WO2020255385A1 - Motor driving device and refrigeration cycle device - Google Patents

Motor driving device and refrigeration cycle device Download PDF

Info

Publication number
WO2020255385A1
WO2020255385A1 PCT/JP2019/024761 JP2019024761W WO2020255385A1 WO 2020255385 A1 WO2020255385 A1 WO 2020255385A1 JP 2019024761 W JP2019024761 W JP 2019024761W WO 2020255385 A1 WO2020255385 A1 WO 2020255385A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
voltage
detection circuit
current detection
motor
Prior art date
Application number
PCT/JP2019/024761
Other languages
French (fr)
Japanese (ja)
Inventor
泰治 乗松
篠本 洋介
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/024761 priority Critical patent/WO2020255385A1/en
Priority to JP2021528605A priority patent/JP7130135B2/en
Publication of WO2020255385A1 publication Critical patent/WO2020255385A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation

Definitions

  • the present invention relates to a motor drive device and a refrigeration cycle device including an inverter circuit that converts a DC voltage into an AC voltage.
  • Patent Document 1 describes a current detection circuit using a shunt resistor provided between a DC power supply and an inverter circuit, and a current using an ACCT (Alternating Current Current Transferr) provided between the inverter circuit and an electric motor.
  • ACCT Alternating Current Current Transferr
  • a technique for an electric motor control device including a detection circuit is disclosed.
  • the electric motor control device described in Patent Document 1 uses the detection value of the current detection circuit using the shunt resistor when there is an influence of the magnetic saturation component or when the rotation speed of the electric motor is low.
  • the electric motor control device described in Patent Document 1 detects current using a shunt resistor when the inverter circuit is controlled by pulse width modulation, that is, in a state of overmodulation in which the modulation rate by PWM (Pulse Width Modulation) exceeds 1. Since there is a region where the current cannot be detected in the circuit, there is a problem that the current detection error becomes large.
  • PWM Pulse Width Modulation
  • the motor control device described in Patent Document 1 in order to detect the current in the overmodulated state, it is necessary to turn on the switching element on the lower side of the inverter circuit and pass the current through the shunt resistor, but there is an error in the output voltage. It becomes. That is, depending on the conditions, unnecessary switching is required for current detection, so that the electric power becomes excessively large, which causes deterioration of energy saving performance and noise increase.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a motor drive device capable of suppressing a decrease in current detection accuracy when the inverter circuit is controlled in a state of overmodulation by pulse width modulation. To do.
  • the motor drive device includes an inverter circuit that converts a DC voltage output from a DC voltage power supply into a sinusoidal pseudo AC voltage and outputs the current to the motor.
  • a first current detection circuit that detects the current flowing through the motor using one or more shunt resistors, and a second current detection circuit that detects the current flowing through the motor using two or more AC current transformers. Pseudo-sine wave output from the inverter circuit using at least one of the first current value detected by the first current detection circuit and the second current value detected by the second current detection circuit.
  • the motor drive device has an effect that a decrease in current detection accuracy can be suppressed when the inverter circuit is controlled in a state of overmodulation by pulse width modulation.
  • FIG. 1 is a diagram showing a configuration example of a motor drive device 20 according to a first embodiment of the present invention.
  • the motor drive device 20 includes a DC voltage power supply 1, an inverter circuit 2, a controller 3, a first current detection circuit 7, and a second current detection circuit 8.
  • the DC voltage power supply 1 outputs a DC voltage for operating the inverter circuit 2.
  • the DC voltage power supply 1 may be a battery, a solar cell, or the like, or may be a converter circuit in which the AC voltage output from the AC voltage power supply is rectified by a diode bridge or the like and further smoothed by a capacitor or the like.
  • the motor 4 is a three-phase motor driven by AC power output from the inverter circuit 2.
  • Each of the three phases is referred to as a U phase, a V phase, and a W phase.
  • the first current detection circuit 7 is a current detection circuit that detects the current flowing through the motor 4 using the shunt resistor 71.
  • the first current detection circuit 7 can also detect the current flowing through the motor 4 by using two or more shunt resistors. That is, the first current detection circuit 7 detects the current flowing through the motor 4 using one or more shunt resistors.
  • the first current detection circuit 7 amplifies the voltage value detected as a voltage by the shunt resistor 71 by an amplifier circuit using an operational amplifier (not shown) or the like, and feeds it back to the controller 3. By using Ohm's law, the controller 3 can obtain the current value flowing through the first current detection circuit 7 from the voltage value fed back from the first current detection circuit 7.
  • the amplifier circuit may be provided in the controller 3.
  • the second current detection circuit 8 is a current detection circuit that detects the current flowing through the motor 4 using the ACCTs 81 and 82.
  • the ACCTs 81 and 82 which are AC current transformers, but this is an example, and the present invention is not limited to this.
  • the second current detection circuit 8 can also detect the current flowing through the motor 4 by using three ACCTs for each of the three phases of the motor 4. That is, the second current detection circuit 8 detects the current flowing through the motor 4 between the inverter circuit 2 and the motor 4 by using two or more AC current transformers.
  • the second current detection circuit 8 amplifies the voltage value detected as a voltage by the ACCTs 81 and 82 by an amplifier circuit using an operational amplifier or the like (not shown), and feeds it back to the controller 3.
  • the controller 3 can obtain the current value flowing through the second current detection circuit 8 from the voltage value fed back from the second current detection circuit 8.
  • the amplifier circuit may be provided in the controller 3.
  • the inverter circuit 2 converts the DC voltage output from the DC voltage power supply 1 into an AC voltage.
  • the inverter circuit 2 converts, for example, a DC voltage into a pseudo AC voltage of a sinusoidal wave and outputs the DC voltage to the motor 4.
  • the inverter circuit 2 is a circuit composed of six switching elements 5 in which a diode 6 is connected in parallel to each switching element 5.
  • the controller 3 can control the output voltage of the inverter circuit 2 by controlling the on / off duty of the switching element 5 by PWM.
  • the switching element 5 used in the inverter circuit 2 is, for example, an element such as an IGBT (Insulated Gate Bipolar Transistor) or a MOSFET (Metal-Oxide-Semiconductor Field-Effective Transistor), and is composed of a silicon semiconductor.
  • IGBT Insulated Gate Bipolar Transistor
  • MOSFET Metal-Oxide-Semiconductor Field-Effective Transistor
  • the six switching elements 5 may be referred to as switching elements Up, Un, Vp, Vn, Wp, Wn.
  • the switching element Up is the switching element of the upper arm connected to the U phase of the motor 4
  • the switching element Un is the switching element of the lower arm connected to the U phase of the motor 4
  • the switching element Vp is the V of the motor 4.
  • the switching element of the upper arm connected to the phase, the switching element Vn is the switching element of the lower arm connected to the V phase of the motor 4
  • the switching element Wp is the switching element of the upper arm connected to the W phase of the motor 4. It is a switching element
  • the switching element Wn is a switching element of the lower arm connected to the W phase of the motor 4.
  • FIG. 2 is a diagram showing the relationship between the output voltage and the duty ratio of the inverter circuit 2 according to the first embodiment.
  • FIG. 3 is a diagram showing the relationship between the output voltage and the duty ratio when the inverter circuit 2 according to the first embodiment is controlled in the overmodulated state.
  • the signal represented by the sine wave is the output voltage
  • the signal represented by the triangular wave is the carrier signal.
  • the output voltage of the inverter circuit 2 is controlled by the controller 3 in a duty ratio.
  • the controller 3 controls so that the duty ratio becomes large when a positively large voltage is output, and controls so that the duty ratio becomes small when a negatively large voltage is output.
  • FIG. 4 is a diagram showing a current undetectable period due to switching of the switching element 5 of the inverter circuit 2 in the first current detection circuit 7 and the second current detection circuit 8 in the motor drive device 20 according to the first embodiment. ..
  • a phenomenon called ringing occurs in which the current vibrates at the moment when the switching element 5 switches. Therefore, in the first current detection circuit 7 and the second current detection circuit 8, if the current is not detected after a time has passed since the switching element 5 has switched, that is, after the ringing has converged, a detection current error will occur. ..
  • the detectable range of the current shown in FIG. 4 varies depending on the parasitic circuit of the inverter circuit 2. Therefore, in the case of a high carrier frequency, a high motor rotation speed, or the like, the detectable period becomes short, and the current may not be detected by the first current detection circuit 7 and the second current detection circuit 8.
  • the controller 3 is a control unit that controls the operation of the inverter circuit 2 as described above.
  • the controller 3 uses at least one of the first current value detected by the first current detection circuit 7 and the second current value detected by the second current detection circuit 8 from the inverter circuit 2.
  • the pseudo AC voltage of the output sinusoidal wave is controlled by PWM.
  • FIG. 5 is a block diagram showing a configuration example of a controller 3 included in the motor drive device 20 according to the first embodiment.
  • the controller 3 includes a current command value generation unit 9, a voltage calculation unit 10, a voltage coordinate conversion unit 11, an integration unit 12, a slip compensation unit 13, and a current coordinate conversion unit 14.
  • the current command value generation unit 9 generates the current command value Id * from the speed command value ⁇ .
  • the voltage calculation unit 10 uses the speed command value ⁇ , the current command value Id *, and the currents Id, Iq obtained by converting the currents Iu, Iv, and Iw of each phase of the output voltage output from the inverter circuit 2 into Cartesian coordinates. Is used to calculate the voltage calculation results Vd and Vq.
  • the integrating unit 12 integrates the speed command value ⁇ and outputs the rotation angle ⁇ which is the integrated value.
  • the voltage coordinate conversion unit 11 converts the voltage calculation results Vd and Vq into coordinates using the rotation angle ⁇ , and converts them into drive signals Vu, Vv and Vw.
  • the voltage coordinate conversion unit 11 controls on / off of each switching element 5 of the inverter circuit 2 by outputting the drive signals Vu, Vv, Vw to the inverter circuit 2.
  • Currents Iu, Iv, Iw flow from the voltage coordinate conversion unit 11, that is, the inverter circuit 2, to the motor 4 based on the drive signals Vu, Vv, Vw.
  • the first current detection circuit 7 and the second current detection circuit 8 detect the currents Iu, Iv, and Iw.
  • the current coordinate conversion unit 14 converts the currents Iu, Iv, and Iw into coordinates using the rotation angle ⁇ , and converts them into the currents Id and Iq.
  • the slip compensation unit 13 performs slip compensation using the coordinate-transformed current Iq.
  • the slip compensation unit 13 feeds back the result of slip compensation to the speed command value ⁇ .
  • the controller 3 can increase or decrease the current output to the motor 4 by using the current command value Id * based on the speed command value ⁇ , and controls the current of the pseudo AC voltage of the sine wave.
  • the controller 3 controls by increasing the current immediately after positioning during start-up acceleration. Further, the controller 3 can change the rotation speed by accelerating the start acceleration according to the speed command value ⁇ and the set acceleration, and accelerating or decelerating by changing the speed command value ⁇ during steady rotation. ..
  • FIG. 6 is a diagram showing an operation of magnetic flux vector control by the controller 3 of the motor drive device 20 according to the first embodiment.
  • the on / off states of the switching elements Up, Un, Vp, Vn, Wp, and Wn of the stages 0 to 5 shown in FIG. 6 are the same as those shown in the above-mentioned Patent Document 1.
  • the controller 3 controls in a direction in which the vector Vk, which represents the output voltage of the inverter circuit 2 as a vector, rotates in order between the stages 0 and 5, that is, moves clockwise.
  • the vector Vk in each stage is generated by synthesizing the (100) vector and the (110) vector in the case of stage 0, for example.
  • the three-digit number (100) in parentheses is a number indicating the on / off state of each of the U phase, V phase, and W phase in order from the left. When this number is 1, it means that the switching element of the upper arm is on and the switching element of the lower arm is off, and when this number is 0, the switching element of the upper arm is off and the switching element of the lower arm is off. Indicates that the switching element is in the ON state.
  • the controller 3 can obtain the rotation angle ⁇ by adding the value obtained by multiplying the angular velocity and the time to the initial position.
  • the controller 3 can determine the initial position by outputting a voltage at a position of the vector Vk shown in FIG.
  • FIG. 7 is a diagram showing a range in which current can be detected by the first current detection circuit 7 in the controller 3 of the motor drive device 20 according to the first embodiment.
  • the area other than the shaded portion indicates the range in which the current can be detected by the first current detection circuit 7, and the shaded portion indicates the range in which the current cannot be detected by the first current detection circuit 7.
  • the controller 3 uses the current value detected by the second current detection circuit 8 in the shaded portion, that is, in the range where the current cannot be detected by the first current detection circuit 7.
  • the shaded portion that is, the range in which the current cannot be detected in the first current detection circuit 7 corresponds to the modulation factor before and after the stage switching and when the modulation factor of the PWM control for the inverter circuit 2 of the controller 3 exceeds 1.
  • the range As shown in FIG. 7, the larger the modulation factor, the larger the shaded portion, that is, the range in which the current cannot be detected by the first current detection circuit 7. Therefore, does the controller 3 use the current value of the first current detection circuit 7 based on the modulation factor and the position of the vector Vk in the overmodulation region where the modulation factor of the PWM control with respect to the inverter circuit 2 exceeds 1. , Switch whether to use the current value of the second current detection circuit 8.
  • the range in which current cannot be detected by the first current detection circuit 7 shown in FIG. 7 can be defined as follows. For example, in the range of 60 ° in one stage shown in FIG. 6, in the state up to the modulation factor 1, the ranges of 0 ° to 5 ° and 55 ° to 60 ° are defined as the current undetectable period of the first current detection circuit 7. To do. Further, in the state of overmodulation in which the modulation factor exceeds 1, the range of 5 ° + modulation factor ⁇ ⁇ and 55 ° ⁇ modulation factor ⁇ ⁇ is set as the current detection impossible period of the first current detection circuit 7.
  • the current undetectable period of the first current detection circuit 7 increases as the modulation factor increases.
  • can be obtained by dividing the angular difference between the modulation factor 1 and the current undetectable period when the modulation factor is maximum by the modulation factor difference.
  • the controller 3 uses the current value detected by the second current detection circuit 8 in the current non-detectable period of the first current detection circuit 7, and is in a region other than the current non-detectable period of the first current detection circuit 7. Then, the current value detected by the first current detection circuit 7 is used.
  • FIG. 8 is a flowchart showing the operation of the controller 3 according to the first embodiment.
  • the controller 3 determines the position of the vector Vk, which represents the output voltage of the inverter circuit 2 as a vector (step S1).
  • the controller 3 determines whether or not the position determined from the rotation angle ⁇ indicating the position of the vector Vk and the modulation factor of the PWM control with respect to the inverter circuit 2 is the current non-detectable period of the first current detection circuit 7 ( Step S2).
  • step S3 when the position determined from the rotation angle ⁇ indicating the position of the vector Vk and the modulation factor of the PWM control with respect to the inverter circuit 2 is the current non-detectable period of the first current detection circuit 7 (step S2: Yes). ), The inverter circuit 2 is controlled by using the second current value detected by the second current detection circuit 8 (step S3).
  • step S4 the position of the controller 3 determined from the rotation angle ⁇ indicating the position of the vector Vk and the modulation factor of the PWM control with respect to the inverter circuit 2 is other than the current non-detectable period of the first current detection circuit 7 (step S2: No)
  • the inverter circuit 2 is controlled by using the first current value detected by the first current detection circuit 7 (step S4).
  • the controller 3 controls the pseudo AC voltage of the sine wave output from the inverter circuit 2 in the overmodulated state in which the modulation factor exceeds 1, the first current value or the first current value or the first current value is based on the modulation factor. Decide whether to use the current value of 2.
  • the controller 3 is realized by a processing circuit.
  • the processing circuit may be a processor and memory for executing a program stored in the memory, or may be dedicated hardware.
  • FIG. 9 is a diagram showing an example in which the processing circuit included in the motor drive device 20 according to the first embodiment is configured by a processor and a memory.
  • the processing circuit is composed of the processor 91 and the memory 92, each function of the processing circuit of the motor drive device 20 is realized by software, firmware, or a combination of software and firmware.
  • the software or firmware is written as a program and stored in the memory 92.
  • each function is realized by the processor 91 reading and executing the program stored in the memory 92. That is, the processing circuit includes a memory 92 for storing a program in which the processing of the controller 3 is eventually executed. It can also be said that these programs cause the computer to execute the procedure and method of the controller 3.
  • the processor 91 may be a CPU (Central Processing Unit), a processing device, an arithmetic unit, a microprocessor, a microcomputer, a DSP (Digital Signal Processor), or the like.
  • the memory 92 includes, for example, non-volatile or volatile such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Program ROM), EEPROM (registered trademark) (Electricularly EPROM). This includes semiconductor memory, magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD (Digital Versaille Disc), and the like.
  • the processing circuit When the processing circuit is composed of dedicated hardware, the processing circuit may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field Programmable Gate). Array), or a combination of these.
  • Each function of the controller 3 may be realized by a processing circuit for each function, or each function may be collectively realized by a processing circuit. It should be noted that each function of the controller 3 may be partially realized by dedicated hardware and partly realized by software or firmware. As described above, the processing circuit can realize each of the above-mentioned functions by the dedicated hardware, software, firmware, or a combination thereof.
  • the wide bandgap semiconductor refers to a semiconductor having a bandgap larger than that of silicon, and typical wide bandgap semiconductors are SiC (silicon carbide), GaN (gallium nitride), diamond and the like.
  • At least one of the plurality of switching elements 5 or the plurality of diodes 6 included in the inverter circuit 2 may be formed of a wide bandgap semiconductor. Further, the same effect can be obtained by using a MOSFET having a super junction structure instead of the wide bandgap semiconductor.
  • the motor drive device 20 when the controller 3 controls the inverter circuit 2 by PWM, the current value of the first current detection circuit 7 depends on the modulation factor. Alternatively, it was decided to decide which of the current values of the second current detection circuit 8 to use. As a result, the motor drive device 20 can suppress a decrease in current detection accuracy when the inverter circuit 2 is controlled in a state of overmodulation by pulse width modulation. Further, the motor driving device 20 can drive the motor 4 with high energy saving performance and low noise even at a high modulation rate.
  • Embodiment 2 In the second embodiment, the case where the motor 4 controlled by the motor drive device 20 is mounted on the compressor of the refrigeration cycle device will be described.
  • FIG. 10 is a diagram showing a configuration example of the refrigeration cycle device 30 according to the second embodiment.
  • the refrigeration cycle device 30 includes a compressor 21, a condenser 22, an expansion valve 23, and an evaporator 24.
  • the compressor 21 includes a motor 4 driven by a pseudo AC voltage of a sinusoidal wave output from the motor driving device 20.
  • the compressor 21, the condenser 22, and the expansion valve 23 are general devices mounted on the refrigeration cycle device 30. Actually, the compressor 21, the condenser 22, the expansion valve 23, and the evaporator 24 constitute the refrigerant circuit of the refrigeration cycle device 30.
  • the load of the compressor 21 fluctuates sharply depending on the structure.
  • the motor drive device 20 can accurately detect the current even in a steep load fluctuation at a high load, so that highly efficient operation is possible even at a high rotation and a high load. It becomes.
  • the configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is one of the configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
  • 1 DC voltage power supply 1 Inverter circuit, 3 Controller, 4 Motor, 5 Switching element, 6 Diode, 7 1st current detection circuit, 8 2nd current detection circuit, 9 Current command value generator, 10 Voltage calculation unit, 11 Voltage coordinate conversion unit, 12 Integration unit, 13 Slip compensation unit, 14 Current coordinate conversion unit, 20 Motor drive device, 21 Compressor, 22 Condenser, 23 Expansion valve, 24 Inverter, 30 Refrigeration cycle device, 71 Shunt resistance , 81, 82 ACCT.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

The present invention comprises: an inverter circuit (2) that converts a direct-current voltage output from a direct-current voltage power supply (1) into a sinusoidal pseudo alternating-current voltage, and outputs the voltage to a motor (4); a first current detection circuit (7) that uses at least one shunt resistor (71) to detect current flowing to the motor (4); a second current detection circuit (8) that uses two or more ACCTs (81, 82) to detect current flowing to the motor (4); and a controller (3) that uses a first current value detected by the first current detection circuit (7) and/or a second current value detected by the second current detection circuit (8) to control the sinusoidal pseudo alternating-current voltage output from the inverter circuit (2) with pulse width modulation. If the controller (3) controls the sinusoidal pseudo alternating-current voltage output from the inverter circuit (2) in an overmodulation state where the modulation rate exceeds 1, the controller determines whether to use the first current value or the second current value on the basis of the modulation rate.

Description

モータ駆動装置および冷凍サイクル装置Motor drive and refrigeration cycle equipment
 本発明は、直流電圧を交流電圧に変換するインバータ回路を備えるモータ駆動装置および冷凍サイクル装置に関する。 The present invention relates to a motor drive device and a refrigeration cycle device including an inverter circuit that converts a DC voltage into an AC voltage.
 従来、インバータ回路を備えるモータ駆動装置には、複数の電流検出回路を備えるものがある。特許文献1には、直流電源とインバータ回路との間に設けられたシャント抵抗を用いた電流検出回路と、インバータ回路と電動機との間に設けられたACCT(Alternating Current Current Transformer)を用いた電流検出回路と、を備える電動機制御装置についての技術が開示されている。特許文献1に記載の電動機制御装置は、磁気飽和成分の影響がある場合、また電動機の回転数が低い場合などでは、シャント抵抗を用いた電流検出回路の検出値を使用する。 Conventionally, some motor drive devices equipped with an inverter circuit are provided with a plurality of current detection circuits. Patent Document 1 describes a current detection circuit using a shunt resistor provided between a DC power supply and an inverter circuit, and a current using an ACCT (Alternating Current Current Transferr) provided between the inverter circuit and an electric motor. A technique for an electric motor control device including a detection circuit is disclosed. The electric motor control device described in Patent Document 1 uses the detection value of the current detection circuit using the shunt resistor when there is an influence of the magnetic saturation component or when the rotation speed of the electric motor is low.
特開2004-282974号公報Japanese Unexamined Patent Publication No. 2004-282974
 しかしながら、特許文献1に記載の電動機制御装置は、インバータ回路をパルス幅変調、すなわちPWM(Pulse Width Modulation)による変調率が1を超える過変調の状態で制御する場合、シャント抵抗を用いた電流検出回路では電流を検出できない領域があるため、電流検出誤差が大きくなる、という問題点があった。特許文献1に記載の電動機制御装置は、過変調の状態で電流を検出するには、インバータ回路の下側のスイッチング素子をオンにしてシャント抵抗に電流を流す必要があるが、出力電圧の誤差となる。すなわち、条件によっては電流検出のために不要なスイッチングが必要なため、電力が余計に大きくなり、省エネ性能悪化、ノイズ増加などの要因になる。 However, the electric motor control device described in Patent Document 1 detects current using a shunt resistor when the inverter circuit is controlled by pulse width modulation, that is, in a state of overmodulation in which the modulation rate by PWM (Pulse Width Modulation) exceeds 1. Since there is a region where the current cannot be detected in the circuit, there is a problem that the current detection error becomes large. In the motor control device described in Patent Document 1, in order to detect the current in the overmodulated state, it is necessary to turn on the switching element on the lower side of the inverter circuit and pass the current through the shunt resistor, but there is an error in the output voltage. It becomes. That is, depending on the conditions, unnecessary switching is required for current detection, so that the electric power becomes excessively large, which causes deterioration of energy saving performance and noise increase.
 本発明は、上記を鑑みてなされたものであって、インバータ回路をパルス幅変調による過変調の状態で制御する場合において、電流検出精度の低下を抑制可能なモータ駆動装置を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a motor drive device capable of suppressing a decrease in current detection accuracy when the inverter circuit is controlled in a state of overmodulation by pulse width modulation. To do.
 上述した課題を解決し、目的を達成するために、本発明に係るモータ駆動装置は、直流電圧電源から出力される直流電圧を正弦波の擬似交流電圧に変換してモータに出力するインバータ回路と、1つ以上のシャント抵抗を用いてモータに流れる電流を検出する第1の電流検出回路と、2つ以上の交流カレントトランスを用いてモータに流れる電流を検出する第2の電流検出回路と、第1の電流検出回路で検出される第1の電流値および第2の電流検出回路で検出される第2の電流値のうち少なくとも1つを用いて、インバータ回路から出力される正弦波の擬似交流電圧をパルス幅変調によって制御するコントローラと、を備える。コントローラは、インバータ回路から出力される正弦波の擬似交流電圧を変調率が1を超える過変調の状態で制御する場合、変調率に基づいて、第1の電流値または第2の電流値を使用するかを決定する。 In order to solve the above-mentioned problems and achieve the object, the motor drive device according to the present invention includes an inverter circuit that converts a DC voltage output from a DC voltage power supply into a sinusoidal pseudo AC voltage and outputs the current to the motor. A first current detection circuit that detects the current flowing through the motor using one or more shunt resistors, and a second current detection circuit that detects the current flowing through the motor using two or more AC current transformers. Pseudo-sine wave output from the inverter circuit using at least one of the first current value detected by the first current detection circuit and the second current value detected by the second current detection circuit. It includes a controller that controls the AC voltage by pulse width modulation. When the controller controls the pseudo AC voltage of the sine wave output from the inverter circuit in the overmodulated state where the modulation factor exceeds 1, the controller uses the first current value or the second current value based on the modulation factor. Decide if you want to.
 本発明に係るモータ駆動装置は、インバータ回路をパルス幅変調による過変調の状態で制御する場合において、電流検出精度の低下を抑制できる、という効果を奏する。 The motor drive device according to the present invention has an effect that a decrease in current detection accuracy can be suppressed when the inverter circuit is controlled in a state of overmodulation by pulse width modulation.
実施の形態1に係るモータ駆動装置の構成例を示す図The figure which shows the structural example of the motor drive device which concerns on Embodiment 1. 実施の形態1に係るインバータ回路の出力電圧とデューティー比との関係を示す図The figure which shows the relationship between the output voltage of the inverter circuit which concerns on Embodiment 1 and a duty ratio. 実施の形態1に係るインバータ回路が過変調の状態で制御されている場合の出力電圧とデューティー比との関係を示す図The figure which shows the relationship between the output voltage and the duty ratio when the inverter circuit which concerns on Embodiment 1 is controlled in the state of overmodulation. 実施の形態1に係るモータ駆動装置において第1の電流検出回路および第2の電流検出回路におけるインバータ回路のスイッチング素子のスイッチングによる電流検出不可期間を示す図The figure which shows the current undetectable period by switching of the switching element of the inverter circuit in the 1st current detection circuit and the 2nd current detection circuit in the motor drive device which concerns on Embodiment 1. 実施の形態1に係るモータ駆動装置が備えるコントローラの構成例を示すブロック図A block diagram showing a configuration example of a controller included in the motor drive device according to the first embodiment. 実施の形態1に係るモータ駆動装置のコントローラによる磁束ベクトル制御の動作を示す図The figure which shows the operation of the magnetic flux vector control by the controller of the motor drive device which concerns on Embodiment 1. 実施の形態1に係るモータ駆動装置のコントローラにおいて第1の電流検出回路で電流検出可能な範囲を示す図The figure which shows the range which can detect the current by the 1st current detection circuit in the controller of the motor drive device which concerns on Embodiment 1. 実施の形態1に係るコントローラの動作を示すフローチャートA flowchart showing the operation of the controller according to the first embodiment. 実施の形態1に係るモータ駆動装置が備える処理回路をプロセッサおよびメモリで構成する場合の例を示す図The figure which shows the example of the case where the processing circuit included in the motor drive device which concerns on Embodiment 1 is configured by a processor and a memory. 実施の形態2に係る冷凍サイクル装置の構成例を示す図The figure which shows the structural example of the refrigerating cycle apparatus which concerns on Embodiment 2.
 以下に、本発明の実施の形態に係るモータ駆動装置および冷凍サイクル装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 The motor drive device and the refrigeration cycle device according to the embodiment of the present invention will be described in detail below with reference to the drawings. The present invention is not limited to this embodiment.
実施の形態1.
 図1は、本発明の実施の形態1に係るモータ駆動装置20の構成例を示す図である。モータ駆動装置20は、直流電圧電源1と、インバータ回路2と、コントローラ3と、第1の電流検出回路7と、第2の電流検出回路8と、備える。
Embodiment 1.
FIG. 1 is a diagram showing a configuration example of a motor drive device 20 according to a first embodiment of the present invention. The motor drive device 20 includes a DC voltage power supply 1, an inverter circuit 2, a controller 3, a first current detection circuit 7, and a second current detection circuit 8.
 直流電圧電源1は、インバータ回路2を動作させるための直流電圧を出力する。直流電圧電源1は、バッテリ、太陽電池などであってもよいし、交流電圧電源から出力される交流電圧をダイオードブリッジなどで整流し、さらにコンデンサなどで平滑化するコンバータ回路であってもよい。 The DC voltage power supply 1 outputs a DC voltage for operating the inverter circuit 2. The DC voltage power supply 1 may be a battery, a solar cell, or the like, or may be a converter circuit in which the AC voltage output from the AC voltage power supply is rectified by a diode bridge or the like and further smoothed by a capacitor or the like.
 モータ4は、インバータ回路2から出力される交流電力によって駆動する三相のモータである。三相の各相を、U相、V相、およびW相とする。 The motor 4 is a three-phase motor driven by AC power output from the inverter circuit 2. Each of the three phases is referred to as a U phase, a V phase, and a W phase.
 第1の電流検出回路7は、シャント抵抗71を用いてモータ4に流れる電流を検出する電流検出回路である。図1の例では、シャント抵抗71が1つであるが一例であり、これに限定されない。第1の電流検出回路7は、シャント抵抗を2つ以上用いてモータ4に流れる電流を検出することも可能である。すなわち、第1の電流検出回路7は、1つ以上のシャント抵抗を用いてモータ4に流れる電流を検出する。第1の電流検出回路7は、シャント抵抗71で電圧として検出された電圧値を図示しないオペアンプなどを用いた増幅回路で増幅し、コントローラ3にフィードバックする。コントローラ3は、オームの法則を用いることで、第1の電流検出回路7からフィードバックされた電圧値から、第1の電流検出回路7に流れる電流値を求めることができる。なお、増幅回路については、コントローラ3が備えていてもよい。 The first current detection circuit 7 is a current detection circuit that detects the current flowing through the motor 4 using the shunt resistor 71. In the example of FIG. 1, there is one shunt resistor 71, but this is an example, and the present invention is not limited to this. The first current detection circuit 7 can also detect the current flowing through the motor 4 by using two or more shunt resistors. That is, the first current detection circuit 7 detects the current flowing through the motor 4 using one or more shunt resistors. The first current detection circuit 7 amplifies the voltage value detected as a voltage by the shunt resistor 71 by an amplifier circuit using an operational amplifier (not shown) or the like, and feeds it back to the controller 3. By using Ohm's law, the controller 3 can obtain the current value flowing through the first current detection circuit 7 from the voltage value fed back from the first current detection circuit 7. The amplifier circuit may be provided in the controller 3.
 第2の電流検出回路8は、ACCT81,82を用いてモータ4に流れる電流を検出する電流検出回路である。図1の例では、交流カレントトランスであるACCT81,82が2つであるが一例であり、これに限定されない。第2の電流検出回路8は、モータ4が有する三相の各相に対してACCTを3つ用いて、モータ4に流れる電流を検出することも可能である。すなわち、第2の電流検出回路8は、インバータ回路2とモータ4との間で、2つ以上の交流カレントトランスを用いてモータ4に流れる電流を検出する。第2の電流検出回路8は、ACCT81,82で電圧として検出された電圧値を図示しないオペアンプなどを用いた増幅回路で増幅し、コントローラ3にフィードバックする。コントローラ3は、オームの法則を用いることで、第2の電流検出回路8からフィードバックされた電圧値から、第2の電流検出回路8に流れる電流値を求めることができる。なお、増幅回路については、コントローラ3が備えていてもよい。 The second current detection circuit 8 is a current detection circuit that detects the current flowing through the motor 4 using the ACCTs 81 and 82. In the example of FIG. 1, there are two ACCTs 81 and 82, which are AC current transformers, but this is an example, and the present invention is not limited to this. The second current detection circuit 8 can also detect the current flowing through the motor 4 by using three ACCTs for each of the three phases of the motor 4. That is, the second current detection circuit 8 detects the current flowing through the motor 4 between the inverter circuit 2 and the motor 4 by using two or more AC current transformers. The second current detection circuit 8 amplifies the voltage value detected as a voltage by the ACCTs 81 and 82 by an amplifier circuit using an operational amplifier or the like (not shown), and feeds it back to the controller 3. By using Ohm's law, the controller 3 can obtain the current value flowing through the second current detection circuit 8 from the voltage value fed back from the second current detection circuit 8. The amplifier circuit may be provided in the controller 3.
 インバータ回路2は、直流電圧電源1から出力される直流電圧を交流電圧に変換する。インバータ回路2は、例えば、直流電圧を正弦波の擬似交流電圧に変換して、モータ4に出力する。インバータ回路2は、6つのスイッチング素子5から構成され、各スイッチング素子5にダイオード6が並列に接続される回路である。コントローラ3は、スイッチング素子5のオンオフのデューティーをPWMによって制御することで、インバータ回路2の出力電圧を制御することができる。インバータ回路2で用いられるスイッチング素子5は、例えば、IGBT(Insulated Gate Bipolar Transistor)、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)といった素子であり、シリコン半導体で構成されている。 The inverter circuit 2 converts the DC voltage output from the DC voltage power supply 1 into an AC voltage. The inverter circuit 2 converts, for example, a DC voltage into a pseudo AC voltage of a sinusoidal wave and outputs the DC voltage to the motor 4. The inverter circuit 2 is a circuit composed of six switching elements 5 in which a diode 6 is connected in parallel to each switching element 5. The controller 3 can control the output voltage of the inverter circuit 2 by controlling the on / off duty of the switching element 5 by PWM. The switching element 5 used in the inverter circuit 2 is, for example, an element such as an IGBT (Insulated Gate Bipolar Transistor) or a MOSFET (Metal-Oxide-Semiconductor Field-Effective Transistor), and is composed of a silicon semiconductor.
 以降の説明において、6つのスイッチング素子5を、スイッチング素子Up,Un,Vp,Vn,Wp,Wnと称することがある。スイッチング素子Upはモータ4のU相に接続される上アームのスイッチング素子であり、スイッチング素子Unはモータ4のU相に接続される下アームのスイッチング素子であり、スイッチング素子Vpはモータ4のV相に接続される上アームのスイッチング素子であり、スイッチング素子Vnはモータ4のV相に接続される下アームのスイッチング素子であり、スイッチング素子Wpはモータ4のW相に接続される上アームのスイッチング素子であり、スイッチング素子Wnはモータ4のW相に接続される下アームのスイッチング素子である。 In the following description, the six switching elements 5 may be referred to as switching elements Up, Un, Vp, Vn, Wp, Wn. The switching element Up is the switching element of the upper arm connected to the U phase of the motor 4, the switching element Un is the switching element of the lower arm connected to the U phase of the motor 4, and the switching element Vp is the V of the motor 4. The switching element of the upper arm connected to the phase, the switching element Vn is the switching element of the lower arm connected to the V phase of the motor 4, and the switching element Wp is the switching element of the upper arm connected to the W phase of the motor 4. It is a switching element, and the switching element Wn is a switching element of the lower arm connected to the W phase of the motor 4.
 図2は、実施の形態1に係るインバータ回路2の出力電圧とデューティー比との関係を示す図である。図3は、実施の形態1に係るインバータ回路2が過変調の状態で制御されている場合の出力電圧とデューティー比との関係を示す図である。図2および図3において、正弦波で示される信号が出力電圧であり、三角波で示される信号がキャリア信号である。図2および図3に示すように、インバータ回路2の出力電圧は、コントローラ3によってデューティー比で制御される。コントローラ3は、正に大きい電圧を出力するときはデューティー比が大きくなるように制御し、負に大きい電圧を出力するときはデューティー比が小さくなるように制御する。 FIG. 2 is a diagram showing the relationship between the output voltage and the duty ratio of the inverter circuit 2 according to the first embodiment. FIG. 3 is a diagram showing the relationship between the output voltage and the duty ratio when the inverter circuit 2 according to the first embodiment is controlled in the overmodulated state. In FIGS. 2 and 3, the signal represented by the sine wave is the output voltage, and the signal represented by the triangular wave is the carrier signal. As shown in FIGS. 2 and 3, the output voltage of the inverter circuit 2 is controlled by the controller 3 in a duty ratio. The controller 3 controls so that the duty ratio becomes large when a positively large voltage is output, and controls so that the duty ratio becomes small when a negatively large voltage is output.
 図4は、実施の形態1に係るモータ駆動装置20において第1の電流検出回路7および第2の電流検出回路8におけるインバータ回路2のスイッチング素子5のスイッチングによる電流検出不可期間を示す図である。インバータ回路2の出力電流では、図4に示すように、スイッチング素子5がスイッチングした瞬間にリンギングという電流が振動する現象が起きる。そのため、第1の電流検出回路7および第2の電流検出回路8では、スイッチング素子5がスイッチングしてから時間をおいて、すなわちリンギングが収束してから電流を検出しないと、検出電流誤差につながる。また、図4に示す電流の検出可能な範囲は、インバータ回路2の寄生回路によって変動する。そのため、高いキャリア周波数、高いモータ回転数などの場合、検出可能な期間が短くなり、第1の電流検出回路7および第2の電流検出回路8で電流が検出できない場合がある。 FIG. 4 is a diagram showing a current undetectable period due to switching of the switching element 5 of the inverter circuit 2 in the first current detection circuit 7 and the second current detection circuit 8 in the motor drive device 20 according to the first embodiment. .. In the output current of the inverter circuit 2, as shown in FIG. 4, a phenomenon called ringing occurs in which the current vibrates at the moment when the switching element 5 switches. Therefore, in the first current detection circuit 7 and the second current detection circuit 8, if the current is not detected after a time has passed since the switching element 5 has switched, that is, after the ringing has converged, a detection current error will occur. .. Further, the detectable range of the current shown in FIG. 4 varies depending on the parasitic circuit of the inverter circuit 2. Therefore, in the case of a high carrier frequency, a high motor rotation speed, or the like, the detectable period becomes short, and the current may not be detected by the first current detection circuit 7 and the second current detection circuit 8.
 コントローラ3は、前述のようにインバータ回路2の動作を制御する制御部である。コントローラ3は、第1の電流検出回路7で検出される第1の電流値および第2の電流検出回路8で検出される第2の電流値のうち少なくとも1つを用いて、インバータ回路2から出力される正弦波の擬似交流電圧をPWMによって制御する。コントローラ3の構成について説明する。図5は、実施の形態1に係るモータ駆動装置20が備えるコントローラ3の構成例を示すブロック図である。コントローラ3は、電流指令値生成部9と、電圧演算部10と、電圧座標変換部11と、積分部12と、すべり補償部13と、電流座標変換部14と、を備える。 The controller 3 is a control unit that controls the operation of the inverter circuit 2 as described above. The controller 3 uses at least one of the first current value detected by the first current detection circuit 7 and the second current value detected by the second current detection circuit 8 from the inverter circuit 2. The pseudo AC voltage of the output sinusoidal wave is controlled by PWM. The configuration of the controller 3 will be described. FIG. 5 is a block diagram showing a configuration example of a controller 3 included in the motor drive device 20 according to the first embodiment. The controller 3 includes a current command value generation unit 9, a voltage calculation unit 10, a voltage coordinate conversion unit 11, an integration unit 12, a slip compensation unit 13, and a current coordinate conversion unit 14.
 電流指令値生成部9は、速度指令値ωから電流指令値Idを生成する。 The current command value generation unit 9 generates the current command value Id * from the speed command value ω.
 電圧演算部10は、速度指令値ωと、電流指令値Idと、インバータ回路2から出力される出力電圧の各相の電流Iu,Iv,Iwを直交座標に座標変換した電流Id,Iqとを用いて、電圧演算結果Vd,Vqを演算する。 The voltage calculation unit 10 uses the speed command value ω, the current command value Id *, and the currents Id, Iq obtained by converting the currents Iu, Iv, and Iw of each phase of the output voltage output from the inverter circuit 2 into Cartesian coordinates. Is used to calculate the voltage calculation results Vd and Vq.
 積分部12は、速度指令値ωを積分し、積分値である回転角度θを出力する。 The integrating unit 12 integrates the speed command value ω and outputs the rotation angle θ which is the integrated value.
 電圧座標変換部11は、回転角度θを用いて電圧演算結果Vd,Vqを座標変換し、駆動信号Vu,Vv,Vwに変換する。電圧座標変換部11は、駆動信号Vu,Vv,Vwをインバータ回路2に出力することで、インバータ回路2の各スイッチング素子5のオンオフを制御する。電圧座標変換部11すなわちインバータ回路2から、駆動信号Vu,Vv,Vwに基づいて電流Iu,Iv,Iwがモータ4に流れる。第1の電流検出回路7および第2の電流検出回路8は、電流Iu,Iv,Iwを検出する。 The voltage coordinate conversion unit 11 converts the voltage calculation results Vd and Vq into coordinates using the rotation angle θ, and converts them into drive signals Vu, Vv and Vw. The voltage coordinate conversion unit 11 controls on / off of each switching element 5 of the inverter circuit 2 by outputting the drive signals Vu, Vv, Vw to the inverter circuit 2. Currents Iu, Iv, Iw flow from the voltage coordinate conversion unit 11, that is, the inverter circuit 2, to the motor 4 based on the drive signals Vu, Vv, Vw. The first current detection circuit 7 and the second current detection circuit 8 detect the currents Iu, Iv, and Iw.
 電流座標変換部14は、回転角度θを用いて電流Iu,Iv,Iwを座標変換し、電流Id,Iqに変換する。 The current coordinate conversion unit 14 converts the currents Iu, Iv, and Iw into coordinates using the rotation angle θ, and converts them into the currents Id and Iq.
 すべり補償部13は、座標変換された電流Iqを用いてすべり補償を行う。すべり補償部13は、すべり補償を行った結果を、速度指令値ωにフィードバックする。 The slip compensation unit 13 performs slip compensation using the coordinate-transformed current Iq. The slip compensation unit 13 feeds back the result of slip compensation to the speed command value ω.
 このように、コントローラ3は、速度指令値ωに基づいて電流指令値Idを用いることで、モータ4に出力する電流の増減が可能となり、正弦波の擬似交流電圧の電流を制御する。コントローラ3は、起動加速中の位置決め直後は電流を増加させて制御する。また、コントローラ3は、起動加速は速度指令値ωと設定された加速度に応じて加速し、定常回転中は速度指令値ωの変更によって加減速を行うことで、回転数を変更することができる。 In this way, the controller 3 can increase or decrease the current output to the motor 4 by using the current command value Id * based on the speed command value ω, and controls the current of the pseudo AC voltage of the sine wave. The controller 3 controls by increasing the current immediately after positioning during start-up acceleration. Further, the controller 3 can change the rotation speed by accelerating the start acceleration according to the speed command value ω and the set acceleration, and accelerating or decelerating by changing the speed command value ω during steady rotation. ..
 具体的には、コントローラ3は、磁束ベクトル制御によってインバータ回路2の出力、すなわちモータ4の駆動を制御する。図6は、実施の形態1に係るモータ駆動装置20のコントローラ3による磁束ベクトル制御の動作を示す図である。図6で示される各ステージ0~5の各スイッチング素子Up,Un,Vp,Vn,Wp,Wnのオンオフの状態は、前述の特許文献1で示されているものと同様である。コントローラ3は、磁束ベクトル制御においては、インバータ回路2の出力電圧をベクトルで表したベクトルVkがステージ0からステージ5の間を順番に回っていく、すなわち時計回りで動く方向で制御する。各ステージ内のベクトルVkは、例えば、ステージ0であれば(100)ベクトルと(110)ベクトルとの合成によって生成される。なお、括弧内の3ケタの数字(100)は、左から順にU相、V相、およびW相の各相のオンオフ状態を示した数字である。この数字が1のときは、上アームのスイッチング素子がオン、下アームのスイッチング素子がオフの状態であることを示し、この数字が0のときは、上アームのスイッチング素子がオフ、下アームのスイッチング素子がオンの状態であることを示す。 Specifically, the controller 3 controls the output of the inverter circuit 2, that is, the drive of the motor 4 by the magnetic flux vector control. FIG. 6 is a diagram showing an operation of magnetic flux vector control by the controller 3 of the motor drive device 20 according to the first embodiment. The on / off states of the switching elements Up, Un, Vp, Vn, Wp, and Wn of the stages 0 to 5 shown in FIG. 6 are the same as those shown in the above-mentioned Patent Document 1. In the magnetic flux vector control, the controller 3 controls in a direction in which the vector Vk, which represents the output voltage of the inverter circuit 2 as a vector, rotates in order between the stages 0 and 5, that is, moves clockwise. The vector Vk in each stage is generated by synthesizing the (100) vector and the (110) vector in the case of stage 0, for example. The three-digit number (100) in parentheses is a number indicating the on / off state of each of the U phase, V phase, and W phase in order from the left. When this number is 1, it means that the switching element of the upper arm is on and the switching element of the lower arm is off, and when this number is 0, the switching element of the upper arm is off and the switching element of the lower arm is off. Indicates that the switching element is in the ON state.
 コントローラ3は、初期位置および回転数が決まれば、初期位置に、角速度と時間とを掛け算した値を足すことで、回転角度θを求めることができる。コントローラ3は、初期位置について、図6に示すベクトルVkのある位置の電圧を出すことで決定できる。 Once the initial position and rotation speed are determined, the controller 3 can obtain the rotation angle θ by adding the value obtained by multiplying the angular velocity and the time to the initial position. The controller 3 can determine the initial position by outputting a voltage at a position of the vector Vk shown in FIG.
 つぎに、コントローラ3が、インバータ回路2の各スイッチング素子Up,Un,Vp,Vn,Wp,Wnのオンオフを制御する場合において、第1の電流検出回路7および第2の電流検出回路8のどちらの電流検出回路で検出された電流値を使用するのかについて説明する。図7は、実施の形態1に係るモータ駆動装置20のコントローラ3において第1の電流検出回路7で電流検出可能な範囲を示す図である。図7に示す円内において、網掛け部分以外が第1の電流検出回路7で電流検出可能な範囲を示し、網掛け部分が第1の電流検出回路7で電流検出不可の範囲を示す。コントローラ3は、網掛け部分、すなわち第1の電流検出回路7で電流検出不可の範囲では、第2の電流検出回路8で検出された電流値を使用する。 Next, when the controller 3 controls the on / off of each switching element Up, Un, Vp, Vn, Wp, Wn of the inverter circuit 2, which of the first current detection circuit 7 and the second current detection circuit 8 is used. It will be described whether the current value detected by the current detection circuit of is used. FIG. 7 is a diagram showing a range in which current can be detected by the first current detection circuit 7 in the controller 3 of the motor drive device 20 according to the first embodiment. In the circle shown in FIG. 7, the area other than the shaded portion indicates the range in which the current can be detected by the first current detection circuit 7, and the shaded portion indicates the range in which the current cannot be detected by the first current detection circuit 7. The controller 3 uses the current value detected by the second current detection circuit 8 in the shaded portion, that is, in the range where the current cannot be detected by the first current detection circuit 7.
 網掛け部分、すなわち第1の電流検出回路7で電流検出不可の範囲は、ステージの切り替わりの前後、およびコントローラ3のインバータ回路2に対するPWM制御の変調率が1を超える場合の変調率に応じた範囲である。図7に示すように、変調率が大きくなるほど、網掛け部分、すなわち第1の電流検出回路7で電流検出不可の範囲が大きくなる。そのため、コントローラ3は、インバータ回路2に対するPWM制御の変調率が1を超える過変調の領域では、変調率およびベクトルVkの位置に基づいて、第1の電流検出回路7の電流値を使用するか、第2の電流検出回路8の電流値を使用するかを切り替える。 The shaded portion, that is, the range in which the current cannot be detected in the first current detection circuit 7 corresponds to the modulation factor before and after the stage switching and when the modulation factor of the PWM control for the inverter circuit 2 of the controller 3 exceeds 1. The range. As shown in FIG. 7, the larger the modulation factor, the larger the shaded portion, that is, the range in which the current cannot be detected by the first current detection circuit 7. Therefore, does the controller 3 use the current value of the first current detection circuit 7 based on the modulation factor and the position of the vector Vk in the overmodulation region where the modulation factor of the PWM control with respect to the inverter circuit 2 exceeds 1. , Switch whether to use the current value of the second current detection circuit 8.
 図7で示される第1の電流検出回路7で電流検出不可の範囲については、以下のように定義できる。例えば、図6に示す1ステージの60°の範囲において、変調率1までの状態では、0°~5°および55°~60°の範囲を第1の電流検出回路7の電流検出不可期間とする。また、変調率が1を超える過変調の状態では、5°+変調率×Δθおよび55°-変調率×Δθの範囲を第1の電流検出回路7の電流検出不可期間とする。前述のように、変調率が1を超える過変調の状態では、変調率が上がるほど、第1の電流検出回路7の電流検出不可期間が大きくなる。なお、Δθについては、変調率1と変調率最大のときの電流検出不可期間の角度差を変調率差で割ることで求めることができる。 The range in which current cannot be detected by the first current detection circuit 7 shown in FIG. 7 can be defined as follows. For example, in the range of 60 ° in one stage shown in FIG. 6, in the state up to the modulation factor 1, the ranges of 0 ° to 5 ° and 55 ° to 60 ° are defined as the current undetectable period of the first current detection circuit 7. To do. Further, in the state of overmodulation in which the modulation factor exceeds 1, the range of 5 ° + modulation factor × Δθ and 55 ° − modulation factor × Δθ is set as the current detection impossible period of the first current detection circuit 7. As described above, in the overmodulated state in which the modulation factor exceeds 1, the current undetectable period of the first current detection circuit 7 increases as the modulation factor increases. Note that Δθ can be obtained by dividing the angular difference between the modulation factor 1 and the current undetectable period when the modulation factor is maximum by the modulation factor difference.
 コントローラ3は、第1の電流検出回路7の電流検出不可期間では、第2の電流検出回路8で検出された電流値を使用し、第1の電流検出回路7の電流検出不可期間以外の領域では、第1の電流検出回路7で検出された電流値を使用する。 The controller 3 uses the current value detected by the second current detection circuit 8 in the current non-detectable period of the first current detection circuit 7, and is in a region other than the current non-detectable period of the first current detection circuit 7. Then, the current value detected by the first current detection circuit 7 is used.
 コントローラ3の動作を、フローチャートを用いて説明する。図8は、実施の形態1に係るコントローラ3の動作を示すフローチャートである。コントローラ3は、インバータ回路2の出力電圧をベクトルで表したベクトルVkの位置を決定する(ステップS1)。コントローラ3は、ベクトルVkの位置を示す回転角度θ、およびインバータ回路2に対するPWM制御の変調率から決定される位置が、第1の電流検出回路7の電流検出不可期間か否かを判定する(ステップS2)。コントローラ3は、ベクトルVkの位置を示す回転角度θ、およびインバータ回路2に対するPWM制御の変調率から決定される位置が、第1の電流検出回路7の電流検出不可期間の場合(ステップS2:Yes)、第2の電流検出回路8で検出された第2の電流値を使用して(ステップS3)、インバータ回路2を制御する。コントローラ3は、ベクトルVkの位置を示す回転角度θ、およびインバータ回路2に対するPWM制御の変調率から決定される位置が、第1の電流検出回路7の電流検出不可期間以外の場合(ステップS2:No)、第1の電流検出回路7で検出された第1の電流値を使用して(ステップS4)、インバータ回路2を制御する。このように、コントローラ3は、インバータ回路2から出力される正弦波の擬似交流電圧を変調率が1を超える過変調の状態で制御する場合、変調率に基づいて、第1の電流値または第2の電流値を使用するかを決定する。 The operation of the controller 3 will be explained using a flowchart. FIG. 8 is a flowchart showing the operation of the controller 3 according to the first embodiment. The controller 3 determines the position of the vector Vk, which represents the output voltage of the inverter circuit 2 as a vector (step S1). The controller 3 determines whether or not the position determined from the rotation angle θ indicating the position of the vector Vk and the modulation factor of the PWM control with respect to the inverter circuit 2 is the current non-detectable period of the first current detection circuit 7 ( Step S2). In the controller 3, when the position determined from the rotation angle θ indicating the position of the vector Vk and the modulation factor of the PWM control with respect to the inverter circuit 2 is the current non-detectable period of the first current detection circuit 7 (step S2: Yes). ), The inverter circuit 2 is controlled by using the second current value detected by the second current detection circuit 8 (step S3). When the position of the controller 3 determined from the rotation angle θ indicating the position of the vector Vk and the modulation factor of the PWM control with respect to the inverter circuit 2 is other than the current non-detectable period of the first current detection circuit 7 (step S2: No), the inverter circuit 2 is controlled by using the first current value detected by the first current detection circuit 7 (step S4). As described above, when the controller 3 controls the pseudo AC voltage of the sine wave output from the inverter circuit 2 in the overmodulated state in which the modulation factor exceeds 1, the first current value or the first current value or the first current value is based on the modulation factor. Decide whether to use the current value of 2.
 つづいて、実施の形態1のモータ駆動装置20が備えるコントローラ3のハードウェア構成について説明する。コントローラ3は処理回路により実現される。処理回路は、メモリに格納されるプログラムを実行するプロセッサおよびメモリであってもよいし、専用のハードウェアであってもよい。 Next, the hardware configuration of the controller 3 included in the motor drive device 20 of the first embodiment will be described. The controller 3 is realized by a processing circuit. The processing circuit may be a processor and memory for executing a program stored in the memory, or may be dedicated hardware.
 図9は、実施の形態1に係るモータ駆動装置20が備える処理回路をプロセッサおよびメモリで構成する場合の例を示す図である。処理回路がプロセッサ91およびメモリ92で構成される場合、モータ駆動装置20の処理回路の各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアまたはファームウェアはプログラムとして記述され、メモリ92に格納される。処理回路では、メモリ92に記憶されたプログラムをプロセッサ91が読み出して実行することにより、各機能を実現する。すなわち、処理回路は、コントローラ3の処理が結果的に実行されることになるプログラムを格納するためのメモリ92を備える。また、これらのプログラムは、コントローラ3の手順および方法をコンピュータに実行させるものであるともいえる。 FIG. 9 is a diagram showing an example in which the processing circuit included in the motor drive device 20 according to the first embodiment is configured by a processor and a memory. When the processing circuit is composed of the processor 91 and the memory 92, each function of the processing circuit of the motor drive device 20 is realized by software, firmware, or a combination of software and firmware. The software or firmware is written as a program and stored in the memory 92. In the processing circuit, each function is realized by the processor 91 reading and executing the program stored in the memory 92. That is, the processing circuit includes a memory 92 for storing a program in which the processing of the controller 3 is eventually executed. It can also be said that these programs cause the computer to execute the procedure and method of the controller 3.
 ここで、プロセッサ91は、CPU(Central Processing Unit)、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、またはDSP(Digital Signal Processor)などであってもよい。また、メモリ92には、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)などの、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、またはDVD(Digital Versatile Disc)などが該当する。 Here, the processor 91 may be a CPU (Central Processing Unit), a processing device, an arithmetic unit, a microprocessor, a microcomputer, a DSP (Digital Signal Processor), or the like. Further, the memory 92 includes, for example, non-volatile or volatile such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Program ROM), EEPROM (registered trademark) (Electricularly EPROM). This includes semiconductor memory, magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD (Digital Versaille Disc), and the like.
 処理回路が専用のハードウェアで構成される場合、処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせたものが該当する。コントローラ3の各機能を機能別に処理回路で実現してもよいし、各機能をまとめて処理回路で実現してもよい。なお、コントローラ3の各機能について、一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現するようにしてもよい。このように、処理回路は、専用のハードウェア、ソフトウェア、ファームウェア、またはこれらの組み合わせによって、上述の各機能を実現することができる。 When the processing circuit is composed of dedicated hardware, the processing circuit may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field Programmable Gate). Array), or a combination of these. Each function of the controller 3 may be realized by a processing circuit for each function, or each function may be collectively realized by a processing circuit. It should be noted that each function of the controller 3 may be partially realized by dedicated hardware and partly realized by software or firmware. As described above, the processing circuit can realize each of the above-mentioned functions by the dedicated hardware, software, firmware, or a combination thereof.
 なお、上述したインバータ回路2におけるスイッチング素子5及びダイオード6は、珪素(シリコン)を用いる場合が多いが、ワイドバンドギャップ半導体を用いて構成することも可能である。ワイドバンドギャップ半導体は、シリコンのバンドギャップより大きなバンドギャップを有する半導体のことを指し、代表的なワイドバンドギャップ半導体は、SiC(シリコンカーバイド)、GaN(窒化ガリウム)、ダイヤモンドなどである。ワイドバンドギャップ半導体を用いることで、スイッチング周波数も高くなりキャリア周波数を高周波数にしても損失が増加しない。したがって、キャリア周波数を高くし、それに応じて全スイッチング素子5を高速に制御することにより、細かく制御することができるが、高周波ノイズが増加するためスイッチングを抑制することでノイズ抑制につながる。インバータ回路2が備える複数のスイッチング素子5または複数のダイオード6のうち、少なくとも1つはワイドバンドギャップ半導体によって形成されていてもよい。また、ワイドバンドギャップ半導体の代わりに、スーパージャンクション構造のMOSFETを用いても同様の効果が得られる。 Although silicon is often used for the switching element 5 and the diode 6 in the above-mentioned inverter circuit 2, it is also possible to use a wide bandgap semiconductor. The wide bandgap semiconductor refers to a semiconductor having a bandgap larger than that of silicon, and typical wide bandgap semiconductors are SiC (silicon carbide), GaN (gallium nitride), diamond and the like. By using the wide bandgap semiconductor, the switching frequency becomes high and the loss does not increase even if the carrier frequency is set high. Therefore, fine control can be performed by increasing the carrier frequency and controlling all the switching elements 5 at high speed accordingly, but since high frequency noise increases, suppressing switching leads to noise suppression. At least one of the plurality of switching elements 5 or the plurality of diodes 6 included in the inverter circuit 2 may be formed of a wide bandgap semiconductor. Further, the same effect can be obtained by using a MOSFET having a super junction structure instead of the wide bandgap semiconductor.
 以上説明したように、本実施の形態によれば、モータ駆動装置20において、コントローラ3は、インバータ回路2をPWMで制御する場合、変調率に応じて、第1の電流検出回路7の電流値または第2の電流検出回路8の電流値のいずれを使用するかを決定することとした。これにより、モータ駆動装置20は、インバータ回路2をパルス幅変調による過変調の状態で制御する場合において、電流検出精度の低下を抑制できる。また、モータ駆動装置20は、高い変調率においても、省エネ性能が高く、かつ低ノイズでモータ4を駆動できる。 As described above, according to the present embodiment, in the motor drive device 20, when the controller 3 controls the inverter circuit 2 by PWM, the current value of the first current detection circuit 7 depends on the modulation factor. Alternatively, it was decided to decide which of the current values of the second current detection circuit 8 to use. As a result, the motor drive device 20 can suppress a decrease in current detection accuracy when the inverter circuit 2 is controlled in a state of overmodulation by pulse width modulation. Further, the motor driving device 20 can drive the motor 4 with high energy saving performance and low noise even at a high modulation rate.
実施の形態2.
 実施の形態2では、モータ駆動装置20が制御するモータ4が冷凍サイクル装置の圧縮機に搭載される場合について説明する。
Embodiment 2.
In the second embodiment, the case where the motor 4 controlled by the motor drive device 20 is mounted on the compressor of the refrigeration cycle device will be described.
 図10は、実施の形態2に係る冷凍サイクル装置30の構成例を示す図である。冷凍サイクル装置30は、圧縮機21と、凝縮器22と、膨張弁23と、蒸発器24と、を備える。圧縮機21には、モータ駆動装置20から出力される正弦波の擬似交流電圧によって駆動するモータ4を備える。圧縮機21、凝縮器22、および膨張弁23は、冷凍サイクル装置30に搭載されている一般的な機器である。実際には、圧縮機21、凝縮器22、膨張弁23、および蒸発器24によって、冷凍サイクル装置30の冷媒回路を構成している。 FIG. 10 is a diagram showing a configuration example of the refrigeration cycle device 30 according to the second embodiment. The refrigeration cycle device 30 includes a compressor 21, a condenser 22, an expansion valve 23, and an evaporator 24. The compressor 21 includes a motor 4 driven by a pseudo AC voltage of a sinusoidal wave output from the motor driving device 20. The compressor 21, the condenser 22, and the expansion valve 23 are general devices mounted on the refrigeration cycle device 30. Actually, the compressor 21, the condenser 22, the expansion valve 23, and the evaporator 24 constitute the refrigerant circuit of the refrigeration cycle device 30.
 圧縮機21は、構造によっては負荷変動が激しいものもある。しかしながら、モータ駆動装置20は、実施の形態1で説明した制御を行うことで、高負荷時の急峻な負荷変動でも正確に電流を検出できるので、高回転高負荷時でも高効率な運転を可能となる。 The load of the compressor 21 fluctuates sharply depending on the structure. However, by performing the control described in the first embodiment, the motor drive device 20 can accurately detect the current even in a steep load fluctuation at a high load, so that highly efficient operation is possible even at a high rotation and a high load. It becomes.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is one of the configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1 直流電圧電源、2 インバータ回路、3 コントローラ、4 モータ、5 スイッチング素子、6 ダイオード、7 第1の電流検出回路、8 第2の電流検出回路、9 電流指令値生成部、10 電圧演算部、11 電圧座標変換部、12 積分部、13 すべり補償部、14 電流座標変換部、20 モータ駆動装置、21 圧縮機、22 凝縮器、23 膨張弁、24 蒸発器、30 冷凍サイクル装置、71 シャント抵抗、81,82 ACCT。 1 DC voltage power supply, 2 Inverter circuit, 3 Controller, 4 Motor, 5 Switching element, 6 Diode, 7 1st current detection circuit, 8 2nd current detection circuit, 9 Current command value generator, 10 Voltage calculation unit, 11 Voltage coordinate conversion unit, 12 Integration unit, 13 Slip compensation unit, 14 Current coordinate conversion unit, 20 Motor drive device, 21 Compressor, 22 Condenser, 23 Expansion valve, 24 Inverter, 30 Refrigeration cycle device, 71 Shunt resistance , 81, 82 ACCT.

Claims (4)

  1.  直流電圧電源から出力される直流電圧を正弦波の擬似交流電圧に変換してモータに出力するインバータ回路と、
     1つ以上のシャント抵抗を用いて前記モータに流れる電流を検出する第1の電流検出回路と、
     2つ以上の交流カレントトランスを用いて前記モータに流れる電流を検出する第2の電流検出回路と、
     前記第1の電流検出回路で検出される第1の電流値および前記第2の電流検出回路で検出される第2の電流値のうち少なくとも1つを用いて、前記インバータ回路から出力される前記正弦波の擬似交流電圧をパルス幅変調によって制御するコントローラと、
     を備え、
     前記コントローラは、前記インバータ回路から出力される前記正弦波の擬似交流電圧を変調率が1を超える過変調の状態で制御する場合、前記変調率に基づいて、前記第1の電流値または前記第2の電流値を使用するかを決定する、
     モータ駆動装置。
    DC voltage An inverter circuit that converts the DC voltage output from the power supply into a sine wave pseudo AC voltage and outputs it to the motor.
    A first current detection circuit that detects the current flowing through the motor using one or more shunt resistors, and
    A second current detection circuit that detects the current flowing through the motor using two or more AC current transformers, and
    The output from the inverter circuit using at least one of a first current value detected by the first current detection circuit and a second current value detected by the second current detection circuit. A controller that controls the pseudo AC voltage of a sinusoidal wave by pulse width modulation,
    With
    When the controller controls the pseudo AC voltage of the sine wave output from the inverter circuit in a state of overmodulation in which the modulation factor exceeds 1, the first current value or the first current value is based on the modulation factor. Decide whether to use a current value of 2,
    Motor drive.
  2.  前記コントローラは、速度指令値に基づいた電流指令値を用いて、前記正弦波の擬似交流電圧の電流を制御する、
     請求項1に記載のモータ駆動装置。
    The controller controls the current of the pseudo AC voltage of the sine wave by using the current command value based on the speed command value.
    The motor drive device according to claim 1.
  3.  前記インバータ回路が備える複数のスイッチング素子または複数のダイオードのうち少なくとも1つはワイドバンドギャップ半導体によって形成されている、
     請求項1または2に記載のモータ駆動装置。
    At least one of the plurality of switching elements or the plurality of diodes included in the inverter circuit is formed by a wide bandgap semiconductor.
    The motor drive device according to claim 1 or 2.
  4.  請求項1から3のいずれか1つに記載のモータ駆動装置から出力される前記正弦波の擬似交流電圧によって駆動するモータを備える圧縮機と、凝縮器と、膨張弁と、蒸発器と、
     を備える冷凍サイクル装置。
    A compressor including a motor driven by the pseudo AC voltage of the sine wave output from the motor drive device according to any one of claims 1 to 3, a condenser, an expansion valve, an evaporator, and the like.
    Refrigeration cycle device equipped with.
PCT/JP2019/024761 2019-06-21 2019-06-21 Motor driving device and refrigeration cycle device WO2020255385A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/024761 WO2020255385A1 (en) 2019-06-21 2019-06-21 Motor driving device and refrigeration cycle device
JP2021528605A JP7130135B2 (en) 2019-06-21 2019-06-21 Motor drive device and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/024761 WO2020255385A1 (en) 2019-06-21 2019-06-21 Motor driving device and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2020255385A1 true WO2020255385A1 (en) 2020-12-24

Family

ID=74040391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024761 WO2020255385A1 (en) 2019-06-21 2019-06-21 Motor driving device and refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP7130135B2 (en)
WO (1) WO2020255385A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004282974A (en) * 2003-03-19 2004-10-07 Mitsubishi Electric Corp Control device for motor and air conditioner using the same
JP2006254671A (en) * 2005-03-14 2006-09-21 Denso Corp Three-phase voltage type inverter system
WO2017037941A1 (en) * 2015-09-04 2017-03-09 三菱電機株式会社 Power converter and heat pump device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004282974A (en) * 2003-03-19 2004-10-07 Mitsubishi Electric Corp Control device for motor and air conditioner using the same
JP2006254671A (en) * 2005-03-14 2006-09-21 Denso Corp Three-phase voltage type inverter system
WO2017037941A1 (en) * 2015-09-04 2017-03-09 三菱電機株式会社 Power converter and heat pump device

Also Published As

Publication number Publication date
JP7130135B2 (en) 2022-09-02
JPWO2020255385A1 (en) 2021-10-21

Similar Documents

Publication Publication Date Title
US9998049B2 (en) Inverter control device and air conditioner
US9287815B2 (en) Power converter
JP4635703B2 (en) Control device for motor drive system
US9543851B2 (en) Matrix converter
US9780717B2 (en) Power conversion device, motor driving device including power conversion device, blower and compressor including motor driving device, and air conditioner, refrigerator, and freezer including blower and compressor
JP6847774B2 (en) Inverter device, air conditioner, control method and program of inverter device
US10686397B2 (en) Motor system, motor drive device, refrigeration cycle device, and air conditioner
JP6826928B2 (en) Inverter device, air conditioner, control method and program of inverter device
JP5511700B2 (en) Inverter device, fan drive device, compressor drive device, and air conditioner
JP6579195B2 (en) Power control method and power control apparatus
US10270380B2 (en) Power converting apparatus and heat pump device
JP6608031B2 (en) Power converter and air conditioner
JP6847775B2 (en) Inverter device, air conditioner, control method and program of inverter device
JP7053955B2 (en) Rotating machine control device
JP6180578B1 (en) Control device and control method for power conversion device
JP6410939B2 (en) Motor control device, compressor, and air conditioner
WO2020255385A1 (en) Motor driving device and refrigeration cycle device
WO2020095377A1 (en) Load driving device, refrigeration cycle device, and air conditioner
JP2004023938A (en) Inverter apparatus and processor
JP7170858B2 (en) LOAD DRIVE, AIR CONDITIONER, AND METHOD OF OPERATION OF LOAD DRIVE
US11632071B2 (en) Motor drive device and air conditioner
JP6471670B2 (en) Power control method and power control apparatus
WO2023095311A1 (en) Power conversion device, electric motor drive device, and refrigeration-cycle-applicable apparatus
JP7301229B2 (en) Electric motor drive and heat pump device
WO2023105689A1 (en) Power conversion device, electric motor drive device, and refrigeration cycle application device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19934096

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021528605

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19934096

Country of ref document: EP

Kind code of ref document: A1