WO2020255335A1 - Suspension body and method for producing same - Google Patents

Suspension body and method for producing same Download PDF

Info

Publication number
WO2020255335A1
WO2020255335A1 PCT/JP2019/024518 JP2019024518W WO2020255335A1 WO 2020255335 A1 WO2020255335 A1 WO 2020255335A1 JP 2019024518 W JP2019024518 W JP 2019024518W WO 2020255335 A1 WO2020255335 A1 WO 2020255335A1
Authority
WO
WIPO (PCT)
Prior art keywords
isocyanate group
fiber reinforced
reinforced plastic
suspension body
coating layer
Prior art date
Application number
PCT/JP2019/024518
Other languages
French (fr)
Japanese (ja)
Inventor
晋也 内藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/024518 priority Critical patent/WO2020255335A1/en
Publication of WO2020255335A1 publication Critical patent/WO2020255335A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/10Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by a fibrous or filamentary layer reinforced with filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/06Arrangements of ropes or cables
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/10Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating

Definitions

  • the present invention relates to a suspension body and a method for manufacturing the suspension body.
  • Patent Document 1 discloses that the outer periphery of the load support portion is covered with a coating layer such as polyurethane in order to protect the load support portion from mechanical wear and the like.
  • the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a suspension body in which a fiber-reinforced plastic and a coating layer covering the outer periphery thereof are firmly adhered to each other.
  • the present invention comprises a fiber-reinforced plastic and a coating layer that covers the outer periphery of the fiber-reinforced plastic.
  • the fiber-reinforced plastic is a cured product of an intermediate material containing a compound having a blocked isocyanate group, a matrix resin, and reinforcing fibers.
  • the coating layer is composed of a resin having a functional group that reacts with an isocyanate group, and the functional group that reacts with the isocyanate group reacts with an isocyanate group generated from the blocked isocyanate group to form a chemical bond. It is a suspended body.
  • a step of impregnating a reinforcing fiber with a compound having a blocked isocyanate group and a matrix resin to prepare an intermediate material, and a temperature lower than the temperature at which the blocking agent of the compound having a blocked isocyanate group is dissociated By heating to cure the matrix resin to prepare a fiber-reinforced plastic, and by coating the outer periphery of the fiber-reinforced plastic with a coating layer composed of a resin having a functional group that reacts with an isocyanate group.
  • a method for producing a suspended body comprising a step of reacting a functional group that reacts with the isocyanate group and an isocyanate group generated from the blocked isocyanate group to form a chemical bond.
  • the present invention it is possible to provide a suspension body in which a fiber reinforced plastic and a coating layer covering the outer periphery thereof are firmly adhered to each other.
  • FIG. It is a schematic cross-sectional view of an example of the suspension body which concerns on Embodiment 1.
  • FIG. It is a schematic cross-sectional view of an example of the suspension body which concerns on Embodiment 1.
  • FIG. It is a schematic cross-sectional view of an example of the suspension body which concerns on Embodiment 1.
  • FIG. It is a schematic cross-sectional view of an example of the suspension body which concerns on Embodiment 1.
  • FIG. It is a schematic cross-sectional view of an example of the suspension body which concerns on Embodiment 1.
  • FIG. It is a schematic cross-sectional view of an example of the suspension body which concerns on Embodiment 1.
  • FIG. It is a schematic cross-sectional view of an example of the suspension body which concerns on Embodiment 1.
  • FIG. It is a schematic cross-sectional view of an example of the suspension body which concerns on Embodiment 1.
  • FIG. It is a schematic cross-sectional view of an example of the suspension body which concerns on
  • FIG. It is a schematic enlarged sectional view of the fiber reinforced plastic in the suspension body which concerns on Embodiment 1.
  • FIG. It is a flow chart of the manufacturing method of the suspension body which concerns on Embodiment 1.
  • FIG. It is a schematic cross-sectional view of an example of the suspension body which concerns on Embodiment 2.
  • FIG. It is a schematic cross-sectional view of an example of the suspension body which concerns on Embodiment 2.
  • FIG. It is a schematic cross-sectional view of an example of the suspension body which concerns on Embodiment 2.
  • FIG. It is a schematic cross-sectional view of an example of the suspension body which concerns on Embodiment 2.
  • FIG. It is a flow chart of the manufacturing method of the suspension body which concerns on Embodiment 2.
  • FIG. It is an example of the peel test result of the suspension body of Example 1.
  • the suspension body according to the first embodiment of the present invention will be described.
  • the suspension body according to the first embodiment includes a fiber reinforced plastic and a coating layer that covers the outer periphery of the fiber reinforced plastic.
  • a fiber reinforced plastic is a cured product of an intermediate material containing a compound having a blocked isocyanate group, a matrix resin and reinforcing fibers.
  • the coating layer is composed of a resin having a functional group that reacts with an isocyanate group.
  • the functional group that reacts with the isocyanate group in the coating layer reacts with the isocyanate group generated from the blocked isocyanate group in the compound having the blocked isocyanate group to form a chemical bond.
  • 1 to 7 are schematic cross-sectional views of an example of the suspension body according to the first embodiment.
  • the suspension body 1 shown in FIG. 1 is a belt-shaped suspension body having a rectangular cross section.
  • the suspension body 1 shown in FIG. 1 includes a fiber reinforced plastic 2 having a rectangular cross section and a coating layer 3 that covers the outer periphery of the fiber reinforced plastic 2.
  • the fiber reinforced plastic 2 is arranged so that its long side is substantially parallel to the width direction of the suspension body 1.
  • the suspension body 1 shown in FIG. 2 is a belt-shaped suspension body having a rectangular cross section.
  • the suspension body 1 shown in FIG. 2 includes a plurality of fiber reinforced plastics 2 having a rectangular cross section, and a coating layer 3 that covers the outer periphery of the plurality of fiber reinforced plastics 2.
  • the plurality of fiber reinforced plastics 2 are arranged so that their long sides are substantially parallel to the width direction of the suspension body 1 and arranged side by side in the width direction of the suspension body 1. In FIG. 2, four fiber reinforced plastics 2 are used, but the present invention is not limited to this.
  • the suspension body 1 shown in FIG. 3 is a belt-shaped suspension body having a rectangular cross section.
  • the suspension body 1 shown in FIG. 3 includes a plurality of fiber reinforced plastics 2 having a rectangular cross section, and a coating layer 3 that covers the outer periphery of the plurality of fiber reinforced plastics 2.
  • the plurality of fiber reinforced plastics 2 are arranged so that their long sides are substantially parallel to the width direction of the suspension body 1 and arranged in the thickness direction of the suspension body 1. In FIG. 3, three fiber reinforced plastics 2 are used, but the present invention is not limited to this.
  • the suspension body 1 shown in FIG. 4 is a rope-shaped suspension body having a square cross section.
  • the suspension body 1 shown in FIG. 4 includes a fiber reinforced plastic 2 having a square cross section and a coating layer 3 that covers the outer periphery of the fiber reinforced plastic 2.
  • the fiber reinforced plastic 2 is arranged in the center of the suspension body 1.
  • the cross section of the suspension body 1 and the fiber reinforced plastic 2 is not limited to a square, and may be a triangle, a pentagon, a hexagon, or the like.
  • the suspension body 1 shown in FIG. 5 is a rope-shaped suspension body having a circular cross section.
  • the suspension body 1 shown in FIG. 5 includes a fiber reinforced plastic 2 having a circular cross section and a coating layer 3 that covers the outer periphery of the fiber reinforced plastic 2.
  • the fiber reinforced plastic 2 is arranged in the center of the suspension body 1.
  • the cross section of the suspension body 1 and the fiber reinforced plastic 2 is not limited to a circular shape, and may be an elliptical shape or the like.
  • the suspension body 1 shown in FIG. 6 is a belt-shaped suspension body having a rectangular cross section.
  • the suspension body 1 shown in FIG. 6 includes a plurality of fiber reinforced plastics 2 having a circular cross section, and a coating layer 3 that covers the outer periphery of the plurality of fiber reinforced plastics 2.
  • the plurality of fiber reinforced plastics 2 are arranged side by side in the width direction of the suspension body 1.
  • the cross section of the fiber reinforced plastic 2 is not limited to a circular shape, but may be an elliptical shape or the like. In FIG. 6, 10 fiber reinforced plastics 2 are used, but the present invention is not limited to this.
  • the suspension body 1 shown in FIG. 7 is a rope-shaped suspension body having a circular cross section.
  • the suspension body 1 shown in FIG. 7 includes a bundle of a plurality of fiber reinforced plastics 2 having a circular cross section, and a coating layer 3 that covers the outer periphery of the bundled fiber reinforced plastics 2.
  • the bundled fiber reinforced plastic 2 is arranged in the center of the suspension body 1.
  • the cross section of the suspension body 1 and the fiber reinforced plastic 2 is not limited to a circular shape, and may be an elliptical shape or the like. In FIG. 7, seven fiber reinforced plastics 2 are used, but the present invention is not limited to this.
  • the suspension body 1 shown in FIGS. 1 to 7 is an example of the suspension body according to the first embodiment.
  • the suspension body according to the first embodiment is a continuous body having substantially the same cross section in the longitudinal direction.
  • the fiber reinforced plastic is arranged substantially parallel to the longitudinal direction of the suspension body.
  • FIG. 8 is a schematic enlarged cross-sectional view of the fiber reinforced plastic in the suspension body according to the first embodiment.
  • the fiber reinforced plastic 2 is composed of the cured matrix resin 4 and the reinforcing fibers 5.
  • the fiber reinforced plastic 2 may be a unidirectional fiber reinforced plastic in which the reinforcing fibers 5 are arranged without being twisted and knitted, or a twisted string, a braided string or a woven fabric in which the reinforcing fibers 5 are twisted or knitted may be used. It may be a fiber reinforced plastic to be arranged.
  • the material of the reinforcing fiber 5 is not particularly limited, but a fiber that is lightweight and has high strength and elastic modulus is preferable.
  • the reinforcing fiber 5 include carbon fiber, glass fiber, aramid fiber, polyarylate fiber, polyparaphenylene benzobisoxazole fiber and the like. Of these fibers, one type may be used as the reinforcing fiber 5, or two or more types may be used in combination as the reinforcing fiber 5. From the viewpoint of obtaining a fiber-reinforced plastic that is lightweight and has high strength, it is preferable to use carbon fiber as the reinforcing fiber 5.
  • the volume content of the reinforcing fiber which indicates the ratio of the volume occupied by the reinforcing fiber 5 to the total volume of the fiber reinforced plastic, is preferably 50% by volume to 70% by volume. If the ratio of the volume occupied by the reinforcing fibers 5 is too low, the reinforcing effect of the reinforcing fibers 5 may not be sufficient. On the other hand, if the volume ratio occupied by the reinforcing fibers 5 is too high, molding may become difficult.
  • the cured matrix resin 4 is a cured matrix resin to which a compound having a blocked isocyanate group is added.
  • the compound having a blocked isocyanate group is not particularly limited, but the temperature at which the blocking agent dissociates (hereinafter, may be abbreviated as the dissociation temperature) is higher than the curing temperature of the matrix resin and the coating processing temperature of the coating layer. It is preferable to use a lower one. Specific examples thereof include blocking agents such as diethyl malonate, methyl ethyl ketooxime, and caprolactam that block the isocyanate group of a compound having an isocyanate group.
  • the compound having an isocyanate group examples include tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI) and the like.
  • the dissociation temperature is a temperature at which the blocking agent that binds to the isocyanate group and inactivates the isocyanate group dissociates from the isocyanate group and the reactive activity of the isocyanate group is exhibited. It is preferable to use a compound having a dissociation temperature in the range of 120 ° C. to 200 ° C.
  • a compound having such a dissociation temperature it is not necessary to set a specific temperature in the step of preparing the fiber reinforced plastic and the step of coating the coating layer, so that the range of material selection is widened and the process control is easy. Become. However, a compound having a dissociation temperature outside the range of 120 ° C. to 200 ° C. may be used.
  • the amount of the compound having a blocked isocyanate group added is not particularly limited, but from the viewpoint of improving the adhesive strength between the fiber reinforced plastic and the coating layer covering the outer periphery thereof, from 3 parts by mass to 100 parts by mass of the matrix resin. It is preferably 20 parts by mass.
  • the amount of the compound having a blocked isocyanate group added is too small, the chemical bond connecting the fiber reinforced plastic and the coating layer may decrease, and the adhesive strength may decrease.
  • the amount of the compound having a blocked isocyanate group added is too large, a large amount of the blocking agent dissociated from the isocyanate group may form a gas layer at the interface between the fiber reinforced plastic and the coating layer, and the adhesive strength may decrease. ..
  • the curing temperature of the matrix resin is not particularly limited, but is preferably lower than the temperature at which the blocking agent of the compound having a blocked isocyanate group dissociates.
  • the resin that can be used as the matrix resin include a thermosetting resin in which a curing agent is added to a main agent such as an epoxy resin, polyurethane, unsaturated polyester, vinyl ester resin, and phenol resin, and polyurethane and polyamide 6 (PA6). ), Polyamide 12 (PA12), Polyamide 66 (PA66) and other thermoplastic resins. Of these resins, one type may be used as the matrix resin, or two or more types may be used in combination as the matrix resin.
  • the amount of the curing agent added to the matrix resin is used to cure the main agent constituting the matrix resin. It is preferable to use less or more than the ideal amount.
  • the functional group having the reaction activity is cured in the matrix resin 4. Will remain in.
  • the functional group having a reaction activity remaining in the cured matrix resin 4 can form a chemical bond with the isocyanate group generated from the blocked isocyanate group in a later step.
  • the adhesive strength between the fiber reinforced plastic and the coating layer covering the outer periphery thereof is further improved. Can be made to. However, it should be noted that if the amount of the curing agent is too small or too large than the ideal amount, the physical properties of the cured matrix resin 4 may be significantly changed. It is preferable to use an epoxy resin as the matrix resin from the viewpoint of easily forming a chemical bond with the isocyanate group generated from the blocked isocyanate group. Further, the resin used as the matrix resin may contain a known additive such as a flame retardant.
  • the resin that can be used as the coating layer is not particularly limited as long as it has a functional group that reacts with the isocyanate group, but is thermoplastic polyurethane elastomer, olefin-based thermoplastic elastomer, styrene-based thermoplastic elastomer, and vinyl chloride-based thermoplastic. Examples thereof include elastomers, polyester-based thermoplastic elastomers, and polyamide-based thermoplastic elastomers. Of these resins, one type may be used as the coating layer, or two or more types may be used in combination as the coating layer.
  • thermoplastic polyurethane elastomer As the coating layer, from the viewpoint of excellent frictional force and wear resistance between the coating layer and the sheave of the hoist, it is preferable to use a thermoplastic polyurethane elastomer as the coating layer.
  • an ether-based thermoplastic polyurethane elastomer as a coating layer.
  • the resin used as the coating layer may contain known additives such as a flame retardant and a cross-linking agent.
  • FIG. 9 is a flow chart of a method for manufacturing a suspension body according to the first embodiment.
  • the method for manufacturing the suspension body according to the first embodiment includes a step of preparing an intermediate material (S11), a step of preparing a fiber reinforced plastic (S12), and a step of forming a chemical bond. (S13) and.
  • the step of preparing the intermediate material (S11) first, a compound having a blocked isocyanate group, a matrix resin, and a curing agent used as needed are mixed to prepare a matrix resin mixture.
  • the curing temperature of the matrix resin is T1 and the dissociation temperature of the compound having a blocked isocyanate group is T2
  • the material is selected so that the curing temperature T1 ⁇ dissociation temperature T2.
  • the reinforcing fibers are impregnated with the matrix resin mixture to prepare an intermediate material.
  • one or more fiber reinforced plastics are produced by heating the intermediate material to a temperature equal to or higher than the curing temperature T1 and lower than the dissociation temperature T2 to cure the matrix resin. Mold. By heating the intermediate material to such a temperature, the blocked isocyanate group remains in the cured matrix resin.
  • a resin having a functional group that reacts with an isocyanate group is heated and melted by a molding method such as an extrusion molding method, and one or a plurality of fiber reinforced plastics are made of this resin. Cover the outer circumference.
  • the coating processing temperature at this time is T3, by setting the dissociation temperature T2 ⁇ coating processing temperature T3, the functional group that reacts with the isocyanate group and the isocyanate group generated by dissociating the blocking agent from the blocked isocyanate group react. To form a chemical bond.
  • the functional group having a reactive activity such as an epoxy group
  • the functional group having this reactive activity and the blocked isocyanate group are used.
  • the isocyanate groups generated by the dissociation of the blocking agent also react to form chemical bonds.
  • the fiber reinforced plastic and the coating layer covering the outer periphery thereof are firmly adhered to each other. Therefore, in the method for manufacturing a suspended body according to the first embodiment, the step of applying an adhesive or the like to the outer periphery of the fiber reinforced plastic is unnecessary, so that the manufacturing process of the suspended body does not increase, and the process control Does not become complicated.
  • the blocking agent dissociates from the blocked isocyanate group when the matrix resin is cured, and the reaction activity of the isocyanate group is exhibited.
  • the reactive activity of the isocyanate group is developed at this stage, the isocyanate group reacts with the matrix resin or with the moisture in the air.
  • the reactive activity of the isocyanate group may be lost before the outer periphery of the fiber reinforced plastic is coated with the coating layer. That is, when the outer periphery of the fiber reinforced plastic is coated with a coating layer, a chemical bond between a functional group that reacts with an isocyanate group and an isocyanate group is not formed. As a result, the adhesive strength between the fiber reinforced plastic and the coating layer covering the outer periphery thereof is not improved.
  • the dissociation temperature T2 ⁇ the coating processing temperature T3 the blocking agent does not dissociate from the blocked isocyanate group, and the reaction activity of the isocyanate group does not appear. Therefore, when the outer periphery of the fiber reinforced plastic is coated with the coating layer, a chemical bond between the functional group that reacts with the isocyanate group and the isocyanate group is not formed. As a result, the adhesive strength between the fiber reinforced plastic and the coating layer covering the outer periphery thereof is not improved.
  • the fiber reinforced plastic is heated to a temperature higher than the dissociation temperature T2 immediately before coating the outer periphery of the fiber reinforced plastic with the coating layer. It is preferable to do so. More specifically, in extrusion molding, the fiber reinforced plastic to be coated is continuously fed into the mold of the extrusion molding machine at a constant speed. The outer circumference of the fiber reinforced plastic is covered with a coating layer at the mold outlet. Therefore, a heating furnace is installed on the upstream side of the mold of the extrusion molding machine.
  • the fiber reinforced plastic may be heated to a temperature higher than the dissociation temperature T2 immediately before the outer periphery of the fiber reinforced plastic is coated with the coating layer. It is not preferable to set a long time from heating the fiber reinforced plastic to a temperature higher than the dissociation temperature T2 until the outer periphery of the fiber reinforced plastic is coated with the coating layer. The reason is that when the fiber reinforced plastic is heated to a temperature higher than the dissociation temperature T2, the blocking agent is dissociated from the blocked isocyanate group, and the reaction activity of the isocyanate group is exhibited.
  • the isocyanate group When the isocyanate group is left for a long time while the reactive activity of the isocyanate group is exhibited, the isocyanate group reacts with the matrix resin or with the moisture in the air. As a result, the reactive activity of the isocyanate group may be lost before the outer periphery of the fiber reinforced plastic is coated with the coating layer. That is, when the outer periphery of the fiber reinforced plastic is coated with a coating layer, a chemical bond between a functional group that reacts with an isocyanate group and an isocyanate group is not formed. As a result, the adhesive strength between the fiber reinforced plastic and the coating layer covering the outer periphery thereof is not improved.
  • the fiber reinforced plastic functioning as a load support portion and the coating layer covering the outer periphery thereof are firmly adhered to each other.
  • the suspension body according to the first embodiment can be applied to an elevator suspension body, a crane, a hoist, a ship mooring, a bridge, a mining industry, and the like, but is not limited thereto.
  • Embodiment 2 The suspension body according to the second embodiment of the present invention will be described.
  • the suspension body according to the second embodiment is different from the first embodiment in that a part or all of a plurality of fiber reinforced plastics functioning as a load support portion is twisted or knitted.
  • 10 to 13 are schematic cross-sectional views of an example of the suspension body according to the second embodiment.
  • the suspension body 1 shown in FIG. 10 is a rope-shaped suspension body having a circular cross section.
  • the suspension body 1 shown in FIG. 10 includes a plurality of fiber reinforced plastics 2 having a circular cross section twisted together, and a coating layer 3 covering the outer periphery of the twisted fiber reinforced plastics 2.
  • the cross section of the suspension body 1 and the fiber reinforced plastic 2 is not limited to a circular shape, and may be an elliptical shape or the like. In FIG. 10, three fiber reinforced plastics 2 are twisted together, but the present invention is not limited to this.
  • the suspension body 1 shown in FIG. 11 is a belt-shaped suspension body having a rectangular cross section.
  • the suspension body 1 shown in FIG. 11 includes a plurality of fiber-reinforced plastics 2 having a circular cross section twisted together, and a coating layer 3 covering the outer periphery of the twisted fiber-reinforced plastics 2.
  • the plurality of twisted fiber reinforced plastics 2 are arranged side by side in the width direction of the suspension body 1.
  • the cross section of the fiber reinforced plastic 2 is not limited to a circular shape, but may be an elliptical shape or the like.
  • three fiber reinforced plastics 2 are twisted together, but the present invention is not limited to this.
  • four fiber-reinforced plastics 2 twisted together are used, but the present invention is not limited to this.
  • the suspension body 1 shown in FIG. 12 is a rope-shaped suspension body having a circular cross section.
  • the suspension body 1 shown in FIG. 12 includes a plurality of fiber reinforced plastics 2 having a circular cross section twisted together, and a coating layer 3 covering the outer periphery of the twisted fiber reinforced plastics 2.
  • the twisted fiber reinforced plastic 2 is obtained by twisting a plurality of fiber reinforced plastics 2 to be strands around a fiber reinforced plastic 2 to be a core rope.
  • the cross section of the suspension body 1 and the fiber reinforced plastic 2 is not limited to a circular shape, and may be an elliptical shape or the like. In FIG. 12, six fiber reinforced plastics 2 are twisted around one fiber reinforced plastic 2, but the present invention is not limited to this.
  • the suspension body 1 shown in FIG. 13 is a belt-shaped suspension body having a rectangular cross section.
  • the suspension body 1 shown in FIG. 13 includes a plurality of fiber reinforced plastics 2 having a circular cross section twisted together, and a coating layer 3 covering the outer periphery of the twisted fiber reinforced plastics 2.
  • the twisted fiber reinforced plastic 2 is obtained by twisting a plurality of fiber reinforced plastics 2 to be strands around a fiber reinforced plastic 2 to be a core rope.
  • the plurality of twisted fiber reinforced plastics 2 are arranged side by side in the width direction of the suspension body 1.
  • the cross section of the fiber reinforced plastic 2 is not limited to a circular shape, but may be an elliptical shape or the like.
  • six fiber reinforced plastics 2 are twisted around one fiber reinforced plastic 2, but the present invention is not limited to this.
  • four fiber-reinforced plastics 2 twisted together are used, but the present invention is not limited to this.
  • the suspension body 1 shown in FIGS. 10 to 13 is an example of the suspension body according to the second embodiment.
  • the suspension body according to the second embodiment is a continuous body having substantially the same cross section in the longitudinal direction.
  • the fiber reinforced plastic partially or wholly twisted or the fiber reinforced plastic which is partially or wholly woven is arranged substantially parallel to the longitudinal direction of the suspension body.
  • the material that can be used for the suspension body according to the second embodiment is the same as that of the first embodiment, and thus the description thereof will be omitted.
  • FIG. 14 is a flow chart of a method for manufacturing a suspension body according to the second embodiment.
  • the method for manufacturing the suspension body according to the second embodiment includes a step of preparing an intermediate material (S21), a step of preparing a fiber reinforced plastic (S22), and a plurality of fiber reinforced plastics.
  • a step of twisting (S23) and a step of forming a chemical bond (S24) are provided. That is, in the method for manufacturing a suspended body according to the second embodiment, a plurality of fiber reinforced plastics are twisted between a step of preparing a fiber reinforced plastic (S22) and a step of forming a chemical bond (S24).
  • the knitted fiber reinforced plastics may be prepared by knitting the plurality of fiber reinforced plastics.
  • the fiber reinforced plastic functioning as a load support portion and the coating layer covering the outer periphery thereof are firmly adhered to each other.
  • the suspension body according to the second embodiment can be applied to an elevator suspension body, a crane, a hoist, a ship mooring, a bridge, a mining industry, etc., as in the first embodiment, but is not limited to these. Absent.
  • the suspension body according to the second embodiment since the suspension body according to the second embodiment has a part or all of the plurality of fiber reinforced plastics twisted or knitted, the suspension body according to the first embodiment is bent as compared with the suspension body according to the first embodiment. It has the characteristic of being easy.
  • the suspension body according to the second embodiment has a smaller ratio of the cross-sectional area of the fiber reinforced plastic to the cross-sectional area of the suspension body than the suspension body according to the first embodiment. Therefore, when trying to obtain a suspension body having the same strength as the suspension body according to the first embodiment by the suspension body according to the second embodiment, it is necessary to increase the cross-sectional area of the suspension body.
  • the suspension body according to the first embodiment and the second embodiment has advantages and disadvantages, respectively, and therefore may be selected according to the application.
  • Methylethylketooxime is used as a blocking agent for 100 parts by mass of a thermosetting resin in which an epoxy resin having a curing temperature (T1) of 120 ° C. and an amine-based curing agent are mixed, and the dissociation temperature (T2) is 140 ° C.
  • a matrix resin mixture was prepared by adding 5 parts by mass of the blocked diphenylmethane diisocyanate compound. This matrix resin mixture was impregnated with polyacrylonitrile (PAN) -based carbon fibers to prepare an intermediate material. By heating the intermediate material to 120 ° C.
  • PAN polyacrylonitrile
  • a belt-shaped carbon fiber reinforced plastic having a rectangular cross section having a width of 40 mm and a thickness of 2 mm was formed.
  • the carbon fiber volume content in the carbon fiber reinforced plastic was 65% by volume.
  • the ether-based thermoplastic polyurethane elastomer is heated to 200 ° C. (T3) by an extrusion molding method to be melted, and the outer circumference of the belt-shaped carbon fiber reinforced plastic is coated with the ether-based thermoplastic polyurethane elastomer so as to have a coating thickness of 1 mm.
  • T3 200 ° C.
  • the suspension body of Example 1 was obtained.
  • the suspension body obtained was a continuum having a rectangular cross section in the longitudinal direction.
  • Example 2 Blocking using methyl ethyl ketooxime as a blocking agent and blocking diphenylmethane diisocyanate having a dissociation temperature (T2) of 140 ° C. Using diethyl malonate as a blocking agent and blocking having a dissociation temperature (T2) of 120 ° C.
  • T2 dissociation temperature
  • T2 dissociation temperature
  • Example 3 Immediately before coating with the ether-based thermoplastic polyurethane elastomer, the suspension body of Example 3 was obtained in the same manner as in Example 1 except that the carbon fiber reinforced plastic was heated to 180 ° C. in a heating furnace. The suspension body obtained was a continuum having a rectangular cross section in the longitudinal direction.
  • Comparative Example 1 A suspension body of Comparative Example 1 was obtained in the same manner as in Example 1 except that the blocked diphenylmethane diisocyanate compound was not added.
  • the suspension body obtained was a continuum having a rectangular cross section in the longitudinal direction.
  • Comparative Example 2 was suspended in the same manner as in Example 1 except that methyl ethyl ketooxime was used as a blocking agent and melamine polyphosphate was used instead of the blocked diphenylmethane diisocyanate compound having a dissociation temperature (T2) of 140 ° C. I got a body.
  • the suspension body obtained was a continuum having a rectangular cross section in the longitudinal direction.
  • the suspension bodies obtained in Examples 1 to 3 and Comparative Examples 1 and 2 were cut to a width of about 20 mm to prepare test pieces.
  • the adhesive strength between the carbon fiber reinforced plastic and the ether-based thermoplastic polyurethane elastomer was evaluated by a peel test using this test piece.
  • the peel strength (N / m) was determined by dividing the obtained test force (N) by the width (m) of the test piece.
  • the peel test result of the suspension body of Example 1 is shown in FIG. In the peel test, a chart as shown in FIG. 15 was obtained.
  • the suspension body of Example 2 had a lower representative value of peel strength than the suspension body of Example 1.
  • the curing temperature (T1) of the matrix resin and the dissociation temperature (T2) of the compound having a blocked isocyanate group are the same. Therefore, it is considered that the isocyanate groups generated by dissociating a part of the blocking agent from the blocked isocyanate groups at the stage of molding the fiber reinforced plastic lost their activity before coating the outer periphery of the fiber reinforced plastic with the coating layer.
  • Example 3 had a higher representative value of peel strength than the suspension body of Example 1.
  • the fiber reinforced plastic is heated to a temperature higher than the dissociation temperature T2, so that the gas of the blocking agent dissociated from the isocyanate group is released and the fiber. It is probable that gas did not easily accumulate at the interface between the reinforced plastic and the coating layer. In other words, in Example 1, a small amount of gas may be accumulated at the interface between the fiber reinforced plastic and the coating layer, which may be a factor that slightly reduces the adhesive strength between the fiber reinforced plastic and the coating layer.
  • 1 Suspension body 2 Fiber reinforced plastic, 3 Coating layer, 4 Hardened matrix resin, 5 Reinforced fiber.

Abstract

A suspension body which is provided with a fiber-reinforced plastic and a cover layer that covers the outer periphery of the fiber-reinforced plastic, wherein: the fiber-reinforced plastic is a cured product of an intermediate material that contains a compound having a blocked isocyanate group, a matrix resin and reinforcing fibers; the cover layer is composed of a resin having a functional group that is reactive with an isocyanate group; and the functional group that is reactive with an isocyanate group forms a chemical bond by reacting with an isocyanate group that is derived from the blocked isocyanate group.

Description

懸架体及びその製造方法Suspension body and its manufacturing method
 本発明は、懸架体及びその製造方法に関する。 The present invention relates to a suspension body and a method for manufacturing the suspension body.
 ベルト状又はロープ状の懸架体を軽量化する目的で、荷重支持部として従来用いられていた金属材料を、マトリックス樹脂及び強化繊維からなる繊維強化プラスチックで置き換えた懸架体の開発が進んでいる(例えば、特許文献1を参照)。 For the purpose of reducing the weight of the belt-shaped or rope-shaped suspension body, the development of a suspension body in which the metal material conventionally used as the load support part is replaced with a fiber reinforced plastic made of matrix resin and reinforcing fibers is in progress ( For example, see Patent Document 1).
 特許文献1には、荷重支持部を機械的摩損等から保護するために、ポリウレタン等の被覆層で荷重支持部の外周を被覆することが開示されている。 Patent Document 1 discloses that the outer periphery of the load support portion is covered with a coating layer such as polyurethane in order to protect the load support portion from mechanical wear and the like.
特表2011-509899号公報Special Table 2011-509899
 しかしながら、従来の懸架体をエレベーターに適用した場合、繊維強化プラスチックからなる荷重支持部と被覆層とが十分に一体化されていないことに起因して、巻上機からの駆動力を荷重支持部に十分に伝達できなくなる場合があった。 However, when a conventional suspension body is applied to an elevator, the driving force from the hoisting machine is applied to the load support portion due to the fact that the load support portion made of fiber reinforced plastic and the coating layer are not sufficiently integrated. In some cases, it could not be fully communicated.
 本発明は、上述の課題を解決するためになされたものであり、繊維強化プラスチックとその外周を被覆する被覆層とが強固に接着された懸架体を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a suspension body in which a fiber-reinforced plastic and a coating layer covering the outer periphery thereof are firmly adhered to each other.
 本発明は、繊維強化プラスチックと、前記繊維強化プラスチックの外周を被覆する被覆層とを備え、前記繊維強化プラスチックは、ブロックイソシアネート基を有する化合物、マトリックス樹脂及び強化繊維を含む中間材の硬化物であり、前記被覆層は、イソシアネート基と反応する官能基を有する樹脂から構成され、前記イソシアネート基と反応する官能基は、前記ブロックイソシアネート基から生じたイソシアネート基と反応して化学結合を形成している、懸架体である。 The present invention comprises a fiber-reinforced plastic and a coating layer that covers the outer periphery of the fiber-reinforced plastic. The fiber-reinforced plastic is a cured product of an intermediate material containing a compound having a blocked isocyanate group, a matrix resin, and reinforcing fibers. The coating layer is composed of a resin having a functional group that reacts with an isocyanate group, and the functional group that reacts with the isocyanate group reacts with an isocyanate group generated from the blocked isocyanate group to form a chemical bond. It is a suspended body.
 本発明は、ブロックイソシアネート基を有する化合物及びマトリックス樹脂を強化繊維に含浸させて中間材を調製する工程と、前記ブロックイソシアネート基を有する化合物のブロック剤が解離する温度より低い温度に前記中間材を加熱して前記マトリックス樹脂を硬化させることにより、繊維強化プラスチックを調製する工程と、前記繊維強化プラスチックの外周を、イソシアネート基と反応する官能基を有する樹脂から構成される被覆層で被覆することにより、前記イソシアネート基と反応する官能基及び前記ブロックイソシアネート基から生じたイソシアネート基を反応させて化学結合を形成する工程とを備える懸架体の製造方法である。 In the present invention, a step of impregnating a reinforcing fiber with a compound having a blocked isocyanate group and a matrix resin to prepare an intermediate material, and a temperature lower than the temperature at which the blocking agent of the compound having a blocked isocyanate group is dissociated By heating to cure the matrix resin to prepare a fiber-reinforced plastic, and by coating the outer periphery of the fiber-reinforced plastic with a coating layer composed of a resin having a functional group that reacts with an isocyanate group. , A method for producing a suspended body, comprising a step of reacting a functional group that reacts with the isocyanate group and an isocyanate group generated from the blocked isocyanate group to form a chemical bond.
 本発明によれば、繊維強化プラスチックとその外周を被覆する被覆層とが強固に接着された懸架体を提供することができる。 According to the present invention, it is possible to provide a suspension body in which a fiber reinforced plastic and a coating layer covering the outer periphery thereof are firmly adhered to each other.
実施の形態1に係る懸架体の一例の模式断面図である。It is a schematic cross-sectional view of an example of the suspension body which concerns on Embodiment 1. FIG. 実施の形態1に係る懸架体の一例の模式断面図である。It is a schematic cross-sectional view of an example of the suspension body which concerns on Embodiment 1. FIG. 実施の形態1に係る懸架体の一例の模式断面図である。It is a schematic cross-sectional view of an example of the suspension body which concerns on Embodiment 1. FIG. 実施の形態1に係る懸架体の一例の模式断面図である。It is a schematic cross-sectional view of an example of the suspension body which concerns on Embodiment 1. FIG. 実施の形態1に係る懸架体の一例の模式断面図である。It is a schematic cross-sectional view of an example of the suspension body which concerns on Embodiment 1. FIG. 実施の形態1に係る懸架体の一例の模式断面図である。It is a schematic cross-sectional view of an example of the suspension body which concerns on Embodiment 1. FIG. 実施の形態1に係る懸架体の一例の模式断面図である。It is a schematic cross-sectional view of an example of the suspension body which concerns on Embodiment 1. FIG. 実施の形態1に係る懸架体における繊維強化プラスチックの模式拡大断面図である。It is a schematic enlarged sectional view of the fiber reinforced plastic in the suspension body which concerns on Embodiment 1. FIG. 実施の形態1に係る懸架体の製造方法のフロー図である。It is a flow chart of the manufacturing method of the suspension body which concerns on Embodiment 1. FIG. 実施の形態2に係る懸架体の一例の模式断面図である。It is a schematic cross-sectional view of an example of the suspension body which concerns on Embodiment 2. FIG. 実施の形態2に係る懸架体の一例の模式断面図である。It is a schematic cross-sectional view of an example of the suspension body which concerns on Embodiment 2. FIG. 実施の形態2に係る懸架体の一例の模式断面図である。It is a schematic cross-sectional view of an example of the suspension body which concerns on Embodiment 2. FIG. 実施の形態2に係る懸架体の一例の模式断面図である。It is a schematic cross-sectional view of an example of the suspension body which concerns on Embodiment 2. FIG. 実施の形態2に係る懸架体の製造方法のフロー図である。It is a flow chart of the manufacturing method of the suspension body which concerns on Embodiment 2. FIG. 実施例1の懸架体のピール試験結果の一例である。It is an example of the peel test result of the suspension body of Example 1.
 実施の形態1.
 本発明の実施の形態1に係る懸架体について述べる。実施の形態1に係る懸架体は、繊維強化プラスチックと、繊維強化プラスチックの外周を被覆する被覆層とを備える。繊維強化プラスチックは、ブロックイソシアネート基を有する化合物、マトリックス樹脂及び強化繊維を含む中間材の硬化物である。被覆層は、イソシアネート基と反応する官能基を有する樹脂から構成される。被覆層におけるイソシアネート基と反応する官能基は、ブロックイソシアネート基を有する化合物におけるブロックイソシアネート基から生じたイソシアネート基と反応して化学結合を形成している。図1~7は、実施の形態1に係る懸架体の一例の断面模式図である。
Embodiment 1.
The suspension body according to the first embodiment of the present invention will be described. The suspension body according to the first embodiment includes a fiber reinforced plastic and a coating layer that covers the outer periphery of the fiber reinforced plastic. A fiber reinforced plastic is a cured product of an intermediate material containing a compound having a blocked isocyanate group, a matrix resin and reinforcing fibers. The coating layer is composed of a resin having a functional group that reacts with an isocyanate group. The functional group that reacts with the isocyanate group in the coating layer reacts with the isocyanate group generated from the blocked isocyanate group in the compound having the blocked isocyanate group to form a chemical bond. 1 to 7 are schematic cross-sectional views of an example of the suspension body according to the first embodiment.
 図1に示す懸架体1は、長方形の断面を有するベルト状の懸架体である。図1に示す懸架体1は、長方形の断面を有する繊維強化プラスチック2と、繊維強化プラスチック2の外周を被覆する被覆層3とを備える。繊維強化プラスチック2は、その長辺が懸架体1の幅方向と略平行となるように配置されている。 The suspension body 1 shown in FIG. 1 is a belt-shaped suspension body having a rectangular cross section. The suspension body 1 shown in FIG. 1 includes a fiber reinforced plastic 2 having a rectangular cross section and a coating layer 3 that covers the outer periphery of the fiber reinforced plastic 2. The fiber reinforced plastic 2 is arranged so that its long side is substantially parallel to the width direction of the suspension body 1.
 図2に示す懸架体1は、長方形の断面を有するベルト状の懸架体である。図2に示す懸架体1は、長方形の断面を有する複数の繊維強化プラスチック2と、複数の繊維強化プラスチック2の外周を被覆する被覆層3とを備える。複数の繊維強化プラスチック2は、その長辺が懸架体1の幅方向と略平行となるように且つ懸架体1の幅方向に並べて配置されている。図2では、4本の繊維強化プラスチック2が用いられているが、これに限定されるものではない。 The suspension body 1 shown in FIG. 2 is a belt-shaped suspension body having a rectangular cross section. The suspension body 1 shown in FIG. 2 includes a plurality of fiber reinforced plastics 2 having a rectangular cross section, and a coating layer 3 that covers the outer periphery of the plurality of fiber reinforced plastics 2. The plurality of fiber reinforced plastics 2 are arranged so that their long sides are substantially parallel to the width direction of the suspension body 1 and arranged side by side in the width direction of the suspension body 1. In FIG. 2, four fiber reinforced plastics 2 are used, but the present invention is not limited to this.
 図3に示す懸架体1は、長方形の断面を有するベルト状の懸架体である。図3に示す懸架体1は、長方形の断面を有する複数の繊維強化プラスチック2と、複数の繊維強化プラスチック2の外周を被覆する被覆層3とを備える。複数の繊維強化プラスチック2は、その長辺が懸架体1の幅方向と略平行となるように且つ懸架体1の厚み方向に並べて配置されている。図3では、3本の繊維強化プラスチック2が用いられているが、これに限定されるものではない。 The suspension body 1 shown in FIG. 3 is a belt-shaped suspension body having a rectangular cross section. The suspension body 1 shown in FIG. 3 includes a plurality of fiber reinforced plastics 2 having a rectangular cross section, and a coating layer 3 that covers the outer periphery of the plurality of fiber reinforced plastics 2. The plurality of fiber reinforced plastics 2 are arranged so that their long sides are substantially parallel to the width direction of the suspension body 1 and arranged in the thickness direction of the suspension body 1. In FIG. 3, three fiber reinforced plastics 2 are used, but the present invention is not limited to this.
 図4に示す懸架体1は、正方形の断面を有するロープ状の懸架体である。図4に示す懸架体1は、正方形の断面を有する繊維強化プラスチック2と、繊維強化プラスチック2の外周を被覆する被覆層3とを備える。繊維強化プラスチック2は、懸架体1の中心部に配置されている。懸架体1及び繊維強化プラスチック2の断面は、正方形に限られず、三角形、五角形、六角形等であってもよい。 The suspension body 1 shown in FIG. 4 is a rope-shaped suspension body having a square cross section. The suspension body 1 shown in FIG. 4 includes a fiber reinforced plastic 2 having a square cross section and a coating layer 3 that covers the outer periphery of the fiber reinforced plastic 2. The fiber reinforced plastic 2 is arranged in the center of the suspension body 1. The cross section of the suspension body 1 and the fiber reinforced plastic 2 is not limited to a square, and may be a triangle, a pentagon, a hexagon, or the like.
 図5に示す懸架体1は、円形の断面を有するロープ状の懸架体である。図5に示す懸架体1は、円形の断面を有する繊維強化プラスチック2と、繊維強化プラスチック2の外周を被覆する被覆層3とを備える。繊維強化プラスチック2は、懸架体1の中心部に配置されている。懸架体1及び繊維強化プラスチック2の断面は、円形に限られず、楕円形等であってもよい。 The suspension body 1 shown in FIG. 5 is a rope-shaped suspension body having a circular cross section. The suspension body 1 shown in FIG. 5 includes a fiber reinforced plastic 2 having a circular cross section and a coating layer 3 that covers the outer periphery of the fiber reinforced plastic 2. The fiber reinforced plastic 2 is arranged in the center of the suspension body 1. The cross section of the suspension body 1 and the fiber reinforced plastic 2 is not limited to a circular shape, and may be an elliptical shape or the like.
 図6に示す懸架体1は、長方形の断面を有するベルト状の懸架体である。図6に示す懸架体1は、円形の断面を有する複数の繊維強化プラスチック2と、複数の繊維強化プラスチック2の外周を被覆する被覆層3とを備える。複数の繊維強化プラスチック2は、懸架体1の幅方向に並べて配置されている。繊維強化プラスチック2の断面は、円形に限られず、楕円形等であってもよい。図6では、10本の繊維強化プラスチック2が用いられているが、これに限定されるものではない。 The suspension body 1 shown in FIG. 6 is a belt-shaped suspension body having a rectangular cross section. The suspension body 1 shown in FIG. 6 includes a plurality of fiber reinforced plastics 2 having a circular cross section, and a coating layer 3 that covers the outer periphery of the plurality of fiber reinforced plastics 2. The plurality of fiber reinforced plastics 2 are arranged side by side in the width direction of the suspension body 1. The cross section of the fiber reinforced plastic 2 is not limited to a circular shape, but may be an elliptical shape or the like. In FIG. 6, 10 fiber reinforced plastics 2 are used, but the present invention is not limited to this.
 図7に示す懸架体1は、円形の断面を有するロープ状の懸架体である。図7に示す懸架体1は、円形の断面を有する複数の繊維強化プラスチック2が束ねられたものと、束ねられた繊維強化プラスチック2の外周を被覆する被覆層3とを備える。束ねられた繊維強化プラスチック2は、懸架体1の中心部に配置されている。懸架体1及び繊維強化プラスチック2の断面は、円形に限られず、楕円形等であってもよい。図7では、7本の繊維強化プラスチック2が用いられているが、これに限定されるものではない。 The suspension body 1 shown in FIG. 7 is a rope-shaped suspension body having a circular cross section. The suspension body 1 shown in FIG. 7 includes a bundle of a plurality of fiber reinforced plastics 2 having a circular cross section, and a coating layer 3 that covers the outer periphery of the bundled fiber reinforced plastics 2. The bundled fiber reinforced plastic 2 is arranged in the center of the suspension body 1. The cross section of the suspension body 1 and the fiber reinforced plastic 2 is not limited to a circular shape, and may be an elliptical shape or the like. In FIG. 7, seven fiber reinforced plastics 2 are used, but the present invention is not limited to this.
 図1~7に示す懸架体1は、実施の形態1に係る懸架体の一例である。実施の形態1に係る懸架体は、長手方向に対し実質的に同一の断面を有する連続体である。実施の形態1に係る懸架体において、繊維強化プラスチックは懸架体の長手方向と略平行に配置されている。 The suspension body 1 shown in FIGS. 1 to 7 is an example of the suspension body according to the first embodiment. The suspension body according to the first embodiment is a continuous body having substantially the same cross section in the longitudinal direction. In the suspension body according to the first embodiment, the fiber reinforced plastic is arranged substantially parallel to the longitudinal direction of the suspension body.
 図8は、実施の形態1に係る懸架体における繊維強化プラスチックの模式拡大断面図である。図8において、繊維強化プラスチック2は、硬化されたマトリックス樹脂4と強化繊維5とから構成されている。繊維強化プラスチック2は、強化繊維5が撚られず且つ編まれずに配置される一方向繊維強化プラスチックであってもよいし、強化繊維5が撚られたり編まれた撚り紐、組み紐又は織物が配置される繊維強化プラスチックであってもよい。強化繊維5の材質は、特に限定されるものではないが、軽量であり且つ強度及び弾性率の高い繊維が好ましい。強化繊維5の具体例としては、炭素繊維、ガラス繊維、アラミド繊維、ポリアリレート繊維、ポリパラフェニレンベンゾビスオキサゾール繊維等が挙げられる。これらの繊維のうち、1種類を強化繊維5として用いてもよいし、2種類以上を組み合わせて強化繊維5として用いてもよい。軽量であり且つ高強度の繊維強化プラスチックを得る観点から、炭素繊維を強化繊維5として用いることが好ましい。 FIG. 8 is a schematic enlarged cross-sectional view of the fiber reinforced plastic in the suspension body according to the first embodiment. In FIG. 8, the fiber reinforced plastic 2 is composed of the cured matrix resin 4 and the reinforcing fibers 5. The fiber reinforced plastic 2 may be a unidirectional fiber reinforced plastic in which the reinforcing fibers 5 are arranged without being twisted and knitted, or a twisted string, a braided string or a woven fabric in which the reinforcing fibers 5 are twisted or knitted may be used. It may be a fiber reinforced plastic to be arranged. The material of the reinforcing fiber 5 is not particularly limited, but a fiber that is lightweight and has high strength and elastic modulus is preferable. Specific examples of the reinforcing fiber 5 include carbon fiber, glass fiber, aramid fiber, polyarylate fiber, polyparaphenylene benzobisoxazole fiber and the like. Of these fibers, one type may be used as the reinforcing fiber 5, or two or more types may be used in combination as the reinforcing fiber 5. From the viewpoint of obtaining a fiber-reinforced plastic that is lightweight and has high strength, it is preferable to use carbon fiber as the reinforcing fiber 5.
 繊維強化プラスチックの全体積に対し、強化繊維5が占める体積の比率を示す強化繊維体積含有率は、強度の観点から、50体積%~70体積%であることが好ましい。強化繊維5が占める体積の比率が低過ぎると、強化繊維5による補強効果が十分でない場合がある。一方、強化繊維5が占める体積の比率が高過ぎると、成形が困難になる場合がある。 From the viewpoint of strength, the volume content of the reinforcing fiber, which indicates the ratio of the volume occupied by the reinforcing fiber 5 to the total volume of the fiber reinforced plastic, is preferably 50% by volume to 70% by volume. If the ratio of the volume occupied by the reinforcing fibers 5 is too low, the reinforcing effect of the reinforcing fibers 5 may not be sufficient. On the other hand, if the volume ratio occupied by the reinforcing fibers 5 is too high, molding may become difficult.
 硬化されたマトリックス樹脂4は、ブロックイソシアネート基を有する化合物を添加したマトリックス樹脂を硬化させたものである。ブロックイソシアネート基を有する化合物は、特に限定されるものではないが、ブロック剤が解離する温度(以下、解離温度と略すことがある)が、マトリックス樹脂の硬化温度より高く且つ被覆層の被覆加工温度より低いものを用いることが好ましい。具体的には、ジエチルマロネート、メチルエチルケトオキシム、カプロラクタム等のブロック剤で、イソシアネート基を有する化合物のイソシアネート基をブロックしたものが挙げられる。イソシアネート基を有する化合物としては、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、ヘキサメチレンジイソシアネート(HDI)、イソホロンジイソシアネート(IPDI)等が挙げられる。解離温度とは、イソシアネート基と結合してイソシアネート基を不活性化しているブロック剤が、イソシアネート基から解離し、イソシアネート基の反応活性が発現するようになる温度である。解離温度が120℃~200℃の範囲である化合物を用いることが好ましい。このような解離温度を有する化合物を用いることで、繊維強化プラスチックの調製工程及び被覆層の被覆加工工程において特異な温度を設定する必要がなくなるので、材料選択の幅が広がり、工程管理が容易になる。ただし、解離温度が120℃~200℃の範囲外である化合物を用いても構わない。ブロックイソシアネート基を有する化合物の添加量は、特に制限されないが、繊維強化プラスチックとその外周を被覆する被覆層との接着強度を向上させる観点から、マトリックス樹脂100質量部に対して、3質量部~20質量部であることが好ましい。ブロックイソシアネート基を有する化合物の添加量が少な過ぎると、繊維強化プラスチックと被覆層とを繋ぐ化学結合が減少し、接着強度が低下する場合がある。一方、ブロックイソシアネート基を有する化合物の添加量が多過ぎると、イソシアネート基から解離した多量のブロック剤が繊維強化プラスチックと被覆層との界面でガス層を形成し、接着強度が低下する場合がある。 The cured matrix resin 4 is a cured matrix resin to which a compound having a blocked isocyanate group is added. The compound having a blocked isocyanate group is not particularly limited, but the temperature at which the blocking agent dissociates (hereinafter, may be abbreviated as the dissociation temperature) is higher than the curing temperature of the matrix resin and the coating processing temperature of the coating layer. It is preferable to use a lower one. Specific examples thereof include blocking agents such as diethyl malonate, methyl ethyl ketooxime, and caprolactam that block the isocyanate group of a compound having an isocyanate group. Examples of the compound having an isocyanate group include tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI) and the like. The dissociation temperature is a temperature at which the blocking agent that binds to the isocyanate group and inactivates the isocyanate group dissociates from the isocyanate group and the reactive activity of the isocyanate group is exhibited. It is preferable to use a compound having a dissociation temperature in the range of 120 ° C. to 200 ° C. By using a compound having such a dissociation temperature, it is not necessary to set a specific temperature in the step of preparing the fiber reinforced plastic and the step of coating the coating layer, so that the range of material selection is widened and the process control is easy. Become. However, a compound having a dissociation temperature outside the range of 120 ° C. to 200 ° C. may be used. The amount of the compound having a blocked isocyanate group added is not particularly limited, but from the viewpoint of improving the adhesive strength between the fiber reinforced plastic and the coating layer covering the outer periphery thereof, from 3 parts by mass to 100 parts by mass of the matrix resin. It is preferably 20 parts by mass. If the amount of the compound having a blocked isocyanate group added is too small, the chemical bond connecting the fiber reinforced plastic and the coating layer may decrease, and the adhesive strength may decrease. On the other hand, if the amount of the compound having a blocked isocyanate group added is too large, a large amount of the blocking agent dissociated from the isocyanate group may form a gas layer at the interface between the fiber reinforced plastic and the coating layer, and the adhesive strength may decrease. ..
 マトリックス樹脂の硬化温度は、特に限定されるものではないが、ブロックイソシアネート基を有する化合物のブロック剤が解離する温度より低いことが好ましい。マトリックス樹脂として用いることのできる樹脂の具体例としては、エポキシ樹脂、ポリウレタン、不飽和ポリエステル、ビニルエステル樹脂、フェノール樹脂等の主剤に硬化剤を添加した熱硬化性樹脂、及びポリウレタン、ポリアミド6(PA6)、ポリアミド12(PA12)、ポリアミド66(PA66)等の熱可塑性樹脂が挙げられる。これらの樹脂のうち、1種類をマトリックス樹脂として用いてもよいし、2種類以上を組み合わせてマトリックス樹脂として用いてもよい。ブロックイソシアネート基からブロック剤が解離して生じたイソシアネート基とマトリックス樹脂との反応性を確保するという観点から、マトリックス樹脂に添加する硬化剤の量を、マトリックス樹脂を構成する主剤を硬化させるのに理想的な量よりも少なくするか、又は多くすることが好ましい。硬化剤の量を少なくするか、又は多くすることで、マトリックス樹脂を構成する主剤と硬化剤との反応が実質的に完了した後も、反応活性を有する官能基が硬化されたマトリックス樹脂4中に残存することになる。硬化されたマトリックス樹脂4中に残存する反応活性を有する官能基は、後の工程で、ブロックイソシアネート基から生じたイソシアネート基と化学結合を形成することができる。このように硬化されたマトリックス樹脂4中に残存する反応活性を有する官能基とイソシアネート基とが化学結合を形成することで、繊維強化プラスチックとその外周を被覆する被覆層との接着強度をより向上させることができる。ただし、硬化剤の量を理想的な量よりも少なくし過ぎたり、多くし過ぎたりすると、硬化されたマトリックス樹脂4の物性を大きく変化させる場合があるので注意が必要である。ブロックイソシアネート基から生じたイソシアネート基と化学結合を形成しやすいという観点から、エポキシ樹脂をマトリックス樹脂として用いることが好ましい。また、マトリックス樹脂として用いる樹脂には、難燃剤等の公知の添加剤が含まれていてもよい。 The curing temperature of the matrix resin is not particularly limited, but is preferably lower than the temperature at which the blocking agent of the compound having a blocked isocyanate group dissociates. Specific examples of the resin that can be used as the matrix resin include a thermosetting resin in which a curing agent is added to a main agent such as an epoxy resin, polyurethane, unsaturated polyester, vinyl ester resin, and phenol resin, and polyurethane and polyamide 6 (PA6). ), Polyamide 12 (PA12), Polyamide 66 (PA66) and other thermoplastic resins. Of these resins, one type may be used as the matrix resin, or two or more types may be used in combination as the matrix resin. From the viewpoint of ensuring the reactivity between the isocyanate group generated by dissociating the blocking agent from the blocked isocyanate group and the matrix resin, the amount of the curing agent added to the matrix resin is used to cure the main agent constituting the matrix resin. It is preferable to use less or more than the ideal amount. By reducing or increasing the amount of the curing agent, even after the reaction between the main agent constituting the matrix resin and the curing agent is substantially completed, the functional group having the reaction activity is cured in the matrix resin 4. Will remain in. The functional group having a reaction activity remaining in the cured matrix resin 4 can form a chemical bond with the isocyanate group generated from the blocked isocyanate group in a later step. By forming a chemical bond between the functional group having the reaction activity remaining in the matrix resin 4 cured in this manner and the isocyanate group, the adhesive strength between the fiber reinforced plastic and the coating layer covering the outer periphery thereof is further improved. Can be made to. However, it should be noted that if the amount of the curing agent is too small or too large than the ideal amount, the physical properties of the cured matrix resin 4 may be significantly changed. It is preferable to use an epoxy resin as the matrix resin from the viewpoint of easily forming a chemical bond with the isocyanate group generated from the blocked isocyanate group. Further, the resin used as the matrix resin may contain a known additive such as a flame retardant.
 被覆層として用いることができる樹脂は、イソシアネート基と反応する官能基を有するものであれば特に限定されないが、熱可塑性ポリウレタンエラストマー、オレフィン系熱可塑性エラストマー、スチレン系熱可塑性エラストマー、塩化ビニル系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー等が挙げられる。これらの樹脂のうち、1種類を被覆層として用いてもよいし、2種類以上を組み合わせて被覆層として用いてもよい。被覆層と巻上機のシーブとの摩擦力及び耐摩耗性が優れるという観点から、熱可塑性ポリウレタンエラストマーを被覆層として用いることが好ましい。特に、高温高湿環境下における耐加水分解性が優れるという観点から、エーテル系の熱可塑性ポリウレタンエラストマーを被覆層として用いることが好ましい。また、被覆層として用いる樹脂には、難燃剤、架橋剤等の公知の添加剤が含まれていてもよい。 The resin that can be used as the coating layer is not particularly limited as long as it has a functional group that reacts with the isocyanate group, but is thermoplastic polyurethane elastomer, olefin-based thermoplastic elastomer, styrene-based thermoplastic elastomer, and vinyl chloride-based thermoplastic. Examples thereof include elastomers, polyester-based thermoplastic elastomers, and polyamide-based thermoplastic elastomers. Of these resins, one type may be used as the coating layer, or two or more types may be used in combination as the coating layer. From the viewpoint of excellent frictional force and wear resistance between the coating layer and the sheave of the hoist, it is preferable to use a thermoplastic polyurethane elastomer as the coating layer. In particular, from the viewpoint of excellent hydrolysis resistance in a high temperature and high humidity environment, it is preferable to use an ether-based thermoplastic polyurethane elastomer as a coating layer. Further, the resin used as the coating layer may contain known additives such as a flame retardant and a cross-linking agent.
 次に、実施の形態1に係る懸架体の製造方法について述べる。図9は、実施の形態1に係る懸架体の製造方法のフロー図である。図9に示されるように、実施の形態1に係る懸架体の製造方法は、中間材を調製する工程(S11)と、繊維強化プラスチックを調製する工程(S12)と、化学結合を形成する工程(S13)とを備える。 Next, the manufacturing method of the suspension body according to the first embodiment will be described. FIG. 9 is a flow chart of a method for manufacturing a suspension body according to the first embodiment. As shown in FIG. 9, the method for manufacturing the suspension body according to the first embodiment includes a step of preparing an intermediate material (S11), a step of preparing a fiber reinforced plastic (S12), and a step of forming a chemical bond. (S13) and.
 中間材を調製する工程(S11)では、まず、ブロックイソシアネート基を有する化合物とマトリックス樹脂と必要に応じて用いられる硬化剤とを混合してマトリックス樹脂混合物を調製する。ここで、マトリックス樹脂の硬化温度をT1とし、ブロックイソシアネート基を有する化合物の解離温度をT2としたときに、硬化温度T1<解離温度T2となるように材料を選択する。次に、マトリックス樹脂混合物を強化繊維に含浸させて中間材を調製する。 In the step of preparing the intermediate material (S11), first, a compound having a blocked isocyanate group, a matrix resin, and a curing agent used as needed are mixed to prepare a matrix resin mixture. Here, when the curing temperature of the matrix resin is T1 and the dissociation temperature of the compound having a blocked isocyanate group is T2, the material is selected so that the curing temperature T1 <dissociation temperature T2. Next, the reinforcing fibers are impregnated with the matrix resin mixture to prepare an intermediate material.
 繊維強化プラスチックを調製する工程(S12)では、硬化温度T1以上であり且つ解離温度T2より低い温度に中間材を加熱してマトリックス樹脂を硬化させることにより、1本又は複数本の繊維強化プラスチックを成形する。このような温度に中間材を加熱することで、硬化されたマトリックス樹脂中にブロックイソシアネート基が残存することになる。 In the step of preparing the fiber reinforced plastic (S12), one or more fiber reinforced plastics are produced by heating the intermediate material to a temperature equal to or higher than the curing temperature T1 and lower than the dissociation temperature T2 to cure the matrix resin. Mold. By heating the intermediate material to such a temperature, the blocked isocyanate group remains in the cured matrix resin.
 化学結合を形成する工程(S13)では、押出成形法等の成形方法により、イソシアネート基と反応する官能基を有する樹脂を加熱して溶融させ、この樹脂で1本又は複数本の繊維強化プラスチックの外周を被覆する。このときの被覆加工温度をT3としたときに、解離温度T2<被覆加工温度T3とすることで、イソシアネート基と反応する官能基及びブロックイソシアネート基からブロック剤が解離して生じたイソシアネート基が反応して化学結合を形成する。繊維強化プラスチックの外周を被覆層で被覆する際に、硬化されたマトリックス樹脂中にエポキシ基等の反応活性を有する官能基が残存している場合、この反応活性を有する官能基及びブロックイソシアネート基からブロック剤が解離して生じたイソシアネート基も反応して化学結合を形成する。このように化学結合を形成することにより、繊維強化プラスチックとその外周を被覆する被覆層とが強固に接着される。そのため、実施の形態1に係る懸架体の製造方法では、繊維強化プラスチックの外周に接着剤等を塗布する工程は不要であるので、懸架体の製造工程が増加することがなく、また、工程管理が煩雑化することもない。 In the step of forming a chemical bond (S13), a resin having a functional group that reacts with an isocyanate group is heated and melted by a molding method such as an extrusion molding method, and one or a plurality of fiber reinforced plastics are made of this resin. Cover the outer circumference. When the coating processing temperature at this time is T3, by setting the dissociation temperature T2 <coating processing temperature T3, the functional group that reacts with the isocyanate group and the isocyanate group generated by dissociating the blocking agent from the blocked isocyanate group react. To form a chemical bond. When the outer periphery of the fiber-reinforced plastic is coated with the coating layer, if a functional group having a reactive activity such as an epoxy group remains in the cured matrix resin, the functional group having this reactive activity and the blocked isocyanate group are used. The isocyanate groups generated by the dissociation of the blocking agent also react to form chemical bonds. By forming the chemical bond in this way, the fiber reinforced plastic and the coating layer covering the outer periphery thereof are firmly adhered to each other. Therefore, in the method for manufacturing a suspended body according to the first embodiment, the step of applying an adhesive or the like to the outer periphery of the fiber reinforced plastic is unnecessary, so that the manufacturing process of the suspended body does not increase, and the process control Does not become complicated.
 硬化温度T1≧解離温度T2の場合、マトリックス樹脂を硬化させる際にブロックイソシアネート基からブロック剤が解離し、イソシアネート基の反応活性が発現する。この段階でイソシアネート基の反応活性が発現すると、イソシアネート基はマトリックス樹脂と反応したり空気中の水分と反応する。その結果、繊維強化プラスチックの外周を被覆層で被覆する前に、イソシアネート基の反応活性が失われる場合がある。すなわち、繊維強化プラスチックの外周を被覆層で被覆する際に、イソシアネート基と反応する官能基とイソシアネート基との化学結合が形成されなくなる。その結果、繊維強化プラスチックとその外周を被覆する被覆層との接着強度が向上しない。 When the curing temperature T1 ≥ dissociation temperature T2, the blocking agent dissociates from the blocked isocyanate group when the matrix resin is cured, and the reaction activity of the isocyanate group is exhibited. When the reactive activity of the isocyanate group is developed at this stage, the isocyanate group reacts with the matrix resin or with the moisture in the air. As a result, the reactive activity of the isocyanate group may be lost before the outer periphery of the fiber reinforced plastic is coated with the coating layer. That is, when the outer periphery of the fiber reinforced plastic is coated with a coating layer, a chemical bond between a functional group that reacts with an isocyanate group and an isocyanate group is not formed. As a result, the adhesive strength between the fiber reinforced plastic and the coating layer covering the outer periphery thereof is not improved.
 また、解離温度T2≧被覆加工温度T3の場合、ブロックイソシアネート基からブロック剤が解離せず、イソシアネート基の反応活性が発現しない。そのため、繊維強化プラスチックの外周を被覆層で被覆する際に、イソシアネート基と反応する官能基とイソシアネート基との化学結合が形成されなくなる。その結果、繊維強化プラスチックとその外周を被覆する被覆層との接着強度が向上しない。 Further, when the dissociation temperature T2 ≥ the coating processing temperature T3, the blocking agent does not dissociate from the blocked isocyanate group, and the reaction activity of the isocyanate group does not appear. Therefore, when the outer periphery of the fiber reinforced plastic is coated with the coating layer, a chemical bond between the functional group that reacts with the isocyanate group and the isocyanate group is not formed. As a result, the adhesive strength between the fiber reinforced plastic and the coating layer covering the outer periphery thereof is not improved.
 また、繊維強化プラスチックとその外周を被覆する被覆層との接着強度をより向上させる観点から、繊維強化プラスチックの外周を被覆層で被覆する直前に、解離温度T2より高い温度に繊維強化プラスチックを加熱することが好ましい。より詳細に述べると、押出成形では被覆対象物である繊維強化プラスチックは一定の速度で押出成形機の金型内へ連続的に送られる。繊維強化プラスチックは金型出口でその外周が被覆層で被覆される。そこで、押出成形機の金型より上流側に加熱炉を設置する。この加熱炉により、繊維強化プラスチックの外周を被覆層で被覆する直前に、解離温度T2より高い温度に繊維強化プラスチックを加熱すればよい。解離温度T2より高い温度に繊維強化プラスチックを加熱してから繊維強化プラスチックの外周を被覆層で被覆するまでの時間を長く設定することは好ましくない。その理由は、解離温度T2より高い温度に繊維強化プラスチックを加熱すると、ブロックイソシアネート基からブロック剤が解離し、イソシアネート基の反応活性が発現する。イソシアネート基の反応活性が発現した状態で長時間放置すると、イソシアネート基はマトリックス樹脂と反応したり空気中の水分と反応する。その結果、繊維強化プラスチックの外周を被覆層で被覆する前に、イソシアネート基の反応活性が失われる場合がある。すなわち、繊維強化プラスチックの外周を被覆層で被覆する際に、イソシアネート基と反応する官能基とイソシアネート基との化学結合が形成されなくなる。その結果、繊維強化プラスチックとその外周を被覆する被覆層との接着強度が向上しない。 Further, from the viewpoint of further improving the adhesive strength between the fiber reinforced plastic and the coating layer covering the outer periphery thereof, the fiber reinforced plastic is heated to a temperature higher than the dissociation temperature T2 immediately before coating the outer periphery of the fiber reinforced plastic with the coating layer. It is preferable to do so. More specifically, in extrusion molding, the fiber reinforced plastic to be coated is continuously fed into the mold of the extrusion molding machine at a constant speed. The outer circumference of the fiber reinforced plastic is covered with a coating layer at the mold outlet. Therefore, a heating furnace is installed on the upstream side of the mold of the extrusion molding machine. In this heating furnace, the fiber reinforced plastic may be heated to a temperature higher than the dissociation temperature T2 immediately before the outer periphery of the fiber reinforced plastic is coated with the coating layer. It is not preferable to set a long time from heating the fiber reinforced plastic to a temperature higher than the dissociation temperature T2 until the outer periphery of the fiber reinforced plastic is coated with the coating layer. The reason is that when the fiber reinforced plastic is heated to a temperature higher than the dissociation temperature T2, the blocking agent is dissociated from the blocked isocyanate group, and the reaction activity of the isocyanate group is exhibited. When the isocyanate group is left for a long time while the reactive activity of the isocyanate group is exhibited, the isocyanate group reacts with the matrix resin or with the moisture in the air. As a result, the reactive activity of the isocyanate group may be lost before the outer periphery of the fiber reinforced plastic is coated with the coating layer. That is, when the outer periphery of the fiber reinforced plastic is coated with a coating layer, a chemical bond between a functional group that reacts with an isocyanate group and an isocyanate group is not formed. As a result, the adhesive strength between the fiber reinforced plastic and the coating layer covering the outer periphery thereof is not improved.
 このような製造方法によって得られる実施の形態1に係る懸架体では、荷重支持部として機能する繊維強化プラスチックとその外周を被覆する被覆層とが強固に接着される。実施の形態1に係る懸架体は、エレベーターの懸架体、クレーン、ホイスト、船舶の係留、橋梁、鉱業等に適用することができるが、これらに制限されるものではない。 In the suspension body according to the first embodiment obtained by such a manufacturing method, the fiber reinforced plastic functioning as a load support portion and the coating layer covering the outer periphery thereof are firmly adhered to each other. The suspension body according to the first embodiment can be applied to an elevator suspension body, a crane, a hoist, a ship mooring, a bridge, a mining industry, and the like, but is not limited thereto.
 実施の形態2.
 本発明の実施の形態2に係る懸架体について述べる。実施の形態2に係る懸架体は、荷重支持部として機能する複数の繊維強化プラスチックの一部又は全部が、撚り合わされているか、又は編まれている点が、実施の形態1と異なる。図10~13は、実施の形態2に係る懸架体の一例の断面模式図である。
Embodiment 2.
The suspension body according to the second embodiment of the present invention will be described. The suspension body according to the second embodiment is different from the first embodiment in that a part or all of a plurality of fiber reinforced plastics functioning as a load support portion is twisted or knitted. 10 to 13 are schematic cross-sectional views of an example of the suspension body according to the second embodiment.
 図10に示す懸架体1は、円形の断面を有するロープ状の懸架体である。図10に示す懸架体1は、円形の断面を有する複数の繊維強化プラスチック2を撚り合わせたものと、撚り合わされた繊維強化プラスチック2の外周を被覆する被覆層3とを備える。懸架体1及び繊維強化プラスチック2の断面は、円形に限られず、楕円形等であってもよい。図10では、3本の繊維強化プラスチック2が撚り合わされているが、これに限定されるものではない。 The suspension body 1 shown in FIG. 10 is a rope-shaped suspension body having a circular cross section. The suspension body 1 shown in FIG. 10 includes a plurality of fiber reinforced plastics 2 having a circular cross section twisted together, and a coating layer 3 covering the outer periphery of the twisted fiber reinforced plastics 2. The cross section of the suspension body 1 and the fiber reinforced plastic 2 is not limited to a circular shape, and may be an elliptical shape or the like. In FIG. 10, three fiber reinforced plastics 2 are twisted together, but the present invention is not limited to this.
 図11に示す懸架体1は、長方形の断面を有するベルト状の懸架体である。図11に示す懸架体1は、円形の断面を有する複数の繊維強化プラスチック2を撚り合わせたものと、撚り合わされた繊維強化プラスチック2の外周を被覆する被覆層3とを備える。撚り合わされた複数の繊維強化プラスチック2は、懸架体1の幅方向に並べて配置されている。繊維強化プラスチック2の断面は、円形に限られず、楕円形等であってもよい。図11では、3本の繊維強化プラスチック2が撚り合わされているが、これに限定されるものではない。また、図11では、撚り合わされた4本の繊維強化プラスチック2を用いているが、これに限定されるものではない。 The suspension body 1 shown in FIG. 11 is a belt-shaped suspension body having a rectangular cross section. The suspension body 1 shown in FIG. 11 includes a plurality of fiber-reinforced plastics 2 having a circular cross section twisted together, and a coating layer 3 covering the outer periphery of the twisted fiber-reinforced plastics 2. The plurality of twisted fiber reinforced plastics 2 are arranged side by side in the width direction of the suspension body 1. The cross section of the fiber reinforced plastic 2 is not limited to a circular shape, but may be an elliptical shape or the like. In FIG. 11, three fiber reinforced plastics 2 are twisted together, but the present invention is not limited to this. Further, in FIG. 11, four fiber-reinforced plastics 2 twisted together are used, but the present invention is not limited to this.
 図12に示す懸架体1は、円形の断面を有するロープ状の懸架体である。図12に示す懸架体1は、円形の断面を有する複数の繊維強化プラスチック2を撚り合わせたものと、撚り合わされた繊維強化プラスチック2の外周を被覆する被覆層3とを備える。撚り合わされた繊維強化プラスチック2は、心綱となる繊維強化プラスチック2の周りにストランドとなる複数の繊維強化プラスチック2を撚り合わせたものである。懸架体1及び繊維強化プラスチック2の断面は、円形に限られず、楕円形等であってもよい。図12では、1本の繊維強化プラスチック2の周りに6本の繊維強化プラスチック2が撚り合わされているが、これに限定されるものではない。 The suspension body 1 shown in FIG. 12 is a rope-shaped suspension body having a circular cross section. The suspension body 1 shown in FIG. 12 includes a plurality of fiber reinforced plastics 2 having a circular cross section twisted together, and a coating layer 3 covering the outer periphery of the twisted fiber reinforced plastics 2. The twisted fiber reinforced plastic 2 is obtained by twisting a plurality of fiber reinforced plastics 2 to be strands around a fiber reinforced plastic 2 to be a core rope. The cross section of the suspension body 1 and the fiber reinforced plastic 2 is not limited to a circular shape, and may be an elliptical shape or the like. In FIG. 12, six fiber reinforced plastics 2 are twisted around one fiber reinforced plastic 2, but the present invention is not limited to this.
 図13に示す懸架体1は、長方形の断面を有するベルト状の懸架体である。図13に示す懸架体1は、円形の断面を有する複数の繊維強化プラスチック2を撚り合わせたものと、撚り合わされた繊維強化プラスチック2の外周を被覆する被覆層3とを備える。撚り合わされた繊維強化プラスチック2は、心綱となる繊維強化プラスチック2の周りにストランドとなる複数の繊維強化プラスチック2を撚り合わせたものである。撚り合わされた複数の繊維強化プラスチック2は、懸架体1の幅方向に並べて配置されている。繊維強化プラスチック2の断面は、円形に限られず、楕円形等であってもよい。図13では、1本の繊維強化プラスチック2の周りに6本の繊維強化プラスチック2が撚り合わされているが、これに限定されるものではない。また、図13では、撚り合わされた4本の繊維強化プラスチック2を用いているが、これに限定されるものではない。 The suspension body 1 shown in FIG. 13 is a belt-shaped suspension body having a rectangular cross section. The suspension body 1 shown in FIG. 13 includes a plurality of fiber reinforced plastics 2 having a circular cross section twisted together, and a coating layer 3 covering the outer periphery of the twisted fiber reinforced plastics 2. The twisted fiber reinforced plastic 2 is obtained by twisting a plurality of fiber reinforced plastics 2 to be strands around a fiber reinforced plastic 2 to be a core rope. The plurality of twisted fiber reinforced plastics 2 are arranged side by side in the width direction of the suspension body 1. The cross section of the fiber reinforced plastic 2 is not limited to a circular shape, but may be an elliptical shape or the like. In FIG. 13, six fiber reinforced plastics 2 are twisted around one fiber reinforced plastic 2, but the present invention is not limited to this. Further, in FIG. 13, four fiber-reinforced plastics 2 twisted together are used, but the present invention is not limited to this.
 図10~13に示す懸架体1は、実施の形態2に係る懸架体の一例である。実施の形態2に係る懸架体は、長手方向に対し実質的に同一の断面を有する連続体である。実施の形態2に係る懸架体において、一部若しくは全部が撚り合わされた繊維強化プラスチック又は一部若しくは全部が編まれた繊維強化プラスチックは、懸架体の長手方向と略平行に配置されている。実施の形態2に係る懸架体に用いることができる材料は、実施の形態1と同様であるので説明を省略する。 The suspension body 1 shown in FIGS. 10 to 13 is an example of the suspension body according to the second embodiment. The suspension body according to the second embodiment is a continuous body having substantially the same cross section in the longitudinal direction. In the suspension body according to the second embodiment, the fiber reinforced plastic partially or wholly twisted or the fiber reinforced plastic which is partially or wholly woven is arranged substantially parallel to the longitudinal direction of the suspension body. The material that can be used for the suspension body according to the second embodiment is the same as that of the first embodiment, and thus the description thereof will be omitted.
 次に、実施の形態2に係る懸架体の製造方法について述べる。図14は、実施の形態2に係る懸架体の製造方法のフロー図である。図14に示されるように、実施の形態2に係る懸架体の製造方法は、中間材を調製する工程(S21)と、繊維強化プラスチックを調製する工程(S22)と、複数の繊維強化プラスチックを撚り合わせる工程(S23)と、化学結合を形成する工程(S24)とを備える。すなわち、実施の形態2に係る懸架体の製造方法は、繊維強化プラスチックを調製する工程(S22)と化学結合を形成する工程(S24)との間に、複数の繊維強化プラスチックを撚り合わせて、撚り合わされた繊維強化プラスチックを調製する工程を更に備えること以外は、実施の形態1と同様であるので説明を省略する。複数の繊維強化プラスチックを撚り合わせる工程(S23)では、複数の繊維強化プラスチックを編むことにより、編まれた繊維強化プラスチックを調製してもよい。 Next, the manufacturing method of the suspension body according to the second embodiment will be described. FIG. 14 is a flow chart of a method for manufacturing a suspension body according to the second embodiment. As shown in FIG. 14, the method for manufacturing the suspension body according to the second embodiment includes a step of preparing an intermediate material (S21), a step of preparing a fiber reinforced plastic (S22), and a plurality of fiber reinforced plastics. A step of twisting (S23) and a step of forming a chemical bond (S24) are provided. That is, in the method for manufacturing a suspended body according to the second embodiment, a plurality of fiber reinforced plastics are twisted between a step of preparing a fiber reinforced plastic (S22) and a step of forming a chemical bond (S24). Since it is the same as that of the first embodiment except that the step of preparing the twisted fiber reinforced plastic is further provided, the description thereof will be omitted. In the step (S23) of twisting a plurality of fiber reinforced plastics, the knitted fiber reinforced plastics may be prepared by knitting the plurality of fiber reinforced plastics.
 このような製造方法によって得られる実施の形態2に係る懸架体は、荷重支持部として機能する繊維強化プラスチックとその外周を被覆する被覆層とが強固に接着される。実施の形態2に係る懸架体は、実施の形態1と同様に、エレベーターの懸架体、クレーン、ホイスト、船舶の係留、橋梁、鉱業等に適用することができるが、これらに制限されるものではない。 In the suspension body according to the second embodiment obtained by such a manufacturing method, the fiber reinforced plastic functioning as a load support portion and the coating layer covering the outer periphery thereof are firmly adhered to each other. The suspension body according to the second embodiment can be applied to an elevator suspension body, a crane, a hoist, a ship mooring, a bridge, a mining industry, etc., as in the first embodiment, but is not limited to these. Absent.
 また、実施の形態2に係る懸架体は、複数の繊維強化プラスチックの一部又は全部が、撚り合わされているか、又は編まれているため、実施の形態1に係る懸架体と比較して、曲がりやすいという特徴を有する。一方で、実施の形態2に係る懸架体は、実施の形態1に係る懸架体と比較して、懸架体の断面積に占める繊維強化プラスチックの断面積の割合が小さくなる。そのため、実施の形態1に係る懸架体と同じ強度の懸架体を実施の形態2に係る懸架体で得ようとした場合、懸架体の断面積を大きくする必要がある。このように、実施の形態1及び実施の形態2に係る懸架体は、利点及び欠点をそれぞれ有しているので、適用する用途に応じて選択すればよい。 Further, since the suspension body according to the second embodiment has a part or all of the plurality of fiber reinforced plastics twisted or knitted, the suspension body according to the first embodiment is bent as compared with the suspension body according to the first embodiment. It has the characteristic of being easy. On the other hand, the suspension body according to the second embodiment has a smaller ratio of the cross-sectional area of the fiber reinforced plastic to the cross-sectional area of the suspension body than the suspension body according to the first embodiment. Therefore, when trying to obtain a suspension body having the same strength as the suspension body according to the first embodiment by the suspension body according to the second embodiment, it is necessary to increase the cross-sectional area of the suspension body. As described above, the suspension body according to the first embodiment and the second embodiment has advantages and disadvantages, respectively, and therefore may be selected according to the application.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明は下記の実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to the following examples.
<実施例1>
 硬化温度(T1)が120℃であるエポキシ樹脂とアミン系硬化剤とを混合した熱硬化性樹脂100質量部に対し、メチルエチルケトオキシムをブロック剤に使用し、解離温度(T2)が140℃であるブロック化ジフェニルメタンジイソシアネート化合物5質量部を添加してマトリックス樹脂混合物を調製した。このマトリックス樹脂混合物をポリアクリロニトリル(PAN)系炭素繊維に含浸させて中間材を調製した。120℃に中間材を加熱してエポキシ樹脂を硬化させることにより、幅40mm及び厚み2mmの長方形の断面を有するベルト状の炭素繊維強化プラスチックを成形した。炭素繊維強化プラスチックにおける炭素繊維体積含有率は65体積%であった。
 次に、押出成形法によりエーテル系熱可塑性ポリウレタンエラストマーを200℃(T3)に加熱して溶融させ、エーテル系熱可塑性ポリウレタンエラストマーでベルト状の炭素繊維強化プラスチックの外周を被覆厚み1mmとなるように被覆することにより、実施例1の懸架体を得た。得られた懸架体は、長手方向に対し長方形の断面を有する連続体であった。
<Example 1>
Methylethylketooxime is used as a blocking agent for 100 parts by mass of a thermosetting resin in which an epoxy resin having a curing temperature (T1) of 120 ° C. and an amine-based curing agent are mixed, and the dissociation temperature (T2) is 140 ° C. A matrix resin mixture was prepared by adding 5 parts by mass of the blocked diphenylmethane diisocyanate compound. This matrix resin mixture was impregnated with polyacrylonitrile (PAN) -based carbon fibers to prepare an intermediate material. By heating the intermediate material to 120 ° C. to cure the epoxy resin, a belt-shaped carbon fiber reinforced plastic having a rectangular cross section having a width of 40 mm and a thickness of 2 mm was formed. The carbon fiber volume content in the carbon fiber reinforced plastic was 65% by volume.
Next, the ether-based thermoplastic polyurethane elastomer is heated to 200 ° C. (T3) by an extrusion molding method to be melted, and the outer circumference of the belt-shaped carbon fiber reinforced plastic is coated with the ether-based thermoplastic polyurethane elastomer so as to have a coating thickness of 1 mm. By coating, the suspension body of Example 1 was obtained. The suspension body obtained was a continuum having a rectangular cross section in the longitudinal direction.
<実施例2>
 メチルエチルケトオキシムをブロック剤に使用し、解離温度(T2)が140℃であるブロック化ジフェニルメタンジイソシアネート化合物の代わりに、ジエチルマロネートをブロック剤に使用し、解離温度(T2)が120℃であるブロック化ジフェニルメタンジイソシアネート化合物を用いたこと以外は実施例1と同様にして、実施例2の懸架体を得た。得られた懸架体は、長手方向に対し長方形の断面を有する連続体であった。
<Example 2>
Blocking using methyl ethyl ketooxime as a blocking agent and blocking diphenylmethane diisocyanate having a dissociation temperature (T2) of 140 ° C. Using diethyl malonate as a blocking agent and blocking having a dissociation temperature (T2) of 120 ° C. A suspension body of Example 2 was obtained in the same manner as in Example 1 except that a diphenylmethane diisocyanate compound was used. The suspension body obtained was a continuum having a rectangular cross section in the longitudinal direction.
<実施例3>
 エーテル系熱可塑性ポリウレタンエラストマーで被覆する直前に、加熱炉により炭素繊維強化プラスチックを180℃に加熱したこと以外は実施例1と同様にして、実施例3の懸架体を得た。得られた懸架体は、長手方向に対し長方形の断面を有する連続体であった。
<Example 3>
Immediately before coating with the ether-based thermoplastic polyurethane elastomer, the suspension body of Example 3 was obtained in the same manner as in Example 1 except that the carbon fiber reinforced plastic was heated to 180 ° C. in a heating furnace. The suspension body obtained was a continuum having a rectangular cross section in the longitudinal direction.
<比較例1>
 ブロック化ジフェニルメタンジイソシアネート化合物を添加しなかったこと以外は実施例1と同様にして、比較例1の懸架体を得た。得られた懸架体は、長手方向に対し長方形の断面を有する連続体であった。
<Comparative example 1>
A suspension body of Comparative Example 1 was obtained in the same manner as in Example 1 except that the blocked diphenylmethane diisocyanate compound was not added. The suspension body obtained was a continuum having a rectangular cross section in the longitudinal direction.
<比較例2>
 メチルエチルケトオキシムをブロック剤に使用し、解離温度(T2)が140℃であるブロック化ジフェニルメタンジイソシアネート化合物の代わりに、ポリリン酸メラミンを用いたこと以外は実施例1と同様にして、比較例2の懸架体を得た。得られた懸架体は、長手方向に対し長方形の断面を有する連続体であった。
<Comparative example 2>
Comparative Example 2 was suspended in the same manner as in Example 1 except that methyl ethyl ketooxime was used as a blocking agent and melamine polyphosphate was used instead of the blocked diphenylmethane diisocyanate compound having a dissociation temperature (T2) of 140 ° C. I got a body. The suspension body obtained was a continuum having a rectangular cross section in the longitudinal direction.
 実施例1~3及び比較例1~2で得られた懸架体を約20mm幅に切断し、試験片を作製した。この試験片を用いたピール試験により、炭素繊維強化プラスチックとエーテル系熱可塑性ポリウレタンエラストマーとの接着強度を評価した。ピール強度(N/m)は、得られた試験力(N)を試験片の幅(m)で除して求めた。一例として、実施例1の懸架体のピール試験結果を図15に示す。ピール試験では、図15に示されるようなチャート図が得られた。このようなチャート図から、ピール強度(N/m)が極大となる点をピール強度の高い方から3点選び、それらを算術平均してピール強度代表値(N/m)とした。実施例1~3及び比較例1~2の懸架体のピール強度代表値を表1に示す。 The suspension bodies obtained in Examples 1 to 3 and Comparative Examples 1 and 2 were cut to a width of about 20 mm to prepare test pieces. The adhesive strength between the carbon fiber reinforced plastic and the ether-based thermoplastic polyurethane elastomer was evaluated by a peel test using this test piece. The peel strength (N / m) was determined by dividing the obtained test force (N) by the width (m) of the test piece. As an example, the peel test result of the suspension body of Example 1 is shown in FIG. In the peel test, a chart as shown in FIG. 15 was obtained. From such a chart, three points where the peel strength (N / m) was maximized were selected from the one with the highest peel strength, and they were arithmetically averaged to obtain the representative value of the peel strength (N / m). Table 1 shows representative values of peel strength of the suspended bodies of Examples 1 to 3 and Comparative Examples 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、実施例1~3の懸架体は、比較例1~2の懸架体よりもピール強度代表値が高いことが分かる。よって、実施例1~3の懸架体では、繊維強化プラスチックと被覆層とが強固に接着されているといえる。 From the results in Table 1, it can be seen that the suspension bodies of Examples 1 to 3 have a higher peel strength representative value than the suspension bodies of Comparative Examples 1 and 2. Therefore, it can be said that the fiber reinforced plastic and the coating layer are firmly adhered to each other in the suspension bodies of Examples 1 to 3.
 実施例2の懸架体は、実施例1の懸架体よりもピール強度代表値が低かった。実施例2では、マトリックス樹脂の硬化温度(T1)とブロックイソシアネート基を有する化合物の解離温度(T2)とが同じである。そのため、繊維強化プラスチックを成形する段階でブロックイソシアネート基からブロック剤の一部が解離して生じたイソシアネート基が、繊維強化プラスチックの外周を被覆層で被覆する前に活性を失ったと考えられる。 The suspension body of Example 2 had a lower representative value of peel strength than the suspension body of Example 1. In Example 2, the curing temperature (T1) of the matrix resin and the dissociation temperature (T2) of the compound having a blocked isocyanate group are the same. Therefore, it is considered that the isocyanate groups generated by dissociating a part of the blocking agent from the blocked isocyanate groups at the stage of molding the fiber reinforced plastic lost their activity before coating the outer periphery of the fiber reinforced plastic with the coating layer.
 実施例3の懸架体は、実施例1の懸架体よりもピール強度代表値が高かった。実施例3では、繊維強化プラスチックの外周を被覆層で被覆する直前に、解離温度T2より高い温度に繊維強化プラスチックを加熱しているため、イソシアネート基から解離したブロック剤のガスが放出され、繊維強化プラスチックと被覆層との界面にガスが溜り難かったためと考えられる。言い換えれば、実施例1では、繊維強化プラスチックと被覆層との界面にガスが僅かに溜り、繊維強化プラスチックと被覆層との接着強度を僅かに低下させる要因となった可能性がある。この結果から、繊維強化プラスチックの外周を被覆層で被覆する直前に、解離温度T2より高い温度に繊維強化プラスチックを加熱することにより、繊維強化プラスチックと被覆層との接着強度をより向上させることができるといえる。 The suspension body of Example 3 had a higher representative value of peel strength than the suspension body of Example 1. In Example 3, immediately before coating the outer periphery of the fiber reinforced plastic with the coating layer, the fiber reinforced plastic is heated to a temperature higher than the dissociation temperature T2, so that the gas of the blocking agent dissociated from the isocyanate group is released and the fiber. It is probable that gas did not easily accumulate at the interface between the reinforced plastic and the coating layer. In other words, in Example 1, a small amount of gas may be accumulated at the interface between the fiber reinforced plastic and the coating layer, which may be a factor that slightly reduces the adhesive strength between the fiber reinforced plastic and the coating layer. From this result, it is possible to further improve the adhesive strength between the fiber reinforced plastic and the coating layer by heating the fiber reinforced plastic to a temperature higher than the dissociation temperature T2 immediately before coating the outer periphery of the fiber reinforced plastic with the coating layer. It can be said that it can be done.
 1 懸架体、2 繊維強化プラスチック、3 被覆層、4 硬化されたマトリックス樹脂、5 強化繊維。 1 Suspension body, 2 Fiber reinforced plastic, 3 Coating layer, 4 Hardened matrix resin, 5 Reinforced fiber.

Claims (8)

  1.  繊維強化プラスチックと、
     前記繊維強化プラスチックの外周を被覆する被覆層と
    を備え、
     前記繊維強化プラスチックは、ブロックイソシアネート基を有する化合物、マトリックス樹脂及び強化繊維を含む中間材の硬化物であり、
     前記被覆層は、イソシアネート基と反応する官能基を有する樹脂から構成され、
     前記イソシアネート基と反応する官能基は、前記ブロックイソシアネート基から生じたイソシアネート基と反応して化学結合を形成している、懸架体。
    With fiber reinforced plastic,
    A coating layer that covers the outer periphery of the fiber reinforced plastic is provided.
    The fiber reinforced plastic is a cured product of an intermediate material containing a compound having a blocked isocyanate group, a matrix resin and reinforcing fibers.
    The coating layer is composed of a resin having a functional group that reacts with an isocyanate group.
    The functional group that reacts with the isocyanate group is a suspended body that reacts with the isocyanate group generated from the blocked isocyanate group to form a chemical bond.
  2.  前記マトリックス樹脂の硬化温度は、前記ブロックイソシアネート基を有する化合物のブロック剤が解離する温度より低く、
     前記被覆層の被覆加工温度は、前記ブロックイソシアネート基からブロック剤が解離する温度より高い、請求項1に記載の懸架体。
    The curing temperature of the matrix resin is lower than the temperature at which the blocking agent of the compound having a blocked isocyanate group dissociates.
    The suspension body according to claim 1, wherein the coating processing temperature of the coating layer is higher than the temperature at which the blocking agent dissociates from the blocked isocyanate group.
  3.  前記被覆層は、熱可塑性ポリウレタンエラストマーから構成される、請求項1又は2に記載の懸架体。 The suspension body according to claim 1 or 2, wherein the coating layer is made of a thermoplastic polyurethane elastomer.
  4.  前記マトリックス樹脂は、エポキシ樹脂から構成され、
     前記エポキシ樹脂のエポキシ基は、前記ブロックイソシアネート基から生じたイソシアネート基と反応して化学結合を形成している、請求項1~3の何れか一項に記載の懸架体。
    The matrix resin is composed of an epoxy resin.
    The suspension body according to any one of claims 1 to 3, wherein the epoxy group of the epoxy resin reacts with an isocyanate group generated from the blocked isocyanate group to form a chemical bond.
  5.  前記繊維強化プラスチックは、複数の前記繊維強化プラスチックの少なくとも一部を撚り合わせたものであるか、又は編んだものである、請求項1~4の何れか一項に記載の懸架体。 The suspension body according to any one of claims 1 to 4, wherein the fiber reinforced plastic is a product obtained by twisting or knitting at least a part of the plurality of fiber reinforced plastics.
  6.  ブロックイソシアネート基を有する化合物及びマトリックス樹脂を強化繊維に含浸させて中間材を調製する工程と、
     前記ブロックイソシアネート基を有する化合物のブロック剤が解離する温度より低い温度に前記中間材を加熱して前記マトリックス樹脂を硬化させることにより、繊維強化プラスチックを調製する工程と、
     前記繊維強化プラスチックの外周を、イソシアネート基と反応する官能基を有する樹脂から構成される被覆層で被覆することにより、前記イソシアネート基と反応する官能基及び前記ブロックイソシアネート基から生じたイソシアネート基を反応させて化学結合を形成する工程と
    を備える懸架体の製造方法。
    A step of impregnating reinforcing fibers with a compound having a blocked isocyanate group and a matrix resin to prepare an intermediate material, and
    A step of preparing a fiber reinforced plastic by heating the intermediate material to a temperature lower than the temperature at which the blocking agent of the compound having a blocked isocyanate group dissociates and curing the matrix resin.
    By coating the outer periphery of the fiber-reinforced plastic with a coating layer composed of a resin having a functional group that reacts with an isocyanate group, the functional group that reacts with the isocyanate group and the isocyanate group generated from the blocked isocyanate group are reacted. A method for manufacturing a suspended body, which comprises a step of forming a chemical bond.
  7.  前記被覆層の被覆加工温度は、前記ブロックイソシアネート基からブロック剤が解離する温度より高い、請求項6に記載の懸架体の製造方法。 The method for manufacturing a suspended body according to claim 6, wherein the coating processing temperature of the coating layer is higher than the temperature at which the blocking agent dissociates from the blocked isocyanate group.
  8.  前記繊維強化プラスチックの外周を前記被覆層で被覆する直前に、前記ブロックイソシアネート基からブロック剤が解離する温度より高い温度に前記繊維強化プラスチックを加熱する、請求項6又は7に記載の懸架体の製造方法。 The suspension body according to claim 6 or 7, wherein the fiber reinforced plastic is heated to a temperature higher than the temperature at which the blocking agent dissociates from the blocked isocyanate group immediately before the outer periphery of the fiber reinforced plastic is coated with the coating layer. Production method.
PCT/JP2019/024518 2019-06-20 2019-06-20 Suspension body and method for producing same WO2020255335A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/024518 WO2020255335A1 (en) 2019-06-20 2019-06-20 Suspension body and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/024518 WO2020255335A1 (en) 2019-06-20 2019-06-20 Suspension body and method for producing same

Publications (1)

Publication Number Publication Date
WO2020255335A1 true WO2020255335A1 (en) 2020-12-24

Family

ID=74037051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024518 WO2020255335A1 (en) 2019-06-20 2019-06-20 Suspension body and method for producing same

Country Status (1)

Country Link
WO (1) WO2020255335A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7264358B1 (en) 2022-02-04 2023-04-25 第一工業製薬株式会社 Two-component reaction type composition for forming thermoplastic matrix resin, matrix resin for thermoplastic resin composite, thermoplastic resin composite and method for producing the same
WO2023139756A1 (en) * 2022-01-21 2023-07-27 三菱電機株式会社 Suspension member and method for producing suspension member

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57139A (en) * 1980-05-01 1982-01-05 Freeman Chemical Corp Manufacture of coated moldings
JPH0586326A (en) * 1991-09-26 1993-04-06 Sekisui Chem Co Ltd Thermosetting resin composition for molding by in-mold coating process and coated molded article
JPH07290473A (en) * 1994-04-28 1995-11-07 Sekisui Chem Co Ltd Production of in-mold coated molded product
JP2005023480A (en) * 2003-07-03 2005-01-27 Toho Tenax Co Ltd Carbon fiber cord for rubber reinforcement and fiber-reinforced rubber material
JP2012017166A (en) * 2010-07-07 2012-01-26 Mitsubishi Electric Corp Rope for elevator
JP2015024923A (en) * 2012-02-13 2015-02-05 コネ コーポレイションKone Corporation Rope for elevator, elevator and method for manufacturing rope
WO2018131203A1 (en) * 2017-01-10 2018-07-19 三菱電機株式会社 Rope and elevator using same
WO2018198240A1 (en) * 2017-04-26 2018-11-01 三菱電機株式会社 Elevator, suspension body therefor, and production method for suspension body
US20190144243A1 (en) * 2017-11-10 2019-05-16 Otis Elevator Company Light weight load bearing member for elevator system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57139A (en) * 1980-05-01 1982-01-05 Freeman Chemical Corp Manufacture of coated moldings
JPH0586326A (en) * 1991-09-26 1993-04-06 Sekisui Chem Co Ltd Thermosetting resin composition for molding by in-mold coating process and coated molded article
JPH07290473A (en) * 1994-04-28 1995-11-07 Sekisui Chem Co Ltd Production of in-mold coated molded product
JP2005023480A (en) * 2003-07-03 2005-01-27 Toho Tenax Co Ltd Carbon fiber cord for rubber reinforcement and fiber-reinforced rubber material
JP2012017166A (en) * 2010-07-07 2012-01-26 Mitsubishi Electric Corp Rope for elevator
JP2015024923A (en) * 2012-02-13 2015-02-05 コネ コーポレイションKone Corporation Rope for elevator, elevator and method for manufacturing rope
WO2018131203A1 (en) * 2017-01-10 2018-07-19 三菱電機株式会社 Rope and elevator using same
WO2018198240A1 (en) * 2017-04-26 2018-11-01 三菱電機株式会社 Elevator, suspension body therefor, and production method for suspension body
US20190144243A1 (en) * 2017-11-10 2019-05-16 Otis Elevator Company Light weight load bearing member for elevator system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023139756A1 (en) * 2022-01-21 2023-07-27 三菱電機株式会社 Suspension member and method for producing suspension member
JP7264358B1 (en) 2022-02-04 2023-04-25 第一工業製薬株式会社 Two-component reaction type composition for forming thermoplastic matrix resin, matrix resin for thermoplastic resin composite, thermoplastic resin composite and method for producing the same
WO2023149258A1 (en) * 2022-02-04 2023-08-10 第一工業製薬株式会社 Two-part reactive composition for forming thermoplastic matrix resin, matrix resin for thermoplastic resin composite material, and thermoplastic resin composite material and method for producing same
JP2023114066A (en) * 2022-02-04 2023-08-17 第一工業製薬株式会社 Two-part reactive composition for forming thermoplastic matrix resin, matrix resin for thermoplastic resin composite material, and thermoplastic resin composite material and method for producing the same

Similar Documents

Publication Publication Date Title
EP2560911B1 (en) Elevator suspension and transmission strip
WO2020255335A1 (en) Suspension body and method for producing same
US20210198081A1 (en) Elevator, suspension body for the elevator, and manufacturing method for the suspension body
CN108698797B (en) Elevator rope and method for manufacturing same
KR20100042247A (en) Composite rope structures and systems and methods for making composite rope structures
CN106061880A (en) Woven elevator belt with coating
EP1512780B1 (en) Rubber reinforcing cord and rubber product containing the cord
EP3429952B1 (en) Load bearing member including lateral layer
KR20180067436A (en) Hybrid fabric-laminated belt for elevator system
RU2482247C2 (en) Method to manufacture non-metal reinforcement element with periodic surface and reinforcement element with periodic surface
EP3070116A1 (en) Pre-impregnated composite material
JP3820031B2 (en) Fiber reinforced plastic strands and strands and methods for their production
US20180194561A1 (en) Material with at least two layer coverings
US20220212088A1 (en) Rovings and fabrics for fiber-reinforced composites
WO2019159733A1 (en) Cord for rubber reinforcement and rubber product using same
JPH0615078Y2 (en) Reinforcing material for concrete
JPH04339635A (en) Fiber-reinforced synthetic resin complex and its molding method
JPS6312786A (en) Rod material
WO2023139756A1 (en) Suspension member and method for producing suspension member
JP4943238B2 (en) Reinforcing cord and polyurethane belt using the same
JP7279267B2 (en) Composite strands, methods of manufacture thereof, ropes, belts, and elevators
JP6547090B1 (en) Rubber reinforcing cord and rubber product using the same
KR102578791B1 (en) Reinforced composites pipe, utility pole having the same and method for manufacturing reinforced composites pipe
JPH0735948Y2 (en) Reinforcing material for concrete
JP2599187B2 (en) Method of manufacturing composite striatum

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19933473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19933473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP