の基板18側の主面に配置されている。 As shown in FIG. 12, the rotation detector 14c further has a first counterweight 106 and a second counterweight 108. The first counterweight 106, the second counterweight 108, the first magnet 20, and the second magnet 22 have the same weight as each other. In the first counterweight 106 and the second counterweight 108, the position of the center of gravity of the first counterweight 106, the second counterweight 108, the first magnet 20 and the second magnet 22 is located on the axis A of the rotation axis 10. Arranged to be located. Specifically, the first counterweight 106 has a phase difference of 180 ° from the first magnet 20 and a phase difference of 90 ° from the second magnet 22, and has a main surface of the rotating plate 16 on the substrate 18 side. It is located in. The second counterweight 108 has a phase difference of 90 ° from the first magnet 20 and has a phase difference of 180 ° from the second magnet 22 and is arranged on the main surface of the rotating plate 16 on the substrate 18 side.
 以上、実施の形態4に係る回転検出器14cについて説明した。 The rotation detector 14c according to the fourth embodiment has been described above.
 以上、本実施の形態における回転検出器14cは、第1カウンターウェイト106および第2カウンターウェイト108をさらに備える。第1カウンターウェイト106および第2カウンターウェイト108は、第1磁石20と第2磁石22と第1カウンターウェイト106と第2カウンターウェイト108とによる重心の位置が、回転軸10の軸心A上に位置するように配置される。 As described above, the rotation detector 14c in the present embodiment further includes a first counterweight 106 and a second counterweight 108. In the first counterweight 106 and the second counterweight 108, the position of the center of gravity of the first magnet 20, the second magnet 22, the first counterweight 106, and the second counterweight 108 is located on the axis A of the rotation axis 10. Arranged to be located.
 これによれば、第1磁石20と第2磁石22と第1カウンターウェイト106と第2カウンターウェイト108とによる重心の位置が、回転軸10の軸心A上に位置するので、回転軸10の回転のバランスが悪くなることを抑制できる。 According to this, since the position of the center of gravity of the first magnet 20, the second magnet 22, the first counterweight 106, and the second counterweight 108 is located on the axis A of the rotation axis 10, the rotation axis 10 It is possible to prevent the rotation from becoming unbalanced.
 [実施の形態5]
 次に、実施の形態5について説明する。
[Embodiment 5]
Next, the fifth embodiment will be described.
 図13は、実施の形態5に係る回転検出器14dの回転板16を示す図である。回転検出器14dは、第1カウンターウェイト106の代わりに第1カウンターウェイト110を有し、第2カウンターウェイト108の代わりに第2カウンターウェイト112を有している点において、回転検出器14cと主に異なる。以下の説明では、回転検出器14cとの相違点を中心に説明する。 FIG. 13 is a diagram showing a rotating plate 16 of the rotation detector 14d according to the fifth embodiment. The rotation detector 14d is mainly the rotation detector 14c in that it has a first counterweight 110 instead of the first counterweight 106 and a second counterweight 112 instead of the second counterweight 108. Different to. In the following description, the differences from the rotation detector 14c will be mainly described.
 図13に示すように、回転検出器14dは、第1カウンターウェイト106に代えて第1カウンターウェイト110を有し、第2カウンターウェイト108に代えて第2カウンターウェイト112を有する。第1カウンターウェイト110および第2カウンターウェイト112は、磁性材料を主成分とし、50%以上含む部材である。ここでは、第1カウンターウェイト110は、N極と、N極よりも回転軸10の径方向の内方に位置するS極とを有する磁石である。また、ここでは、第2カウンターウェイト112は、S極と、S極よりも回転軸10の径方向の内方に位置するN極とを有する磁石である。 As shown in FIG. 13, the rotation detector 14d has a first counterweight 110 instead of the first counterweight 106 and a second counterweight 112 instead of the second counterweight 108. The first counterweight 110 and the second counterweight 112 are members containing a magnetic material as a main component and containing 50% or more of the magnetic material. Here, the first counterweight 110 is a magnet having an N pole and an S pole located inward in the radial direction of the rotation shaft 10 with respect to the N pole. Further, here, the second counterweight 112 is a magnet having an S pole and an N pole located inward in the radial direction of the rotation shaft 10 with respect to the S pole.
 以上、実施の形態5に係る回転検出器14dについて説明した。 The rotation detector 14d according to the fifth embodiment has been described above.
 以上、本実施の形態における回転検出器14dにおいて、第1カウンターウェイト110および第2カウンターウェイト112は、磁性材料を50%以上含む部材である。 As described above, in the rotation detector 14d according to the present embodiment, the first counterweight 110 and the second counterweight 112 are members containing 50% or more of magnetic material.
 これによれば、第1感磁部38(ウィーガントワイヤ)に巻回されている第1コイル40の両端に誘起される電圧パルスが発生する角度間隔を均一化させるなど角度間隔を調整することができる。同様に、第2感磁部42(ウィーガントワイヤ)に巻回されている第2コイル44の両端に誘起される電圧パルスが発生する角度間隔を均一化させるなど角度間隔を調整することができる。 According to this, the angle interval is adjusted by equalizing the angle interval in which the voltage pulse induced at both ends of the first coil 40 wound around the first magnetic sensitive portion 38 (Wiegand wire) is generated. Can be done. Similarly, the angle interval can be adjusted by equalizing the angle interval in which the voltage pulse induced at both ends of the second coil 44 wound around the second magnetic sensitive portion 42 (Wiegand wire) is generated. ..
 なお、本実施の形態における回転検出器14dにおいて、第1カウンターウェイト110および第2カウンターウェイト112は、磁石でなくてもよく、磁性材料を主成分とする部材であればよい。 In the rotation detector 14d according to the present embodiment, the first counterweight 110 and the second counterweight 112 do not have to be magnets, and may be members whose main component is a magnetic material.
 これによれば、回転軸10の回転のバランスが悪くなることを抑制できるとともに、1以上の発電素子の発電の回数を増やせる。これによって、回転軸10の回転の検出の精度が低下することを抑制できる。 According to this, it is possible to suppress the imbalance of rotation of the rotating shaft 10 and increase the number of times of power generation of one or more power generation elements. As a result, it is possible to prevent the accuracy of detecting the rotation of the rotation shaft 10 from being lowered.
 [他の実施の形態等]
 以上のように、本出願において開示する技術の例示として、実施の形態1から実施の形態5について説明した。しかしながら、本開示による技術は、これらに限定されず、本開示の趣旨を逸脱しない限り、適宜、変更、置き換え、付加、省略等を行った実施の形態または変形例にも適用可能である。
[Other embodiments, etc.]
As described above, the first to fifth embodiments have been described as examples of the techniques disclosed in the present application. However, the technique according to the present disclosure is not limited to these, and can be applied to embodiments or modifications in which modifications, replacements, additions, omissions, etc. are appropriately made as long as the gist of the present disclosure is not deviated.
 上述した実施の形態では、第1磁石20と第2磁石22との第1位相差が、90°である場合について説明したが、これに限定されない。図14は、第1磁石および第2磁石の配置の他の例を示す図であって、(a)は、第1位相差が45°である配置、(b)は第1位相差が130°である配置、(c)は第1位相差が180°である配置を示す。たとえば、図14の(a)に示すように、第1位相差は、90°より小さくてもよく、45°であってもよい。第1位相差は、90°より大きくてもよく、図14の(b)に示すように130°であってもよいし、図14の(c)に示すように180°であってもよい。 In the above-described embodiment, the case where the first phase difference between the first magnet 20 and the second magnet 22 is 90 ° has been described, but the present invention is not limited to this. 14A and 14B are views showing another example of the arrangement of the first magnet and the second magnet, in which FIG. 14A is an arrangement in which the first phase difference is 45 °, and FIG. 14B is an arrangement in which the first phase difference is 130. The arrangement in which ° is, (c) shows the arrangement in which the first phase difference is 180 °. For example, as shown in FIG. 14 (a), the first phase difference may be smaller than 90 ° or 45 °. The first phase difference may be larger than 90 °, may be 130 ° as shown in FIG. 14 (b), or may be 180 ° as shown in FIG. 14 (c). ..
 上述した実施の形態では、回転検出器14~14dが、第1発電素子24および第2発電素子26を有し、第1発電素子24と第2発電素子26との第2位相差が、180°である場合について説明したが、これに限定されない。図15は、1以上の発電素子の配置の他の例を示す図であって、(a)は、第2位相差が90°である配置、(b)は、第2位相差が120°である配置、(c)は、第2位相差が150°である配置、(d)は、第2位相差が60°である配置、(e)は、第2発電素子26を有しない配置を示す。たとえば、第2位相差は、図15の(a)に示すように、90°であってもよく、図15の(b)に示すように、120°であってもよい。第2位相差は、図15の(c)に示すように、150°であってもよく、図15の(d)に示すように、60°であってもよい。図15の(e)に示すように、回転検出器は、第2発電素子26を有していなくてもよい。発電素子が1個の場合、情報処理部は、発電情報を用いず、複数の磁気センサの検出結果に基づいて、回転軸の回転位置および回転方向を判定してもよい。 In the above-described embodiment, the rotation detectors 14 to 14d have the first power generation element 24 and the second power generation element 26, and the second phase difference between the first power generation element 24 and the second power generation element 26 is 180. The case of ° has been described, but the present invention is not limited to this. 15A and 15B are views showing another example of the arrangement of one or more power generation elements, in which FIG. 15A is an arrangement in which the second phase difference is 90 °, and FIG. 15B is an arrangement in which the second phase difference is 120 °. (C) is an arrangement in which the second phase difference is 150 °, (d) is an arrangement in which the second phase difference is 60 °, and (e) is an arrangement in which the second power generation element 26 is not provided. Is shown. For example, the second phase difference may be 90 ° as shown in FIG. 15 (a) or 120 ° as shown in FIG. 15 (b). The second phase difference may be 150 ° as shown in FIG. 15 (c) or 60 ° as shown in FIG. 15 (d). As shown in FIG. 15 (e), the rotation detector does not have to have the second power generation element 26. When there is one power generation element, the information processing unit may determine the rotation position and rotation direction of the rotation axis based on the detection results of a plurality of magnetic sensors without using the power generation information.
 上述した実施の形態では、回転検出器14、14a、~14dが、第1発電素子24、第2発電素子26、および第1~第4磁気センサ46,48,50,52を有する場合について説明したが、これに限定されない。図16は、複数の磁気センサの配置の他の例を示す図であって、(a)は、回転検出器が、第4磁気センサ52を有しない配置、(b)は、回転検出器が、第1磁気センサ46および第4磁気センサ52を有しない配置、(c)は、回転検出器が、第3発電素子116をさらに有する配置を示す。たとえば、図16の(a)に示すように、回転検出器は、第4磁気センサ52を有していなくてもよい。図16の(b)に示すように、回転検出器は、第1磁気センサ46および第4磁気センサ52を有していなくてもよい。図16の(c)に示すように、回転検出器は、第1発電素子24と135°の位相差を持ち、かつ第2発電素子26と45°の位相差を持つ位置に配置される第3発電素子116をさらに有していてもよい。 In the above-described embodiment, the case where the rotation detectors 14, 14a, to 14d have the first power generation element 24, the second power generation element 26, and the first to fourth magnetic sensors 46, 48, 50, 52 will be described. However, it is not limited to this. 16A and 16B are views showing another example of arrangement of a plurality of magnetic sensors, in which FIG. 16A is an arrangement in which the rotation detector does not have the fourth magnetic sensor 52, and FIG. 16B is an arrangement in which the rotation detector is arranged. , The arrangement without the first magnetic sensor 46 and the fourth magnetic sensor 52, (c) shows the arrangement in which the rotation detector further has the third power generation element 116. For example, as shown in FIG. 16A, the rotation detector does not have to have the fourth magnetic sensor 52. As shown in FIG. 16B, the rotation detector may not have the first magnetic sensor 46 and the fourth magnetic sensor 52. As shown in FIG. 16 (c), the rotation detector is arranged at a position having a phase difference of 135 ° from the first power generation element 24 and a phase difference of 45 ° from the second power generation element 26. 3 The power generation element 116 may be further provided.
 図17は、他の実施の形態に係る回転検出器を示す図である。図17に示すように、回転検出器は、第2発電素子26、第2磁気センサ48、および第3磁気センサ50を有しておらず、第1磁石20と第2磁石22との第1位相差が130°であってもよい。 FIG. 17 is a diagram showing a rotation detector according to another embodiment. As shown in FIG. 17, the rotation detector does not have the second power generation element 26, the second magnetic sensor 48, and the third magnetic sensor 50, and the first magnet 20 and the second magnet 22 are the first. The phase difference may be 130 °.
 上述した実施の形態では、第1発電素子24および第2発電素子26が、基板18の回転板16とは反対側の主面に配置され、第1~第4磁気センサ46,48,50,52および制御回路36が、基板18の回転板16側の主面に配置される場合について説明したが、これに限定されない。図18は、その他の実施の形態に係る回転検出器を示す図であって、(a)は、第1~第4磁気センサ46,48,50,52が基板18の回転板16とは反対側の主面に配置された構成、(b)は、第1発電素子24および第2発電素子26は、基板18の回転板16側の主面に配置された構成を示す。たとえば、図18の(a)に示すように、第1~第4磁気センサ46,48,50,52は、基板18の回転板16とは反対側の主面に配置されてもよい。図18の(b)に示すように、第1発電素子24および第2発電素子26は、基板18の回転板16側の主面に配置され、制御回路36は、基板18の回転板16とは反対側の主面に配置されてもよい。 In the above-described embodiment, the first power generation element 24 and the second power generation element 26 are arranged on the main surface of the substrate 18 opposite to the rotating plate 16, and the first to fourth magnetic sensors 46, 48, 50, The case where the 52 and the control circuit 36 are arranged on the main surface of the substrate 18 on the rotating plate 16 side has been described, but the present invention is not limited thereto. FIG. 18 is a diagram showing a rotation detector according to another embodiment, and in FIG. 18A, the first to fourth magnetic sensors 46, 48, 50, 52 are opposite to the rotating plate 16 of the substrate 18. The configuration (b) arranged on the main surface on the side shows the configuration in which the first power generation element 24 and the second power generation element 26 are arranged on the main surface of the substrate 18 on the rotating plate 16 side. For example, as shown in FIG. 18A, the first to fourth magnetic sensors 46, 48, 50, 52 may be arranged on the main surface of the substrate 18 opposite to the rotating plate 16. As shown in FIG. 18B, the first power generation element 24 and the second power generation element 26 are arranged on the main surface of the substrate 18 on the rotating plate 16 side, and the control circuit 36 is connected to the rotating plate 16 of the substrate 18. May be placed on the opposite main surface.
 本開示に係る回転検出器は、負荷を回転駆動させるモータの回転軸等の回転検出に利用可能である。 The rotation detector according to the present disclosure can be used for detecting the rotation of the rotating shaft of a motor that rotationally drives a load.
 1 モータ
 4 本体
 6 回転子
 8 固定子
 10 回転軸
 12 ケース
 14,14a,14b,14c,14d 回転検出器
 16 回転板
 18 基板
 20 第1磁石
 22 第2磁石
 24 第1発電素子
 26 第2発電素子
 36 制御回路
 38 第1感磁部
 40 第1コイル
 42 第2感磁部
 44 第2コイル
 46 第1磁気センサ
 48 第2磁気センサ
 50 第3磁気センサ
 52 第4磁気センサ
 54 全波整流部
 56 電圧レギュレータ
 58 断線診断部
 60 逆流防止スイッチ
 62 全波整流部
 64 電圧レギュレータ
 66 断線診断部
 68 逆流防止スイッチ
 70,72,74,76,78,80 コンパレータ
 82 情報処理部
 84 記憶部
 86 通信部
 88,94 光学式センサ
 90 受発光素子
 92 反射パターン
 96 基板
 98 発光素子
 100 受光素子
 102 透過パターン
 104 コネクタ
 106,110 第1カウンターウェイト
 108,112 第2カウンターウェイト
1 Motor 4 Main body 6 Rotator 8 Fixture 10 Rotating shaft 12 Case 14, 14a, 14b, 14c, 14d Rotation detector 16 Rotating plate 18 Substrate 20 1st magnet 22 2nd magnet 24 1st power generation element 26 2nd power generation element 36 Control circuit 38 1st magnetic sensor 40 1st coil 42 2nd magnetic sensor 44 2nd coil 46 1st magnetic sensor 48 2nd magnetic sensor 50 3rd magnetic sensor 52 4th magnetic sensor 54 Full-wave rectifier 56 Voltage Regulator 58 Disconnection diagnosis unit 60 Backflow prevention switch 62 Full-wave rectifier 64 Voltage regulator 66 Disconnection diagnosis unit 68 Backflow prevention switch 70, 72, 74, 76, 78, 80 Comparator 82 Information processing unit 84 Storage unit 86 Communication unit 88, 94 Optical sensor 90 Light receiving element 92 Reflection pattern 96 Substrate 98 Light emitting element 100 Light receiving element 102 Transmission pattern 104 Connector 106,110 1st counter weight 108, 112 2nd counter weight

Claims (13)

  1. 回転軸とともに回転し、前記回転軸の回転方向に第1位相差を持って配置される第1磁石および第2磁石と、前記第1磁石および前記第2磁石が前記回転軸とともに回転することによる磁界の変化によって発電する1以上の発電素子と、前記1以上の発電素子が発電した電力に基づいて動作し、前記第1磁石によって発生する磁界および前記第2磁石によって発生する磁界を検出する複数の磁気センサとを備え、前記第1磁石は、第1のN極と、前記第1のN極よりも前記回転軸の径方向の内方に配置される第1のS極とを有し、前記第2磁石は、第2のS極と、前記第2のS極よりも前記回転軸の径方向の内方に配置される第2のN極とを有する、回転検出器。 By rotating with the rotation axis and arranging the first magnet and the second magnet with a first phase difference in the rotation direction of the rotation axis, and the first magnet and the second magnet rotating with the rotation axis. One or more power generation elements that generate power by changing the magnetic field, and a plurality of that operate based on the power generated by the one or more power generation elements and detect a magnetic field generated by the first magnet and a magnetic field generated by the second magnet. The first magnet has a first north pole and a first south pole arranged inward of the first north pole in the radial direction of the rotation axis. The second magnet is a rotation detector having a second south pole and a second north pole arranged inward of the second south pole in the radial direction of the rotation axis.
  2. 前記1以上の発電素子は、前記回転軸の回転方向に互いに第2位相差を持って配置される第1発電素子および第2発電素子を有する、請求項1に記載の回転検出器。 The rotation detector according to claim 1, wherein the one or more power generation elements have a first power generation element and a second power generation element arranged with a second phase difference from each other in the rotation direction of the rotation shaft.
  3. 前記第1位相差と前記第2位相差とは異なる、請求項2に記載の回転検出器。 The rotation detector according to claim 2, wherein the first phase difference and the second phase difference are different.
  4. 前記複数の磁気センサは、前記回転軸の回転方向に位相差を持って配置され、前記回転軸の軸方向から見たときに前記1以上の発電素子と重ならない、請求項1から3のいずれか1項に記載の回転検出器。 Any of claims 1 to 3, wherein the plurality of magnetic sensors are arranged with a phase difference in the rotation direction of the rotation axis and do not overlap with the one or more power generation elements when viewed from the axis direction of the rotation axis. The rotation detector according to item 1.
  5. 前記1以上の発電素子のいずれが発電したかを示す発電情報と前記複数の磁気センサの検出結果とを含む検出情報を用いて、前記回転軸の回転位置および回転方向の少なくとも一方を判定する情報処理部と、前記回転軸の回転位置および回転方向の前記少なくとも一方を記憶する記憶部とをさらに備える、請求項1から4のいずれか1項に記載の回転検出器。 Information for determining at least one of the rotation position and the rotation direction of the rotation axis by using the detection information including the power generation information indicating which of the one or more power generation elements generated power and the detection results of the plurality of magnetic sensors. The rotation detector according to any one of claims 1 to 4, further comprising a processing unit and a storage unit that stores at least one of the rotation position and the rotation direction of the rotation axis.
  6. 前記情報処理部は、前記1以上の発電素子のいずれかが発電する度に、前記検出情報を用いて前記回転軸の回転位置を判定し、判定した前記回転軸の回転位置を前記記憶部に記憶させ、今回判定した前記回転軸の回転位置と、前記記憶部に記憶されている前回判定した前記回転軸の回転位置とに基づいて、前記回転軸の回転数の算出に用いるカウント値を更新する、請求項5に記載の回転検出器。 Each time any of the one or more power generation elements generates power, the information processing unit determines the rotation position of the rotation shaft by using the detection information, and stores the determined rotation position of the rotation shaft in the storage unit. The count value used for calculating the rotation number of the rotation axis is updated based on the rotation position of the rotation axis determined this time and the rotation position of the rotation axis determined last time stored in the storage unit. The rotation detector according to claim 5.
  7. 前記情報処理部は、前記記憶部に記憶されている前回判定した前記回転軸の回転位置から、今回判定した前記回転軸の回転位置への変位が、予め定められた所定の変位以外の変位である場合、エラーと判定し、前記エラーに関するエラー情報を前記記憶部に記憶させる、請求項6に記載の回転検出器。 In the information processing unit, the displacement from the previously determined rotation position of the rotation shaft stored in the storage unit to the rotation position of the rotation shaft determined this time is a displacement other than a predetermined predetermined displacement. The rotation detector according to claim 6, wherein if there is, an error is determined and error information related to the error is stored in the storage unit.
  8. 電源からの電力に基づいて動作する発光素子および受光素子を有し、前記回転軸の回転位置を検出する光学式センサをさらに備え、前記光学式センサが前記電源から電力の供給を受けていない無給電状態から前記電源から電力の供給を受けている給電状態になった場合、前記情報処理部は、前記記憶部に記憶されている最新の前記回転軸の回転位置と、前記光学式センサによって検出された前記回転軸の回転位置とに基づいて、前記回転軸の回転位置を判定する、請求項6または7に記載の回転検出器。 It has a light emitting element and a light receiving element that operate based on the power from the power source, further includes an optical sensor that detects the rotational position of the rotating shaft, and the optical sensor is not supplied with power from the power source. When the power supply state is changed from the power supply state to the power supply state in which power is supplied from the power supply, the information processing unit detects the latest rotation position of the rotation shaft stored in the storage unit and the optical sensor. The rotation detector according to claim 6 or 7, wherein the rotation position of the rotation shaft is determined based on the rotation position of the rotation shaft.
  9. 前記情報処理部は、前記検出情報を用いて判定した前記回転軸の回転位置と、前記光学式センサによって検出された前記回転軸の回転位置との差異が所定の値よりも大きい場合、エラーと判定する、請求項8に記載の回転検出器。 When the difference between the rotation position of the rotation shaft determined by using the detection information and the rotation position of the rotation shaft detected by the optical sensor is larger than a predetermined value, the information processing unit causes an error. The rotation detector according to claim 8, wherein the rotation detector is determined.
  10. 前記情報処理部は、前記検出情報を用いて前記回転軸の回転位置を判定し、前記回転軸の回転位置と前記発電情報とを関連付けて前記記憶部に記憶させる、請求項5から9のいずれか1項に記載の回転検出器。 Any of claims 5 to 9, wherein the information processing unit determines the rotation position of the rotation shaft using the detection information, and stores the rotation position of the rotation shaft and the power generation information in the storage unit in association with each other. The rotation detector according to item 1.
  11. カウンターウェイトをさらに備え、前記カウンターウェイトは、前記第1磁石と前記第2磁石と前記カウンターウェイトとによる重心の位置が、前記回転軸の軸心上に位置するように配置される、請求項1から10のいずれか1項に記載の回転検出器。 A counter weight is further provided, and the counter weight is arranged so that the position of the center of gravity of the first magnet, the second magnet, and the counter weight is located on the axis of the rotation axis. 10. The rotation detector according to any one of 10.
  12. 前記カウンターウェイトは、磁性材料を50%以上含む部材である、請求項11に記載の回転検出器。 The rotation detector according to claim 11, wherein the counterweight is a member containing 50% or more of a magnetic material.
  13. 前記回転軸の軸方向と直交する方向に延び、かつ前記回転軸の軸方向の一端部と間隔を空けて配置される基板をさらに備え、前記複数の磁気センサは、前記基板の前記回転軸側の主面に配置され、前記1以上の発電素子は、前記基板の前記回転軸とは反対側の主面に配置される、請求項1から12のいずれか1項に記載の回転検出器。 Further comprising a substrate extending in a direction orthogonal to the axial direction of the rotating shaft and arranged at a distance from one end in the axial direction of the rotating shaft, the plurality of magnetic sensors are provided on the rotating shaft side of the substrate. The rotation detector according to any one of claims 1 to 12, wherein the one or more power generation elements are arranged on the main surface of the substrate, which is arranged on the main surface of the substrate opposite to the rotation axis.
PCT/JP2021/004505 2020-04-20 2021-02-08 Rotation detector WO2021215076A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180028950.3A CN115427764A (en) 2020-04-20 2021-02-08 Rotation detector
JP2022516852A JPWO2021215076A1 (en) 2020-04-20 2021-02-08

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-074890 2020-04-20
JP2020074890 2020-04-20

Publications (1)

Publication Number Publication Date
WO2021215076A1 true WO2021215076A1 (en) 2021-10-28

Family

ID=78269396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/004505 WO2021215076A1 (en) 2020-04-20 2021-02-08 Rotation detector

Country Status (3)

Country Link
JP (1) JPWO2021215076A1 (en)
CN (1) CN115427764A (en)
WO (1) WO2021215076A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022249795A1 (en) * 2021-05-27 2022-12-01 パナソニックIpマネジメント株式会社 Rotation detector and rotation detection method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116380142B (en) * 2023-05-19 2023-08-18 云泰智能科技(天津)有限责任公司 Acquisition sensor and parts thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009019719A1 (en) * 2009-05-05 2010-11-11 Attosensor Gmbh Energy-independent magnetic detection arrangement for detecting absolute positions and rotation of e.g. hollow shaft, has magnets arranged on radius of carrier element such that shaft rotation is divided into angular sections
WO2013094042A1 (en) * 2011-12-21 2013-06-27 株式会社安川電機 Motor, motor system, and motor encoder
WO2013157279A1 (en) * 2012-04-17 2013-10-24 三菱電機株式会社 Multi-rotation encoder
JP2018189426A (en) * 2017-04-28 2018-11-29 株式会社ニコン Encoder device, driving device, stage device, and robot device
WO2019188859A1 (en) * 2018-03-28 2019-10-03 株式会社ニコン Encoder device and method for manufacturing same, drive device, stage device, and robot device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009019719A1 (en) * 2009-05-05 2010-11-11 Attosensor Gmbh Energy-independent magnetic detection arrangement for detecting absolute positions and rotation of e.g. hollow shaft, has magnets arranged on radius of carrier element such that shaft rotation is divided into angular sections
WO2013094042A1 (en) * 2011-12-21 2013-06-27 株式会社安川電機 Motor, motor system, and motor encoder
WO2013157279A1 (en) * 2012-04-17 2013-10-24 三菱電機株式会社 Multi-rotation encoder
JP2018189426A (en) * 2017-04-28 2018-11-29 株式会社ニコン Encoder device, driving device, stage device, and robot device
WO2019188859A1 (en) * 2018-03-28 2019-10-03 株式会社ニコン Encoder device and method for manufacturing same, drive device, stage device, and robot device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022249795A1 (en) * 2021-05-27 2022-12-01 パナソニックIpマネジメント株式会社 Rotation detector and rotation detection method

Also Published As

Publication number Publication date
CN115427764A (en) 2022-12-02
JPWO2021215076A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
US9843241B2 (en) Motor, motor system, and motor encoder
JP5216462B2 (en) Rotary encoder and operation method thereof
JP5480967B2 (en) Multi-period absolute position detector
JP6773050B2 (en) Encoder device, drive device, stage device, and robot device
WO2021215076A1 (en) Rotation detector
JP5142750B2 (en) Rotary encoder and method for operating the rotary encoder
US6940269B2 (en) Meter unit having magnetic pointer position detector
JPWO2021215076A5 (en)
KR20150032117A (en) Stepping motor and System thereof
WO2021044758A1 (en) Rotation detector and motor equipped with same
JP6926434B2 (en) Encoder device, drive device, stage device, and robot device
JPWO2021044758A5 (en)
JP7170170B2 (en) Encoder and brushless motor with it
CN114270673B (en) Rotation detector and motor having the same
WO2020255682A1 (en) Rotation detector, and motor comprising same
WO2022249795A1 (en) Rotation detector and rotation detection method
KR101403460B1 (en) Permanent magnet type motor
JP2018059875A (en) Encoder device, driving device, stage device, and robot apparatus
JP2018036138A (en) Encoder device, driving device, stage device, and robot device
US6054787A (en) Electric motor
CN117120807A (en) Method for initializing a rotation angle measuring system and rotation angle measuring system
JPWO2022249795A5 (en)
US11962201B2 (en) Motor
US20210408872A1 (en) Motor
JP2023142061A (en) encoder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21793620

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022516852

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21793620

Country of ref document: EP

Kind code of ref document: A1