WO2019012799A1 - Electric motor control device and electric brake device - Google Patents

Electric motor control device and electric brake device Download PDF

Info

Publication number
WO2019012799A1
WO2019012799A1 PCT/JP2018/018712 JP2018018712W WO2019012799A1 WO 2019012799 A1 WO2019012799 A1 WO 2019012799A1 JP 2018018712 W JP2018018712 W JP 2018018712W WO 2019012799 A1 WO2019012799 A1 WO 2019012799A1
Authority
WO
WIPO (PCT)
Prior art keywords
disturbance
motor
control
torque
command
Prior art date
Application number
PCT/JP2018/018712
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 弘明
安島 俊幸
滋久 青柳
則和 松崎
後藤 大輔
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2019012799A1 publication Critical patent/WO2019012799A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/36Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/12Observer control, e.g. using Luenberger observers or Kalman filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors

Definitions

  • the present invention relates to a control device for an electric motor and an electric brake device, and more particularly to a control device for an electric motor having a feedback control system and the electric brake device.
  • a mechanical control element is driven by an electric motor.
  • an electric motor for example, one or more control amounts such as rotational speed, rotational position, etc. It is required to control well with high response.
  • control command value (input) to the motor and control of the motor Control response is improved by adding feedforward control to the control command value, in addition to feedback control that improves the control accuracy by suppressing the deviation of the amount (output).
  • a first object of the present invention is to provide a novel motor control device capable of suppressing occurrence of overshoot while enhancing control response.
  • a second object of the present invention is to provide a novel electric brake device capable of obtaining a predetermined braking operation by quickly setting a braking force corresponding to the amount of depression of a brake pedal.
  • a state feedback control block for feeding back a control amount of the motor to a control command value
  • a disturbance estimation block for estimating a disturbance of the motor
  • a disturbance suppression block that generates a disturbance suppression signal based on the output of the disturbance estimation block, and causes the disturbance suppression signal to be reflected in the control instruction value so that the control amount of the motor matches the control instruction value when the disturbance occurs. It is in the place.
  • a second feature of the present invention is a piston for pressing a brake pad to a disk rotor, a rotation / linear conversion mechanism for converting rotational motion output by the motor into linear motion and propelling the piston, and rotation of the motor.
  • the electronic control means includes a state feedback control block for feeding back the rotational speed of the motor to a speed command value, a disturbance estimation block for estimating the disturbance of the motor, and a disturbance estimation block And a disturbance suppression block for generating a disturbance suppression signal based on the output of the controller, and reflecting the disturbance suppression signal on the speed command value so that the rotational speed of the motor matches the speed command value when a disturbance occurs.
  • the second aspect of the present invention it is possible to quickly settle the braking force corresponding to the depression amount of the brake pedal to obtain a predetermined braking operation.
  • FIG. 2 is a block diagram schematically showing a functional configuration of a motor to which the present invention is applied.
  • FIG. 1 is a control block diagram showing main functions of a control device of a motor according to a first embodiment of the present invention. It is a control block diagram which shows the main function of the disturbance estimation block shown in FIG. It is a control block diagram which shows the main functions of the control device of a motor which becomes a 2nd embodiment of the present invention. It is a modification of a disturbance estimation block, Comprising: It is a control block diagram which shows the main function of this disturbance estimation block. BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram which shows the structure of the electrically-driven brake device to which this invention is applied.
  • FIG. 1 is a block diagram schematically showing the functional configuration of the motor.
  • s represents a Laplace operator
  • T represents a torque time constant
  • J represents an inertia
  • D represents a viscous friction coefficient
  • a torque command ( ⁇ *) which is a control command value
  • ⁇ * is input from a host controller (not shown) to the motor MTR to be controlled
  • a motor torque ( ⁇ ) which is a control amount, is generated with a torque time constant (T).
  • T torque time constant
  • the relationship between the generated motor torque ( ⁇ ) and the rotational speed ( ⁇ ) is expressed by an equation of motion using inertia (J) and viscous friction coefficient (D), and is expressed as a block in FIG.
  • the motor torque ( ⁇ ) is rarely generated as the torque time constant (T) of the torque generating unit 40, and the inertia (J) and the viscous friction coefficient (D) are accurately There are few things that I can grasp. Furthermore, in general, there are many cases where a load (disturbing torque or the like) acts on the motor MTR, and all input torque commands ( ⁇ *) hardly contribute to the rotational speed ( ⁇ ).
  • FIG. 2 shows a control block according to the first embodiment of the present invention.
  • the control device 50 of the motor of the present embodiment causes the rotational speed ( ⁇ ) to follow the speed command (V *).
  • the speed command (V *) is sent from the host controller, and in the present embodiment, the motor MTR is driven based on the torque command ( ⁇ *) based on the speed command (V *). It is.
  • the control device 50 basically includes a state feedback control block 51, a disturbance estimation block 52, and a disturbance suppression block 53.
  • FIG. 2 shows the control block
  • the control block can be regarded as a "control function” because it is a function executed by software by an apparatus such as a microcomputer.
  • the control block can be regarded as a “control function”.
  • the state feedback control block 51 shown in FIG. 2 feeds back the rotational speed ( ⁇ ) and the motor torque ( ⁇ ), which are state quantities (S) of the motor MTR, to the speed command (V *).
  • the disturbance estimation block 52 obtains an estimated disturbance torque ( ⁇ e) from the second torque command ( ⁇ * 2) input to the motor MTR and the motor torque ( ⁇ ) including the disturbance torque ( ⁇ d) (estimate Have a function.
  • the disturbance estimation block 52 can use various types, and it is also possible to use a state observer (observer), a Kalman filter, etc. as in the third embodiment described later besides this embodiment. It is.
  • the estimated disturbance torque ( ⁇ e) estimated by the disturbance estimation block 52 is given to the disturbance suppression block 53 and is reflected in the first torque command ( ⁇ * 1) as a disturbance suppression signal (Ds).
  • the first torque command ( ⁇ * 1) is a torque command that has been feedback-corrected by the state feedback control block 51, as described later.
  • the disturbance suppression signal (Ds) corrects the first torque command ( ⁇ * 1) to generate the second torque command ( ⁇ * 2) when the disturbance torque ( ⁇ d) is generated, and corresponds to the disturbance.
  • the rotational speed ( ⁇ ) of the motor MTR is corrected.
  • the state feedback control block 51 outputs a feedback correction value (Fb) obtained by multiplying the state feed gain by the state amount (S) of the motor. Then, the feedback correction value (Fb) from the state feedback control block 51 is given to the speed command (V *). Here, the feedback correction value (Fb) is subtracted from the speed command (V *), and a predetermined calculation is performed to generate a first torque command ( ⁇ * 1). In the present embodiment, the rotational speed ( ⁇ ) of the motor and the motor torque ( ⁇ ) are used as the state quantity (S).
  • the disturbance estimation block 52 receives a second torque command ( ⁇ * 2) obtained by correcting the first torque command ( ⁇ * 1) and the rotational speed ( ⁇ ), and inputs disturbance torque ( ⁇ d) acting on the motor MTR. Estimated as estimated disturbance torque ( ⁇ e).
  • the disturbance estimation block 52 has an arithmetic function for obtaining the motor torque ( ⁇ ) from the rotational speed ( ⁇ ) as described later. Therefore, estimated disturbance torque ( ⁇ e), which is disturbance torque ( ⁇ d), can be estimated from the second torque command ( ⁇ * 2) given to motor MTR and motor torque ( ⁇ ).
  • the disturbance suppression block 53 multiplies the estimated disturbance torque ( ⁇ e) estimated by the disturbance estimation block 52 by the disturbance suppression coefficient (Hv) to calculate a disturbance suppression signal (Ds).
  • the disturbance suppression coefficient (Hv) may be a fixed value or an adjustable value. As these, appropriate values are used corresponding to the system to be constructed.
  • the disturbance suppression signal (Ds) is added to the first torque command ( ⁇ * 1) corrected by the feedback correction value (Fb) to generate a second torque command ( ⁇ * 2) corresponding to the disturbance. Be done. Therefore, the second torque command ( ⁇ * 2) is a torque command input to drive the motor MTR.
  • the disturbance suppression signal (Ds) is not provided with an integral function that operates to accumulate deviation when the disturbance torque ( ⁇ d) is generated, and the first torque command ( ⁇ * 1) is corrected immediately The first torque command ( ⁇ * 1) is reflected so as to generate the second torque command ( ⁇ * 2).
  • FIG. 3 shows an example of the configuration of the disturbance estimation block 52, which includes an inverse calculation torque calculation block 54, an estimated disturbance torque calculation block 55, a low pass filter block 56, and the like.
  • the inverse calculation torque calculation block 54 differentiates the rotational speed ( ⁇ ) of the motor MTR and multiplies it by the inertia (J) to calculate the inverse calculation torque ( ⁇ r), which includes the disturbance torque ( ⁇ d). It is substantially equivalent to torque ( ⁇ ). Then, the inverse calculated torque ( ⁇ r) is input to the estimated disturbance torque calculation block 55.
  • the second torque command ( ⁇ * 2) input to the motor MTR is input to the estimated disturbance torque calculation block 55 separately from the back calculation torque ( ⁇ r), and the second torque command ( ⁇ * 2) is backcalculated.
  • the difference of the torque ( ⁇ r) is determined.
  • the estimated disturbance torque ( ⁇ e) which is the disturbance torque ( ⁇ d)
  • the estimated disturbance torque ( ⁇ e) converges to the disturbance torque ( ⁇ d).
  • the estimated disturbance torque ( ⁇ e) estimated by the estimated disturbance torque calculation block 55 is input to the low pass filter 56, high frequency noise and the like are removed, and the result is input to the disturbance suppression block 53 in the subsequent stage.
  • “Fv” is the state feedback gain of the state feedback control block 51.
  • “Hv” is a disturbance suppression coefficient in the disturbance suppression block 53, which is a coefficient of disturbance torque ( ⁇ d) which is a disturbance vector (d) when (Expression 3) is substituted into (Expression 4). That is, the disturbance suppression coefficient (Hv) of the disturbance suppression block 53 is used as a gain that sets the rotational speed ( ⁇ ) to coincide with the speed command (V *) when the disturbance torque ( ⁇ d) acts. It is.
  • the state feedback gain (Fv) may be appropriately selected to stabilize the control system. Alternatively, it may be obtained by minimizing (or maximizing) the pole arrangement and the predetermined evaluation function.
  • the state feedback control block for feeding back the state quantity of the motor to the control command value
  • the disturbance estimation block for estimating the disturbance of the motor and the output of the disturbance estimation block
  • a disturbance suppression block for generating a disturbance suppression signal is provided, and the disturbance suppression signal is reflected in the control command value so that the control amount of the motor matches the control command value when the disturbance occurs. According to this, it is possible to improve the control response and to suppress the occurrence of the overshoot.
  • the present embodiment is different from the first embodiment in that a speed command control block for adjusting the speed command (V *) of the motor is added, and the other points are the same as the first embodiment. .
  • control device 50 is provided in which the change of the speed command (V *) is zero and the steady state deviation does not occur with respect to the generation of the disturbance torque ( ⁇ d).
  • the change of the speed command (V *) is zero, control that does not cause a steady-state deviation is required even when the speed command (V *) is changed.
  • the present embodiment provides a control device for a motor that does not generate a steady-state deviation even when the speed command (V *) of the motor is changed (adjusted).
  • the only difference from the first embodiment is that the speed command (V *) is changed by the speed command control block 56. Therefore, the speed command control block 56 will be described below.
  • the state feedback gain (Fv) of the state feedback control block 51 may be appropriately selected so as to stabilize the control system. Alternatively, it may be obtained by minimizing (or maximizing) the pole arrangement and the predetermined evaluation function.
  • the disturbance estimation block 52 used in the first embodiment is configured by an observer (state observer), a Kalman filter, or the like to estimate the state when the state of the control system can not be observed directly. It is something to do.
  • the disturbance estimation block 52 is configured to receive the torque command (.tau. *) And the reverse calculated torque (.tau.r) obtained from the rotational speed (.omega.). An estimated disturbance torque ( ⁇ e) is obtained (estimated) from the difference.
  • the disturbance estimation block 52 shown in FIG. 3 requires differential calculation even if it is approximately, and from an actual application side, it is limited to the case where almost no noise is included. Further, it is difficult from the practical point of view to directly estimate all of the disturbance torque ( ⁇ d), and a problem arises that the addition of a detection sensor occurs and the product cost increases.
  • the disturbance torque is estimated without adding a new detection sensor and without problems even if noise is included, thereby reducing or eliminating the steady-state deviation and suppressing the occurrence of the overshoot.
  • the configuration of the motor control device 50 according to the present embodiment is basically the same as that of the second embodiment, but differs in that the disturbance estimation block 52 is configured by an observer.
  • the disturbance estimation block 52A basically includes an input matrix block 58, an observer gain block 59, an observer system matrix block 60, and an integration operation block 61.
  • the torque command ( ⁇ *) is input to the input matrix block 58, and the rotational speed ( ⁇ ) is input to the observer gain block 59.
  • a state disturbance torque ( ⁇ d ) which is an output of the integration operation block 61, is input to the observer system matrix block 60.
  • the outputs of the input matrix block 58, the observer gain block 59, and the observer system matrix block 60 are respectively added and input to the integration operation block 61 and output as the state disturbance torque ( ⁇ d ).
  • the state disturbance torque ( ⁇ d ) can be determined (estimated) by including the constant matrix term "N" of the state disturbance torque ( ⁇ d ) represented by the state equation.
  • the observer gain block 59 may set the definition of the time until the disturbance torque ( ⁇ d) converges to the true value or the value at which the disturbance estimation block 52A is stabilized.
  • the disturbance estimation block 52A shown in FIG. 5 has a configuration generally called the same dimension observer, it is also possible to use a minimum dimension observer, a linear function observer or the like if necessary, and further, the same dimension observer It is needless to say that various disturbance estimation methods such as an optimized stationary Kalman filter may be applied.
  • the disturbance estimation block 52A can also be used for the purpose of estimating the state quantity (S) to be given to the state feedback control block 51 as a feedback quantity.
  • the state disturbance torque ( ⁇ d ) matches the disturbance torque ( ⁇ d) in the steady state by the observer gain block 59. Therefore, since it is guaranteed that the equation (10) in the second embodiment is satisfied in the steady state, the steady state deviation does not occur.
  • the differentiation as in the disturbance estimation block 52 described in the first embodiment and the second embodiment is not required, it has an advantage of being strong against noise. Furthermore, since it is not necessary to add a special detection sensor, the increase in the product cost can be suppressed.
  • the rotational speed of the motor has been described as the control amount
  • the rotational position of the motor may be used as the control amount.
  • the rotational position of the motor is rotated It is good also as composition which makes it converge to a position command.
  • FIG. 6 shows the configuration of an electric brake device that controls the brake caliper by the rotational force of the motor instead of the hydraulic pressure brake device.
  • the electric brake system is provided with a brake caliper 10 for giving a brake function, and a piston 12 is disposed inside a caliper main body 11 constituting the brake caliper 10, and this piston 12 has a first brake pad 13 Have the ability to drive the Further, a second brake pad 14 is attached to one end of the caliper main body 11, and a disc rotor 15 fixed to an axle is disposed between the first brake pad 13 and the second brake pad 14. The disk rotor 15 is held between the first brake pad 13 and the second brake pad 14 for braking.
  • the piston 12 disposed in the caliper main body 11 is connected to the speed reduction mechanism 17 via the rotation / linear motion conversion mechanism 16.
  • the rotation / linear motion conversion mechanism 16 uses a slide screw, and has a rotary shaft having a helical screw surface formed on the outer periphery and a screw surface internally provided with a screw surface screwed with the screw surface of the rotary shaft. It is composed of a moving member.
  • the linear moving member is integrally connected to the piston 12, and the linear moving member can move the piston 12 in the axial direction of the rotary shaft by rotation of the rotary shaft.
  • the rotation / linear motion conversion mechanism 16 is provided with a self-locking function unit, and the linear motion member moves linearly if the rotation shaft is rotated, but the rotation of the rotation shaft is stopped. Even if a force acts on the linear movement member in the linear movement direction, the linear movement member holds its position. That is, the rotary shaft and the linear motion member have a helical thread surface whose lead angle is smaller than the friction angle, thereby obtaining a self-locking function.
  • a rotation / linear motion conversion mechanism 16 utilizing such a screw surface is well known.
  • the rotation shaft is fixed to the large diameter gear 18 of the reduction gear mechanism 17, and the large diameter gear 18 meshes with the small diameter gear 19.
  • the small diameter gear 19 is rotated by the motor MTR, and the rotation of the motor MTR is transmitted to the small diameter gear 19 and the large diameter gear 18 to be decelerated.
  • the rotational torque of the motor MTR is amplified and transmitted to the rotational / linear motion conversion mechanism 16 fixed to the rotational shaft.
  • the supply of power (torque command) to the motor MTR is controlled by the electronic control means 20 including the motor control function unit shown in FIGS. 1 to 5 described above, and the motor control function unit is the well-known microprocessor 21 or the like. It comprises an input / output circuit 22 and the like.
  • the electronic control unit 20 supplies a predetermined power to the motor MTR to rotate the motor MTR, and this rotation rotates the rotation shaft via the gears 18 and 19 of the reduction mechanism 17. It is a thing.
  • the rotating shaft rotates, the linear moving member and the piston 12 move to the left side in FIG. 6 to press the brake pad 13 against the disc rotor 15 with a predetermined thrust (pressing force) to apply braking.
  • the motor MTR since the motor MTR is installed near the disk rotor 15, the motor MTR is easily affected by the frictional heat generated by the disk rotor 15. Furthermore, when the motor MTR is maintained at a constant position in order to maintain the braking force, it is necessary to continue supplying power (torque command) to the motor MTR, which leads to a temperature rise of the motor MTR. Thus, in the electric brake system, the motor MTR is placed in an environment where the temperature is likely to rise.
  • the electric brake system by providing the motor control function unit shown in FIGS. 1 to 5 described above, the braking force corresponding to the depression amount of the brake pedal is quickly settled. A predetermined braking operation can be obtained. Therefore, it is possible to reduce the phenomenon that the braking force can not be transmitted to the disk rotor promptly when the brake pedal is depressed, and the phenomenon that the braking force is excessively applied to the disk rotor when it overshoots.
  • the state feedback control block for feeding back the control amount of the motor to the control command value
  • the disturbance for estimating the motor disturbance An estimation block and a disturbance suppression block that generates a disturbance suppression signal based on the output of the disturbance estimation block are provided, and when a disturbance occurs, the disturbance suppression signal is reflected on the control command value so that the control amount of the motor matches the control command value. Let it be configured. According to this, it is possible to improve control response and to suppress the occurrence of overshoot.
  • a piston for pressing a brake pad to a disk rotor a rotation / linear conversion mechanism for converting rotational motion output by the motor into linear motion and propelling the piston, and control rotation of the motor
  • the electronic control means includes a state feedback control block that feeds back the rotational speed of the motor to the speed command value, a disturbance estimation block that estimates the disturbance of the motor, and a disturbance estimation block.
  • a disturbance suppression block for generating a disturbance suppression signal based on the output, wherein the disturbance suppression signal is reflected on the speed command value so that the rotational speed of the motor matches the speed command value when a disturbance occurs.
  • the present invention is not limited to the embodiments described above, but includes various modifications.
  • the embodiments described above are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
  • part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electric Motors In General (AREA)
  • Braking Systems And Boosters (AREA)
  • Regulating Braking Force (AREA)
  • Feedback Control In General (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

Provided is a novel electric motor control device with which control responsiveness is enhanced and the occurrence of an overshoot can be suppressed. The electric motor control device is provided with: a state feedback control block (51) for feeding back a state quantity of an electric motor (MTR) to a control command value; a disturbance estimation block (52) for estimating a disturbance of the electric motor (MTR); and a disturbance suppression block (53) for generating a disturbance suppression signal on the basis of the output of the disturbance estimation block (52). When a disturbance occurs, the disturbance suppression signal (Ds) is reflected in the control command value (τ*) so that the control quantity of the electric motor (MTR) matches the control command value. In this way, control responsiveness is enhanced and the occurrence of an overshoot can be suppressed.

Description

電動機の制御装置及び電動ブレーキ装置Control device for electric motor and electric brake device
 本発明は電動機の制御装置及び電動ブレーキ装置に係り、特にフィードバック制御系を備えた電動機の制御装置及び電動ブレーキ装置に関するものである。 The present invention relates to a control device for an electric motor and an electric brake device, and more particularly to a control device for an electric motor having a feedback control system and the electric brake device.
 一般的な産業機械分野においては、電動機によって機械系制御要素を駆動することが行われているが、このような電動機においては、例えば、回転速度、回転位置等の1つ以上の制御量を精度良く高応答で制御することが求められている。そして、このような電動機の制御精度や制御応答性を向上するためには、例えば、特開2001-249720号公報(特許文献1)においては、電動機への制御指令値(入力)と電動機の制御量(出力)の偏差を抑制して制御精度を向上するフィードバック制御に加えて、制御指令値に対してフィードフォワード制御を追加することで制御応答性を向上している。 In the general industrial machine field, a mechanical control element is driven by an electric motor. In such an electric motor, for example, one or more control amounts such as rotational speed, rotational position, etc. It is required to control well with high response. Then, in order to improve the control accuracy and control response of such a motor, for example, in Japanese Patent Laid-Open No. 2001-249720 (Patent Document 1), control command value (input) to the motor and control of the motor Control response is improved by adding feedforward control to the control command value, in addition to feedback control that improves the control accuracy by suppressing the deviation of the amount (output).
特開2001-249720号公報JP, 2001-249720, A
 ところで、高応答性が求められる電動機の制御装置では、定常状態で制御量が制御指令値に精度良く整定されることが求められる。このため、特許文献1に記載されている制御装置では、フィードバック制御系に積分機能を備えることで定常偏差を小さく、或いは無くして、制御量を制御指令値に整定している。しかしながら、積分機能は制御指令値と制御量の偏差を蓄積して動作するため、往々にして制御量が制御指令値を超える現象(本発明では、これをオーバーシュートと呼ぶ)が発生する課題がある。そして、このオーバーシュートの発生は、制御量が制御指令値へ整定する整定時間の増加を招くことになる。 By the way, in a control device of a motor requiring high response, it is required that the control amount be accurately settled to the control command value in the steady state. For this reason, in the control device described in Patent Document 1, by providing the integral function in the feedback control system, the steady state deviation is reduced or eliminated, and the control amount is settled to the control command value. However, since the integral function operates by accumulating the deviation between the control command value and the control amount, there is often a problem that a phenomenon in which the control amount exceeds the control command value (this is referred to as overshoot) occurs. is there. Then, the occurrence of the overshoot causes an increase in settling time in which the control amount settles to the control command value.
 例えば、自動車のブレーキ制御装置として電動機を用いた電動ブレーキ装置においては、ブレーキペダルを踏み込んだ時に、制御応答性が高くないと制動力を速やかにディスクロータに伝えることができないという現象や、オーバーシュートするとディスクロータに制動力がかかりすぎるという現象を生じる。このように、電動ブレーキ装置においては、ブレーキペダルの踏込量に対応した制動力に速やかに整定して、所定の制動動作を得ることが求められている。 For example, in an electric brake apparatus using an electric motor as a brake control apparatus for a car, a phenomenon that the braking force can not be transmitted to the disc rotor promptly if the control response is not high when the brake pedal is depressed, or overshoot As a result, a phenomenon occurs in which the braking force is excessively applied to the disk rotor. As described above, in the electric brake device, it is required to quickly settle the braking force corresponding to the amount of depression of the brake pedal to obtain a predetermined braking operation.
 本発明の第1の目的は、制御応答性を高めると共に、オーバーシュートが発生するのを抑制できる新規な電動機の制御装置を提供することにある。 A first object of the present invention is to provide a novel motor control device capable of suppressing occurrence of overshoot while enhancing control response.
 本発明の第2の目的は、ブレーキペダルの踏込量に対応した制動力に速やかに整定して所定の制動動作を得ることができる新規な電動ブレーキ装置を提供することにある。 A second object of the present invention is to provide a novel electric brake device capable of obtaining a predetermined braking operation by quickly setting a braking force corresponding to the amount of depression of a brake pedal.
 本発明の第1の特徴は、電動機の回転状態を制御する電動機の制御装置において、電動機の制御量を制御指令値にフィードバックする状態フィードバック制御ブロックを設けると共に、電動機の外乱を推定する外乱推定ブロックと、外乱推定ブロックの出力に基づいて外乱抑制信号を生成する外乱抑制ブロックを設け、外乱が発生すると電動機の制御量が制御指令値に一致するように外乱抑制信号を制御指令値に反映させる、ところにある。 According to a first feature of the present invention, in a control device of a motor for controlling a rotational state of a motor, a state feedback control block for feeding back a control amount of the motor to a control command value is provided, and a disturbance estimation block for estimating a disturbance of the motor And a disturbance suppression block that generates a disturbance suppression signal based on the output of the disturbance estimation block, and causes the disturbance suppression signal to be reflected in the control instruction value so that the control amount of the motor matches the control instruction value when the disturbance occurs. It is in the place.
 本発明の第2の特徴は、ディスクロータへブレーキバッドを押し付けるピストンと、電動機によって出力される回転運動を直動運動に変換してピストンを推進する回転/直動変換機構と、電動機の回転を制御する電子制御手段とを備えた電動ブレーキ装置において、電子制御手段は、電動機の回転速度を速度指令値にフィードバックする状態フィードバック制御ブロックと、電動機の外乱を推定する外乱推定ブロックと、外乱推定ブロックの出力に基づいて外乱抑制信号を生成する外乱抑制ブロックとを備え、外乱が発生すると電動機の回転速度が速度指令値に一致するように外乱抑制信号を速度指令値に反映させる、ところにある。 A second feature of the present invention is a piston for pressing a brake pad to a disk rotor, a rotation / linear conversion mechanism for converting rotational motion output by the motor into linear motion and propelling the piston, and rotation of the motor. In an electric brake system comprising an electronic control means for controlling, the electronic control means includes a state feedback control block for feeding back the rotational speed of the motor to a speed command value, a disturbance estimation block for estimating the disturbance of the motor, and a disturbance estimation block And a disturbance suppression block for generating a disturbance suppression signal based on the output of the controller, and reflecting the disturbance suppression signal on the speed command value so that the rotational speed of the motor matches the speed command value when a disturbance occurs.
 本発明の第1の特徴によれば、制御応答性を高めると共に、オーバーシュートが発生するのを抑制できる。 According to the first aspect of the present invention, it is possible to enhance control response and suppress the occurrence of overshoot.
 本発明の第2の特徴によれば、ブレーキペダルの踏込量に対応した制動力に速やかに整定して所定の制動動作を得ることができる。 According to the second aspect of the present invention, it is possible to quickly settle the braking force corresponding to the depression amount of the brake pedal to obtain a predetermined braking operation.
本発明が適用される電動機の機能構成を模式的に表した示すブロック図である。FIG. 2 is a block diagram schematically showing a functional configuration of a motor to which the present invention is applied. 本発明の第1の実施形態になる、電動機の制御装置の主たる機能を示す制御ブロック図である。FIG. 1 is a control block diagram showing main functions of a control device of a motor according to a first embodiment of the present invention. 図2に示す外乱推定ブロックの主たる機能を示す制御ブロック図である。It is a control block diagram which shows the main function of the disturbance estimation block shown in FIG. 本発明の第2の実施形態になる、電動機の制御装置の主たる機能を示す制御ブロック図である。It is a control block diagram which shows the main functions of the control device of a motor which becomes a 2nd embodiment of the present invention. 外乱推定ブロックの変形例であって、この外乱推定ブロックの主たる機能を示す制御ブロック図である。It is a modification of a disturbance estimation block, Comprising: It is a control block diagram which shows the main function of this disturbance estimation block. 本発明が適用される電動ブレーキ装置の構成を示す構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram which shows the structure of the electrically-driven brake device to which this invention is applied.
 本発明の実施形態について図面を用いて詳細に説明するが、本発明は以下の実施形態に限定されることなく、本発明の技術的な概念の中で種々の変形例や応用例をもその範囲に含むものである。 Embodiments of the present invention will be described in detail with reference to the drawings, but the present invention is not limited to the following embodiments, and various modifications and applications may be made within the technical concept of the present invention. It is included in the scope.
 以下、本発明の第1の実施形態を図1~図3に基づき説明する。まず、本発明の制御対象である電動機の構成をについて簡単に説明する。図1は、電動機の機能構成を模式的にブロックで示したものである。 Hereinafter, a first embodiment of the present invention will be described based on FIGS. 1 to 3. First, the configuration of the motor to be controlled according to the present invention will be briefly described. FIG. 1 is a block diagram schematically showing the functional configuration of the motor.
 図1において、「s」はラプラス演算子、「T」はトルク時定数、「J」はイナーシャ、「D」は粘性摩擦係数を示している。制御対象の電動機MTRには、図示しない上位制御装置から制御指令値であるトルク指令(τ*)が入力され、トルク時定数(T)で制御量である電動機トルク(τ)が発生する。発生した電動機トルク(τ)と回転速度(ω)の関係は、イナーシャ(J)や粘性摩擦係数(D)を使って運動方程式で表され、図1のブロックのように表される。 In FIG. 1, “s” represents a Laplace operator, “T” represents a torque time constant, “J” represents an inertia, and “D” represents a viscous friction coefficient. A torque command (τ *), which is a control command value, is input from a host controller (not shown) to the motor MTR to be controlled, and a motor torque (τ), which is a control amount, is generated with a torque time constant (T). The relationship between the generated motor torque (τ) and the rotational speed (ω) is expressed by an equation of motion using inertia (J) and viscous friction coefficient (D), and is expressed as a block in FIG.
 ところで、実際の電動機MTRでは、トルク発生部40のトルク時定数(T)の通りに電動機トルク(τ)が発生することは稀であり、イナーシャ(J)や粘性摩擦係数(D)が正確に把握できることも少ない。更に、一般に電動機MTRには何らかの負荷(外乱トルク等)が作用する場合が多く、入力したトルク指令(τ*)がすべて回転速度(ω)に寄与することは殆どないものである。 By the way, in the actual motor MTR, the motor torque (τ) is rarely generated as the torque time constant (T) of the torque generating unit 40, and the inertia (J) and the viscous friction coefficient (D) are accurately There are few things that I can grasp. Furthermore, in general, there are many cases where a load (disturbing torque or the like) acts on the motor MTR, and all input torque commands (τ *) hardly contribute to the rotational speed (ω).
 以下に説明する本実施形態では、これらのパラメータのばらつきや負荷などを、全て外乱トルク(τd)として、図1に示すように電動機トルク(τ)に加える形で表すことにする。つまり、電動機トルク(τ)は、外乱トルク(τd)を含んだトルクと見做される。そして、このような制御対象は次の(式1)で表される。 In the present embodiment described below, variations in these parameters, loads, and the like are all expressed as disturbance torque (τd) and added to motor torque (τ) as shown in FIG. That is, the motor torque (τ) is regarded as a torque including the disturbance torque (τd). And such a control object is represented by the following (Formula 1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
尚、(式1)は複雑であるため、以降では簡略化して(式2)ように表記する。 In addition, since (Formula 1) is complicated, it simplifies and describes as (Formula 2) hereafter.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
ここで、(式2)において、「x」は状態量ベクトル(=電動機トルクτ、回転速度ω)、「u」は操作量ベクトル(=トルク指令τ*)、「d」は外乱ベクトル(=外乱トルクτd)、「y」は出力(=回転速度ω)である。また、「A」、「B」、「C」、「N」は定数行列である。これらの式は、状態方程式として良く知られているものであるので、これ以上の説明は省略する。 Here, in (Expression 2), “x” is a state quantity vector (= motor torque τ, rotation speed ω), “u” is an operation quantity vector (= torque command τ *), “d” is a disturbance vector (= The disturbance torque τd), “y” is an output (= rotational speed ω). Also, “A”, “B”, “C”, and “N” are constant matrices. Since these equations are well known as state equations, further description will be omitted.
 次に、本発明の具体的な実施形態の詳細について図面を引用しながら説明する。以下に説明する実施形態は、電動機MTRに入力するトルク指令(τ*)を生成する場合を示している。 Details of specific embodiments of the present invention will now be described with reference to the drawings. The embodiment described below shows the case where a torque command (τ *) to be input to the motor MTR is generated.
 図2は、本発明の第1の実施形態になる制御ブロックを示したものである。図2に示すように、本実施形態の電動機の制御装置50は回転速度(ω)を速度指令(V*)に追従させるものである。尚、速度指令(V*)は上位制御装置から送られてくるものであり、本実施形態では、電動機MTRは速度指令(V*)に基づくトルク指令(τ*)に基づいて駆動されるものである。 FIG. 2 shows a control block according to the first embodiment of the present invention. As shown in FIG. 2, the control device 50 of the motor of the present embodiment causes the rotational speed (ω) to follow the speed command (V *). The speed command (V *) is sent from the host controller, and in the present embodiment, the motor MTR is driven based on the torque command (τ *) based on the speed command (V *). It is.
 図2において、制御装置50は、基本的には、状態フィードバック制御ブロック51と、外乱推定ブロック52と、外乱抑制ブロック53を備えている。尚、図2では、制御ブロックとして示しているが、実際には、マイクロコンピュータのような機器によってソフトウエアによって実行される機能であるので、制御ブロックは「制御機能」として捉えることができる。また、図3以降においても、制御ブロックは「制御機能」として捉えることができる。 In FIG. 2, the control device 50 basically includes a state feedback control block 51, a disturbance estimation block 52, and a disturbance suppression block 53. Although FIG. 2 shows the control block, in practice the control block can be regarded as a "control function" because it is a function executed by software by an apparatus such as a microcomputer. Also in FIG. 3 and thereafter, the control block can be regarded as a “control function”.
 ここで、図2に示す状態フィードバック制御ブロック51は、電動機MTRの状態量(S)である回転速度(ω)や電動機トルク(τ)を速度指令(V*)にフィードバックするものである。 Here, the state feedback control block 51 shown in FIG. 2 feeds back the rotational speed (ω) and the motor torque (τ), which are state quantities (S) of the motor MTR, to the speed command (V *).
 また、外乱推定ブロック52は、電動機MTRに入力される第2トルク指令(τ*2)と、外乱トルク(τd)を含む電動機トルク(τ)とから、推定外乱トルク(τe)を求める(推定する)機能を備えている。この外乱推定ブロック52は種々の形式のものを使用することができ、本実施形態以外に後述する第3の実施形態にあるように、状態観測器(オブザーバ)やカルマンフィルタ等を使用することも可能である。 Further, the disturbance estimation block 52 obtains an estimated disturbance torque (τe) from the second torque command (τ * 2) input to the motor MTR and the motor torque (τ) including the disturbance torque (τd) (estimate Have a function. The disturbance estimation block 52 can use various types, and it is also possible to use a state observer (observer), a Kalman filter, etc. as in the third embodiment described later besides this embodiment. It is.
 更に、外乱推定ブロック52によって推定された推定外乱トルク(τe)は、外乱抑制ブロック53に与えられ、外乱抑制信号(Ds)として第1トルク指令(τ*1)に反映される。ここで、第1トルク指令(τ*1)は後述するように、状態フィードバック制御ブロック51によるフィードバック補正されたトルク指令である。外乱抑制信号(Ds)は、外乱トルク(τd)が発生すると、第1トルク指令(τ*1)を補正して第2トルク指令(τ*2)を生成しており、外乱に対応して電動機MTRの回転速度(ω)が補正されるようになる。 Furthermore, the estimated disturbance torque (τe) estimated by the disturbance estimation block 52 is given to the disturbance suppression block 53 and is reflected in the first torque command (τ * 1) as a disturbance suppression signal (Ds). Here, the first torque command (τ * 1) is a torque command that has been feedback-corrected by the state feedback control block 51, as described later. The disturbance suppression signal (Ds) corrects the first torque command (τ * 1) to generate the second torque command (τ * 2) when the disturbance torque (τd) is generated, and corresponds to the disturbance. The rotational speed (ω) of the motor MTR is corrected.
 状態フィードバック制御ブロック51は、電動機の状態量(S)に状態フィードゲインを乗じたフィードバック補正値(Fb)を出力する。そして、状態フィードバック制御ブロック51からのフィードバック補正値(Fb)は、速度指令(V*)に与えられる。ここで、速度指令(V*)からフィードバック補正値(Fb)が減じられて、所定の演算を実行して第1トルク指令(τ*1)を生成する。尚、本実施形態においては状態量(S)として、電動機の回転速度(ω)や電動機トルク(τ)が使用されている。 The state feedback control block 51 outputs a feedback correction value (Fb) obtained by multiplying the state feed gain by the state amount (S) of the motor. Then, the feedback correction value (Fb) from the state feedback control block 51 is given to the speed command (V *). Here, the feedback correction value (Fb) is subtracted from the speed command (V *), and a predetermined calculation is performed to generate a first torque command (τ * 1). In the present embodiment, the rotational speed (ω) of the motor and the motor torque (τ) are used as the state quantity (S).
 また、外乱推定ブロック52は、第1トルク指令(τ*1)を補正した第2トルク指令(τ*2)と回転速度(ω)を入力として、電動機MTRに作用する外乱トルク(τd)を推定外乱トルク(τe)として推定する。尚、外乱推定ブロック52は、後述するように回転速度(ω)から電動機トルク(τ)を求める演算機能を備えている。したがって、電動機MTRに与えられる第2トルク指令(τ*2)と電動機トルク(τ)とから、外乱トルク(τd)である推定外乱トルク(τe)を推定することができる。 Further, the disturbance estimation block 52 receives a second torque command (τ * 2) obtained by correcting the first torque command (τ * 1) and the rotational speed (ω), and inputs disturbance torque (τd) acting on the motor MTR. Estimated as estimated disturbance torque (τe). The disturbance estimation block 52 has an arithmetic function for obtaining the motor torque (τ) from the rotational speed (ω) as described later. Therefore, estimated disturbance torque (τe), which is disturbance torque (τd), can be estimated from the second torque command (τ * 2) given to motor MTR and motor torque (τ).
 また、外乱抑制ブロック53は、外乱推定ブロック52で推定された推定外乱トルク(τe)に、外乱抑制係数(Hv)を乗じて外乱抑制信号(Ds)を演算する。外乱抑制係数(Hv)は固定の値、或いは調整可能な値であっても良いものである。これらは、構築されるシステムに対応して適切な値が使用される。 Further, the disturbance suppression block 53 multiplies the estimated disturbance torque (τe) estimated by the disturbance estimation block 52 by the disturbance suppression coefficient (Hv) to calculate a disturbance suppression signal (Ds). The disturbance suppression coefficient (Hv) may be a fixed value or an adjustable value. As these, appropriate values are used corresponding to the system to be constructed.
 更に、この外乱抑制信号(Ds)は、フィードバック補正値(Fb)によって補正された第1トルク指令(τ*1)に加算されて、外乱に対応した第2トルク指令(τ*2)が生成される。したがって、この第2トルク指令(τ*2)が電動機MTRを駆動するために入力されるトルク指令となる。ここで、外乱抑制信号(Ds)は、外乱トルク(τd)が発生すると、偏差を蓄積して動作する積分機能を備えたものではなく、直ぐに第1トルク指令(τ*1)を補正して第2トルク指令(τ*2)を生成するように、第1トルク指令(τ*1)に反映されるものである。 Further, the disturbance suppression signal (Ds) is added to the first torque command (τ * 1) corrected by the feedback correction value (Fb) to generate a second torque command (τ * 2) corresponding to the disturbance. Be done. Therefore, the second torque command (τ * 2) is a torque command input to drive the motor MTR. Here, the disturbance suppression signal (Ds) is not provided with an integral function that operates to accumulate deviation when the disturbance torque (τd) is generated, and the first torque command (τ * 1) is corrected immediately The first torque command (τ * 1) is reflected so as to generate the second torque command (τ * 2).
 次に、本実施形態に使用する外乱推定ブロック52の構成について説明する。図3は、外乱推定ブロック52の構成の一例を示したものであり、逆算トルク演算ブロック54、推定外乱トルク演算ブロック55、ローパスフィルタブロック56等から構成されている。 Next, the configuration of the disturbance estimation block 52 used in the present embodiment will be described. FIG. 3 shows an example of the configuration of the disturbance estimation block 52, which includes an inverse calculation torque calculation block 54, an estimated disturbance torque calculation block 55, a low pass filter block 56, and the like.
 逆算トルク演算ブロック54は、電動機MTRの回転速度(ω)を微分し、これにイナーシャ(J)を乗じて逆算トルク(τr)を算出しており、これは、外乱トルク(τd)を含む電動機トルク(τ)と実質的に等価なものである。そして、この逆算トルク(τr)は、推定外乱トルク演算ブロック55に入力される。 The inverse calculation torque calculation block 54 differentiates the rotational speed (ω) of the motor MTR and multiplies it by the inertia (J) to calculate the inverse calculation torque (τr), which includes the disturbance torque (τd). It is substantially equivalent to torque (τ). Then, the inverse calculated torque (τr) is input to the estimated disturbance torque calculation block 55.
 推定外乱トルク演算ブロック55には、逆算トルク(τr)とは別に、電動機MTRに入力される第2トルク指令(τ*2)が入力されており、第2トルク指令(τ*2)と逆算トルク(τr)の差分を求めている。これによって、外乱トルク(τd)である推定外乱トルク(τe)が推定される。そして、定常状態では推定外乱トルク(τe)が外乱トルク(τd)に収束するようになる。推定外乱トルク演算ブロック55で推定された推定外乱トルク(τe)は、ローパスフィルタ56に入力され、高周波ノイズ等が除去されて、後段の外乱抑制ブロック53に入力される。 The second torque command (τ * 2) input to the motor MTR is input to the estimated disturbance torque calculation block 55 separately from the back calculation torque (τr), and the second torque command (τ * 2) is backcalculated. The difference of the torque (τr) is determined. As a result, the estimated disturbance torque (τe), which is the disturbance torque (τd), is estimated. Then, in the steady state, the estimated disturbance torque (τe) converges to the disturbance torque (τd). The estimated disturbance torque (τe) estimated by the estimated disturbance torque calculation block 55 is input to the low pass filter 56, high frequency noise and the like are removed, and the result is input to the disturbance suppression block 53 in the subsequent stage.
 次に、状態フィードバック制御ブロック51の状態フィードバックゲインと、外乱抑制ブロック53について説明する。尚、本実施形態では外乱トルク(τd)に対して定常偏差を生じないことを前提とするため、電動機MTRの速度指令(V*)の変化は零であると規定する。 Next, the state feedback gain of the state feedback control block 51 and the disturbance suppression block 53 will be described. In the present embodiment, it is assumed that the change in the speed command (V *) of the motor MTR is zero, on the premise that no steady-state deviation occurs with respect to the disturbance torque (τd).
 (式2)の下で外乱トルク(τd)に対して定常偏差が生じないような、状態量ベクトル「x」(=電動機トルクτ、回転速度ω)、操作量ベクトル「u」(=トルク指令τ*)は一意に定まり、以下の(式3)のように表すことができる。 A state quantity vector “x” (= motor torque τ, rotational speed ω), an operation quantity vector “u” (= torque command) such that no steady state deviation occurs with respect to the disturbance torque (τd) under (Eq. 2) τ *) is uniquely determined, and can be expressed as (Equation 3) below.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
そして、(式3)で求まる値を使用して、次の(式4)、(式5)のフィードバック則を施す。 Then, using the values obtained by (Equation 3), the feedback rules of (Equation 4) and (Equation 5) below are applied.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ここで、「Fv」は状態フィードバック制御ブロック51の状態フィードバックゲインである。また、「Hv」は外乱抑制ブロック53での外乱抑制係数であり、(式3)を(式4)に代入したときの外乱ベクトル(d)である外乱トルク(τd)の係数である。つまり、この外乱抑制ブロック53の外乱抑制係数(Hv)が、外乱トルク(τd)の作用時に回転速度(ω)を速度指令(V*)に一致するように設定する、ゲインとして使用されるものである。 Here, “Fv” is the state feedback gain of the state feedback control block 51. “Hv” is a disturbance suppression coefficient in the disturbance suppression block 53, which is a coefficient of disturbance torque (τd) which is a disturbance vector (d) when (Expression 3) is substituted into (Expression 4). That is, the disturbance suppression coefficient (Hv) of the disturbance suppression block 53 is used as a gain that sets the rotational speed (ω) to coincide with the speed command (V *) when the disturbance torque (τd) acts. It is.
 尚、状態フィードバックゲイン(Fv)は、制御系が安定するように適切に選べば良いものである。或いは、極配置や所定の評価関数を最小化(或いは、最大化)することで求めても良いものである。 The state feedback gain (Fv) may be appropriately selected to stabilize the control system. Alternatively, it may be obtained by minimizing (or maximizing) the pole arrangement and the predetermined evaluation function.
 そして、外乱推定ブロック52で推定される推定外乱トルク(τe)は、定常状態の下では外乱トルク(τd)と等しくなるので、このとき(式2)は定常状態において(式6)が成立する。 Then, since the estimated disturbance torque (τe) estimated in the disturbance estimation block 52 is equal to the disturbance torque (τd) under the steady state, (equation 2) at this time (equation 6) holds in the steady state .
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
更に、(式6)を状態量ベクトル「x」」(=電動機トルクτ、回転速度ω)について解いて、出力「y」(=回転速度ω)を求めると、「y=0」となる。すなわち、定常状態の下では、外乱トルク(τd)は、回転速度(ω)に影響を与えないことがわかる。 Further, when Equation (6) is solved for the state quantity vector “x” (= motor torque τ, rotational speed ω) and the output “y” (= rotational speed ω) is obtained, “y = 0” is obtained. That is, it can be seen that the disturbance torque (τd) does not affect the rotational speed (ω) under the steady state.
 このように、外乱トルク(τd)の影響は定常状態のもとでは除去されるので、外乱トルク(τd)に対して定常偏差は生じないことになる。従来の方法では、積分機能を使用することで外乱トルク(τd)の影響を除去していたが、積分機能に基づく偏差の蓄積が存在するので、オーバーシュートを生じるという課題があった。これに対して、本実施形態では、積分機能を使用せずに、外乱抑制係数(Hv)のみでトルク指令を補正することができるので、オーバーシュートを抑制することができるようになるものである。 As described above, since the influence of the disturbance torque (τd) is eliminated under the steady state, no steady state deviation occurs with respect to the disturbance torque (τd). In the conventional method, the influence of the disturbance torque (.tau.d) is removed by using the integral function, but there is a problem that an overshoot occurs because the accumulation of the deviation based on the integral function exists. On the other hand, in the present embodiment, since the torque command can be corrected only by the disturbance suppression coefficient (Hv) without using the integral function, the overshoot can be suppressed. .
 以上述べた通り、本実施形態によれば、電動機の状態量を制御指令値にフィードバックする状態フィードバック制御ブロックを設けると共に、電動機の外乱を推定する外乱推定ブロックと、外乱推定ブロックの出力に基づいて外乱抑制信号を生成する外乱抑制ブロックを設け、外乱が発生すると電動機の制御量が制御指令値に一致するように外乱抑制信号を制御指令値に反映させる構成とした。これによれば、制御応答性を高めると共に、オーバーシュートが発生するのを抑制できるようになる。 As described above, according to the present embodiment, the state feedback control block for feeding back the state quantity of the motor to the control command value is provided, and the disturbance estimation block for estimating the disturbance of the motor and the output of the disturbance estimation block A disturbance suppression block for generating a disturbance suppression signal is provided, and the disturbance suppression signal is reflected in the control command value so that the control amount of the motor matches the control command value when the disturbance occurs. According to this, it is possible to improve the control response and to suppress the occurrence of the overshoot.
 次に、本発明の第2の実施形態になる電動機の制御装置について説明する。本実施形態は、第1の実施形態に比べて、電動機の速度指令(V*)を調整する速度指令制御ブロックを付加した点で異なっており、これ以外は第1の実施形態と同じである。 Next, a control device for a motor according to a second embodiment of the present invention will be described. The present embodiment is different from the first embodiment in that a speed command control block for adjusting the speed command (V *) of the motor is added, and the other points are the same as the first embodiment. .
 第1の実施形態では、速度指令(V*)の変化が零であって、外乱トルク(τd)の発生に対して定常偏差が生じない制御装置50を提供するものであった。ところが、速度指令(V*)の変化が零である場合は稀であるので、速度指令(V*)が変更される場合にも定常偏差を生じない制御が求められる。 In the first embodiment, the control device 50 is provided in which the change of the speed command (V *) is zero and the steady state deviation does not occur with respect to the generation of the disturbance torque (τd). However, since it is rare when the change of the speed command (V *) is zero, control that does not cause a steady-state deviation is required even when the speed command (V *) is changed.
 本実施形態は、電動機の速度指令(V*)が変更(調整)される場合にも、定常偏差を生じない電動機の制御装置を提供するものである。第1の実施形態と異なる点は、速度指令制御ブロック56によって速度指令(V*)が変更される点のみであるので、以下では、速度指令制御ブロック56について説明する。 The present embodiment provides a control device for a motor that does not generate a steady-state deviation even when the speed command (V *) of the motor is changed (adjusted). The only difference from the first embodiment is that the speed command (V *) is changed by the speed command control block 56. Therefore, the speed command control block 56 will be described below.
 (式2)において、外乱トルク(τd)と速度指令(V*)の変化に対して定常偏差が生じないような、状態量ベクトル「x」(=電動機トルクτ、回転速度ω)、操作量ベクトル「u」(=トルク指令τ*)は一意に定まり、以下の(式7)のように表すことができる。尚、「r」は速度指令(V*)である。 State amount vector “x” (= motor torque τ, rotational speed ω), operation amount such that no steady state deviation occurs with respect to changes in disturbance torque (τd) and speed command (V *) in (Expression 2) The vector “u” (= torque command τ *) is uniquely determined, and can be expressed as in (Expression 7) below. Here, "r" is a speed command (V *).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
そして、(式7)で求まる値を使用して、次の(式8)、(式9)のフィードバック則を施す。 Then, using the value obtained by (Expression 7), the feedback rules of (Expression 8) and (Expression 9) below are applied.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 ここで、「Gv」は(式7)を(式8)に代入したときの速度指令(V*)の係数である。つまり、速度指令(V*)が与えられたとき、回転速度(ω)が速度指令(V*)に一致するように設定された係数(=フィードフォワードゲイン)である。尚、第1の実施形態と同様に、状態フィードバック制御ブロック51の状態フィードバックゲイン(Fv)は、制御系が安定するように適切に選べば良いものである。或いは、極配置や所定の評価関数を最小化(或いは、最大化)することで求めても良いものである。 Here, “Gv” is a coefficient of the speed command (V *) when (Expression 7) is substituted into (Expression 8). That is, when the speed command (V *) is given, the rotational speed (ω) is a coefficient (= feed forward gain) set so as to match the speed command (V *). As in the first embodiment, the state feedback gain (Fv) of the state feedback control block 51 may be appropriately selected so as to stabilize the control system. Alternatively, it may be obtained by minimizing (or maximizing) the pole arrangement and the predetermined evaluation function.
 そして、外乱推定ブロック52で推定される推定外乱トルク(τe)は、定常状態の下では外乱トルク(τd)と等しくなるので、このとき(式2)は定常状態において(式10)が成立する。 Then, since the estimated disturbance torque (τe) estimated by the disturbance estimation block 52 is equal to the disturbance torque (τd) under the steady state, at this time (formula 2), (formula 10) holds in the steady state .
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
更に、(式10)を状態量ベクトル「x」」(=電動機トルクτ、回転速度ω)について解いて、出力「y」(=回転速度ω)を求めると、「y=r」となる。すなわち、定常状態の下では、回転速度(ω)は速度指令(V*)に一致して、定常偏差を生じないことがわかる。 Further, when Equation (10) is solved for the state quantity vector “x” (= motor torque τ, rotational speed ω) and the output “y” (= rotational speed ω) is obtained, “y = r” is obtained. That is, under the steady state, it can be seen that the rotational speed (ω) matches the speed command (V *) and does not produce a steady state deviation.
 このように、速度指令(V*)の変更や外乱トルク(τd)の発生があっても、回転速度(ω)は速度指令(V*)に一致すると共に、定常偏差は生じないことになる。第1の実施形態と同様に、積分機能に基づく偏差の蓄積が存在しないので、オーバーシュートを抑制することができるようになるものである。 As described above, even if there is a change in the speed command (V *) or generation of a disturbance torque (τd), the rotational speed (ω) matches the speed command (V *) and no steady-state deviation occurs. . As in the first embodiment, since there is no accumulation of deviation based on the integral function, overshoot can be suppressed.
 次に、本発明の第3の実施形態になる電動機の制御装置について説明する。本実施形態は、第1の実施形態に使用されている外乱推定ブロック52を、オブザーバ(状態観測器)やカルマンフィルタ等で構成して、制御システムの状態が直接的に観測できない場合の状態推定を行なうものである。 Next, a motor control device according to a third embodiment of the present invention will be described. In this embodiment, the disturbance estimation block 52 used in the first embodiment is configured by an observer (state observer), a Kalman filter, or the like to estimate the state when the state of the control system can not be observed directly. It is something to do.
 第1の実施形態、及び第2の実施形態では、外乱推定ブロック52は図3に示しているように、トルク指令(τ*)と、回転速度(ω)から求めた逆算トルク(τr)の差分から推定外乱トルク(τe)を求めて(推定して)いる。ところが、図3に示した外乱推定ブロック52は、近似的にせよ微分演算が必要であり、実際の適用面からすると雑音が殆ど含まれていない場合に限られる。また、外乱トルク(τd)のすべてを直接的に推定することは実用面から見ると困難であり、検出センサの追加が生じて製品コストが増大してしまうという課題が発生する。 In the first embodiment and the second embodiment, as shown in FIG. 3, the disturbance estimation block 52 is configured to receive the torque command (.tau. *) And the reverse calculated torque (.tau.r) obtained from the rotational speed (.omega.). An estimated disturbance torque (τe) is obtained (estimated) from the difference. However, the disturbance estimation block 52 shown in FIG. 3 requires differential calculation even if it is approximately, and from an actual application side, it is limited to the case where almost no noise is included. Further, it is difficult from the practical point of view to directly estimate all of the disturbance torque (τd), and a problem arises that the addition of a detection sensor occurs and the product cost increases.
 そこで、本実施形態では、新たな検出センサを追加することなく、また雑音が含まれていても問題なく外乱トルクを推定して、定常偏差を小さく、或いは無くすと共に、オーバーシュートの発生を抑制することができる制御装置を提案するものである。本実施形態になる電動機の制御装置50の構成は、基本的には第2の実施形態と同様であるが、外乱推定ブロック52がオブザーバで構成されている点で異なっている。 Therefore, in the present embodiment, the disturbance torque is estimated without adding a new detection sensor and without problems even if noise is included, thereby reducing or eliminating the steady-state deviation and suppressing the occurrence of the overshoot. We propose a control device that can The configuration of the motor control device 50 according to the present embodiment is basically the same as that of the second embodiment, but differs in that the disturbance estimation block 52 is configured by an observer.
 このオブザーバは、電動機MTRの内部状態を推定するためのモデルを与えるもので、電動機の制御指令(=トルク指令)と制御量(=回転速度)の測定から外乱を推定するものであり、数学的モデルとしてマイクロコンピュータ等の演算装置に実装されている。 This observer provides a model for estimating the internal state of the motor MTR, estimates the disturbance from the measurement of the control command (= torque command) and the control amount (= rotational speed) of the motor, and is mathematically It is implemented in a computing device such as a microcomputer as a model.
 図5において、外乱推定ブロック52Aは、基本的には入力行列ブロック58、オブザーバゲインブロック59、オブザーバシステム行列ブロック60、及び積分演算ブロック61から構成されている。入力行列ブロック58にはトルク指令(τ*)が入力され、オブザーバゲインブロック59には回転速度(ω)が入力されている。また、オブザーバシステム行列ブロック60には積分演算ブロック61の出力である状態外乱トルク(τd)が入力されている。入力行列ブロック58、オブザーバゲインブロック59、及びオブザーバシステム行列ブロック60の出力は、それぞれ加算されて積分演算ブロック61に入力されて状態外乱トルク(τd)として出力されている。 In FIG. 5, the disturbance estimation block 52A basically includes an input matrix block 58, an observer gain block 59, an observer system matrix block 60, and an integration operation block 61. The torque command (τ *) is input to the input matrix block 58, and the rotational speed (ω) is input to the observer gain block 59. Further, a state disturbance torque ( τd ), which is an output of the integration operation block 61, is input to the observer system matrix block 60. The outputs of the input matrix block 58, the observer gain block 59, and the observer system matrix block 60 are respectively added and input to the integration operation block 61 and output as the state disturbance torque ( τd ).
 そして、入力行列演算ブロック58における「B」は、上述した(式2)で示される状態方程式の「B」で示す定数行列であり、同様に、オブザーバシステム行列ブロック60における「A」、「C」、「N」は(式2)で示される状態方程式の「A」、「C」、「N」で示す定数行列である。このように、状態方程式で表される状態外乱トルク(τd)の定数行列項「N」を含めることで、状態外乱トルク(τd)を求める(推定する)ことができる。また、オブザーバゲインブロック59は、外乱トルク(τd)が真値に収束するまでの時間の規定や、外乱推定ブロック52Aが安定化する値を設定すれば良いものである。 And "B" in the input matrix operation block 58 is a constant matrix shown by "B" of the state equation shown in the above-mentioned (equation 2), and similarly "A", "C ",""N" is a constant matrix shown by "A", "C", and "N" of the state equation shown by (Formula 2). Thus, the state disturbance torque ( τd ) can be determined (estimated) by including the constant matrix term "N" of the state disturbance torque ( τd ) represented by the state equation. In addition, the observer gain block 59 may set the definition of the time until the disturbance torque (τd) converges to the true value or the value at which the disturbance estimation block 52A is stabilized.
 図5に示す外乱推定ブロック52Aは、一般には同一次元オブザーバと呼ばれる構成となっているが、必要に応じて最小次元オブザーバや、線形関数オブザーバ等を使用することもでき、更には同一次元オブザーバを最適化した定常カルマンフィルタ等の様々な外乱推定手法を適用しても良いことはいうまでもない。 Although the disturbance estimation block 52A shown in FIG. 5 has a configuration generally called the same dimension observer, it is also possible to use a minimum dimension observer, a linear function observer or the like if necessary, and further, the same dimension observer It is needless to say that various disturbance estimation methods such as an optimized stationary Kalman filter may be applied.
 尚、外乱推定ブロック52Aは、外乱トルク(τd)を推定する目的に加え、状態フィードバック制御ブロック51にフィードバック量として与える状態量(S)を推定する目的で使用することも可能である。 In addition to the purpose of estimating the disturbance torque (τd), the disturbance estimation block 52A can also be used for the purpose of estimating the state quantity (S) to be given to the state feedback control block 51 as a feedback quantity.
 本実施形態によれば、オブザーバゲインブロック59によって状態外乱トルク(τd)は外乱トルク(τd)と定常状態で一致する。したがって、定常状態で第2の実施形態における(式10)が成立することが保証されるため、定常偏差は生じないものとなる。また、第1の実施形態、及び第2の実施形態で説明した外乱推定ブロック52のような微分を必要としないため雑音に強い利点を備えている。更に、特別な検出センサを付加する必要がないため、製品コストの増大を抑えることができるようになる。 According to the present embodiment, the state disturbance torque ( τd ) matches the disturbance torque (τd) in the steady state by the observer gain block 59. Therefore, since it is guaranteed that the equation (10) in the second embodiment is satisfied in the steady state, the steady state deviation does not occur. In addition, since the differentiation as in the disturbance estimation block 52 described in the first embodiment and the second embodiment is not required, it has an advantage of being strong against noise. Furthermore, since it is not necessary to add a special detection sensor, the increase in the product cost can be suppressed.
 上述した第1の実施形態~第3の実施形態では、電動機の回転速度を制御量として説明したが、制御量として電動機の回転位置とすることもでき、この場合は、電動機の回転位置を回転位置指令に収束させる構成としても良いものである。 In the first to third embodiments described above, although the rotational speed of the motor has been described as the control amount, the rotational position of the motor may be used as the control amount. In this case, the rotational position of the motor is rotated It is good also as composition which makes it converge to a position command.
 次に、上述した各実施形態になる電動機の制御装置を電動ブレーキ装置に適用した例を図6に基づき簡単に説明する。図6においては、液圧ブレーキ装置に換えて電動機の回転力によってブレーキキャリパを制御する電動ブレーキ装置の構成を示している。 Next, an example in which the motor control device according to each of the embodiments described above is applied to an electric brake device will be briefly described based on FIG. FIG. 6 shows the configuration of an electric brake device that controls the brake caliper by the rotational force of the motor instead of the hydraulic pressure brake device.
 図6において電動ブレーキ装置は、ブレーキ機能を与えるブレーキキャリパ10を備えており、このブレーキキャリパ10を構成するキャリパ本体11の内部にはピストン12が配置され、このピストン12は、第1ブレーキパッド13を駆動する機能を備えている。また、キャリパ本体11の一端には第2ブレーキパッド14が取り付けられており、第1ブレーキパッド13と第2ブレーキパッド14の間には、車軸に固定されたディスクロータ15が配置されている。このディスクロータ15は、第1ブレーキパッド13と第2ブレーキパッド14に挟まれて制動されるものである。 In FIG. 6, the electric brake system is provided with a brake caliper 10 for giving a brake function, and a piston 12 is disposed inside a caliper main body 11 constituting the brake caliper 10, and this piston 12 has a first brake pad 13 Have the ability to drive the Further, a second brake pad 14 is attached to one end of the caliper main body 11, and a disc rotor 15 fixed to an axle is disposed between the first brake pad 13 and the second brake pad 14. The disk rotor 15 is held between the first brake pad 13 and the second brake pad 14 for braking.
 キャリパ本体11に配置されたピストン12は、回転/直動変換機構16を介して減速機構17と連結されている。回転/直動変換機構16は滑りねじを使用したものであり、外周に形成した螺旋状のねじ面を有する回転軸と、この回転軸のねじ面に螺合するねじ面を内部に備えた直動部材より構成されている。直動部材はピストン12と一体的に連結されており、回転軸の回転によって直動部材はピストン12を回転軸の軸方向に移動することができるものである。 The piston 12 disposed in the caliper main body 11 is connected to the speed reduction mechanism 17 via the rotation / linear motion conversion mechanism 16. The rotation / linear motion conversion mechanism 16 uses a slide screw, and has a rotary shaft having a helical screw surface formed on the outer periphery and a screw surface internally provided with a screw surface screwed with the screw surface of the rotary shaft. It is composed of a moving member. The linear moving member is integrally connected to the piston 12, and the linear moving member can move the piston 12 in the axial direction of the rotary shaft by rotation of the rotary shaft.
 また、本実施形態では回転/直動変換機構16にはセルフロック機能部が備えられており、回転軸を回転させれば直動部材は直動運動するが、回転軸の回転を停止すれば、直動部材に直動方向に力が作用しても直動部材はその位置を保持するものである。すなわち、回転軸と直動部材は、摩擦角より進み角が小さい螺旋状のねじ面を有しており、これによってセルフロック機能を得ているものである。この種のねじ面を利用した回転/直動変換機構16は良く知られている。 Further, in the present embodiment, the rotation / linear motion conversion mechanism 16 is provided with a self-locking function unit, and the linear motion member moves linearly if the rotation shaft is rotated, but the rotation of the rotation shaft is stopped. Even if a force acts on the linear movement member in the linear movement direction, the linear movement member holds its position. That is, the rotary shaft and the linear motion member have a helical thread surface whose lead angle is smaller than the friction angle, thereby obtaining a self-locking function. A rotation / linear motion conversion mechanism 16 utilizing such a screw surface is well known.
 図6にあるように、回転軸は減速機構17の大径歯車18に固定されており、大径歯車18は小径歯車19と噛み合っている。小径歯車19は電動機MTRによって回転されるものであり、電動機MTRの回転は小径歯車19、大径歯車18に伝えられて減速されるものである。大径歯車18が回転されることによって、電動機MTRの回転トルクは増幅されて回転軸に固定された回転/直動変換機構16に伝えられるものである。 As shown in FIG. 6, the rotation shaft is fixed to the large diameter gear 18 of the reduction gear mechanism 17, and the large diameter gear 18 meshes with the small diameter gear 19. The small diameter gear 19 is rotated by the motor MTR, and the rotation of the motor MTR is transmitted to the small diameter gear 19 and the large diameter gear 18 to be decelerated. By rotating the large diameter gear 18, the rotational torque of the motor MTR is amplified and transmitted to the rotational / linear motion conversion mechanism 16 fixed to the rotational shaft.
 電動機MTRへの電力(トルク指令)の供給は、上述した図1~図5に示した電動機制御機能部を備える電子制御手段20によって制御されており、電動機制御機能部は周知のマイクロプロセッサ21や入出力回路22等からなっている。そして、制動動作を行なう場合は、電子制御手段20から電動機MTRに所定の電力を供給して電動機MTRを回転し、この回転は減速機構17の各歯車18、19を介して回転軸を回転させるものである。回転軸が回転すると直動部材及びピストン12が、図6で左側に移動してブレーキパッド13を所定の推力(押付力)でディスクロータ15に押し付けて制動をかけるものである。 The supply of power (torque command) to the motor MTR is controlled by the electronic control means 20 including the motor control function unit shown in FIGS. 1 to 5 described above, and the motor control function unit is the well-known microprocessor 21 or the like. It comprises an input / output circuit 22 and the like. When the braking operation is performed, the electronic control unit 20 supplies a predetermined power to the motor MTR to rotate the motor MTR, and this rotation rotates the rotation shaft via the gears 18 and 19 of the reduction mechanism 17. It is a thing. When the rotating shaft rotates, the linear moving member and the piston 12 move to the left side in FIG. 6 to press the brake pad 13 against the disc rotor 15 with a predetermined thrust (pressing force) to apply braking.
 そして、この種の電動ブレーキ装置においては、ブレーキペダルを踏み込んだ時に、制御応答性が高くないと制動力を速やかにディスクロータに伝えることができないという現象や、オーバーシュートするとディスクロータに制動力がかかりすぎるという現象を生じる。 In this type of electric brake device, when the brake pedal is depressed, the braking force can not be quickly transmitted to the disc rotor unless the control response is high, or the braking force is applied to the disc rotor when it overshoots. It causes a phenomenon that it takes too much.
 また、このような電動ブレーキ装置では、ディスクロータ15付近に電動機MTRが設置されることから、電動機MTRはディスクロータ15で発生する摩擦熱の影響を受けやすい。更に、制動力を維持するために電動機MTRを一定位置で保つ場合、電動機MTRへ電力(トルク指令)を供給し続ける必要があり、電動機MTRの温度上昇につながる。このように、電動ブレーキ装置においては、電動機MTRは温度が上昇しやすい環境下に置かれている。 Further, in such an electric brake device, since the motor MTR is installed near the disk rotor 15, the motor MTR is easily affected by the frictional heat generated by the disk rotor 15. Furthermore, when the motor MTR is maintained at a constant position in order to maintain the braking force, it is necessary to continue supplying power (torque command) to the motor MTR, which leads to a temperature rise of the motor MTR. Thus, in the electric brake system, the motor MTR is placed in an environment where the temperature is likely to rise.
 そして、電動機MTRの温度が過度に上昇した場合には、例えば、電子制御手段20による電力(トルク指令)の供給量を一時的に制限するような対策で温度上昇を防ぐことができる。しかしながら、この場合においては電動機MTRの制御指令と制御量を一致させることができず、定常偏差が生じるようになる。その他にも、機構側の固渋や経年変化による摩擦力の増加などによって、定常偏差が生じる。 When the temperature of the motor MTR rises excessively, it is possible to prevent the temperature rise, for example, by temporarily limiting the amount of power (torque command) supplied by the electronic control means 20. However, in this case, the control command and the control amount of the motor MTR can not be made to coincide with each other, and a steady state deviation occurs. In addition, steady-state deviations occur due to increase in friction due to firmness on the mechanism side or aging.
 このような定常偏差が生じた状態で、例えば、ブレーキペダルの急操作によって制御指令が急峻に変更(いわゆる、ステップ変化)された場合、電子制御手段20内に積分制御機能が備えられていると、前述の通りオーバーシュートを引き起こし、ディスクロータ15に制動力がかかりすぎる、或いは電動機MTRが逆回転し過ぎて機構が破損する、といった現象を生じることがある。 In the state where such a steady state deviation occurs, for example, when the control command is sharply changed (so-called step change) by sudden operation of the brake pedal, it is assumed that the integral control function is provided in the electronic control means 20. As described above, an overshoot may be caused to cause a phenomenon that the braking force is applied to the disk rotor 15 excessively, or the motor MTR rotates too much reversely and the mechanism is broken.
 これに対して、本実施形態の電動ブレーキ装置においては、上述した図1~図5に示した電動機制御機能部を備えることによって、ブレーキペダルの踏込量に対応した制動力に速やかに整定して所定の制動動作を得ることができるようになる。このため、ブレーキペダルを踏み込んだ時に、制動力を速やかにディスクロータに伝えることができないという現象や、オーバーシュートするとディスクロータに制動力がかかりすぎるという現象を低減することが可能となる。 On the other hand, in the electric brake system according to the present embodiment, by providing the motor control function unit shown in FIGS. 1 to 5 described above, the braking force corresponding to the depression amount of the brake pedal is quickly settled. A predetermined braking operation can be obtained. Therefore, it is possible to reduce the phenomenon that the braking force can not be transmitted to the disk rotor promptly when the brake pedal is depressed, and the phenomenon that the braking force is excessively applied to the disk rotor when it overshoots.
 また、電動機MTRの温度上昇や機構側の固渋や経年変化による摩擦力の増加等によって定常偏差が生じ、ブレーキペダルの急操作に伴う制御指令の急峻な変更が生じた場合であっても、図1~図5のいずれかに示した電動機制御機能部を備えることによって、ディスクロータ16に過度な制動力が作用する、或いは電動機MTRの過度な逆回転を抑制するという効果を奏することが可能となる。 Further, even if steady-state deviation occurs due to temperature increase of the motor MTR, firmness on the mechanism side, increase of frictional force due to secular change, etc., abrupt change of control command accompanying sudden operation of the brake pedal occurs. By providing the motor control function unit shown in any of FIG. 1 to FIG. 5, it is possible to exert an effect of exerting an excessive braking force on the disk rotor 16 or suppressing excessive reverse rotation of the motor MTR. It becomes.
 以上述べた通り、本発明によれば、電動機の回転状態を制御する電動機の制御装置において、電動機の制御量を制御指令値にフィードバックする状態フィードバック制御ブロックを設けると共に、電動機の外乱を推定する外乱推定ブロックと、外乱推定ブロックの出力に基づいて外乱抑制信号を生成する外乱抑制ブロックを設け、外乱が発生すると電動機の制御量が制御指令値に一致するように外乱抑制信号を制御指令値に反映させる、構成とした。これによれば、制御応答性を高めると共に、オーバーシュートが発生するのを抑制できる。 As described above, according to the present invention, in the motor control device for controlling the rotational state of the motor, the state feedback control block for feeding back the control amount of the motor to the control command value is provided, and the disturbance for estimating the motor disturbance An estimation block and a disturbance suppression block that generates a disturbance suppression signal based on the output of the disturbance estimation block are provided, and when a disturbance occurs, the disturbance suppression signal is reflected on the control command value so that the control amount of the motor matches the control command value. Let it be configured. According to this, it is possible to improve control response and to suppress the occurrence of overshoot.
 また、本発明によれば、ディスクロータへブレーキバッドを押し付けるピストンと、電動機によって出力される回転運動を直動運動に変換してピストンを推進する回転/直動変換機構と、電動機の回転を制御する電子制御手段とを備えた電動ブレーキ装置において、電子制御手段は、電動機の回転速度を速度指令値にフィードバックする状態フィードバック制御ブロックと、電動機の外乱を推定する外乱推定ブロックと、外乱推定ブロックの出力に基づいて外乱抑制信号を生成する外乱抑制ブロックとを備え、外乱が発生すると電動機の回転速度が速度指令値に一致するように外乱抑制信号を速度指令値に反映させる、構成とした。これによれば、ブレーキペダルの踏込量に対応した制動力に速やかに整定して所定の制動動作を得ることができる。 Further, according to the present invention, a piston for pressing a brake pad to a disk rotor, a rotation / linear conversion mechanism for converting rotational motion output by the motor into linear motion and propelling the piston, and control rotation of the motor In the electric brake system including the electronic control means, the electronic control means includes a state feedback control block that feeds back the rotational speed of the motor to the speed command value, a disturbance estimation block that estimates the disturbance of the motor, and a disturbance estimation block. And a disturbance suppression block for generating a disturbance suppression signal based on the output, wherein the disturbance suppression signal is reflected on the speed command value so that the rotational speed of the motor matches the speed command value when a disturbance occurs. According to this, it is possible to quickly settle the braking force corresponding to the depression amount of the brake pedal and obtain a predetermined braking operation.
 尚、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the embodiments described above, but includes various modifications. For example, the embodiments described above are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. Also, part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. In addition, with respect to a part of the configuration of each embodiment, it is possible to add, delete, and replace other configurations.
 10…ブレーキキャリパ、11…キャリパ本体、12…ピストン、13…第1ブレーキパッド、14…第2ブレーキパッド、15…ディスクロータ、16…回転/直動変換機構、17…減速機構、18…大径歯車、19…小径歯車、20…電子制御手段、21…入出力回路、40…トルク発生部、50…制御装置、51…状態フィードバック制御ブロック、52、52A…外乱推定ブロック、53…外乱抑制ブロック、54…逆算トルク演算ブロック、55…推定外乱トルク演算ブロック、56…ローパスフィルタブロック、57…速度指令制御ブロック、58…入力行列ブロック、59…オブザーバゲインブロック、60…オブザーバシステム行列ブロック、61…積分演算ブロック。 DESCRIPTION OF SYMBOLS 10 ... Brake caliper, 11 ... Caliper main body, 12 ... Piston, 13 ... 1st brake pad, 14 ... 2nd brake pad, 15 ... Disc rotor, 16 ... Rotation / linear motion conversion mechanism, 17 ... Deceleration mechanism, 18 ... Largeness Diameter gear, 19: small diameter gear, 20: electronic control means, 21: input / output circuit, 40: torque generator, 50: control device, 51: state feedback control block, 52, 52A: disturbance estimation block, 53: disturbance suppression Block 54 back calculation torque operation block 55 estimated disturbance torque operation block 56 low pass filter block 57 speed command control block 58 input matrix block 59 observer gain block 60 observer system matrix block 61 ... Integral operation block.

Claims (10)

  1.  上位制御装置からの制御指令を電動機に与えて前記電動機の制御量を制御する制御手段を備えた電動機の制御装置において、
     前記制御手段に、前記電動機の前記制御量を前記制御指令にフィードバックする状態フィードバック制御ブロックと、前記電動機に作用する外乱を推定する外乱推定ブロックと、前記外乱推定ブロックで推定された前記外乱に基づいて外乱抑制信号を生成する外乱抑制ブロックを設け、前記電動機に前記外乱が作用したときに前記電動機の前記制御量が前記制御指令に一致するように前記外乱抑制信号を前記制御指令に反映させる
    ことを特徴とする電動機の制御装置。
    In a control device of a motor including control means for giving a control command from a host control device to the motor to control a control amount of the motor,
    Based on the control means, a state feedback control block that feeds back the control amount of the motor to the control command, a disturbance estimation block that estimates disturbance acting on the motor, and the disturbance estimated by the disturbance estimation block A disturbance suppression block for generating a disturbance suppression signal, and reflecting the disturbance suppression signal on the control command so that the control amount of the motor matches the control command when the disturbance acts on the motor. A control device of a motor characterized by
  2.  請求項1に記載の電動機の制御装置において、
     前記外乱推定ブロックは、前記電動機に入力される前記制御指令と前記電動機から出力される前記制御量から前記外乱を推定し、
     前記外乱抑制ブロックは、前記外乱に外乱抑制係数を乗じて前記外乱抑制信号を生成し、前記制御指令は前記外乱抑制信号を加算されて前記電動機に入力される
    ことを特徴とする電動機の制御装置。
    In the motor control device according to claim 1,
    The disturbance estimation block estimates the disturbance from the control command input to the motor and the control amount output from the motor.
    The controller for a motor according to claim 1, wherein the disturbance suppression block generates the disturbance suppression signal by multiplying the disturbance by a disturbance suppression coefficient, and the control command is input to the motor after the disturbance suppression signal is added. .
  3.  請求項2に記載の電動機の制御装置において、
     前記外乱推定ブロックには、前記電動機に入力される前記制御指令としてのトルク指令と、前記電動機から出力される前記制御量としての回転速度が入力され、
     前記外乱推定ブロックは、前記回転速度を逆算して逆算トルクを求める逆算トルク演算機能と、前記逆算トルク演算機能によって演算された前記逆算トルクと前記トルク指令の差分から前記外乱を外乱トルクとして推定する推定外乱トルク演算機能を備え、
     更に、前記外乱抑制ブロックは、前記外乱トルクに前記外乱抑制係数を乗じて前記トルク指令に加算する
    ことを特徴とする電動機の制御装置。
    In the motor control device according to claim 2,
    The disturbance estimation block receives a torque command as the control command input to the motor and a rotational speed as the control amount output from the motor.
    The disturbance estimation block estimates the disturbance as a disturbance torque from a difference between the reverse torque calculated by the reverse calculation function and the torque command, and a reverse calculation function that calculates the rotational speed to obtain a reverse torque. Equipped with an estimated disturbance torque calculation function,
    Further, the disturbance suppression block multiplies the disturbance torque by the disturbance suppression coefficient and adds the product to the torque command.
  4.  請求項2に記載の電動機の制御装置において、
     前記外乱推定ブロックには、前記電動機に入力される前記制御指令としてのトルク指令と、前記電動機から出力される前記制御量としての回転速度が入力され、
     前記外乱推定ブロックは、前記電動機の内部状態を推定するための数学的モデルを与えるもので、前記電動機の前記トルク指令と前記電動機の回転速度から前記外乱である外乱トルクを推定するオブザーバ、或いはカルマンフィルタからなる状態推定機能を備え、
     更に、前記外乱抑制ブロックは、前記外乱トルクに前記外乱抑制係数を乗じて前記トルク指令に加算する
    ことを特徴とする電動機の制御装置。
    In the motor control device according to claim 2,
    The disturbance estimation block receives a torque command as the control command input to the motor and a rotational speed as the control amount output from the motor.
    The disturbance estimation block provides a mathematical model for estimating the internal state of the motor, and is an observer that estimates the disturbance torque that is the disturbance from the torque command of the motor and the rotational speed of the motor, or a Kalman filter Equipped with a state estimation function consisting of
    Further, the disturbance suppression block multiplies the disturbance torque by the disturbance suppression coefficient and adds the product to the torque command.
  5.  請求項3又は請求項4に記載の電動機の制御装置において、
     前記外乱トルクに前記外乱抑制係数を乗じて前記トルク指令に加算する前の前記トルク指令は、前記状態フィードバック制御ブロックによるフィードバックの補正が行われた前記トルク指令である、
    ことを特徴とする電動機の制御装置。
    In the motor control device according to claim 3 or 4,
    The torque command before the disturbance torque is multiplied by the disturbance suppression coefficient and added to the torque command is the torque command for which feedback correction by the state feedback control block has been performed.
    Control device for a motor characterized in that.
  6.  ディスクロータへブレーキバッドを押し付けるピストンと、電動機によって出力される回転運動を直動運動に変換してピストンを推進する回転/直動変換機構と、電動機の回転を制御する電子制御手段とを備えた電動ブレーキ装置において、
     前記電子制御手段に、前記電動機の制御量を前記電動機の制御指令にフィードバックする状態フィードバック制御ブロックと、前記電動機に作用する外乱を推定する外乱推定ブロックと、前記外乱推定ブロックで推定された前記外乱に基づいて外乱抑制信号を生成する外乱抑制ブロックを設け、前記電動機に前記外乱が作用したときに前記電動機の前記制御量が前記制御指令に一致するように前記外乱抑制信号を前記制御指令に反映させる
    ことを特徴とする電動ブレーキ装置。
    A piston for pressing the brake pad against the disc rotor, a rotation / linear conversion mechanism for converting the rotational movement output by the motor into a linear movement to promote the piston, and electronic control means for controlling the rotation of the motor In the electric brake system,
    In the electronic control means, a state feedback control block that feeds back a control amount of the motor to a control command of the motor, a disturbance estimation block that estimates a disturbance acting on the motor, and the disturbance estimated by the disturbance estimation block A disturbance suppression block for generating a disturbance suppression signal based on the control command, and reflecting the disturbance suppression signal to the control command so that the control amount of the motor matches the control command when the disturbance acts on the motor An electric brake device characterized in that
  7.  請求項6に記載の電動ブレーキ装置において、
     前記外乱推定ブロックは、前記電動機に入力される前記制御指令と前記電動機から出力される前記制御量から前記外乱を推定し、
     前記外乱抑制ブロックは、前記外乱に外乱抑制係数を乗じて前記外乱抑制信号を生成し、前記制御指令は前記外乱抑制信号を加算されて前記電動機に入力される
    ことを特徴とする電動ブレーキ装置。
    In the electric brake device according to claim 6,
    The disturbance estimation block estimates the disturbance from the control command input to the motor and the control amount output from the motor.
    The disturbance control block multiplies the disturbance by a disturbance suppression coefficient to generate the disturbance suppression signal, and the control command is added to the disturbance suppression signal to be input to the motor.
  8.  請求項7に記載の電動ブレーキ装置において、
     前記外乱推定ブロックには、前記電動機に入力される前記制御指令としてのトルク指令と、前記電動機から出力される前記制御量としての回転速度が入力され、
     前記外乱推定ブロックは、前記回転速度を逆算して逆算トルクを求める逆算トルク演算機能と、前記逆算トルク演算機能によって演算された前記逆算トルクと前記トルク指令の差分から前記外乱を外乱トルクとして推定する推定外乱トルク演算機能を備え、
     更に、前記外乱抑制ブロックは、前記外乱トルクに前記外乱抑制係数を乗じて前記トルク指令に加算する
    ことを特徴とする電動ブレーキ装置。
    In the electric brake device according to claim 7,
    The disturbance estimation block receives a torque command as the control command input to the motor and a rotational speed as the control amount output from the motor.
    The disturbance estimation block estimates the disturbance as a disturbance torque from a difference between the reverse torque calculated by the reverse calculation function and the torque command, and a reverse calculation function that calculates the rotational speed to obtain a reverse torque. Equipped with an estimated disturbance torque calculation function,
    Further, the disturbance suppression block multiplies the disturbance torque by the disturbance suppression coefficient and adds it to the torque command.
  9.  請求項7に記載の電動ブレーキ装置において、
     前記外乱推定ブロックには、前記電動機に入力される前記制御指令としてのトルク指令と、前記電動機から出力される前記制御量としての回転速度が入力され、
     前記外乱推定ブロックは、前記電動機の内部状態を推定するための数学的モデルを与えるもので、前記電動機の前記トルク指令と前記電動機の回転速度から前記外乱である外乱トルクを推定するオブザーバ、或いはカルマンフィルタからなる状態推定機能を備え、
     更に、前記外乱抑制ブロックは、前記外乱トルクに前記外乱抑制係数を乗じて前記トルク指令に加算する
    ことを特徴とする電動ブレーキ装置。
    In the electric brake device according to claim 7,
    The disturbance estimation block receives a torque command as the control command input to the motor and a rotational speed as the control amount output from the motor.
    The disturbance estimation block provides a mathematical model for estimating the internal state of the motor, and is an observer that estimates the disturbance torque that is the disturbance from the torque command of the motor and the rotational speed of the motor, or a Kalman filter Equipped with a state estimation function consisting of
    Further, the disturbance suppression block multiplies the disturbance torque by the disturbance suppression coefficient and adds it to the torque command.
  10.  ディスクロータへブレーキバッドを押し付けるピストンと、電動機によって出力される回転運動を直動運動に変換してピストンを推進する回転/直動変換機構と、電動機の回転を制御する電子制御手段とを備えた電動ブレーキ装置において、
     前記電子制御手段は、
     前記電動機の制御量が前記電動機の制御指令に一致していない状態の下で、ブレーキペダルの急操作に伴う前記制御指令の急峻な変更があった場合に、前記電動機の前記制御量が前記制御指令を超えることなく前記制御指令に整定させる機能を有する
    ことを特徴とする電動ブレーキ装置。
    A piston for pressing the brake pad against the disc rotor, a rotation / linear conversion mechanism for converting the rotational movement output by the motor into a linear movement to promote the piston, and electronic control means for controlling the rotation of the motor In the electric brake system,
    The electronic control means
    Under the condition that the control amount of the motor does not correspond to the control command of the motor, the control amount of the motor is the control when the control command is suddenly changed due to the sudden operation of the brake pedal. An electric brake system characterized by having a function of settling the control command without exceeding the command.
PCT/JP2018/018712 2017-07-11 2018-05-15 Electric motor control device and electric brake device WO2019012799A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017135163A JP2019017232A (en) 2017-07-11 2017-07-11 Control device for electric motor and electric brake device
JP2017-135163 2017-07-11

Publications (1)

Publication Number Publication Date
WO2019012799A1 true WO2019012799A1 (en) 2019-01-17

Family

ID=65002580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018712 WO2019012799A1 (en) 2017-07-11 2018-05-15 Electric motor control device and electric brake device

Country Status (2)

Country Link
JP (1) JP2019017232A (en)
WO (1) WO2019012799A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109039194A (en) * 2018-08-23 2018-12-18 成都信息工程大学 A kind of permanent magnet synchronous motor rotary speed tracing control method
FR3116496A1 (en) * 2020-11-23 2022-05-27 Foundation Brakes France Method for controlling the tightening torque of an electromechanical brake

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030097193A1 (en) * 2001-11-21 2003-05-22 Sumitomo Heavy Industries, Ltd. Position control system and velocity control system for stage driving mechanism
JP2010070144A (en) * 2008-09-22 2010-04-02 Kayaba Ind Co Ltd Electric brake
JP2016164697A (en) * 2015-03-06 2016-09-08 富士電機株式会社 Position control system
WO2016152074A1 (en) * 2015-03-23 2016-09-29 パナソニックIpマネジメント株式会社 Motor drive device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2869281B2 (en) * 1993-02-12 1999-03-10 株式会社神戸製鋼所 Motor drive system controller
JP5862832B2 (en) * 2013-02-26 2016-02-16 日産自動車株式会社 Motor control device and motor control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030097193A1 (en) * 2001-11-21 2003-05-22 Sumitomo Heavy Industries, Ltd. Position control system and velocity control system for stage driving mechanism
JP2010070144A (en) * 2008-09-22 2010-04-02 Kayaba Ind Co Ltd Electric brake
JP2016164697A (en) * 2015-03-06 2016-09-08 富士電機株式会社 Position control system
WO2016152074A1 (en) * 2015-03-23 2016-09-29 パナソニックIpマネジメント株式会社 Motor drive device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109039194A (en) * 2018-08-23 2018-12-18 成都信息工程大学 A kind of permanent magnet synchronous motor rotary speed tracing control method
CN109039194B (en) * 2018-08-23 2021-05-11 成都信息工程大学 Method for tracking and controlling rotating speed of permanent magnet synchronous motor
FR3116496A1 (en) * 2020-11-23 2022-05-27 Foundation Brakes France Method for controlling the tightening torque of an electromechanical brake
WO2022106708A1 (en) * 2020-11-23 2022-05-27 Hitachi Astemo France Method for controlling the tightening torque of an electromechanical brake

Also Published As

Publication number Publication date
JP2019017232A (en) 2019-01-31

Similar Documents

Publication Publication Date Title
US9475471B2 (en) Braking control apparatus for vehicle
JP5372250B2 (en) Motor control device
EP2799299B1 (en) Braking control device for vehicle
EP3118076B1 (en) Electromechanical braking systems and methods with power demand control
WO2017018269A1 (en) Friction brake system
TWI446703B (en) Motor control device
WO2017033801A1 (en) Electric brake device
JP5457901B2 (en) Position control device
WO2016152746A1 (en) Electric brake device
WO2019012799A1 (en) Electric motor control device and electric brake device
JP2020093721A (en) Electric brake apparatus
JP7050624B2 (en) Motor control device and electric brake device equipped with it
EP3006284B1 (en) Electric brake control system
US10421536B2 (en) Method of controlling an electrical taxiing system
JP3190330B2 (en) Control method for adjusting device with friction
JP7191154B2 (en) electric brake controller
JP2923993B2 (en) Motor control device
WO2022270382A1 (en) Electric linear actuator
WO2022270383A1 (en) Electric brake device
JP4486286B2 (en) Actuator control device and control method
KR20170080420A (en) Control apparatus and method for electric power steering
JP2002006903A (en) Method for preventing residual vibration in servo system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18831246

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18831246

Country of ref document: EP

Kind code of ref document: A1