WO2020255391A1 - Motor control device, motor control method, and design method - Google Patents

Motor control device, motor control method, and design method Download PDF

Info

Publication number
WO2020255391A1
WO2020255391A1 PCT/JP2019/024774 JP2019024774W WO2020255391A1 WO 2020255391 A1 WO2020255391 A1 WO 2020255391A1 JP 2019024774 W JP2019024774 W JP 2019024774W WO 2020255391 A1 WO2020255391 A1 WO 2020255391A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
operation mode
actuator
value
torque
Prior art date
Application number
PCT/JP2019/024774
Other languages
French (fr)
Japanese (ja)
Inventor
芳貴 生武
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/024774 priority Critical patent/WO2020255391A1/en
Publication of WO2020255391A1 publication Critical patent/WO2020255391A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/40Regulating or controlling the amount of current drawn or delivered by the motor for controlling the mechanical load

Definitions

  • the present invention relates to a motor control device, a motor control method, and a design method.
  • Patent Document 1 discloses such an actuator.
  • valve system a system that controls the valve opening by a direct acting actuator
  • a direct acting actuator Specifically, for example, valve systems for wastegate valves have been developed.
  • a device for controlling the operation of a rotary motor in a linear actuator hereinafter referred to as a “motor control device” has been developed.
  • Actuators for valve systems include a shaft pushing operation (hereinafter referred to as “pushing operation”), a shaft pulling operation (hereinafter referred to as “pulling operation”), and an operation of holding the position of the shaft with respect to the linear motion direction (hereinafter referred to as “pushing operation”).
  • Pump operation a shaft pushing operation
  • pulling operation a shaft pulling operation
  • pump operation an operation of holding the position of the shaft with respect to the linear motion direction
  • Pisition holding operation is required. That is, the opening degree of the valve changes due to the pushing operation or the pulling operation. On the other hand, the opening of the valve is maintained by the position holding operation.
  • the pushing and pulling operations are collectively referred to as the “pushing and pulling operations”.
  • the thrust force applied to the actuator during the push-pull operation is sometimes referred to as “actuating force”.
  • the thrust force of the actuator during the position holding operation is sometimes referred to as “holding force”.
  • a characteristic indicating a thrust generated by an actuator with respect to a torque generated by a motor may be referred to as a "torque-thrust characteristic”.
  • the operating force required for the actuator is sometimes called “required operating force”.
  • the holding force required for the actuator may be referred to as “required holding force”.
  • the torque output by the motor may be referred to as "output torque”.
  • the frictional force in the feed screw mechanism acts as a negative force for the push-pull operation, that is, a force that hinders the push-pull operation.
  • the frictional force in the feed screw mechanism acts as a positive force for the position holding operation, that is, a force assisting the position holding operation.
  • the torque-thrust characteristic during the position holding operation is different from the torque-thrust characteristic during the push-pull operation. Therefore, it is preferable that the output torque during the position holding operation is set to a different value with respect to the output torque during the push-pull operation by a different setting method. More specifically, if the required holding force is equal to the required operating force, it is preferable that the output torque during the position holding operation is set to a value smaller than the output torque during the push-pull operation. ..
  • the method of setting the output torque during the position holding operation and the method of setting the output torque during the push-pull operation are not separated.
  • the output torque is set based on the torque-thrust characteristic during the push-pull operation regardless of whether the actuator operation is the push-pull operation or the position holding operation. It was a thing. In other words, the output torque was set to a large value from the viewpoint of avoiding the occurrence of insufficient thrust during the push-pull operation. For this reason, there is a problem that an excessive thrust is generated due to an excessive torque generated during the position holding operation. As a result, there is a problem that the power consumption by the motor increases. In addition, there is a problem that a large motor is adopted.
  • the conventional motor control device has a problem that the control accuracy of the motor is low. More specifically, there is a problem that the control accuracy of the output torque is low.
  • the present invention has been made to solve the above problems, and an object of the present invention is to improve the control accuracy of the motor.
  • the motor control device of the present invention is a motor control device for an actuator having a motor and a feed screw mechanism, and the operation mode of the motor corresponds to the first operation mode corresponding to the push-pull operation by the actuator or the position holding operation by the actuator.
  • Mode setting unit that selectively sets the second operation mode, and when the operation mode is set to the first operation mode, the motor is operated in the first operation mode and the operation mode is set to the second operation mode. When this is done, the motor control unit for operating the motor in the second operation mode is provided.
  • the control accuracy of the motor can be improved.
  • FIG. 1 It is a block diagram which shows the state which the motor control device which concerns on Embodiment 1 is provided in a vehicle. It is explanatory drawing which shows the hardware composition of the motor control device which concerns on Embodiment 1. FIG. It is explanatory drawing which shows the other hardware configuration of the motor control device which concerns on Embodiment 1. FIG. It is a flowchart which shows the operation of the motor control device which concerns on Embodiment 1. FIG. It is a flowchart which shows the design method of the motor control device which concerns on Embodiment 1. FIG. It is explanatory drawing which shows the example of the model corresponding to a valve system. It is explanatory drawing which shows the example of the control circuit corresponding to the torque thrust conversion formula.
  • FIG. 1 is a block diagram showing a state in which the motor control device according to the first embodiment is provided in the vehicle.
  • the motor control device according to the first embodiment will be described with reference to FIG. Further, an actuator to be controlled by the motor control device will be described. In addition, a valve system including such an actuator will be described.
  • the vehicle 1 is provided with a wastegate valve 2.
  • the opening degree of the wastegate valve 2 is controlled by the linear actuator 3.
  • the actuator 3 has a rotary motor 4. Further, the actuator 3 has a feed screw mechanism 5.
  • the lead screw mechanism 5 functions as a speed reduction mechanism. As a result, the rotary motion of the rotor (not shown) in the motor 4 is converted into the linear motion of the shaft (not shown) in the actuator 3.
  • a valve body (not shown) of the wastegate valve 2 is provided at the tip of the shaft.
  • the wastegate valve 2 and the actuator 3 form the main part of the valve system 6.
  • the operation of the motor 4 is controlled by the motor control device 100.
  • the operation mode of the motor 4 is divided into the following two types of operation modes. That is, there are two types of operation modes: an operation mode corresponding to the push-pull operation by the actuator 3 (hereinafter referred to as "first operation mode”) and an operation mode corresponding to the position holding operation by the actuator 3 (hereinafter referred to as “second operation mode”). It has been carved.
  • the motor control device 100 will be described below. Further, the upper electronic control unit 7 with respect to the motor control device 100 will be described.
  • the mode setting unit 11 sets the operation mode of the motor 4. More specifically, the mode setting unit 11 selectively sets the operation mode of the motor 4 to the first operation mode or the second operation mode based on the output signal from the electronic control unit 7.
  • the output signal from the electronic control unit 7 indicates the opening degree required for the wastegate valve 2 (hereinafter referred to as "required opening degree").
  • the current opening degree of the wastegate valve 2 (hereinafter referred to as “current opening degree”) is known. Therefore, the mode setting unit 11 calculates a difference value between the required opening degree and the current opening degree, and compares the calculated difference value with a predetermined threshold value. The mode setting unit 11 sets the operation mode of the motor 4 to the first operation mode or the second operation mode according to the result of the comparison.
  • the motor control unit 12 controls the operation of the motor 4 by controlling the amount of energization of the motor 4. More specifically, the motor control unit 12 executes control for operating the motor 4 in the first operation mode when the operation mode of the motor 4 is set to the first operation mode by the mode setting unit 11. is there. Further, the motor control unit 12 operates the motor 4 in the second operation mode when the operation mode of the motor 4 is set to the second operation mode by the mode setting unit 11.
  • the motor control unit 12 has a torque setting unit 13.
  • the torque setting unit 13 sets the output torque of the motor 4 to a value corresponding to the required operating force for the actuator 3. Further, the torque setting unit 13 sets the output torque of the motor 4 to a value corresponding to the required holding force for the actuator 3 when the motor 4 is operated in the second operation mode.
  • the torque setting unit 13 is designed based on the conversion formula (hereinafter referred to as “torque thrust conversion formula”) F1 and F2 between the torque generated by the motor 4 and the thrust generated by the actuator 3.
  • the torque thrust conversion formulas F1 and F2 are a conversion formula corresponding to the push-pull operation (hereinafter referred to as “first torque thrust conversion formula”) F1 and a conversion formula corresponding to the position holding operation (hereinafter referred to as “second torque thrust conversion formula”). “.) It includes F2.
  • the torque setting unit 13 calculates a torque value according to the required operating force based on the first torque thrust conversion formula F1. The torque setting unit 13 sets the output torque of the motor 4 to the calculated value. Further, when the motor 4 is operated in the second operation mode, the torque setting unit 13 calculates a torque value according to the required holding force based on the second torque thrust conversion formula F2. The torque setting unit 13 sets the output torque of the motor 4 to the calculated value.
  • the first torque thrust conversion formula F1 and the second torque thrust conversion formula F2 were derived based on the results of analysis using the model M corresponding to the valve system 6.
  • the method of generating the model M, the method of deriving the first torque thrust conversion formula F1 and the second torque thrust conversion formula F2, the design method of the motor control unit 12, and the like will be described later in the second embodiment.
  • the torque value according to the required operating force can be accurately calculated.
  • the torque value according to the required holding force can be accurately calculated. As a result, the control accuracy of the output torque can be further improved.
  • the main part of the motor control device 100 is composed of the mode setting unit 11 and the motor control unit 12.
  • the motor control device 100 has a processor 21 and a memory 22.
  • a program for realizing the functions of the mode setting unit 11 and the motor control unit 12 is stored in the memory 22.
  • the functions of the mode setting unit 11 and the motor control unit 12 are realized by the processor 21 reading and executing the stored program.
  • the motor control device 100 has a processing circuit 23.
  • the functions of the mode setting unit 11 and the motor control unit 12 are realized by the dedicated processing circuit 23.
  • the motor control device 100 has a processor 21, a memory 22, and a processing circuit 23 (not shown).
  • some of the functions of the mode setting unit 11 and the motor control unit 12 are realized by the processor 21 and the memory 22, and the remaining functions are realized by the dedicated processing circuit 23.
  • the processor 21 is composed of one or a plurality of processors.
  • a CPU Central Processing Unit
  • a GPU Graphics Processing Unit
  • a microprocessor a microcontroller
  • DSP Digital Signal Processor
  • the memory 22 is composed of one or a plurality of non-volatile memories. Alternatively, the memory 22 is composed of one or more non-volatile memories and one or more volatile memories. Each volatile memory uses, for example, a RAM (Random Access Memory).
  • the individual non-volatile memories include, for example, a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically Erasable Primary Memory) or an EEPROM (Electrically Emergency Memory) Drive) is used.
  • the processing circuit 23 is composed of one or a plurality of digital circuits. Alternatively, the processing circuit 23 is composed of one or more digital circuits and one or more analog circuits. That is, the processing circuit 23 is composed of one or a plurality of processing circuits.
  • the individual processing circuits include, for example, an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field-Programmable Gate Array), an FPGA (Field-Programmable Gate Array), and a System-System (System) System. ) Is used.
  • the mode setting unit 11 sets the operation mode of the motor 4 (step ST1). Since the specific example of the operation mode setting method is as described above, the description thereof will be omitted again.
  • the motor control unit 12 executes control to operate the motor 4 in the operation mode set in step ST1 (step ST2).
  • the torque setting unit 13 sets the output torque of the motor 4 to a value according to the required operating force or a value according to the required holding force according to the operation mode of the motor 4. Since the specific example of the output torque setting method is as described above, the description thereof will be omitted again.
  • the valve in the valve system 6 is not limited to the wastegate valve 2.
  • the valve system 6 may have any valve as long as the opening degree is controlled by the linear acting actuator 3.
  • the system in which the actuator 3 is used is not limited to the valve system 6.
  • the actuator 3 may be used in any system as long as it is a system in which the linear acting actuator 3 is used.
  • the motor control device 100 is the motor control device 100 for the actuator 3 having the motor 4 and the feed screw mechanism 5, and the operation mode of the motor 4 is pushed and pulled by the actuator 3.
  • the mode setting unit 11 that selectively sets the first operation mode corresponding to the above or the second operation mode corresponding to the position holding operation by the actuator 3, and the motor 4 when the operation mode is set to the first operation mode. It is provided with a motor control unit 12 that operates in one operation mode and operates the motor 4 in the second operation mode when the operation mode is set to the second operation mode. As a result, the control accuracy of the motor 4 can be improved.
  • the motor control unit 12 sets the output torque by the motor 4 to a value corresponding to the required operating force for the actuator 3, and sets the motor 4 in the second operation mode.
  • the output torque is set to a value corresponding to the required holding force for the actuator 3.
  • the motor control unit 12 calculates the value of the output torque according to the required operating force based on the first torque thrust conversion formula F1 corresponding to the push-pull operation, and the second torque thrust conversion formula corresponding to the position holding operation. Calculate the output torque value according to the required holding force based on.
  • the first torque thrust conversion formula F1 the value of the output torque according to the required operating force can be accurately calculated.
  • the second torque thrust conversion formula F2 the torque value according to the required holding force can be accurately calculated. As a result, the control accuracy of the output torque can be further improved.
  • first torque thrust conversion formula F1 and the second torque thrust conversion formula F2 are based on the results of analysis using the model M corresponding to the system (valve system 6) including the actuator 3. As will be described later in the second embodiment, the first torque thrust conversion formula F1 and the second torque thrust conversion formula F2 can be accurately derived by using the model M.
  • the motor control method is a motor control method for an actuator 3 having a motor 4 and a feed screw mechanism 5, and a mode setting unit 11 pushes and pulls the operation mode of the motor 4 by the actuator 3.
  • step ST1 for selectively setting the first operation mode corresponding to the operation or the second operation mode corresponding to the position holding operation by the actuator 3 and the motor control unit 12 set the operation mode to the first operation mode.
  • the motor 4 is operated in the first operation mode, and the step ST2 is provided for operating the motor 4 in the second operation mode when the operation mode is set to the second operation mode.
  • the control accuracy of the motor 4 can be improved.
  • FIG. 4 is a flowchart showing a design method of the motor control device according to the first embodiment.
  • the design method of the motor control device according to the first embodiment will be described with reference to the flowchart of FIG. More specifically, the design method of the motor control unit 12 will be described.
  • indicates the lead angle of the screw in the feed screw mechanism.
  • indicates the friction coefficient in the feed screw mechanism (hereinafter referred to as “screw friction coefficient”).
  • Nh Q indicates the frictional force in the feed screw mechanism.
  • Nv Q indicates the drag force in the lead screw mechanism.
  • indicates the friction angle in the feed screw mechanism.
  • Q 1 is a force corresponding to the load on the actuator, that is, the operating force by the actuator.
  • T indicates the torque generated by the motor (hereinafter referred to as "motor torque").
  • r indicates the effective radius of the screw in the feed screw mechanism. That is, the effective radius r is a constant.
  • the value of the lead angle ⁇ is determined based on the following equation (5). That is, the lead angle ⁇ is a constant.
  • the value of the friction angle ⁇ is determined based on the following equation (6). That is, the friction angle ⁇ is a value corresponding to the screw friction coefficient ⁇ .
  • P indicates the screw pitch in the feed screw mechanism.
  • D indicates the effective diameter of the screw in the feed screw mechanism. That is, the screw pitch P is a constant.
  • the effective diameter D is a constant. More specifically, the effective diameter D is a value twice the effective radius r.
  • Nh R indicates the frictional force in the feed screw mechanism.
  • Nv R indicates the drag force in the lead screw mechanism.
  • R 1 indicates a force corresponding to the load on the actuator, that is, a holding force by the actuator.
  • the coefficient a is expressed by the following equation (14).
  • the coefficient b is represented by the following equation (15).
  • the coefficient c is represented by the following equation (16).
  • the motor torque T is expressed by the following equation (17) using the friction angle ⁇ . That is, the motor torque T becomes a value corresponding to the screw friction coefficient ⁇ .
  • indicates the inclination angle of the thread in the feed screw mechanism. That is, the inclination angle ⁇ is a constant.
  • the actuator 3 is installed in a testing machine (for example, Amsler). Further, the motor 4 is electrically connected to the power supply. The power supply supplies electric power to the motor 4. As a result, torque is generated in a predetermined direction (hereinafter referred to as "torque generation direction").
  • a load in the linear motion direction and a forward load with respect to the torque generation method (hereinafter referred to as "forward load”) is applied to the actuator 3 by the testing machine.
  • a measuring instrument for example, an oscilloscope
  • the load L1 is measured.
  • the value of the current I1 may be referred to as a "first current value”.
  • the value of the voltage V1 may be referred to as a “first voltage value”.
  • the value of the load L1 may be referred to as a "first load value”.
  • a load in the linear motion direction and a load in the opposite direction to the torque generation method (hereinafter referred to as "reverse load”) is applied to the actuator 3 by the testing machine.
  • the measuring instrument measures the current I2 in the motor 4, the voltage V2 in the motor 4, and the load L2 in the linear motion direction in the actuator 3. Be measured.
  • the value of the current I2 may be referred to as a “second current value”.
  • the value of the voltage V2 may be referred to as a “second voltage value”.
  • the value of the load L2 may be referred to as a "second load value”.
  • step ST11 in which the current I1, the voltage V1 and the load L1 in the forward load state are measured may be referred to as a “first measurement step”.
  • step ST12 in which the current I2, the voltage V2, and the load L2 in the reverse load state are measured may be referred to as a “second measurement step”.
  • the first measurement step ST11 and the second measurement step ST12 may be collectively referred to as a “measurement step”.
  • the values (I1, V1, L1, I2, V2, L2) measured in the measurement steps ST11 and ST12 may be referred to as "measured values”.
  • the actuating force Q 1 is calculated. More specifically, the current I1 is equal to the current I2, and, based on the load L1 with respect to the voltage V1 at the time when the current I1 is constant, the actuating force Q 1 is calculated. Or, the voltage V1 is equal to the voltage V2, and, based on the load L1 with respect to the current I1 when the voltage V1 is constant, the actuating force Q 1 is calculated.
  • the holding force R 1 is calculated. More specifically, the current I2 is equal to the current I2, and, based on the load L2 with respect to the voltage V2 of when the current I2 is constant, the holding force R 1 is calculated. Or, the voltage V2 is equivalent to the voltage V1, and, based on the load L2 with respect to the current I2 when the voltage V2 is constant, the holding force R 1 is calculated.
  • the screw friction coefficient ⁇ is calculated by the above equations (13) to (16) using the calculated value of the inverse efficiency Z and the value of the lead angle ⁇ which is a constant.
  • the friction angle ⁇ is calculated by the above equation (6) using the calculated value of the screw friction coefficient ⁇ . Then, the calculated working force to Q 1 value, the value of the effective radius r is a constant, the value of the lead angle ⁇ is a constant, the calculated value of the friction angle theta, and the value of the tilt angle ⁇ is a constant.
  • the motor torque T is calculated by the above equation (17).
  • step ST13 in which the values ( ⁇ , T, ⁇ ) used for generating the model M are calculated may be referred to as a “calculation step”. Further, the value ( ⁇ , T, ⁇ ) calculated in the calculation step ST13 may be referred to as a “calculated value”. These values ( ⁇ , T, ⁇ ) are calculated by a computer or a computer (for example, a personal computer or a workstation).
  • FIG. 5 shows an example of the model M.
  • Various known techniques can be used to generate the model M. Detailed description of these techniques will be omitted.
  • these values ( ⁇ , T, ⁇ ) can be accurately calculated based on the inverse efficiency Z. That is, the error of the value ( ⁇ , T, ⁇ ) in the model M can be made smaller than the value ( ⁇ , T, ⁇ ) in the actual machine of the valve system 6. As a result, a highly accurate model M can be generated.
  • step ST14 in which the model M is generated may be referred to as a “generation step”.
  • the model M is generated by a computer or a computer.
  • the torque thrust conversion formulas F1 and F2 are derived using the model M generated in the generation step ST14.
  • the torque thrust conversion equations F1 and F2 are derived by executing an analysis based on the equation of motion related to the rotational motion of the rotor and the equation of motion related to the linear motion of the shaft.
  • Various known techniques can be used for the analysis using the model M. Detailed description of these techniques will be omitted.
  • step ST15 from which the torque thrust conversion formulas F1 and F2 are derived may be referred to as a “deriving step”.
  • the torque thrust conversion formulas F1 and F2 are derived by a computer or a computer.
  • the motor control unit 12 is designed based on the torque thrust conversion formulas F1 and F2 derived in the derivation step ST15. Specifically, for example, the motor control unit 12 is designed by designing the control circuits C corresponding to the torque thrust conversion formulas F1 and F2.
  • FIG. 6 shows an example of the control circuit C.
  • Various known techniques can be used in the design of the control circuit C. Detailed description of these techniques will be omitted.
  • step ST16 in which the motor control unit 12 is designed may be referred to as a "design step".
  • the motor control unit 12 is designed by a computer or a computer.
  • the torque thrust conversion formulas F1 and F2 can be accurately derived. Therefore, as described in the first embodiment, by using the first torque thrust conversion formula F1, the value of the output torque according to the required operating force can be accurately calculated. Further, by using the second torque thrust conversion formula F2, the torque value according to the required holding force can be accurately calculated. As a result, the control accuracy of the output torque can be improved.
  • the design method according to the second embodiment is the design method of the motor control device 100 for the actuator 3 having the motor 4 and the feed screw mechanism 5, and the forward load with respect to the torque generation direction by the motor 4 is applied.
  • the first measurement step in which the first current value (I1) in the motor 4, the first voltage value (V1) in the motor 4, and the first load value (L1) in the actuator 3 are measured when given to the actuator 3.
  • the second current value (I2) in the motor 4, the second voltage value (V2) in the motor 4, and the second load value in the actuator 3 Reverse efficiency using the measurement values (I1, V1, L1, I2, V2, L2) in the measurement steps ST11 and ST12 including the second measurement step ST12 in which (L2) is measured and the measurement steps ST11 and ST12.
  • a calculation step ST13 in which the value of the screw friction coefficient ⁇ , the value of the motor torque T, and the value of the screw conversion efficiency ⁇ are calculated based on Z is provided.
  • the value of the screw friction coefficient ⁇ , the value of the motor torque T, and the value of the screw conversion efficiency ⁇ can be accurately calculated. That is, the error of the calculated value ( ⁇ , T, ⁇ ) with respect to the value ( ⁇ , T, ⁇ ) in the actual machine of the valve system 6 can be reduced.
  • the design method includes a generation step ST14 in which a model M corresponding to the system including the actuator 3 (valve system 6) is generated by using the calculated values ( ⁇ , T, ⁇ ) in the calculation step ST13.
  • a model M corresponding to the system including the actuator 3 (valve system 6) is generated by using the calculated values ( ⁇ , T, ⁇ ) in the calculation step ST13.
  • the design method includes a derivation step ST15 from which the torque thrust conversion formulas F1 and F2 in the actuator 3 are derived based on the result of the analysis using the model M, and the torque thrust conversion formulas F1 and F2 are pushed by the actuator 3. It includes a first torque thrust conversion type F1 corresponding to a pulling operation and a second torque thrust conversion type F2 corresponding to a position holding operation by the actuator 3.
  • the first torque thrust conversion formula F1 and the second torque thrust conversion formula F2 can be accurately derived.
  • the design method includes a design step ST16 in which the motor control device 100 is designed based on the first torque thrust conversion formula F1 and the second torque thrust conversion formula F2.
  • the designed motor control device 100 more specifically, the motor control unit 12
  • the motor control device of the present invention can be used, for example, in a valve system.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

Provided is a motor control device (100) for an actuator (3) having a motor (4) and a feed screw mechanism (5), said motor control device (100) comprising: a mode setting unit (11) that selectively sets the operation mode of the motor (4) to a first operation mode corresponding to the push-pull operation by the actuator (3) or a second operation mode corresponding to the position holding operation by the actuator (3); and a motor control unit (12) that, when the operation mode is set to the first operation mode, operates the motor (4) in the first operation mode, and when the operation mode is set to the second operation mode, operates the motor (4) in the second operation mode.

Description

モータ制御装置、モータ制御方法及び設計方法Motor control device, motor control method and design method
 本発明は、モータ制御装置、モータ制御方法及び設計方法に関する。 The present invention relates to a motor control device, a motor control method, and a design method.
 従来、回転式のモータ及び送りねじ機構を有する直動式のアクチュエータが開発されている。すなわち、送りねじ機構は、いわゆる「減速機構」の機能を果たすものである。これにより、モータにおけるロータの回転運動は、アクチュエータにおけるシャフトの直動運動に変換される。特許文献1には、かかるアクチュエータが開示されている。 Conventionally, a linear actuator having a rotary motor and a feed screw mechanism has been developed. That is, the feed screw mechanism functions as a so-called "deceleration mechanism". As a result, the rotary motion of the rotor in the motor is converted into the linear motion of the shaft in the actuator. Patent Document 1 discloses such an actuator.
国際公開第2008/081665号International Publication No. 2008/081665
 従来、直動式のアクチュエータによりバルブの開度を制御するシステム(以下「バルブシステム」という。)が開発されている。具体的には、例えば、ウェイストゲートバルブ用のバルブシステムが開発されている。また、直動式のアクチュエータにおける回転式のモータの動作を制御する装置(以下「モータ制御装置」という。)が開発されている。 Conventionally, a system (hereinafter referred to as "valve system") that controls the valve opening by a direct acting actuator has been developed. Specifically, for example, valve systems for wastegate valves have been developed. Further, a device for controlling the operation of a rotary motor in a linear actuator (hereinafter referred to as a "motor control device") has been developed.
 バルブシステム用のアクチュエータには、シャフトを押し出す動作(以下「押し出し動作」という。)、シャフトを引き込む動作(以下「引き込み動作」という。)、及び直動方向に対するシャフトの位置を保持する動作(以下「位置保持動作」という。)が要求される。すなわち、押し出し動作又は引き込み動作により、バルブの開度が変化する。他方、位置保持動作により、バルブの開度が維持される。 Actuators for valve systems include a shaft pushing operation (hereinafter referred to as "pushing operation"), a shaft pulling operation (hereinafter referred to as "pulling operation"), and an operation of holding the position of the shaft with respect to the linear motion direction (hereinafter referred to as "pushing operation"). "Position holding operation") is required. That is, the opening degree of the valve changes due to the pushing operation or the pulling operation. On the other hand, the opening of the valve is maintained by the position holding operation.
 以下、押し出し動作及び引き込み動作を総称して「押し引き動作」ということがある。また、押し引き動作時のアクチュエータにる推力を「作動力」ということがある。また、位置保持動作時のアクチュエータによる推力を「保持力」ということがある。また、モータにより発生するトルクに対するアクチュエータにより発生する推力を示す特性を「トルク-推力特性」ということがある。 Hereinafter, the pushing and pulling operations are collectively referred to as the "pushing and pulling operations". Further, the thrust force applied to the actuator during the push-pull operation is sometimes referred to as "actuating force". Further, the thrust force of the actuator during the position holding operation is sometimes referred to as "holding force". Further, a characteristic indicating a thrust generated by an actuator with respect to a torque generated by a motor may be referred to as a "torque-thrust characteristic".
 また、アクチュエータが押し引き動作にて動作するとき、アクチュエータに要求される作動力を「要求作動力」ということがある。また、アクチュエータが位置保持動作にて動作するとき、アクチュエータに要求される保持力を「要求保持力」ということがある。また、モータにより出力されるトルクを「出力トルク」ということがある。 Also, when the actuator operates by pushing and pulling, the operating force required for the actuator is sometimes called "required operating force". Further, when the actuator operates in the position holding operation, the holding force required for the actuator may be referred to as "required holding force". Further, the torque output by the motor may be referred to as "output torque".
 アクチュエータが押し引き動作にて動作するとき、送りねじ機構における摩擦力は、押し引き動作に対するマイナスの力、すなわち押し引き動作を阻害する力として働く。他方、アクチュエータが位置保持動作にて動作するとき、送りねじ機構における摩擦力は、位置保持動作に対するプラスの力、すなわち位置保持動作を補助する力として働く。 When the actuator operates in a push-pull operation, the frictional force in the feed screw mechanism acts as a negative force for the push-pull operation, that is, a force that hinders the push-pull operation. On the other hand, when the actuator operates in the position holding operation, the frictional force in the feed screw mechanism acts as a positive force for the position holding operation, that is, a force assisting the position holding operation.
 このため、位置保持動作時のトルク-推力特性は、押し引き動作時のトルク-推力特性と異なるものとなる。したがって、位置保持動作時の出力トルクは、押し引き動作時の出力トルクに対して、異なる設定方法により異なる値に設定されるのが好適である。より具体的には、仮に要求保持力が要求作動力と同等であるとき、位置保持動作時の出力トルクが押し引き動作時の出力トルクに比して小さい値に設定されるのが好適である。しかしながら、従来のモータ制御装置においては、位置保持動作時の出力トルクの設定方法と押し引き動作時の出力トルクの設定方法とが切り分けられていない。 Therefore, the torque-thrust characteristic during the position holding operation is different from the torque-thrust characteristic during the push-pull operation. Therefore, it is preferable that the output torque during the position holding operation is set to a different value with respect to the output torque during the push-pull operation by a different setting method. More specifically, if the required holding force is equal to the required operating force, it is preferable that the output torque during the position holding operation is set to a value smaller than the output torque during the push-pull operation. .. However, in the conventional motor control device, the method of setting the output torque during the position holding operation and the method of setting the output torque during the push-pull operation are not separated.
 より具体的には、従来のモータ制御装置においては、アクチュエータの動作が押し引き動作であるか位置保持動作であるかにかかわらず、押し引き動作時のトルク-推力特性に基づき出力トルクが設定されるものであった。換言すれば、押し引き動作時の推力不足が発生するのを回避する観点から、出力トルクが大きい値に設定されるものであった。このため、位置保持動作時に過剰なトルクが発生することにより、過剰な推力が発生する問題があった。これにより、モータによる消費電力が増加する問題があった。また、大型のモータが採用される問題があった。 More specifically, in the conventional motor control device, the output torque is set based on the torque-thrust characteristic during the push-pull operation regardless of whether the actuator operation is the push-pull operation or the position holding operation. It was a thing. In other words, the output torque was set to a large value from the viewpoint of avoiding the occurrence of insufficient thrust during the push-pull operation. For this reason, there is a problem that an excessive thrust is generated due to an excessive torque generated during the position holding operation. As a result, there is a problem that the power consumption by the motor increases. In addition, there is a problem that a large motor is adopted.
 このように、従来のモータ制御装置においては、モータの制御精度が低いという問題があった。より具体的には、出力トルクの制御精度が低いという問題があった。 As described above, the conventional motor control device has a problem that the control accuracy of the motor is low. More specifically, there is a problem that the control accuracy of the output torque is low.
 本発明は、上記のような課題を解決するためになされたものであり、モータの制御精度を向上することを目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to improve the control accuracy of the motor.
 本発明のモータ制御装置は、モータ及び送りねじ機構を有するアクチュエータ用のモータ制御装置であって、モータの動作モードをアクチュエータによる押し引き動作に対応する第1動作モード又はアクチュエータによる位置保持動作に対応する第2動作モードに選択的に設定するモード設定部と、動作モードが第1動作モードに設定されたとき、モータを第1動作モードにて動作させるとともに、動作モードが第2動作モードに設定されたとき、モータを第2動作モードにて動作させるモータ制御部と、を備えるものである。 The motor control device of the present invention is a motor control device for an actuator having a motor and a feed screw mechanism, and the operation mode of the motor corresponds to the first operation mode corresponding to the push-pull operation by the actuator or the position holding operation by the actuator. Mode setting unit that selectively sets the second operation mode, and when the operation mode is set to the first operation mode, the motor is operated in the first operation mode and the operation mode is set to the second operation mode. When this is done, the motor control unit for operating the motor in the second operation mode is provided.
 本発明によれば、上記のように構成したので、モータの制御精度を向上することができる。 According to the present invention, since the configuration is as described above, the control accuracy of the motor can be improved.
実施の形態1に係るモータ制御装置が車両に設けられている状態を示すブロック図である。It is a block diagram which shows the state which the motor control device which concerns on Embodiment 1 is provided in a vehicle. 実施の形態1に係るモータ制御装置のハードウェア構成を示す説明図である。It is explanatory drawing which shows the hardware composition of the motor control device which concerns on Embodiment 1. FIG. 実施の形態1に係るモータ制御装置の他のハードウェア構成を示す説明図である。It is explanatory drawing which shows the other hardware configuration of the motor control device which concerns on Embodiment 1. FIG. 実施の形態1に係るモータ制御装置の動作を示すフローチャートである。It is a flowchart which shows the operation of the motor control device which concerns on Embodiment 1. FIG. 実施の形態1に係るモータ制御装置の設計方法を示すフローチャートである。It is a flowchart which shows the design method of the motor control device which concerns on Embodiment 1. FIG. バルブシステムに対応するモデルの例を示す説明図である。It is explanatory drawing which shows the example of the model corresponding to a valve system. トルク推力変換式に対応する制御回路の例を示す説明図である。It is explanatory drawing which shows the example of the control circuit corresponding to the torque thrust conversion formula.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。 Hereinafter, in order to explain the present invention in more detail, a mode for carrying out the present invention will be described with reference to the accompanying drawings.
実施の形態1.
 図1は、実施の形態1に係るモータ制御装置が車両に設けられている状態を示すブロック図である。図1を参照して、実施の形態1に係るモータ制御装置について説明する。また、かかるモータ制御装置による制御対象となるアクチュエータについて説明する。また、かかるアクチュエータを含むバルブシステムについて説明する。
Embodiment 1.
FIG. 1 is a block diagram showing a state in which the motor control device according to the first embodiment is provided in the vehicle. The motor control device according to the first embodiment will be described with reference to FIG. Further, an actuator to be controlled by the motor control device will be described. In addition, a valve system including such an actuator will be described.
 図1に示す如く、車両1にウェイストゲートバルブ2が設けられている。ウェイストゲートバルブ2の開度は、直動式のアクチュエータ3により制御される。 As shown in FIG. 1, the vehicle 1 is provided with a wastegate valve 2. The opening degree of the wastegate valve 2 is controlled by the linear actuator 3.
 すなわち、アクチュエータ3は、回転式のモータ4を有している。また、アクチュエータ3は、送りねじ機構5を有している。送りねじ機構5は、減速機構の機能を果たすものである。これにより、モータ4におけるロータ(不図示)の回転運動は、アクチュエータ3におけるシャフト(不図示)の直動運動に変換される。シャフトの先端部には、ウェイストゲートバルブ2の弁体(不図示)が設けられている。 That is, the actuator 3 has a rotary motor 4. Further, the actuator 3 has a feed screw mechanism 5. The lead screw mechanism 5 functions as a speed reduction mechanism. As a result, the rotary motion of the rotor (not shown) in the motor 4 is converted into the linear motion of the shaft (not shown) in the actuator 3. A valve body (not shown) of the wastegate valve 2 is provided at the tip of the shaft.
 回転方向に対するロータの位置(以下「回転位置」という。)が変化することにより、すなわちロータが回転することにより、直動方向に対するシャフトの位置(以下「直動位置」という。)が変化する。シャフトの直動位置が変化することにより、ウェイストゲートバルブ2の開度が変化する。他方、ロータの回転位置が維持されることにより、シャフトの直動位置が維持される。シャフトの直動位置が維持されることにより、ウェイストゲートバルブ2の開度が維持される。 By changing the position of the rotor with respect to the rotation direction (hereinafter referred to as "rotation position"), that is, by rotating the rotor, the position of the shaft with respect to the linear movement direction (hereinafter referred to as "linear movement position") changes. The opening degree of the wastegate valve 2 changes as the linear motion position of the shaft changes. On the other hand, by maintaining the rotational position of the rotor, the linear motion position of the shaft is maintained. By maintaining the linear motion position of the shaft, the opening degree of the wastegate valve 2 is maintained.
 ウェイストゲートバルブ2及びアクチュエータ3により、バルブシステム6の要部が構成されている。 The wastegate valve 2 and the actuator 3 form the main part of the valve system 6.
 モータ4の動作は、モータ制御装置100により制御される。ここで、モータ制御装置100においては、モータ4の動作モードが以下の2種類の動作モードに切り分けられている。すなわち、アクチュエータ3による押し引き動作に対応する動作モード(以下「第1動作モード」という。)と、アクチュエータ3による位置保持動作に対応する動作モード(以下「第2動作モード」という。)とに切り分けられている。 The operation of the motor 4 is controlled by the motor control device 100. Here, in the motor control device 100, the operation mode of the motor 4 is divided into the following two types of operation modes. That is, there are two types of operation modes: an operation mode corresponding to the push-pull operation by the actuator 3 (hereinafter referred to as "first operation mode") and an operation mode corresponding to the position holding operation by the actuator 3 (hereinafter referred to as "second operation mode"). It has been carved.
 以下、モータ制御装置100について説明する。また、モータ制御装置100に対する上位の電子制御ユニット7について説明する。 The motor control device 100 will be described below. Further, the upper electronic control unit 7 with respect to the motor control device 100 will be described.
 モード設定部11は、モータ4の動作モードを設定するものである。より具体的には、モード設定部11は、電子制御ユニット7による出力信号に基づき、モータ4の動作モードを第1動作モード又は第2動作モードに選択的に設定するものである。 The mode setting unit 11 sets the operation mode of the motor 4. More specifically, the mode setting unit 11 selectively sets the operation mode of the motor 4 to the first operation mode or the second operation mode based on the output signal from the electronic control unit 7.
 例えば、電子制御ユニット7による出力信号は、ウェイストゲートバルブ2に要求される開度(以下「要求開度」という。)を示すものである。他方、モータ制御装置100において、ウェイストゲートバルブ2の現在の開度(以下「現在開度」という。)は既知である。そこで、モード設定部11は、要求開度と現在開度との差分値を算出して、当該算出された差分値を所定の閾値と比較する。モード設定部11は、当該比較の結果に応じて、モータ4の動作モードを第1動作モード又は第2動作モードに設定する。 For example, the output signal from the electronic control unit 7 indicates the opening degree required for the wastegate valve 2 (hereinafter referred to as "required opening degree"). On the other hand, in the motor control device 100, the current opening degree of the wastegate valve 2 (hereinafter referred to as "current opening degree") is known. Therefore, the mode setting unit 11 calculates a difference value between the required opening degree and the current opening degree, and compares the calculated difference value with a predetermined threshold value. The mode setting unit 11 sets the operation mode of the motor 4 to the first operation mode or the second operation mode according to the result of the comparison.
 モータ制御部12は、モータ4に対する通電量を制御することにより、モータ4の動作を制御するものである。より具体的には、モータ制御部12は、モード設定部11によりモータ4の動作モードが第1動作モードに設定されたとき、モータ4を第1動作モードにて動作させる制御を実行するものである。また、モータ制御部12は、モード設定部11によりモータ4の動作モードが第2動作モードに設定されたとき、モータ4を第2動作モードにて動作させるものである。 The motor control unit 12 controls the operation of the motor 4 by controlling the amount of energization of the motor 4. More specifically, the motor control unit 12 executes control for operating the motor 4 in the first operation mode when the operation mode of the motor 4 is set to the first operation mode by the mode setting unit 11. is there. Further, the motor control unit 12 operates the motor 4 in the second operation mode when the operation mode of the motor 4 is set to the second operation mode by the mode setting unit 11.
 ここで、モータ制御部12は、トルク設定部13を有している。トルク設定部13は、モータ4を第1動作モードにて動作させるとき、モータ4による出力トルクをアクチュエータ3に対する要求作動力に応じた値に設定するものである。また、トルク設定部13は、モータ4を第2動作モードにて動作させるとき、モータ4による出力トルクをアクチュエータ3に対する要求保持力に応じた値に設定するものである。 Here, the motor control unit 12 has a torque setting unit 13. When the motor 4 is operated in the first operation mode, the torque setting unit 13 sets the output torque of the motor 4 to a value corresponding to the required operating force for the actuator 3. Further, the torque setting unit 13 sets the output torque of the motor 4 to a value corresponding to the required holding force for the actuator 3 when the motor 4 is operated in the second operation mode.
 すなわち、トルク設定部13は、モータ4により発生するトルクとアクチュエータ3により発生する推力との変換式(以下「トルク推力変換式」という。)F1,F2に基づき設計されたものである。トルク推力変換式F1,F2は、押し引き動作に対応する変換式(以下「第1トルク推力変換式」という。)F1、及び位置保持動作に対応する変換式(以下「第2トルク推力変換式」という。)F2を含むものである。 That is, the torque setting unit 13 is designed based on the conversion formula (hereinafter referred to as "torque thrust conversion formula") F1 and F2 between the torque generated by the motor 4 and the thrust generated by the actuator 3. The torque thrust conversion formulas F1 and F2 are a conversion formula corresponding to the push-pull operation (hereinafter referred to as "first torque thrust conversion formula") F1 and a conversion formula corresponding to the position holding operation (hereinafter referred to as "second torque thrust conversion formula"). ".) It includes F2.
 トルク設定部13は、モータ4を第1動作モードにて動作させるとき、第1トルク推力変換式F1に基づき、要求作動力に応じたトルクの値を算出する。トルク設定部13は、モータ4による出力トルクを当該算出された値に設定する。また、トルク設定部13は、モータ4を第2動作モードにて動作させるとき、第2トルク推力変換式F2に基づき、要求保持力に応じたトルクの値を算出する。トルク設定部13は、モータ4による出力トルクを当該算出された値に設定する。 When the motor 4 is operated in the first operation mode, the torque setting unit 13 calculates a torque value according to the required operating force based on the first torque thrust conversion formula F1. The torque setting unit 13 sets the output torque of the motor 4 to the calculated value. Further, when the motor 4 is operated in the second operation mode, the torque setting unit 13 calculates a torque value according to the required holding force based on the second torque thrust conversion formula F2. The torque setting unit 13 sets the output torque of the motor 4 to the calculated value.
 第1トルク推力変換式F1及び第2トルク推力変換式F2は、バルブシステム6に対応するモデルMを用いた解析の結果に基づき導出されたものである。モデルMの生成方法、第1トルク推力変換式F1及び第2トルク推力変換式F2の導出方法、並びにモータ制御部12の設計方法などについては、実施の形態2にて後述する。 The first torque thrust conversion formula F1 and the second torque thrust conversion formula F2 were derived based on the results of analysis using the model M corresponding to the valve system 6. The method of generating the model M, the method of deriving the first torque thrust conversion formula F1 and the second torque thrust conversion formula F2, the design method of the motor control unit 12, and the like will be described later in the second embodiment.
 このように、モータ4の動作モードが第1動作モード及び第2動作モードに切り分けられていることにより、押し引き動作及び位置保持動作の各々に適した出力トルクを実現することができる。この結果、モータの動作モードが切り分けられていない従来のモータ制御装置に比して、出力トルクの制御精度を向上することができる。 By dividing the operation mode of the motor 4 into the first operation mode and the second operation mode in this way, it is possible to realize an output torque suitable for each of the push-pull operation and the position holding operation. As a result, the control accuracy of the output torque can be improved as compared with the conventional motor control device in which the operation mode of the motor is not separated.
 より具体的には、アクチュエータ3が位置保持動作にて動作するとき、モータ4による過剰なトルクの発生を回避することができる。この結果、モータ4による消費電力が増加するのを回避することができる。また、モータ4に大型のモータが採用されるのを回避することができる。 More specifically, when the actuator 3 operates in the position holding operation, it is possible to avoid the generation of excessive torque by the motor 4. As a result, it is possible to avoid an increase in power consumption by the motor 4. Further, it is possible to avoid adopting a large motor for the motor 4.
 また、実施の形態2にて後述するように、第1トルク推力変換式F1を用いることにより、要求作動力に応じたトルクの値を正確に算出することができる。第2トルク推力変換式F2を用いることにより、要求保持力に応じたトルクの値を正確に算出することができる。この結果、出力トルクの制御精度を更に向上することができる。 Further, as will be described later in the second embodiment, by using the first torque thrust conversion formula F1, the torque value according to the required operating force can be accurately calculated. By using the second torque thrust conversion formula F2, the torque value according to the required holding force can be accurately calculated. As a result, the control accuracy of the output torque can be further improved.
 モード設定部11及びモータ制御部12により、モータ制御装置100の要部が構成されている。 The main part of the motor control device 100 is composed of the mode setting unit 11 and the motor control unit 12.
 次に、図2を参照して、モータ制御装置100の要部のハードウェア構成について説明する。 Next, the hardware configuration of the main part of the motor control device 100 will be described with reference to FIG.
 図2Aに示す如く、モータ制御装置100は、プロセッサ21及びメモリ22を有している。メモリ22には、モード設定部11及びモータ制御部12の機能を実現するためのプログラムが記憶されている。当該記憶されているプログラムをプロセッサ21が読み出して実行することにより、モード設定部11及びモータ制御部12の機能が実現される。 As shown in FIG. 2A, the motor control device 100 has a processor 21 and a memory 22. A program for realizing the functions of the mode setting unit 11 and the motor control unit 12 is stored in the memory 22. The functions of the mode setting unit 11 and the motor control unit 12 are realized by the processor 21 reading and executing the stored program.
 または、図2Bに示す如く、モータ制御装置100は、処理回路23を有している。この場合、モード設定部11及びモータ制御部12の機能が専用の処理回路23により実現される。 Alternatively, as shown in FIG. 2B, the motor control device 100 has a processing circuit 23. In this case, the functions of the mode setting unit 11 and the motor control unit 12 are realized by the dedicated processing circuit 23.
 または、モータ制御装置100は、プロセッサ21、メモリ22及び処理回路23を有している(不図示)。この場合、モード設定部11及びモータ制御部12の機能のうちの一部の機能がプロセッサ21及びメモリ22により実現されるとともに、残余の機能が専用の処理回路23により実現される。 Alternatively, the motor control device 100 has a processor 21, a memory 22, and a processing circuit 23 (not shown). In this case, some of the functions of the mode setting unit 11 and the motor control unit 12 are realized by the processor 21 and the memory 22, and the remaining functions are realized by the dedicated processing circuit 23.
 プロセッサ21は、1個又は複数個のプロセッサにより構成されている。個々のプロセッサは、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、マイクロプロセッサ、マイクロコントローラ又はDSP(Digital Signal Processor)を用いたものである。 The processor 21 is composed of one or a plurality of processors. As the individual processor, for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a microprocessor, a microcontroller, or a DSP (Digital Signal Processor) is used.
 メモリ22は、1個又は複数個の不揮発性メモリにより構成されている。または、メモリ22は、1個又は複数個の不揮発性メモリ及び1個又は複数個の揮発性メモリにより構成されている。個々の揮発性メモリは、例えば、RAM(Random Access Memory)を用いたものである。個々の不揮発性メモリは、例えば、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read-Only Memory)、SSD(Solid State Drive)又はHDD(Hard Disk Drive)を用いたものである。 The memory 22 is composed of one or a plurality of non-volatile memories. Alternatively, the memory 22 is composed of one or more non-volatile memories and one or more volatile memories. Each volatile memory uses, for example, a RAM (Random Access Memory). The individual non-volatile memories include, for example, a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically Erasable Primary Memory) or an EEPROM (Electrically Emergency Memory) Drive) is used.
 処理回路23は、1個又は複数個のデジタル回路により構成されている。または、処理回路23は、1個又は複数個のデジタル回路及び1個又は複数個のアナログ回路により構成されている。すなわち、処理回路23は、1個又は複数個の処理回路により構成されている。個々の処理回路は、例えば、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field-Programmable Gate Array)、SoC(System-on-a-Chip)又はシステムLSI(Large-Scale Integration)を用いたものである。 The processing circuit 23 is composed of one or a plurality of digital circuits. Alternatively, the processing circuit 23 is composed of one or more digital circuits and one or more analog circuits. That is, the processing circuit 23 is composed of one or a plurality of processing circuits. The individual processing circuits include, for example, an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field-Programmable Gate Array), an FPGA (Field-Programmable Gate Array), and a System-System (System) System. ) Is used.
 次に、図3のフローチャートを参照して、モータ制御装置100の動作について説明する。 Next, the operation of the motor control device 100 will be described with reference to the flowchart of FIG.
 まず、モード設定部11は、モータ4の動作モードを設定する(ステップST1)。動作モードの設定方法の具体例は上記のとおりであるため、再度の説明は省略する。 First, the mode setting unit 11 sets the operation mode of the motor 4 (step ST1). Since the specific example of the operation mode setting method is as described above, the description thereof will be omitted again.
 次いで、モータ制御部12は、ステップST1にて設定された動作モードにてモータ4を動作させる制御を実行する(ステップST2)。このとき、トルク設定部13は、モータ4の動作モードに応じて、モータ4による出力トルクを要求作動力に応じた値又は要求保持力に応じた値に設定する。出力トルクの設定方法の具体例は上記のとおりであるため、再度の説明は省略する。 Next, the motor control unit 12 executes control to operate the motor 4 in the operation mode set in step ST1 (step ST2). At this time, the torque setting unit 13 sets the output torque of the motor 4 to a value according to the required operating force or a value according to the required holding force according to the operation mode of the motor 4. Since the specific example of the output torque setting method is as described above, the description thereof will be omitted again.
 なお、バルブシステム6におけるバルブは、ウェイストゲートバルブ2に限定されるものではない。バルブシステム6は、直動式のアクチュエータ3により開度が制御されるバルブであれば、如何なるバルブを有するものであっても良い。 The valve in the valve system 6 is not limited to the wastegate valve 2. The valve system 6 may have any valve as long as the opening degree is controlled by the linear acting actuator 3.
 また、アクチュエータ3が用いられるシステムは、バルブシステム6に限定されるものではない。アクチュエータ3は、直動式のアクチュエータ3が用いられるシステムであれば、如何なるシステムに用いられるものであっても良い。 Further, the system in which the actuator 3 is used is not limited to the valve system 6. The actuator 3 may be used in any system as long as it is a system in which the linear acting actuator 3 is used.
 以上のように、実施の形態1に係るモータ制御装置100は、モータ4及び送りねじ機構5を有するアクチュエータ3用のモータ制御装置100であって、モータ4の動作モードをアクチュエータ3による押し引き動作に対応する第1動作モード又はアクチュエータ3による位置保持動作に対応する第2動作モードに選択的に設定するモード設定部11と、動作モードが第1動作モードに設定されたとき、モータ4を第1動作モードにて動作させるとともに、動作モードが第2動作モードに設定されたとき、モータ4を第2動作モードにて動作させるモータ制御部12と、を備える。これにより、モータ4の制御精度を向上することができる。 As described above, the motor control device 100 according to the first embodiment is the motor control device 100 for the actuator 3 having the motor 4 and the feed screw mechanism 5, and the operation mode of the motor 4 is pushed and pulled by the actuator 3. The mode setting unit 11 that selectively sets the first operation mode corresponding to the above or the second operation mode corresponding to the position holding operation by the actuator 3, and the motor 4 when the operation mode is set to the first operation mode. It is provided with a motor control unit 12 that operates in one operation mode and operates the motor 4 in the second operation mode when the operation mode is set to the second operation mode. As a result, the control accuracy of the motor 4 can be improved.
 また、モータ制御部12は、モータ4を第1動作モードにて動作させるとき、モータ4による出力トルクをアクチュエータ3に対する要求作動力に応じた値に設定するとともに、モータ4を第2動作モードにて動作させるとき、出力トルクをアクチュエータ3に対する要求保持力に応じた値に設定する。これにより、出力トルクの制御精度を向上することができる。 Further, when the motor 4 is operated in the first operation mode, the motor control unit 12 sets the output torque by the motor 4 to a value corresponding to the required operating force for the actuator 3, and sets the motor 4 in the second operation mode. The output torque is set to a value corresponding to the required holding force for the actuator 3. As a result, the control accuracy of the output torque can be improved.
 また、モータ制御部12は、押し引き動作に対応する第1トルク推力変換式F1に基づき要求作動力に応じた出力トルクの値を算出するとともに、位置保持動作に対応する第2トルク推力変換式に基づき要求保持力に応じた出力トルクの値を算出する。実施の形態2にて後述するように、第1トルク推力変換式F1を用いることにより、要求作動力に応じた出力トルクの値を正確に算出することができる。また、第2トルク推力変換式F2を用いることにより、要求保持力に応じたトルクの値を正確に算出することができる。この結果、出力トルクの制御精度を更に向上することができる。 Further, the motor control unit 12 calculates the value of the output torque according to the required operating force based on the first torque thrust conversion formula F1 corresponding to the push-pull operation, and the second torque thrust conversion formula corresponding to the position holding operation. Calculate the output torque value according to the required holding force based on. As will be described later in the second embodiment, by using the first torque thrust conversion formula F1, the value of the output torque according to the required operating force can be accurately calculated. Further, by using the second torque thrust conversion formula F2, the torque value according to the required holding force can be accurately calculated. As a result, the control accuracy of the output torque can be further improved.
 また、第1トルク推力変換式F1及び第2トルク推力変換式F2は、アクチュエータ3を含むシステム(バルブシステム6)に対応するモデルMを用いた解析の結果に基づくものである。実施の形態2にて後述するように、モデルMを用いることにより、第1トルク推力変換式F1及び第2トルク推力変換式F2を正確に導出することができる。 Further, the first torque thrust conversion formula F1 and the second torque thrust conversion formula F2 are based on the results of analysis using the model M corresponding to the system (valve system 6) including the actuator 3. As will be described later in the second embodiment, the first torque thrust conversion formula F1 and the second torque thrust conversion formula F2 can be accurately derived by using the model M.
 また、実施の形態1に係るモータ制御方法は、モータ4及び送りねじ機構5を有するアクチュエータ3用のモータ制御方法であって、モード設定部11が、モータ4の動作モードをアクチュエータ3による押し引き動作に対応する第1動作モード又はアクチュエータ3による位置保持動作に対応する第2動作モードに選択的に設定するステップST1と、モータ制御部12が、動作モードが第1動作モードに設定されたとき、モータ4を第1動作モードにて動作させるとともに、動作モードが第2動作モードに設定されたとき、モータ4を第2動作モードにて動作させるステップST2と、を備える。これにより、モータ4の制御精度を向上することができる。 Further, the motor control method according to the first embodiment is a motor control method for an actuator 3 having a motor 4 and a feed screw mechanism 5, and a mode setting unit 11 pushes and pulls the operation mode of the motor 4 by the actuator 3. When step ST1 for selectively setting the first operation mode corresponding to the operation or the second operation mode corresponding to the position holding operation by the actuator 3 and the motor control unit 12 set the operation mode to the first operation mode. The motor 4 is operated in the first operation mode, and the step ST2 is provided for operating the motor 4 in the second operation mode when the operation mode is set to the second operation mode. As a result, the control accuracy of the motor 4 can be improved.
実施の形態2.
 図4は、実施の形態1に係るモータ制御装置の設計方法を示すフローチャートである。実施の形態2においては、図4のフローチャートを参照して、実施の形態1に係るモータ制御装置の設計方法について説明する。より具体的には、モータ制御部12の設計方法について説明する。
Embodiment 2.
FIG. 4 is a flowchart showing a design method of the motor control device according to the first embodiment. In the second embodiment, the design method of the motor control device according to the first embodiment will be described with reference to the flowchart of FIG. More specifically, the design method of the motor control unit 12 will be described.
 まず、モデルMの生成に用いられる値(μ,T,η)について説明する。 First, the values (μ, T, η) used to generate the model M will be described.
 一般に、回転式のモータ及び送りねじ機構を有する直動式のアクチュエータが押し引き動作にて動作するとき、ロータの回転方向に対する力のつり合いにより、以下の式(1)が成立する。また、シャフトの直動方向に対する力のつり合いにより、以下の式(2)が成立する。したがって、送りねじ機構における摩擦力は、以下の式(3)により表される。また、アクチュエータによる作動力は、以下の式(4)により表される。 Generally, when a rotary motor and a linear actuator having a feed screw mechanism operate in a push-pull operation, the following equation (1) is established by the balance of forces with respect to the rotation direction of the rotor. Further, the following equation (2) is established by the balance of the force with respect to the linear motion direction of the shaft. Therefore, the frictional force in the feed screw mechanism is expressed by the following equation (3). The operating force of the actuator is expressed by the following equation (4).

Figure JPOXMLDOC01-appb-I000001

Figure JPOXMLDOC01-appb-I000001

Figure JPOXMLDOC01-appb-I000002

Figure JPOXMLDOC01-appb-I000002

Figure JPOXMLDOC01-appb-I000003

Figure JPOXMLDOC01-appb-I000003

Figure JPOXMLDOC01-appb-I000004

Figure JPOXMLDOC01-appb-I000004
 ここで、αは、送りねじ機構におけるねじのリード角を示している。μは、送りねじ機構における摩擦係数(以下「ねじ摩擦係数」という。)を示している。Nhは、送りねじ機構における摩擦力を示している。Nvは、送りねじ機構における抗力を示している。θは、送りねじ機構における摩擦角を示している。Qは、アクチュエータに対する負荷に対応する力、すなわちアクチュエータによる作動力を示している。Tは、モータにより発生するトルク(以下「モータトルク」という。)を示している。rは、送りねじ機構におけるねじの有効半径を示している。すなわち、有効半径rは、定数である。 Here, α indicates the lead angle of the screw in the feed screw mechanism. μ indicates the friction coefficient in the feed screw mechanism (hereinafter referred to as “screw friction coefficient”). Nh Q indicates the frictional force in the feed screw mechanism. Nv Q indicates the drag force in the lead screw mechanism. θ indicates the friction angle in the feed screw mechanism. Q 1 is a force corresponding to the load on the actuator, that is, the operating force by the actuator. T indicates the torque generated by the motor (hereinafter referred to as "motor torque"). r indicates the effective radius of the screw in the feed screw mechanism. That is, the effective radius r is a constant.
 リード角αの値は、以下の式(5)に基づき定まるものである。すなわち、リード角αは、定数である。これに対して、摩擦角θの値は、以下の式(6)に基づき定まるものである。すなわち、摩擦角θは、ねじ摩擦係数μに応じた値となる。 The value of the lead angle α is determined based on the following equation (5). That is, the lead angle α is a constant. On the other hand, the value of the friction angle θ is determined based on the following equation (6). That is, the friction angle θ is a value corresponding to the screw friction coefficient μ.

Figure JPOXMLDOC01-appb-I000005

Figure JPOXMLDOC01-appb-I000005

Figure JPOXMLDOC01-appb-I000006

Figure JPOXMLDOC01-appb-I000006
 ここで、Pは、送りねじ機構におけるねじピッチを示している。Dは、送りねじ機構におけるねじの有効径を示している。すなわち、ねじピッチPは、定数である。また、有効径Dは、定数である。より具体的には、有効径Dは、有効半径rに対する2倍の値である。 Here, P indicates the screw pitch in the feed screw mechanism. D indicates the effective diameter of the screw in the feed screw mechanism. That is, the screw pitch P is a constant. The effective diameter D is a constant. More specifically, the effective diameter D is a value twice the effective radius r.
 これと同様に、回転式のモータ及び送りねじ機構を有する直動式のアクチュエータが位置保持動作にて動作するとき、ロータの回転方向に対する力のつり合いにより、以下の式(7)が成立する。また、シャフトの直動方向に対する力のつり合いにより、以下の式(8)が成立する。したがって、送りねじ機構における摩擦力は、以下の式(9)により表される。また、アクチュエータによる保持力は、以下の式(10)により表される。 Similarly, when the rotary motor and the linear actuator having the feed screw mechanism operate in the position holding operation, the following equation (7) is established by the balance of the forces in the rotational direction of the rotor. Further, the following equation (8) is established by the balance of the force with respect to the linear motion direction of the shaft. Therefore, the frictional force in the feed screw mechanism is expressed by the following equation (9). Further, the holding force by the actuator is expressed by the following equation (10).

Figure JPOXMLDOC01-appb-I000007

Figure JPOXMLDOC01-appb-I000007

Figure JPOXMLDOC01-appb-I000008

Figure JPOXMLDOC01-appb-I000008

Figure JPOXMLDOC01-appb-I000009

Figure JPOXMLDOC01-appb-I000009

Figure JPOXMLDOC01-appb-I000010

Figure JPOXMLDOC01-appb-I000010
 ここで、Nhは、送りねじ機構における摩擦力を示している。Nvは、送りねじ機構における抗力を示している。Rは、アクチュエータに対する負荷に対応する力、すなわちアクチュエータによる保持力を示している。 Here, Nh R indicates the frictional force in the feed screw mechanism. Nv R indicates the drag force in the lead screw mechanism. R 1 indicates a force corresponding to the load on the actuator, that is, a holding force by the actuator.
 上記式(4)及び上記(10)に基づき、逆効率Zは、以下の式(11)により表される。 Based on the above formula (4) and the above (10), the inverse efficiency Z is represented by the following formula (11).

Figure JPOXMLDOC01-appb-I000011

Figure JPOXMLDOC01-appb-I000011
 上記式(11)を変形することにより、以下の式(12)に示す如く、ねじ摩擦係数μを変数とする二次方程式が得られる。 By modifying the above equation (11), a quadratic equation with the screw friction coefficient μ as a variable can be obtained as shown in the following equation (12).

Figure JPOXMLDOC01-appb-I000012

Figure JPOXMLDOC01-appb-I000012
 上記式(12)を変形することにより、ねじ摩擦係数μは、以下の式(13)により表される。 By modifying the above equation (12), the screw friction coefficient μ is expressed by the following equation (13).

Figure JPOXMLDOC01-appb-I000013

Figure JPOXMLDOC01-appb-I000013
 ただし、係数aは、以下の式(14)により表される。係数bは、以下の式(15)により表される。係数cは、以下の式(16)により表される。 However, the coefficient a is expressed by the following equation (14). The coefficient b is represented by the following equation (15). The coefficient c is represented by the following equation (16).

Figure JPOXMLDOC01-appb-I000014

Figure JPOXMLDOC01-appb-I000014

Figure JPOXMLDOC01-appb-I000015

Figure JPOXMLDOC01-appb-I000015

Figure JPOXMLDOC01-appb-I000016

Figure JPOXMLDOC01-appb-I000016
 また、モータトルクTは、摩擦角θを用いて、以下の式(17)により表される。すなわち、モータトルクTは、ねじ摩擦係数μに応じた値となる。 Further, the motor torque T is expressed by the following equation (17) using the friction angle θ. That is, the motor torque T becomes a value corresponding to the screw friction coefficient μ.

Figure JPOXMLDOC01-appb-I000017

Figure JPOXMLDOC01-appb-I000017
 ここで、βは、送りねじ機構におけるねじ山の傾斜角を示している。すなわち、傾斜角βは、定数である。 Here, β indicates the inclination angle of the thread in the feed screw mechanism. That is, the inclination angle β is a constant.
 また、送りねじ機構によるモータトルクTと推力との変換効率(以下「ねじ変換効率」という。)ηは、以下の式(18)により表される。 Further, the conversion efficiency between the motor torque T and the thrust by the feed screw mechanism (hereinafter referred to as "screw conversion efficiency") η is expressed by the following equation (18).

Figure JPOXMLDOC01-appb-I000018

Figure JPOXMLDOC01-appb-I000018
 次に、モデルMの生成に用いられる値(μ,T,η)の算出に用いられる値(I1,V1,L1,I2,V2,L2)の測定方法について説明する。これらの値(I1,V1,L1,I2,V2,L2)の測定には、例えば、アクチュエータ3の試作機が用いられる。 Next, a method for measuring the values (I1, V1, L1, I2, V2, L2) used for calculating the values (μ, T, η) used for generating the model M will be described. For the measurement of these values (I1, V1, L1, I2, V2, L2), for example, a prototype actuator 3 is used.
 まず、アクチュエータ3が試験機(例えばアムスラー)に設置される。また、モータ4が電源と電気的に接続される。電源により、モータ4に電力が供給される。これにより、所定方向(以下「トルク発生方向」という。)に対するトルクが発生する。 First, the actuator 3 is installed in a testing machine (for example, Amsler). Further, the motor 4 is electrically connected to the power supply. The power supply supplies electric power to the motor 4. As a result, torque is generated in a predetermined direction (hereinafter referred to as "torque generation direction").
 次いで、モータ4によるトルクが発生している状態にて、試験機により、直動方向に対する負荷であって、トルク発生方法に対する順方向の負荷(以下「順方向負荷」という。)がアクチュエータ3に与えられる。順方向負荷が与えられている状態(以下「順方向負荷状態」という。)にて、測定器(例えばオシロスコープ)により、モータ4における電流I1、モータ4における電圧V1、及びアクチュエータ3における直動方向に対する荷重L1が測定される。以下、電流I1の値を「第1電流値」ということがある。また、電圧V1の値を「第1電圧値」ということがある。また、荷重L1の値を「第1荷重値」ということがある。 Next, in a state where torque is generated by the motor 4, a load in the linear motion direction and a forward load with respect to the torque generation method (hereinafter referred to as "forward load") is applied to the actuator 3 by the testing machine. Given. When a forward load is applied (hereinafter referred to as "forward load state"), a measuring instrument (for example, an oscilloscope) is used to measure the current I1 in the motor 4, the voltage V1 in the motor 4, and the linear motion direction in the actuator 3. The load L1 is measured. Hereinafter, the value of the current I1 may be referred to as a "first current value". Further, the value of the voltage V1 may be referred to as a "first voltage value". Further, the value of the load L1 may be referred to as a "first load value".
 次いで、モータ4によるトルクが発生している状態にて、試験機により、直動方向に対する負荷であって、トルク発生方法に対する逆方向の負荷(以下「逆方向負荷」という。)がアクチュエータ3に与えられる。逆方向負荷が与えられている状態(以下「逆方向負荷状態」という。)にて、測定器により、モータ4における電流I2、モータ4における電圧V2、及びアクチュエータ3における直動方向に対する荷重L2が測定される。以下、電流I2の値を「第2電流値」ということがある。また、電圧V2の値を「第2電圧値」ということがある。また、荷重L2の値を「第2荷重値」ということがある。 Next, in a state where torque is generated by the motor 4, a load in the linear motion direction and a load in the opposite direction to the torque generation method (hereinafter referred to as "reverse load") is applied to the actuator 3 by the testing machine. Given. In a state where a reverse load is applied (hereinafter referred to as "reverse load state"), the measuring instrument measures the current I2 in the motor 4, the voltage V2 in the motor 4, and the load L2 in the linear motion direction in the actuator 3. Be measured. Hereinafter, the value of the current I2 may be referred to as a “second current value”. Further, the value of the voltage V2 may be referred to as a "second voltage value". Further, the value of the load L2 may be referred to as a "second load value".
 以下、順方向負荷状態における電流I1、電圧V1及び荷重L1が測定されるステップST11を「第1測定ステップ」ということがある。また、逆方向負荷状態における電流I2、電圧V2及び荷重L2が測定されるステップST12を「第2測定ステップ」ということがある。また、第1測定ステップST11及び第2測定ステップST12を総称して「測定ステップ」ということがある。また、測定ステップST11,ST12にて測定された値(I1,V1,L1,I2,V2,L2)を「測定値」ということがある。 Hereinafter, step ST11 in which the current I1, the voltage V1 and the load L1 in the forward load state are measured may be referred to as a “first measurement step”. Further, the step ST12 in which the current I2, the voltage V2, and the load L2 in the reverse load state are measured may be referred to as a “second measurement step”. Further, the first measurement step ST11 and the second measurement step ST12 may be collectively referred to as a “measurement step”. Further, the values (I1, V1, L1, I2, V2, L2) measured in the measurement steps ST11 and ST12 may be referred to as "measured values".
 次に、モデルMの生成に用いられる値(μ,T,η)の算出方法について説明する。 Next, the calculation method of the values (μ, T, η) used to generate the model M will be described.
 まず、測定ステップST11,ST12における測定値(I1,V1,L1,I2,V2)を用いて、作動力Qが算出される。より具体的には、電流I1が電流I2と同等であり、かつ、電流I1が一定であるときの電圧V1に対する荷重L1に基づき、作動力Qが算出される。または、電圧V1が電圧V2と同等であり、かつ、電圧V1が一定であるときの電流I1に対する荷重L1に基づき、作動力Qが算出される。 First, using the measured value in the measurement step ST11, ST12 and (I1, V1, L1, I2 , V2), the actuating force Q 1 is calculated. More specifically, the current I1 is equal to the current I2, and, based on the load L1 with respect to the voltage V1 at the time when the current I1 is constant, the actuating force Q 1 is calculated. Or, the voltage V1 is equal to the voltage V2, and, based on the load L1 with respect to the current I1 when the voltage V1 is constant, the actuating force Q 1 is calculated.
 また、測定ステップST11,ST12における測定値(I1,V1,I2,V2,L2)を用いて、保持力Rが算出される。より具体的には、電流I2が電流I2と同等であり、かつ、電流I2が一定であるときの電圧V2に対する荷重L2に基づき、保持力Rが算出される。または、電圧V2が電圧V1と同等であり、かつ、電圧V2が一定であるときの電流I2に対する荷重L2に基づき、保持力Rが算出される。 Moreover, by using measured values in the measurement step ST11, ST12 and (I1, V1, I2, V2 , L2), the holding force R 1 is calculated. More specifically, the current I2 is equal to the current I2, and, based on the load L2 with respect to the voltage V2 of when the current I2 is constant, the holding force R 1 is calculated. Or, the voltage V2 is equivalent to the voltage V1, and, based on the load L2 with respect to the current I2 when the voltage V2 is constant, the holding force R 1 is calculated.
 次いで、当該算出された作動力Qの値、及び当該算出された保持力Rの値を用いて、上記式(11)により、逆効率Zが算出される。次いで、当該算出された逆効率Zの値、及び定数であるリード角αの値を用いて、上記式(13)~上記式(16)により、ねじ摩擦係数μが算出される。 Then, the calculated working force to Q 1 value, and using the calculated value of the retaining force R 1, the above equation (11), the negative efficiency Z is calculated. Next, the screw friction coefficient μ is calculated by the above equations (13) to (16) using the calculated value of the inverse efficiency Z and the value of the lead angle α which is a constant.
 次いで、当該算出されたねじ摩擦係数μの値を用いて、上記式(6)により、摩擦角θが算出される。次いで、上記算出された作動力Qの値、定数である有効半径rの値、定数であるリード角αの値、上記算出された摩擦角θの値、及び定数である傾斜角βの値を用いて、上記式(17)により、モータトルクTが算出される。 Next, the friction angle θ is calculated by the above equation (6) using the calculated value of the screw friction coefficient μ. Then, the calculated working force to Q 1 value, the value of the effective radius r is a constant, the value of the lead angle α is a constant, the calculated value of the friction angle theta, and the value of the tilt angle β is a constant The motor torque T is calculated by the above equation (17).
 次いで、当該算出されたモータトルクTの値、定数である有効半径rの値、定数である有効径Dの値、上記算出された作動力Qの値、及び定数であるねじピッチPの値を用いて、上記式(18)により、ねじ変換効率ηが算出される。 Then, the calculated value of the motor torque T, the value of the effective radius r is a constant, the value of the effective diameter D is constant, the calculated value of the actuation force Q 1, and the value of the thread pitch P is a constant The screw conversion efficiency η is calculated by the above equation (18).
 以下、モデルMの生成に用いられる値(μ,T,η)が算出されるステップST13を「算出ステップ」ということがある。また、算出ステップST13にて算出された値(μ,T,η)を「算出値」ということがある。なお、これらの値(μ,T,η)は、計算機又はコンピュータ(例えばパーソナルコンピュータ若しくはワークステーション)により算出されるものである。 Hereinafter, step ST13 in which the values (μ, T, η) used for generating the model M are calculated may be referred to as a “calculation step”. Further, the value (μ, T, η) calculated in the calculation step ST13 may be referred to as a “calculated value”. These values (μ, T, η) are calculated by a computer or a computer (for example, a personal computer or a workstation).
 次いで、算出ステップST13における算出値(μ,T,η)を用いて、モデルMが生成される。図5は、モデルMの例を示している。モデルMの生成には、公知の種々の技術を用いることができる。これらの技術についての詳細な説明は省略する。 Next, the model M is generated using the calculated values (μ, T, η) in the calculation step ST13. FIG. 5 shows an example of the model M. Various known techniques can be used to generate the model M. Detailed description of these techniques will be omitted.
 ただし、従来、モデルMを生成するとき、ねじ摩擦係数μの値、モータトルクTの値、及びねじ変換効率ηの値などは、上記式(1)~上記式(18)に基づき算出されるものではなく、いわゆる「合わせ込み」により推定されるものであった。このため、モデルMの精度が低いという問題があった。より具体的には、バルブシステム6の実機における値(μ,T,η)に対して、モデルMにおける値(μ,T,η)の誤差が大きいという問題があった。 However, conventionally, when the model M is generated, the value of the screw friction coefficient μ, the value of the motor torque T, the value of the screw conversion efficiency η, and the like are calculated based on the above equations (1) to (18). It was not a thing, but was estimated by so-called "fitting". Therefore, there is a problem that the accuracy of the model M is low. More specifically, there is a problem that the error of the value (μ, T, η) in the model M is larger than the value (μ, T, η) in the actual machine of the valve system 6.
 これに対して、上記式(1)~上記式(18)を用いることにより、逆効率Zに基づき、これらの値(μ,T,η)を正確に算出することができる。すなわち、バルブシステム6の実機における値(μ,T,η)に対して、モデルMにおける値(μ,T,η)の誤差を小さくすることができる。この結果、高精度なモデルMを生成することができる。 On the other hand, by using the above formulas (1) to (18), these values (μ, T, η) can be accurately calculated based on the inverse efficiency Z. That is, the error of the value (μ, T, η) in the model M can be made smaller than the value (μ, T, η) in the actual machine of the valve system 6. As a result, a highly accurate model M can be generated.
 以下、モデルMが生成されるステップST14を「生成ステップ」ということがある。なお、モデルMは、計算機又はコンピュータにより生成されるものである。 Hereinafter, step ST14 in which the model M is generated may be referred to as a “generation step”. The model M is generated by a computer or a computer.
 次いで、生成ステップST14にて生成されたモデルMを用いて、トルク推力変換式F1,F2が導出される。具体的には、例えば、ロータの回転運動に係る運動方程式、及びシャフトの直動運動に係る運動方程式に基づく解析が実行されることにより、トルク推力変換式F1,F2が導出される。モデルMを用いた解析には、公知の種々の技術を用いることができる。これらの技術についての詳細な説明は省略する。 Next, the torque thrust conversion formulas F1 and F2 are derived using the model M generated in the generation step ST14. Specifically, for example, the torque thrust conversion equations F1 and F2 are derived by executing an analysis based on the equation of motion related to the rotational motion of the rotor and the equation of motion related to the linear motion of the shaft. Various known techniques can be used for the analysis using the model M. Detailed description of these techniques will be omitted.
 以下、トルク推力変換式F1,F2が導出されるステップST15を「導出ステップ」ということがある。なお、トルク推力変換式F1,F2は、計算機又はコンピュータにより導出されるものである。 Hereinafter, the step ST15 from which the torque thrust conversion formulas F1 and F2 are derived may be referred to as a “deriving step”. The torque thrust conversion formulas F1 and F2 are derived by a computer or a computer.
 次いで、導出ステップST15にて導出されたトルク推力変換式F1,F2に基づき、モータ制御部12が設計される。具体的には、例えば、トルク推力変換式F1,F2に対応する制御回路Cが設計されることにより、モータ制御部12が設計される。図6は、制御回路Cの例を示している。制御回路Cの設計には、公知の種々の技術を用いることができる。これらの技術についての詳細な説明は省略する。 Next, the motor control unit 12 is designed based on the torque thrust conversion formulas F1 and F2 derived in the derivation step ST15. Specifically, for example, the motor control unit 12 is designed by designing the control circuits C corresponding to the torque thrust conversion formulas F1 and F2. FIG. 6 shows an example of the control circuit C. Various known techniques can be used in the design of the control circuit C. Detailed description of these techniques will be omitted.
 以下、モータ制御部12が設計されるステップST16を「設計ステップ」ということがある。なお、モータ制御部12は、計算機又はコンピュータにより設計されるものである。 Hereinafter, the step ST16 in which the motor control unit 12 is designed may be referred to as a "design step". The motor control unit 12 is designed by a computer or a computer.
 このように、高精度なモデルMを用いることにより、トルク推力変換式F1,F2を正確に導出することができる。このため、実施の形態1にて説明したとおり、第1トルク推力変換式F1を用いることにより、要求作動力に応じた出力トルクの値を正確に算出することができる。また、第2トルク推力変換式F2を用いることにより、要求保持力に応じたトルクの値を正確に算出することができる。この結果、出力トルクの制御精度を向上することができる。 In this way, by using the highly accurate model M, the torque thrust conversion formulas F1 and F2 can be accurately derived. Therefore, as described in the first embodiment, by using the first torque thrust conversion formula F1, the value of the output torque according to the required operating force can be accurately calculated. Further, by using the second torque thrust conversion formula F2, the torque value according to the required holding force can be accurately calculated. As a result, the control accuracy of the output torque can be improved.
 以上のように、実施の形態2に係る設計方法は、モータ4及び送りねじ機構5を有するアクチュエータ3用のモータ制御装置100の設計方法であって、モータ4によるトルク発生方向に対する順方向負荷がアクチュエータ3に与えられているとき、モータ4における第1電流値(I1)、モータ4における第1電圧値(V1)、及びアクチュエータ3における第1荷重値(L1)が測定される第1測定ステップST11と、トルク発生方向に対する逆方向負荷がアクチュエータ3に与えられているとき、モータ4における第2電流値(I2)、モータ4における第2電圧値(V2)、及びアクチュエータ3における第2荷重値(L2)が測定される第2測定ステップST12と、を含む測定ステップST11,ST12と、測定ステップST11,ST12における測定値(I1,V1,L1,I2,V2,L2)を用いて、逆効率Zに基づき、ねじ摩擦係数μの値、モータトルクTの値、及びねじ変換効率ηの値が算出される算出ステップST13と、を備える。これにより、ねじ摩擦係数μの値、モータトルクTの値、及びねじ変換効率ηの値を正確に算出することができる。すなわち、バルブシステム6の実機における値(μ,T,η)に対する算出値(μ,T,η)の誤差を小さくすることができる。 As described above, the design method according to the second embodiment is the design method of the motor control device 100 for the actuator 3 having the motor 4 and the feed screw mechanism 5, and the forward load with respect to the torque generation direction by the motor 4 is applied. The first measurement step in which the first current value (I1) in the motor 4, the first voltage value (V1) in the motor 4, and the first load value (L1) in the actuator 3 are measured when given to the actuator 3. When ST11 and a load in the direction opposite to the torque generation direction are applied to the actuator 3, the second current value (I2) in the motor 4, the second voltage value (V2) in the motor 4, and the second load value in the actuator 3 Reverse efficiency using the measurement values (I1, V1, L1, I2, V2, L2) in the measurement steps ST11 and ST12 including the second measurement step ST12 in which (L2) is measured and the measurement steps ST11 and ST12. A calculation step ST13 in which the value of the screw friction coefficient μ, the value of the motor torque T, and the value of the screw conversion efficiency η are calculated based on Z is provided. Thereby, the value of the screw friction coefficient μ, the value of the motor torque T, and the value of the screw conversion efficiency η can be accurately calculated. That is, the error of the calculated value (μ, T, η) with respect to the value (μ, T, η) in the actual machine of the valve system 6 can be reduced.
 また、設計方法は、算出ステップST13における算出値(μ,T,η)を用いて、アクチュエータ3を含むシステム(バルブシステム6)に対応するモデルMが生成される生成ステップST14を備える。これらの算出値(μ,T,η)を用いることにより、高精度なモデルMを生成することができる。 Further, the design method includes a generation step ST14 in which a model M corresponding to the system including the actuator 3 (valve system 6) is generated by using the calculated values (μ, T, η) in the calculation step ST13. By using these calculated values (μ, T, η), a highly accurate model M can be generated.
 また、設計方法は、モデルMを用いた解析の結果に基づき、アクチュエータ3におけるトルク推力変換式F1,F2が導出される導出ステップST15を備え、トルク推力変換式F1,F2は、アクチュエータ3による押し引き動作に対応する第1トルク推力変換式F1、及びアクチュエータ3による位置保持動作に対応する第2トルク推力変換式F2を含むものである。高精度なモデルMを用いることにより、第1トルク推力変換式F1及び第2トルク推力変換式F2を正確に導出することができる。 Further, the design method includes a derivation step ST15 from which the torque thrust conversion formulas F1 and F2 in the actuator 3 are derived based on the result of the analysis using the model M, and the torque thrust conversion formulas F1 and F2 are pushed by the actuator 3. It includes a first torque thrust conversion type F1 corresponding to a pulling operation and a second torque thrust conversion type F2 corresponding to a position holding operation by the actuator 3. By using the high-precision model M, the first torque thrust conversion formula F1 and the second torque thrust conversion formula F2 can be accurately derived.
 また、設計方法は、第1トルク推力変換式F1及び第2トルク推力変換式F2に基づき、モータ制御装置100が設計される設計ステップST16を備える。当該設計されたモータ制御装置100(より具体的にはモータ制御部12)を用いることにより、実施の形態1にて説明したとおり、出力トルクの制御精度を向上することができる。 Further, the design method includes a design step ST16 in which the motor control device 100 is designed based on the first torque thrust conversion formula F1 and the second torque thrust conversion formula F2. By using the designed motor control device 100 (more specifically, the motor control unit 12), it is possible to improve the control accuracy of the output torque as described in the first embodiment.
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 In the present invention, within the scope of the invention, it is possible to freely combine each embodiment, modify any component of each embodiment, or omit any component in each embodiment. ..
 本発明のモータ制御装置は、例えば、バルブシステムに用いることができる。 The motor control device of the present invention can be used, for example, in a valve system.
 1 車両、2 ウェイストゲートバルブ、3 アクチュエータ、4 モータ、5 送りねじ機構、6 バルブシステム、7 電子制御ユニット、11 モード設定部、12 モータ制御部、13 トルク設定部、21 プロセッサ、22 メモリ、23 処理回路、100 モータ制御装置。 1 vehicle, 2 wastegate valve, 3 actuator, 4 motor, 5 feed screw mechanism, 6 valve system, 7 electronic control unit, 11 mode setting unit, 12 motor control unit, 13 torque setting unit, 21 processor, 22 memory, 23 Processing circuit, 100 motor control device.

Claims (12)

  1.  モータ及び送りねじ機構を有するアクチュエータ用のモータ制御装置であって、
     前記モータの動作モードを前記アクチュエータによる押し引き動作に対応する第1動作モード又は前記アクチュエータによる位置保持動作に対応する第2動作モードに選択的に設定するモード設定部と、
     前記動作モードが前記第1動作モードに設定されたとき、前記モータを前記第1動作モードにて動作させるとともに、前記動作モードが前記第2動作モードに設定されたとき、前記モータを前記第2動作モードにて動作させるモータ制御部と、
     を備えることを特徴とするモータ制御装置。
    A motor control device for an actuator having a motor and a feed screw mechanism.
    A mode setting unit that selectively sets the operation mode of the motor to the first operation mode corresponding to the push-pull operation by the actuator or the second operation mode corresponding to the position holding operation by the actuator.
    When the operation mode is set to the first operation mode, the motor is operated in the first operation mode, and when the operation mode is set to the second operation mode, the motor is moved to the second operation mode. The motor control unit that operates in the operation mode and
    A motor control device characterized by comprising.
  2.  前記モータ制御部は、前記モータを前記第1動作モードにて動作させるとき、前記モータによる出力トルクを前記アクチュエータに対する要求作動力に応じた値に設定するとともに、前記モータを前記第2動作モードにて動作させるとき、前記出力トルクを前記アクチュエータに対する要求保持力に応じた値に設定することを特徴とする請求項1記載のモータ制御装置。 When the motor is operated in the first operation mode, the motor control unit sets the output torque of the motor to a value corresponding to the required operating force for the actuator, and sets the motor in the second operation mode. The motor control device according to claim 1, wherein the output torque is set to a value corresponding to a required holding force for the actuator.
  3.  前記モータ制御部は、前記押し引き動作に対応する第1トルク推力変換式に基づき前記要求作動力に応じた前記出力トルクの値を算出するとともに、前記位置保持動作に対応する第2トルク推力変換式に基づき前記要求保持力に応じた前記出力トルクの値を算出することを特徴とする請求項2記載のモータ制御装置。 The motor control unit calculates the value of the output torque according to the required operating force based on the first torque thrust conversion formula corresponding to the push-pull operation, and the second torque thrust conversion corresponding to the position holding operation. The motor control device according to claim 2, wherein the value of the output torque according to the required holding force is calculated based on the formula.
  4.  前記第1トルク推力変換式及び前記第2トルク推力変換式は、前記アクチュエータを含むシステムに対応するモデルを用いた解析の結果に基づくものであることを特徴とする請求項3記載のモータ制御装置。 The motor control device according to claim 3, wherein the first torque thrust conversion formula and the second torque thrust conversion formula are based on the results of analysis using a model corresponding to the system including the actuator. ..
  5.  前記モデルにおけるねじ摩擦係数の値、前記モデルにおけるモータトルクの値、及び前記モデルにおけるねじ変換効率の値は、逆効率に基づき算出されたものであることを特徴とする請求項4記載のモータ制御装置。 The motor control according to claim 4, wherein the value of the screw friction coefficient in the model, the value of the motor torque in the model, and the value of the screw conversion efficiency in the model are calculated based on the inverse efficiency. apparatus.
  6.  前記モード設定部は、電子制御ユニットによる出力信号に基づき前記動作モードを設定することを特徴とする請求項1記載のモータ制御装置。 The motor control device according to claim 1, wherein the mode setting unit sets the operation mode based on an output signal from an electronic control unit.
  7.  前記アクチュエータによりウェイストゲートバルブの開度が制御されるものであることを特徴とする請求項1記載のモータ制御装置。 The motor control device according to claim 1, wherein the opening degree of the wastegate valve is controlled by the actuator.
  8.  モータ及び送りねじ機構を有するアクチュエータ用のモータ制御方法であって、
     モード設定部が、前記モータの動作モードを前記アクチュエータによる押し引き動作に対応する第1動作モード又は前記アクチュエータによる位置保持動作に対応する第2動作モードに選択的に設定するステップと、
     モータ制御部が、前記動作モードが前記第1動作モードに設定されたとき、前記モータを前記第1動作モードにて動作させるとともに、前記動作モードが前記第2動作モードに設定されたとき、前記モータを前記第2動作モードにて動作させるステップと、
     を備えることを特徴とするモータ制御方法。
    A motor control method for an actuator having a motor and a feed screw mechanism.
    A step in which the mode setting unit selectively sets the operation mode of the motor to the first operation mode corresponding to the push-pull operation by the actuator or the second operation mode corresponding to the position holding operation by the actuator.
    When the motor control unit operates the motor in the first operation mode when the operation mode is set to the first operation mode, and when the operation mode is set to the second operation mode, the motor control unit operates the motor in the first operation mode. The step of operating the motor in the second operation mode and
    A motor control method characterized by comprising.
  9.  モータ及び送りねじ機構を有するアクチュエータ用のモータ制御装置の設計方法であって、
     前記モータによるトルク発生方向に対する順方向負荷が前記アクチュエータに与えられているとき、前記モータにおける第1電流値、前記モータにおける第1電圧値、及び前記アクチュエータにおける第1荷重値が測定される第1測定ステップと、前記トルク発生方向に対する逆方向負荷が前記アクチュエータに与えられているとき、前記モータにおける第2電流値、前記モータにおける第2電圧値、及び前記アクチュエータにおける第2荷重値が測定される第2測定ステップと、を含む測定ステップと、
     前記測定ステップにおける測定値を用いて、逆効率に基づき、ねじ摩擦係数の値、モータトルクの値、及びねじ変換効率の値が算出される算出ステップと、
     を備えることを特徴とする設計方法。
    A method for designing a motor control device for an actuator having a motor and a feed screw mechanism.
    When a forward load with respect to the torque generation direction by the motor is applied to the actuator, the first current value in the motor, the first voltage value in the motor, and the first load value in the actuator are measured. When the measurement step and the load in the direction opposite to the torque generation direction are applied to the actuator, the second current value in the motor, the second voltage value in the motor, and the second load value in the actuator are measured. A second measurement step, a measurement step including, and
    A calculation step in which a screw friction coefficient value, a motor torque value, and a screw conversion efficiency value are calculated based on the inverse efficiency using the measured values in the measurement step.
    A design method characterized by being provided with.
  10.  前記算出ステップにおける算出値を用いて、前記アクチュエータを含むシステムに対応するモデルが生成される生成ステップを備えることを特徴とする請求項9記載の設計方法。 The design method according to claim 9, further comprising a generation step in which a model corresponding to the system including the actuator is generated by using the calculated value in the calculation step.
  11.  前記モデルを用いた解析の結果に基づき、前記アクチュエータにおけるトルク推力変換式が導出される導出ステップを備え、
     前記トルク推力変換式は、前記アクチュエータによる押し引き動作に対応する第1トルク推力変換式、及び前記アクチュエータによる位置保持動作に対応する第2トルク推力変換式を含むものである
     ことを特徴とする請求項10記載の設計方法。
    A derivation step for deriving the torque thrust conversion formula in the actuator based on the result of the analysis using the model is provided.
    10. The torque thrust conversion formula is characterized by including a first torque thrust conversion formula corresponding to a push-pull operation by the actuator and a second torque thrust conversion formula corresponding to a position holding operation by the actuator. Described design method.
  12.  前記第1トルク推力変換式及び前記第2トルク推力変換式に基づき、前記モータ制御装置が設計される設計ステップを備えることを特徴とする請求項11記載の設計方法。 The design method according to claim 11, further comprising a design step in which the motor control device is designed based on the first torque thrust conversion formula and the second torque thrust conversion formula.
PCT/JP2019/024774 2019-06-21 2019-06-21 Motor control device, motor control method, and design method WO2020255391A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/024774 WO2020255391A1 (en) 2019-06-21 2019-06-21 Motor control device, motor control method, and design method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/024774 WO2020255391A1 (en) 2019-06-21 2019-06-21 Motor control device, motor control method, and design method

Publications (1)

Publication Number Publication Date
WO2020255391A1 true WO2020255391A1 (en) 2020-12-24

Family

ID=74040432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024774 WO2020255391A1 (en) 2019-06-21 2019-06-21 Motor control device, motor control method, and design method

Country Status (1)

Country Link
WO (1) WO2020255391A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001051239A1 (en) * 2000-01-12 2001-07-19 Mitsubishi Denki Kabushiki Kaisha Thrust converter, and method and device for controlling the thrust converter
US20100127646A1 (en) * 2007-04-13 2010-05-27 Cameron International Corporation Actuating Device and Method of Operating an Actuating Device
JP2018059494A (en) * 2016-09-28 2018-04-12 大豊工業株式会社 Electric actuator and electric waste gate valve system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001051239A1 (en) * 2000-01-12 2001-07-19 Mitsubishi Denki Kabushiki Kaisha Thrust converter, and method and device for controlling the thrust converter
US20100127646A1 (en) * 2007-04-13 2010-05-27 Cameron International Corporation Actuating Device and Method of Operating an Actuating Device
JP2018059494A (en) * 2016-09-28 2018-04-12 大豊工業株式会社 Electric actuator and electric waste gate valve system

Similar Documents

Publication Publication Date Title
US8427093B2 (en) Controller for actuation system employing Kalman estimator incorporating effect of system structural stiffness
JP5096019B2 (en) Servo motor control device
CN107429605B (en) Bypass valve actuator and bypass valve drive
WO2015174314A1 (en) Electric brake device
WO2020255391A1 (en) Motor control device, motor control method, and design method
CN108667363A (en) The control method and device of stepper motor movement
JP2008002130A (en) Door opening/closing assist apparatus
CN113014163B (en) Control method and device of stepping motor and storage medium
TWI660570B (en) Motor control device
JP6887857B2 (en) Motor controller, method and program
Kreinin et al. A systematic approach to synthesis of a drive system
CN108350820B (en) Engine control device for construction machine
CN108693768A (en) Numerical control device
CN110187670B (en) Numerical controller
US20040167642A1 (en) Force-applying input device
ES2941726T3 (en) Predictive speed control of a hydraulic step system
JP7050624B2 (en) Motor control device and electric brake device equipped with it
CN107651146B (en) A kind of the screw pitch scaling method and device of adjustable pitch propeller
WO2019012799A1 (en) Electric motor control device and electric brake device
JP6505896B2 (en) Electric brake device
JP6419922B1 (en) DC motor controller
WO2022029949A1 (en) Motor control device, brushless dc motor, actuator, and egr valve apparatus
RU2401501C1 (en) Position programme controlled electric drive
JP4980457B2 (en) Electronic throttle valve control device
JP7296438B2 (en) Ship propulsion system, ship propulsion control method, and ship propulsion control program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19934010

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19934010

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP