WO2022270382A1 - Electric linear actuator - Google Patents

Electric linear actuator Download PDF

Info

Publication number
WO2022270382A1
WO2022270382A1 PCT/JP2022/023986 JP2022023986W WO2022270382A1 WO 2022270382 A1 WO2022270382 A1 WO 2022270382A1 JP 2022023986 W JP2022023986 W JP 2022023986W WO 2022270382 A1 WO2022270382 A1 WO 2022270382A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
control gain
linear motion
amount
control
Prior art date
Application number
PCT/JP2022/023986
Other languages
French (fr)
Japanese (ja)
Inventor
唯 増田
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2022270382A1 publication Critical patent/WO2022270382A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/40Regulating or controlling the amount of current drawn or delivered by the motor for controlling the mechanical load

Definitions

  • the present invention relates to a control method for an electric linear motion actuator that converts rotary motion of an electric motor into linear motion.
  • Electric linear motion actuators have been considered for use in, for example, electric brake devices and electric press devices. 2. Description of the Related Art As a conventional electric brake device, an electric actuator with a speed change function using a planetary roller screw structure included in a planetary rolling element has been proposed, for example, as disclosed in Patent Document 1.
  • the reaction force when the actuator applies a load to an object is a plurality of planetary rollers and a sun roller (or a rotation input shaft) that is a rotation shaft that exists at the center of the planetary rollers. ), the planetary roller rotates in the planetary deceleration structure provided in the planetary roller screw structure, and the planetary carrier and the sun roller that support the plurality of planetary rollers rotate. It has a speed change function that reduces the equivalent lead by producing a planetary deceleration effect that causes a speed difference. In this case, there is a discontinuity in the equivalent lead based on the gear ratio (change ratio of the equivalent lead) in the gear shift function.
  • the linear motion actuator When the linear motion mechanism is provided with such a speed change function, the linear motion actuator has a relatively large clearance until it comes into contact with an object to which a load is applied, such as the clearance between the friction material and the brake rotor in an electric brake device. Equivalent lead is formed, responsiveness is improved, and after the load is applied, the equivalent lead becomes relatively small, and even a small motor with small output torque can generate a large load, which is preferable.
  • a structure that immediately changes the speed of the linear motion mechanism by the speed change function when the load becomes non-zero must achieve the speed change operation with a very small amount of spring force and spring deformation.
  • the actuator applied load is increased (increased pressure) and decreased.
  • the shifts are shifted at different timings in the operation of reducing the pressure.
  • An object of the present invention is to solve the above-described problems of the prior art by taking into consideration the discontinuous stiffness that occurs based on the gear ratio in the transmission mechanism, thereby enabling the electric motor to be driven with high accuracy. Another object is to provide a dynamic actuator.
  • an electric linear motion actuator includes: an electric motor, a linear motion mechanism that converts rotary motion of the electric motor into linear motion, a control device that drives the electric motor and controls the load that the linear motion mechanism applies to an object due to the linear motion; a speed change mechanism having a speed change function in which the correspondence relationship between the amount of linear motion of the linear motion and the amount of rotation of the electric motor changes with respect to a predetermined load;
  • the control device is an estimator for estimating the load applied by the linear motion mechanism; In the process of deriving the drive amount of the electric motor, at least one or more of a deviation between the estimated value of the load and the target value of the load, an integral value of the deviation, and a differential value of the deviation
  • the control gain to be multiplied is used for control calculation, and in a state in which at least one of the estimated value of the load and the target value is not zero, the estimated value of the load and the target value at least at one or more locations.
  • a load controller that calculates a
  • the electric linear motion actuator according to the present invention sets the control gain in consideration of the discontinuous stiffness that occurs based on the gear ratio in the transmission mechanism under load conditions that cause gear shifting. Therefore, it is possible to drive the electric motor with high accuracy.
  • the speed change mechanism compares a first equivalent lead state in which the amount of linear motion has a predetermined correlation with the amount of rotation of the electric motor, and the first equivalent lead state. a second equivalent lead state in which the amount of direct motion with respect to the amount of rotation has a small correlation,
  • the shift function switches from the first equivalent lead state to the second equivalent lead state when the first shift load, which is the predetermined load, is exceeded.
  • the second equivalent lead state changes to the first shift load.
  • the control gain on the side of the smaller load from the first discontinuity point where the transition of the control gain with respect to the transition of the load is discontinuous is greater than the control gain on the side of the larger load than the first discontinuity point. including the first point of discontinuity that becomes smaller;
  • the transmission function having non-linearity and the control gain of the transmission mechanism may meet any one of the following conditions i) and ii). i) the first shift load of the shift function is greater than the second shift load, and the first discontinuity point of the control gain is greater than the second shift load to the first shift load; close.
  • said second shift load of said shift function is greater than said first shift load, and said first discontinuity point of said control gain is greater than said first shift load to said second shift load; close.
  • the linear motion mechanism is a rotation input member, a planetary carrier rotatably supported concentrically with the rotation input member, a planetary rolling element rotatably supported by the planetary carrier;
  • the planetary rolling element does not rotate due to the elastic force, and the rotation input member and the planetary carrier are synchronously rotated.
  • an elastic member that rotates the planetary rolling element and causes a difference in the amount of rotation between the rotation input member and the planetary carrier In the process in which the load applied by the linear motion mechanism increases, the elastic member completes deformation when a predetermined first deformation load is exceeded, and in the process in which the load applied by the linear motion mechanism decreases.
  • the elastic member has a non-linear deformation characteristic in which the elastic member begins to deform when falling below a second deformation load different from the first deformation load, With respect to the control gain, the control gain on the side of the smaller load from the second discontinuity point where the transition of the control gain with respect to the transition of the load is discontinuous is greater than the control gain on the side of the larger load than the second discontinuity point. including the growing second point of discontinuity;
  • the deformation characteristic and the control gain of the elastic member of the linear motion mechanism may meet either condition i) or ii) below. i) the first deformation load of the elastic member is greater than the second deformation load, and the second discontinuity of the control gain is greater than the first deformation load to the second deformation load; close.
  • the second deformation load of the elastic member is greater than the first deformation load, and the second discontinuity point of the control gain is closer to the first deformation load than the second deformation load; close.
  • the control gain adjustment unit includes: a control gain during pressure increase, which is the control gain during pressure increase when the load increases; a control gain during pressure decrease, which is the control gain during pressure decrease when the load decreases; a control gain switching unit that determines which of the pressure increase control gain and the pressure decrease control gain to refer to,
  • the control gain switching unit refers at least to the control gain of the pressure increasing control gain when the motor is rotating on the pressure increasing side based on transition of the motor angle, and when the motor is rotating on the pressure decreasing side, the pressure reducing control gain.
  • the control gain may be switched so as to refer to the control gain of the time control gain.
  • the first and second shift loads and the first and second deformation loads are linear motion mechanisms having nonlinear characteristics that differ between when the pressure is increased and when the pressure is decreased.
  • the second shift load, or the load region between the first and second deformation loads when the pressure is stably increased, the characteristics at the time of pressure increase are obtained, and when the pressure is decreased, the characteristics at the time of pressure reduction are obtained.
  • the actuator can be operated with higher accuracy.
  • the control gain adjustment unit adjusts the first control gain, which is the control gain of the electric motor when an equivalent lead corresponding to the amount of linear motion of the linear motion with respect to the amount of rotation of the electric motor is large, and the equivalent A second control gain that is the control gain when the lead is small and the elastic member deforms, and a third control gain that is the control gain when the equivalent lead is small and the elastic member reaches a deformation limit.
  • the electric linear motion actuator further comprises: a change gradient calculation unit that derives a gradient of change of one of the motor angle and the estimated load with respect to the change of the other; storing the gradient of change derived by the gradient-of-change computing unit; comparing the stored gradient of change with the gradient of change newly derived by the gradient-of-change computing unit after storing; a change gradient comparison unit that determines that a control gain discontinuity exists when the gradient changes,
  • the control gain switching unit uses the first to third control gains, and if there are a plurality of discontinuous points, at least one of the plurality of discontinuous points determined by the change gradient comparing unit according to When it is determined that the point of discontinuity has occurred when the load changes in the direction of increasing pressure while referring to the first control gain, referring to the second control gain, In the state of referring to the second control gain, when the pressure is changed in the direction of pressure increase, when it is determined that the discontinuity has occurred, the third
  • the first and second shift loads and the first and second deformation loads are linear motion mechanisms having nonlinear characteristics that differ between when the pressure is increased and when the pressure is decreased.
  • the actuator stiffness is unstable, such as the load region between and the second shift load, or the load region between the first and second deformation loads.
  • control device an estimator for estimating the rotation angle of the electric motor; A rotation amount of the electric motor and the estimated load when a change in the load of a predetermined amount occurs in a range including at least the load corresponding to the discontinuity point of the control gain stored in advance.
  • the control device Having a stiffness parameter storage unit that stores a change history, Further, the control device a nonlinear stiffness estimating unit that estimates a point of discontinuity in the control gain from the angle of the electric motor and the change history of the estimated load, and updates the control gain based on the estimated point of discontinuity; You may As a result, regarding characteristic fluctuations in the control gain that can occur due to, for example, changes in the contact state of each component of the electric linear motion actuator and wear of parts, at least By reflecting the result of estimating the change in the discontinuous point in the control gain, it is possible to control the electric linear motion actuator with higher accuracy at least from the next operation onward (updating and estimating from the log information).
  • the control device an estimator for estimating the rotation angle of the electric motor; estimating and storing an amount of change in either one of the load and the amount of rotation when a predetermined amount of change in the load or the amount of rotation of the electric motor occurs, and Further, the control device The stored amount of change is compared with the amount of change newly estimated after the storage, and if the amount of change changes more than a predetermined amount, the angle and load of the electric motor at the control gain are determined. may be determined to have occurred, and the control gain may be updated based on the determined discontinuity point.
  • FIG. 1 is a block diagram showing a schematic configuration of an electric linear motion actuator according to one embodiment of the present invention
  • FIG. FIG. 4 is a block diagram showing a schematic configuration of an electric linear motion actuator according to another embodiment of the present invention
  • FIG. 2 is a schematic diagram of a linear motion mechanism having a transmission mechanism in each of the electric linear motion actuators
  • FIG. 2 is a block diagram of an example of a load controller included in a control device in each electric linear motion actuator
  • FIG. 4 is a block diagram of another example of a load controller included in the control device in each of the electric linear motion actuators
  • FIG. 4 is an example of a characteristic diagram for explaining control gains of a control gain adjusting section included in the load controller
  • FIG. 11 is another example of a characteristic diagram for explaining the control gain of the control gain adjusting section included in the load controller;
  • FIG. FIG. 13 is still another example of a characteristic diagram for explaining the control gain of the control gain adjustment section included in the load controller;
  • FIG. 13 is still another example of a characteristic diagram for explaining the control gain of the control gain adjustment section included in the load controller;
  • FIG. 13 is still another example of a characteristic diagram for explaining the control gain of the control gain adjustment section included in the load controller;
  • FIG. 3B is an example of a block diagram illustrating in more detail the load controller shown in FIG. 3A;
  • FIG. 3B is another example of a block diagram illustrating in more detail the load controller shown in FIG. 3A;
  • FIG. FIG. 5 is a waveform diagram showing an operation example when a load is generated by the electric linear motion actuator.
  • 1A includes an electric brake control device 100A as an example of the control device 100, a brake actuator 500A as an example of an actuator 500 using a linear motion mechanism, and a brake instruction means 300A such as a brake pedal as an example of the instruction means 300.
  • a configuration example of an electric brake device 1A is shown.
  • the electric brake device 1A is for a vehicle brake in this embodiment.
  • the brake actuator 500A includes an electric motor 510, a linear motion mechanism 520 that converts the rotary motion of the electric motor 510 into a linear motion (linear motion) of a friction material 560 described later, and a rotation amount (rotation speed) of the rotor of the electric motor 510.
  • an angle sensor 530 that detects and outputs a rotation angle (hereinafter also referred to as a motor angle), a brake rotor 570 that rotates integrally with the wheel and is an object of load, and a load (or linear motion sensor) that is pressed against the brake rotor 570
  • a friction material 560 that generates a braking force on (the wheels of) the vehicle by applying a load (also referred to as a braking load in this embodiment), a load sensor 540 that detects and outputs the braking load, and the rotation of the electric motor 510 It is composed of a reduction gear 550 that reduces the number and outputs it to the linear motion mechanism 520 and a speed change mechanism 580 .
  • a configuration in which the speed reducer 550 is not provided may be employed.
  • the electric motor 510 is, for example, a permanent magnet synchronous motor, which is considered suitable for space saving, high efficiency, and high torque.
  • a DC motor using brushes, a reluctance motor not using permanent magnets, an induction motor, or the like can also be applied.
  • it may be a radial gap motor having magnetic poles in the radial direction of rotation, or an axial gap motor having magnetic poles in the direction of the rotation axis.
  • the linear motion mechanism 520 is a linear motion mechanism incorporating a speed change mechanism 580 whose equivalent lead changes according to the applied linear motion load.
  • a linear motion mechanism can be used in which a planetary reduction gear provided with a speed change mechanism as described above is combined with various mechanisms such as a ball screw or a ball ramp mechanism that can convert rotational motion into linear motion.
  • the transmission mechanism 580 includes a spring member 581 (an example of an elastic member) and a stopper 583 shown in FIG. 2 which will be described later.
  • the speed change mechanism 580 is not limited to being built in the linear motion mechanism 520 as in the present embodiment, and may be, for example, inside the speed reducer 550 outside the linear motion mechanism 520 or in the speed reducer 550. It may also be any other mechanism capable of producing a speed change function.
  • the angle sensor 530 in FIG. 1A is, for example, a resolver, a magnetic encoder, or the like, and the use of these is highly accurate and highly reliable and is considered suitable.
  • various sensors such as an optical encoder can also be applied.
  • angle sensorless estimation can be applied in which the motor angle is estimated from the relationship between voltage and current in a control device to be described later.
  • the load sensor 540 is, for example, a sensor that detects strain, deformation, etc. according to the load applied by the actuator. However, it is not limited to this, and a pressure-sensitive medium such as a piezoelectric element can also be used. Alternatively, a torque sensor that detects the braking torque of the brake rotor, or an acceleration sensor that detects the longitudinal deceleration of the vehicle in the case of an electric vehicle brake device may be used.
  • the brake actuator 500A may be separately provided with a power supply device for supplying power to each part and various sensors such as a thermistor according to requirements.
  • the brake actuator 500A can be used as a parking brake actuator by providing a mechanism, such as a solenoid or a DC motor, that locks a portion to which the power of the actuator such as the linear motion mechanism 520 is transmitted.
  • the electric brake control device 100A includes a brake controller 110A that performs brake control calculation, which is an example of a load controller 110 that performs load control calculation, a motion state estimator 120 that calculates the operating state of the motor, and a load force that estimates the load force.
  • a braking force estimator 130A for estimating the braking force which is an example of the force estimator 130
  • the motion state estimator 120 includes at least an angle estimator 121 that estimates the angle of the electric motor rotor (motor angle) and an angular velocity estimator 123 that estimates the angular velocity of the motor angle.
  • the motion state estimator 120 may be provided with a function of estimating a predetermined calculus value such as an electric motor angular acceleration, a function of estimating a disturbance, etc., instead of having these estimating units.
  • the motor angle may be, for example, an electrical angle phase used for current control, or a total rotation angle corrected for overlap and underlap of an angle sensor used for angle control. It has a function to obtain the necessary physical quantity as appropriate.
  • the motor angle and angular velocity are determined based on, for example, the rotation angle (rotation speed) of a predetermined portion of the speed reducer obtained based on the speed reduction ratio, the equivalent lead of the screw mechanism, and the like. It may be the determined position or velocity.
  • the configuration for estimating the physical quantity may be, for example, a configuration of a state estimation observer or the like, or may be a direct calculation such as back calculation based on differentiation or inertia equations.
  • the current sensor 160 for example, a sensor consisting of an amplifier that detects the voltage across the shunt resistor provided in the energization path, or a non-contact sensor that detects the magnetic flux around the energization path, or the like can be used.
  • the current sensor 160 may be configured to detect a terminal voltage or the like of an element constituting a motor driver, for example.
  • the current sensor 160 may be provided between each phase of the electric motor, or one or more may be provided on the low side or high side.
  • feedforward control can be performed by calculating a current value based on motor characteristics such as inductance and resistance without providing a current sensor.
  • the brake controller 110A sets an operation amount for the brake actuator 500A to desirably follow a predetermined command input (specifically, a brake force command value or a press force command value; load command values in FIGS. 3A and 3B). and convert it into a motor drive signal.
  • a predetermined command input specifically, a brake force command value or a press force command value; load command values in FIGS. 3A and 3B.
  • a braking force control unit 113A (an example of the load force control unit 113 for controlling the load force generated by conversion of the linear motion mechanism into linear motion) for controlling the braking force generated by the contact of the linear motion mechanism), and the load condition and a control gain adjustment unit 115 that adjusts the control gain calculated in the braking force control unit 113A in response to .
  • the braking force control unit 113A (that is, the load force control unit 113) adjusts the motor rotation amount based on, for example, an equivalent lead when using a screw mechanism, a reduction ratio when a reduction gear is provided, or various specifications of the actuator 500. (or motor angle) to determine the motor drive amount of the electric motor 510 so as to control the linear motion stroke amount of the linear motion mechanism 520 .
  • the brake force control section 113A may be provided with a stroke sensor or the like (not shown) separately, and may have a function of feedback-controlling the sensor signal to follow a predetermined target value.
  • the braking force control section 113A can also have a function of setting a stroke amount such that a predetermined gap can exist between the friction material 560 and the brake rotor 570 so that the contact between the friction material 560 and the brake rotor 570 is minimized when the brake is released.
  • the stroke amount that can be the predetermined gap is, for example, a position where the motor is rotated by a predetermined amount from the motor angle at which the estimated braking force estimated by the braking force estimator 130A is a predetermined value, or a position where the estimated braking force is the motor angle.
  • the braking force control unit 113A controls, for example, a very slight braking force that can be difficult to detect with a load sensor that detects the braking force or the above-described torque sensor. You may make it function so that it may become the stroke state which becomes.
  • the braking force control unit 113A has a function of determining the motor driving amount so that the braking force when the friction material 560 and the brake rotor 570 are brought into contact with each other is controlled to follow a predetermined target value.
  • the pressing force between the friction material 560 and the brake rotor 570 is detected by the load sensor 540, and the braking force (estimated braking force) estimated by the braking force estimator 130A, which will be described later, is calculated from the output of the load sensor 540.
  • the brake force control can also be performed using a torque sensor or the like for detecting the braking torque of the brake rotor.
  • the control gain adjustment unit 115 uses the motor rotation amount determined from the motor angle of the electric motor 510 and the brake load, which is an example of the actuator load, for the control gain to be applied when the brake force control unit 113A calculates the operation amount. Then, in this embodiment, it has a function of adjusting the control gain in consideration of the non-linear characteristics caused by the speed change mechanism 580 present in the direct acting mechanism. This nonlinear characteristic is described below.
  • the equivalent lead becomes relatively small due to the planetary deceleration effect. That is, when the state changes between the integral rotation state and the separated rotation state, the stiffness, which is the correlation between the motor rotation amount and the brake load, becomes a discontinuous stiffness corresponding to at least the presence or absence of the planetary deceleration effect. . In other words, the change gradient of one of the motor rotation amount and the brake load with respect to the other becomes a rigidity that changes discontinuously by at least the deceleration ratio due to the planetary deceleration effect.
  • a function of providing a predetermined clearance between the friction material 560 and the brake rotor 570 when the braking force is set to zero may be provided.
  • an arithmetic expression for deriving the motor angle and angular velocity based on the feedback deviation of the braking force is used as the motor driving amount for following and controlling the braking force to a desired target value.
  • a minor control loop may be provided separately for feedback of
  • the motor controller 140 has a function of controlling the motor current in accordance with a predetermined motor drive signal output from the braking force controller 110A (load controller 110).
  • the motor controller 140 stores the optimum current conditions in a LUT (Look Up Table) in advance in order to obtain a predetermined torque at a predetermined motor angular velocity, and calculates the target current from the current motor angular velocity.
  • a function of determining a value and controlling to achieve the current value is considered to be suitable because high-precision control can be performed at a low cost.
  • the present invention is not limited to this, and it is also possible to obtain a drive condition in real time by calculating a relational expression between current, voltage, etc. for deriving the output of the electric motor 510 .
  • the motor driver 150 is composed of a bridge circuit using switching elements such as FETs (Field Effect Transistors), and determines the voltage applied to the motor based on a predetermined duty ratio (the ratio of the high time and low time of the voltage applied to the motor).
  • a configuration that performs PWM (Pulse Width Modulation) control is considered to be suitable because of its low cost and high performance.
  • the motor driver 150 may be provided with a transformer circuit or the like and configured to perform PAM (Pulse Amplitude Modulation) control.
  • the braking force estimator 130A which is an example of the load force estimator 130, has a function of estimating the braking force generated by the contact between the brake rotor 570 and the friction material 560. Specifically, braking force estimator 130A receives an input from load sensor 540 and outputs an estimated braking force.
  • the brake instruction means 300A can use various operation means that can be operated by the operator, such as a volume, joystick, switch, etc., instead of the brake pedal.
  • the vehicle motion control device 700 includes an automatic brake function unit (not shown) that prevents the vehicle from colliding or reduces the impact of the collision, and at least brakes to prevent the vehicle from spinning or the like when the vehicle is skidding. Equipped with a side-slip prevention function unit, an anti-skid control unit to prevent vehicle behavior from becoming unstable due to locking of the wheels by the brakes, etc. output.
  • the vehicle motion control device 700 is an integrated control device that integrates information from on-vehicle sensors (not shown) such as a gravity sensor, objective sensor, GPS (Global Positioning System), etc., and performs calculations necessary for the various functions described above. There may be.
  • the brake operation amounts determined by the vehicle motion control device 700 are also transmitted to the electric brake control device 100A as the target braking force or part of the target braking force.
  • a power supply device may be provided as a non-illustrated element, and the power supply device may be, for example, a low-voltage battery or a step-down converter for stepping down a high-voltage battery in an electric brake system for automobiles. Alternatively, a high-capacity capacitor or the like can be used, or these can be used in parallel for redundancy.
  • the power output is directly supplied to the motor driver and the solenoid driver, and that a small step-down converter is applied in the electric brake control device 100A to the various computing units and functional units to step down the voltage, or , various calculators and functional units may be directly supplied with power output, and either or both of the motor driver and the solenoid may be supplied with power via a boost converter.
  • the above various arithmetic units and functional units are preferably configured with electronic components such as processors such as microcomputers that operate programs, FPGA (Field Programmable Gate Array), ASIC (Application Specific Integrated Circuit), etc., because they are inexpensive and have high performance. it is conceivable that.
  • the functional blocks shown in the figure are provided for the convenience of description only, and do not limit the specification of the hardware or software configuration, the division of functions, etc., and the functions of each block can be integrated or divided as necessary. You may Further, the specific configuration of software and hardware can be arbitrarily configured as long as the functions shown in this embodiment are not hindered. Elements not shown may be added as long as they do not interfere with the functions of the present embodiment. For example, it is preferable to add a safety mechanism in case various functions or sensors fail based on system requirements.
  • the electric brake device 1A can also be applied as a brake device for stopping an energy storage device such as a lifting device, a power generator, or a flywheel, in addition to a vehicle brake device.
  • an energy storage device such as a lifting device, a power generator, or a flywheel
  • FIG. 1B shows an electric press apparatus comprising an electric press control device 100B as an example of the control device 100, a press actuator 500B as an example of an actuator 500 using a linear motion mechanism, and a press device controller 300B as an example of an instruction means 300.
  • the electric press apparatus 1B differs from the electric brake apparatus 1A of the previous embodiment in that the object to which the load is applied is the press object 590 of the press actuator 500B instead of the brake rotor 570 of the brake actuator 500A. be.
  • those having the same reference numerals as those of the electric brake device 1A basically have the same functions, so their functions can be presumed and will not be described below.
  • the press controller 110B of the electric press control device 100B is an example of the load controller 110 that performs load control calculations, and performs press control calculations and the like.
  • the press load estimator 130B is an example of the load force estimator 130 that estimates the load force, and estimates the press force (or press load) from the drive mechanism 520 to the press object 590.
  • the press load controller 113B (an example of the load controller 113) of the press controller 110B is an example of the load force controller 113 for controlling the load force generated by converting the linear motion of the linear motion mechanism into linear motion.
  • the press load control section 113B has a function of determining a motor drive amount so that the press force from the drive mechanism 520 to the object to be pressed 590 is controlled to follow a predetermined target value.
  • the press force is detected by the load sensor 540, and functions based on the press force (estimated press force) estimated by the press load estimator 130B from the output of the load sensor 540. Give an example.
  • FIG. 2(a) shows a schematic diagram of a linear motion mechanism 520 having a speed change mechanism 580 in an unloaded (unloaded) state.
  • a planetary carrier 524 supporting a plurality of planetary rolling elements 523 is pressed against a stopper 583 by a spring member 581, which is an elastic member.
  • the operation is the same as that of a general sliding screw.
  • FIG. 2(b) shows a schematic diagram of the linear motion mechanism 520 having the speed change mechanism 580 when a linear motion load of a predetermined value or more is applied.
  • the spring member 581 is compressed by ⁇ due to reaction force transmitted from the outer ring 525 against the force applied by converting the rotational force of the rotary input shaft 521 into a linear load via the planetary rolling element 523 .
  • the pressing of the planetary carrier 524 against the stopper 583 is released, the integration of the planetary carrier 524 and the rotation input shaft 521 is released, the planetary rolling element 523 rotates (separate rotation state), and the rotation is input.
  • a planetary deceleration effect occurs in which a difference in rotational speed occurs between the shaft 521 and the planetary carrier 524, thereby reducing the equivalent lead compared to the case of FIG. 2(a).
  • FIG. 3A shows a configuration example of the load controller 110 including the brake controller 110A of FIG. 1A and the press controller 110B of FIG. 1B.
  • the load target value (command input) and the estimated load in the figure are the braking force command value and the estimated braking force, respectively, when the brake controller 110A is configured, and the press force command when the press controller 110B is configured. value and estimated press force.
  • the load control unit 113 derives a motor drive amount for causing the estimated load value of the actual machine to follow the load target value. For example, it is possible to calculate the deviation between the load target value and the load estimated value, and obtain the manipulated variable that makes the deviation zero or within an allowable error range.
  • the control gain adjustment unit 115 has a function of acquiring a load target value, deriving a control gain setting value according to the load target value, and updating the control gain of the load control unit 113 to the control gain setting value.
  • This control gain set value is a value that changes discontinuously corresponding to discontinuous nonlinear stiffness (for example, due to the transmission mechanism shown in FIG. 2).
  • the control gain adjustment unit 115 may have a function of adjusting one constant gain related to all gains of P control [Proportional Control], I control [Integral Control], and D control [Differential Control]. , P-control, I-control, and D-control gains may be individually adjusted. Alternatively, for example, when a state feedback controller having a predetermined feedback loop eigenvalue is applied in the load control section 113, the control gain adjustment section 115 may have a function of adjusting at least the time constant of the eigenvalue.
  • the motor drive amount indicates a motor torque command value, which is considered preferable because the controller can be designed based on a simple equation of motion.
  • the present invention is not limited to this, and may be configured to derive, for example, a motor current command value or a voltage to be directly applied to the motor.
  • FIG. 3B shows an example of a configuration in which the control gain adjustment unit 115 in FIG. 3A refers to the estimated load instead of the load target value as an input to determine the control gain. Since it is the same as FIG. 3A except for this difference, detailed description is omitted.
  • the configuration of FIG. 3A and the configuration of FIG. 3B can be used together to use an intermediate value such as a weighted average value of the load target value and the estimated load.
  • Control Gain Adjustment Unit 115>> 4A to 4E show the nonlinear stiffness (pressure increase characteristic, pressure decrease characteristic) when the linear motion mechanism 520 having the transmission mechanism 580 of FIG. 2 is applied, and the control gain adjustment section 115 of FIGS. (actuator load vs. motor rotation amount and control gain characteristic diagram).
  • the solid line indicates the pressure increase characteristic during pressure increase
  • the dashed line indicates the pressure reduction characteristic during pressure reduction.
  • FIGS. 4A to 4E show control gains with respect to actuator loads (or linear motion loads).
  • the discontinuity point is defined as the point where the change gradient of the actuator load with respect to the motor rotation amount changes discontinuously.
  • the second point is a discontinuous point due to deformation such as the deformation limit of the spring member (elastic member) of the transmission mechanism.
  • discontinuity means that even if microscopically it shows continuity that gradually changes, macroscopically looking at the full scale, if the above-mentioned change gradient changes extremely sharply, it means that the above-mentioned Included in discontinuity.
  • discontinuities between samples due to discretization in discretized information, such as LUTs shall not be included in the aforementioned discontinuities.
  • the nonlinear stiffness of the linear motion mechanism during pressure increase and decompression has nonlinearity that does not match during pressure increase and decompression due to factors such as friction at the contact part of the member where deformation occurs. (Hysteresis characteristics described above), the tendency of mismatching differs depending on the linear motion mechanism employed.
  • the nonlinearity may change due to aging or wear, and the nonlinearity may also change depending on the operation history such as how much load is generated. That is, at least in the area (intermediate area) where the characteristics of the pressure increase side and the pressure decrease side are different in the control gain with respect to the actuator load shown in the figure, it is difficult to clearly grasp in advance what kind of rigidity is exhibited.
  • the control gain in the control gain adjustment unit 115 transitions from a low state to a high state at the first discontinuous point when viewed from the low load side, and in the section from F1a to F2a is a state in which the control gain is low, and the discontinuity point of F2a on the pressure reduction side is adopted as the discontinuity point.
  • the discontinuity point of the control gain may be a discontinuity point at a load that is sufficiently closer to F2a than F1a. A slightly larger load may be set.
  • the spring member (elastic member) 581 of the transmission mechanism 580 reaches its deformation limit, and the motor rotation amount change with respect to the actuator load.
  • a discontinuity occurs where the slope decreases.
  • the predetermined actuator load F4a which is smaller than F3a, is the second point of discontinuity when viewed from the low actuator load side.
  • the control gain in the control gain adjustment unit 115 transitions from a high state to a low state at the second discontinuity point when viewed from the low load side, and in the section from F4a to F3a is a state in which the control gain is low, and adopts a characteristic having a discontinuous point of F4a on the pressure reduction side as the discontinuous point.
  • the discontinuity point of the control gain may be a discontinuity point at a load that is sufficiently closer to F4a than F3a. A slightly smaller load may be set.
  • the control gain is in a low state, and the discontinuity point of F1b on the pressure increasing side is adopted as the discontinuity point.
  • the discontinuity point of the control gain may be a discontinuity point at a load that is sufficiently closer to F1b than F2b, or the discontinuity point is slightly larger than F1b, considering the characteristic variation and aging of each actuator. You can set the load.
  • the control gain in the interval from F4b to F3b, where a discontinuous point occurs due to the deformation of the spring member in each characteristic of increasing/decreasing pressure can be set in the same manner as in the interval from F4a to F3a in FIG. 4A.
  • the spring member (elastic member) 581 of the transmission mechanism 580 reaches its deformation limit, and the actuator load A discontinuity occurs where the motor rotation amount change gradient decreases.
  • the predetermined actuator load F4c larger than F3c is the second point of discontinuity when viewed from the low actuator load side.
  • the control gain in the control gain adjusting section 115 is in a low state in the section from F3c to F4c, and the discontinuity point of F3c on the pressure increasing side is adopted as the discontinuity point.
  • the discontinuity point of the control gain may be a discontinuity point at a load that is sufficiently closer to F3c than F4c. You can set the load.
  • the control gain in the section from F1c to F2c where a discontinuity occurs due to the change in the equivalent lead can be set in the same manner as in the section from F1a to F2a in FIG. 4A.
  • the control gain can be determined between actuator loads F1d and F2d in the same manner as between F1b and F2b in FIG. 4B, and between actuator loads F3d and F4d in the same manner as F3c to F4c in FIG. 4C.
  • FIG. 4E shows an example of control gain when the electric linear motion actuator 1 having the transmission mechanism 580 is applied to the electric brake device 1A.
  • the pressure increase characteristic, pressure decrease characteristic, and control gain in FIG. 4A are closer to curved lines than straight lines.
  • an electric brake device has non-linear stiffness due to the non-linear stiffness of friction materials for brakes, etc., but the change is generally continuous.
  • a discontinuous change occurs when applied. Therefore, as a control gain for that, a control gain discontinuity point corresponding to a rigidity discontinuity point by the transmission mechanism 580 can be provided, and a control gain that changes continuously can be used in other areas.
  • the nonlinearity due to pressure increase/decrease is described as showing the same tendency as in FIG. 4A, but if an actuator showing the tendency of FIGS. discontinuity can be set.
  • the section excluding the discontinuous point of the control gain shows an example with continuous nonlinearity
  • the controller may be designed to be robust to some extent and then simplified so that it changes with a constant gradient, or approximately It can also be a constant value.
  • FIG. 5A shows an example of estimating the nonlinear stiffness and its discontinuity from the motor angle and the estimated load, and adjusting and updating the control gain of the control gain adjuster 115 based on the estimation result.
  • the control gain adjustment unit 115 has a pressure increase control gain 115a that stores a control gain for pressure increase and a pressure decrease control gain 115b that stores a control gain for pressure decrease. Further, it has a control gain switching unit 115c for determining which of the pressure increase control gain 115a and the pressure decrease control gain 115b to refer to.
  • the control gain switching unit 115c refers to the control gain of the pressure increasing control gain 115a to determine whether the motor is rotating toward the pressure decreasing side. If it is determined that the control gain is present, the control gain can be switched so as to refer to the control gain of the pressure reduction control gain 115b.
  • the control gain switching unit 115c selects a case where the motor is rotating on the pressure increasing side by a predetermined amount or more, a case when the motor is rotating on the pressure reducing side by a predetermined amount or more, and an intermediate state that does not correspond to any of these.
  • control gain 115a and the pressure-decreasing control gain 115b may be referred to as the control gain based on the transition of the estimated load.
  • a stiffness parameter storage unit 117 and a nonlinear stiffness estimation unit 118 are provided in addition to the configuration of FIG.
  • the stiffness parameter storage unit 117 stores at least the amount of rotation of the electric motor 510 when a change occurs in the load corresponding to the discontinuous point of the control gain stored in advance, and the amount of rotation of the electric motor 510 and the estimated Stores the change history with the applied load.
  • the stiffness parameter storage unit 117 includes a pressure increase data storage unit 117a that stores the motor angle and the estimated load during the pressure increase operation, and a pressure decrease data storage unit 117a that stores the motor angle and the estimated load during the pressure decrease operation. and a storage unit 117b.
  • a nonlinear stiffness estimator 118 estimates a discontinuity in the correlation between the angle of the motor 510 and the load in the control gain from the change history of the angle of the electric motor 510 and the estimated load, and calculates the estimated discontinuity. Update the control gains based on the points. Specifically, the nonlinear stiffness estimator 118 estimates a discontinuity point and applies a predetermined function for deriving the nonlinear stiffness to the motor angle and the estimated load stored in the stiffness parameter storage 117 as follows: It has a convergence calculator 118a that performs parameter fitting to minimize an error, and a control gain calculator 118b that derives the nonlinear stiffness based on the result of the convergence calculator 118a. The parameter fitting in the convergence calculation unit 118a is executed at the stage when the stiffness parameter storage unit 117 has accumulated a sufficient range of data including at least stiffness discontinuities.
  • a function g1(F) indicating the stiffness when the equivalent lead is large a function g2(F) indicating the stiffness when the equivalent lead is small and the spring member is deformed, and a function g2(F) which indicates the stiffness when the equivalent lead is small and the spring
  • the load Fnl1 corresponding to the two points of discontinuity where g1(F) and g2 coincide and g2(F)
  • the nonlinear stiffness is derived for the motor angle ⁇ and the load F as follows.
  • the control gain calculation unit 118b derives control gains during pressure increase and pressure reduction based on the above calculation results of the convergence calculation unit 118a. After the derivation of the control gain is completed, the control gain of the control gain adjuster 115 is updated.
  • the control gains are obtained by determining the control gains for each function based on the derivation results of the stiffness functions g1, g2, and g3, and connecting them so that they are switched under the load conditions corresponding to the discontinuous points Fnl1 and Fnl2. can be derived as Alternatively, instead of the control gain for each function, the derivation process may be simplified by using a control gain that is combined so as to switch under load conditions corresponding to the discontinuous points Fnl1 and Fnl2. . At this time, the functions g1, g2, and g3 in the convergence calculation section can also be fixed functions, and the calculation process can be further simplified.
  • the discontinuity point of the control gain stored in the control gain adjustment section is updated by the control gain adjustment section 115 based on the derived discontinuity point of the control gain.
  • the point of discontinuity is determined according to the method described with reference to FIGS. 4A to 4E for each of the control gains during pressure increase and pressure decrease.
  • control gains for the pressure increase control gain and the pressure decrease control gain may be updated at the same time, or may be updated individually at arbitrary timings.
  • control device 100 estimates and stores the amount of change in either one of the load and the amount of rotation when a predetermined amount of change in load or the amount of rotation of electric motor 510 occurs. good too. Further, control device 100 compares the stored amount of change with the amount of change newly estimated after the storage. It may be determined that a point of discontinuity between the angle and the load has occurred, and the control gain may be updated based on the determined point of discontinuity.
  • control gain switching unit 115c of the control gain adjusting unit 115 when the control gain is switched by the control gain switching unit 115c of the control gain adjusting unit 115, when the control gains of the control gains 115a and 115b during pressure increase and pressure decrease are updated, etc. It is preferable to provide a function of appropriately resetting internal parameters so that unnecessary motor drive commands are not calculated by the load control unit 113 .
  • FIG. 5B shows a first control gain 115d adjusted by the control gain adjustment unit 115 to a control gain when the equivalent lead of the linear motion mechanism is large, unlike FIG. A second control gain 115e adjusted to a control gain in a state where the member deforms, and a third control gain 115f adjusted to a control gain in a state where the equivalent lead is small and the spring member reaches the deformation limit.
  • the first to third control gains are appropriately switched and referred to, so that nonlinear control having two discontinuous points as shown in FIG. 3A, etc. This has the same effect as referring to the gain (which may include the control gain during pressure increase and the control gain during pressure decrease in FIG.
  • control gain adjustment section 115 of FIG. 5B further includes a control gain switching section that switches to and refers to any one of the first to third control gains. Also, in FIG. 5B, there is a discontinuity point estimation unit 119 .
  • the first to third control gains may each be a constant value as shown in the figure, but they may also vary such that they continuously increase or decrease with respect to the load. There may be.
  • the discontinuity point estimator 119 includes a gradient change calculator 119a that derives a gradient of change with respect to a change in either one of the motor angle and the estimated load, and an already stored gradient of change and the derivation result of the gradient calculator 119a. and a change gradient comparison unit 119b for newly storing the derivation result of the change gradient calculation unit.
  • the change gradient calculator 119a may have a function of evaluating the amount of change in either one of the motor angle and the estimated load when the other changes by a predetermined amount.
  • the function may be such that the change gradient is Fdelta/ ⁇ delta for the load change amount Fdelta when the motor angle changes by a predetermined ⁇ delta.
  • (F(t+dt)-F(t))/( ⁇ (t+dt)- ⁇ (t)) may be used as the change gradient for the angle and load change for the predetermined time dt.
  • the change gradient comparison unit 119b compares the change gradient that has already been stored with the derived change gradient, and can determine that a stiffness discontinuity has occurred if the comparison result shows a change of a predetermined amount or more. . If it is determined to be a discontinuous point, information on the discontinuous point is transmitted to control gain adjustment section 115 .
  • the control gain switching unit 115c switches the control gain of the second control gain 115e. may transition to a state that refers to
  • the state is shifted to the state of referring to the control gain of the third control gain 115f.
  • the control gain of the first control gain 115d is referred to. You can move to In the pressure reduction direction, when it is determined that a point of discontinuity has occurred while the third control gain 115f is being referred to, the second control gain 115e may be referred to.
  • a function to appropriately reset internal parameters so that the load control unit 113 does not calculate an unnecessary motor drive command is preferably provided.
  • FIG. 6 shows an operation example of generating a predetermined braking force from a no-load state in which a predetermined clearance is provided between the friction material 560 and the brake rotor 570.
  • FIG. FIG. 1(a) shows an example of application of the electric linear motion actuator 1 described in the above embodiment to which the linear motion mechanism 520 having the transmission mechanism 580 illustrated in FIG. 2 is applied.
  • the brake force FF can be exerted without overshoot due to deterioration of controllability due to the occurrence of non-linear shift operation.
  • a braking force is generated at a relatively short time TT1 from the state until the braking force is generated.
  • FIG. 1(b) shows an example of operation by a conventional electric linear motion actuator to which a linear motion mechanism without a speed change mechanism is applied.
  • FIG. 4(b) since the equivalent lead of the linear motion mechanism is constant, it takes a relatively long time from the no-load state to the time TT2 at which the braking force is generated.
  • FIG. 1(c) shows an example in which the linear motion mechanism 520 having the speed change mechanism 580 shown in FIG.
  • the equivalent lead of the linear motion mechanism since the equivalent lead of the linear motion mechanism has been changed, the braking force can be generated in a relatively short time TT1 from the no-load state until the braking force is generated. , the controllability deteriorates, and a relatively large overshoot occurs before the braking force FF is exhibited.

Abstract

Provided is an electric linear actuator in which discontinuous stiffness caused on the basis of the gear ratio of a transmission mechanism is taken into consideration to enable driving of an electric motor with high precision. An electric linear actuator comprises: an electric motor (510); a linear motion mechanism (520); a control device (100) that controls a load which is applied to an object by the linear motion mechanism through a linear motion thereof as the electric motor is driven; and a transmission mechanism (580) having a speed changing function wherein a corresponding relationship between the amount of linear motion and the amount of rotation of the electric motor changes at a predetermined load. The control device has: an estimator (130) that estimates a load applied by the linear motion mechanism; a load controller (113) that uses a control gain, by which a deviation or the like between an estimated value and a target value of the load is multiplied, for a control computation, and that, in a state in which the estimated value or the like of the load is not zero, uses, at least at one point, a control gain varying discontinuously with respect to transition of at least one of the estimated value and the target value of the load, to calculate a motor drive amount; and a control gain adjustment unit (115) that adjusts the control gain.

Description

電動式直動アクチュエータElectric linear actuator 関連出願Related application
 本出願は、2021年6月22日出願の特願2021-103324の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2021-103324 filed on June 22, 2021, and is incorporated herein by reference in its entirety.
 本発明は、電動モータの回転運動を直線運動に変換する電動式直動アクチュエータの制御方法に関する。 The present invention relates to a control method for an electric linear motion actuator that converts rotary motion of an electric motor into linear motion.
 電動式直動アクチュエータは、従来から例えば電動ブレーキ装置や電動プレス装置等に使用することが考えられてきている。従来の電動ブレーキ装置として、例えば特許文献1のような、遊星転動体に含まれる遊星ローラねじ構造を用いた変速機能付き電動式アクチュエータが提案されている。 Electric linear motion actuators have been considered for use in, for example, electric brake devices and electric press devices. 2. Description of the Related Art As a conventional electric brake device, an electric actuator with a speed change function using a planetary roller screw structure included in a planetary rolling element has been proposed, for example, as disclosed in Patent Document 1.
特開2012-057681号公報JP 2012-057681 A
 一般に、電動式直動アクチュエータを適用した電動ブレーキなどの適用例においては、該アクチュエータを緻密に制御することが求められる場合が多い。その際に、例えば特許文献1に記載のような変速機構付きの電動式直動アクチュエータを適用する場合において、駆動中における電動モータの駆動量(回転量、回転数)と直動アクチュエータの直線運動の作動量(直動量)との相関(すなわち、電動モータの回転量に対する上記直線運動の直動量に対応する等価リードに相当)が想定と異なる状態にあると、制御性や応答性が低下する問題が生じる場合がある。 In general, in applications such as electric brakes to which an electric linear motion actuator is applied, it is often required to precisely control the actuator. At that time, for example, in the case of applying an electric linear motion actuator with a speed change mechanism as described in Patent Document 1, the drive amount (rotation amount, rotation speed) of the electric motor during driving and the linear motion of the linear motion actuator (i.e. equivalent to the equivalent lead corresponding to the amount of linear motion of the linear motion with respect to the amount of rotation of the electric motor) is in a different state than expected, the controllability and responsiveness deteriorate. Problems can arise.
 例えば特許文献1に記載の変速機構付直動アクチュエータは、アクチュエータが対象物に荷重を印加する際の反作用力が、複数の遊星ローラとそれらの中心に存在する回転軸たるサンローラ(または回転入力軸)とを一体回転させる摩擦力を付与するバネ力を上回ると、遊星ローラねじ構造に設けられた遊星減速構造において遊星ローラが自転し、複数の遊星ローラを支持する遊星キャリアとサンローラとに回転の速度差が生じる遊星減速効果が生じることで等価リードが減少する変速機能を有する。この場合、当該変速機能における変速比(等価リードの変化比率)に基づく、等価リードの不連続性が存在している。直動機構にこのような変速機能を持たせると、例えば電動ブレーキ装置における摩擦材とブレーキロータとの間のクリアランスのように、直動アクチュエータが荷重を印加する対象物に接するまでは比較的大きな等価リードとできて応答性が向上し、荷重を印加した後は比較的小さな等価リードとなって出力トルクの小さな小型モータでも大きな荷重を発生させられるので好ましい。しかしながら、荷重がゼロではなくなった時点で該変速機能によって直ちに直動機構を変速させる構造は、非常に微細なバネ力とバネ変形量によって前記の変速動作を達成しなければならないため、製造上の都合から極めて難しく、安定した変速機構を構築するためにはある程度の荷重を印加した状態で変速する構造が必要となる可能性がある。しかし、例えば電動ブレーキ装置における軽度なブレーキ操作時のように小さなアクチュエータ荷重を制御する必要がある場合、前記変速動作によって高精度なアクチュエータ荷重のコントロールが困難になる可能性がある。 For example, in the linear motion actuator with a speed change mechanism described in Patent Document 1, the reaction force when the actuator applies a load to an object is a plurality of planetary rollers and a sun roller (or a rotation input shaft) that is a rotation shaft that exists at the center of the planetary rollers. ), the planetary roller rotates in the planetary deceleration structure provided in the planetary roller screw structure, and the planetary carrier and the sun roller that support the plurality of planetary rollers rotate. It has a speed change function that reduces the equivalent lead by producing a planetary deceleration effect that causes a speed difference. In this case, there is a discontinuity in the equivalent lead based on the gear ratio (change ratio of the equivalent lead) in the gear shift function. When the linear motion mechanism is provided with such a speed change function, the linear motion actuator has a relatively large clearance until it comes into contact with an object to which a load is applied, such as the clearance between the friction material and the brake rotor in an electric brake device. Equivalent lead is formed, responsiveness is improved, and after the load is applied, the equivalent lead becomes relatively small, and even a small motor with small output torque can generate a large load, which is preferable. However, a structure that immediately changes the speed of the linear motion mechanism by the speed change function when the load becomes non-zero must achieve the speed change operation with a very small amount of spring force and spring deformation. Due to the circumstances, it is extremely difficult, and in order to construct a stable transmission mechanism, there is a possibility that a structure that shifts gears while a certain amount of load is applied may be required. However, when it is necessary to control a small actuator load, such as when a light brake operation is performed in an electric brake device, it may become difficult to control the actuator load with high precision due to the speed change operation.
 加えて、例えば特許文献1に記載の構造における変速動作において、摩擦などに起因して発生する変位とバネ力との非線形なヒステリシス特性から、例えばアクチュエータ印加荷重を増大させる(増圧)動作と減少させる(減圧)動作においてそれぞれ異なるタイミングで変速してしまう問題が生じる場合がある。 In addition, for example, in the shift operation in the structure described in Patent Document 1, due to the nonlinear hysteresis characteristics of the displacement and spring force generated due to friction, for example, the actuator applied load is increased (increased pressure) and decreased. There may be a problem in that the shifts are shifted at different timings in the operation of reducing the pressure.
 この発明の目的は、以上の従来技術の課題を解決すべく、変速機構での変速比に基づき発生する不連続な剛性を考慮することで、精度の高い電動モータの駆動が可能な電動式直動アクチュエータを提供することである。 SUMMARY OF THE INVENTION An object of the present invention is to solve the above-described problems of the prior art by taking into consideration the discontinuous stiffness that occurs based on the gear ratio in the transmission mechanism, thereby enabling the electric motor to be driven with high accuracy. Another object is to provide a dynamic actuator.
 上記目的を達成するために、本発明に係る電動式直動アクチュエータは、
 電動モータと、前記電動モータの回転運動を直線運動に変換する直動機構と、前記電動モータを駆動して前記直動機構が前記直線運動により対象物に印加する荷重を制御する制御装置と、所定の荷重を境に前記直線運動の直動量と前記電動モータの回転量との対応関係が変化する変速機能を有する変速機構と、を備え、
 前記制御装置は、
  前記直動機構が印加する荷重を推定する推定器と、
  前記電動モータの駆動量を導出する過程において、前記荷重の推定値と前記荷重の目標値との偏差、前記偏差の積分値、および前記偏差の微分値、のうち少なくとも一つまたは二つ以上に乗算される制御ゲインを制御演算に使用し、前記荷重の推定値と前記目標値とのうちの少なくとも一方がゼロではない状態において、少なくとも1か所以上で、前記荷重の推定値と前記目標値とのうちの少なくとも一方の推移に対して不連続的に変化する制御ゲインを使用して、モータ駆動量を算出する荷重制御器と、
  荷重条件に応じて、前記荷重制御器において使用される制御ゲインを調整する制御ゲイン調整部と、
 を有する。
In order to achieve the above object, an electric linear motion actuator according to the present invention includes:
an electric motor, a linear motion mechanism that converts rotary motion of the electric motor into linear motion, a control device that drives the electric motor and controls the load that the linear motion mechanism applies to an object due to the linear motion; a speed change mechanism having a speed change function in which the correspondence relationship between the amount of linear motion of the linear motion and the amount of rotation of the electric motor changes with respect to a predetermined load;
The control device is
an estimator for estimating the load applied by the linear motion mechanism;
In the process of deriving the drive amount of the electric motor, at least one or more of a deviation between the estimated value of the load and the target value of the load, an integral value of the deviation, and a differential value of the deviation The control gain to be multiplied is used for control calculation, and in a state in which at least one of the estimated value of the load and the target value is not zero, the estimated value of the load and the target value at least at one or more locations. a load controller that calculates a motor drive amount using a control gain that changes discontinuously with respect to the transition of at least one of
a control gain adjustment unit that adjusts the control gain used in the load controller according to the load condition;
have
 上記構成によると、本発明に係る電動式直動アクチュエータは、変速が発生する荷重条件において、前記の変速機構での変速比に基づき発生する不連続な剛性を考慮して制御ゲインを設定することで、精度の高い電動モータの駆動が可能となる。 According to the above configuration, the electric linear motion actuator according to the present invention sets the control gain in consideration of the discontinuous stiffness that occurs based on the gear ratio in the transmission mechanism under load conditions that cause gear shifting. Therefore, it is possible to drive the electric motor with high accuracy.
 上記構成において、前記変速機構は、前記電動モータの回転量に対して前記直動量が所定の相関となる第一の等価リード状態と、前記第一の等価リード状態と比較して前記電動モータの回転量に対する前記直動量が小さい相関となる第二の等価リード状態と、を含む前記変速機能を有し、
 前記変速機能は、前記直動機構が印加する荷重が増大する過程では、前記所定の荷重である第一の変速荷重を上回ると前記第一の等価リード状態から前記第二の等価リード状態に切り替わり、前記直動機構が印加する荷重が減少する過程では、前記第一の変速荷重とは異なる前記所定の荷重である第二の変速荷重を下回ると前記第二の等価リード状態から前記第一の等価リード状態に切り替わる非線形性を有し、
 前記制御ゲインについて、荷重の推移に対する制御ゲインの推移が不連続となる第一の不連続点から荷重が小さい側における制御ゲインが、前記第一の不連続点より荷重が大きい側における制御ゲインより小さくなる前記第一の不連続点を含んでおり、
 前記変速機構の非線形性有する前記変速機能および前記制御ゲインが、以下のi)およびii)のいずれかの条件に合致する、ようにしてもよい。
i) 前記変速機能の前記第一の変速荷重は、前記第二の変速荷重より大きく、前記制御ゲインの前記第一の不連続点は、前記第二の変速荷重より前記第一の変速荷重に近い。
ii) 前記変速機能の前記第二の変速荷重は、前記第一の変速荷重より大きく、前記制御ゲインの前記第一の不連続点は、前記第一の変速荷重より前記第二の変速荷重に近い。
 これにより、変速が発生するかどうか不安定な荷重領域において、等価リードが大きい状態にも関わらず等価リードが小さいと想定してモータを駆動するとアクチュエータ荷重が大きく変化して不安定な動作となり得るため、変速が不安定な領域は少なくとも等価リードが大きいものとして動作させることで、上記の不安定なアクチュエータ動作を抑止できる。
In the above configuration, the speed change mechanism compares a first equivalent lead state in which the amount of linear motion has a predetermined correlation with the amount of rotation of the electric motor, and the first equivalent lead state. a second equivalent lead state in which the amount of direct motion with respect to the amount of rotation has a small correlation,
In the process of increasing the load applied by the linear motion mechanism, the shift function switches from the first equivalent lead state to the second equivalent lead state when the first shift load, which is the predetermined load, is exceeded. , in the process of reducing the load applied by the linear motion mechanism, when the load falls below the second shift load, which is the predetermined load different from the first shift load, the second equivalent lead state changes to the first shift load. has a non-linearity that switches to the equivalent lead state,
With respect to the control gain, the control gain on the side of the smaller load from the first discontinuity point where the transition of the control gain with respect to the transition of the load is discontinuous is greater than the control gain on the side of the larger load than the first discontinuity point. including the first point of discontinuity that becomes smaller;
The transmission function having non-linearity and the control gain of the transmission mechanism may meet any one of the following conditions i) and ii).
i) the first shift load of the shift function is greater than the second shift load, and the first discontinuity point of the control gain is greater than the second shift load to the first shift load; close.
ii) said second shift load of said shift function is greater than said first shift load, and said first discontinuity point of said control gain is greater than said first shift load to said second shift load; close.
As a result, in a load region in which it is uncertain whether or not gear shifting will occur, if the motor is driven on the assumption that the equivalent lead is small despite the fact that the equivalent lead is large, the actuator load may change significantly, resulting in unstable operation. Therefore, the above-described unstable actuator operation can be suppressed by operating the area where the shift is unstable assuming that at least the equivalent lead is large.
 上記構成において、前記直動機構は、
  回転入力部材と、前記回転入力部材と同心に回転自在に支持された遊星キャリアと、前記遊星キャリアに回転自在に支持された遊星転動体と、
  弾性力によって前記遊星転動体が自転せず前記回転入力部材と前記遊星キャリアとが同期して回転する締結力を付勢し、前記直動機構が印加する荷重の反作用力によって前記締結力が喪失して前記遊星転動体が自転して前記回転入力部材と前記遊星キャリアとの間で回転量に差を生じさせる弾性部材と
 を有し、
 前記弾性部材は、前記直動機構が印加する荷重が増大する過程では、所定の第一の変形荷重を上回ると前記弾性部材の変形が完了し、前記直動機構が印加する荷重が減少する過程では、前記第一の変形荷重とは異なる第二の変形荷重を下回ると前記弾性部材の変形が始まる非線形な変形特性を有し、
 前記制御ゲインについて、荷重の推移に対する制御ゲインの推移が不連続となる第二の不連続点から荷重が小さい側における制御ゲインが、前記第二の不連続点より荷重が大きい側における制御ゲインより大きくなる前記第二の不連続点を含んでおり、
 前記直動機構の前記弾性部材の前記変形特性および前記制御ゲインが、以下のi)およびii)のいずれかの条件に合致する、ようにしてもよい。
i) 前記弾性部材の前記第一の変形荷重は、前記第二の変形荷重より大きく、前記制御ゲインの前記第二の不連続点は、前記第一の変形荷重より前記第二の変形荷重に近い。
ii) 前記弾性部材の前記第二の変形荷重は、前記第一の変形荷重より大きく、前記制御ゲインの前記第二の不連続点は、前記第二の変形荷重より前記第一の変形荷重に近い。
 これにより、バネ弾性部材を用いた変速機能でのバネ変形が発生するかどうか不安定な荷重領域において、バネが変形しないにも関わらずバネが変形すると想定してモータを駆動するとアクチュエータ荷重が大きく変化して不安定な動作となり得るため、バネの変形が不安定な領域は少なくともバネは変形しないものとして動作させることで、上記の不安定なアクチュエータ動作を抑止できる。
In the above configuration, the linear motion mechanism is
a rotation input member, a planetary carrier rotatably supported concentrically with the rotation input member, a planetary rolling element rotatably supported by the planetary carrier;
The planetary rolling element does not rotate due to the elastic force, and the rotation input member and the planetary carrier are synchronously rotated. and an elastic member that rotates the planetary rolling element and causes a difference in the amount of rotation between the rotation input member and the planetary carrier,
In the process in which the load applied by the linear motion mechanism increases, the elastic member completes deformation when a predetermined first deformation load is exceeded, and in the process in which the load applied by the linear motion mechanism decreases. has a non-linear deformation characteristic in which the elastic member begins to deform when falling below a second deformation load different from the first deformation load,
With respect to the control gain, the control gain on the side of the smaller load from the second discontinuity point where the transition of the control gain with respect to the transition of the load is discontinuous is greater than the control gain on the side of the larger load than the second discontinuity point. including the growing second point of discontinuity;
The deformation characteristic and the control gain of the elastic member of the linear motion mechanism may meet either condition i) or ii) below.
i) the first deformation load of the elastic member is greater than the second deformation load, and the second discontinuity of the control gain is greater than the first deformation load to the second deformation load; close.
ii) the second deformation load of the elastic member is greater than the first deformation load, and the second discontinuity point of the control gain is closer to the first deformation load than the second deformation load; close.
As a result, in a load region in which it is uncertain whether or not spring deformation will occur in a shift function using a spring elastic member, if the motor is driven on the assumption that the spring will deform even though the spring does not deform, the actuator load will increase. Since the deformation of the spring may change and become unstable, the unstable actuator operation can be suppressed by operating at least the region where the deformation of the spring is unstable as if the spring is not deformed.
 上記構成において、前記制御ゲイン調整部は、荷重が増加する増圧時の前記制御ゲインである増圧時制御ゲインと、荷重が減少する減圧時の前記制御ゲインである減圧時制御ゲインと、前記増圧時制御ゲインまたは減圧時制御ゲインの制御ゲインの何れを参照するかを決定する制御ゲイン切替部と、を有し、
 前記制御ゲイン切替部は、少なくとも、モータ角度の推移から、増圧側にモータが回転している場合は増圧時制御ゲインの制御ゲインを参照し、減圧側にモータが回転している場合は減圧時制御ゲインの制御ゲインを参照するよう、前記制御ゲインを切替えてもよい。
 これにより、例えば前記の第一、第二の変速荷重および第一、第二の変形荷重のような増圧時と減圧時とで特性が異なる非線形性を有する直動機構であり、前記第一と第二の変速荷重の間の荷重領域、または前記第一と第二の変形荷重の間の荷重領域において、安定して増圧時には増圧時の特性となり減圧時には減圧時の特性となる直動機構を採用する場合、より高精度にアクチュエータを動作させることができる。
In the above configuration, the control gain adjustment unit includes: a control gain during pressure increase, which is the control gain during pressure increase when the load increases; a control gain during pressure decrease, which is the control gain during pressure decrease when the load decreases; a control gain switching unit that determines which of the pressure increase control gain and the pressure decrease control gain to refer to,
The control gain switching unit refers at least to the control gain of the pressure increasing control gain when the motor is rotating on the pressure increasing side based on transition of the motor angle, and when the motor is rotating on the pressure decreasing side, the pressure reducing control gain. The control gain may be switched so as to refer to the control gain of the time control gain.
As a result, for example, the first and second shift loads and the first and second deformation loads, such as the first and second deformation loads, are linear motion mechanisms having nonlinear characteristics that differ between when the pressure is increased and when the pressure is decreased. and the second shift load, or the load region between the first and second deformation loads, when the pressure is stably increased, the characteristics at the time of pressure increase are obtained, and when the pressure is decreased, the characteristics at the time of pressure reduction are obtained. When employing a driving mechanism, the actuator can be operated with higher accuracy.
 上記構成において、前記制御ゲイン調整部は、前記電動モータの回転量に対する前記直線運動の直動量に対応する等価リードが大きい場合の前記電動モータの制御ゲインである第一の制御ゲインと、前記等価リードが小さくかつ前記弾性部材が変形する場合の前記制御ゲインである第二の制御ゲインと、前記等価リードが小さく前記弾性部材が変形限界に達した場合の前記制御ゲインである第三の制御ゲインと、該第一~第三の制御ゲインのいずれか一つに切替えて参照とする制御ゲイン切替部を有し、
 前記電動式直動アクチュエータは、さらに、
 モータ角度および推定荷重の何れか一方の変化に対する他方の変化の勾配を導出する変化勾配演算部と、
 前記変化勾配演算部で導出された変化の勾配を記憶し、記憶されている前記変化の勾配と、該記憶後に新たに前記変化勾配演算部で導出された変化の勾配とを比較し、所定以上勾配が変化していた場合には、制御ゲインの不連続点が存在すると判断する変化勾配比較部と、を備え、
 前記制御ゲイン切替部は、前記第一~第三の制御ゲインを使用し、前記不連続点が複数存在する場合に、前記変化勾配比較部が判断した複数の前記不連続点のうちの少なくとも一つに従って、
  第一の制御ゲインを参照している状態で、荷重が増加する増圧方向に変化した場合に、前記不連続点が生じたと判断されると第二の制御ゲインを参照し、
  第二の制御ゲインを参照している状態で、増圧方向に変化した場合に、前記不連続点が生じたと判断されると第三の制御ゲインを参照し、減圧方向に変化した場合に、前記不連続点が生じたと判断されると第一の制御ゲインを参照し、
  第三の制御ゲインを参照している状態で、減圧方向に変化した場合に、前記不連続点が生じたと判断されると第二の制御ゲインを参照してもよい。
 これにより、例えば前記の第一、第二の変速荷重および第一、第二の変形荷重のような増圧時と減圧時とで特性が異なる非線形性を有する直動機構であり、前記第一と第二の変速荷重の間の荷重領域、または前記第一と第二の変形荷重の間の荷重領域のようにアクチュエータ剛性が不安定な領域においても適切な制御ゲインを採択することで、より高精度にアクチュエータを動作させることができる。
In the above configuration, the control gain adjustment unit adjusts the first control gain, which is the control gain of the electric motor when an equivalent lead corresponding to the amount of linear motion of the linear motion with respect to the amount of rotation of the electric motor is large, and the equivalent A second control gain that is the control gain when the lead is small and the elastic member deforms, and a third control gain that is the control gain when the equivalent lead is small and the elastic member reaches a deformation limit. and a control gain switching unit that switches to any one of the first to third control gains for reference,
The electric linear motion actuator further comprises:
a change gradient calculation unit that derives a gradient of change of one of the motor angle and the estimated load with respect to the change of the other;
storing the gradient of change derived by the gradient-of-change computing unit; comparing the stored gradient of change with the gradient of change newly derived by the gradient-of-change computing unit after storing; a change gradient comparison unit that determines that a control gain discontinuity exists when the gradient changes,
The control gain switching unit uses the first to third control gains, and if there are a plurality of discontinuous points, at least one of the plurality of discontinuous points determined by the change gradient comparing unit according to
When it is determined that the point of discontinuity has occurred when the load changes in the direction of increasing pressure while referring to the first control gain, referring to the second control gain,
In the state of referring to the second control gain, when the pressure is changed in the direction of pressure increase, when it is determined that the discontinuity has occurred, the third control gain is referred to, and when the pressure changes in the direction of pressure reduction, referring to the first control gain when it is determined that the discontinuity point has occurred;
The second control gain may be referred to when it is determined that the point of discontinuity has occurred when the pressure changes in the direction of pressure reduction while the third control gain is being referred to.
As a result, for example, the first and second shift loads and the first and second deformation loads, such as the first and second deformation loads, are linear motion mechanisms having nonlinear characteristics that differ between when the pressure is increased and when the pressure is decreased. By adopting an appropriate control gain even in a region where the actuator stiffness is unstable, such as the load region between and the second shift load, or the load region between the first and second deformation loads, The actuator can be operated with high precision.
 上記構成において、前記制御装置は、
 前記電動モータの回転角を推定する推定器を有し、
 少なくとも予め記憶された前記制御ゲインの不連続点に対応する前記荷重が含まれる範囲の、所定量の該荷重における変化が発生した際の、前記電動モータの回転量と前記推定された荷重との変化履歴を記憶する剛性パラメータ記憶部を有し、
 さらに前記制御装置は、
 前記電動モータの角度および前記推定された荷重の前記変化履歴から、前記制御ゲインの不連続点を推定し、前記推定された不連続点に基づいて前記制御ゲインを更新する非線形剛性推定部を有するしてもよい。
 これにより、例えば電動式直動アクチュエータ各構成部品の接触状態変化や部品の摩耗等で発生し得る制御ゲインの特性変動について、実際の電動式直動アクチュエータのモータ回転量と荷重との相関から少なくとも不連続点の変化を推定した結果を制御ゲインに反映することで、少なくとも次回動作以降において電動式直動アクチュエータをより高精度に制御することが可能となる(ログ情報から更新して推定)。
In the above configuration, the control device
an estimator for estimating the rotation angle of the electric motor;
A rotation amount of the electric motor and the estimated load when a change in the load of a predetermined amount occurs in a range including at least the load corresponding to the discontinuity point of the control gain stored in advance. Having a stiffness parameter storage unit that stores a change history,
Further, the control device
a nonlinear stiffness estimating unit that estimates a point of discontinuity in the control gain from the angle of the electric motor and the change history of the estimated load, and updates the control gain based on the estimated point of discontinuity; You may
As a result, regarding characteristic fluctuations in the control gain that can occur due to, for example, changes in the contact state of each component of the electric linear motion actuator and wear of parts, at least By reflecting the result of estimating the change in the discontinuous point in the control gain, it is possible to control the electric linear motion actuator with higher accuracy at least from the next operation onward (updating and estimating from the log information).
 上記構成において、前記制御装置は、
 前記電動モータの回転角を推定する推定器を有し、
 所定量の前記荷重の変化または前記電動モータの回転量が発生した際の、該荷重および該回転量のいずれか一方に対する他方の変化量を推定して記憶し、
 さらに前記制御装置は、
 前記記憶されている変化量と、該記憶後に新たに推定された変化量とを比較し、これらの変化量が所定量より大きく変化した場合に、前記制御ゲインにおける前記電動モータの角度と荷重との不連続点が生じたと判断し、前記判断された不連続点に基づいて前記制御ゲインを更新してもよい。
 これにより、例えば電動式直動アクチュエータ各構成部品の接触状態変化や部品の摩耗等で発生し得る制御ゲインの特性変動について、実際の電動式直動アクチュエータのモータ回転量と荷重との相関から少なくとも不連続点の変化を推定した結果を制御ゲインに反映することで、少なくとも次回動作以降において電動式直動アクチュエータをより高精度に制御することが可能となる(リアルタイムの推定)。
In the above configuration, the control device
an estimator for estimating the rotation angle of the electric motor;
estimating and storing an amount of change in either one of the load and the amount of rotation when a predetermined amount of change in the load or the amount of rotation of the electric motor occurs, and
Further, the control device
The stored amount of change is compared with the amount of change newly estimated after the storage, and if the amount of change changes more than a predetermined amount, the angle and load of the electric motor at the control gain are determined. may be determined to have occurred, and the control gain may be updated based on the determined discontinuity point.
As a result, regarding characteristic fluctuations in the control gain that can occur due to, for example, changes in the contact state of each component of the electric linear motion actuator and wear of parts, at least By reflecting the result of estimating the change in the discontinuous point in the control gain, it becomes possible to control the electric linear motion actuator with higher accuracy at least from the next operation onward (real-time estimation).
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、この発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、この発明に含まれる。 Any combination of at least two configurations disclosed in the claims and/or the specification and/or the drawings is included in the present invention. In particular, any combination of two or more of each claim is included in the invention.
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。 The present invention will be more clearly understood from the following description of preferred embodiments with reference to the accompanying drawings. However, the embodiments and drawings are for illustration and description only and should not be used to define the scope of the invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same reference numerals in multiple drawings indicate the same or corresponding parts.
この発明の一の実施形態に係る電動式直動アクチュエータの概要構成を示すブロック図である。1 is a block diagram showing a schematic configuration of an electric linear motion actuator according to one embodiment of the present invention; FIG. この発明の他の実施形態に係る電動式直動アクチュエータの概要構成を示すブロック図である。FIG. 4 is a block diagram showing a schematic configuration of an electric linear motion actuator according to another embodiment of the present invention; 上記の各電動式直動アクチュエータにおける変速機構を有する直動機構の模式図である。FIG. 2 is a schematic diagram of a linear motion mechanism having a transmission mechanism in each of the electric linear motion actuators; 上記の各電動式直動アクチュエータにおける制御装置に含まれる荷重制御器の一例のブロック図である。FIG. 2 is a block diagram of an example of a load controller included in a control device in each electric linear motion actuator; 上記の各電動式直動アクチュエータにおける制御装置に含まれる荷重制御器の他例のブロック図である。FIG. 4 is a block diagram of another example of a load controller included in the control device in each of the electric linear motion actuators; 上記荷重制御器に含まれる制御ゲイン調整部の制御ゲインを説明する特性図の一例である。FIG. 4 is an example of a characteristic diagram for explaining control gains of a control gain adjusting section included in the load controller; 上記荷重制御器に含まれる制御ゲイン調整部の制御ゲインを説明する特性図の他の例である。FIG. 11 is another example of a characteristic diagram for explaining the control gain of the control gain adjusting section included in the load controller; FIG. 上記荷重制御器に含まれる制御ゲイン調整部の制御ゲインを説明する特性図のさらに他の例である。FIG. 13 is still another example of a characteristic diagram for explaining the control gain of the control gain adjustment section included in the load controller; FIG. 上記荷重制御器に含まれる制御ゲイン調整部の制御ゲインを説明する特性図のさらに他の例である。FIG. 13 is still another example of a characteristic diagram for explaining the control gain of the control gain adjustment section included in the load controller; FIG. 上記荷重制御器に含まれる制御ゲイン調整部の制御ゲインを説明する特性図のさらに他の例である。FIG. 13 is still another example of a characteristic diagram for explaining the control gain of the control gain adjustment section included in the load controller; FIG. 図3Aに示す荷重制御器をさらに詳しく説明するブロック図の一例である。3B is an example of a block diagram illustrating in more detail the load controller shown in FIG. 3A; FIG. 図3Aに示す荷重制御器をさらに詳しく説明するブロック図の他の例である。3B is another example of a block diagram illustrating in more detail the load controller shown in FIG. 3A; FIG. 上記電動式直動アクチュエータで荷重を発生させた場合の動作例を示す波形図である。FIG. 5 is a waveform diagram showing an operation example when a load is generated by the electric linear motion actuator.
<<電動ブレーキ装置の構成>>
 本発明の一の実施形態に係る電動式直動アクチュエータ1を適用した電動ブレーキ装置1Aについて説明する。図1Aに、制御装置100の一例たる電動ブレーキ制御装置100Aと、直動機構を用いたアクチュエータ500の一例たるブレーキアクチュエータ500Aと、指示手段300の一例たるブレーキペダル等のブレーキ指示手段300Aとからなる電動ブレーキ装置1Aの構成例を示す。電動ブレーキ装置1Aは、本実施形態では車両のブレーキ用である。
<<Configuration of Electric Brake Device>>
An electric brake device 1A to which an electric linear motion actuator 1 according to one embodiment of the present invention is applied will be described. 1A includes an electric brake control device 100A as an example of the control device 100, a brake actuator 500A as an example of an actuator 500 using a linear motion mechanism, and a brake instruction means 300A such as a brake pedal as an example of the instruction means 300. A configuration example of an electric brake device 1A is shown. The electric brake device 1A is for a vehicle brake in this embodiment.
<<ブレーキアクチュエータ500Aの構成>>
 ブレーキアクチュエータ500Aは、電動モータ510と、電動モータ510の回転運動を後述の摩擦材560の直線運動(直動)に変換する直動機構520と、電動モータ510のロータの回転量(回転数)または回転角度(以下、モータ角度とも称する)を検出し出力する角度センサ530と、車輪と一体で回転する、荷重の対象物たるブレーキロータ570と、ブレーキロータ570に押し付けられて荷重(または直動荷重。本実施形態では、ブレーキ荷重とも称する)を印加することで車両(の車輪)にブレーキ力を生じさせる摩擦材560と、ブレーキ荷重を検出し出力する荷重センサ540と、電動モータ510の回転数を減少させて直動機構520へ出力する減速機550と、変速機構580とから構成される。尚、ブレーキの性能要件によっては減速機550を設けない構成としてもよい。
<<Configuration of Brake Actuator 500A>>
The brake actuator 500A includes an electric motor 510, a linear motion mechanism 520 that converts the rotary motion of the electric motor 510 into a linear motion (linear motion) of a friction material 560 described later, and a rotation amount (rotation speed) of the rotor of the electric motor 510. Alternatively, an angle sensor 530 that detects and outputs a rotation angle (hereinafter also referred to as a motor angle), a brake rotor 570 that rotates integrally with the wheel and is an object of load, and a load (or linear motion sensor) that is pressed against the brake rotor 570 A friction material 560 that generates a braking force on (the wheels of) the vehicle by applying a load (also referred to as a braking load in this embodiment), a load sensor 540 that detects and outputs the braking load, and the rotation of the electric motor 510 It is composed of a reduction gear 550 that reduces the number and outputs it to the linear motion mechanism 520 and a speed change mechanism 580 . Depending on the performance requirements of the brake, a configuration in which the speed reducer 550 is not provided may be employed.
 電動モータ510は、例えば永久磁石同期電動機であり、これにより構成すると省スペースで高効率かつ高トルクとなり好適と考えられる。しかし、これに限らず、例えばブラシを用いたDCモータや、永久磁石を用いないリラクタンスモータ、あるいは誘導モータ等を適用することもできる。また、回転径方向に磁極を設けるラジアルギャップモータであってもよく、回転軸方向に磁極を有するアキシャルギャップモータであってもよい。 The electric motor 510 is, for example, a permanent magnet synchronous motor, which is considered suitable for space saving, high efficiency, and high torque. However, not limited to this, for example, a DC motor using brushes, a reluctance motor not using permanent magnets, an induction motor, or the like can also be applied. Further, it may be a radial gap motor having magnetic poles in the radial direction of rotation, or an axial gap motor having magnetic poles in the direction of the rotation axis.
 直動機構520は、本実施形態では、印加する直動荷重によって等価リードが変化する変速機構580を内蔵した直動機構が適用される。特に、後述の図2に示すような遊星キャリア524と複数の遊星転動体523とが、直動荷重の反作用力によって締結または離反することで等価リードが変化する遊星ローラねじ構造を適用すると、構成が簡素で省スペースとなり好ましい。もしくは、変速機構を設けた前述のような遊星減速機と、ボールねじ等やボールランプ機構等の回転運動を直進運動に変換可能な各種機構とを組み合わせた直動機構を用いることができる。 In this embodiment, the linear motion mechanism 520 is a linear motion mechanism incorporating a speed change mechanism 580 whose equivalent lead changes according to the applied linear motion load. In particular, when a planetary roller screw structure as shown in FIG. 2 which will be described later is applied to a planetary roller screw structure in which the equivalent lead changes when a planetary carrier 524 and a plurality of planetary rolling elements 523 are fastened or separated by a reaction force of a direct-acting load, the structure is preferable because it is simple and saves space. Alternatively, a linear motion mechanism can be used in which a planetary reduction gear provided with a speed change mechanism as described above is combined with various mechanisms such as a ball screw or a ball ramp mechanism that can convert rotational motion into linear motion.
 変速機構580は、本実施形態では、後述の図2のばね部材581(弾性部材の一例)およびストッパ583を含む。なお、変速機構580は、本実施形態のように直動機構520に内蔵されているものに限られず、例えば直動機構520外の減速機550内にあってもよく、また減速機550であってもよく、さらに変速機能を生じうるような他の機構であってもよい。 In this embodiment, the transmission mechanism 580 includes a spring member 581 (an example of an elastic member) and a stopper 583 shown in FIG. 2 which will be described later. Note that the speed change mechanism 580 is not limited to being built in the linear motion mechanism 520 as in the present embodiment, and may be, for example, inside the speed reducer 550 outside the linear motion mechanism 520 or in the speed reducer 550. It may also be any other mechanism capable of producing a speed change function.
 図1Aの角度センサ530は、例えばレゾルバや磁気エンコーダ等であり、これらを用いると高精度かつ高信頼性であり好適と考えられる。しかし、これらに限らず、光学式エンコーダ等の各種センサを適用することもできる。もしくは他の構成として、角度センサを用いずに、例えば後述する制御装置において電圧と電流との関係等からモータ角度を推定するような角度センサレス推定を適用することもできる。 The angle sensor 530 in FIG. 1A is, for example, a resolver, a magnetic encoder, or the like, and the use of these is highly accurate and highly reliable and is considered suitable. However, not limited to these, various sensors such as an optical encoder can also be applied. Alternatively, as another configuration, without using an angle sensor, for example, angle sensorless estimation can be applied in which the motor angle is estimated from the relationship between voltage and current in a control device to be described later.
 荷重センサ540は、例えばアクチュエータの作用させる荷重に応じた歪や変形等を検出するセンサであり、これを用いると安価で高精度となり好適と考えられる。しかし、これに限らず、圧電素子等の感圧媒体を用いることもできる。あるいは、ブレーキロータの制動トルクを検出するトルクセンサや、車両用電動ブレーキ装置の場合は車両の前後減速度を検出する加速度センサ等を用いてもよい。 The load sensor 540 is, for example, a sensor that detects strain, deformation, etc. according to the load applied by the actuator. However, it is not limited to this, and a pressure-sensitive medium such as a piezoelectric element can also be used. Alternatively, a torque sensor that detects the braking torque of the brake rotor, or an acceleration sensor that detects the longitudinal deceleration of the vehicle in the case of an electric vehicle brake device may be used.
 その他、図示外の要素として、ブレーキアクチュエータ500Aは、各部へ給電する電源装置や、サーミスタ等の各種センサ類を要件に応じて別途設けられてもよい。また、ブレーキアクチュエータ500Aは、ソレノイドやDCモータなどで、直動機構520等のアクチュエータの動力が伝達される部分をロックする機構が設けられることで、パーキングブレーキアクチュエータとして使用することもできる。 In addition, as elements not shown, the brake actuator 500A may be separately provided with a power supply device for supplying power to each part and various sensors such as a thermistor according to requirements. Also, the brake actuator 500A can be used as a parking brake actuator by providing a mechanism, such as a solenoid or a DC motor, that locks a portion to which the power of the actuator such as the linear motion mechanism 520 is transmitted.
<<電動ブレーキ制御装置100Aの構成>>
 電動ブレーキ制御装置100Aは、荷重制御演算を行う荷重制御器110の一例たるブレーキ制御演算を行うブレーキ制御器110Aと、モータの動作状態を演算する運動状態推定器120と、荷重力を推定する荷重力推定器130の一例たるブレーキ力を推定するブレーキ力推定器130Aと、所定のモータ出力を得るために電動モータ510を流れるモータ電流を制御するモータ制御器140と、モータに電力を供給するモータドライバ150と、上記モータ電流を検出する電流センサ160とから構成される。
<<Configuration of Electric Brake Control Device 100A>>
The electric brake control device 100A includes a brake controller 110A that performs brake control calculation, which is an example of a load controller 110 that performs load control calculation, a motion state estimator 120 that calculates the operating state of the motor, and a load force that estimates the load force. A braking force estimator 130A for estimating the braking force, which is an example of the force estimator 130, a motor controller 140 for controlling the motor current flowing through the electric motor 510 to obtain a predetermined motor output, and a motor for supplying electric power to the motor. It is composed of a driver 150 and a current sensor 160 for detecting the motor current.
 運動状態推定器120は、少なくとも電動モータ回転子(ロータ)の角度(モータ角度)を推定する角度推定部121、モータ角度の角速度を推定する角速度推定部123を備える。あるいは、運動状態推定器120は、これらの推定部を有する代わりに、例えば電動モータ角加速度等の所定微積分値を推定する機能や、さらに外乱を推定する機能等が設けられてもよい。また、モータ角度は、例えば電流制御に用いる電気角位相や、角度制御に用いる角度センサのオーバーラップおよびアンダーラップを補正した総回転角度等であってよく、角度推定部121は、制御構成に基づいて必要な物理量を適宜求める機能を有する。その他、前記モータ角度や角速度は、前記電動モータ回転子に代えて、例えば減速比に基づいて求めた減速機の所定部位の回転角度(回転数)等や、ねじ機構の等価リード等に基づいて求めた位置や速度であってもよい。前記物理量を推定する構成は、例えば状態推定オブザーバ等の構成を用いてもよく、微分や慣性方程式に基づく逆算等の直接的な演算であってもよい。 The motion state estimator 120 includes at least an angle estimator 121 that estimates the angle of the electric motor rotor (motor angle) and an angular velocity estimator 123 that estimates the angular velocity of the motor angle. Alternatively, the motion state estimator 120 may be provided with a function of estimating a predetermined calculus value such as an electric motor angular acceleration, a function of estimating a disturbance, etc., instead of having these estimating units. Further, the motor angle may be, for example, an electrical angle phase used for current control, or a total rotation angle corrected for overlap and underlap of an angle sensor used for angle control. It has a function to obtain the necessary physical quantity as appropriate. In addition, instead of the electric motor rotor, the motor angle and angular velocity are determined based on, for example, the rotation angle (rotation speed) of a predetermined portion of the speed reducer obtained based on the speed reduction ratio, the equivalent lead of the screw mechanism, and the like. It may be the determined position or velocity. The configuration for estimating the physical quantity may be, for example, a configuration of a state estimation observer or the like, or may be a direct calculation such as back calculation based on differentiation or inertia equations.
 電流センサ160には、例えば通電経路に設けたシャント抵抗両端の電圧を検出するアンプからなるセンサや、通電経路周囲の磁束等を検出する非接触式センサ等を用いることができる。あるいは、電流センサ160は、例えばモータドライバを構成する素子等の端子電圧等を検出する構成としてもよい。また、電流センサ160は、電動モータの各相間に設けてもよく、ローサイドまたはハイサイドに1つあるいは複数設けてもよい。もしくは、電流センサを設けずに、インダクタンスや抵抗値等のモータ特性等に基づいて電流値を算出し、フィードフォワード制御を行うこともできる。 For the current sensor 160, for example, a sensor consisting of an amplifier that detects the voltage across the shunt resistor provided in the energization path, or a non-contact sensor that detects the magnetic flux around the energization path, or the like can be used. Alternatively, the current sensor 160 may be configured to detect a terminal voltage or the like of an element constituting a motor driver, for example. Also, the current sensor 160 may be provided between each phase of the electric motor, or one or more may be provided on the low side or high side. Alternatively, feedforward control can be performed by calculating a current value based on motor characteristics such as inductance and resistance without providing a current sensor.
 ブレーキ制御器110Aは、所定の指令入力(具体的には、ブレーキ力指令値またはプレス力指令値。図3A、図3Bでは荷重指令値)に対してブレーキアクチュエータ500Aが望ましく追従するための操作量を求め、モータ駆動信号に変換する機能を有する。主に直動機構520の直線運動を行う構成部品の所謂ロッドのストローク位置[または(直動)ストローク量(摩擦材560の移動量に相当)]を制御し、摩擦材560とブレーキロータ570との当接によって発生するブレーキ力を制御するためのブレーキ力制御部113A(直動機構の直線運動への変換によって発生する荷重力を制御するための荷重力制御部113の一例)と、荷重条件に応じてブレーキ力制御部113Aにおいて演算される制御ゲインを調整する制御ゲイン調整部115とを備える。 The brake controller 110A sets an operation amount for the brake actuator 500A to desirably follow a predetermined command input (specifically, a brake force command value or a press force command value; load command values in FIGS. 3A and 3B). and convert it into a motor drive signal. It mainly controls the stroke position [or (linear motion) stroke amount (equivalent to the amount of movement of the friction material 560)] of the so-called rod of the component that performs the linear motion of the linear motion mechanism 520, and the friction material 560 and the brake rotor 570 A braking force control unit 113A (an example of the load force control unit 113 for controlling the load force generated by conversion of the linear motion mechanism into linear motion) for controlling the braking force generated by the contact of the linear motion mechanism), and the load condition and a control gain adjustment unit 115 that adjusts the control gain calculated in the braking force control unit 113A in response to .
 ブレーキ力制御部113A(すなわち荷重力制御部113)は、例えば、ねじ機構を用いた場合の等価リード、減速機を設けた場合の減速比、またはアクチュエータ500の各種緒言等に基づいてモータ回転量(またはモータ角度)から換算される直動機構520の直動ストローク量を制御するよう電動モータ510のモータ駆動量を決定する機能を有しうる。あるいは、ブレーキ力制御部113Aは、図示外のストロークセンサ等を別途設け、該センサ信号を所定の目標値に追従させるフィードバック制御する機能であってもよい。また、ブレーキ力制御部113Aは、例えばブレーキを解除する際に摩擦材560とブレーキロータ570とが極力当接しないようこれらの間に所定の空隙が存在し得るストローク量とする機能も有しうる。前記所定の空隙となりうるストローク量は、例えばブレーキ力推定器130Aが推定する推定ブレーキ力が所定の値となるモータ角度から所定量だけモータを回転させた位置や、あるいは推定ブレーキ力がモータ角度の推移に対して変化しなくなってから(または変化量が所定値よりも小さくなってから)所定量だけモータを回転させた位置として設定することができる。ブレーキ力制御部113Aは、その他、例えばブレーキ力を検出する荷重センサや前述のトルクセンサ等で検出が困難となりうる極めて軽微なブレーキ力をコントロールするために、例えば空隙がゼロ近傍またはゼロより小さい値となるストローク状態にするよう機能させてもよい。 The braking force control unit 113A (that is, the load force control unit 113) adjusts the motor rotation amount based on, for example, an equivalent lead when using a screw mechanism, a reduction ratio when a reduction gear is provided, or various specifications of the actuator 500. (or motor angle) to determine the motor drive amount of the electric motor 510 so as to control the linear motion stroke amount of the linear motion mechanism 520 . Alternatively, the brake force control section 113A may be provided with a stroke sensor or the like (not shown) separately, and may have a function of feedback-controlling the sensor signal to follow a predetermined target value. In addition, the braking force control section 113A can also have a function of setting a stroke amount such that a predetermined gap can exist between the friction material 560 and the brake rotor 570 so that the contact between the friction material 560 and the brake rotor 570 is minimized when the brake is released. . The stroke amount that can be the predetermined gap is, for example, a position where the motor is rotated by a predetermined amount from the motor angle at which the estimated braking force estimated by the braking force estimator 130A is a predetermined value, or a position where the estimated braking force is the motor angle. It can be set as a position where the motor is rotated by a predetermined amount after it stops changing with respect to the transition (or after the amount of change becomes smaller than a predetermined value). In addition, the braking force control unit 113A controls, for example, a very slight braking force that can be difficult to detect with a load sensor that detects the braking force or the above-described torque sensor. You may make it function so that it may become the stroke state which becomes.
 本実施形態では、具体的にはブレーキ力制御部113Aは、摩擦材560とブレーキロータ570とを当接させた際のブレーキ力を所定の目標値に追従制御するようモータ駆動量を決定する機能を有する。本実施形態においては、摩擦材560とブレーキロータ570との押付力を荷重センサ540で検出し、荷重センサ540の出力から後述のブレーキ力推定器130Aで推定されるブレーキ力(推定ブレーキ力)に基づいて機能する例を示すが、前述のブレーキロータの制動トルクを検出するトルクセンサ等を用いたブレーキ力制御とすることもできる。 Specifically, in this embodiment, the braking force control unit 113A has a function of determining the motor driving amount so that the braking force when the friction material 560 and the brake rotor 570 are brought into contact with each other is controlled to follow a predetermined target value. have In this embodiment, the pressing force between the friction material 560 and the brake rotor 570 is detected by the load sensor 540, and the braking force (estimated braking force) estimated by the braking force estimator 130A, which will be described later, is calculated from the output of the load sensor 540. Although an example functioning based on the above-described brake rotor is shown, the brake force control can also be performed using a torque sensor or the like for detecting the braking torque of the brake rotor.
 制御ゲイン調整部115は、ブレーキ力制御部113Aにて操作量を演算する際に適用する制御ゲインについて、電動モータ510のモータ角度から定まるモータ回転量およびアクチュエータ荷重の一例であるブレーキ荷重等を使用して、主に本実施形態では直動機構中に存在する変速機構580によって生じる非線形特性を考慮した制御ゲインに調整する機能を有する。この非線形特性について、次で述べる。 The control gain adjustment unit 115 uses the motor rotation amount determined from the motor angle of the electric motor 510 and the brake load, which is an example of the actuator load, for the control gain to be applied when the brake force control unit 113A calculates the operation amount. Then, in this embodiment, it has a function of adjusting the control gain in consideration of the non-linear characteristics caused by the speed change mechanism 580 present in the direct acting mechanism. This nonlinear characteristic is described below.
 (1)本実施形態の直動機構520において、図2の遊星キャリア524と回転軸521とが締結されて一体回転する状態(一体回転状態と呼ぶ)では等価リードが比較的大きく、遊星キャリア524と回転軸521とが離反して遊星転動体523が自転する状態(離反自転状態と呼ぶ)では遊星減速効果によって等価リードが比較的小さくなる。すなわち、これらの一体回転状態と離反自転状態との間で状態が変化した場合に、モータ回転量とブレーキ荷重との相関である剛性は少なくとも遊星減速効果の有無に応じた不連続な剛性となる。換言すれば、モータ回転量とブレーキ荷重との何れか一方に対する他方の変化勾配が、少なくとも遊星減速効果による減速比率の分だけ、不連続に推移する剛性となる。 (1) In the linear motion mechanism 520 of the present embodiment, when the planetary carrier 524 and the rotating shaft 521 in FIG. and the rotating shaft 521 separate from each other and the planetary rolling element 523 rotates (referred to as a separated rotation state), the equivalent lead becomes relatively small due to the planetary deceleration effect. That is, when the state changes between the integral rotation state and the separated rotation state, the stiffness, which is the correlation between the motor rotation amount and the brake load, becomes a discontinuous stiffness corresponding to at least the presence or absence of the planetary deceleration effect. . In other words, the change gradient of one of the motor rotation amount and the brake load with respect to the other becomes a rigidity that changes discontinuously by at least the deceleration ratio due to the planetary deceleration effect.
 (2)また、例えば前述の遊星キャリア524と遊星転動体523を締結または離反させる手段として直動荷重の反作用力で変形する弾性部材(本実施形態では、ばね部材)581を用いる場合、ばね部材581の変形量はゼロに近いほど性能上は好ましいが、寸法公差などの製造上の都合により所定量だけ変形させる構造とせざるを得ないのが実情である。よって、ばね部材581が変形する間は前記ばね部材の剛性の影響により、特にばね部材581の変形が限界となり変形できなくなった場合には、前記剛性は不連続となる。 (2) For example, when an elastic member (in this embodiment, a spring member) 581 that deforms due to the reaction force of the linear motion load is used as a means for fastening or separating the planetary carrier 524 and the planetary rolling element 523, the spring member The closer the amount of deformation of 581 is to zero, the better the performance is. Therefore, while the spring member 581 is deformed, the rigidity of the spring member becomes discontinuous, especially when the deformation of the spring member 581 reaches the limit and the deformation becomes impossible.
 その他、本実施形態では、例えばブレーキ力をゼロとする際に摩擦材560とブレーキロータ570との間に所定のクリアランスを設ける機能が設けられてもよい。また、ブレーキ力制御部113Aにおいて、ブレーキ力を所望の目標値に追従制御するモータ駆動量として、ブレーキ力のフィードバック偏差に基づくモータ角度や角速度を導出する演算式を使用し、前記モータ角度や角速度のフィードバックを行うマイナー制御ループを別途設けてもよい。 In addition, in this embodiment, for example, a function of providing a predetermined clearance between the friction material 560 and the brake rotor 570 when the braking force is set to zero may be provided. Further, in the braking force control unit 113A, an arithmetic expression for deriving the motor angle and angular velocity based on the feedback deviation of the braking force is used as the motor driving amount for following and controlling the braking force to a desired target value. A minor control loop may be provided separately for feedback of
 モータ制御器140は、ブレーキ力制御器110A(荷重制御器110)から出力された所定のモータ駆動信号に沿うよう、モータ電流を制御する機能を有する。モータ制御器140は、モータ電流について、所定のモータ角速度の状態で所定のトルクを得るために、最適な電流条件をあらかじめLUT(Look Up Table)に記憶させておき、現在のモータ角速度から目標電流値を決定して該電流値となるよう制御する機能とすると安価に高精度な制御が行えて好適と考えられる。しかし、これに限られず、電動モータ510の出力を導出するための電流や電圧等の間の関係式などを演算して駆動条件をリアルタイムで求める機能とすることもできる。 The motor controller 140 has a function of controlling the motor current in accordance with a predetermined motor drive signal output from the braking force controller 110A (load controller 110). The motor controller 140 stores the optimum current conditions in a LUT (Look Up Table) in advance in order to obtain a predetermined torque at a predetermined motor angular velocity, and calculates the target current from the current motor angular velocity. A function of determining a value and controlling to achieve the current value is considered to be suitable because high-precision control can be performed at a low cost. However, the present invention is not limited to this, and it is also possible to obtain a drive condition in real time by calculating a relational expression between current, voltage, etc. for deriving the output of the electric motor 510 .
 モータドライバ150は、例えばFET(Field Effect Transistor)等のスイッチ素子を用いたブリッジ回路で構成され、所定のデューティ比(モータ印加電圧のHigh時間とLow時間との比)によりモータ印加電圧を決定するPWM(Pulse Width Modulation:パルス幅変調)制御を行う構成とすると安価で高性能となり好適と考えられる。あるいは、モータドライバ150は、変圧回路等を設け、PAM(Pulse Amplitude Modulation(パルス振幅変調)制御を行う構成とすることもできる。 The motor driver 150 is composed of a bridge circuit using switching elements such as FETs (Field Effect Transistors), and determines the voltage applied to the motor based on a predetermined duty ratio (the ratio of the high time and low time of the voltage applied to the motor). A configuration that performs PWM (Pulse Width Modulation) control is considered to be suitable because of its low cost and high performance. Alternatively, the motor driver 150 may be provided with a transformer circuit or the like and configured to perform PAM (Pulse Amplitude Modulation) control.
 荷重力推定器130の一例たるブレーキ力推定器130Aは、ブレーキロータ570と摩擦材560との当接により発生する前記ブレーキ力を推定する機能を有する。具体的には、ブレーキ力推定器130Aは、荷重センサ540の入力を受けて推定ブレーキ力を出力する。 The braking force estimator 130A, which is an example of the load force estimator 130, has a function of estimating the braking force generated by the contact between the brake rotor 570 and the friction material 560. Specifically, braking force estimator 130A receives an input from load sensor 540 and outputs an estimated braking force.
 ブレーキ指示手段300Aは、ブレーキペダルに代えてボリューム、ジョイスティック、スイッチ等の操縦者が操作可能な各種操縦手段を用いることができる。 The brake instruction means 300A can use various operation means that can be operated by the operator, such as a volume, joystick, switch, etc., instead of the brake pedal.
 車両運動制御装置700は、図示外の、車両の衝突を防止するまたは衝突時の衝撃を軽減する自動ブレーキ機能部、車両が横滑り状態となった際に少なくともブレーキにより車両スピン等を防止するための横滑り防止機能部、ブレーキにより車輪がロックし車両挙動が不安定になることを防止するためのアンチスキッド制御部、等を備え、車両に所定の大きさのブレーキをかけるべくブレーキ操作量を決定して出力する。車両運動制御装置700は、例えば図示外の重力センサ、対物センサ、GPS(Global Positioning System)、等の各車載センサ類の情報を統合し、前記の各種機能に必要な演算を行う統合制御装置であってもよい。これら車両運動制御装置700で決定されたブレーキ操作量も、目標ブレーキ力または目標ブレーキ力の一部として電動ブレーキ制御装置100Aに伝達される。 The vehicle motion control device 700 includes an automatic brake function unit (not shown) that prevents the vehicle from colliding or reduces the impact of the collision, and at least brakes to prevent the vehicle from spinning or the like when the vehicle is skidding. Equipped with a side-slip prevention function unit, an anti-skid control unit to prevent vehicle behavior from becoming unstable due to locking of the wheels by the brakes, etc. output. The vehicle motion control device 700 is an integrated control device that integrates information from on-vehicle sensors (not shown) such as a gravity sensor, objective sensor, GPS (Global Positioning System), etc., and performs calculations necessary for the various functions described above. There may be. The brake operation amounts determined by the vehicle motion control device 700 are also transmitted to the electric brake control device 100A as the target braking force or part of the target braking force.
<<その他>>
 図示外要素として、電源装置を備えてもよく、電源装置は、例えば自動車用電動ブレーキ装置においては、低電圧バッテリや、高電圧バッテリを降圧する降圧コンバータ等を用いることができる。もしくは、高容量のキャパシタ等を用いるか、或いはこれらを並列使用して冗長化して用いることができる。また、モータドライバやソレノイドドライバには、直接電源出力を供給し、各種演算器や機能部等には、電動ブレーキ制御装置100A内で小型の降圧コンバータを適用し降圧して用いる構成が好ましく、または、各種演算器や機能部等には、直接電源出力を供給し、モータドライバおよびソレノイドの何れかまたは両方には、昇圧コンバータを介した電力を供給する構成としてもよい。
<<Others>>
A power supply device may be provided as a non-illustrated element, and the power supply device may be, for example, a low-voltage battery or a step-down converter for stepping down a high-voltage battery in an electric brake system for automobiles. Alternatively, a high-capacity capacitor or the like can be used, or these can be used in parallel for redundancy. In addition, it is preferable that the power output is directly supplied to the motor driver and the solenoid driver, and that a small step-down converter is applied in the electric brake control device 100A to the various computing units and functional units to step down the voltage, or , various calculators and functional units may be directly supplied with power output, and either or both of the motor driver and the solenoid may be supplied with power via a boost converter.
 その他、以上の各種演算器や機能部は、例えばプログラム動作するマイコン等のプロセッサ、FPGA(Field Programmable Gate Array)、ASIC(Application Specific Integrated Circuit)等の電子部品により構成すると、安価で高性能となり好適と考えられる。図に示す機能ブロックは、あくまで記述の便宜上設けたものであり、ハードウェアまたはソフトウェアの構成の指定や機能の分割等を制約するものではなく、また必要に応じて各ブロックの機能を統合または分割してもよい。また、ソフトウェアやハードウェアの具体的構成は、本実施形態に示す機能に支障がない範囲で任意に構成し得る。本実施形態の機能に支障がない範囲で図示外要素を加えることも可能であり、例えば各種機能やセンサ類が故障した場合のセーフティメカニズム等をシステム要件に基づいて適宜加えることが好ましい。 In addition, the above various arithmetic units and functional units are preferably configured with electronic components such as processors such as microcomputers that operate programs, FPGA (Field Programmable Gate Array), ASIC (Application Specific Integrated Circuit), etc., because they are inexpensive and have high performance. it is conceivable that. The functional blocks shown in the figure are provided for the convenience of description only, and do not limit the specification of the hardware or software configuration, the division of functions, etc., and the functions of each block can be integrated or divided as necessary. You may Further, the specific configuration of software and hardware can be arbitrarily configured as long as the functions shown in this embodiment are not hindered. Elements not shown may be added as long as they do not interfere with the functions of the present embodiment. For example, it is preferable to add a safety mechanism in case various functions or sensors fail based on system requirements.
 電動ブレーキ装置1Aは、車両用のブレーキ装置の他、例えば昇降装置や発電装置、フライホイールなどのエネルギー蓄積装置を停止するためのブレーキ装置として、適用することもできる。 The electric brake device 1A can also be applied as a brake device for stopping an energy storage device such as a lifting device, a power generator, or a flywheel, in addition to a vehicle brake device.
 本発明の他の実施形態に係る電動式直動アクチュエータ1を適用した電動プレス装置1Bについて説明する。図1Bに、制御装置100の一例たる電動プレス制御装置100Bと、直動機構を用いたアクチュエータ500の一例たるプレスアクチュエータ500Bと、指示手段300の一例たるプレス装置制御器300Bとからなる電動プレス装置1Bの構成例を示す。電動プレス装置1Bは、前実施形態の電動ブレーキ装置1Aに対して、荷重を印加する対象物がブレーキアクチュエータ500Aのブレーキロータ570に代えて、プレスアクチュエータ500Bのプレス対象物590となっている違いがある。電動プレス装置1Bにおいて電動ブレーキ装置1Aと同じ符号のものは、原則同様の機能を有するため、その機能は推測可能であり、以下での説明は割愛する。 An electric press device 1B to which an electric linear motion actuator 1 according to another embodiment of the present invention is applied will be described. FIG. 1B shows an electric press apparatus comprising an electric press control device 100B as an example of the control device 100, a press actuator 500B as an example of an actuator 500 using a linear motion mechanism, and a press device controller 300B as an example of an instruction means 300. 1B shows a configuration example. The electric press apparatus 1B differs from the electric brake apparatus 1A of the previous embodiment in that the object to which the load is applied is the press object 590 of the press actuator 500B instead of the brake rotor 570 of the brake actuator 500A. be. In the electric press device 1B, those having the same reference numerals as those of the electric brake device 1A basically have the same functions, so their functions can be presumed and will not be described below.
 電動プレス制御装置100Bのプレス制御器110Bは、荷重制御演算を行う荷重制御器110の一例であり、プレス制御の演算等を行う。プレス荷重推定器130Bは、荷重力を推定する荷重力推定器130の一例であり、駆動機構520からプレス対象物590へのプレス力(またはプレス荷重)を推定する。 The press controller 110B of the electric press control device 100B is an example of the load controller 110 that performs load control calculations, and performs press control calculations and the like. The press load estimator 130B is an example of the load force estimator 130 that estimates the load force, and estimates the press force (or press load) from the drive mechanism 520 to the press object 590. FIG.
 プレス制御器110Bのプレス荷重制御部113B(荷重制御器113の一例)は、直動機構の直線運動への変換によって発生する荷重力を制御するための荷重力制御部113の一例である。プレス荷重制御部113Bは、駆動機構520からプレス対象物590へのプレス力を所定の目標値に追従制御するようモータ駆動量を決定する機能を有する。本実施形態のプレス荷重制御部113Bにおいては、上記プレス力を荷重センサ540で検出し、荷重センサ540の出力からプレス荷重推定器130Bで推定されるプレス力(推定プレス力)に基づいて機能する例を示す。 The press load controller 113B (an example of the load controller 113) of the press controller 110B is an example of the load force controller 113 for controlling the load force generated by converting the linear motion of the linear motion mechanism into linear motion. The press load control section 113B has a function of determining a motor drive amount so that the press force from the drive mechanism 520 to the object to be pressed 590 is controlled to follow a predetermined target value. In the press load control section 113B of the present embodiment, the press force is detected by the load sensor 540, and functions based on the press force (estimated press force) estimated by the press load estimator 130B from the output of the load sensor 540. Give an example.
<<直動機構520の構造例>>
 図2(a)は、変速機構580を有する直動機構520の無負荷(無荷重)状態における模式図を示す。弾性部材たるばね部材581により、複数の遊星転動体523を支持する遊星キャリア524が、ストッパ583に押し付けられ、回転入力軸521と一体となり遊星転動体523が自転せず、遊星キャリア524と回転入力軸521とが一体回転することで(一体回転状態)、一般的な滑りねじと同じ動作となる。
<<Structural Example of Linear Motion Mechanism 520>>
FIG. 2(a) shows a schematic diagram of a linear motion mechanism 520 having a speed change mechanism 580 in an unloaded (unloaded) state. A planetary carrier 524 supporting a plurality of planetary rolling elements 523 is pressed against a stopper 583 by a spring member 581, which is an elastic member. By integrally rotating with the shaft 521 (integrally rotating state), the operation is the same as that of a general sliding screw.
 図2(b)は、所定以上の直動荷重を印加した際の、変速機構580を有する直動機構520の模式図を示す。遊星転動体523を介して回転入力軸521の回転力を直動荷重に変換して印加する力に対するアウタリング525から伝達する反作用力により、ばね部材581がΔだけ押し縮められる。これにより、遊星キャリア524のストッパ583への押し付けが解消されて遊星キャリア524と回転入力軸521との一体化が解除され、遊星転動体523が自転するようになり(離反自転状態)、回転入力軸521と遊星キャリア524とに回転の速度差が生じる遊星減速効果が生じ、これによって図2(a)の場合に比して等価リードが減少する。 FIG. 2(b) shows a schematic diagram of the linear motion mechanism 520 having the speed change mechanism 580 when a linear motion load of a predetermined value or more is applied. The spring member 581 is compressed by Δ due to reaction force transmitted from the outer ring 525 against the force applied by converting the rotational force of the rotary input shaft 521 into a linear load via the planetary rolling element 523 . As a result, the pressing of the planetary carrier 524 against the stopper 583 is released, the integration of the planetary carrier 524 and the rotation input shaft 521 is released, the planetary rolling element 523 rotates (separate rotation state), and the rotation is input. A planetary deceleration effect occurs in which a difference in rotational speed occurs between the shaft 521 and the planetary carrier 524, thereby reducing the equivalent lead compared to the case of FIG. 2(a).
<<荷重制御器110の構成例>>
 図3Aは、図1Aのブレーキ制御器110Aおよび図1Bのプレス制御器110Bを含む荷重制御器110の構成例を示す。図中の荷重目標値(指令入力)および推定荷重は、ブレーキ制御器110Aを構成する場合は、それぞれブレーキ力指令値および推定ブレーキ力となり、プレス制御器110Bを構成する場合は、それぞれプレス力指令値および推定プレス力となる。
<<Configuration example of load controller 110>>
FIG. 3A shows a configuration example of the load controller 110 including the brake controller 110A of FIG. 1A and the press controller 110B of FIG. 1B. The load target value (command input) and the estimated load in the figure are the braking force command value and the estimated braking force, respectively, when the brake controller 110A is configured, and the press force command when the press controller 110B is configured. value and estimated press force.
 荷重制御部113は、荷重目標値に対して実機の推定荷重値を追従させるためのモータ駆動量を導出する。例えば、荷重目標値と荷重推定値との偏差を計算し、前記偏差をゼロまたは許容する誤差範囲内とする操作量を求めることができる。 The load control unit 113 derives a motor drive amount for causing the estimated load value of the actual machine to follow the load target value. For example, it is possible to calculate the deviation between the load target value and the load estimated value, and obtain the manipulated variable that makes the deviation zero or within an allowable error range.
 制御ゲイン調整部115は、荷重目標値を取得し、前記荷重目標値に応じた制御ゲイン設定値を導出し、荷重制御部113の制御ゲインを前記制御ゲイン設定値に更新する機能を有する。この制御ゲイン設定値は、(例えば図2に記載のような変速機構による)不連続な非線形剛性に対応して不連続に推移する値となっている。 The control gain adjustment unit 115 has a function of acquiring a load target value, deriving a control gain setting value according to the load target value, and updating the control gain of the load control unit 113 to the control gain setting value. This control gain set value is a value that changes discontinuously corresponding to discontinuous nonlinear stiffness (for example, due to the transmission mechanism shown in FIG. 2).
 荷重制御部113において、荷重の推定値と前記荷重の目標値との偏差に対して、例えばPID補償(またはPID制御[Proportional Integral Differential Control])が行われる。この場合、制御ゲイン調整部115は、P制御[Proportional Control]、I制御[Integral Control]、およびD制御[Differential Control]のすべてのゲインに係る定常ゲイン1つを調整する機能であってもよく、P制御、I制御、およびD制御の各要素のゲインを個別に調整する機能であってもよい。もしくは、例えば荷重制御部113において所定のフィードバックループ固有値を有する状態フィードバックコントローラが適用される場合、制御ゲイン調整部115は固有値の少なくとも時定数を調整する機能であってもよい。これらの調整される値は、所定の演算式で導出することもできるが、あらかじめLUT(Look Up Table)等に、荷重に応じた所定の設計値を記憶させておき、LUT等を参照する仕様とすると計算量が削減できて好ましい。 In the load control unit 113, for example, PID compensation (or PID control [Proportional Integral Differential Control]) is performed on the deviation between the estimated value of the load and the target value of the load. In this case, the control gain adjustment unit 115 may have a function of adjusting one constant gain related to all gains of P control [Proportional Control], I control [Integral Control], and D control [Differential Control]. , P-control, I-control, and D-control gains may be individually adjusted. Alternatively, for example, when a state feedback controller having a predetermined feedback loop eigenvalue is applied in the load control section 113, the control gain adjustment section 115 may have a function of adjusting at least the time constant of the eigenvalue. These adjusted values can be derived by a predetermined calculation formula, but the specification is to store predetermined design values according to the load in advance in a LUT (Look Up Table), etc., and refer to the LUT, etc. Then, the amount of calculation can be reduced, which is preferable.
 また、上記モータ駆動量は、本実施形態においては、モータトルク指令値を示しており、このようにすると簡潔な運動方程式に基づいてコントローラ設計が行えるため好ましいと考えられる。しかし、これに限られず、例えばモータ電流指令値や、あるいは直接モータに印加する電圧を導出する構成とすることもできる。 Also, in this embodiment, the motor drive amount indicates a motor torque command value, which is considered preferable because the controller can be designed based on a simple equation of motion. However, the present invention is not limited to this, and may be configured to derive, for example, a motor current command value or a voltage to be directly applied to the motor.
 図3Bは、図3Aにおける制御ゲイン調整部115について、入力として荷重目標値に代えて推定荷重を参照して、制御ゲインを決定する構成の例を示す。この違い以外は図3Aと同様であるため、詳細な説明は省略する。なお、制御ゲイン設定値の算出は、例えば図3Aの構成と図3Bの構成とを併用して、荷重目標値と推定荷重との加重平均値のような中間値を用いることも可能である。 FIG. 3B shows an example of a configuration in which the control gain adjustment unit 115 in FIG. 3A refers to the estimated load instead of the load target value as an input to determine the control gain. Since it is the same as FIG. 3A except for this difference, detailed description is omitted. For calculation of the control gain setting value, for example, the configuration of FIG. 3A and the configuration of FIG. 3B can be used together to use an intermediate value such as a weighted average value of the load target value and the estimated load.
<<制御ゲイン調整部115>>
 図4A~図4Eは、図2の変速機構580を有する直動機構520を適用した場合の非線形剛性(増圧特性、減圧特性)と、それに応じた図3A、図3Bの制御ゲイン調整部115で算出される制御ゲイン(制御ゲイン設定値)の例とを示す(アクチュエータ荷重対モータ回転量および制御ゲイン特性図)。各図の上図において、実線は増圧時の増圧特性、破線は減圧時の減圧特性を示す。
<<Control Gain Adjustment Unit 115>>
4A to 4E show the nonlinear stiffness (pressure increase characteristic, pressure decrease characteristic) when the linear motion mechanism 520 having the transmission mechanism 580 of FIG. 2 is applied, and the control gain adjustment section 115 of FIGS. (actuator load vs. motor rotation amount and control gain characteristic diagram). In the upper diagram of each figure, the solid line indicates the pressure increase characteristic during pressure increase, and the dashed line indicates the pressure reduction characteristic during pressure reduction.
 図4A~図4Eの各下図に、アクチュエータ荷重(または直動荷重)に対する制御ゲインを示している。アクチュエータ荷重に対するモータ回転量の変化勾配(モータ回転量変化勾配と呼ぶ)、またはその逆のモータ回転量に対するアクチュエータ荷重の変化勾配が不連続的に変化する箇所を不連続点と定義した場合、本実施形態では、増圧特性、減圧特性において、図中にそれぞれ2か所の剛性の不連続点が存在し、アクチュエータ荷重が低い順から数えて1か所目は直動機構の等価リードが変化する変速が発生する不連続点、2か所目は変速機構のばね部材(弾性部材)の変形限界等の変形による不連続点である。ここで、不連続とは、微視的に見れば徐々に変化する連続性を示す場合であっても、フルスケールを巨視的に見て前述の変化勾配が極めて急峻に変化する場合は前述の不連続に含まれる。反対に、例えばLUTなどの離散化された情報における離散化に起因したサンプル間の不連続性は前述の不連続に含めないものとする。 The lower diagrams of FIGS. 4A to 4E show control gains with respect to actuator loads (or linear motion loads). If the change gradient of the motor rotation amount with respect to the actuator load (referred to as the motor rotation amount change gradient) or vice versa, the discontinuity point is defined as the point where the change gradient of the actuator load with respect to the motor rotation amount changes discontinuously. In the embodiment, there are two points of discontinuity in rigidity in each of the pressure-increasing characteristics and the pressure-decreasing characteristics in the figure. The second point is a discontinuous point due to deformation such as the deformation limit of the spring member (elastic member) of the transmission mechanism. Here, the term discontinuity means that even if microscopically it shows continuity that gradually changes, macroscopically looking at the full scale, if the above-mentioned change gradient changes extremely sharply, it means that the above-mentioned Included in discontinuity. Conversely, discontinuities between samples due to discretization in discretized information, such as LUTs, shall not be included in the aforementioned discontinuities.
 ここで、例えば前記ばね部材の変形量が極めてゼロに近いか、または直動機構520が最大荷重を印加した状態でも変形限界に達しないばね部材を適用する構造を採用する場合等には、上記2か所目の不連続点が存在しない制御ゲインもありうる。 Here, for example, when adopting a structure in which the amount of deformation of the spring member is extremely close to zero, or a spring member that does not reach the deformation limit even when the linear motion mechanism 520 applies the maximum load, the above-mentioned There may be control gains in which there is no second discontinuity.
 一般的に、増圧時と減圧時の直動機構の非線形剛性は、主に変形が発生する部材の接触部の摩擦などの要因により、増圧時と減圧時で一致しない非線形性を有し(前述のヒステリシス特性)、どのような傾向で不一致となるかは採用する直動機構によって異なる。また、経年変化や摩耗により非線形性が変化する場合もあり、さらにはどの程度の荷重を発生させたかなどの動作履歴によっても非線形性が変化する可能性がある。すなわち、少なくとも図に示すアクチュエータ荷重に対する制御ゲインにおいて増圧側と減圧側の特性が異なる領域(中間領域)は、予め明確にどのような剛性を示すかを把握するのが難しい領域となる。 In general, the nonlinear stiffness of the linear motion mechanism during pressure increase and decompression has nonlinearity that does not match during pressure increase and decompression due to factors such as friction at the contact part of the member where deformation occurs. (Hysteresis characteristics described above), the tendency of mismatching differs depending on the linear motion mechanism employed. In addition, the nonlinearity may change due to aging or wear, and the nonlinearity may also change depending on the operation history such as how much load is generated. That is, at least in the area (intermediate area) where the characteristics of the pressure increase side and the pressure decrease side are different in the control gain with respect to the actuator load shown in the figure, it is difficult to clearly grasp in advance what kind of rigidity is exhibited.
 図4Aについて、増圧時における、アクチュエータ荷重が低い側から見た場合において1か所目の所定のアクチュエータ荷重F1aにおいて、一体回転状態から離反自転状態へと変遷して変速が発生したため等価リードが減少し、アクチュエータ荷重に対するモータ回転量変化勾配が増加する不連続点が生じる。減圧時の特性では、増圧時特性と比べて、同F1aにおいては等価リードが大きくモータ回転量変化勾配が比較的小さい状態となっている。減圧時においては、前記F1aより大きいアクチュエータ荷重F2aにおいて、離反自転状態から一体回転状態へと変遷して再び変速が発生したため、アクチュエータ荷重が低い側から見た1か所目の不連続点が発生する特性を示す。 Regarding FIG. 4A, when the pressure is increased, when the actuator load is low, the equivalent lead is changed at the first predetermined actuator load F1a from the unitary rotation state to the separated rotation state. A discontinuity occurs where the motor rotation amount change gradient with respect to the actuator load increases. Compared to the pressure increase characteristic, the equivalent lead is large and the motor rotation amount change gradient is relatively small at F1a. At the time of decompression, when the actuator load F2a is larger than F1a, the shift occurs again from the separated rotation state to the integral rotation state, so the first point of discontinuity when viewed from the side where the actuator load is low occurs. It shows the characteristics of
 このとき、制御ゲイン調整部115における制御ゲインでは、低荷重側から見たときに1か所目の不連続点において制御ゲインが低い状態から高い状態へと推移し、前記F1aからF2aの区間においては、制御ゲインが低い状態であり、不連続点は減圧側のF2aの不連続点を採用する。これによると、等価リードが大きい状態にも関わらず等価リードが小さいと想定してモータを大きく駆動してしまいアクチュエータが大きくオーバーシュートするような制御性悪化を防止出来て好ましい。尚、前記制御ゲインの不連続点はF1aよりもF2aに十分近い荷重における不連続点であればよく、もしくはアクチュエータの個体ごとの特性バラつきや経年変化等を考慮し、前記不連続点はF2aより少し大きな荷重に設定してもよい。 At this time, the control gain in the control gain adjustment unit 115 transitions from a low state to a high state at the first discontinuous point when viewed from the low load side, and in the section from F1a to F2a is a state in which the control gain is low, and the discontinuity point of F2a on the pressure reduction side is adopted as the discontinuity point. According to this, although the equivalent lead is large, the motor is driven by a large force on the assumption that the equivalent lead is small. The discontinuity point of the control gain may be a discontinuity point at a load that is sufficiently closer to F2a than F1a. A slightly larger load may be set.
 尚、本実施形態における制御ゲインが高いおよび低いとは、実際に乗算する係数の絶対値が大きいおよび小さいという意味の他に、構成される制御ループの固有値について時定数が小さい(=速い)および大きい(=遅い)という意味も含むものとする。 In this embodiment, high and low control gains mean that the absolute values of coefficients to be actually multiplied are large and small. It also includes the meaning of being large (=slow).
 また、増圧時における、アクチュエータ荷重が低い側から見た場合において2か所目のアクチュエータ荷重F3aにおいて、変速機構580のばね部材(弾性部材)581が変形限界となり、アクチュエータ荷重に対するモータ回転量変化勾配が減少する不連続点が生じる。減圧時においては、前記F3aより小さい所定のアクチュエータ荷重F4aが、アクチュエータ荷重が低い側から見た場合において2か所目の不連続点となる。このとき、制御ゲイン調整部115における制御ゲインは、低荷重側から見たときに2か所目の不連続点において制御ゲインが高い状態から低い状態へと推移し、前記F4aからF3aの区間においては、制御ゲインが低い状態であり、不連続点は減圧側のF4aの不連続点を有する特性を採用する。これによると、等価リードが大きい状態にも関わらず等価リードが小さいと想定してモータを大きく駆動してしまいアクチュエータが大きくオーバーシュートするような制御性悪化を防止出来て好ましい。尚、前記制御ゲインの不連続点はF3aよりもF4aに十分近い荷重における不連続点であればよく、もしくはアクチュエータの個体ごとの特性バラつきや経年変化等を考慮し、前記不連続点はF4aより少し小さな荷重に設定してもよい。 Also, when the actuator load is increased and viewed from the lower actuator load side, at the second actuator load F3a, the spring member (elastic member) 581 of the transmission mechanism 580 reaches its deformation limit, and the motor rotation amount change with respect to the actuator load. A discontinuity occurs where the slope decreases. When the pressure is reduced, the predetermined actuator load F4a, which is smaller than F3a, is the second point of discontinuity when viewed from the low actuator load side. At this time, the control gain in the control gain adjustment unit 115 transitions from a high state to a low state at the second discontinuity point when viewed from the low load side, and in the section from F4a to F3a is a state in which the control gain is low, and adopts a characteristic having a discontinuous point of F4a on the pressure reduction side as the discontinuous point. According to this, although the equivalent lead is large, the motor is driven by a large force on the assumption that the equivalent lead is small. The discontinuity point of the control gain may be a discontinuity point at a load that is sufficiently closer to F4a than F3a. A slightly smaller load may be set.
 図4Bについて、増圧時における、アクチュエータ荷重が低い側から見た場合において1か所目の所定のアクチュエータ荷重F1bにおいて、一体回転状態から離反自転状態へと変遷して変速が発生したため等価リードが減少し、アクチュエータ荷重に対するモータ回転量変化勾配が増加する不連続点が生じる。減圧時においては、同F1bより小さいアクチュエータ荷重F2bにおいて、離反自転状態から一体回転状態へと変遷して再び変速が発生したため、アクチュエータ荷重が低い側から見た1か所目の不連続点が発生している。減圧時の特性では、増圧時特性と比べて、F1bより小さい荷重の領域においてモータ回転量変化勾配が大きくなっている。 Regarding FIG. 4B, when the pressure is increased, when the actuator load is low, the equivalent lead is changed at the first predetermined actuator load F1b from the integral rotation state to the separated rotation state. A discontinuity occurs where the motor rotation amount change gradient with respect to the actuator load increases. When the pressure is reduced, the actuator load F2b, which is smaller than F1b, changes from the separated rotation state to the integral rotation state and shift occurs again. doing. Compared to the pressure increase characteristic, the motor rotation amount change gradient is larger in the load region smaller than F1b in the pressure decrease characteristic.
 このとき、好ましくは、前記F2bからF1bの区間においては、制御ゲインが低い状態であり、不連続点は増圧側のF1bの不連続点を採用する。前記制御ゲインの不連続点はF2bよりもF1bに十分近い荷重における不連続点であればよく、もしくはアクチュエータの個体ごとの特性バラつきや経年変化等を考慮し、前記不連続点はF1bより少し大きな荷重に設定してもよい。なお、増減圧それぞれの特性においてばね部材の変形による不連続点が発生するF4bからF3bの区間における制御ゲインは、図4AのF4aからF3aの区間と同様に設定することができる。 At this time, preferably, in the section from F2b to F1b, the control gain is in a low state, and the discontinuity point of F1b on the pressure increasing side is adopted as the discontinuity point. The discontinuity point of the control gain may be a discontinuity point at a load that is sufficiently closer to F1b than F2b, or the discontinuity point is slightly larger than F1b, considering the characteristic variation and aging of each actuator. You can set the load. Note that the control gain in the interval from F4b to F3b, where a discontinuous point occurs due to the deformation of the spring member in each characteristic of increasing/decreasing pressure, can be set in the same manner as in the interval from F4a to F3a in FIG. 4A.
 図4Cについて、増圧時における、アクチュエータ荷重が低い側から見た場合において2か所目の所定のアクチュエータ荷重F3cにおいて、変速機構580のばね部材(弾性部材)581が変形限界となり、アクチュエータ荷重に対するモータ回転量変化勾配が減少する不連続点が生じる。減圧時においては、前記F3cより大きい所定のアクチュエータ荷重F4cが、アクチュエータ荷重が低い側から見た場合において2か所目の不連続点となる。 Regarding FIG. 4C, at the second predetermined actuator load F3c when viewed from the low actuator load side during pressure increase, the spring member (elastic member) 581 of the transmission mechanism 580 reaches its deformation limit, and the actuator load A discontinuity occurs where the motor rotation amount change gradient decreases. When the pressure is reduced, the predetermined actuator load F4c larger than F3c is the second point of discontinuity when viewed from the low actuator load side.
 このとき好ましくは、制御ゲイン調整部115における制御ゲインは、前記F3cからF4cの区間においては、制御ゲインが低い状態であり、不連続点は増圧側のF3cの不連続点を採用する。前記制御ゲインの不連続点はF4cよりもF3cに十分近い荷重における不連続点であればよく、もしくはアクチュエータの個体ごとの特性バラつきや経年変化等を考慮し、前記不連続点はF3cより少し小さな荷重に設定してもよい。なお、等価リードの変化による不連続点が発生するF1cからF2cの区間における制御ゲインは、図4AのF1aからF2aの区間と同様に設定することができる。 At this time, preferably, the control gain in the control gain adjusting section 115 is in a low state in the section from F3c to F4c, and the discontinuity point of F3c on the pressure increasing side is adopted as the discontinuity point. The discontinuity point of the control gain may be a discontinuity point at a load that is sufficiently closer to F3c than F4c. You can set the load. The control gain in the section from F1c to F2c where a discontinuity occurs due to the change in the equivalent lead can be set in the same manner as in the section from F1a to F2a in FIG. 4A.
 図4Dについては、アクチュエータ荷重F1dからF2dの間は図4BのF1bからF2bの間と同様に、アクチュエータ荷重F3dからF4dの間は図4CのF3cからF4cと同様に制御ゲインを定めることができる。図4Eは、変速機構580を有する電動式直動アクチュエータ1を電動ブレーキ装置1Aに適用した場合における制御ゲインの例を示す。図4Aの増圧特性、減圧特性、および制御ゲインが、直線よりも曲線に近い特性となっている。 Regarding FIG. 4D, the control gain can be determined between actuator loads F1d and F2d in the same manner as between F1b and F2b in FIG. 4B, and between actuator loads F3d and F4d in the same manner as F3c to F4c in FIG. 4C. FIG. 4E shows an example of control gain when the electric linear motion actuator 1 having the transmission mechanism 580 is applied to the electric brake device 1A. The pressure increase characteristic, pressure decrease characteristic, and control gain in FIG. 4A are closer to curved lines than straight lines.
 一般に、例えばブレーキ用の摩擦材等の非線形剛性の影響により電動ブレーキ装置は非線形な剛性を有するが、その変化は概ね連続的である一方、図2に示す変速機構580を有する直動機構520を適用すると不連続な変化が生じる。従って、それに対する制御ゲインとして、変速機構580による剛性の不連続点に対応する制御ゲインの不連続点を設け、それ以外の領域では連続的に変化する制御ゲインとすることができる。尚、増圧・減圧による非線形性は)図4Aと同様の傾向を示すものとして記載するが、図4B~図4Dの傾向を示すアクチュエータを採用した場合は図4B~図4Dと同様に制御ゲインの不連続点を設定することができる。また、制御ゲインの不連続点を除く区間は連続的な非線形性をもつ例を示しているが、コントローラをある程度ロバストに設計した上で一定の勾配で変化するよう簡素化してもよく、あるいは略一定値とすることもできる。 In general, an electric brake device has non-linear stiffness due to the non-linear stiffness of friction materials for brakes, etc., but the change is generally continuous. A discontinuous change occurs when applied. Therefore, as a control gain for that, a control gain discontinuity point corresponding to a rigidity discontinuity point by the transmission mechanism 580 can be provided, and a control gain that changes continuously can be used in other areas. The nonlinearity due to pressure increase/decrease is described as showing the same tendency as in FIG. 4A, but if an actuator showing the tendency of FIGS. discontinuity can be set. In addition, although the section excluding the discontinuous point of the control gain shows an example with continuous nonlinearity, the controller may be designed to be robust to some extent and then simplified so that it changes with a constant gradient, or approximately It can also be a constant value.
<<制御ゲイン調整部115の他の例>>
 図5Aは、モータ角度と推定荷重から非線形剛性およびその不連続点を推定し、推定結果に基づいて制御ゲイン調整部115の制御ゲインを調整、更新する例を示す。なお、図5Aでは、制御ゲイン調整部115は、増圧時の制御ゲインが記憶された増圧時制御ゲイン115aと、減圧時の制御ゲインが記憶された減圧時制御ゲイン115bとを有し、さらに、前記増圧時制御ゲイン115aまたは減圧時制御ゲイン115bの制御ゲインの何れを参照するかを決定する制御ゲイン切替部115cを有する。
<<Another example of the control gain adjustment unit 115>>
FIG. 5A shows an example of estimating the nonlinear stiffness and its discontinuity from the motor angle and the estimated load, and adjusting and updating the control gain of the control gain adjuster 115 based on the estimation result. In FIG. 5A, the control gain adjustment unit 115 has a pressure increase control gain 115a that stores a control gain for pressure increase and a pressure decrease control gain 115b that stores a control gain for pressure decrease. Further, it has a control gain switching unit 115c for determining which of the pressure increase control gain 115a and the pressure decrease control gain 115b to refer to.
 制御ゲイン切替部115cは、例えばモータ角度の推移から増圧側にモータが回転していると判断された場合は、増圧時制御ゲイン115aの制御ゲインを参照し、減圧側にモータが回転していると判断された場合は、減圧時制御ゲイン115bの制御ゲインを参照するよう、制御ゲインを切替える機能とすることができる。あるいは、制御ゲイン切替部115cは、増圧側に所定量以上モータが回転している場合と、減圧側に所定量以上モータが回転している場合と、これらのいずれにも該当しない中間状態とを判断してもよく、中間状態においては、増圧時と減圧時の制御ゲインが所定の比率で結合された制御ゲインを参照するようにしてもよい。また、前記モータ角度に代えて、推定荷重の推移から、制御ゲインを前記増圧時制御ゲイン115aおよび減圧時制御ゲイン115bのいずれから参照するかの判断を行ってもよい。 For example, when it is determined that the motor is rotating toward the pressure increasing side from the transition of the motor angle, the control gain switching unit 115c refers to the control gain of the pressure increasing control gain 115a to determine whether the motor is rotating toward the pressure decreasing side. If it is determined that the control gain is present, the control gain can be switched so as to refer to the control gain of the pressure reduction control gain 115b. Alternatively, the control gain switching unit 115c selects a case where the motor is rotating on the pressure increasing side by a predetermined amount or more, a case when the motor is rotating on the pressure reducing side by a predetermined amount or more, and an intermediate state that does not correspond to any of these. Alternatively, in the intermediate state, reference may be made to a control gain in which the control gains for pressure increase and pressure reduction are combined at a predetermined ratio. Further, instead of the motor angle, it may be determined which of the pressure-increasing control gain 115a and the pressure-decreasing control gain 115b should be referred to as the control gain based on the transition of the estimated load.
 さて、図5Aでは、上記制御ゲイン調整部115を有する上、図3Aの構成に加えて、剛性パラメータ記憶部117と、非線形剛性推定部118とを有する。剛性パラメータ記憶部117は、少なくとも予め記憶された制御ゲインの不連続点に対応する荷重が含まれる範囲の、所定量の該荷重における変化が発生した際の、電動モータ510の回転量と前記推定された荷重との変化履歴を記憶する。具体的には、剛性パラメータ記憶部117は、増圧動作中のモータ角度と推定荷重を記憶する増圧時データ記憶部117aと、減圧動作中のモータ角度と推定荷重とを記憶する減圧時データ記憶部117bとを備える。 Now, in FIG. 5A, in addition to having the control gain adjustment unit 115, a stiffness parameter storage unit 117 and a nonlinear stiffness estimation unit 118 are provided in addition to the configuration of FIG. The stiffness parameter storage unit 117 stores at least the amount of rotation of the electric motor 510 when a change occurs in the load corresponding to the discontinuous point of the control gain stored in advance, and the amount of rotation of the electric motor 510 and the estimated Stores the change history with the applied load. Specifically, the stiffness parameter storage unit 117 includes a pressure increase data storage unit 117a that stores the motor angle and the estimated load during the pressure increase operation, and a pressure decrease data storage unit 117a that stores the motor angle and the estimated load during the pressure decrease operation. and a storage unit 117b.
 非線形剛性推定部118は、電動モータ510の角度および前記推定された荷重の前記変化履歴から、制御ゲインにおける上記モータの角度と荷重との相関の不連続点を推定し、この推定された不連続点に基づいて前記制御ゲインを更新する。具体的には、非線形剛性推定部118は、不連続点を推定し、非線形剛性を導出するための所定の関数を、前記剛性パラメータ記憶部117に記憶されたモータ角度および推定荷重に対して、誤差を最小化するパラメータフィッティングを行う収束演算部118aと、収束演算部118aの結果に基づいて非線形剛性を導出する制御ゲイン演算部118bとを備える。なお、収束演算部118aにおけるパラメータフィッティングは、剛性パラメータ記憶部117に少なくとも剛性の不連続点を含む十分な範囲のデータが蓄積された段階で実行される。 A nonlinear stiffness estimator 118 estimates a discontinuity in the correlation between the angle of the motor 510 and the load in the control gain from the change history of the angle of the electric motor 510 and the estimated load, and calculates the estimated discontinuity. Update the control gains based on the points. Specifically, the nonlinear stiffness estimator 118 estimates a discontinuity point and applies a predetermined function for deriving the nonlinear stiffness to the motor angle and the estimated load stored in the stiffness parameter storage 117 as follows: It has a convergence calculator 118a that performs parameter fitting to minimize an error, and a control gain calculator 118b that derives the nonlinear stiffness based on the result of the convergence calculator 118a. The parameter fitting in the convergence calculation unit 118a is executed at the stage when the stiffness parameter storage unit 117 has accumulated a sufficient range of data including at least stiffness discontinuities.
 収束演算部118aにおいて、等価リードが大きい状態の剛性を示す関数g1(F)と、等価リードが小さくかつばね部材が変形する状態の剛性を示す関数g2(F)と、等価リードが小さくかつばね部材の変形が生じない(変形限界等)状態の剛性を示す関数g3(F)と、2つの不連続点に相当する、g1(F)とg2が一致する荷重Fnl1と、g2(F)とg3(F)が一致する荷重Fnl2とを用いて、モータ角度θおよび荷重Fについて非線形剛性は次のように導出される。
Figure JPOXMLDOC01-appb-M000001
ここで、g1(Fnl1) = g2(Fnl1), g2(Fnl2) = g3(Fnl2) を満足させるようg1(F), g2(F), g3(F)のうち何れか2つの関数の定数項は調整され、g1(F), g2(F), g3(F)のうち前記2つを除いた1つの関数の定数項Fcは後述のパラメータフィッティングの変数に用いる。
In the convergence calculation unit 118a, a function g1(F) indicating the stiffness when the equivalent lead is large, a function g2(F) indicating the stiffness when the equivalent lead is small and the spring member is deformed, and a function g2(F) which indicates the stiffness when the equivalent lead is small and the spring The function g3(F) that indicates the stiffness of the member when no deformation occurs (deformation limit, etc.), the load Fnl1 corresponding to the two points of discontinuity where g1(F) and g2 coincide, and g2(F) Using the load Fnl2 with which g3(F) matches, the nonlinear stiffness is derived for the motor angle θ and the load F as follows.
Figure JPOXMLDOC01-appb-M000001
where any two constant terms of g1(F), g2(F), g3(F) satisfy g1(Fnl1) = g2(Fnl1), g2(Fnl2) = g3(Fnl2) is adjusted, and the constant term Fc of one function out of g1(F), g2(F), g3(F) excluding the above two is used as a parameter fitting variable described later.
 収束演算部118aは、増圧時及び減圧時について、剛性パラメータ記憶部117の各データサンプルθ1・・・θkおよびF1・・・Fk(kはサンプル数)に対して、例えばニュートン法などの収束演算アルゴリズムを用いて、θ= f(F)式において、次の誤差関数Jを最小化するような2つの不連続点Fnl1, Fnl2, および定数項Fcの変数を算出する。
Figure JPOXMLDOC01-appb-M000002
The convergence calculation unit 118a performs a convergence calculation such as Newton's method on each data sample θ1 . . . θk and F1 . Using an arithmetic algorithm, variables of two discontinuous points Fnl1, Fnl2, and a constant term Fc that minimize the following error function J in the θ=f(F) formula are calculated.
Figure JPOXMLDOC01-appb-M000002
 制御ゲイン演算部118bは、収束演算部118aの上記算出結果に基づき増圧時、減圧時それぞれの制御ゲインを導出する。制御ゲインの導出が完了した後、制御ゲイン調整部115の制御ゲインを更新する。前記制御ゲインは、剛性関数g1,g2,g3のそれぞれの導出結果に基づき各関数ごとに制御ゲインが決定され、それらが不連続点Fnl1,Fnl2に相当する荷重条件で切り替わるよう結合された制御ゲインとして導出することができる。あるいは、前記関数ごとの制御ゲインに代えて予め設定された制御ゲインを、不連続点Fnl1,Fnl2に相当する荷重条件で切り替わるよう結合された制御ゲインを用いて、導出過程を簡素化してもよい。このとき、前記収束演算部における関数g1,g2,g3も固定の関数として、さらに簡素化された計算過程とすることもできる。 The control gain calculation unit 118b derives control gains during pressure increase and pressure reduction based on the above calculation results of the convergence calculation unit 118a. After the derivation of the control gain is completed, the control gain of the control gain adjuster 115 is updated. The control gains are obtained by determining the control gains for each function based on the derivation results of the stiffness functions g1, g2, and g3, and connecting them so that they are switched under the load conditions corresponding to the discontinuous points Fnl1 and Fnl2. can be derived as Alternatively, instead of the control gain for each function, the derivation process may be simplified by using a control gain that is combined so as to switch under load conditions corresponding to the discontinuous points Fnl1 and Fnl2. . At this time, the functions g1, g2, and g3 in the convergence calculation section can also be fixed functions, and the calculation process can be further simplified.
 制御ゲインの導出が完了した後、前記導出された制御ゲインの不連続点に基づいて、制御ゲイン調整部に記憶された制御ゲインの不連続点が制御ゲイン調整部115によって更新される。このとき、増圧時、減圧時それぞれの制御ゲインに対して、不連続点は図4A~図4Eを用いて説明した手法に従って決定される。 After the derivation of the control gain is completed, the discontinuity point of the control gain stored in the control gain adjustment section is updated by the control gain adjustment section 115 based on the derived discontinuity point of the control gain. At this time, the point of discontinuity is determined according to the method described with reference to FIGS. 4A to 4E for each of the control gains during pressure increase and pressure decrease.
 尚、増圧時制御ゲインと減圧時制御ゲインの制御ゲインは同時に更新されるものであってもよく、それぞれ任意のタイミングで個別に更新されるものであってもよい。 The control gains for the pressure increase control gain and the pressure decrease control gain may be updated at the same time, or may be updated individually at arbitrary timings.
 制御装置100は、上述の動作以外に、所定量の荷重の変化または電動モータ510の回転量が発生した際の、荷重および回転量のいずれか一方に対する他方の変化量を推定して記憶してもよい。さらに制御装置100は、この記憶されている変化量と、該記憶後に新たに推定された変化量とを比較し、これらの変化量が所定量より大きく変化した場合に、制御ゲインにおける電動モータ510の角度と荷重との不連続点が生じたと判断し、この判断された不連続点に基づいて前記制御ゲインを更新してもよい。 In addition to the above-described operations, control device 100 estimates and stores the amount of change in either one of the load and the amount of rotation when a predetermined amount of change in load or the amount of rotation of electric motor 510 occurs. good too. Further, control device 100 compares the stored amount of change with the amount of change newly estimated after the storage. It may be determined that a point of discontinuity between the angle and the load has occurred, and the control gain may be updated based on the determined point of discontinuity.
 なお、図示外要素として、制御ゲイン調整部115の制御ゲイン切替部115cにて制御ゲインが切替えられた場合や、増圧時、減圧時制御ゲイン115a、115bの制御ゲインが更新された場合などにおいて、荷重制御部113により不要なモータ駆動指令が演算されないよう適宜内部パラメータをリセットする機能を設けることが好ましい。 Note that, as elements not shown, when the control gain is switched by the control gain switching unit 115c of the control gain adjusting unit 115, when the control gains of the control gains 115a and 115b during pressure increase and pressure decrease are updated, etc. It is preferable to provide a function of appropriately resetting internal parameters so that unnecessary motor drive commands are not calculated by the load control unit 113 .
 図5Bは、制御ゲイン調整部115において、図3A等と異なり、直動機構の等価リードが大きい状態である場合の制御ゲインに調整された第一の制御ゲイン115dと、等価リードが小さくかつばね部材が変形する状態の制御ゲインに調整された第二の制御ゲイン115eと、等価リードが小さくばね部材が変形限界に達した状態の制御ゲインに調整された第三の制御ゲイン115fとを備える。図5Bでは、図3A等の制御ゲインの使用に代えて、上記第一~第三の制御ゲインを適宜切り替えて参照することで、図3A等のような2つの不連続点を有する非線形の制御ゲイン(図5Aの増圧時制御ゲイン、減圧時制御ゲインを含みうる)の参照と同様の効果を有する。そこで、図5Bの制御ゲイン調整部115は、さらに、これら第一~第三の制御ゲインのいずれか一つに切替えて参照する制御ゲイン切替部を備える。また、図5Bでは、不連続点推定部119が存在する。なお、前記第一~第三の制御ゲインは、図示するようにそれぞれ一定値であってもよいが、他に、それぞれが荷重に対して連続的に増加または減少するような変化のあるものであってもよい。 FIG. 5B shows a first control gain 115d adjusted by the control gain adjustment unit 115 to a control gain when the equivalent lead of the linear motion mechanism is large, unlike FIG. A second control gain 115e adjusted to a control gain in a state where the member deforms, and a third control gain 115f adjusted to a control gain in a state where the equivalent lead is small and the spring member reaches the deformation limit. In FIG. 5B, instead of using the control gains shown in FIG. 3A, etc., the first to third control gains are appropriately switched and referred to, so that nonlinear control having two discontinuous points as shown in FIG. 3A, etc. This has the same effect as referring to the gain (which may include the control gain during pressure increase and the control gain during pressure decrease in FIG. 5A). Therefore, the control gain adjustment section 115 of FIG. 5B further includes a control gain switching section that switches to and refers to any one of the first to third control gains. Also, in FIG. 5B, there is a discontinuity point estimation unit 119 . The first to third control gains may each be a constant value as shown in the figure, but they may also vary such that they continuously increase or decrease with respect to the load. There may be.
 不連続点推定部119は、モータ角度および推定荷重の何れか一方の変化に対する他方の変化勾配を導出する変化勾配演算部119aと、既に記憶されている変化勾配と前記変化勾配演算部の導出結果とを比較し、前記変化勾配演算部の導出結果を新たに記憶する変化勾配比較部119bとを備える。 The discontinuity point estimator 119 includes a gradient change calculator 119a that derives a gradient of change with respect to a change in either one of the motor angle and the estimated load, and an already stored gradient of change and the derivation result of the gradient calculator 119a. and a change gradient comparison unit 119b for newly storing the derivation result of the change gradient calculation unit.
 変化勾配演算部119aは、モータ角度および推定荷重の何れか一方が所定量変化した際に、もう一方の変化量を評価する機能であってもよい。例えば、具体的には、モータ角度が所定のθdelta変化した際の荷重変化量Fdeltaについて、Fdelta/θdeltaを変化勾配とする機能であってもよい。もしくは、所定時間dtの角度および荷重変化について、(F(t+dt)-F(t) ) / (θ(t+dt)-θ(t) )を変化勾配としてもよい。 The change gradient calculator 119a may have a function of evaluating the amount of change in either one of the motor angle and the estimated load when the other changes by a predetermined amount. For example, specifically, the function may be such that the change gradient is Fdelta/θdelta for the load change amount Fdelta when the motor angle changes by a predetermined θdelta. Alternatively, (F(t+dt)-F(t))/(θ(t+dt)-θ(t)) may be used as the change gradient for the angle and load change for the predetermined time dt.
 変化勾配比較部119bは、既に記憶されている変化勾配と、前記導出された変化勾配とを比較し、比較結果が所定以上変化していたら剛性の不連続点が発生したと判断することができる。不連続点と判断された場合、制御ゲイン調整部115に当該不連続点の情報を伝達する。 The change gradient comparison unit 119b compares the change gradient that has already been stored with the derived change gradient, and can determine that a stiffness discontinuity has occurred if the comparison result shows a change of a predetermined amount or more. . If it is determined to be a discontinuous point, information on the discontinuous point is transmitted to control gain adjustment section 115 .
 制御ゲイン切替部115cは、例えば、増圧方向において、第一の制御ゲイン115dの制御ゲインを参照している状態で不連続点が生じたと判断されると、第二の制御ゲイン115eの制御ゲインを参照する状態に移行してもよい。また、増圧方向において、第二の制御ゲイン115eの制御ゲインを参照している状態で、不連続点が生じたと判断されると、第三の制御ゲイン115fの制御ゲインを参照する状態に移行してもよく、減圧方向において、第二の制御ゲイン115eの制御ゲインを参照している状態で、不連続点が生じたと判断されると、第一の制御ゲイン115dの制御ゲインを参照する状態に移行してもよい。減圧方向において、第三の制御ゲイン115fを参照している状態で、不連続点が生じたと判断されると第二の制御ゲイン115eの制御ゲインを参照する状態に移行してもよい。 For example, when it is determined that a point of discontinuity has occurred while referring to the control gain of the first control gain 115d in the pressure increasing direction, the control gain switching unit 115c switches the control gain of the second control gain 115e. may transition to a state that refers to In addition, in the pressure increasing direction, when it is determined that a discontinuity point occurs while the control gain of the second control gain 115e is being referred to, the state is shifted to the state of referring to the control gain of the third control gain 115f. In the pressure reduction direction, when it is determined that a point of discontinuity has occurred while the control gain of the second control gain 115e is being referred to, the control gain of the first control gain 115d is referred to. You can move to In the pressure reduction direction, when it is determined that a point of discontinuity has occurred while the third control gain 115f is being referred to, the second control gain 115e may be referred to.
 図示外要素として、制御ゲイン調整部115の制御ゲイン切替部115cにて制御ゲインの切り替えが行われた場合において、荷重制御部113により不要なモータ駆動指令が演算されないよう適宜内部パラメータをリセットする機能を設けることが好ましい。 As a non-illustrated element, when the control gain is switched by the control gain switching unit 115c of the control gain adjusting unit 115, a function to appropriately reset internal parameters so that the load control unit 113 does not calculate an unnecessary motor drive command. is preferably provided.
<<電動ブレーキ装置1Aの動作例>>
 図6は、摩擦材560とブレーキロータ570との間に所定のクリアランスを設けた無負荷状態から所定のブレーキ力を発生させる動作例を示す。同図(a)は、図2に記載の変速機構580を有する直動機構520が適用された、上記実施形態に記載の電動式直動アクチュエータ1を適用した例を示す。同図(a)では、非線形な変速動作の発生に依存した制御性悪化によるオーバーシュートが発生することなくブレーキ力FFを発揮でき、また直動機構の等価リードが変更できているため無負荷の状態からブレーキ力が発生するまでに比較的早い時間TT1にブレーキ力が発生している。同図(b)は、変速機構を設けない直動機構が適用された、従来の電動式直動アクチュエータによって動作する例を示す。同図(b)では、直動機構の等価リードが一定であるため、無負荷の状態からブレーキ力が発生する時間TT2までに比較的時間を要する。同図(c)は、図2に記載の変速機構580を有する直動機構520が適用されているが、これ以外は従来通りの制御手法によって動作する例を示す。同図(c)では、直動機構の等価リードが変更できているため無負荷の状態からブレーキ力が発生するまでに比較的早い時間TT1にブレーキ力が発生できているが、非線形な変速動作の発生により、制御性が悪化し、ブレーキ力FFを発揮するまでに比較的大きなオーバーシュートが発生している。
<<Example of Operation of Electric Brake Device 1A>>
FIG. 6 shows an operation example of generating a predetermined braking force from a no-load state in which a predetermined clearance is provided between the friction material 560 and the brake rotor 570. FIG. FIG. 1(a) shows an example of application of the electric linear motion actuator 1 described in the above embodiment to which the linear motion mechanism 520 having the transmission mechanism 580 illustrated in FIG. 2 is applied. In the same figure (a), the brake force FF can be exerted without overshoot due to deterioration of controllability due to the occurrence of non-linear shift operation. A braking force is generated at a relatively short time TT1 from the state until the braking force is generated. FIG. 1(b) shows an example of operation by a conventional electric linear motion actuator to which a linear motion mechanism without a speed change mechanism is applied. In FIG. 4(b), since the equivalent lead of the linear motion mechanism is constant, it takes a relatively long time from the no-load state to the time TT2 at which the braking force is generated. FIG. 1(c) shows an example in which the linear motion mechanism 520 having the speed change mechanism 580 shown in FIG. In the same figure (c), since the equivalent lead of the linear motion mechanism has been changed, the braking force can be generated in a relatively short time TT1 from the no-load state until the braking force is generated. , the controllability deteriorates, and a relatively large overshoot occurs before the braking force FF is exhibited.
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更、削除が可能である。したがって、そのようなものも本発明の範囲内に含まれる。 As described above, the preferred embodiment has been described with reference to the drawings, but various additions, changes, and deletions are possible without departing from the scope of the present invention. Accordingly, such are also included within the scope of this invention.
 1 電動式直動アクチュエータ
 1A 電動ブレーキ装置(電動式直動アクチュエータ)
 1B 電動プレス装置(電動式直動アクチュエータ)
 100 制御装置
 100A 電動ブレーキ制御装置(制御装置)
 100B 電動プレス制御装置(制御装置)
 113 荷重制御器
 113A ブレーキ力制御部(荷重制御器)
 113B プレス荷重制御部(荷重制御器)
 115 制御ゲイン調整部
 115a 増圧時制御ゲイン
 115b 減圧時制御ゲイン
 115c 制御ゲイン切替部
 115d 第一の制御ゲイン
 115e 第二の制御ゲイン
 115f 第三の制御ゲイン
 117 剛性パラメータ記憶部
 118 非線形剛性推定部
 119a 変化勾配演算部
 119b 変化勾配比較部
 510 電動モータ
 520 直動機構
 523 遊星転動体
 524 遊星キャリア
 530 角度センサ(電動モータの回転量を推定する推定器)
 540 荷重センサ(直動機構が印加する荷重を推定する推定器)
 570 ブレーキロータ(対象物)
 580 変速機構
 581 ばね部材(弾性部材)(変速機構)
 583 ストッパ(変速機構)
1 electric linear motion actuator 1A electric brake device (electric linear motion actuator)
1B electric press device (electric linear actuator)
100 control device 100A electric brake control device (control device)
100B electric press control device (control device)
113 load controller 113A braking force controller (load controller)
113B Press load control unit (load controller)
115 control gain adjustment unit 115a pressure increase control gain 115b pressure decrease control gain 115c control gain switching unit 115d first control gain 115e second control gain 115f third control gain 117 stiffness parameter storage unit 118 nonlinear stiffness estimation unit 119a Gradient change calculation unit 119b Gradient change comparison unit 510 Electric motor 520 Linear motion mechanism 523 Planetary rolling element 524 Planetary carrier 530 Angle sensor (estimator for estimating the amount of rotation of the electric motor)
540 load sensor (estimator for estimating the load applied by the linear motion mechanism)
570 brake rotor (object)
580 transmission mechanism 581 spring member (elastic member) (transmission mechanism)
583 stopper (transmission mechanism)

Claims (7)

  1.  電動モータと、前記電動モータの回転運動を直線運動に変換する直動機構と、前記電動モータを駆動して前記直動機構が前記直線運動により対象物に印加する荷重を制御する制御装置と、所定の荷重を境に前記直線運動の直動量と前記電動モータの回転量との対応関係が変化する変速機能を有する変速機構と、を備え、
     前記制御装置は、
      前記直動機構が印加する荷重を推定する推定器と、
      前記電動モータの駆動量を導出する過程において、前記荷重の推定値と前記荷重の目標値との偏差、前記偏差の積分値、および前記偏差の微分値、のうち少なくとも一つまたは二つ以上に乗算される制御ゲインを制御演算に使用し、前記荷重の推定値と前記目標値とのうちの少なくとも一方がゼロではない状態において、少なくとも1か所以上で、前記荷重の推定値と前記目標値とのうちの少なくとも一方の推移に対して不連続的に変化する制御ゲインを使用して、モータ駆動量を算出する荷重制御器と、
      荷重条件に応じて、前記荷重制御器において使用される制御ゲインを調整する制御ゲイン調整部と、
     を有する、
     電動式直動アクチュエータ。
    an electric motor, a linear motion mechanism that converts rotary motion of the electric motor into linear motion, a control device that drives the electric motor and controls the load that the linear motion mechanism applies to an object due to the linear motion; a speed change mechanism having a speed change function in which the correspondence relationship between the amount of linear motion of the linear motion and the amount of rotation of the electric motor changes with respect to a predetermined load;
    The control device is
    an estimator for estimating the load applied by the linear motion mechanism;
    In the process of deriving the drive amount of the electric motor, at least one or more of a deviation between the estimated value of the load and the target value of the load, an integral value of the deviation, and a differential value of the deviation The control gain to be multiplied is used for control calculation, and in a state in which at least one of the estimated value of the load and the target value is not zero, the estimated value of the load and the target value at least at one or more locations. a load controller that calculates a motor drive amount using a control gain that changes discontinuously with respect to the transition of at least one of
    a control gain adjustment unit that adjusts the control gain used in the load controller according to the load condition;
    having
    Electric linear actuator.
  2.  請求項1に記載の電動式直動アクチュエータにおいて、
     前記変速機構は、前記電動モータの回転量に対して前記直動量が所定の相関となる第一の等価リード状態と、前記第一の等価リード状態と比較して前記電動モータの回転量に対する前記直動量が小さい相関となる第二の等価リード状態と、を含む前記変速機能を有し、
     前記変速機能は、前記直動機構が印加する荷重が増大する過程では、前記所定の荷重である第一の変速荷重を上回ると前記第一の等価リード状態から前記第二の等価リード状態に切り替わり、前記直動機構が印加する荷重が減少する過程では、前記第一の変速荷重とは異なる前記所定の荷重である第二の変速荷重を下回ると前記第二の等価リード状態から前記第一の等価リード状態に切り替わる非線形性を有し、
     前記制御ゲインについて、荷重の推移に対する制御ゲインの推移が不連続となる第一の不連続点から荷重が小さい側における制御ゲインが、前記第一の不連続点より荷重が大きい側における制御ゲインより小さくなる前記第一の不連続点を含んでおり、
     前記変速機構の非線形性有する前記変速機能および前記制御ゲインが、以下のi)およびii)のいずれかの条件に合致する、
     電動式直動アクチュエータ。
    i) 前記変速機能の前記第一の変速荷重は、前記第二の変速荷重より大きく、前記制御ゲインの前記第一の不連続点は、前記第二の変速荷重より前記第一の変速荷重に近い。
    ii) 前記変速機能の前記第二の変速荷重は、前記第一の変速荷重より大きく、前記制御ゲインの前記第一の不連続点は、前記第一の変速荷重より前記第二の変速荷重に近い。
    The electric linear motion actuator according to claim 1,
    The transmission mechanism includes a first equivalent lead state in which the amount of linear motion has a predetermined correlation with respect to the amount of rotation of the electric motor, and the first equivalent lead state with respect to the amount of rotation of the electric motor compared with the first equivalent lead state. and a second equivalent lead state in which the amount of linear motion is correlated with a small amount, and
    In the process of increasing the load applied by the linear motion mechanism, the shift function switches from the first equivalent lead state to the second equivalent lead state when the first shift load, which is the predetermined load, is exceeded. , in the process of reducing the load applied by the linear motion mechanism, when the load falls below the second shift load, which is the predetermined load different from the first shift load, the second equivalent lead state changes to the first shift load. has a non-linearity that switches to the equivalent lead state,
    Regarding the control gain, the control gain on the side of the load smaller than the first discontinuity point where the transition of the control gain with respect to the load transition is discontinuous is greater than the control gain on the side of the load larger than the first discontinuity point. including the first point of discontinuity that becomes smaller;
    The transmission function having non-linearity and the control gain of the transmission mechanism meet any of the following conditions i) and ii):
    Electric linear actuator.
    i) the first shift load of the shift function is greater than the second shift load, and the first discontinuity point of the control gain is greater than the second shift load to the first shift load; close.
    ii) the second shift load of the shift function is greater than the first shift load, and the first discontinuity point of the control gain is greater than the first shift load to the second shift load; close.
  3.  請求項1または2に記載の電動式直動アクチュエータにおいて、
     前記直動機構は、
      回転入力部材と、前記回転入力部材と同心に回転自在に支持された遊星キャリアと、前記遊星キャリアに回転自在に支持された遊星転動体と、
      弾性力によって前記遊星転動体が自転せず前記回転入力部材と前記遊星キャリアとが同期して回転する締結力を付勢し、前記直動機構が印加する荷重の反作用力によって前記締結力が喪失して前記遊星転動体が自転して前記回転入力部材と前記遊星キャリアとの間で回転量に差を生じさせる弾性部材と
     を有し、
     前記弾性部材は、前記直動機構が印加する荷重が増大する過程では、所定の第一の変形荷重を上回ると前記弾性部材の変形が完了し、前記直動機構が印加する荷重が減少する過程では、前記第一の変形荷重とは異なる第二の変形荷重を下回ると前記弾性部材の変形が始まる非線形な変形特性を有し、
     前記制御ゲインについて、荷重の推移に対する制御ゲインの推移が不連続となる第二の不連続点から荷重が小さい側における制御ゲインが、前記第二の不連続点より荷重が大きい側における制御ゲインより大きくなる前記第二の不連続点を含んでおり、
     前記直動機構の前記弾性部材の前記変形特性および前記制御ゲインが、以下のi)およびii)のいずれかの条件に合致する、
     電動式直動アクチュエータ。
    i) 前記弾性部材の前記第一の変形荷重は、前記第二の変形荷重より大きく、前記制御ゲインの前記第二の不連続点は、前記第一の変形荷重より前記第二の変形荷重に近い。
    ii) 前記弾性部材の前記第二の変形荷重は、前記第一の変形荷重より大きく、前記制御ゲインの前記第二の不連続点は、前記第二の変形荷重より前記第一の変形荷重に近い。
    The electric linear motion actuator according to claim 1 or 2,
    The linear motion mechanism is
    a rotation input member, a planetary carrier rotatably supported concentrically with the rotation input member, a planetary rolling element rotatably supported by the planetary carrier;
    The planetary rolling element does not rotate due to the elastic force, and the rotation input member and the planetary carrier are synchronously rotated. and an elastic member that rotates the planetary rolling element and causes a difference in the amount of rotation between the rotation input member and the planetary carrier,
    In the process in which the load applied by the linear motion mechanism increases, the elastic member completes deformation when a predetermined first deformation load is exceeded, and in the process in which the load applied by the linear motion mechanism decreases. has a non-linear deformation characteristic in which the elastic member begins to deform when falling below a second deformation load different from the first deformation load,
    With respect to the control gain, the control gain on the side of the smaller load from the second discontinuity point where the transition of the control gain with respect to the transition of the load is discontinuous is greater than the control gain on the side of the larger load than the second discontinuity point. including the growing second point of discontinuity;
    The deformation characteristics and the control gain of the elastic member of the linear motion mechanism meet any of the following conditions i) and ii):
    Electric linear actuator.
    i) the first deformation load of the elastic member is greater than the second deformation load, and the second discontinuity of the control gain is greater than the first deformation load to the second deformation load; close.
    ii) the second deformation load of the elastic member is greater than the first deformation load, and the second discontinuity point of the control gain is closer to the first deformation load than the second deformation load; close.
  4.  請求項1~3のいずれか一項に記載の電動式直動アクチュエータにおいて、
     前記制御ゲイン調整部は、荷重が増加する増圧時の前記制御ゲインである増圧時制御ゲインと、荷重が減少する減圧時の前記制御ゲインである減圧時制御ゲインと、前記増圧時制御ゲインまたは減圧時制御ゲインの制御ゲインの何れを参照するかを決定する制御ゲイン切替部と、を有し、
     前記制御ゲイン切替部は、少なくとも、モータ角度の推移から、増圧側にモータが回転している場合は増圧時制御ゲインの制御ゲインを参照し、減圧側にモータが回転している場合は減圧時制御ゲインの制御ゲインを参照するよう、前記制御ゲインを切替える、
     電動式直動アクチュエータ。
    In the electric linear motion actuator according to any one of claims 1 to 3,
    The control gain adjustment unit includes a control gain for increasing pressure, which is the control gain for increasing pressure when the load increases, a control gain for decreasing pressure, which is the control gain for decreasing pressure when the load decreases, and the control for increasing pressure. a control gain switching unit that determines which of the gain and the control gain of the pressure reduction control gain is to be referred to,
    The control gain switching unit refers at least to the control gain of the pressure increasing control gain when the motor is rotating on the pressure increasing side based on transition of the motor angle, and when the motor is rotating on the pressure decreasing side, the pressure reducing control gain. switching the control gain to refer to the control gain of the time control gain;
    Electric linear actuator.
  5.  請求項3に記載の電動式直動アクチュエータにおいて、
     前記制御ゲイン調整部は、前記電動モータの回転量に対する前記直線運動の直動量に対応する等価リードが大きい場合の前記電動モータの制御ゲインである第一の制御ゲインと、前記等価リードが小さくかつ前記弾性部材が変形する場合の前記制御ゲインである第二の制御ゲインと、前記等価リードが小さく前記弾性部材が変形限界に達した場合の前記制御ゲインである第三の制御ゲインと、該第一~第三の制御ゲインのいずれか一つに切替えて参照とする制御ゲイン切替部を有し、
     前記電動式直動アクチュエータは、さらに、
     モータ角度および推定荷重の何れか一方の変化に対する他方の変化の勾配を導出する変化勾配演算部と、
     前記変化勾配演算部で導出された変化の勾配を記憶し、記憶されている前記変化の勾配と、該記憶後に新たに前記変化勾配演算部で導出された変化の勾配とを比較し、所定以上勾配が変化していた場合には、制御ゲインの不連続点が存在すると判断する変化勾配比較部と、を備え、
     前記制御ゲイン切替部は、前記第一~第三の制御ゲインを使用し、前記不連続点が複数存在する場合に、前記変化勾配比較部が判断した複数の前記不連続点のうちの少なくとも一つに従って、
      第一の制御ゲインを参照している状態で、荷重が増加する増圧方向に変化した場合に、前記不連続点が生じたと判断されると第二の制御ゲインを参照し、
      第二の制御ゲインを参照している状態で、増圧方向に変化した場合に、前記不連続点が生じたと判断されると第三の制御ゲインを参照し、減圧方向に変化した場合に、前記不連続点が生じたと判断されると第一の制御ゲインを参照し、
      第三の制御ゲインを参照している状態で、減圧方向に変化した場合に、前記不連続点が生じたと判断されると第二の制御ゲインを参照する、
     電動式直動アクチュエータ。
    In the electric linear motion actuator according to claim 3,
    The control gain adjustment unit adjusts a first control gain, which is a control gain of the electric motor when an equivalent lead corresponding to the amount of linear motion of the linear motion with respect to the amount of rotation of the electric motor is large, and a second control gain that is the control gain when the elastic member deforms; a third control gain that is the control gain when the equivalent lead is small and the elastic member reaches a deformation limit; Having a control gain switching unit that switches to any one of the first to third control gains and uses it as a reference,
    The electric linear motion actuator further comprises:
    a change gradient calculation unit that derives a gradient of change of one of the motor angle and the estimated load with respect to the change of the other;
    storing the gradient of change derived by the gradient-of-change computing unit; comparing the stored gradient of change with the gradient of change newly derived by the gradient-of-change computing unit after storing; a change gradient comparison unit that determines that a control gain discontinuity exists when the gradient changes,
    The control gain switching unit uses the first to third control gains, and if there are a plurality of discontinuous points, at least one of the plurality of discontinuous points determined by the change gradient comparing unit according to
    When it is determined that the point of discontinuity has occurred when the load changes in the direction of increasing pressure while referring to the first control gain, referring to the second control gain,
    In the state of referring to the second control gain, when the pressure is changed in the direction of pressure increase, when it is determined that the discontinuity has occurred, the third control gain is referred to, and when the pressure changes in the direction of pressure reduction, referring to the first control gain when it is determined that the discontinuity point has occurred;
    In a state in which the third control gain is referred to, the second control gain is referred to when it is determined that the discontinuity has occurred when the pressure changes in the direction of pressure reduction.
    Electric linear actuator.
  6.  請求項1~5のいずれか一項に記載の電動式直動アクチュエータにおいて、
     前記制御装置は、
     前記電動モータの回転角を推定する推定器を有し、
     少なくとも予め記憶された前記制御ゲインの不連続点に対応する前記荷重が含まれる範囲の、所定量の該荷重における変化が発生した際の、前記電動モータの回転量と前記推定された荷重との変化履歴を記憶する剛性パラメータ記憶部を有し、
     さらに前記制御装置は、
     前記電動モータの角度および前記推定された荷重の前記変化履歴から、前記制御ゲインの不連続点を推定し、前記推定された不連続点に基づいて前記制御ゲインを更新する非線形剛性推定部を有する、
     電動式直動アクチュエータ。
    In the electric linear motion actuator according to any one of claims 1 to 5,
    The control device is
    an estimator for estimating the rotation angle of the electric motor;
    A rotation amount of the electric motor and the estimated load when a change in the load of a predetermined amount occurs in a range including at least the load corresponding to the discontinuity point of the control gain stored in advance. Having a stiffness parameter storage unit that stores a change history,
    Further, the control device
    a nonlinear stiffness estimating unit that estimates a point of discontinuity in the control gain from the angle of the electric motor and the change history of the estimated load, and updates the control gain based on the estimated point of discontinuity; ,
    Electric linear actuator.
  7.  請求項1~5のいずれか一項に記載の電動式直動アクチュエータにおいて、
     前記制御装置は、
     前記電動モータの回転角を推定する推定器を有し、
     所定量の前記荷重の変化または前記電動モータの回転量が発生した際の、該荷重および該回転量のいずれか一方に対する他方の変化量を推定して記憶し、
     さらに前記制御装置は、
     前記記憶されている変化量と、該記憶後に新たに推定された変化量とを比較し、これらの変化量が所定量より大きく変化した場合に、前記制御ゲインにおける前記電動モータの角度と荷重との不連続点が生じたと判断し、前記判断された不連続点に基づいて前記制御ゲインを更新する、
     電動式直動アクチュエータ。
    In the electric linear motion actuator according to any one of claims 1 to 5,
    The control device is
    an estimator for estimating the rotation angle of the electric motor;
    estimating and storing an amount of change in either one of the load and the amount of rotation when a predetermined amount of change in the load or the amount of rotation of the electric motor occurs, and
    Further, the control device
    The stored amount of change is compared with the amount of change newly estimated after the storage, and if the amount of change changes more than a predetermined amount, the angle and load of the electric motor at the control gain are determined. determining that a discontinuity point has occurred, and updating the control gain based on the determined discontinuity point;
    Electric linear actuator.
PCT/JP2022/023986 2021-06-22 2022-06-15 Electric linear actuator WO2022270382A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021103324A JP2023002224A (en) 2021-06-22 2021-06-22 Electrically-driven type linear actuator
JP2021-103324 2021-06-22

Publications (1)

Publication Number Publication Date
WO2022270382A1 true WO2022270382A1 (en) 2022-12-29

Family

ID=84544341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023986 WO2022270382A1 (en) 2021-06-22 2022-06-15 Electric linear actuator

Country Status (2)

Country Link
JP (1) JP2023002224A (en)
WO (1) WO2022270382A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009001151A (en) * 2007-06-21 2009-01-08 Nissin Kogyo Co Ltd Brake control device
JP2019018693A (en) * 2017-07-18 2019-02-07 Ntn株式会社 Electric linear actuator and electric brake device
WO2019132022A1 (en) * 2017-12-29 2019-07-04 Ntn株式会社 Electric brake device
WO2019151146A1 (en) * 2018-01-30 2019-08-08 Ntn株式会社 Electric actuator and electric brake device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009001151A (en) * 2007-06-21 2009-01-08 Nissin Kogyo Co Ltd Brake control device
JP2019018693A (en) * 2017-07-18 2019-02-07 Ntn株式会社 Electric linear actuator and electric brake device
WO2019132022A1 (en) * 2017-12-29 2019-07-04 Ntn株式会社 Electric brake device
WO2019151146A1 (en) * 2018-01-30 2019-08-08 Ntn株式会社 Electric actuator and electric brake device

Also Published As

Publication number Publication date
JP2023002224A (en) 2023-01-10

Similar Documents

Publication Publication Date Title
US9475471B2 (en) Braking control apparatus for vehicle
US9221442B2 (en) Brake control apparatus for vehicle
CN107921949B (en) Electric brake device
JP2002225690A (en) Vehicular brake system
WO2017033801A1 (en) Electric brake device
WO2019151146A1 (en) Electric actuator and electric brake device
JP2020093721A (en) Electric brake apparatus
WO2018062086A1 (en) Electric brake device
WO2022270382A1 (en) Electric linear actuator
JP2020055497A (en) Power brake apparatus
WO2022181469A1 (en) Electric linear motion actuator
JP6952528B2 (en) Electric brake device
JP5915840B2 (en) Brake control device for vehicle
WO2013081117A1 (en) Braking control device for vehicle
JP7089872B2 (en) Electric brake device
JP6765265B2 (en) Electric brake device
WO2022270383A1 (en) Electric brake device
JP5796473B2 (en) Brake control device for vehicle
JP2019151331A (en) Electric brake device
WO2022186093A1 (en) Electric brake device
JP7250191B2 (en) Electric linear actuator and electric brake device
JP2019018693A (en) Electric linear actuator and electric brake device
JP6906398B2 (en) Electric brake device
JP2004084835A (en) Change gear ratio control device for continuously variable transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828299

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE