WO2023149258A1 - Two-part reactive composition for forming thermoplastic matrix resin, matrix resin for thermoplastic resin composite material, and thermoplastic resin composite material and method for producing same - Google Patents

Two-part reactive composition for forming thermoplastic matrix resin, matrix resin for thermoplastic resin composite material, and thermoplastic resin composite material and method for producing same Download PDF

Info

Publication number
WO2023149258A1
WO2023149258A1 PCT/JP2023/001897 JP2023001897W WO2023149258A1 WO 2023149258 A1 WO2023149258 A1 WO 2023149258A1 JP 2023001897 W JP2023001897 W JP 2023001897W WO 2023149258 A1 WO2023149258 A1 WO 2023149258A1
Authority
WO
WIPO (PCT)
Prior art keywords
diisocyanate
blocked
thermoplastic
isocyanate
matrix resin
Prior art date
Application number
PCT/JP2023/001897
Other languages
French (fr)
Japanese (ja)
Inventor
紀夫 平山
欣範 山田
雄大 塩路
Original Assignee
第一工業製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第一工業製薬株式会社 filed Critical 第一工業製薬株式会社
Priority to CN202380018991.3A priority Critical patent/CN118679212A/en
Publication of WO2023149258A1 publication Critical patent/WO2023149258A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/04Layered products comprising a layer of synthetic resin as impregnant, bonding, or embedding substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/28Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs

Definitions

  • the present invention relates to a two-component reaction type composition used for forming a thermoplastic matrix resin of a thermoplastic resin composite containing fibers as a reinforcing material, a matrix resin for the thermoplastic resin composite, and
  • the present invention relates to a thermoplastic resin composite and a method for producing a thermoplastic resin composite.
  • Fiber reinforced composite materials which are resin composites containing fibers as a reinforcing material, are lightweight and have excellent performance, so they are used in a wide range of applications such as electrical and electronic parts, vehicles, and aviation.
  • Thermosetting resins such as epoxy resins are often used as matrix resins for fiber-reinforced composite materials.
  • thermosetting resins have a three-dimensional crosslinked structure after a polymerization reaction (curing), and cannot be remelted after being impregnated with fibers and cured, so they cannot be reprocessed or reused.
  • thermoplastic resin composites which are fiber-reinforced composite materials with a thermoplastic resin matrix
  • thermoplastic resin which is the base material
  • thermoplastic resins since thermoplastic resins are generally supplied in the form of macromolecules such as pellets and films at the time of molding, their viscosities are high when they are melted to impregnate fibers. Therefore, it is not easy to produce a thermoplastic resin composite with good impregnation.
  • thermoplastic resin composite In order to reduce the resin viscosity during molding of the thermoplastic resin composite, it is advantageous to use an in-situ polymerization type thermoplastic resin and impregnate the fiber in the state of a monomer. That is, it is desirable to produce a thermoplastic resin composite by impregnating fibers with a low-viscosity liquid monomer and polymerizing the fibers after the impregnation to form a thermoplastic resin.
  • Patent Document 1 fibers are impregnated with a polymerizable lactam mixed solution, the impregnated fibers are passed through a heated mold, and the polymerization of the lactam monomer and the molding of the thermoplastic polyamide resin obtained thereby are performed simultaneously. disclosed to do.
  • Patent Literature 1 also discloses obtaining a plate material as a primary molded body by the above molding, stacking the plate materials, and performing heat compression molding to obtain a laminate as a secondary molded body.
  • Patent Document 2 discloses a two-component reaction type composition comprising an active hydrogen component and an isocyanate component as a composition used for forming a matrix resin of a thermoplastic resin composite. are mixed and impregnated into the fibers, and then the two-part reactive composition is cured by heating.
  • the active hydrogen component contains an aromatic diamine having an alkylthio group
  • the isocyanate component is at least one selected from the group consisting of aliphatic diisocyanates, alicyclic diisocyanates and modified products thereof. of diisocyanates.
  • JP 2017-007266 A Japanese Patent No. 6580774
  • the thermoplastic resin composite can melt the thermoplastic resin by heating. Therefore, after the thermoplastic resin is combined with fibers to obtain a primary molded body, the primary molded body can be laminated and integrated by hot pressing to obtain a laminate as a secondary molded body.
  • the heat-sealing between the layers of the laminate may be insufficient and delamination may occur. Increased adhesion is required.
  • an embodiment of the present invention provides a thermoplastic matrix resin-forming resin that can improve the adhesion between layers of the laminate when the laminate is formed by lamination and integration by thermoforming, for example.
  • An object of the present invention is to provide a two-part reaction type composition, a matrix resin for a thermoplastic resin composite, and a thermoplastic resin composite.
  • a two-part reaction type composition used for forming a thermoplastic matrix resin of a thermoplastic resin composite containing fibers as a reinforcing material the composition comprising an active hydrogen component containing an aromatic diamine having an alkylthio group; and an isocyanate component containing at least one diisocyanate selected from the group consisting of aliphatic diisocyanates, alicyclic diisocyanates and modified products thereof, wherein the diisocyanate is a blocked diisocyanate in which at least one isocyanate group is blocked and an unblocked diisocyanate in which the isocyanate groups are unblocked.
  • thermoplastic matrix resin for forming a thermoplastic matrix resin according to [1], wherein the blocking rate, which is the molar ratio of blocked isocyanate groups to isocyanate groups in the entire isocyanate component, is 1 to 56%.
  • a matrix resin for a thermoplastic resin composite containing fibers as a reinforcing material comprising an active hydrogen component containing an aromatic diamine having an alkylthio group, an aliphatic diisocyanate, an alicyclic diisocyanate, and modified products thereof
  • thermoplastic matrix resin obtained by reacting the two-component reactive composition according to [1] or [2] or the matrix resin according to [3], and a fiber as a reinforcing material, Thermoplastic resin composite.
  • thermoplastic matrix resin obtained by reacting the two-component reactive composition according to [1] or [2] or the matrix resin according to claim 3, and a plurality of fibers as reinforcing materials A thermoplastic resin composite, which is a laminate obtained by stacking the primary molded bodies of (1) and laminating and integrating them by thermoforming.
  • thermoplastic resin composite containing fibers as a reinforcing material comprising: A thermoplastic matrix resin formulation comprising an active hydrogen component and an isocyanate component, wherein the isocyanate component comprises a blocked diisocyanate in which at least one isocyanate group is blocked and an unblocked diisocyanate in which the isocyanate group is unblocked. impregnating the fibers with a composition for By heating the fibers at a temperature lower than the dissociation temperature of the blocked diisocyanate, the thermoplastic matrix resin-forming composition is polymerized while retaining the blocked isocyanate groups, thereby obtaining a thermoplastic matrix.
  • thermoplastic resin composite comprising obtaining a primary molded article containing a resin.
  • thermoplastic resin according to [6] wherein the composition for forming a thermoplastic matrix resin has a blocking rate, which is a molar ratio of blocked isocyanate groups to isocyanate groups in the entire isocyanate component, of 1 to 56%.
  • a method for manufacturing a composite [8]
  • the active hydrogen component of the thermoplastic matrix resin-forming composition contains an aromatic diamine having an alkylthio group, and the isocyanate component is selected from the group consisting of aliphatic diisocyanates, alicyclic diisocyanates and modified products thereof.
  • thermoplastic resin composite according to [6] or [7], wherein the diisocyanate contains at least one kind of diisocyanate that has been fused with the above-mentioned diisocyanate, and the diisocyanate contains the blocked diisocyanate and the unblocked diisocyanate.
  • a method for producing a thermoplastic resin composite [10] The thermoplastic resin composite according to any one of [6] to [9], wherein the temperature for heating the fibers is lower than the glass transition temperature of the thermoplastic matrix resin in the primary molded body. manufacturing method.
  • the following effects are achieved by using both a blocked diisocyanate and an unblocked diisocyanate as the isocyanate component to be reacted with the active hydrogen component.
  • the unblocked diisocyanate and the active hydrogen component can be reacted while retaining the blocked isocyanate groups. It can be polymerized to obtain a thermoplastic resin. Therefore, it is possible to obtain a primary molding of a thermoplastic resin composite comprising a thermoplastic matrix resin and fibers.
  • thermoforming is performed under conditions in which the blocking agent of the blocked diisocyanate is dissociated, so that the dissociated isocyanate groups react with each other. Bonds can be made between the layers of the laminate. Therefore, it is possible to improve the adhesion between layers in the thermoplastic resin composite laminate, which is a secondary molded product.
  • thermoplastic matrix resin [Two-liquid reactive composition for forming thermoplastic matrix resin]
  • a two-component reaction type composition for forming a thermoplastic matrix resin according to one embodiment comprises an active hydrogen component containing an aromatic diamine (A) having an alkylthio group; and an isocyanate component containing at least one diisocyanate (B) selected from the group consisting of group diisocyanates, alicyclic diisocyanates and modified products thereof.
  • a two-component reaction type composition for forming a thermoplastic matrix resin comprises an active hydrogen component containing an aromatic diamine (A) having an alkylthio group; and an isocyanate component containing at least one diisocyanate (B) selected from the group consisting of group diisocyanates, alicyclic diisocyanates and modified products thereof.
  • the active hydrogen component contains an aromatic diamine (A) having an alkylthio group.
  • the aromatic diamine (A) having an alkylthio group a compound having two amino groups directly bonded to the aromatic ring and an alkylthio group directly bonded to the aromatic ring is preferred.
  • the alkylthio group is a group represented by -SC n H 2n+1 (where n is an integer of 1 or more, preferably an integer of 1 to 5).
  • the aromatic diamine (A) may have one, two or more alkylthio groups in one molecule. Preference is given to having two alkylthio groups directly attached to the aromatic ring.
  • aromatic diamine (A) it is preferable to use, for example, dialkylthiotoluene diamines such as dimethylthiotoluene diamine, diethylthiotoluene diamine, and dipropylthiotoluene diamine.
  • diamines such as other aromatic diamines may be used together with the aromatic diamine (A).
  • Other diamines include, for example, 4,4'-methylenedianiline, 4,4'-methylenebis(2-methylaniline), 4,4'-methylenebis(2-ethylaniline), 4,4'-methylenebis ( 2-isopropylaniline), 4,4′-methylenebis(2,6-dimethylaniline), 4,4′-methylenebis(2,6-diethylaniline), 4,4′-methylenebis(N-methylaniline), 4 ,4′-methylenebis(N-ethylaniline), 4,4′-methylenebis(N-sec-butylaniline), diethyltoluenediamine and the like. These may be used either singly or in combination of two or more.
  • the diamine used as the active hydrogen component preferably contains the aromatic diamine (A) as a main component, preferably 50% by mass or more of the diamine is the aromatic diamine (A), more preferably 70% by mass of the diamine.
  • the above is the aromatic diamine (A), and more preferably 90% by mass or more of the diamine is the aromatic diamine (A).
  • 15% by mass or more of the active hydrogen component is preferably the aromatic diamine (A), more preferably 40% by mass or more of the active hydrogen component is the aromatic diamine (A), and still more preferably the active hydrogen component.
  • 70% by mass or more of the aromatic diamine (A), more preferably 90% by mass or more of the active hydrogen component is the aromatic diamine (A).
  • the active hydrogen component may contain a diol together with a diamine.
  • diols include alkylene glycols such as ethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol and 1,6-hexanediol, diethylene glycol, Polyalkylene glycols such as triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol, cyclohexanedimethanol, bisphenol A, hydrogenated bisphenol A, bisphenol S, bisphenol F and the like. These may be used either singly or in combination of two or more.
  • the active hydrogen component forms a thermoplastic resin, it is bifunctional, that is, diamines and diols are used. may contain.
  • the isocyanate component contains at least one diisocyanate (B) selected from the group consisting of aliphatic diisocyanates, alicyclic diisocyanates and modified products thereof.
  • Aliphatic diisocyanates that is, chain aliphatic diisocyanates
  • HDI hexamethylene diisocyanate
  • 2,2,4-trimethylhexamethylene diisocyanate 2,4,4-trimethyl hexamethylene diisocyanate
  • lysine diisocyanate 2-methylpentane-1,5-diisocyanate
  • 3-methylpentane-1,5-diisocyanate and the like.
  • modified aliphatic diisocyanate examples include an isocyanate group-terminated urethane prepolymer obtained by reacting an aliphatic diisocyanate with a diol, a bifunctional adduct modified, and a bifunctional allophanate modified.
  • the aliphatic diisocyanate at least one selected from the group consisting of hexamethylene diisocyanate (HDI) and its modified products because the viscosity during molding is lower and the tensile breaking strain of the resulting resin is better. is preferably used.
  • HDI hexamethylene diisocyanate
  • alicyclic diisocyanates examples include isophorone diisocyanate (IPDI), hydrogenated xylylene diisocyanate, 4,4′-dicyclohexylmethane diisocyanate (H12MDI), 1,4-cyclohexane diisocyanate, methylcyclohexylene diisocyanate, 1,3-bis (Isocyanatomethyl)cyclohexane and the like can be mentioned.
  • the modified alicyclic diisocyanate examples include an isocyanate group-terminated urethane prepolymer obtained by reacting an alicyclic diisocyanate with a diol, a bifunctional adduct modified, and a bifunctional allophanate modified.
  • the alicyclic diisocyanate it is preferable to use at least one selected from the group consisting of isophorone diisocyanate (IPDI), 4,4'-dicyclohexylmethane diisocyanate (H12MDI), and modified products thereof.
  • IPDI isophorone diisocyanate
  • H12MDI 4,4'-dicyclohexylmethane diisocyanate
  • a blocked diisocyanate (B1) in which at least one isocyanate group is blocked and an unblocked diisocyanate (B2) in which the isocyanate group is not blocked are used in combination.
  • the blocked diisocyanate (B1) is a compound obtained by reacting the isocyanate group of the diisocyanate (B) with a blocking agent, and one or both of the two isocyanate groups of the diisocyanate are blocked by the blocking agent.
  • the blocked diisocyanate (B1) may be a single diisocyanate in which one isocyanate group is blocked, a diisocyanate in which both isocyanate groups are blocked, or a mixture thereof.
  • blocking agents include oximes such as MEK oxime (methyl ethyl ketone oxime) and cyclohexanone oxime, lactams such as caprolactam and butyrolactam, alcohols such as methanol, ethanol, and benzyl alcohol, and phenols such as phenol, para-t-butylphenol, and cresol. , dimethylamine, diisopropylamine, dicyclohexylamine, amines such as aniline, and ammonia. These may be used either singly or in combination of two or more.
  • oximes such as MEK oxime (methyl ethyl ketone oxime) and cyclohexanone oxime
  • lactams such as caprolactam and butyrolactam
  • alcohols such as methanol, ethanol, and benzyl alcohol
  • phenols such as phenol, para-t-butylphenol, and cresol.
  • the blocked diisocyanate (B1) is obtained by blocking the diisocyanate (B) with a blocking agent, it may be a blocked aliphatic diisocyanate, a blocked alicyclic diisocyanate, or a blocked modified aliphatic diisocyanate. It may be a blocked modified alicyclic diisocyanate, or a combination of two or more thereof.
  • the unblocked diisocyanate (B2) is a diisocyanate in which both of the two isocyanate groups of the diisocyanate (B) are not blocked with a blocking agent. Therefore, the unblocked diisocyanate (B2) may be an unblocked aliphatic diisocyanate, an unblocked alicyclic diisocyanate, an unblocked modified aliphatic diisocyanate, or an unblocked modified alicyclic diisocyanate. , a combination of two or more thereof.
  • Examples of the unblocked diisocyanate (B2) include the above-listed aliphatic diisocyanates and modified products thereof, and alicyclic diisocyanates and modified products thereof, and one or more of them can be used as they are.
  • the blocked diisocyanate (B1) and the unblocked diisocyanate (B2) may be the same diisocyanate or different diisocyanates except for the presence or absence of blocking. That is, for example, a blocked aliphatic diisocyanate and an unblocked aliphatic diisocyanate may be used in combination, a blocked modified aliphatic diisocyanate and an unblocked modified aliphatic diisocyanate may be used in combination, and a blocked alicyclic diisocyanate and an unblocked alicyclic diisocyanate may be used in combination. Also, a blocked alicyclic diisocyanate and a non-blocked modified aliphatic diisocyanate may be used in combination.
  • a blocked aliphatic diisocyanate and an unblocked modified aliphatic diisocyanate may be used in combination.
  • a blocked modified alicyclic diisocyanate and an unblocked aliphatic diisocyanate may be used in combination.
  • a blocked aliphatic diisocyanate, a blocked alicyclic diisocyanate and a non-blocked alicyclic diisocyanate may be used in combination.
  • the blending ratio of the blocked diisocyanate (B1) and the unblocked diisocyanate (B2) is not particularly limited, it is the molar ratio of the blocked isocyanate groups to the isocyanate groups of the entire isocyanate component (preferably the entire diisocyanate (B)). It is preferable that the block rate is 1 to 56%.
  • the blocking ratio of the isocyanate component By setting the blocking ratio of the isocyanate component to 1% or more, the adhesion between the layers of the laminate can be improved.
  • the block ratio is 56% or less, the viscosity of the second liquid containing the isocyanate component can be reduced, and the miscibility with the first liquid containing the active hydrogen component can be improved.
  • the viscosity of the second liquid it is possible to reduce the resistance when it flows through the piping and increase the flow velocity.
  • the viscosity of the liquid mixture obtained by mixing the first liquid and the second liquid can be reduced to improve the impregnation of the fibers.
  • the blocking agent evaporates when it dissociates, and when the block ratio is 56% or less, voids in the resin caused by vaporization and thinning due to a decrease in the amount of resin can be reduced.
  • the blocking rate of the isocyanate component is more preferably 5% or more, still more preferably 10% or more, still more preferably 15% or more. Also, the block rate is more preferably 55% or less, still more preferably 45% or less, and even more preferably 40% or less.
  • the isocyanate component preferably consists essentially of the diisocyanate (B), preferably 80% by mass or more of the isocyanate component is the diisocyanate (B), more preferably 90% by mass or more, and still more preferably 95% by mass. It is at least 98% by mass, particularly preferably at least 98% by mass.
  • a bifunctional isocyanate that is, a diisocyanate is used in order to form a thermoplastic resin.
  • the two-component reactive composition according to the present embodiment contains the active hydrogen component and the isocyanate component, and the active hydrogen component and the isocyanate component react to form a thermoplastic resin. That is, the two-liquid reaction type composition has the property that the reaction product becomes a thermoplastic resin.
  • the two-component reaction type composition uses an active hydrogen component as the first component and an isocyanate component as the second component. It is a two-component curable resin composition that can be (that is, solidified).
  • the two-liquid reaction type composition has two liquids, the first liquid and the second liquid, but may have three liquids or more as long as there are at least two liquids.
  • the two-part reaction type composition may contain a catalyst for promoting the reaction between the active hydrogen component and the isocyanate component.
  • a metal catalyst or an amine catalyst can be used as the catalyst.
  • Metal catalysts include tin catalysts such as dibutyltin dilaurate, dioctyltin dilaurate, and dibutyltin dioctate; lead catalysts such as lead octylate, lead octenoate, and lead naphthenate; and bismuth catalysts, such as bismuth octylate and bismuth neodecanoate. can be mentioned.
  • Examples of amine-based catalysts include tertiary amine compounds such as triethylenediamine. These catalysts can be used alone or in combination.
  • the two-component reaction type composition may contain a plasticizer, a flame retardant, an antioxidant, a moisture absorbent, an anti-mold agent, a silane coupling agent, an antifoaming agent, a surface control agent, and an internal release agent.
  • a plasticizer such as polyethylene glycol dimethacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium sulfate, sodium bicarbonate, sodium sulfate, sodium
  • the molar ratio (NCO/active hydrogen group) of isocyanate groups (total of blocked and unblocked groups) to active hydrogen groups (total of amino groups and hydroxyl groups) is It is not particularly limited, and may be 1.0 or more, or 1.1 or more. Also, the molar ratio (NCO/active hydrogen group) may be 2.0 or less, 1.5 or less, or 1.2 or less.
  • a matrix resin for a thermoplastic resin composite is a thermoplastic resin containing a reaction product of the active hydrogen component and the isocyanate component. It is obtained by curing a two-part reaction type composition.
  • the resulting resin is a thermoplastic polyurea resin
  • the active hydrogen component contains a diol
  • the resulting resin is a thermoplastic polyurethane/urea resin.
  • the thermoplastic polyurethane/urea resin is a resin containing both a urethane bond and a urea bond in its main chain.
  • the matrix resin may contain the blocked isocyanate groups of the blocked diisocyanate (B1) contained in the diisocyanate (B) while retaining the blocked isocyanate groups.
  • the blocking agent of the blocked diisocyanate (B1) may be dissociated so that the isocyanate group reacts with the remaining active hydrogen component to form a urea bond or a urethane bond. That is, the matrix resin may be at the stage of a primary molded product obtained by reacting an active hydrogen component with an unblocked diisocyanate (B2), dissociating the blocking agent of the blocked diisocyanate (B1) to form an active hydrogen component. It may be a secondary molded product obtained by reacting with.
  • the glass transition temperature (Tg) of the matrix resin is not particularly limited.
  • the glass transition temperature is, for example, preferably 100° C. or higher, more preferably 120° C. or higher, and even more preferably 150° C. or higher.
  • the upper limit of the glass transition temperature is not particularly limited, and may be, for example, 220° C. or lower, or 200° C. or lower.
  • thermoplastic resin composite is a fiber-reinforced composite material (FRP) containing a cured product of the two-part reaction type composition or the matrix resin, and fibers as reinforcing materials.
  • FRP fiber-reinforced composite material
  • the fibers include, for example, carbon fiber, glass fiber, aramid fiber, alumina fiber, silicon carbide fiber, boron fiber, metal fiber, natural fiber, mineral fiber, etc. Any one or a combination of two or more thereof may be used. may be configured.
  • Examples of carbon fibers include PAN-based, pitch-based, and rayon-based fibers.
  • As the fiber at least one selected from the group consisting of carbon fiber, glass fiber, and aramid fiber is preferable.
  • the fibers may be applied with glue or paint to promote bonding with the resin.
  • forms of fibers include continuous fibers such as filaments, fibers, strand rovings or fabrics, woven mats, non-woven mats, and other forms.
  • the ratio of fiber to thermoplastic resin in the thermoplastic resin composite is not particularly limited.
  • the volume content of fibers per unit volume of the thermoplastic resin composite may be 30 to 70% or 50 to 60%.
  • the volume content of the thermoplastic resin is preferably 30 to 70%, more preferably 40 to 50%, per unit volume of the thermoplastic resin composite.
  • the thermoplastic resin composite is preferably an in-situ polymerization type thermoplastic resin composite that uses the two-component reaction type composition as a thermoplastic resin as a matrix. That is, it is preferable to produce a thermoplastic resin composite by impregnating a fiber with a monomer mixed liquid obtained by mixing the two-part reaction type composition, and polymerizing the fibers after the impregnation to form a thermoplastic resin.
  • the thermoplastic resin composite comprises a matrix resin (preferably a thermoplastic matrix resin obtained by reacting the two-component reactive composition) and a plurality of primary fibers as reinforcing materials. It is preferably a laminate obtained by stacking molded bodies and laminating and integrating them by thermoforming.
  • the matrix resin in the primary molding preferably contains blocked isocyanate groups.
  • the laminate is a secondary molded body obtained by thermoforming a plurality of the primary molded bodies, and the isocyanate groups are reacted during secondary molding by dissociation of the blocking agent for the blocked isocyanate groups. can be done. Therefore, between the layers of the laminate, not only thermal fusion bonding is formed by heating the thermoplastic resin, but also chemical bonds are formed by reaction of dissociated isocyanate groups. Therefore, the layers can be bonded more firmly.
  • the shape of the primary molded body is not particularly limited, but for example, it may be plate-shaped (a concept that includes thin ones such as sheet-like), and a plurality of plate-shaped primary molded bodies are laminated and integrated.
  • a laminate may be obtained by
  • thermoplastic resin composite as the primary molded body can be processed into various shapes by secondary molding and used. suitable for forming.
  • thermoplastic resin composite examples include, for example, housings for electronic equipment, which are suitably used for computers, televisions, cameras, audio players, and the like.
  • the thermoplastic resin composite is also suitable for electrical and electronic component applications, such as connectors, LED lamps, sockets, optical pickups, terminal boards, printed circuit boards, speakers, motors, magnetic heads, power modules, generators, electric motors, It can be suitably used for parts of transformers, current transformers, voltage regulators, rectifiers and inverters.
  • thermoplastic resin composite is also suitable for automotive parts, vehicle-related parts, and the like, such as safety belt parts, instrument panels, console boxes, pillars, roof rails, fenders, bumpers, door panels, roof panels, hood panels, Trunk lid, door mirror stay, spoiler, hood louver, wheel cover, wheel cap, garnish, intake manifold, fuel pump, engine coolant joint, window washer nozzle, wiper, battery peripheral parts, wire harness connector, lamp housing, lamp reflector, Suitable for use in lamp sockets and the like.
  • safety belt parts such as safety belt parts, instrument panels, console boxes, pillars, roof rails, fenders, bumpers, door panels, roof panels, hood panels, Trunk lid, door mirror stay, spoiler, hood louver, wheel cover, wheel cap, garnish, intake manifold, fuel pump, engine coolant joint, window washer nozzle, wiper, battery peripheral parts, wire harness connector, lamp housing, lamp reflector, Suitable for use in lamp sockets and the like.
  • thermoplastic resin composite is also suitable as a building material, and can be It is suitably used for parts, lifeline-related parts, and the like.
  • the fiber-reinforced composite material is also suitable for use as sports goods, such as golf club shafts, golf balls and other golf-related goods, tennis rackets and badminton rackets and other sports racket-related goods, American football, baseball, softball and the like. It is suitably used for body protective equipment for sports such as masks, helmets, chest pads, elbow pads and knee pads, fishing gear-related equipment such as fishing rods, reels and lures, and winter sports-related equipment such as skis and snowboards.
  • delamination between the layers of the laminate can be suppressed by including the blocked diisocyanate in the two-liquid reaction type composition.
  • a method for producing a thermoplastic resin composite includes the following steps (1) and (2), and preferably further includes the following step (3).
  • the thermoplastic matrix resin-forming composition is polymerized while retaining the blocked isocyanate groups to obtain a primary molded article containing the thermoplastic matrix resin obtained by polymerization. molding process.
  • the composition for forming a thermoplastic matrix resin (hereinafter also referred to as a monomer mixed solution) used in the impregnation step contains an active hydrogen component and an isocyanate component. and diisocyanate.
  • the isocyanate component By including the blocked diisocyanate as the isocyanate component in this way, the isocyanate group can be reacted during secondary molding, and the adhesion between the layers of the laminate can be improved.
  • the active hydrogen component of the monomer mixture preferably contains an aromatic diamine (A) having an alkylthio group.
  • the isocyanate component contains at least one diisocyanate (B) selected from the group consisting of aliphatic diisocyanates, alicyclic diisocyanates and modified products thereof, and the diisocyanate (B) is a blocked diisocyanate and an unblocked diisocyanate. is preferably included.
  • the details of such a mixed monomer solution are as described above for the two-component reaction type composition.
  • the fibers used in the impregnation step are as described for the thermoplastic resin composite, and similar fibers can be used.
  • FIG. 1 shows an example of a manufacturing apparatus 1 applicable to the manufacturing method.
  • the manufacturing apparatus 1 includes an impregnation unit 20 that impregnates the fibers 10 with the monomer mixture, and a thermoforming unit 30 that heats the fibers 10 impregnated with the monomer mixture to form a thermoplastic resin composite (primary molded body 12). and a drawing device 40 for continuously drawing out the molded primary molded body 12.
  • the manufacturing apparatus 1 further includes a fiber supply section 50 that supplies the fibers 10 to the impregnation section 20 and a monomer supply section 60 that supplies the monomer mixture to the impregnation section 20 .
  • the fibers 10 supplied from the fiber supply section 50 are continuously impregnated with the monomer mixed liquid supplied from the monomer supply section 60.
  • the fiber supply unit 50 collects the fibers drawn out from the plurality of bobbins 51 into one and supplies the fibers 10 to the impregnation unit 20 .
  • the monomer supply unit 60 includes a first tank 61 storing a first liquid containing an active hydrogen component, a second tank 62 storing a second liquid containing an isocyanate component, and a mixer 63 .
  • the mixer 63 is a device that mixes the first liquid sent from the first tank 61 and the second liquid sent from the second tank 62 .
  • the mixer 63 may perform stirring and mixing using stirring blades, or may perform stirring and mixing with a mixing head arranged in a static mixer.
  • the monomer liquid mixture mixed by the mixer 63 is supplied to the impregnation section 20 .
  • the impregnation section 20 is composed of a plurality of impregnation rollers 21 . Specifically, the impregnating section 20 drops the monomer liquid mixture at a plurality of locations on the fibers 10 running through the conveying rollers 22 , and impregnates the fibers 10 with the monomer liquid mixture by the plurality of impregnation rollers 21 . is configured as
  • a heating device for preheating the fibers 10 may be installed before the impregnating section 20 . By heating in advance, the impregnation of the monomer mixed solution can be carried out quickly. In addition, the moisture absorbed by the fibers 10 can be evaporated immediately before the impregnation, and the influence of the moisture during the polymerization of the monomer mixed solution can be removed more favorably. Therefore, the polymerization reaction of the monomer mixture can be stabilized.
  • the fibers 10 impregnated in the impregnating section 20 are passed through the thermoforming section 30 at a predetermined heating temperature T, thereby polymerizing the monomer mixture and the thermoplastic resin obtained by the polymerization.
  • the composite (primary molded body 12) is molded. That is, the fiber 10 impregnated with the monomer mixture is shaped and polymerized by heating.
  • the thermoforming unit 30 includes a thermoforming mold 31 for forming the fibers 10 impregnated with the monomer mixture into a predetermined thickness and width, and a primary molded body 12 pulled out from the thermoforming mold 31. and a heating device 32 for heating to promote the polymerization reaction. Note that the heating device 32 may not be provided.
  • the fibers 10 impregnated with the monomer mixture are heated at a temperature lower than the dissociation temperature Td of the blocked diisocyanate (B1). This allows the monomer mixture to be polymerized to form a thermoplastic matrix resin while retaining the blocked isocyanate groups.
  • the heating temperature T which is the set temperature of the thermoforming unit 30, is set to a temperature lower than the dissociation temperature Td.
  • the temperature set as the heating temperature T may be a single temperature, or may be set in a predetermined temperature range with a temperature distribution depending on the portion of the thermoforming unit 30 .
  • the maximum temperature is set to a temperature lower than the dissociation temperature Td.
  • the dissociation temperature Td of the blocked diisocyanate (B1) is the temperature at which the blocking agent dissociates from the blocked isocyanate groups. Since the temperature at which the blocking agent dissociates generally has a range, it is preferable to heat the fiber 10 at a temperature lower than the minimum temperature, that is, the temperature at which the blocking agent starts to dissociate during heating (dissociation start temperature).
  • the dissociation temperature Td of the blocked diisocyanate (B1) is not particularly limited.
  • the temperature for heating the fibers 10 is set to a temperature lower than the glass transition temperature Tg of the thermoplastic matrix resin in the primary molded body 12 obtained by polymerizing the monomer mixture. That is, the temperature for heating the fibers 10 is preferably lower than the dissociation temperature Td of the blocked diisocyanate (B1) and lower than the glass transition temperature Tg of the thermoplastic matrix resin after primary molding.
  • the glass transition temperature after primary molding is the glass transition temperature of a thermoplastic matrix resin obtained by polymerization while retaining blocked isocyanate groups.
  • the heating temperature T in the thermoforming unit 30 is set to a temperature lower than the dissociation temperature Td and lower than the glass transition temperature Tg. More preferably, the heating temperature T is set to a temperature 20° C. or more lower than the glass transition temperature Tg (T ⁇ Tg ⁇ 20° C.).
  • the primary molding process includes a drawing process in which the primary molded body 12 is continuously drawn out from the thermoforming unit 30 by the drawing device 40 .
  • the drawing device 40 is composed of a pair of upper and lower rollers 41, 41 for drawing out the primary molded body 12 with it sandwiched therebetween.
  • the heating temperature T in the thermoforming part 30 is lower than the glass transition temperature Tg after the primary molding of the thermoplastic matrix resin, so that the primary molded body 12 pulled out from the thermoforming part 30 has a thermoplastic property.
  • the matrix resin is in a glass state below the glass transition temperature Tg. That is, at the stage of coming out of the thermoforming unit 30, although the polymerization is not completed, it is in a non-sticky, pseudo-cured state. Therefore, the pulled out primary molded body 12 is unlikely to lose its shape and can maintain its shape. Therefore, a thermoplastic resin composite can be efficiently produced by continuous pultrusion.
  • the resin in continuous pultrusion, generally, the resin is polymerized and cured by heating in the thermoforming unit, so the temperature of the primary molded product at the exit of the thermoforming unit is the polymerization temperature of the resin set in the thermoforming unit. becomes approximately equal to Therefore, in continuous pultrusion, if the polymerization temperature is higher than the glass transition temperature of the matrix resin, the primary molded product at the exit of the thermoforming unit is in a soft rubber state and cannot maintain a predetermined cross-sectional shape. . On the other hand, for example, it is possible to provide a cooling process after heat molding to cool the temperature below the glass transition temperature, but the apparatus is correspondingly large, and in addition, the drawing speed of the primary molded body is not slowed down.
  • thermoforming section Since the inside of the body cannot be cooled, the production efficiency is inferior.
  • polymerization is performed in the thermoforming section at a temperature lower than the glass transition temperature, and the primary molded body in which the thermoplastic matrix resin is in a glass state is pulled out from the thermoforming section. It is easy to maintain the shape of the molded body, and therefore the manufacturing efficiency can be improved.
  • a heating device may be provided after the drawing device 40 for further heating the primary molded body 12 to accelerate or complete the polymerization.
  • a cutting device such as a cutter may be provided after the drawing device 40 or after the additional heating device, thereby obtaining a plate material, a channel material, a round bar material, a strand material, or the like as the primary formed body 12.
  • the impregnating section 20 is composed of a plurality of impregnating rollers 21 provided in front of the heating mold 31, but the impregnating section may be provided inside the heating mold 31.
  • the impregnated portion is incorporated as part of the thermoformed portion 30 at its front end.
  • FIG. 2 shows an example thereof.
  • the fibers 10 let out from the bobbin 51 of the fiber supplying section 50 are fed into the thermoforming mold 31 of the thermoforming section 30 through the feed rollers 52 .
  • the monomer mixture supplied from the monomer supply unit 60 is directly injected into the thermoforming mold 31 by the injection jig 71 provided at the front end of the thermoforming mold 31, and the monomer mixture is injected in the thermoforming mold 31. is impregnated into the fiber 10. Therefore, the front end portion of the heat molding die 31 also serves as the impregnation portion 70 .
  • An impregnating jig such as an impregnating roller may be provided inside the heating mold 31 .
  • the fibers 10 can be impregnated with the monomer mixed liquid injected into the heating mold 31 by the injection jig 71 in a short period of time.
  • Such devising of the impregnation part 70 has a high effect of impregnating the fibers 10 with the monomer mixture in a short time while removing excess air. Fine voids (cavities) inside the subsequent primary molded body 12 can be reduced.
  • a plurality of the above primary molded bodies are stacked and integrated by thermoforming under conditions where the blocking agent is dissociated.
  • a laminate as a secondary molded body can be obtained by stacking a plurality of plate-shaped primary molded bodies and laminating and integrating them by hot pressing.
  • thermoforming is performed at a temperature equal to or higher than the dissociation temperature Td of the blocked diisocyanate (B1) in order to dissociate the blocking agent from the blocked isocyanate groups contained in the primary molded product.
  • Td dissociation temperature
  • the dissociated isocyanate groups of the blocking agent react with the active hydrogen components remaining in the primary molding to form additional chemical bonds. Therefore, the layers of the laminate can be strongly bonded and the adhesion between the layers can be improved.
  • a laminate when a laminate is obtained by hot pressing using a plate-shaped primary formed body, it may be laminated and integrated into a flat plate shape as it is. It may be formed into various shapes such as shape, box shape, and the like. Moreover, once it is laminated and integrated into a flat plate shape, it may be shaped into a desired shape by applying heat again.
  • (Diisocyanate) - Modified HDI NCO-terminated bifunctional urethane prepolymer of HDI, isocyanate value 230 mgKOH/g, "Duranate A201H” manufactured by Asahi Kasei Corporation ⁇ HDI: hexamethylene diisocyanate, isocyanate value 668 mgKOH / g, "Duranate HDI” manufactured by Asahi Kasei Corporation ⁇ IPDI: isophorone diisocyanate, isocyanate value 505 mgKOH / g, "VESTANATE IPDI” manufactured by EVONIK ⁇ H12MDI: 4,4′-dicyclohexylmethane diisocyanate, isocyanate value 427 mgKOH/g, “Desmodur W” manufactured by Covestro
  • BL1 to BL6 were synthesized as blocked diisocyanate (B1) according to the formulation (parts by mass) shown in Table 1 below. Specifically, a diisocyanate component was placed in a separable flask, each blocking agent was added, and the synthesis was performed by heating. At that time, those with high viscosity were appropriately diluted with a solvent such as toluene, and the solvent was recovered by an evaporator or the like after the synthesis.
  • B1 blocked diisocyanate
  • All of the obtained blocked diisocyanates BL1 to BL6 had a blocking rate of 100%, that is, they were diisocyanates in which all of the two isocyanate groups possessed by the diisocyanate were blocked with a blocking agent.
  • the dissociation temperature (dissociation start temperature) of the blocking agent in the blocked diisocyanates of BL1 to BL6 was measured.
  • weight change was measured while heating the sample at 15° C./min using “TG-DTA8122/S-SL” manufactured by RICOH Co., Ltd. to investigate the dissociation start temperature. Table 1 shows the results.
  • a first liquid containing an active hydrogen component was prepared by mixing diamine according to the formulation shown in Table 2 below. Also, according to Table 2, a blocked diisocyanate and an unblocked diisocyanate were mixed to prepare a second liquid containing an isocyanate component.
  • Table 2 shows the blocking rate, which is the molar ratio of blocked isocyanate groups to isocyanate groups in the entire isocyanate component, for the second liquid.
  • the blocking rate was calculated from the ratio of the total amount of isocyanate groups and the amount of blocked isocyanate groups obtained from the mass ratio of the blended diisocyanate.
  • the block rate of BL1 to BL6 was set to 100% as described above.
  • the molecular weight was determined from the isocyanate value of the diisocyanate, and the amount of the isocyanate group was determined using the molecular weight.
  • the viscosity of the second liquid was measured.
  • the viscosity was measured at 25° C. using a BM viscometer (manufactured by Toki Sangyo Co., Ltd.) according to JIS K7117-1:1999. Table 2 shows the results.
  • the glass transition temperature (corresponding to the glass transition temperature after primary molding) of the resin after polymerization while retaining the blocked isocyanate group was measured. .
  • the first liquid was adjusted to 25 ° C.
  • the second liquid adjusted to 25 ° C. was added thereto at the mass ratio and NCO/active hydrogen group molar ratio shown in Table 2, and stirred and mixed for 1 minute. bottom.
  • the resulting monomer mixed solution was applied in a sheet form and treated at 120° C. for 3 hours to obtain a resin sheet with a thickness of 2 mm.
  • thermoplastic resin composite was carried out.
  • fiber 10 carbon fiber (“T700SC-24000-60E” manufactured by Toray Industries, Inc.) was used.
  • the monomer mixture was supplied by the monomer supply unit 60 so that the volume content of the fibers 10 in the primary molded body 12 was 60%.
  • liquids A and B were sent from tanks 61 and 62 according to the mass ratio shown in Table 2, and stirred through a mixer 63 consisting of a static mixer to prepare a monomer mixed liquid.
  • the places where the monomer mixed liquid was dripped were divided into three places, and the flow of the monomer mixed liquid staying in the impregnation part 20 was promoted.
  • the fibers 10 supplied from the fiber supplying unit 50 were impregnated with the monomer mixed liquid in the impregnating unit 20 composed of a plurality of impregnating rollers 21 .
  • the heat forming mold 31 As the heat forming mold 31, an aluminum alloy is used, and in order to avoid a rapid hardening reaction of the monomer mixed liquid staying near the mold entrance into which the fiber 10 is sent, a water cooling pipe is provided at the mold entrance, and the temperature near the mold entrance is was kept in the range of 20-25°C. In addition, in order to prevent adhesion between the heating mold 31 and the primary molded body 12 during the curing reaction, a thin PTFE upper and lower middle is provided at the portion in contact with the primary molded body 12 inside the aluminum alloy heated molding die 31 . Set the child type.
  • a primary molding 12 having a width of 15 mm and a thickness of 0.5 mm was molded in the heating mold 31 set to a temperature lower than the dissociation temperature of the blocked diisocyanate. Specifically, the heating was controlled so that the temperature distribution from the vicinity of the entrance to the vicinity of the exit of the heating mold 31 varied continuously within the range of 20°C to 120°C.
  • the primary molded body 12 drawn out from the heating mold 31 by the drawing device 40 was further heated and cured in the heating device 32, which is a far-infrared heater.
  • the heating temperature by the heating device 32 was set to 120°C.
  • the length of the heating device 32 is variable, and the length of the heating device 32 is set to 1.0 m. Since the length of the thermoforming mold 31 was 0.5 m, the length of the thermoforming section 30 including the heating device 32 was 1.5 m.
  • the take-up speed was set to 500 mm/min so as to secure 3 minutes of polymerization time (that is, to secure 3 minutes of polymerization time from the heating mold 31 to the heating device 32).
  • the primary molded body 12 was in a glass state below the glass transition temperature at the stage when it was pulled out from the thermoforming section 30, that is, it was pseudo-cured.
  • the primary molded body 12 drawn out through the drawing device 40 was cut to a length of 30 cm. After that, in order to further complete the polymerization reaction of the primary molded body 12 , the primary molded body 12 was obtained by heating in an oven at 120° C. for 60 minutes.
  • Three sheets of the obtained primary molded body 12 were stacked and hot pressed at a pressure of 7 MPa for 60 minutes at a temperature higher than the dissociation temperature of the blocked diisocyanate to obtain a laminate as a secondary molded body.
  • the heating temperature during hot pressing was set to 220° C. in Example 6, and was set to 200° C. in other examples and comparative examples.
  • the obtained laminate was evaluated for the state of adhesion between the laminates.
  • Evaluation of the state of adhesion between laminations was carried out in accordance with JIS K7017: 1999, using a sample with a thickness of 1.5 mm, a total length of 60 mm and a width of 15 mm, and static three-point bending at a distance of 40 mm between fulcrums at 1 mm/min. A cross-section of the sample after testing was confirmed with an electron microscope. A sample with cracks between layers was evaluated as having poor interlayer adhesion and was evaluated as "X”, and a sample with no cracks was evaluated as having excellent interlayer adhesion and was evaluated as " ⁇ ". Table 2 shows the results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

The purpose of the present invention is to improve the adhesion between layers in a layered body when the layered body is molded by lamination/integration by thermal molding. A two-part reactive composition according to an embodiment is used for forming a thermoplastic matrix resin for a thermoplastic resin composite material containing fibers as a reinforcing material. The two-part reactive composition comprises an active hydrogen component comprising an aromatic diamine having an alkylthio group and an isocyanate component comprising at least one diisocyanate selected from the group consisting of an aliphatic diisocyanate, an alicyclic diisocyanate and modified products thereof. The diisocyanate comprises a blocked diisocyanate in which at least one of isocyanate groups is blocked and a non-blocked diisocyanate in which isocyanate groups are not blocked.

Description

熱可塑性マトリックス樹脂形成用二液反応型組成物、熱可塑性樹脂複合体用マトリックス樹脂、並びに熱可塑性樹脂複合体およびその製造方法Two-component reaction type composition for forming thermoplastic matrix resin, matrix resin for thermoplastic resin composite, thermoplastic resin composite and method for producing the same
 本発明は、強化材として繊維を含む熱可塑性樹脂複合体の熱可塑性マトリックス樹脂を形成するために用いられる二液反応型組成物、該熱可塑性樹脂複合体用のマトリックス樹脂、および、これらを用いた熱可塑性樹脂複合体、並びに、熱可塑性樹脂複合体の製造方法に関する。 The present invention relates to a two-component reaction type composition used for forming a thermoplastic matrix resin of a thermoplastic resin composite containing fibers as a reinforcing material, a matrix resin for the thermoplastic resin composite, and The present invention relates to a thermoplastic resin composite and a method for producing a thermoplastic resin composite.
 強化材として繊維を含む樹脂複合体である繊維強化複合材料(FRP)は、軽量で優れた性能を有するため、電気・電子部品、車両、航空などの幅広い用途で使用されている。繊維強化複合材料には、マトリックス樹脂として、エポキシ樹脂等の熱硬化性樹脂を使用することが多い。しかしながら、熱硬化性樹脂は、重合反応(硬化)後は三次元架橋構造をとり、繊維と含浸・硬化した後は再溶融ができないため、再加工や再利用ができないといった欠点がある。 Fiber reinforced composite materials (FRP), which are resin composites containing fibers as a reinforcing material, are lightweight and have excellent performance, so they are used in a wide range of applications such as electrical and electronic parts, vehicles, and aviation. Thermosetting resins such as epoxy resins are often used as matrix resins for fiber-reinforced composite materials. However, thermosetting resins have a three-dimensional crosslinked structure after a polymerization reaction (curing), and cannot be remelted after being impregnated with fibers and cured, so they cannot be reprocessed or reused.
 一方、熱可塑性樹脂をマトリックスとする繊維強化複合材料である熱可塑性樹脂複合体は、母材となる熱可塑性樹脂が加熱することで再溶融して軟化するため、再加工や再利用が可能である。ところが、一般に熱可塑性樹脂は、成形時の原料形態がペレットやフィルムなどの高分子の状態で供給されるため、繊維に含浸させる溶融時の粘度が高い。そのため、良好な含浸状態の熱可塑性樹脂複合体を生産することは容易ではない。 On the other hand, thermoplastic resin composites, which are fiber-reinforced composite materials with a thermoplastic resin matrix, can be reprocessed and reused because the thermoplastic resin, which is the base material, remelts and softens when heated. be. However, since thermoplastic resins are generally supplied in the form of macromolecules such as pellets and films at the time of molding, their viscosities are high when they are melted to impregnate fibers. Therefore, it is not easy to produce a thermoplastic resin composite with good impregnation.
 熱可塑性樹脂複合体の成形時における樹脂粘度を低減するためには、現場重合型の熱可塑性樹脂を用いて、モノマーの状態で繊維に含浸させることが有利である。すなわち、低粘度な液状モノマーを繊維に含浸させ、含浸後に重合させて熱可塑性樹脂を形成し、熱可塑性樹脂複合体を製造することが望ましい。 In order to reduce the resin viscosity during molding of the thermoplastic resin composite, it is advantageous to use an in-situ polymerization type thermoplastic resin and impregnate the fiber in the state of a monomer. That is, it is desirable to produce a thermoplastic resin composite by impregnating fibers with a low-viscosity liquid monomer and polymerizing the fibers after the impregnation to form a thermoplastic resin.
 例えば、特許文献1には、重合性ラクタム混合液に繊維を含浸させ、含浸させた繊維を加熱された金型に通し、ラクタムモノマーの重合とそれにより得られる熱可塑性ポリアミド樹脂の成形とを同時に行うことが開示されている。特許文献1には、また、上記成形により一次成形体としての板材を得て、該板材を積層し、加熱圧縮成形して二次成形体としての積層体を得ることが開示されている。 For example, in Patent Document 1, fibers are impregnated with a polymerizable lactam mixed solution, the impregnated fibers are passed through a heated mold, and the polymerization of the lactam monomer and the molding of the thermoplastic polyamide resin obtained thereby are performed simultaneously. disclosed to do. Patent Literature 1 also discloses obtaining a plate material as a primary molded body by the above molding, stacking the plate materials, and performing heat compression molding to obtain a laminate as a secondary molded body.
 特許文献2には、熱可塑性樹脂複合体のマトリックス樹脂を形成するために用いられる組成物として、活性水素成分とイソシアネート成分からなる二液反応型組成物が開示され、該二液反応型組成物を混ぜ合わせて繊維に含浸させた後、該二液反応型組成物を加熱により硬化させることが開示されている。該二液反応型組成物において、活性水素成分は、アルキルチオ基を有する芳香族ジアミンを含み、イソシアネート成分は、脂肪族ジイソシアネート、脂環式ジイソシアネートおよびこれらの変性体からなる群から選択された少なくとも一種のジイソシアネートを含むものとされている。 Patent Document 2 discloses a two-component reaction type composition comprising an active hydrogen component and an isocyanate component as a composition used for forming a matrix resin of a thermoplastic resin composite. are mixed and impregnated into the fibers, and then the two-part reactive composition is cured by heating. In the two-part reaction type composition, the active hydrogen component contains an aromatic diamine having an alkylthio group, and the isocyanate component is at least one selected from the group consisting of aliphatic diisocyanates, alicyclic diisocyanates and modified products thereof. of diisocyanates.
特開2017-007266号公報JP 2017-007266 A 特許第6580774号公報Japanese Patent No. 6580774
 上記のように、熱可塑性樹脂複合体は、加熱により熱可塑性樹脂の溶融が可能である。そのため、熱可塑性樹脂を繊維と複合化して一次成形体を得た後、該一次成形体を熱プレスにより積層一体化して二次成形体としての積層体を得ることができる。しかしながら、熱可塑性樹脂をマトリックスとした一次成形体を用いた場合であっても、積層体の層間での熱融着が不十分となって層間剥離が生じる場合があり、積層体の層間での接着を高めることが求められる。 As described above, the thermoplastic resin composite can melt the thermoplastic resin by heating. Therefore, after the thermoplastic resin is combined with fibers to obtain a primary molded body, the primary molded body can be laminated and integrated by hot pressing to obtain a laminate as a secondary molded body. However, even when a primary molded body having a thermoplastic resin as a matrix is used, the heat-sealing between the layers of the laminate may be insufficient and delamination may occur. Increased adhesion is required.
 本発明の実施形態は、以上の点に鑑み、例えば熱成形により積層一体化して積層体を成形した場合に、当該積層体の層間での接着を向上することができる、熱可塑性マトリックス樹脂形成用二液反応型組成物、熱可塑性樹脂複合体用マトリックス樹脂、および熱可塑性樹脂複合体を提供することを目的とする。 In view of the above points, an embodiment of the present invention provides a thermoplastic matrix resin-forming resin that can improve the adhesion between layers of the laminate when the laminate is formed by lamination and integration by thermoforming, for example. An object of the present invention is to provide a two-part reaction type composition, a matrix resin for a thermoplastic resin composite, and a thermoplastic resin composite.
 本発明は以下に示される実施形態を含む。
[1] 強化材として繊維を含む熱可塑性樹脂複合体の熱可塑性マトリックス樹脂を形成するために用いられる二液反応型組成物であって、アルキルチオ基を有する芳香族ジアミンを含む活性水素成分と、脂肪族ジイソシアネート、脂環式ジイソシアネートおよびこれらの変性体からなる群から選択された少なくとも一種のジイソシアネートを含むイソシアネート成分と、を有し、前記ジイソシアネートが、少なくとも一方のイソシアネート基がブロックされたブロック化ジイソシアネートと、イソシアネート基がブロックされていない非ブロック化ジイソシアネートと、を含む、熱可塑性マトリックス樹脂形成用二液反応型組成物。
[2] 前記イソシアネート成分全体のイソシアネート基に対するブロックされたイソシアネート基のモル比率であるブロック率が1~56%である、[1]に記載の熱可塑性マトリックス樹脂形成用二液反応型組成物。
The present invention includes embodiments shown below.
[1] A two-part reaction type composition used for forming a thermoplastic matrix resin of a thermoplastic resin composite containing fibers as a reinforcing material, the composition comprising an active hydrogen component containing an aromatic diamine having an alkylthio group; and an isocyanate component containing at least one diisocyanate selected from the group consisting of aliphatic diisocyanates, alicyclic diisocyanates and modified products thereof, wherein the diisocyanate is a blocked diisocyanate in which at least one isocyanate group is blocked and an unblocked diisocyanate in which the isocyanate groups are unblocked.
[2] The two-component reactive composition for forming a thermoplastic matrix resin according to [1], wherein the blocking rate, which is the molar ratio of blocked isocyanate groups to isocyanate groups in the entire isocyanate component, is 1 to 56%.
[3] 強化材として繊維を含む熱可塑性樹脂複合体のためのマトリックス樹脂であって、アルキルチオ基を有する芳香族ジアミンを含む活性水素成分と、脂肪族ジイソシアネート、脂環式ジイソシアネートおよびこれらの変性体からなる群から選択された少なくとも一種のジイソシアネートを含むイソシアネート成分と、の反応物を含む熱可塑性樹脂であり、前記ジイソシアネートが、少なくとも一方のイソシアネート基がブロックされたブロック化ジイソシアネートと、イソシアネート基がブロックされていない非ブロック化ジイソシアネートとを含む、熱可塑性樹脂複合体用マトリックス樹脂。 [3] A matrix resin for a thermoplastic resin composite containing fibers as a reinforcing material, comprising an active hydrogen component containing an aromatic diamine having an alkylthio group, an aliphatic diisocyanate, an alicyclic diisocyanate, and modified products thereof A thermoplastic resin containing a reactant of an isocyanate component containing at least one diisocyanate selected from the group consisting of a blocked diisocyanate in which at least one isocyanate group is blocked, and A matrix resin for a thermoplastic resin composite, comprising a non-blocked diisocyanate.
[4] [1]または[2]に記載の二液反応型組成物が反応して得られる熱可塑性マトリックス樹脂または[3]に記載のマトリックス樹脂と、強化材としての繊維と、を含む、熱可塑性樹脂複合体。
[5] [1]または[2]に記載の二液反応型組成物が反応して得られる熱可塑性マトリックス樹脂または請求項3に記載のマトリックス樹脂と、強化材としての繊維と、を含む複数の一次成形体を重ね、熱成形により積層一体化して得られた積層体である、熱可塑性樹脂複合体。
[4] A thermoplastic matrix resin obtained by reacting the two-component reactive composition according to [1] or [2] or the matrix resin according to [3], and a fiber as a reinforcing material, Thermoplastic resin composite.
[5] A thermoplastic matrix resin obtained by reacting the two-component reactive composition according to [1] or [2] or the matrix resin according to claim 3, and a plurality of fibers as reinforcing materials A thermoplastic resin composite, which is a laminate obtained by stacking the primary molded bodies of (1) and laminating and integrating them by thermoforming.
[6] 強化材として繊維を含む熱可塑性樹脂複合体の製造方法であって、
 活性水素成分とイソシアネート成分とを含み、前記イソシアネート成分が、少なくとも一方のイソシアネート基がブロックされたブロック化ジイソシアネートと、イソシアネート基がブロックされていない非ブロック化ジイソシアネートと、を含む、熱可塑性マトリックス樹脂形成用組成物を繊維に含浸させること、および、
 前記ブロック化ジイソシアネートの解離温度よりも低い温度で前記繊維を加熱することにより、ブロックされたイソシアネート基を保持したまま、前記熱可塑性マトリックス樹脂形成用組成物を重合し、重合により得られる熱可塑性マトリックス樹脂を含む一次成形体を得ること、を含む、熱可塑性樹脂複合体の製造方法。
[7] 前記熱可塑性マトリックス樹脂形成用組成物は、イソシアネート成分全体のイソシアネート基に対するブロックされたイソシアネート基のモル比率であるブロック率が1~56%である、[6]に記載の熱可塑性樹脂複合体の製造方法。
[8] 前記熱可塑性マトリックス樹脂形成用組成物の前記活性水素成分はアルキルチオ基を有する芳香族ジアミンを含み、前記イソシアネート成分は脂肪族ジイソシアネート、脂環式ジイソシアネートおよびこれらの変性体からなる群から選択された少なくとも一種のジイソシアネートを含み、前記ジイソシアネートが前記ブロック化ジイソシアネートおよび前記非ブロック化ジイソシアネートを含む、[6]または[7]に記載の熱可塑性樹脂複合体の製造方法。
[9] 複数の前記一次成形体を重ね、前記ブロック化ジイソシアネートのブロック剤が解離する条件で熱成形により積層一体化することをさらに含む、[6]~[8]のいずれか1項に記載の熱可塑性樹脂複合体の製造方法。
[10] 前記繊維を加熱する温度が、前記一次成形体での前記熱可塑性マトリックス樹脂のガラス転移温度よりも低い、[6]~[9]のいずれか1項に記載の熱可塑性樹脂複合体の製造方法。
[6] A method for producing a thermoplastic resin composite containing fibers as a reinforcing material, comprising:
A thermoplastic matrix resin formulation comprising an active hydrogen component and an isocyanate component, wherein the isocyanate component comprises a blocked diisocyanate in which at least one isocyanate group is blocked and an unblocked diisocyanate in which the isocyanate group is unblocked. impregnating the fibers with a composition for
By heating the fibers at a temperature lower than the dissociation temperature of the blocked diisocyanate, the thermoplastic matrix resin-forming composition is polymerized while retaining the blocked isocyanate groups, thereby obtaining a thermoplastic matrix. A method for producing a thermoplastic resin composite, comprising obtaining a primary molded article containing a resin.
[7] The thermoplastic resin according to [6], wherein the composition for forming a thermoplastic matrix resin has a blocking rate, which is a molar ratio of blocked isocyanate groups to isocyanate groups in the entire isocyanate component, of 1 to 56%. A method for manufacturing a composite.
[8] The active hydrogen component of the thermoplastic matrix resin-forming composition contains an aromatic diamine having an alkylthio group, and the isocyanate component is selected from the group consisting of aliphatic diisocyanates, alicyclic diisocyanates and modified products thereof. The method for producing a thermoplastic resin composite according to [6] or [7], wherein the diisocyanate contains at least one kind of diisocyanate that has been fused with the above-mentioned diisocyanate, and the diisocyanate contains the blocked diisocyanate and the unblocked diisocyanate.
[9] The method according to any one of [6] to [8], further comprising stacking a plurality of the primary molded bodies and laminating and integrating them by thermoforming under conditions in which the blocking agent of the blocked diisocyanate dissociates. A method for producing a thermoplastic resin composite.
[10] The thermoplastic resin composite according to any one of [6] to [9], wherein the temperature for heating the fibers is lower than the glass transition temperature of the thermoplastic matrix resin in the primary molded body. manufacturing method.
 本発明の実施形態によれば、活性水素成分と反応させるイソシアネート成分としてブロック化ジイソシアネートと非ブロック化ジイソシアネートを併用したことにより、次の効果が奏される。上記活性水素成分とイソシアネート成分を混合し、ブロック化ジイソシアネートの解離温度よりも低い温度で加熱することにより、ブロックされたイソシアネート基を保持したまま、非ブロック化ジイソシアネートと活性水素成分を反応させることができ、重合により熱可塑性樹脂が得られる。そのため、熱可塑性マトリックス樹脂と繊維からなる熱可塑性樹脂複合体の一次成形体を得ることができる。このようにして得られた一次成形体を用いて積層一体化(二次成形)する際に、ブロック化ジイソシアネートのブロック剤が解離する条件で熱成形することにより、解離したイソシアネート基が反応して積層体の層間を結合することができる。そのため、二次成形体である熱可塑性樹脂複合体の積層体において層間での接着を向上することができる。 According to the embodiment of the present invention, the following effects are achieved by using both a blocked diisocyanate and an unblocked diisocyanate as the isocyanate component to be reacted with the active hydrogen component. By mixing the active hydrogen component and the isocyanate component and heating at a temperature lower than the dissociation temperature of the blocked diisocyanate, the unblocked diisocyanate and the active hydrogen component can be reacted while retaining the blocked isocyanate groups. It can be polymerized to obtain a thermoplastic resin. Therefore, it is possible to obtain a primary molding of a thermoplastic resin composite comprising a thermoplastic matrix resin and fibers. When the primary molded body thus obtained is laminated and integrated (secondary molding), thermoforming is performed under conditions in which the blocking agent of the blocked diisocyanate is dissociated, so that the dissociated isocyanate groups react with each other. Bonds can be made between the layers of the laminate. Therefore, it is possible to improve the adhesion between layers in the thermoplastic resin composite laminate, which is a secondary molded product.
一実施形態における熱可塑性樹脂複合体の製造装置の模式図Schematic diagram of a manufacturing apparatus for a thermoplastic resin composite in one embodiment 他の実施形態における熱可塑性樹脂複合体の製造装置の模式図Schematic diagram of a production apparatus for a thermoplastic resin composite according to another embodiment
 [熱可塑性マトリックス樹脂形成用二液反応型組成物]
 一実施形態に係る熱可塑性マトリックス樹脂形成用二液反応型組成物(以下単に二液反応型組成物ともいう。)は、アルキルチオ基を有する芳香族ジアミン(A)を含む活性水素成分と、脂肪族ジイソシアネート、脂環式ジイソシアネートおよびこれらの変性体からなる群から選択された少なくとも一種のジイソシアネート(B)を含むイソシアネート成分とを有する。これにより、成形時の樹脂粘度を低く抑えることができ、かつ、ガラス転移温度の高い熱可塑性樹脂を得ることができる。
[Two-liquid reactive composition for forming thermoplastic matrix resin]
A two-component reaction type composition for forming a thermoplastic matrix resin according to one embodiment (hereinafter also simply referred to as a two-component reaction type composition) comprises an active hydrogen component containing an aromatic diamine (A) having an alkylthio group; and an isocyanate component containing at least one diisocyanate (B) selected from the group consisting of group diisocyanates, alicyclic diisocyanates and modified products thereof. As a result, the viscosity of the resin during molding can be kept low, and a thermoplastic resin with a high glass transition temperature can be obtained.
 (活性水素成分)
 活性水素成分は、アルキルチオ基を有する芳香族ジアミン(A)を含む。アルキルチオ基を有する芳香族ジアミン(A)としては、芳香環に直接結合した2つのアミノ基とともに、芳香環に直接結合したアルキルチオ基を有する化合物が好ましい。アルキルチオ基は-SC2n+1(ここで、nは1以上の整数であり、好ましくは1~5の整数)で表される基である。芳香族ジアミン(A)は、一分子中にアルキルチオ基を1つ有してもよく、2つまたはそれ以上有してもよい。好ましくは、芳香環に直接結合した2つのアルキルチオ基を有することである。
(active hydrogen component)
The active hydrogen component contains an aromatic diamine (A) having an alkylthio group. As the aromatic diamine (A) having an alkylthio group, a compound having two amino groups directly bonded to the aromatic ring and an alkylthio group directly bonded to the aromatic ring is preferred. The alkylthio group is a group represented by -SC n H 2n+1 (where n is an integer of 1 or more, preferably an integer of 1 to 5). The aromatic diamine (A) may have one, two or more alkylthio groups in one molecule. Preference is given to having two alkylthio groups directly attached to the aromatic ring.
 芳香族ジアミン(A)としては、例えば、ジメチルチオトルエンジアミン、ジエチルチオトルエンジアミン、ジプロピルチオトルエンジアミンなどのジアルキルチオトルエンジアミンを用いることが好ましい。 As the aromatic diamine (A), it is preferable to use, for example, dialkylthiotoluene diamines such as dimethylthiotoluene diamine, diethylthiotoluene diamine, and dipropylthiotoluene diamine.
 活性水素成分としては、上記芳香族ジアミン(A)とともに、他の芳香族ジアミンなどのジアミンを併用してもよい。他のジアミンとしては、例えば、4,4’-メチレンジアニリン、4,4’-メチレンビス(2-メチルアニリン)、4,4’-メチレンビス(2-エチルアニリン)、4,4’-メチレンビス(2-イソプロピルアニリン)、4,4’-メチレンビス(2,6-ジメチルアニリン)、4,4’-メチレンビス(2,6-ジエチルアニリン)、4,4’-メチレンビス(N-メチルアニリン)、4,4’-メチレンビス(N-エチルアニリン)、4,4’-メチレンビス(N-sec-ブチルアニリン)、ジエチルトルエンジアミンなどが挙げられる。これらは、いずれか1種用いても2種以上組み合わせて用いてもよい。 As the active hydrogen component, diamines such as other aromatic diamines may be used together with the aromatic diamine (A). Other diamines include, for example, 4,4'-methylenedianiline, 4,4'-methylenebis(2-methylaniline), 4,4'-methylenebis(2-ethylaniline), 4,4'-methylenebis ( 2-isopropylaniline), 4,4′-methylenebis(2,6-dimethylaniline), 4,4′-methylenebis(2,6-diethylaniline), 4,4′-methylenebis(N-methylaniline), 4 ,4′-methylenebis(N-ethylaniline), 4,4′-methylenebis(N-sec-butylaniline), diethyltoluenediamine and the like. These may be used either singly or in combination of two or more.
 活性水素成分として用いるジアミンは、芳香族ジアミン(A)を主成分とすることが好ましく、ジアミンの50質量%以上が芳香族ジアミン(A)であることが好ましく、より好ましくはジアミンの70質量%以上が芳香族ジアミン(A)であり、さらに好ましくはジアミンの90質量%以上が芳香族ジアミン(A)である。また、活性水素成分の15質量%以上が芳香族ジアミン(A)であることが好ましく、より好ましくは活性水素成分の40質量%以上が芳香族ジアミン(A)であり、さらに好ましくは活性水素成分の70質量%以上が芳香族ジアミン(A)であり、さらに好ましくは活性水素成分の90質量%以上が芳香族ジアミン(A)である。 The diamine used as the active hydrogen component preferably contains the aromatic diamine (A) as a main component, preferably 50% by mass or more of the diamine is the aromatic diamine (A), more preferably 70% by mass of the diamine. The above is the aromatic diamine (A), and more preferably 90% by mass or more of the diamine is the aromatic diamine (A). In addition, 15% by mass or more of the active hydrogen component is preferably the aromatic diamine (A), more preferably 40% by mass or more of the active hydrogen component is the aromatic diamine (A), and still more preferably the active hydrogen component. 70% by mass or more of the aromatic diamine (A), more preferably 90% by mass or more of the active hydrogen component is the aromatic diamine (A).
 活性水素成分としては、ジアミンとともにジオールを含んでもよい。ジオールとしては、例えば、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオールおよび1,6-ヘキサンジオールなどのアルキレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリプロピレングリールなどのポリアルキレングリコール、シクロヘキサンジメタノール、ビスフェノールA、水添ビスフェノールA、ビスフェノールS、ビスフェノールFなどが挙げられる。これらは、いずれか1種用いても2種以上組み合わせて用いてもよい。 The active hydrogen component may contain a diol together with a diamine. Examples of diols include alkylene glycols such as ethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol and 1,6-hexanediol, diethylene glycol, Polyalkylene glycols such as triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol, cyclohexanedimethanol, bisphenol A, hydrogenated bisphenol A, bisphenol S, bisphenol F and the like. These may be used either singly or in combination of two or more.
 本実施形態において、活性水素成分は、熱可塑性樹脂を形成するため、2官能であること、即ちジアミンやジオールが用いられるが、熱可塑性樹脂が得られる範囲内において、3官能以上のポリアミンやポリオールを含有してもよい。 In the present embodiment, since the active hydrogen component forms a thermoplastic resin, it is bifunctional, that is, diamines and diols are used. may contain.
 (イソシアネート成分)
 イソシアネート成分は、脂肪族ジイソシアネート、脂環式ジイソシアネートおよびこれらの変性体からなる群から選択された少なくとも一種のジイソシアネート(B)を含む。
(isocyanate component)
The isocyanate component contains at least one diisocyanate (B) selected from the group consisting of aliphatic diisocyanates, alicyclic diisocyanates and modified products thereof.
 脂肪族ジイソシアネート(即ち、鎖式脂肪族ジイソシアネート)としては、例えば、テトラメチレンジイソシアネート、ドデカメチレンジイソシアネート、ヘキサメチレンジイソシアネート(HDI)、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、2-メチルペンタン-1,5-ジイソシアネート、3-メチルペンタン-1,5-ジイソシアネート等が挙げられる。脂肪族ジイソシアネートの変性体としては、脂肪族ジイソシアネートとジオールとを反応させてなるイソシアネート基末端ウレタンプレポリマー体、2官能のアダクト型変性体、2官能のアロファネート型変性体などが挙げられる。これらの中でも、脂肪族ジイソシアネートとしては、成形時の粘度がより低く、得られる樹脂の引張破壊ひずみがより優れる点から、ヘキサメチレンジイソシアネート(HDI)およびその変性体からなる群から選択される少なくとも一種を用いることが好ましい。 Aliphatic diisocyanates (that is, chain aliphatic diisocyanates) include, for example, tetramethylene diisocyanate, dodecamethylene diisocyanate, hexamethylene diisocyanate (HDI), 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethyl hexamethylene diisocyanate, lysine diisocyanate, 2-methylpentane-1,5-diisocyanate, 3-methylpentane-1,5-diisocyanate and the like. Examples of the modified aliphatic diisocyanate include an isocyanate group-terminated urethane prepolymer obtained by reacting an aliphatic diisocyanate with a diol, a bifunctional adduct modified, and a bifunctional allophanate modified. Among these, as the aliphatic diisocyanate, at least one selected from the group consisting of hexamethylene diisocyanate (HDI) and its modified products because the viscosity during molding is lower and the tensile breaking strain of the resulting resin is better. is preferably used.
 脂環式ジイソシアネートとしては、例えば、イソホロンジイソシアネート(IPDI)、水添キシリレンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート(H12MDI)、1,4-シクロヘキサンジイソシアネート、メチルシクロヘキシレンジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン等が挙げられる。脂環式ジイソシアネートの変性体としては、脂環式ジイソシアネートとジオールとを反応させてなるイソシアネート基末端ウレタンプレポリマー体、2官能のアダクト型変性体、2官能のアロファネート型変性体などが挙げられる。これらの中でも、脂環式ジイソシアネートとしては、イソホロンジイソシアネート(IPDI)、4,4’-ジシクロヘキシルメタンジイソシアネート(H12MDI)および、それらの変性体からなる群から選択される少なくとも一種を用いることが好ましい。 Examples of alicyclic diisocyanates include isophorone diisocyanate (IPDI), hydrogenated xylylene diisocyanate, 4,4′-dicyclohexylmethane diisocyanate (H12MDI), 1,4-cyclohexane diisocyanate, methylcyclohexylene diisocyanate, 1,3-bis (Isocyanatomethyl)cyclohexane and the like can be mentioned. Examples of the modified alicyclic diisocyanate include an isocyanate group-terminated urethane prepolymer obtained by reacting an alicyclic diisocyanate with a diol, a bifunctional adduct modified, and a bifunctional allophanate modified. Among these, as the alicyclic diisocyanate, it is preferable to use at least one selected from the group consisting of isophorone diisocyanate (IPDI), 4,4'-dicyclohexylmethane diisocyanate (H12MDI), and modified products thereof.
 本実施形態では、ジイソシアネート(B)として、少なくとも一方のイソシアネート基がブロックされたブロック化ジイソシアネート(B1)と、イソシアネート基がブロックされていない非ブロック化ジイソシアネート(B2)と、が併用される。 In this embodiment, as the diisocyanate (B), a blocked diisocyanate (B1) in which at least one isocyanate group is blocked and an unblocked diisocyanate (B2) in which the isocyanate group is not blocked are used in combination.
 ブロック化ジイソシアネート(B1)とは、ジイソシアネート(B)のイソシアネート基にブロック剤を反応させることで得られる化合物であり、ジイソシアネートが持つ2つのイソシアネート基のうちの一方または双方がブロック剤によりブロックされている。ブロック化ジイソシアネート(B1)は、一方のイソシアネート基がブロックされたジイソシアネート単独でもよく、両方のイソシアネート基がブロックされたジイソシアネート単独でもよく、両者の混合物でもよい。ブロックされたイソシアネート基は、解離温度以上に加熱することにより、ブロック剤が解離し、活性水素成分と反応する。 The blocked diisocyanate (B1) is a compound obtained by reacting the isocyanate group of the diisocyanate (B) with a blocking agent, and one or both of the two isocyanate groups of the diisocyanate are blocked by the blocking agent. there is The blocked diisocyanate (B1) may be a single diisocyanate in which one isocyanate group is blocked, a diisocyanate in which both isocyanate groups are blocked, or a mixture thereof. By heating the blocked isocyanate group to a dissociation temperature or higher, the blocking agent dissociates and reacts with the active hydrogen component.
 ブロック剤としては、例えば、MEKオキシム(メチルエチルケトンオキシム)、シクロヘキサノンオキシムなどのオキシム、カプロラクタム、ブチロラクタムなどのラクタム、メタノール、エタノール、ベンジルアルコールなどのアルコール、フェノール、パラ-t-ブチルフェノール、クレゾールなどのフェノール類、ジメチルアミン、ジイソピルアミン、ジシクロヘキシルアミン、アニリンなどのアミン、アンモニアなどが挙げられる。これらは、いずれか1種用いても2種以上組み合わせて用いてもよい。 Examples of blocking agents include oximes such as MEK oxime (methyl ethyl ketone oxime) and cyclohexanone oxime, lactams such as caprolactam and butyrolactam, alcohols such as methanol, ethanol, and benzyl alcohol, and phenols such as phenol, para-t-butylphenol, and cresol. , dimethylamine, diisopropylamine, dicyclohexylamine, amines such as aniline, and ammonia. These may be used either singly or in combination of two or more.
 ブロック化ジイソシアネート(B1)は、上記ジイソシアネート(B)をブロック剤でブロックしたものであるため、ブロック化脂肪族ジイソシアネートでもよく、ブロック化脂環式ジイソシアネートでもよく、ブロック化変性脂肪族ジイソシアネートでもよく、ブロック化変性脂環式ジイソシアネートでもよく、これらの2種以上の組合せでもよい。 Since the blocked diisocyanate (B1) is obtained by blocking the diisocyanate (B) with a blocking agent, it may be a blocked aliphatic diisocyanate, a blocked alicyclic diisocyanate, or a blocked modified aliphatic diisocyanate. It may be a blocked modified alicyclic diisocyanate, or a combination of two or more thereof.
 非ブロック化ジイソシアネート(B2)とは、ジイソシアネート(B)が持つ2つのイソシアネート基の双方がブロック剤でブロックされていないジイソシアネートである。そのため、非ブロック化ジイソシアネート(B2)は、非ブロック化脂肪族ジイソシアネートでもよく、非ブロック化脂環式ジイソシアネートでもよく、非ブロック化変性脂肪族ジイソシアネートでもよく、非ブロック化変性脂環式ジイソシアネートでもよく、これらの2種以上の組合せでもよい。 The unblocked diisocyanate (B2) is a diisocyanate in which both of the two isocyanate groups of the diisocyanate (B) are not blocked with a blocking agent. Therefore, the unblocked diisocyanate (B2) may be an unblocked aliphatic diisocyanate, an unblocked alicyclic diisocyanate, an unblocked modified aliphatic diisocyanate, or an unblocked modified alicyclic diisocyanate. , a combination of two or more thereof.
 非ブロック化ジイソシアネート(B2)としては、上記で列挙された脂肪族ジイソシアネートおよびその変性体、並びに脂環式ジイソシアネートおよびその変性体が挙げられ、それら一種以上をそのまま用いることができる。 Examples of the unblocked diisocyanate (B2) include the above-listed aliphatic diisocyanates and modified products thereof, and alicyclic diisocyanates and modified products thereof, and one or more of them can be used as they are.
 ブロック化ジイソシアネート(B1)と非ブロック化ジイソシアネート(B2)は、ブロックの有無を除いて、同種のジイソシアネートを用いてもよく、異種のジイソシアネートを用いてもよい。すなわち、例えば、ブロック化脂肪族ジイソシアネートと非ブロック化脂肪族ジイソシアネートを併用してもよく、ブロック化変性脂肪族ジイソシアネートと非ブロック化変性脂肪族ジイソシアネートを併用してもよく、ブロック化脂環式ジイソシアネートと非ブロック化脂環式ジイソシアネートを併用してもよい。また、ブロック化脂環式ジイソシアネートと非ブロック化変性脂肪族ジイソシアネートを併用してもよい。ブロック化脂肪族ジイソシアネートと非ブロック化変性脂肪族ジイソシアネートを併用してもよい。ブロック化変性脂環式ジイソシアネートと非ブロック化脂肪族ジイソシアネートを併用してもよい。ブロック化脂肪族ジイソシアネートとブロック化脂環式ジイソシアネートと非ブロック化脂環式ジイソシアネートを併用してもよい。 The blocked diisocyanate (B1) and the unblocked diisocyanate (B2) may be the same diisocyanate or different diisocyanates except for the presence or absence of blocking. That is, for example, a blocked aliphatic diisocyanate and an unblocked aliphatic diisocyanate may be used in combination, a blocked modified aliphatic diisocyanate and an unblocked modified aliphatic diisocyanate may be used in combination, and a blocked alicyclic diisocyanate and an unblocked alicyclic diisocyanate may be used in combination. Also, a blocked alicyclic diisocyanate and a non-blocked modified aliphatic diisocyanate may be used in combination. A blocked aliphatic diisocyanate and an unblocked modified aliphatic diisocyanate may be used in combination. A blocked modified alicyclic diisocyanate and an unblocked aliphatic diisocyanate may be used in combination. A blocked aliphatic diisocyanate, a blocked alicyclic diisocyanate and a non-blocked alicyclic diisocyanate may be used in combination.
 ブロック化ジイソシアネート(B1)と非ブロック化ジイソシアネート(B2)との配合比は特に限定されないが、イソシアネート成分全体(好ましくはジイソシアネート(B)全体)のイソシアネート基に対するブロックされたイソシアネート基のモル比率であるブロック率が1~56%であることが好ましい。 Although the blending ratio of the blocked diisocyanate (B1) and the unblocked diisocyanate (B2) is not particularly limited, it is the molar ratio of the blocked isocyanate groups to the isocyanate groups of the entire isocyanate component (preferably the entire diisocyanate (B)). It is preferable that the block rate is 1 to 56%.
 かかるイソシアネート成分のブロック率が1%以上であることにより、積層体の層間での接着を向上することができる。該ブロック率が56%以下であることにより、イソシアネート成分を含む第2液の粘度を低減することができ、活性水素成分を含む第1液との混合性を向上することができる。また、第2液の粘度を低減することにより、配管内を流れる際の抵抗を低減して流速を高めることができる。また、第1液と第2液を混合した後の混合液の粘度を低減して、繊維への含浸性を向上することができる。さらに、ブロック剤は解離する際に気化するが、該ブロック率が56%以下であると、気化に起因する樹脂中のボイドや、樹脂量が減少することによる薄肉化を低減することができる。 By setting the blocking ratio of the isocyanate component to 1% or more, the adhesion between the layers of the laminate can be improved. When the block ratio is 56% or less, the viscosity of the second liquid containing the isocyanate component can be reduced, and the miscibility with the first liquid containing the active hydrogen component can be improved. In addition, by reducing the viscosity of the second liquid, it is possible to reduce the resistance when it flows through the piping and increase the flow velocity. In addition, the viscosity of the liquid mixture obtained by mixing the first liquid and the second liquid can be reduced to improve the impregnation of the fibers. Furthermore, the blocking agent evaporates when it dissociates, and when the block ratio is 56% or less, voids in the resin caused by vaporization and thinning due to a decrease in the amount of resin can be reduced.
 イソシアネート成分のブロック率は、より好ましくは5%以上であり、さらに好ましくは10%以上であり、さらに好ましくは15%以上である。また、該ブロック率は、より好ましくは55%以下であり、さらに好ましくは45%以下であり、さらに好ましくは40%以下である。 The blocking rate of the isocyanate component is more preferably 5% or more, still more preferably 10% or more, still more preferably 15% or more. Also, the block rate is more preferably 55% or less, still more preferably 45% or less, and even more preferably 40% or less.
 イソシアネート成分は、実質的にジイソシアネート(B)のみからなることが好ましく、イソシアネート成分の80質量%以上がジイソシアネート(B)であることが好ましく、より好ましくは90質量%以上であり、さらに好ましくは95質量%以上であり、特に好ましくは98質量%以上である。なお、活性水素成分と反応させるイソシアネートとしては、熱可塑性樹脂を形成するため、2官能のイソシアネート、即ちジイソシアネートが用いられる。 The isocyanate component preferably consists essentially of the diisocyanate (B), preferably 80% by mass or more of the isocyanate component is the diisocyanate (B), more preferably 90% by mass or more, and still more preferably 95% by mass. It is at least 98% by mass, particularly preferably at least 98% by mass. As the isocyanate to be reacted with the active hydrogen component, a bifunctional isocyanate, that is, a diisocyanate is used in order to form a thermoplastic resin.
 本実施形態に係る二液反応型組成物は、上記活性水素成分と上記イソシアネート成分とを含むものであり、これら活性水素成分とイソシアネート成分との反応により熱可塑性樹脂が生成されるものである。すなわち、該二液反応型組成物は、反応生成物が熱可塑性樹脂になるという性質を持つものである。該二液反応型組成物は、活性水素成分を第1液とし、イソシアネート成分を第2液として、これら第1液と第2液を混ぜ合わせることにより両成分を反応(即ち重合)させて硬化(即ち固化)させることができる、二液硬化性の樹脂組成物である。なお、該二液反応型組成物は、第1液と第2液との二液を有するものであるが、少なくとも二液あれば、三液以上有してもよい。 The two-component reactive composition according to the present embodiment contains the active hydrogen component and the isocyanate component, and the active hydrogen component and the isocyanate component react to form a thermoplastic resin. That is, the two-liquid reaction type composition has the property that the reaction product becomes a thermoplastic resin. The two-component reaction type composition uses an active hydrogen component as the first component and an isocyanate component as the second component. It is a two-component curable resin composition that can be (that is, solidified). The two-liquid reaction type composition has two liquids, the first liquid and the second liquid, but may have three liquids or more as long as there are at least two liquids.
 該二液反応型組成物には、活性水素成分とイソシアネート成分との反応を促進するための触媒が含まれてもよい。触媒としては、金属触媒やアミン系触媒を使用することができる。金属触媒としては、ジブチルチンジラウレート、ジオクチルチンジラウレート、ジブチルチンジオクテートなどの錫触媒、オクチル酸鉛、オクテン酸鉛、ナフテン酸鉛などの鉛触媒、オクチル酸ビスマス、ネオデカン酸ビスマスなどのビスマス触媒などを挙げることができる。アミン系触媒としては、トリエチレンジアミンなどの3級アミン化合物などが挙げられる。これらの触媒は単独でまたは組み合わせて使用することができる。 The two-part reaction type composition may contain a catalyst for promoting the reaction between the active hydrogen component and the isocyanate component. A metal catalyst or an amine catalyst can be used as the catalyst. Metal catalysts include tin catalysts such as dibutyltin dilaurate, dioctyltin dilaurate, and dibutyltin dioctate; lead catalysts such as lead octylate, lead octenoate, and lead naphthenate; and bismuth catalysts, such as bismuth octylate and bismuth neodecanoate. can be mentioned. Examples of amine-based catalysts include tertiary amine compounds such as triethylenediamine. These catalysts can be used alone or in combination.
 該二液反応型組成物には、その他、必要に応じて、可塑剤、難燃剤、酸化防止剤、吸湿剤、防黴剤、シランカップリング剤、消泡剤、表面調整剤、内部離型剤等の各種の添加剤が含まれてもよい。 In addition, if necessary, the two-component reaction type composition may contain a plasticizer, a flame retardant, an antioxidant, a moisture absorbent, an anti-mold agent, a silane coupling agent, an antifoaming agent, a surface control agent, and an internal release agent. Various additives such as agents may be included.
 二液反応型組成物において、イソシアネート基(ブロック化されたものとブロック化されていないものの合計)と活性水素基(アミノ基と水酸基の合計)とのモル比(NCO/活性水素基)は、特に限定されず、1.0以上でもよく、1.1以上でもよい。また、該モル比(NCO/活性水素基)は、2.0以下でもよく、1.5以下でもよく、1.2以下でもよい。 In the two-component reactive composition, the molar ratio (NCO/active hydrogen group) of isocyanate groups (total of blocked and unblocked groups) to active hydrogen groups (total of amino groups and hydroxyl groups) is It is not particularly limited, and may be 1.0 or more, or 1.1 or more. Also, the molar ratio (NCO/active hydrogen group) may be 2.0 or less, 1.5 or less, or 1.2 or less.
 [熱可塑性樹脂複合体用マトリックス樹脂]
 一実施形態に係る熱可塑性樹脂複合体用マトリックス樹脂(以下、単にマトリックス樹脂ともいう。)は、上記活性水素成分と上記イソシアネート成分との反応物を含む熱可塑性樹脂であり、一実施形態として上記二液反応型組成物を硬化させることにより得られる。活性水素成分にジオールが含まれない場合、得られる樹脂は熱可塑性ポリウレア樹脂であり、活性水素成分にジオールが含まれる場合、得られる樹脂は熱可塑性ポリウレタン・ウレア樹脂である。ここで、熱可塑性ポリウレタン・ウレア樹脂は、主鎖にウレタン結合とウレア結合の両方を含む樹脂である。
[Matrix resin for thermoplastic resin composite]
A matrix resin for a thermoplastic resin composite according to one embodiment (hereinafter also simply referred to as a matrix resin) is a thermoplastic resin containing a reaction product of the active hydrogen component and the isocyanate component. It is obtained by curing a two-part reaction type composition. When the active hydrogen component does not contain a diol, the resulting resin is a thermoplastic polyurea resin, and when the active hydrogen component contains a diol, the resulting resin is a thermoplastic polyurethane/urea resin. Here, the thermoplastic polyurethane/urea resin is a resin containing both a urethane bond and a urea bond in its main chain.
 該マトリックス樹脂は、上記ジイソシアネート(B)に含まれるブロック化ジイソシアネート(B1)のブロックされたイソシアネート基を保持したまま含むものであってもよい。あるいはまた、ブロック化ジイソシアネート(B1)のブロック剤が解離することにより、当該イソシアネート基が、残存する活性水素成分と反応してウレア結合やウレタン結合を形成したものであってもよい。すなわち、該マトリックス樹脂は、活性水素成分と非ブロック化ジイソシアネート(B2)とが反応して得られる一次成形体の段階のものでもよく、ブロック化ジイソシアネート(B1)のブロック剤を解離させ活性水素成分と反応させて得られる二次成形体の段階のものでもよい。 The matrix resin may contain the blocked isocyanate groups of the blocked diisocyanate (B1) contained in the diisocyanate (B) while retaining the blocked isocyanate groups. Alternatively, the blocking agent of the blocked diisocyanate (B1) may be dissociated so that the isocyanate group reacts with the remaining active hydrogen component to form a urea bond or a urethane bond. That is, the matrix resin may be at the stage of a primary molded product obtained by reacting an active hydrogen component with an unblocked diisocyanate (B2), dissociating the blocking agent of the blocked diisocyanate (B1) to form an active hydrogen component. It may be a secondary molded product obtained by reacting with.
 該マトリックス樹脂のガラス転移温度(Tg)は特に限定されない。ガラス転移温度は、例えば100℃以上であることが好ましく、より好ましくは120℃以上であり、さらに好ましくは150℃以上である。ガラス転移温度の上限は特に限定されず、例えば220℃以下でもよく、200℃以下でもよい。 The glass transition temperature (Tg) of the matrix resin is not particularly limited. The glass transition temperature is, for example, preferably 100° C. or higher, more preferably 120° C. or higher, and even more preferably 150° C. or higher. The upper limit of the glass transition temperature is not particularly limited, and may be, for example, 220° C. or lower, or 200° C. or lower.
 [熱可塑性樹脂複合体]
 一実施形態に係る熱可塑性樹脂複合体は、上記二液反応型組成物の硬化物または上記マトリックス樹脂と、強化材としての繊維と、を含む、繊維強化複合材料(FRP)である。
[Thermoplastic resin composite]
A thermoplastic resin composite according to one embodiment is a fiber-reinforced composite material (FRP) containing a cured product of the two-part reaction type composition or the matrix resin, and fibers as reinforcing materials.
 繊維としては、例えば、炭素繊維、ガラス繊維、アラミド繊維、アルミナ繊維、炭化珪素繊維、ボロン繊維、金属繊維、天然繊維、鉱物繊維等が挙げられ、これらのいずれか1種または2種以上組み合わせて構成されてもよい。炭素繊維としては、PAN系、ピッチ系、レーヨン系等が挙げられる。繊維としては、炭素繊維、ガラス繊維、およびアラミド繊維からなる群から選択される少なくとも一種が好ましい。なお、繊維には、樹脂との結合を促進するための糊または塗料が付与されていてもよい。 The fibers include, for example, carbon fiber, glass fiber, aramid fiber, alumina fiber, silicon carbide fiber, boron fiber, metal fiber, natural fiber, mineral fiber, etc. Any one or a combination of two or more thereof may be used. may be configured. Examples of carbon fibers include PAN-based, pitch-based, and rayon-based fibers. As the fiber, at least one selected from the group consisting of carbon fiber, glass fiber, and aramid fiber is preferable. The fibers may be applied with glue or paint to promote bonding with the resin.
 繊維の形態としては、例えば、フィラメント、ファイバー、ストランドのロービングあるいは織物といった連続繊維や、編織マット、不織マット、その他の形態が挙げられる。 Examples of forms of fibers include continuous fibers such as filaments, fibers, strand rovings or fabrics, woven mats, non-woven mats, and other forms.
 熱可塑性樹脂複合体において繊維と熱可塑性樹脂との割合は特に限定されない。一例として、熱可塑性樹脂複合体単位体積当たりの、繊維の体積含有率は、30~70%でもよく、50~60%でもよい。熱可塑性樹脂複合体単位体積当たりの、熱可塑性樹脂の体積含有率30~70%であることが好ましく、より好ましくは40~50%である。 The ratio of fiber to thermoplastic resin in the thermoplastic resin composite is not particularly limited. As an example, the volume content of fibers per unit volume of the thermoplastic resin composite may be 30 to 70% or 50 to 60%. The volume content of the thermoplastic resin is preferably 30 to 70%, more preferably 40 to 50%, per unit volume of the thermoplastic resin composite.
 熱可塑性樹脂複合体は、マトリックスとしての熱可塑性樹脂として上記二液反応型組成物を用いる、現場重合型の熱可塑性樹脂複合体であることが好ましい。すなわち、上記二液反応型組成物を混ぜ合わせたモノマー混合液を繊維に含浸させ、含浸後に重合させて熱可塑性樹脂を形成することで、熱可塑性樹脂複合体を製造することが好ましい。 The thermoplastic resin composite is preferably an in-situ polymerization type thermoplastic resin composite that uses the two-component reaction type composition as a thermoplastic resin as a matrix. That is, it is preferable to produce a thermoplastic resin composite by impregnating a fiber with a monomer mixed liquid obtained by mixing the two-part reaction type composition, and polymerizing the fibers after the impregnation to form a thermoplastic resin.
 一実施形態において、熱可塑性樹脂複合体は、上記マトリックス樹脂(好ましくは上記二液反応型組成物が反応して得られる熱可塑性マトリックス樹脂)と、強化材としての繊維と、を含む複数の一次成形体を重ね、熱成形により積層一体化して得られた積層体であることが好ましい。 In one embodiment, the thermoplastic resin composite comprises a matrix resin (preferably a thermoplastic matrix resin obtained by reacting the two-component reactive composition) and a plurality of primary fibers as reinforcing materials. It is preferably a laminate obtained by stacking molded bodies and laminating and integrating them by thermoforming.
 この場合、一次成形体におけるマトリックス樹脂にはブロックされたイソシアネート基が含まれることが好ましい。積層体は、該一次成形体を複数重ねて熱成形することにより得られる二次成形体であり、ブロックされたイソシアネート基のブロック剤が解離することにより、二次成形時にイソシアネート基を反応させることができる。そのため、積層体の層間には、熱可塑性樹脂を加熱することによる熱融着だけでなく、解離したイソシアネート基の反応による化学結合も形成される。そのため、層間をより強固に結合させることができる。 In this case, the matrix resin in the primary molding preferably contains blocked isocyanate groups. The laminate is a secondary molded body obtained by thermoforming a plurality of the primary molded bodies, and the isocyanate groups are reacted during secondary molding by dissociation of the blocking agent for the blocked isocyanate groups. can be done. Therefore, between the layers of the laminate, not only thermal fusion bonding is formed by heating the thermoplastic resin, but also chemical bonds are formed by reaction of dissociated isocyanate groups. Therefore, the layers can be bonded more firmly.
 一次成形体の形状は特に限定されないが、例えば板状(シート状のような薄いものも包含される概念である。)でもよく、板状の一次成形体を複数枚重ねて積層一体化することにより積層体を得てもよい。 The shape of the primary molded body is not particularly limited, but for example, it may be plate-shaped (a concept that includes thin ones such as sheet-like), and a plurality of plate-shaped primary molded bodies are laminated and integrated. A laminate may be obtained by
 上記一次成形体としての熱可塑性樹脂複合体は、二次成形により多様な形状に加工して用いることができ、例えば、様々なサイズの、板状、棒状、リング状、または筒状の構造を形成するのに好適である。 The thermoplastic resin composite as the primary molded body can be processed into various shapes by secondary molding and used. suitable for forming.
 該熱可塑性樹脂複合体の用途としては、例えば、電子機器筐体が好適な例としてあげられ、コンピューター、テレビ、カメラ、オーディオプレイヤー等に好適に用いられる。該熱可塑性樹脂複合体は、また、電気電子部品用途に好適であり、コネクター、LEDランプ、ソケット、光ピックアップ、端子板、プリント基板、スピーカー、モーター、磁気ヘッド、パワーモジュール、発電機、電動機、変圧器、変流器、電圧調整器、整流器、インバーターの部品に好適に使用できる。 Suitable applications of the thermoplastic resin composite include, for example, housings for electronic equipment, which are suitably used for computers, televisions, cameras, audio players, and the like. The thermoplastic resin composite is also suitable for electrical and electronic component applications, such as connectors, LED lamps, sockets, optical pickups, terminal boards, printed circuit boards, speakers, motors, magnetic heads, power modules, generators, electric motors, It can be suitably used for parts of transformers, current transformers, voltage regulators, rectifiers and inverters.
 該熱可塑性樹脂複合体は、また、自動車用部品や車両関連部品などに好適であり、安全ベルト部品、インストルメントパネル、コンソールボックス、ピラー、ルーフレール、フェンダー、バンパー、ドアパネル、ルーフパネル、フードパネル、トランクリッド、ドアミラーステー、スポイラー、フードルーバー、ホイールカバー、ホイールキャップ、ガーニッシュ、インテークマニホールド、燃料ポンプ、エンジン冷却水ジョイント、ウィンドウォッシャーノズル、ワイパー、バッテリー周辺部品、ワイヤーハーネスコネクター、ランプハウジング、ランプリフレクター、ランプソケットなどに好適に使用される。 The thermoplastic resin composite is also suitable for automotive parts, vehicle-related parts, and the like, such as safety belt parts, instrument panels, console boxes, pillars, roof rails, fenders, bumpers, door panels, roof panels, hood panels, Trunk lid, door mirror stay, spoiler, hood louver, wheel cover, wheel cap, garnish, intake manifold, fuel pump, engine coolant joint, window washer nozzle, wiper, battery peripheral parts, wire harness connector, lamp housing, lamp reflector, Suitable for use in lamp sockets and the like.
 該熱可塑性樹脂複合体は、また、建材として好適であり、土木建築物の壁、屋根、天井材関連部品、窓材関連部品、断熱材関連部品、床材関連部品、免震制振部材関連部品、ライフライン関連部品などに好適に用いられる。該繊維強化複合材料は、さらに、スポーツ用品として好適であり、ゴルフクラブのシャフト、ゴルフボールなどのゴルフ関連用品、テニスラケットやバトミントンラケットなどのスポーツラケット関連用品、アメリカンフットボールや野球、ソフトボールなどのマスク、ヘルメット、胸当て、肘当て、膝当てなどのスポーツ用身体保護用品、釣り竿、リール、ルアーなどの釣り具関連用品、スキー、スノーボードなどのウィンタースポーツ関連用品などに好適に用いられる。 The thermoplastic resin composite is also suitable as a building material, and can be It is suitably used for parts, lifeline-related parts, and the like. The fiber-reinforced composite material is also suitable for use as sports goods, such as golf club shafts, golf balls and other golf-related goods, tennis rackets and badminton rackets and other sports racket-related goods, American football, baseball, softball and the like. It is suitably used for body protective equipment for sports such as masks, helmets, chest pads, elbow pads and knee pads, fishing gear-related equipment such as fishing rods, reels and lures, and winter sports-related equipment such as skis and snowboards.
 上記のような形状あるいは用途に用いる場合において、上記二液反応型組成物中にブロック化ジイソシアネートを含めることにより、積層体の層間での剥離を抑えることができる。 In the case of using for the above-mentioned shape or application, delamination between the layers of the laminate can be suppressed by including the blocked diisocyanate in the two-liquid reaction type composition.
 [熱可塑性樹脂複合体の製造方法]
 一実施形態に係る熱可塑性樹脂複合体の製造方法は、下記工程(1)および(2)を含み、好ましくはさらに下記工程(3)を含む。
(1) 熱可塑性マトリックス樹脂形成用組成物を繊維に含浸させる含浸工程。
(2) 含浸した繊維を加熱することにより、ブロックされたイソシアネート基を保持したまま、熱可塑性マトリックス樹脂形成用組成物を重合し、重合により得られる熱可塑性マトリックス樹脂を含む一次成形体を得る一次成形工程。
(3) 複数の上記一次成形体を重ね、ブロック剤が解離する条件で熱成形により積層一体化する二次成形工程。
[Method for producing thermoplastic resin composite]
A method for producing a thermoplastic resin composite according to one embodiment includes the following steps (1) and (2), and preferably further includes the following step (3).
(1) An impregnation step of impregnating fibers with a composition for forming a thermoplastic matrix resin.
(2) By heating the impregnated fibers, the thermoplastic matrix resin-forming composition is polymerized while retaining the blocked isocyanate groups to obtain a primary molded article containing the thermoplastic matrix resin obtained by polymerization. molding process.
(3) A secondary molding step of stacking a plurality of the primary moldings and integrating them by thermoforming under conditions in which the blocking agent is dissociated.
 含浸工程で用いる熱可塑性マトリックス樹脂形成用組成物(以下、モノマー混合液ともいう。)は、活性水素成分とイソシアネート成分とを含むものであり、ここでは、イソシアネート成分が、ブロック化ジイソシアネートと非ブロック化ジイソシアネートとを含むものを用いる。このようにイソシアネート成分としてブロック化ジイソシアネートを含めることにより、二次成形時にイソシアネート基を反応させて、積層体の層間での接着を向上することができる。 The composition for forming a thermoplastic matrix resin (hereinafter also referred to as a monomer mixed solution) used in the impregnation step contains an active hydrogen component and an isocyanate component. and diisocyanate. By including the blocked diisocyanate as the isocyanate component in this way, the isocyanate group can be reacted during secondary molding, and the adhesion between the layers of the laminate can be improved.
 モノマー混合液としては、上記の二液反応型組成物を用いることが好ましい。すなわち、モノマー混合液の活性水素成分は、アルキルチオ基を有する芳香族ジアミン(A)を含むことが好ましい。また、イソシアネート成分は、脂肪族ジイソシアネート、脂環式ジイソシアネートおよびこれらの変性体からなる群から選択された少なくとも一種のジイソシアネート(B)を含み、該ジイソシアネート(B)がブロック化ジイソシアネートおよび非ブロック化ジイソシアネートを含むことが好ましい。かかるモノマー混合液の詳細については、二液反応型組成物において上述したとおりである。 As the monomer mixture, it is preferable to use the above-mentioned two-liquid reaction type composition. That is, the active hydrogen component of the monomer mixture preferably contains an aromatic diamine (A) having an alkylthio group. In addition, the isocyanate component contains at least one diisocyanate (B) selected from the group consisting of aliphatic diisocyanates, alicyclic diisocyanates and modified products thereof, and the diisocyanate (B) is a blocked diisocyanate and an unblocked diisocyanate. is preferably included. The details of such a mixed monomer solution are as described above for the two-component reaction type composition.
 含浸工程で用いる繊維としては、上記熱可塑性樹脂複合体において説明したとおりであり、同様の繊維を用いることができる。 The fibers used in the impregnation step are as described for the thermoplastic resin composite, and similar fibers can be used.
 図1は、該製造方法に適用可能な製造装置1の一例を示したものである。製造装置1は、モノマー混合液を繊維10に含浸させる含浸部20と、モノマー混合液を含浸した繊維10を加熱して熱可塑性樹脂複合体(一次成形体12)の成形を行う加熱成形部30と、成形した一次成形体12を連続的に引き抜く引抜装置40と、を備える。製造装置1は、さらに含浸部20に繊維10を供給する繊維供給部50と、モノマー混合液を含浸部20に供給するモノマー供給部60と、を備える。 FIG. 1 shows an example of a manufacturing apparatus 1 applicable to the manufacturing method. The manufacturing apparatus 1 includes an impregnation unit 20 that impregnates the fibers 10 with the monomer mixture, and a thermoforming unit 30 that heats the fibers 10 impregnated with the monomer mixture to form a thermoplastic resin composite (primary molded body 12). and a drawing device 40 for continuously drawing out the molded primary molded body 12. - 特許庁The manufacturing apparatus 1 further includes a fiber supply section 50 that supplies the fibers 10 to the impregnation section 20 and a monomer supply section 60 that supplies the monomer mixture to the impregnation section 20 .
 含浸工程では、含浸部20において、モノマー供給部60から供給されるモノマー混合液を、繊維供給部50から供給される繊維10に連続的に含浸させる。 In the impregnation step, in the impregnation section 20, the fibers 10 supplied from the fiber supply section 50 are continuously impregnated with the monomer mixed liquid supplied from the monomer supply section 60.
 繊維供給部50は、複数のボビン51から繰り出される繊維を1つにまとめて含浸部20に繊維10を供給する。 The fiber supply unit 50 collects the fibers drawn out from the plurality of bobbins 51 into one and supplies the fibers 10 to the impregnation unit 20 .
 モノマー供給部60は、活性水素成分を含む第1液を貯えた第1タンク61と、イソシアネート成分を含む第2液を貯えた第2タンク62と、混合器63とを備える。混合器63は、第1タンク61から送液された第1液と第2タンク62から送液された第2液を混合する器具である。混合器63は、撹拌羽による撹拌混合を行うものでもよく、スタティックミキサーに配置したミキシングヘッドで撹拌混合を行うものでもよい。混合器63で混合されたモノマー混合液は、含浸部20に供給される。 The monomer supply unit 60 includes a first tank 61 storing a first liquid containing an active hydrogen component, a second tank 62 storing a second liquid containing an isocyanate component, and a mixer 63 . The mixer 63 is a device that mixes the first liquid sent from the first tank 61 and the second liquid sent from the second tank 62 . The mixer 63 may perform stirring and mixing using stirring blades, or may perform stirring and mixing with a mixing head arranged in a static mixer. The monomer liquid mixture mixed by the mixer 63 is supplied to the impregnation section 20 .
 含浸部20は、複数の含浸ローラ21で構成されている。詳細には、含浸部20は、搬送ローラ22を介して走行する繊維10に対して、モノマー混合液を複数箇所に分けて滴下し、複数の含浸ローラ21でモノマー混合液を繊維10に含浸させるように構成されている。 The impregnation section 20 is composed of a plurality of impregnation rollers 21 . Specifically, the impregnating section 20 drops the monomer liquid mixture at a plurality of locations on the fibers 10 running through the conveying rollers 22 , and impregnates the fibers 10 with the monomer liquid mixture by the plurality of impregnation rollers 21 . is configured as
 なお、含浸部20の前に繊維10をあらかじめ加熱する加熱装置が設置されてもよい。あらかじめ加熱することにより、モノマー混合液の含浸を迅速に行うことができる。また、繊維10が吸湿している水分を、含浸直前に蒸発させ、モノマー混合液の重合時における水分の影響をより好適に取り除くことができる。そのため、モノマー混合液の重合反応を安定化することができる。 Note that a heating device for preheating the fibers 10 may be installed before the impregnating section 20 . By heating in advance, the impregnation of the monomer mixed solution can be carried out quickly. In addition, the moisture absorbed by the fibers 10 can be evaporated immediately before the impregnation, and the influence of the moisture during the polymerization of the monomer mixed solution can be removed more favorably. Therefore, the polymerization reaction of the monomer mixture can be stabilized.
 一次成形工程では、含浸部20で含浸した繊維10を所定の加熱温度Tの加熱成形部30に通過させ、これによりモノマー混合液の重合、および該重合により得られる熱可塑性樹脂を含む熱可塑性樹脂複合体(一次成形体12)の成形を行う。すなわち、モノマー混合液が含浸された繊維10を賦形しつつ加熱により重合反応させる。 In the primary molding step, the fibers 10 impregnated in the impregnating section 20 are passed through the thermoforming section 30 at a predetermined heating temperature T, thereby polymerizing the monomer mixture and the thermoplastic resin obtained by the polymerization. The composite (primary molded body 12) is molded. That is, the fiber 10 impregnated with the monomer mixture is shaped and polymerized by heating.
 加熱成形部30は、この例では、モノマー混合液が含浸された繊維10を、所定の厚みと幅に成形するための加熱成形型31と、加熱成形型31から引き抜かれた一次成形体12を加熱してその重合反応を促進するための加熱装置32とを備える。なお、加熱装置32は設けなくてもよい。 In this example, the thermoforming unit 30 includes a thermoforming mold 31 for forming the fibers 10 impregnated with the monomer mixture into a predetermined thickness and width, and a primary molded body 12 pulled out from the thermoforming mold 31. and a heating device 32 for heating to promote the polymerization reaction. Note that the heating device 32 may not be provided.
 一次成形工程では、モノマー混合液が含浸された繊維10を、ブロック化ジイソシアネート(B1)の解離温度Tdよりも低い温度で加熱する。これにより、ブロックされたイソシアネート基を保持したまま、モノマー混合液を重合して熱可塑性マトリックス樹脂を形成することができる。 In the primary molding step, the fibers 10 impregnated with the monomer mixture are heated at a temperature lower than the dissociation temperature Td of the blocked diisocyanate (B1). This allows the monomer mixture to be polymerized to form a thermoplastic matrix resin while retaining the blocked isocyanate groups.
 ここでは、加熱成形部30の設定温度である加熱温度Tを、上記解離温度Tdよりも低い温度に設定する。加熱温度Tとして設定される温度は、単一の温度でもよく、加熱成形部30の部位に応じて温度分布を持たせて所定の温度範囲に設定してもよい。加熱温度Tとして設定される温度が幅を持つ場合、その最高温度が上記解離温度Tdよりも低い温度に設定される。 Here, the heating temperature T, which is the set temperature of the thermoforming unit 30, is set to a temperature lower than the dissociation temperature Td. The temperature set as the heating temperature T may be a single temperature, or may be set in a predetermined temperature range with a temperature distribution depending on the portion of the thermoforming unit 30 . When the temperature set as the heating temperature T has a range, the maximum temperature is set to a temperature lower than the dissociation temperature Td.
 ブロック化ジイソシアネート(B1)の解離温度Tdとは、ブロックされたイソシアネート基からブロック剤が解離する温度である。一般にブロック剤が解離する温度には幅があるため、その最低温度、すなわち加熱時にブロック剤が解離し始める温度(解離開始温度)よりも低い温度で、上記繊維10を加熱することが好ましい。ブロック化ジイソシアネート(B1)の解離温度Tdは、特に限定されず、例えば解離開始温度が100℃以上でもよく、110℃以上でもよく、また220℃以下でもよく、210℃以下でもよい。 The dissociation temperature Td of the blocked diisocyanate (B1) is the temperature at which the blocking agent dissociates from the blocked isocyanate groups. Since the temperature at which the blocking agent dissociates generally has a range, it is preferable to heat the fiber 10 at a temperature lower than the minimum temperature, that is, the temperature at which the blocking agent starts to dissociate during heating (dissociation start temperature). The dissociation temperature Td of the blocked diisocyanate (B1) is not particularly limited.
 好ましくは一次成形工程において、上記繊維10を加熱する温度は、モノマー混合液を重合させて得られる一次成形体12での熱可塑性マトリックス樹脂のガラス転移温度Tgよりも低い温度に設定される。すなわち、繊維10を加熱する温度は、ブロック化ジイソシアネート(B1)の解離温度Tdよりも低く、かつ、熱可塑性マトリックス樹脂の一次成形後のガラス転移温度Tgよりも低いことが好ましい。ここで、一次成形後のガラス転移温度とは、ブロックされたイソシアネート基を保持したまま重合させて得られた熱可塑性マトリックス樹脂のガラス転移温度である。 Preferably, in the primary molding step, the temperature for heating the fibers 10 is set to a temperature lower than the glass transition temperature Tg of the thermoplastic matrix resin in the primary molded body 12 obtained by polymerizing the monomer mixture. That is, the temperature for heating the fibers 10 is preferably lower than the dissociation temperature Td of the blocked diisocyanate (B1) and lower than the glass transition temperature Tg of the thermoplastic matrix resin after primary molding. Here, the glass transition temperature after primary molding is the glass transition temperature of a thermoplastic matrix resin obtained by polymerization while retaining blocked isocyanate groups.
 そのためには、加熱成形部30での加熱温度Tを、上記解離温度Tdよりも低く、かつ、上記ガラス転移温度Tgよりも低い温度に設定する。より好ましくは、加熱温度Tは、上記ガラス転移温度Tgよりも20℃以上低い温度(T<Tg-20℃)に設定されることである。 For this purpose, the heating temperature T in the thermoforming unit 30 is set to a temperature lower than the dissociation temperature Td and lower than the glass transition temperature Tg. More preferably, the heating temperature T is set to a temperature 20° C. or more lower than the glass transition temperature Tg (T<Tg−20° C.).
 一次成形工程は、加熱成形部30から一次成形体12を、引抜装置40により連続的に引き抜く引抜工程を含む。引抜装置40は、一次成形体12を挟んで引き抜く上下一対のローラ41,41で構成されている。 The primary molding process includes a drawing process in which the primary molded body 12 is continuously drawn out from the thermoforming unit 30 by the drawing device 40 . The drawing device 40 is composed of a pair of upper and lower rollers 41, 41 for drawing out the primary molded body 12 with it sandwiched therebetween.
 この実施形態では、上記のように加熱成形部30における加熱温度Tが熱可塑性マトリックス樹脂の一次成形後のガラス転移温度Tgよりも低いので、加熱成形部30から引き抜かれる一次成形体12の熱可塑性マトリックス樹脂はガラス転移温度Tg以下のガラス状態にある。すなわち、加熱成形部30から出てきた段階では、重合は完了していないものの、粘つきのない疑似硬化の状態にある。そのため、引き抜かれた一次成形体12はその形状が崩れにくく、形状を維持することができる。よって、熱可塑性樹脂複合体を連続引抜成形により効率的に製造することができる。 In this embodiment, as described above, the heating temperature T in the thermoforming part 30 is lower than the glass transition temperature Tg after the primary molding of the thermoplastic matrix resin, so that the primary molded body 12 pulled out from the thermoforming part 30 has a thermoplastic property. The matrix resin is in a glass state below the glass transition temperature Tg. That is, at the stage of coming out of the thermoforming unit 30, although the polymerization is not completed, it is in a non-sticky, pseudo-cured state. Therefore, the pulled out primary molded body 12 is unlikely to lose its shape and can maintain its shape. Therefore, a thermoplastic resin composite can be efficiently produced by continuous pultrusion.
 詳細には、一般に、連続引抜成形では、加熱成形部での加熱により樹脂を重合反応させて硬化させるため、加熱成形部出口での一次成形体の温度は加熱成形部で設定した樹脂の重合温度とほぼ等しくなる。このため、連続引抜成形では、マトリックスとする樹脂のガラス転移温度よりも重合温度が高いと、加熱成形部出口での一次成形体が柔らかいゴム状態であり、所定の断面形状を維持することができない。これに対し、例えば、加熱成形後に冷却工程を設けてガラス転移温度以下に冷却することは可能であるが、その分だけ装置が大型化し、加えて一次成形体の引抜速度を遅くしないと一次成形体の内部まで冷却することができないため、製造効率に劣る。この実施形態であると、ガラス転移温度よりも低い温度の加熱成形部で重合させ、熱可塑性マトリックス樹脂がガラス状態である一次成形体を加熱成形部から引き抜くので、加熱成形部で成形された一次成形体の形状を維持しやすく、よって製造効率を向上することができる。 More specifically, in continuous pultrusion, generally, the resin is polymerized and cured by heating in the thermoforming unit, so the temperature of the primary molded product at the exit of the thermoforming unit is the polymerization temperature of the resin set in the thermoforming unit. becomes approximately equal to Therefore, in continuous pultrusion, if the polymerization temperature is higher than the glass transition temperature of the matrix resin, the primary molded product at the exit of the thermoforming unit is in a soft rubber state and cannot maintain a predetermined cross-sectional shape. . On the other hand, for example, it is possible to provide a cooling process after heat molding to cool the temperature below the glass transition temperature, but the apparatus is correspondingly large, and in addition, the drawing speed of the primary molded body is not slowed down. Since the inside of the body cannot be cooled, the production efficiency is inferior. In this embodiment, polymerization is performed in the thermoforming section at a temperature lower than the glass transition temperature, and the primary molded body in which the thermoplastic matrix resin is in a glass state is pulled out from the thermoforming section. It is easy to maintain the shape of the molded body, and therefore the manufacturing efficiency can be improved.
 また、上記特許文献1に開示されたような重合性ラクタム混合液を原料とするポリアミド樹脂をマトリックスとする熱可塑性樹脂複合体の連続引抜成形では、ポリアミド樹脂の欠点である吸湿による強度低下が避けられない。また、重合性ラクタム混合液の原料であるε-カプロラクタムのアニオン触媒は、空気中の水分により触媒能が失活し、重合が阻害される可能性がある。これに対し、この実施形態であると、活性水素成分とイソシアネート成分からなるポリウレタンおよび/またはポリウレアの熱可塑性樹脂をマトリックスとしたことにより、一次成形体を安定的に連続製造することができる。 In addition, in the continuous pultrusion molding of a thermoplastic resin composite having a matrix of a polyamide resin made from a polymerizable lactam mixed solution as disclosed in the above-mentioned Patent Document 1, a decrease in strength due to moisture absorption, which is a drawback of polyamide resins, can be avoided. can't In addition, the anionic catalyst of ε-caprolactam, which is the raw material of the polymerizable lactam mixed solution, may be deactivated by moisture in the air, and polymerization may be inhibited. On the other hand, in this embodiment, by using a polyurethane and/or polyurea thermoplastic resin composed of an active hydrogen component and an isocyanate component as a matrix, a primary molded product can be stably and continuously produced.
 なお、図示しないが、上記引抜装置40の後に一次成形体12をさらに加熱して重合を促進ないし完了させるための加熱装置を設けてもよい。また、引抜装置40の後、または該追加の加熱装置の後にカッターなどの切断装置を設けてもよく、これにより、一次成形体12として、板材やチャンネル材、丸棒材、ストランド材等を得てもよい。 Although not shown, a heating device may be provided after the drawing device 40 for further heating the primary molded body 12 to accelerate or complete the polymerization. Further, a cutting device such as a cutter may be provided after the drawing device 40 or after the additional heating device, thereby obtaining a plate material, a channel material, a round bar material, a strand material, or the like as the primary formed body 12. may
 図1に示す例では、含浸部20を加熱成形型31の前に設けた複数の含浸ローラ21で構成したが、含浸部は加熱成形型31内に設けてもよい。この場合、含浸部は加熱成形部30の一部としてその前端部に組み込まれる。図2はその一例を示したものである。 In the example shown in FIG. 1, the impregnating section 20 is composed of a plurality of impregnating rollers 21 provided in front of the heating mold 31, but the impregnating section may be provided inside the heating mold 31. In this case, the impregnated portion is incorporated as part of the thermoformed portion 30 at its front end. FIG. 2 shows an example thereof.
 図2に示す製造装置1Aにおいて、繊維供給部50のボビン51から繰り出された繊維10は、送りローラ52を経て加熱成形部30の加熱成形型31内に供給される。一方、モノマー供給部60から供給されたモノマー混合液は、加熱成形型31の前端部に設けられた注入治具71により加熱成形型31内に直接注入され、加熱成形型31内においてモノマー混合液を繊維10に含浸させる。そのため、加熱成形型31の前端部が含浸部70を兼ねている。 In the manufacturing apparatus 1A shown in FIG. 2, the fibers 10 let out from the bobbin 51 of the fiber supplying section 50 are fed into the thermoforming mold 31 of the thermoforming section 30 through the feed rollers 52 . On the other hand, the monomer mixture supplied from the monomer supply unit 60 is directly injected into the thermoforming mold 31 by the injection jig 71 provided at the front end of the thermoforming mold 31, and the monomer mixture is injected in the thermoforming mold 31. is impregnated into the fiber 10. Therefore, the front end portion of the heat molding die 31 also serves as the impregnation portion 70 .
 加熱成形型31の内部には含浸ローラ等の含浸治具(不図示)を設けてもよい。これにより、注入治具71によって加熱成形型31内に注入されたモノマー混合液を繊維10に短時間で含浸させることができる。このような含浸部70の工夫は余剰な空気を排除しながらモノマー混合液を繊維10に短時間で含浸させる効果が高く、短時間で繊維10の内部の空気が速やかに排除されるので、硬化後の一次成形体12の内部の微小なボイド(空洞)を減らすことができる。 An impregnating jig (not shown) such as an impregnating roller may be provided inside the heating mold 31 . As a result, the fibers 10 can be impregnated with the monomer mixed liquid injected into the heating mold 31 by the injection jig 71 in a short period of time. Such devising of the impregnation part 70 has a high effect of impregnating the fibers 10 with the monomer mixture in a short time while removing excess air. Fine voids (cavities) inside the subsequent primary molded body 12 can be reduced.
 二次成形工程では、複数の上記一次成形体を重ね、ブロック剤が解離する条件で熱成形により積層一体化する。例えば、板状に成形した一次成形体を複数枚重ね、熱プレスにより積層一体化することにより、二次成形体としての積層体を得ることができる。 In the secondary molding process, a plurality of the above primary molded bodies are stacked and integrated by thermoforming under conditions where the blocking agent is dissociated. For example, a laminate as a secondary molded body can be obtained by stacking a plurality of plate-shaped primary molded bodies and laminating and integrating them by hot pressing.
 二次成形工程では、一次成形体中に含まれるブロック化されたイソシアネート基からブロック剤を解離させるために、ブロック化ジイソシアネート(B1)の解離温度Td以上の温度で熱成形を行う。これにより、ブロック剤の解離したイソシアネート基が、一次成形体中に残存する活性水素成分と反応して、追加の化学結合が形成される。そのため、積層体の層間を強固に結合し、層間での接着を向上することができる。 In the secondary molding step, thermoforming is performed at a temperature equal to or higher than the dissociation temperature Td of the blocked diisocyanate (B1) in order to dissociate the blocking agent from the blocked isocyanate groups contained in the primary molded product. As a result, the dissociated isocyanate groups of the blocking agent react with the active hydrogen components remaining in the primary molding to form additional chemical bonds. Therefore, the layers of the laminate can be strongly bonded and the adhesion between the layers can be improved.
 二次成形工程では、例えば、板状の一次成形体を用いて熱プレスにより積層体を得る際に、そのまま平板状に積層一体化してもよいが、積層一体化しつつ曲面状や凹形状、凸形状、箱型等のような種々の形状に賦形してもよい。また、一旦、平板状に積層一体化してから、再度熱を加えて所望の形状に賦形してもよい。 In the secondary forming step, for example, when a laminate is obtained by hot pressing using a plate-shaped primary formed body, it may be laminated and integrated into a flat plate shape as it is. It may be formed into various shapes such as shape, box shape, and the like. Moreover, once it is laminated and integrated into a flat plate shape, it may be shaped into a desired shape by applying heat again.
 以下、実施例をあげてさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Although the present invention will be more specifically described below with reference to examples, the present invention is not limited to the following examples.
 実施例で使用した薬剤の詳細は以下のとおりである。
(ジアミン)
・DMTDA:ジメチルチオトルエンジアミン、ロンザ社製「エタキュア300」
・DETDA:ジエチルトルエンジアミン、ロンザ社製「エタキュア100」
The details of the agents used in the examples are as follows.
(diamine)
・DMTDA: dimethylthiotoluenediamine, "Etacure 300" manufactured by Lonza
・DETDA: diethyltoluenediamine, "Etacure 100" manufactured by Lonza
(ジオール)
・DPG:ジプロピレングリコール
(diol)
・DPG: dipropylene glycol
(ジイソシアネート)
・変性HDI:HDIのNCO末端2官能ウレタンプレポリマー体、イソシアネート価230mgKOH/g、旭化成(株)製「デュラネートA201H」
・HDI:ヘキサメチレンジイソシアネート、イソシアネート価668mgKOH/g、旭化成(株)製「デュラネートHDI」
・IPDI:イソホロンジイソシアネート、イソシアネート価505mgKOH/g、EVONIK社製「VESTANATE IPDI」
・H12MDI:4,4’-ジシクロヘキシルメタンジイソシアネート、イソシアネート価427mgKOH/g、コベストロ社製「デスモジュールW」
(Diisocyanate)
- Modified HDI: NCO-terminated bifunctional urethane prepolymer of HDI, isocyanate value 230 mgKOH/g, "Duranate A201H" manufactured by Asahi Kasei Corporation
・ HDI: hexamethylene diisocyanate, isocyanate value 668 mgKOH / g, "Duranate HDI" manufactured by Asahi Kasei Corporation
・ IPDI: isophorone diisocyanate, isocyanate value 505 mgKOH / g, "VESTANATE IPDI" manufactured by EVONIK
・H12MDI: 4,4′-dicyclohexylmethane diisocyanate, isocyanate value 427 mgKOH/g, “Desmodur W” manufactured by Covestro
(ブロック剤)
・MEKオキシム:メチルエチルケトンオキシム
・カプロラクタム:ε-カプロラクタム
(blocking agent)
・MEK oxime: methyl ethyl ketone oxime ・Caprolactam: ε-caprolactam
 下記表1に示す配合(質量部)に従い、ブロック化ジイソシアネート(B1)として、BL1~BL6を合成した。詳細には、セパラブルフラスコ内でジイソシアネート成分を入れ、各ブロック剤を添加して加熱し合成した。その際、粘度が高くなるものは適宜トルエンなどの溶剤で希釈し、合成後にエバポレーターなどにて溶剤を回収した。 BL1 to BL6 were synthesized as blocked diisocyanate (B1) according to the formulation (parts by mass) shown in Table 1 below. Specifically, a diisocyanate component was placed in a separable flask, each blocking agent was added, and the synthesis was performed by heating. At that time, those with high viscosity were appropriately diluted with a solvent such as toluene, and the solvent was recovered by an evaporator or the like after the synthesis.
 得られたブロック化ジイソシアネートBL1~BL6はいずれも、ブロック率が100%であり、即ち、ジイソシアネートの持つ2つのイソシアネート基が全てブロック剤でブロックされたジイソシアネートである。 All of the obtained blocked diisocyanates BL1 to BL6 had a blocking rate of 100%, that is, they were diisocyanates in which all of the two isocyanate groups possessed by the diisocyanate were blocked with a blocking agent.
 BL1~BL6のブロック化ジイソシアネートにおけるブロック剤の解離温度(解離開始温度)を測定した。測定方法は、株式会社RICOH社製「TG-DTA8122/S-SL」でサンプルを15℃/分で昇温しながら重量変化を測定し、解離開始温度を調べた。結果を表1に示す。 The dissociation temperature (dissociation start temperature) of the blocking agent in the blocked diisocyanates of BL1 to BL6 was measured. As for the measurement method, weight change was measured while heating the sample at 15° C./min using “TG-DTA8122/S-SL” manufactured by RICOH Co., Ltd. to investigate the dissociation start temperature. Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 下記表2に示す配合に従い、ジアミンを混合して活性水素成分を含む第1液を調製した。また、表2に従いブロック化ジイソシアネートと非ブロック化ジイソシアネートを混合してイソシアネート成分を含む第2液を調製した。 A first liquid containing an active hydrogen component was prepared by mixing diamine according to the formulation shown in Table 2 below. Also, according to Table 2, a blocked diisocyanate and an unblocked diisocyanate were mixed to prepare a second liquid containing an isocyanate component.
 第2液について、イソシアネート成分全体のイソシアネート基に対するブロックされたイソシアネート基のモル比率であるブロック率を表2に示す。ブロック率は、配合したジイソシアネートの質量比から全体のイソシアネート基の物質量とブロックされたイソシアネート基の物質量を求めて、両者の比から算出した。その際、上記のようにBL1~BL6のブロック率はいずれも100%とした。また、ジイソシアネートのイソシアネート価から分子量を求め、該分子量を用いてイソシアネート基の物質量を求めた。イソシアネート価は、JIS K1603-1:2007のA法に準拠して測定されるイソシアネート含有率を用いて、イソシアネート価={(イソシアネート含有率)×56110}/(42.02×100)により算出した。分子量は、分子量=56110×2/(イソシアネート価)により算出した。 Table 2 shows the blocking rate, which is the molar ratio of blocked isocyanate groups to isocyanate groups in the entire isocyanate component, for the second liquid. The blocking rate was calculated from the ratio of the total amount of isocyanate groups and the amount of blocked isocyanate groups obtained from the mass ratio of the blended diisocyanate. At that time, the block rate of BL1 to BL6 was set to 100% as described above. Also, the molecular weight was determined from the isocyanate value of the diisocyanate, and the amount of the isocyanate group was determined using the molecular weight. The isocyanate value was calculated by isocyanate value = {(isocyanate content) x 56110}/(42.02 x 100) using the isocyanate content measured in accordance with JIS K1603-1:2007 A method. . The molecular weight was calculated by molecular weight=56110×2/(isocyanate value).
 第2液について粘度を測定した。粘度は、JIS K7117-1:1999に準じ、BM型粘度計(東機産業(株)製)を用いて、25℃での粘度を測定した。結果を表2に示す。 The viscosity of the second liquid was measured. The viscosity was measured at 25° C. using a BM viscometer (manufactured by Toki Sangyo Co., Ltd.) according to JIS K7117-1:1999. Table 2 shows the results.
 表2に示す実施例1~9の二液反応型組成物について、ブロックされたイソシアネート基を保持したまま重合した後の樹脂のガラス転移温度(一次成形後のガラス転移温度に相当)を測定した。詳細には、第1液を25℃に調整し、これに25℃に調整した第2液を、表2に示す質量比およびNCO/活性水素基のモル比にて添加し、1分間攪拌混合した。得られたモノマー混合液をシート状に塗布し、120℃で3時間処理することにより、厚さ2mmの樹脂シートを得た。得られた樹脂シートから5mm×2cmの試験片を切り出し、ユービーエム社製「Rheogel E-4000」にてチャック間20mm、基本周波数は10Hz、歪みは自動制御モードでガラス転移温度(Tg)を測定した。結果を表2に示す。 For the two-part reaction type compositions of Examples 1 to 9 shown in Table 2, the glass transition temperature (corresponding to the glass transition temperature after primary molding) of the resin after polymerization while retaining the blocked isocyanate group was measured. . Specifically, the first liquid was adjusted to 25 ° C., and the second liquid adjusted to 25 ° C. was added thereto at the mass ratio and NCO/active hydrogen group molar ratio shown in Table 2, and stirred and mixed for 1 minute. bottom. The resulting monomer mixed solution was applied in a sheet form and treated at 120° C. for 3 hours to obtain a resin sheet with a thickness of 2 mm. A test piece of 5 mm x 2 cm was cut out from the obtained resin sheet, and the glass transition temperature (Tg) was measured using UBM's "Rheogel E-4000" with a chuck distance of 20 mm, a fundamental frequency of 10 Hz, and an automatic strain control mode. bottom. Table 2 shows the results.
 次いで、図1に示す製造装置1を用いて、熱可塑性樹脂複合体の連続引抜製造を行った。繊維10としては、炭素繊維(東レ株式会社製「T700SC-24000-60E」)を用いた。 Next, using the production apparatus 1 shown in FIG. 1, continuous drawing production of the thermoplastic resin composite was carried out. As the fiber 10, carbon fiber ("T700SC-24000-60E" manufactured by Toray Industries, Inc.) was used.
 一次成形体12における繊維10の体積含有率が60%になるようにモノマー混合液をモノマー供給部60により供給した。詳細には、A液とB液を表2に示す質量比に応じて各タンク61,62から送液し、スタティックミキサーからなる混合器63を通して攪拌させることでモノマー混合液を調製した。モノマー混合液を滴下させる場所を3箇所に分け、含浸部20に滞留するモノマー混合液の流動を促した。そして、複数の含浸ローラ21からなる含浸部20において、繊維供給部50から供給される繊維10にモノマー混合液を含浸させた。 The monomer mixture was supplied by the monomer supply unit 60 so that the volume content of the fibers 10 in the primary molded body 12 was 60%. Specifically, liquids A and B were sent from tanks 61 and 62 according to the mass ratio shown in Table 2, and stirred through a mixer 63 consisting of a static mixer to prepare a monomer mixed liquid. The places where the monomer mixed liquid was dripped were divided into three places, and the flow of the monomer mixed liquid staying in the impregnation part 20 was promoted. Then, the fibers 10 supplied from the fiber supplying unit 50 were impregnated with the monomer mixed liquid in the impregnating unit 20 composed of a plurality of impregnating rollers 21 .
 その際の繊維への含浸性を電子顕微鏡で評価し、顕著な巣やボイドが観られない場合を含浸性が良好として「○」とし、巣やボイドが観られる場合を含浸性に劣るとして「×」とした。結果を表2に示す。 The impregnability of the fiber at that time was evaluated with an electron microscope, and when no noticeable porosity or voids were observed, the impregnation property was evaluated as "good", and when porosity or voids were observed, the impregnation property was evaluated as "poor". ×”. Table 2 shows the results.
 加熱成形型31としてはアルミニウム合金製のものを用い、繊維10が送り込まれる型入口付近で滞留するモノマー混合液の急激な硬化反応を避けるため、型入口に水冷管を設け、型入口付近の温度が20~25℃の範囲を保つようにした。また、加熱成形型31と硬化反応中の一次成形体12とが接着しないように、アルミニウム合金製の加熱成形型31の内部の一次成形体12と接する部分に薄いPTFE製の上下2分割した中子の型を設置した。この加熱成形型31を用いて、ブロック化ジイソシアネートの解離温度よりも低い温度に設定した加熱成形型31内で、幅15mm、厚さ0.5mmの一次成形体12を成形した。詳細には、加熱成形型31の入口付近から出口付近までの温度分布が20℃~120℃の範囲で連続的に変化するように加熱制御した。 As the heat forming mold 31, an aluminum alloy is used, and in order to avoid a rapid hardening reaction of the monomer mixed liquid staying near the mold entrance into which the fiber 10 is sent, a water cooling pipe is provided at the mold entrance, and the temperature near the mold entrance is was kept in the range of 20-25°C. In addition, in order to prevent adhesion between the heating mold 31 and the primary molded body 12 during the curing reaction, a thin PTFE upper and lower middle is provided at the portion in contact with the primary molded body 12 inside the aluminum alloy heated molding die 31 . Set the child type. Using this heating mold 31, a primary molding 12 having a width of 15 mm and a thickness of 0.5 mm was molded in the heating mold 31 set to a temperature lower than the dissociation temperature of the blocked diisocyanate. Specifically, the heating was controlled so that the temperature distribution from the vicinity of the entrance to the vicinity of the exit of the heating mold 31 varied continuously within the range of 20°C to 120°C.
 引抜装置40により加熱成形型31から引き抜かれた一次成形体12を、遠赤外線ヒータである加熱装置32においてさらに加熱硬化させた。加熱装置32による加熱温度は120℃に設定した。この例では加熱装置32は長さが可変式であり、加熱装置32の長さを1.0mとした。加熱成形型31の長さは0.5mであるため、加熱装置32を加えた加熱成形部30の長さは1.5mであった。3分間の重合時間を確保するように(即ち、加熱成形型31から加熱装置32までの重合時間を3分間確保するように)、引取り速度は500mm/分とした。加熱成形部30から引き抜かれた段階で一次成形体12は、ガラス転移温度以下のガラス状態にあり、即ち疑似硬化していた。 The primary molded body 12 drawn out from the heating mold 31 by the drawing device 40 was further heated and cured in the heating device 32, which is a far-infrared heater. The heating temperature by the heating device 32 was set to 120°C. In this example, the length of the heating device 32 is variable, and the length of the heating device 32 is set to 1.0 m. Since the length of the thermoforming mold 31 was 0.5 m, the length of the thermoforming section 30 including the heating device 32 was 1.5 m. The take-up speed was set to 500 mm/min so as to secure 3 minutes of polymerization time (that is, to secure 3 minutes of polymerization time from the heating mold 31 to the heating device 32). The primary molded body 12 was in a glass state below the glass transition temperature at the stage when it was pulled out from the thermoforming section 30, that is, it was pseudo-cured.
 引抜装置40を経て引き抜かれた一次成形体12は、30cmの長さに切断した。その後、一次成形体12の重合反応をさらに完全にするために、オーブンにて120℃で60分間の加熱を行って、一次成形体12を得た。 The primary molded body 12 drawn out through the drawing device 40 was cut to a length of 30 cm. After that, in order to further complete the polymerization reaction of the primary molded body 12 , the primary molded body 12 was obtained by heating in an oven at 120° C. for 60 minutes.
 得られた一次成形体12を3枚重ね、ブロック化ジイソシアネートの解離温度よりも高い温度で60分間、7MPaの圧力で熱プレスを行い、二次成形体としての積層体を得た。熱プレス時の加熱温度は、実施例6では220℃とし、その他の実施例および比較例では200℃に設定した。得られた積層体について、積層間の接着状態を評価した。 Three sheets of the obtained primary molded body 12 were stacked and hot pressed at a pressure of 7 MPa for 60 minutes at a temperature higher than the dissociation temperature of the blocked diisocyanate to obtain a laminate as a secondary molded body. The heating temperature during hot pressing was set to 220° C. in Example 6, and was set to 200° C. in other examples and comparative examples. The obtained laminate was evaluated for the state of adhesion between the laminates.
 積層間の接着状態の評価は、JIS K7017:1999に準拠して、板厚1.5mm、全長60mmおよび幅15mmの試料を用いて、支点間距離40mmで1mm/分にて静的三点曲げ試験した後の試料の断面を電子顕微鏡で確認した。層間に亀裂があるものを層間接着性に劣るとして「×」とし、亀裂が観られないものを層間接着性に優れるとして「○」と評価した。結果を表2に示す。 Evaluation of the state of adhesion between laminations was carried out in accordance with JIS K7017: 1999, using a sample with a thickness of 1.5 mm, a total length of 60 mm and a width of 15 mm, and static three-point bending at a distance of 40 mm between fulcrums at 1 mm/min. A cross-section of the sample after testing was confirmed with an electron microscope. A sample with cracks between layers was evaluated as having poor interlayer adhesion and was evaluated as "X", and a sample with no cracks was evaluated as having excellent interlayer adhesion and was evaluated as "○". Table 2 shows the results.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、イソシアネート成分としてブロック化ジイソシアネートと非ブロック化ジイソシアネートを併用した実施例1~9であると、繊維への含浸性を損なうことなく、積層体の層間での剥離を抑制して、層間の接着性を向上することができた。また、イソシアネート成分におけるイソシアネート基のブロック率が56%以下であることにより、第2液の粘度を4000mPa・s以下に抑えることができ、そのため、第2液の液温を上昇させることなく繊維への含浸性を確保することができた。 As shown in Table 2, in Examples 1 to 9 in which a blocked diisocyanate and a non-blocked diisocyanate were used in combination as isocyanate components, delamination between layers of the laminate was suppressed without impairing the impregnation of fibers. Therefore, the adhesion between the layers could be improved. In addition, since the blocking rate of the isocyanate groups in the isocyanate component is 56% or less, the viscosity of the second liquid can be suppressed to 4000 mPa s or less. It was possible to ensure the impregnation of
 なお、明細書に記載の種々の数値範囲は、それぞれそれらの上限値と下限値を任意に組み合わせることができ、それら全ての組み合わせが好ましい数値範囲として本明細書に記載されているものとする。また、「X~Y」との数値範囲の記載は、X以上Y以下を意味する。 It should be noted that the various numerical ranges described in the specification can be arbitrarily combined with their upper and lower limits, and all combinations thereof are described in this specification as preferred numerical ranges. Further, the description of the numerical range "X to Y" means X or more and Y or less.
 以上、本発明のいくつかの実施形態を説明したが、これら実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその省略、置き換え、変更などは、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although several embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. These embodiments, their omissions, replacements, modifications, etc., are included in the invention described in the scope of claims and equivalents thereof, as well as being included in the scope and gist of the invention.

Claims (10)

  1.  強化材として繊維を含む熱可塑性樹脂複合体の熱可塑性マトリックス樹脂を形成するために用いられる二液反応型組成物であって、
     アルキルチオ基を有する芳香族ジアミンを含む活性水素成分と、脂肪族ジイソシアネート、脂環式ジイソシアネートおよびこれらの変性体からなる群から選択された少なくとも一種のジイソシアネートを含むイソシアネート成分と、を有し、
     前記ジイソシアネートが、少なくとも一方のイソシアネート基がブロックされたブロック化ジイソシアネートと、イソシアネート基がブロックされていない非ブロック化ジイソシアネートと、を含む、
     熱可塑性マトリックス樹脂形成用二液反応型組成物。
    A two-part reactive composition for use in forming a thermoplastic matrix resin of a thermoplastic composite comprising fibers as reinforcement, comprising:
    An active hydrogen component containing an aromatic diamine having an alkylthio group, and an isocyanate component containing at least one diisocyanate selected from the group consisting of aliphatic diisocyanates, alicyclic diisocyanates and modified products thereof,
    The diisocyanate comprises a blocked diisocyanate in which at least one isocyanate group is blocked and an unblocked diisocyanate in which the isocyanate group is not blocked,
    A two-part reactive composition for forming a thermoplastic matrix resin.
  2.  前記イソシアネート成分全体のイソシアネート基に対するブロックされたイソシアネート基のモル比率であるブロック率が1~56%である、請求項1に記載の熱可塑性マトリックス樹脂形成用二液反応型組成物。 The two-liquid reactive composition for forming a thermoplastic matrix resin according to claim 1, wherein the blocking rate, which is the molar ratio of blocked isocyanate groups to isocyanate groups in the entire isocyanate component, is 1 to 56%.
  3.  強化材として繊維を含む熱可塑性樹脂複合体のためのマトリックス樹脂であって、
     アルキルチオ基を有する芳香族ジアミンを含む活性水素成分と、脂肪族ジイソシアネート、脂環式ジイソシアネートおよびこれらの変性体からなる群から選択された少なくとも一種のジイソシアネートを含むイソシアネート成分と、の反応物を含む熱可塑性樹脂であり、
     前記ジイソシアネートが、少なくとも一方のイソシアネート基がブロックされたブロック化ジイソシアネートと、イソシアネート基がブロックされていない非ブロック化ジイソシアネートとを含む、
     熱可塑性樹脂複合体用マトリックス樹脂。
    A matrix resin for a thermoplastic resin composite containing fibers as reinforcement,
    Heat containing a reaction product of an active hydrogen component containing an aromatic diamine having an alkylthio group and an isocyanate component containing at least one diisocyanate selected from the group consisting of aliphatic diisocyanates, alicyclic diisocyanates and modified products thereof. is a plastic resin,
    The diisocyanate comprises a blocked diisocyanate in which at least one isocyanate group is blocked and an unblocked diisocyanate in which the isocyanate group is not blocked,
    Matrix resin for thermoplastic resin composites.
  4.  請求項1または2に記載の二液反応型組成物が反応して得られる熱可塑性マトリックス樹脂または請求項3に記載のマトリックス樹脂と、強化材としての繊維と、を含む、熱可塑性樹脂複合体。 A thermoplastic resin composite comprising a thermoplastic matrix resin obtained by reacting the two-component reactive composition according to claim 1 or 2 or the matrix resin according to claim 3, and fibers as a reinforcing material. .
  5.  請求項1または2に記載の二液反応型組成物が反応して得られる熱可塑性マトリックス樹脂または請求項3に記載のマトリックス樹脂と、強化材としての繊維と、を含む複数の一次成形体を重ね、熱成形により積層一体化して得られた積層体である、熱可塑性樹脂複合体。 A plurality of primary molded bodies containing the thermoplastic matrix resin obtained by reacting the two-component reactive composition according to claim 1 or 2 or the matrix resin according to claim 3, and fibers as reinforcing materials. A thermoplastic resin composite, which is a laminate obtained by laminating and integrating by stacking and thermoforming.
  6.  強化材として繊維を含む熱可塑性樹脂複合体の製造方法であって、
     活性水素成分とイソシアネート成分とを含み、前記イソシアネート成分が、少なくとも一方のイソシアネート基がブロックされたブロック化ジイソシアネートと、イソシアネート基がブロックされていない非ブロック化ジイソシアネートと、を含む、熱可塑性マトリックス樹脂形成用組成物を繊維に含浸させること、および、
     前記ブロック化ジイソシアネートの解離温度よりも低い温度で前記繊維を加熱することにより、ブロックされたイソシアネート基を保持したまま、前記熱可塑性マトリックス樹脂形成用組成物を重合し、重合により得られる熱可塑性マトリックス樹脂を含む一次成形体を得ること、
     を含む、熱可塑性樹脂複合体の製造方法。
    A method for producing a thermoplastic resin composite containing fibers as a reinforcing material,
    A thermoplastic matrix resin formulation comprising an active hydrogen component and an isocyanate component, wherein the isocyanate component comprises a blocked diisocyanate in which at least one isocyanate group is blocked and an unblocked diisocyanate in which the isocyanate group is unblocked. impregnating the fibers with a composition for
    By heating the fibers at a temperature lower than the dissociation temperature of the blocked diisocyanate, the thermoplastic matrix resin-forming composition is polymerized while retaining the blocked isocyanate groups, thereby obtaining a thermoplastic matrix. obtaining a primary molded body containing a resin;
    A method for producing a thermoplastic resin composite, comprising:
  7.  前記熱可塑性マトリックス樹脂形成用組成物は、イソシアネート成分全体のイソシアネート基に対するブロックされたイソシアネート基のモル比率であるブロック率が1~56%である、請求項6に記載の熱可塑性樹脂複合体の製造方法。 7. The thermoplastic resin composite according to claim 6, wherein the thermoplastic matrix resin-forming composition has a blocking rate, which is a molar ratio of blocked isocyanate groups to isocyanate groups in the entire isocyanate component, of 1 to 56%. Production method.
  8.  前記熱可塑性マトリックス樹脂形成用組成物の前記活性水素成分はアルキルチオ基を有する芳香族ジアミンを含み、前記イソシアネート成分は脂肪族ジイソシアネート、脂環式ジイソシアネートおよびこれらの変性体からなる群から選択された少なくとも一種のジイソシアネートを含み、前記ジイソシアネートが前記ブロック化ジイソシアネートおよび前記非ブロック化ジイソシアネートを含む、請求項6または7に記載の熱可塑性樹脂複合体の製造方法。 The active hydrogen component of the thermoplastic matrix resin-forming composition contains an aromatic diamine having an alkylthio group, and the isocyanate component is at least selected from the group consisting of aliphatic diisocyanates, alicyclic diisocyanates and modified products thereof. The method for producing a thermoplastic resin composite according to claim 6 or 7, comprising one kind of diisocyanate, wherein said diisocyanate comprises said blocked diisocyanate and said unblocked diisocyanate.
  9.  複数の前記一次成形体を重ね、前記ブロック化ジイソシアネートのブロック剤が解離する条件で熱成形により積層一体化することをさらに含む、請求項6~8のいずれか1項に記載の熱可塑性樹脂複合体の製造方法。 The thermoplastic resin composite according to any one of claims 6 to 8, further comprising stacking a plurality of the primary molded bodies and laminating and integrating them by thermoforming under conditions where the blocking agent of the blocked diisocyanate dissociates. body manufacturing method.
  10.  前記繊維を加熱する温度が、前記一次成形体での前記熱可塑性マトリックス樹脂のガラス転移温度よりも低い、請求項6~9のいずれか1項に記載の熱可塑性樹脂複合体の製造方法。

     
    The method for producing a thermoplastic resin composite according to any one of claims 6 to 9, wherein the temperature for heating the fibers is lower than the glass transition temperature of the thermoplastic matrix resin in the primary molded product.

PCT/JP2023/001897 2022-02-04 2023-01-23 Two-part reactive composition for forming thermoplastic matrix resin, matrix resin for thermoplastic resin composite material, and thermoplastic resin composite material and method for producing same WO2023149258A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380018991.3A CN118679212A (en) 2022-02-04 2023-01-23 Two-component reactive composition for forming thermoplastic matrix resin, matrix resin for thermoplastic resin composite, and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-016167 2022-02-04
JP2022016167A JP7264358B1 (en) 2022-02-04 2022-02-04 Two-component reaction type composition for forming thermoplastic matrix resin, matrix resin for thermoplastic resin composite, thermoplastic resin composite and method for producing the same

Publications (1)

Publication Number Publication Date
WO2023149258A1 true WO2023149258A1 (en) 2023-08-10

Family

ID=86096154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001897 WO2023149258A1 (en) 2022-02-04 2023-01-23 Two-part reactive composition for forming thermoplastic matrix resin, matrix resin for thermoplastic resin composite material, and thermoplastic resin composite material and method for producing same

Country Status (3)

Country Link
JP (1) JP7264358B1 (en)
CN (1) CN118679212A (en)
WO (1) WO2023149258A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118725588A (en) * 2024-09-04 2024-10-01 浙江闪铸集团有限公司 Double-component reactive 3D printing wax material and preparation method and application method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58191745A (en) * 1982-05-07 1983-11-09 Asahi Glass Co Ltd Molding material of fiber-reinforced polyurethane
JP2018090804A (en) * 2016-12-02 2018-06-14 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH Storage-stable 1k polyurethane prepregs and shaped bodies made of polyurethane compositions produced from those prepregs
JP2019203113A (en) * 2018-05-16 2019-11-28 第一工業製薬株式会社 Two-liquid curable composition for molding thermoplastic matrix resin, matrix resin for fiber-reinforced composite material and fiber-reinforced composite material
WO2020255335A1 (en) * 2019-06-20 2020-12-24 三菱電機株式会社 Suspension body and method for producing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58191745A (en) * 1982-05-07 1983-11-09 Asahi Glass Co Ltd Molding material of fiber-reinforced polyurethane
JP2018090804A (en) * 2016-12-02 2018-06-14 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH Storage-stable 1k polyurethane prepregs and shaped bodies made of polyurethane compositions produced from those prepregs
JP2019203113A (en) * 2018-05-16 2019-11-28 第一工業製薬株式会社 Two-liquid curable composition for molding thermoplastic matrix resin, matrix resin for fiber-reinforced composite material and fiber-reinforced composite material
WO2020255335A1 (en) * 2019-06-20 2020-12-24 三菱電機株式会社 Suspension body and method for producing same

Also Published As

Publication number Publication date
JP7264358B1 (en) 2023-04-25
CN118679212A (en) 2024-09-20
JP2023114066A (en) 2023-08-17

Similar Documents

Publication Publication Date Title
US11135825B2 (en) Metal/fiber-reinforced resin material composite body and method for producing same
EP3152251B1 (en) Process for making curable, multi-layer fiber-reinforced prepreg
CN112074561B (en) Two-part curable composition for forming thermoplastic matrix resin, matrix resin for fiber-reinforced composite material, and fiber-reinforced composite material
WO2023149258A1 (en) Two-part reactive composition for forming thermoplastic matrix resin, matrix resin for thermoplastic resin composite material, and thermoplastic resin composite material and method for producing same
EP3604406A1 (en) Prepreg and fiber-reinforced composite material
US10093802B2 (en) Molding material, method of producing same, and master batch used in same
KR102503026B1 (en) Molding Compounds with Randomly Oriented Filaments and Methods of Making and Using The Same
WO2015167881A1 (en) Prepreg manufacturing and drying process
JP2004035702A (en) Epoxy resin composition for fiber-reinforced composite material, fiber-reinforced composite material and method for manufacturing fiber-reinforced composite material
CN109312057B (en) Epoxy resin composition for fiber-reinforced composite material and prepreg using the same
KR20190061662A (en) Preparation method of quasi-isotropic chopped prepreg sheet and composite materials formed using the same for shock absorption and damping effect
US20240025137A1 (en) Method and apparatus for manufacturing thermoplastic resin composite
EP3628701B1 (en) Prepreg and molding product thereof
CN112088179B (en) Two-pack curable composition for producing thermoplastic polyurethane resin, and fiber-reinforced resin
CN115397898B (en) Epoxy resin composition for fiber-reinforced composite material, prepreg, and fiber-reinforced composite material
CN114729109B (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JP6520043B2 (en) Molding material, method for producing the same, and molded article
JP2022062895A (en) Prepreg for fiber-reinforced resin molding and fiber-reinforced resin molded article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23749574

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202380018991.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE