WO2020255254A1 - Tank and ship - Google Patents

Tank and ship Download PDF

Info

Publication number
WO2020255254A1
WO2020255254A1 PCT/JP2019/024098 JP2019024098W WO2020255254A1 WO 2020255254 A1 WO2020255254 A1 WO 2020255254A1 JP 2019024098 W JP2019024098 W JP 2019024098W WO 2020255254 A1 WO2020255254 A1 WO 2020255254A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
lng
flash point
low flash
point fuel
Prior art date
Application number
PCT/JP2019/024098
Other languages
French (fr)
Japanese (ja)
Inventor
宏明 大橋
松本 卓也
Original Assignee
日本郵船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本郵船株式会社 filed Critical 日本郵船株式会社
Priority to JP2019553128A priority Critical patent/JP6775695B1/en
Priority to PL436494A priority patent/PL436494A1/en
Priority to KR1020207035619A priority patent/KR102421897B1/en
Priority to CN201980041665.8A priority patent/CN112400057B/en
Priority to PCT/JP2019/024098 priority patent/WO2020255254A1/en
Publication of WO2020255254A1 publication Critical patent/WO2020255254A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B11/00Interior subdivision of hulls
    • B63B11/04Constructional features of bunkers, e.g. structural fuel tanks, or ballast tanks, e.g. with elastic walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/38Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0203Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
    • F02M21/0209Hydrocarbon fuels, e.g. methane or acetylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0221Fuel storage reservoirs, e.g. cryogenic tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0245High pressure fuel supply systems; Rails; Pumps; Arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/22Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines, e.g. arrangements in the feeding system
    • F02M37/32Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines, e.g. arrangements in the feeding system characterised by filters or filter arrangements
    • F02M37/50Filters arranged in or on fuel tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/004Details of vessels or of the filling or discharging of vessels for large storage vessels not under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C6/00Methods and apparatus for filling vessels not under pressure with liquefied or solidified gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0352Pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0135Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • F17C2265/066Fluid distribution for feeding engines for propulsion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system
    • Y02T70/5218Less carbon-intensive fuels, e.g. natural gas, biofuels

Definitions

  • This disclosure relates to a tank mounted on a ship and a ship equipped with this tank.
  • LNG ships ships that carry low flash point fuel such as LNG as cargo
  • LNG fuel-fired ships ships that use low flash point fuel as propulsion fuel
  • the pump for cargo handling used to carry out LNG stored in the tank inside the ship is relatively large because it is necessary to suck a large amount of LNG.
  • a relatively small pump is used to suck a small amount of LNG for propulsion of the ship. The smaller the size of the pump used, the more likely it is that impurities contained in LNG will damage each element of the pump, such as the inducer and impeller, when sucked into the pump.
  • An object of the present disclosure is to provide a tank and a ship capable of suppressing damage to a pump for deriving a low flash point fuel stored inside.
  • the pump according to one aspect of the embodiment of the present invention is a tank mounted on a ship, and includes a tank body for storing low flash point fuel, an introduction path for introducing the low flash point fuel into the tank body, and the like.
  • the x direction, the y direction, and the z direction are perpendicular to each other.
  • the x and y directions are typically horizontal and the z direction is typically vertical.
  • the x direction is the extending direction of one opposite side when the bottom surface of the tank 1 according to the embodiment is substantially rectangular, and the y direction is the extending direction of the other opposite side.
  • the z positive direction side may be expressed as the upper side and the z negative direction side may be expressed as the lower side.
  • FIG. 1 is a schematic diagram illustrating a type of ship according to an embodiment.
  • LNG Liquefied Natural Gas
  • LNG will be described as an example of the low flash point fuel stored in the tank 1 according to the embodiment.
  • the ships to which the tank 1 for storing LNG is applied include LNG ships, LNG fuel-fired ships, and LNG bunker ships.
  • An LNG carrier is a ship that carries LNG stored in tank 1 inside the ship as cargo.
  • An LNG fuel-fired ship is a ship that supplies LNG stored in tank 1 inside the ship to the engine and uses it as propulsion fuel.
  • LNG in a liquid state in the tank 1 is sent to an engine by a pump and injected by the engine to be fueled.
  • the BOG Boil Off Gas: methane gas naturally generated by the heat input to the tank
  • vaporized in the tank can be compressed and injected by the engine to be used as fuel.
  • the LNG bunker ship is a ship for supplying LNG stored in the tank 1 in the ship from the land terminal to the tanks of the LNG ship and the LNG fuel-fired ship.
  • the names of LNG ships, LNG fuel-fired ships, and LNG bunker ships include other names as long as they have similar functions.
  • the LNG ship and the LNG bunker ship may be configured to supply the LNG stored in the tank 1 in the ship to the engine and use it as propulsion fuel.
  • the LNG fuel-fired ship may be configured to use LNG as a propulsion fuel or to carry it as cargo.
  • FIG. 2 is a vertical sectional view of the tank 1 according to the first embodiment.
  • FIG. 3 is a cross-sectional view of the tank 1 according to the first embodiment.
  • the vertical sectional view of FIG. 2 is a sectional view in a horizontal direction (y direction).
  • the cross-sectional view of FIG. 3 is a cross-sectional view taken in the vertical direction (z direction), and is, for example, an AA cross section in FIG.
  • the tank 1 includes a tank body 2 for storing LNG, an introduction path 3 for introducing LNG into the tank body 2, a pump 5 for sucking LNG stored in the tank body 2, and a pump.
  • a lead-out path 4 for leading the LNG sucked by 5 to the outside from the tank body 2 is provided.
  • the tank body 2 has a substantially cubic shape as shown in FIG. 1, for example, and has a bottom surface 2a.
  • Examples of the tank 1 having such a shape include a Type-C tank (pressure type tank), an independent square type tank, and a membrane type tank.
  • the shape of the tank body 2 may be at least a shape having a bottom surface 2a at the lowermost end, and may be another shape such as a spherical shape.
  • the introduction path 3 and the lead-out path 4 are inserted into the tank from the upper surface side of the tank body 2, extend downward, and the tip portion reaches the vicinity of the bottom surface 2a and opens.
  • a pump 5 is attached to the opening at the tip of the lead-out path 4, and is configured to lead the LNG inside the tank sucked by the pump 5 to the outside through the lead-out path 4 when the pump 5 is operated.
  • the LNG stored in the tank body 2 may contain impurities D depending on, for example, the geographical conditions (desert area, etc.) of the purification site of LNG.
  • Impurity D includes, for example, silicon, iron, or fiber.
  • the pump 5 is arranged near the bottom surface 2a of the tank body 2. Therefore, when the impurity D is settled around the pump 5, the pump 5 sucks the impurity D in addition to the LNG. As a result, elements such as the inducer (suction inlet portion) of the pump 5 may be damaged.
  • the LNG fuel is sent from the tank 1 to the main engine of the hull, and the amount of LNG derived is smaller than that of a LNG carrier that draws out a large amount of LNG to the outside. Will be miniaturized. As a result, it is considered that the impurities D are likely to cause damage to each element.
  • the pump 5 When the pump 5 is damaged, the pump 5 vibrates and the damage spreads to each part of the pump, and the suction force of the pump 5 becomes weaker, and eventually the pump becomes inoperable. If the pump 5 becomes non-operational, LNG fuel cannot be used, so that it is necessary to gas-free the tank 1 for inspection, replacement, and the like, which may take time and cost.
  • a partition plate 6 (inner wall portion) is provided on the bottom surface 2a of the tank body 2 in order to suppress the suction of impurities D by the pump 5.
  • the partition plate 6 divides the bottom surface 2a of the tank body 2 into a region R1 including a drop position of LNG from the introduction path 3 and a region R2 including a suction position of LNG by the pump 5. .. More specifically, the partition plate 6 is provided in the vicinity of the drop position of LNG from the introduction path 3 on the bottom surface 2a, and both ends thereof are connected to the side walls 2b and 2c of the tank body 2, respectively.
  • the partition plate 6 illustrates a configuration in which the partition plate 6 extends linearly in the y direction, but at least both ends may be connected to the side walls 2b and 2c of the tank body 2, respectively. , Curved shape, etc. may be used.
  • the partition plate 6 by providing the partition plate 6, most of the impurities D in the tank are concentrated in the region R1 on the introduction path 3 side of the partition plate 6, so that the recovery work of the impurities D can be performed. It can be done easily, and the inside of the tank can be easily cleaned.
  • the tip of the introduction path 3 may be configured to open in the horizontal direction instead of the configuration to open downward as shown in FIG.
  • the opening direction is a direction that does not face the partition plate 6 on the x positive direction side, and is x negative direction side or y direction from the position of the introduction path 3 shown in FIG.
  • the tip portion of the introduction path 3 may be branched to provide openings in a plurality of directions.
  • FIG. 4 is a diagram showing a modified example of the tip end portion of the introduction path 3. Typically, as shown in FIG.
  • the tip portion 3A of the introduction path 3 is branched into a T shape, and the outlets 3B and 3C of the introduction path 3 are ported in the port side direction (y positive direction and y) of the tank 1. It can be configured to face in the negative direction).
  • the tank 1 is a Type-C tank, the tank shape is cylindrical, so that the opening direction of the tip of the introduction path 3 is the direction of the inner peripheral surface.
  • one or a plurality of holes may be provided between the two outlets 3B and 3C, and LNG may be discharged from each hole.
  • the discharge pressure of the introduction path 3 can be dispersed between the two outlets 3B and 3C and each hole, so that LNG can be supplied into the tank more slowly than when there is no hole.
  • the rebound of LNG on the liquid surface can be suppressed, and the LNG mixed with the impurity D can be further suppressed from jumping over the partition plate 6.
  • the height of the partition plate 6 is, for example, a predetermined amount (for example, about 100 mm) higher than the opening position of the tip of the introduction path 3 (the height of the upper end of the opening when the opening direction is horizontal such as the above T-shape). Is preferable.
  • the height dimension is increased, or the drop position of LNG from the introduction path 3 and the partition plate 6 are reached. It is preferable to increase the distance.
  • a plurality of partition plates 6 may be provided between the drop position of LNG from the introduction path 3 and the suction position of LNG by the pump 5.
  • the impurity D can be removed from the LNG in multiple stages according to the number of regions formed by the plurality of partition plates, the capture rate of the impurity D can be improved by the so-called cascade effect, and the impurity D of the LNG in the vicinity of the pump 5 can be improved. Content can be further reduced.
  • the height of the partition plate 6 can be lowered to promote the flow of LNG.
  • a conductive member such as a net that can pass through LNG may be provided so as to extend above the tank body 2 from the upper end of the partition plate 6.
  • FIG. 5 is a vertical sectional view of the tank 1A according to the second embodiment.
  • FIG. 6 is a schematic view of the partition plate 6 in FIG. 5 as viewed from the main surface direction.
  • the tank 1A of the second embodiment is different from the first embodiment in that the partition plate 6 is provided with the conductive portion 7 of LNG.
  • the tank 1A of the second embodiment corresponds to the tank 1 shown in FIG.
  • the conductive portion 7 is provided on at least a part of the main surface of the partition plate 6.
  • the conductive portion 7 is an element that can pass through LNG and can suppress the conduction of the impurity D contained in LNG.
  • the conductive portion 7 may be a through hole as shown in FIG. 6, or may have another structure such as a net or a mesh structure.
  • the trapping rate of impurities D in the region R1 can be improved.
  • the partition plate 6 is high, the amount of LNG stored in the region R1 and not flowing to the pump 5 side also increases.
  • the work efficiency of gas-free operation work of vaporizing LNG in the tank for work such as inspection of the inside of the tank
  • the partition plate 6 is raised to improve the trapping rate of impurities D, the gas is increased accordingly. -The work efficiency of free operation is reduced.
  • the partition plate 6 is raised in order to improve the trapping rate of impurities D by providing the partition plate 6 with a conductive portion 7 such as a through hole, the LNG stored in the region R1 is not generated. It can flow out from the conductive portion 7 to the region R2 side without getting over the partition plate 6. As a result, the liquid level of LNG in the region R1 can be lowered to the height position of the conductive portion 7, and the amount of LNG remaining in the region R1 can be reduced. Therefore, the capture rate of impurities D can be improved and the gas-free operation can be performed. It is possible to improve work efficiency at the same time.
  • the dimension of the height position of the conductive portion 7 When the ship on which the tank 1A is mounted is 300 m in length and 50 m in width, the area of the bottom surface of the tank 1A is 70% of the ship area, and the remaining amount of LNG before gas-free operation is 100 to 150 m 3. Assume. Under this condition, the height position of the conductive portion 7 is preferably about 1.4 to 2.0 cm from the bottom surface 2a, and particularly preferably about 1.5 cm. Further, in the case of a hole, the conductive portion 7 preferably has a diameter of about 5 mm in order to prevent the flow of impurities D.
  • FIG. 7 is a vertical cross-sectional view of the tank 1B according to the third embodiment.
  • FIG. 8 is a cross-sectional view of the tank 1B according to the third embodiment.
  • the peripheral wall 8 in the tank 1B of the third embodiment, instead of the partition plate 6, the peripheral wall 8 (inner wall) surrounding the bottom surface 2a of the tank body 2 around the suction position of LNG by the pump 5 (inner wall). Part) is provided, which is different from the first and second embodiments.
  • the tank 1B of the third embodiment corresponds to the tank 1 shown in FIG.
  • the peripheral wall 8 has a bottom surface 2a of the tank body 2 as a region R1 including a drop position of LNG from the introduction path 3 and a pump, as shown in FIG. It is divided into the region R2 including the suction position of LNG according to 5.
  • the peripheral wall 8 is a rising portion erected from the bottom surface 2a, for example, like hatch combing.
  • the peripheral wall 8 may be configured to enclose the suction position of LNG by the pump 5 in an annular shape, and may have a shape other than the annular shape shown in FIG. 8, such as a rectangular annular shape.
  • the impurities D that settle in the region R2, that is, in the vicinity of the pump 5 can be reduced as in the first embodiment, so that the LNG stored in the tank is derived. It is possible to suppress the damage of the pump 5 for this purpose.
  • the tank 1B is provided in the region R1 of the bottom surface 2a, and has a discharge path 9A capable of discharging impurities D contained in LNG to the outside from the tank body 2 and a lid portion 9B for opening and closing the discharge path 9A.
  • the entrance / exit of workers into the tank is generally provided on the upper surface of the tank, and impurities D in the tank are discharged to the outside of the tank through the entrance / exit above the tank. It is common.
  • the impurities D accumulated on the bottom surface 2a of the tank body 2 can be removed from the upper part of the tank at an opportunity such as during a regular inspection inside the tank. It can be easily removed to the outside without having to lift it up to the doorway. This makes it easier to clean the inside of the tank.
  • the configuration in which the discharge path 9A and the lid portion 9B are provided on the bottom surface 2a of the tank may be applied to the tank 1 of the first embodiment and the tank 1A of the second embodiment.
  • impurities D are mainly deposited in the region R1 near the drop position of LNG from the introduction path 3, it is preferable that the discharge path 9A and the lid portion 9B are provided in the region R1.
  • FIG. 9 is a vertical sectional view of the tank 1C according to the fourth embodiment.
  • the tank 1C of the fourth embodiment is different from the third embodiment in that a mesh member 10 is provided instead of the peripheral wall 8.
  • the mesh-like member 10 can pass through LNG and can suppress the conduction of impurities D contained in LNG.
  • the tank 1C of the fourth embodiment corresponds to the tank 1 shown in FIG.
  • the mesh member 10 in the tank 1C By providing the mesh member 10 in the tank 1C according to the fourth embodiment, the amount of LNG remaining in the region R1 can be reduced as in the second embodiment, the capture rate of impurities D can be improved, and gas-free. It is possible to improve the work efficiency of operations at the same time.
  • LNG has been described as an example of the low flammability fuel stored in the tank 1, but it also includes other liquefied gas such as LPG (Liquefied Petroleum Gas: liquefied petroleum gas), liquid hydrogen, ethanol fuel and the like. Other low flammability fuels are also applicable.
  • LPG Liquefied Petroleum Gas: liquefied petroleum gas
  • liquid hydrogen liquid hydrogen
  • ethanol fuel liquid hydrogen
  • Other low flammability fuels are also applicable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

This tank is mounted to a ship and is provided with: a tank body for storing a low flash point fuel; an introduction path for introducing the low flash point fuel into the tank body; a pump that suctions the low flash point fuel stored in the tank body; a lead-out path by which the low flash point fuel suctioned by the pump is led out from the tank body to the exterior; and an inner wall for dividing the bottom surface of the tank body into an area including a position at which the low flash point fuel falls from the introduction path and an area including a position at which the low flash point fuel is suctioned by the pump.

Description

タンク及び船舶Tanks and ships
 本開示は、船舶に搭載されるタンクと、このタンクを搭載する船舶に関する。 This disclosure relates to a tank mounted on a ship and a ship equipped with this tank.
 従来、LNGなどの低引火点燃料を貨物として運搬する船舶(以下では「LNG船」という)に加えて、低引火点燃料を推進燃料として用いる船舶(以下では「LNG燃料焚船」という)が知られている(例えば特許文献1) Conventionally, in addition to ships that carry low flash point fuel such as LNG as cargo (hereinafter referred to as "LNG ships"), ships that use low flash point fuel as propulsion fuel (hereinafter referred to as "LNG fuel-fired ships") Known (for example, Patent Document 1)
特開2018-188073号公報JP-A-2018-188073
 LNG船では船体内のタンクに貯留されるLNGを搬出するために用いられる荷役目的のポンプは、大量のLNGを吸引する必要があるため比較的大型である。一方、LNG燃料焚船では、船の推進用に少量のLNGを吸引するため比較的小型のポンプが用いられる。使用するポンプが小型化になるほど、LNG内に含まれる不純物が、ポンプへ吸引される際に、インデューサやインペラなどのポンプの各要素にダメージを与えやすい。 On LNG carriers, the pump for cargo handling used to carry out LNG stored in the tank inside the ship is relatively large because it is necessary to suck a large amount of LNG. On the other hand, in an LNG fuel-fired ship, a relatively small pump is used to suck a small amount of LNG for propulsion of the ship. The smaller the size of the pump used, the more likely it is that impurities contained in LNG will damage each element of the pump, such as the inducer and impeller, when sucked into the pump.
 本開示は、内部に貯留される低引火点燃料を導出するためのポンプのダメージを抑制できるタンク及び船舶を提供することを目的とする。 An object of the present disclosure is to provide a tank and a ship capable of suppressing damage to a pump for deriving a low flash point fuel stored inside.
 本発明の実施形態の一観点に係るポンプは、船舶に搭載されるタンクであって、低引火点燃料を貯留するタンク本体と、前記低引火点燃料を前記タンク本体に導入する導入路と、前記タンク本体に貯留されている前記低引火点燃料を吸引するポンプと、前記ポンプにより吸引された前記低引火点燃料を前記タンク本体から外部に導出する導出路と、前記タンク本体の底面を、前記導入路からの前記低引火点燃料の落下位置を含む領域と、前記ポンプによる前記低引火点燃料の吸引位置を含む領域とに区分する内壁部と、を備える。 The pump according to one aspect of the embodiment of the present invention is a tank mounted on a ship, and includes a tank body for storing low flash point fuel, an introduction path for introducing the low flash point fuel into the tank body, and the like. A pump for sucking the low flash point fuel stored in the tank body, a lead-out path for leading the low flash point fuel sucked by the pump to the outside from the tank body, and a bottom surface of the tank body. It is provided with an inner wall portion that is divided into a region including a drop position of the low flash point fuel from the introduction path and a region including a suction position of the low flash point fuel by the pump.
 本開示によれば、内部に貯留される低引火点燃料を導出するためのポンプのダメージを抑制できるタンク及び船舶を提供することができる。 According to the present disclosure, it is possible to provide a tank and a ship capable of suppressing damage to a pump for deriving a low flash point fuel stored inside.
実施形態に係る船舶の種類を説明する模式図である。It is a schematic diagram explaining the type of a ship which concerns on embodiment. 第1実施形態に係るタンクの縦断面図である。It is a vertical sectional view of the tank which concerns on 1st Embodiment. 第1実施形態に係るタンクの横断面図である。It is sectional drawing of the tank which concerns on 1st Embodiment. 導入路の先端部の変形例を示す図である。It is a figure which shows the deformation example of the tip part of the introduction path. 第2実施形態に係るタンクの縦断面図である。It is a vertical sectional view of the tank which concerns on 2nd Embodiment. 図5中の仕切り板を主面方向から視た模式図である。It is a schematic view which looked at the partition plate in FIG. 5 from the main surface direction. 第3実施形態に係るタンクの縦断面図である。It is a vertical sectional view of the tank which concerns on 3rd Embodiment. 第3実施形態に係るタンクの横断面図である。It is sectional drawing of the tank which concerns on 3rd Embodiment. 第4実施形態に係るタンクの縦断面図である。It is a vertical sectional view of the tank which concerns on 4th Embodiment.
 以下、添付図面を参照しながら実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。 Hereinafter, embodiments will be described with reference to the attached drawings. In order to facilitate understanding of the description, the same components are designated by the same reference numerals as much as possible in each drawing, and duplicate description is omitted.
 なお、以下の説明において、x方向、y方向、z方向は互いに垂直な方向である。x方向及びy方向は典型的には水平方向であり、z方向は典型的には鉛直方向である。x方向は、実施形態に係るタンク1の底面が略矩形状の場合の一方の対辺の延在方向であり、y方向は、他方の対辺の延在方向である。また、以下では説明の便宜上、z正方向側を上側、z負方向側を下側とも表現する場合がある。 In the following description, the x direction, the y direction, and the z direction are perpendicular to each other. The x and y directions are typically horizontal and the z direction is typically vertical. The x direction is the extending direction of one opposite side when the bottom surface of the tank 1 according to the embodiment is substantially rectangular, and the y direction is the extending direction of the other opposite side. Further, in the following, for convenience of explanation, the z positive direction side may be expressed as the upper side and the z negative direction side may be expressed as the lower side.
 [第1実施形態]
 図1~図3を参照して第1実施形態を説明する。まず図1を参照して、実施形態に係るタンク1が適用される船舶の種類について説明する。図1は、実施形態に係る船舶の種類を説明する模式図である。なお、実施形態に係るタンク1が貯留する低引火点燃料の一例として、LNG(Liquefied Natural Gas:液化天然ガス)を挙げて説明する。
[First Embodiment]
The first embodiment will be described with reference to FIGS. 1 to 3. First, with reference to FIG. 1, the type of ship to which the tank 1 according to the embodiment is applied will be described. FIG. 1 is a schematic diagram illustrating a type of ship according to an embodiment. LNG (Liquefied Natural Gas) will be described as an example of the low flash point fuel stored in the tank 1 according to the embodiment.
 図1に示すように、LNGを貯留するタンク1が適用される船舶は、LNG船と、LNG燃料焚船と、LNGバンカ船とを含む。 As shown in FIG. 1, the ships to which the tank 1 for storing LNG is applied include LNG ships, LNG fuel-fired ships, and LNG bunker ships.
 LNG船とは、船体内のタンク1に貯留したLNGを貨物として運搬する船舶である。 An LNG carrier is a ship that carries LNG stored in tank 1 inside the ship as cargo.
 LNG燃料焚船とは、船体内のタンク1に貯留したLNGをエンジンに供給して推進燃料として用いる船舶である。例えば、LNG燃料焚船では、タンク1内で液体状態であるLNGをポンプでエンジンへ送出して、エンジンで噴射させて燃料させる。または、タンク内で気化されたBOG(Boil Off Gas:タンクへの入熱で自然に発生するメタンガス)を圧縮して、エンジンで噴射させて燃料させることもできる。 An LNG fuel-fired ship is a ship that supplies LNG stored in tank 1 inside the ship to the engine and uses it as propulsion fuel. For example, in an LNG fuel-fired ship, LNG in a liquid state in the tank 1 is sent to an engine by a pump and injected by the engine to be fueled. Alternatively, the BOG (Boil Off Gas: methane gas naturally generated by the heat input to the tank) vaporized in the tank can be compressed and injected by the engine to be used as fuel.
LNGバンカ船とは、陸上のターミナルから船体内のタンク1に貯留されたLNGを、LNG船及びLNG燃料焚船のタンクへ供給するための船舶である。 The LNG bunker ship is a ship for supplying LNG stored in the tank 1 in the ship from the land terminal to the tanks of the LNG ship and the LNG fuel-fired ship.
 なお、LNG船、LNG燃料焚船、LNGバンカ船の各呼称は、同様の機能を有する船舶であれば他の呼称のものも含む。また、LNG船及びLNGバンカ船が、船体内のタンク1に貯留したLNGをエンジンに供給して推進燃料として用いる構成でもよい。また、LNG燃料焚船が、LNGを推進燃料として用いる他に貨物として運搬する構成でもよい。 The names of LNG ships, LNG fuel-fired ships, and LNG bunker ships include other names as long as they have similar functions. Further, the LNG ship and the LNG bunker ship may be configured to supply the LNG stored in the tank 1 in the ship to the engine and use it as propulsion fuel. Further, the LNG fuel-fired ship may be configured to use LNG as a propulsion fuel or to carry it as cargo.
 図2は、第1実施形態に係るタンク1の縦断面図である。図3は、第1実施形態に係るタンク1の横断面図である。図2の縦断面図は、水平方向視(y方向)の断面図である。図3の横断面図は、垂直方向視(z方向)の断面図であり、例えば図2中のA-A断面である。 FIG. 2 is a vertical sectional view of the tank 1 according to the first embodiment. FIG. 3 is a cross-sectional view of the tank 1 according to the first embodiment. The vertical sectional view of FIG. 2 is a sectional view in a horizontal direction (y direction). The cross-sectional view of FIG. 3 is a cross-sectional view taken in the vertical direction (z direction), and is, for example, an AA cross section in FIG.
 図2に示すように、タンク1は、LNGを貯留するタンク本体2と、LNGをタンク本体2に導入する導入路3と、タンク本体2に貯留されているLNGを吸引するポンプ5と、ポンプ5により吸引されたLNGをタンク本体2から外部に導出する導出路4と、を備える。 As shown in FIG. 2, the tank 1 includes a tank body 2 for storing LNG, an introduction path 3 for introducing LNG into the tank body 2, a pump 5 for sucking LNG stored in the tank body 2, and a pump. A lead-out path 4 for leading the LNG sucked by 5 to the outside from the tank body 2 is provided.
 タンク本体2は、例えば図1に示すような略立方体形状であり、底面2aを有する。このような形状を有するタンク1としては、例えばType-Cタンク(圧力式タンク)、独立方形方式、メンブレン方式のタンクが挙げられる。なお、タンク本体2の形状は、少なくとも最下方に底面2aを有する形状であればよく、例えば球状など他の形状でもよい。 The tank body 2 has a substantially cubic shape as shown in FIG. 1, for example, and has a bottom surface 2a. Examples of the tank 1 having such a shape include a Type-C tank (pressure type tank), an independent square type tank, and a membrane type tank. The shape of the tank body 2 may be at least a shape having a bottom surface 2a at the lowermost end, and may be another shape such as a spherical shape.
 導入路3及び導出路4は、タンク本体2の上面側からタンク内部に挿入されて、下方に延在して先端部が底面2aの近傍まで到達して開口している。導出路4の先端部開口にはポンプ5が取り付けられており、ポンプ5作動時にはポンプ5が吸引したタンク内部のLNGを、導出路4を通って外部へ導出するよう構成されている。 The introduction path 3 and the lead-out path 4 are inserted into the tank from the upper surface side of the tank body 2, extend downward, and the tip portion reaches the vicinity of the bottom surface 2a and opens. A pump 5 is attached to the opening at the tip of the lead-out path 4, and is configured to lead the LNG inside the tank sucked by the pump 5 to the outside through the lead-out path 4 when the pump 5 is operated.
 ところで、タンク本体2に貯留されるLNGには、例えばLNGの精製場所の地理的条件(砂漠地帯など)に応じて不純物Dが含有される場合がある。不純物Dとしては、例えば、珪素、鉄、または繊維分を含む。不純物Dは、LNGがタンク本体2に導入された後に、LNGとの比重によって図2に示すようにタンク底面2aに沈殿される。 By the way, the LNG stored in the tank body 2 may contain impurities D depending on, for example, the geographical conditions (desert area, etc.) of the purification site of LNG. Impurity D includes, for example, silicon, iron, or fiber. After LNG is introduced into the tank body 2, the impurity D is precipitated on the bottom surface 2a of the tank as shown in FIG. 2 due to its specific gravity with LNG.
 上記のとおりポンプ5はタンク本体2の底面2aの近傍に配置される。このため、不純物Dがポンプ5の周辺に沈殿していると、ポンプ5がLNGに加えて不純物Dも吸引する。これにより、ポンプ5のインデューサ(吸込み入口部分)などの要素がダメージを受ける場合がある。特にLNG燃料焚船の場合、タンク1から船体の主機(エンジン)にLNG燃料を送り込む構成となり、LNG船のような大量のLNGを外部に導出する構成と比べると導出量が少ないため、ポンプ5は小型化する。これにより、不純物Dによる各要素のダメージが生じやすいと考えられる。 As described above, the pump 5 is arranged near the bottom surface 2a of the tank body 2. Therefore, when the impurity D is settled around the pump 5, the pump 5 sucks the impurity D in addition to the LNG. As a result, elements such as the inducer (suction inlet portion) of the pump 5 may be damaged. In particular, in the case of an LNG fuel-fired ship, the LNG fuel is sent from the tank 1 to the main engine of the hull, and the amount of LNG derived is smaller than that of a LNG carrier that draws out a large amount of LNG to the outside. Will be miniaturized. As a result, it is considered that the impurities D are likely to cause damage to each element.
 ポンプ5がダメージを受けると、ポンプ5が振動してダメージがポンプ各部へ広がり、そのうちポンプ5が吸い込む力が弱くなり、最終的には不稼働となる。ポンプ5が不稼働となると、LNG燃料の使用はできなくなるため、タンク1をガスフリーして点検、交換などの作業が必要となり、時間とコストがかかる懸念がある。 When the pump 5 is damaged, the pump 5 vibrates and the damage spreads to each part of the pump, and the suction force of the pump 5 becomes weaker, and eventually the pump becomes inoperable. If the pump 5 becomes non-operational, LNG fuel cannot be used, so that it is necessary to gas-free the tank 1 for inspection, replacement, and the like, which may take time and cost.
 そこで本実施形態では、ポンプ5による不純物Dの吸引を抑制すべく、図2、図3に示すように、タンク本体2の底面2aに仕切り板6(内壁部)が設けられている。仕切り板6は、図3に示すように、タンク本体2の底面2aを、導入路3からのLNGの落下位置を含む領域R1と、ポンプ5によるLNGの吸引位置を含む領域R2とに区分する。より詳細には、仕切り板6は、底面2aのうち導入路3からのLNGの落下位置の近傍に設けられ、その両端がそれぞれタンク本体2の側壁2b、2cと接続する。 Therefore, in the present embodiment, as shown in FIGS. 2 and 3, a partition plate 6 (inner wall portion) is provided on the bottom surface 2a of the tank body 2 in order to suppress the suction of impurities D by the pump 5. As shown in FIG. 3, the partition plate 6 divides the bottom surface 2a of the tank body 2 into a region R1 including a drop position of LNG from the introduction path 3 and a region R2 including a suction position of LNG by the pump 5. .. More specifically, the partition plate 6 is provided in the vicinity of the drop position of LNG from the introduction path 3 on the bottom surface 2a, and both ends thereof are connected to the side walls 2b and 2c of the tank body 2, respectively.
 なお、仕切り板6は、図3の例では、y方向に直線状に延在する構成を例示しているが、少なくとも両端がそれぞれタンク本体2の側壁2b、2cと接続する構成であればよく、曲線状など任意の形状でもよい。 In the example of FIG. 3, the partition plate 6 illustrates a configuration in which the partition plate 6 extends linearly in the y direction, but at least both ends may be connected to the side walls 2b and 2c of the tank body 2, respectively. , Curved shape, etc. may be used.
 このような仕切り板6を設けることの作用、効果を説明する。不純物Dが混じったLNGが導入路3からタンク本体2内部に供給されると、LNGはまずは仕切り板6により区分された一方の領域R1に貯留する。LNGに対して比重が大きい不純物Dは領域R1にて底面2aに沈殿する。このため、領域R1のLNGの液面が仕切り板6の高さに到達しても、不純物Dは仕切り板6を超えて領域R2側に流出しにくい。これにより、領域R2、すなわちポンプ5の近傍に沈殿する不純物Dを低減できるので、ポンプ5が不純物Dを吸引することを抑制できる。この結果、第1実施形態のタンク1は、仕切り板6を設けることによって、タンク内部に貯留されるLNGを導出するためのポンプ5のダメージを抑制できる。 The action and effect of providing such a partition plate 6 will be explained. When LNG mixed with impurities D is supplied from the introduction path 3 into the tank body 2, the LNG is first stored in one of the regions R1 divided by the partition plate 6. Impurity D, which has a large specific gravity with respect to LNG, precipitates on the bottom surface 2a in the region R1. Therefore, even if the liquid level of LNG in the region R1 reaches the height of the partition plate 6, the impurities D are unlikely to flow out to the region R2 side beyond the partition plate 6. As a result, the impurities D that settle in the region R2, that is, in the vicinity of the pump 5 can be reduced, so that the pump 5 can suppress the suction of the impurities D. As a result, the tank 1 of the first embodiment can suppress the damage of the pump 5 for deriving the LNG stored in the tank by providing the partition plate 6.
 また、第1実施形態のタンク1は、仕切り板6を設けることによって、タンク内の不純物Dの大半が仕切り板6より導入路3側の領域R1に集約されるので、不純物Dの回収作業を容易にでき、タンク内部の清掃を容易にできる。 Further, in the tank 1 of the first embodiment, by providing the partition plate 6, most of the impurities D in the tank are concentrated in the region R1 on the introduction path 3 side of the partition plate 6, so that the recovery work of the impurities D can be performed. It can be done easily, and the inside of the tank can be easily cleaned.
 導入路3の先端部は、図2に図示されるように下方に開口する構成の代わりに、水平方向に開口する構成としてもよい。この場合、開口方向は、x正方向側の仕切り板6に向かない方向であり、図3に示す導入路3の位置よりx負方向側またはy方向となる。また、この場合、導入路3の先端部を分岐させて、複数方向に開口を設ける構成でもよい。図4は、導入路3の先端部の変形例を示す図である。典型的には、例えば図4に示すように、導入路3の先端部3AをT字型に分岐させて、導入路3の出口3B、3Cをタンク1の左右舷方向(y正方向及びy負方向)に向ける構成にできる。なお、タンク1がType-Cタンクの場合は、タンク形状は円柱形状であるので、導入路3の先端部の開口方向は内周面の方向となる。これらの構成により、導入路3からタンク本体2に導入されて、不純物Dが混在したLNGが、仕切り板6に向かって直接流れないので、不純物Dが混在したLNGが仕切り板6を飛び越えにくくできる。この結果、仕切り板6による不純物Dの除去効果を促進でき、ポンプ5の近傍に沈殿する不純物Dをより一層低減できる。 The tip of the introduction path 3 may be configured to open in the horizontal direction instead of the configuration to open downward as shown in FIG. In this case, the opening direction is a direction that does not face the partition plate 6 on the x positive direction side, and is x negative direction side or y direction from the position of the introduction path 3 shown in FIG. Further, in this case, the tip portion of the introduction path 3 may be branched to provide openings in a plurality of directions. FIG. 4 is a diagram showing a modified example of the tip end portion of the introduction path 3. Typically, as shown in FIG. 4, for example, the tip portion 3A of the introduction path 3 is branched into a T shape, and the outlets 3B and 3C of the introduction path 3 are ported in the port side direction (y positive direction and y) of the tank 1. It can be configured to face in the negative direction). When the tank 1 is a Type-C tank, the tank shape is cylindrical, so that the opening direction of the tip of the introduction path 3 is the direction of the inner peripheral surface. With these configurations, LNG mixed with impurities D, which is introduced into the tank body 2 from the introduction path 3, does not flow directly toward the partition plate 6, so that LNG mixed with impurities D can hardly jump over the partition plate 6. .. As a result, the effect of removing impurities D by the partition plate 6 can be promoted, and the impurities D settled in the vicinity of the pump 5 can be further reduced.
 また、図4の先端部3Aにおいて2つの出口3B、3Cまでの間に1または複数の孔を設けて各孔からもLNGを吐出する構成としてもよい。これにより、導入路3の吐出圧力を2つの出口3B、3Cと各孔とで分散できるので、孔が無い場合より緩やかにLNGをタンク内に供給することができる。この結果、液面でのLNGの跳ね返りを抑制でき、不純物Dが混在したLNGが仕切り板6を飛び越えるのをさらに抑制できる。 Further, at the tip portion 3A of FIG. 4, one or a plurality of holes may be provided between the two outlets 3B and 3C, and LNG may be discharged from each hole. As a result, the discharge pressure of the introduction path 3 can be dispersed between the two outlets 3B and 3C and each hole, so that LNG can be supplied into the tank more slowly than when there is no hole. As a result, the rebound of LNG on the liquid surface can be suppressed, and the LNG mixed with the impurity D can be further suppressed from jumping over the partition plate 6.
 仕切り板6の高さは、例えば、導入路3の先端部の開口位置(上記のT字型など開口方向が水平方向の場合には開口の上端高さ)より所定量(例えば100mm程度)高いのが好ましい。 The height of the partition plate 6 is, for example, a predetermined amount (for example, about 100 mm) higher than the opening position of the tip of the introduction path 3 (the height of the upper end of the opening when the opening direction is horizontal such as the above T-shape). Is preferable.
 または、仕切り板6は、領域R2への不純物Dの流出を抑制できる効果を向上させるためには、高さ寸法を増やすか、または、導入路3からのLNGの落下位置と仕切り板6までの距離を長くするのが好ましい。 Alternatively, in order to improve the effect that the partition plate 6 can suppress the outflow of impurities D to the region R2, the height dimension is increased, or the drop position of LNG from the introduction path 3 and the partition plate 6 are reached. It is preferable to increase the distance.
 また、導入路3からのLNGの落下位置と、ポンプ5によるLNGの吸引位置との間に複数の仕切り板6を設ける構成でもよい。これにより、複数の仕切り板により形成される領域数に応じて多段階に亘りLNGから不純物Dを除去でき、所謂カスケード効果によって不純物Dの捕捉率を向上でき、ポンプ5近傍でのLNGの不純物Dの含有量をより一層低減できる。この場合、仕切り板6の高さを低くしてLNGの流れを促進できる。 Further, a plurality of partition plates 6 may be provided between the drop position of LNG from the introduction path 3 and the suction position of LNG by the pump 5. As a result, the impurity D can be removed from the LNG in multiple stages according to the number of regions formed by the plurality of partition plates, the capture rate of the impurity D can be improved by the so-called cascade effect, and the impurity D of the LNG in the vicinity of the pump 5 can be improved. Content can be further reduced. In this case, the height of the partition plate 6 can be lowered to promote the flow of LNG.
 なお、仕切り板6の上端からタンク本体2の上方に延在するように、LNGを通過可能な網などの導通部材を設けてもよい。これにより、LNGの液面が仕切り板6の高さを超えた場合でも導通部材により不純物Dを捕捉できるので、ポンプ5の近傍に沈殿する不純物Dをより一層低減できる。 A conductive member such as a net that can pass through LNG may be provided so as to extend above the tank body 2 from the upper end of the partition plate 6. As a result, even when the liquid level of LNG exceeds the height of the partition plate 6, impurities D can be captured by the conductive member, so that impurities D that settle in the vicinity of the pump 5 can be further reduced.
 [第2実施形態]
 図5、図6を参照して第2実施形態を説明する。図5は、第2実施形態に係るタンク1Aの縦断面図である。図6は、図5中の仕切り板6を主面方向から視た模式図である。
[Second Embodiment]
The second embodiment will be described with reference to FIGS. 5 and 6. FIG. 5 is a vertical sectional view of the tank 1A according to the second embodiment. FIG. 6 is a schematic view of the partition plate 6 in FIG. 5 as viewed from the main surface direction.
 図5、図6に示すように、第2実施形態のタンク1Aは、仕切り板6にLNGの導通部7を設ける点で第1実施形態と異なる。なお、第2実施形態のタンク1Aは、図1に示したタンク1に相当する。 As shown in FIGS. 5 and 6, the tank 1A of the second embodiment is different from the first embodiment in that the partition plate 6 is provided with the conductive portion 7 of LNG. The tank 1A of the second embodiment corresponds to the tank 1 shown in FIG.
 導通部7は、仕切り板6の主面の少なくとも一部に設けられる。導通部7は、LNGを通過可能であり、かつ、LNGに含まれる不純物Dの導通を抑制可能な要素である。導通部7は、例えば図6に示すような貫通孔でもよいし、網、メッシュ構造などの他の構造でもよい。 The conductive portion 7 is provided on at least a part of the main surface of the partition plate 6. The conductive portion 7 is an element that can pass through LNG and can suppress the conduction of the impurity D contained in LNG. The conductive portion 7 may be a through hole as shown in FIG. 6, or may have another structure such as a net or a mesh structure.
 上述のように、仕切り板6は高さ寸法を増やすほど、領域R1への不純物Dの捕捉率を向上できる。しかし、仕切り板6が高いと、領域R1に貯留されてポンプ5側へ流れないLNGの量も増える。ガス・フリー・オペレーション(タンク内部の検査等の作業のためにタンク内のLNGを気化させる作業)の作業効率を考慮すると、作業前にタンク内に残るLNG量を極力少なくするので好ましい。このように、不純物Dの捕捉率向上と、ガス・フリー・オペレーションの作業効率の向上とはトレードオフの関係となり、不純物Dの捕捉率を向上しようと仕切り板6を高くすると、その分だけガス・フリー・オペレーションの作業効率が低下する。 As described above, as the height dimension of the partition plate 6 is increased, the trapping rate of impurities D in the region R1 can be improved. However, if the partition plate 6 is high, the amount of LNG stored in the region R1 and not flowing to the pump 5 side also increases. Considering the work efficiency of gas-free operation (work of vaporizing LNG in the tank for work such as inspection of the inside of the tank), it is preferable because the amount of LNG remaining in the tank before the work is minimized. In this way, there is a trade-off between the improvement of the trapping rate of impurities D and the improvement of the work efficiency of gas-free operation, and if the partition plate 6 is raised to improve the trapping rate of impurities D, the gas is increased accordingly. -The work efficiency of free operation is reduced.
 そこで第2実施形態では、仕切り板6に貫通孔などの導通部7を設けることによって、不純物Dの捕捉率を向上するために仕切り板6を高くしても、領域R1に貯留されるLNGは仕切り板6を乗り越えずに導通部7から領域R2側に流出できる。これにより、導通部7の高さ位置まで領域R1のLNGの液位を下げることができ、領域R1に残るLNGの量も低減できるので、不純物Dの捕捉率向上と、ガス・フリー・オペレーションの作業効率の向上とを両立できる。 Therefore, in the second embodiment, even if the partition plate 6 is raised in order to improve the trapping rate of impurities D by providing the partition plate 6 with a conductive portion 7 such as a through hole, the LNG stored in the region R1 is not generated. It can flow out from the conductive portion 7 to the region R2 side without getting over the partition plate 6. As a result, the liquid level of LNG in the region R1 can be lowered to the height position of the conductive portion 7, and the amount of LNG remaining in the region R1 can be reduced. Therefore, the capture rate of impurities D can be improved and the gas-free operation can be performed. It is possible to improve work efficiency at the same time.
 導通部7の高さ位置の寸法について具体例を挙げる。タンク1Aが搭載される船舶が長さ300m、幅50mであり、タンク1Aの底面の面積が船舶面積の7割掛けとし、ガス・フリー・オペレーション前のLNG残量が100~150mであると仮定する。この条件では、導通部7の高さ位置は、底面2aから1.4~2.0cm程度が好ましく、1.5cm程度が特に好ましい。また、導通部7は孔の場合には、不純物Dの流通を防止すべく径5mm程度であるのが好ましい。 A specific example will be given regarding the dimension of the height position of the conductive portion 7. When the ship on which the tank 1A is mounted is 300 m in length and 50 m in width, the area of the bottom surface of the tank 1A is 70% of the ship area, and the remaining amount of LNG before gas-free operation is 100 to 150 m 3. Assume. Under this condition, the height position of the conductive portion 7 is preferably about 1.4 to 2.0 cm from the bottom surface 2a, and particularly preferably about 1.5 cm. Further, in the case of a hole, the conductive portion 7 preferably has a diameter of about 5 mm in order to prevent the flow of impurities D.
 [第3実施形態]
 図7、図8を参照して第3実施形態を説明する。図7は、第3実施形態に係るタンク1Bの縦断面図である。図8は、第3実施形態に係るタンク1Bの横断面図である。図7、図8に示すように、第3実施形態のタンク1Bは、仕切り板6の代わりに、タンク本体2の底面2aのうちポンプ5によるLNGの吸引位置の周囲を包囲する周壁8(内壁部)を備える点で、第1、第2実施形態と異なる。なお、第3実施形態のタンク1Bは、図1に示したタンク1に相当する。
[Third Embodiment]
A third embodiment will be described with reference to FIGS. 7 and 8. FIG. 7 is a vertical cross-sectional view of the tank 1B according to the third embodiment. FIG. 8 is a cross-sectional view of the tank 1B according to the third embodiment. As shown in FIGS. 7 and 8, in the tank 1B of the third embodiment, instead of the partition plate 6, the peripheral wall 8 (inner wall) surrounding the bottom surface 2a of the tank body 2 around the suction position of LNG by the pump 5 (inner wall). Part) is provided, which is different from the first and second embodiments. The tank 1B of the third embodiment corresponds to the tank 1 shown in FIG.
 周壁8は、第1、第2実施形態の仕切り板6と同様に、図8に示すように、タンク本体2の底面2aを、導入路3からのLNGの落下位置を含む領域R1と、ポンプ5によるLNGの吸引位置を含む領域R2とに区分する。周壁8は、例えばハッチコーミングのように、底面2aから立設される立ち上がり部である。 Similar to the partition plate 6 of the first and second embodiments, the peripheral wall 8 has a bottom surface 2a of the tank body 2 as a region R1 including a drop position of LNG from the introduction path 3 and a pump, as shown in FIG. It is divided into the region R2 including the suction position of LNG according to 5. The peripheral wall 8 is a rising portion erected from the bottom surface 2a, for example, like hatch combing.
 なお周壁8は、ポンプ5によるLNGの吸引位置を環状に囲う構成であればよく、例えば矩形環状など、図8に示す円環状以外の形状でもよい。 The peripheral wall 8 may be configured to enclose the suction position of LNG by the pump 5 in an annular shape, and may have a shape other than the annular shape shown in FIG. 8, such as a rectangular annular shape.
 第3実施形態のタンク1Bは、周壁8を設けることによって、第1実施形態と同様に領域R2、すなわちポンプ5の近傍に沈殿する不純物Dを低減できるので、タンク内部に貯留されるLNGを導出するためのポンプ5のダメージを抑制できる。 By providing the peripheral wall 8 in the tank 1B of the third embodiment, the impurities D that settle in the region R2, that is, in the vicinity of the pump 5 can be reduced as in the first embodiment, so that the LNG stored in the tank is derived. It is possible to suppress the damage of the pump 5 for this purpose.
 また、タンク1Bは、底面2aのうち領域R1に設けられ、LNGに含まれる不純物Dをタンク本体2から外部へ排出可能な排出路9Aと、排出路9Aを開閉可能に封止する蓋部9Bと、を備える。従来のLNGタンクでは、タンク内への作業員の出入口はタンク上面に設けられるのが一般的であり、タンク内の不純物Dをタンク外部に排出するのもこの上方の出入口を介して行うのが一般的である。一方、本実施形態では、蓋部9Bを取り外して底面2aの排出路9Aを開放すれば、定期的なタンク内検査時などの機会に、タンク本体2の底面2aに堆積した不純物Dをタンク上部の出入口まで持ち上げる必要なく、外部に除去しやすくできる。これにより、タンク内部の清掃をさらに容易にできる。 Further, the tank 1B is provided in the region R1 of the bottom surface 2a, and has a discharge path 9A capable of discharging impurities D contained in LNG to the outside from the tank body 2 and a lid portion 9B for opening and closing the discharge path 9A. And. In a conventional LNG tank, the entrance / exit of workers into the tank is generally provided on the upper surface of the tank, and impurities D in the tank are discharged to the outside of the tank through the entrance / exit above the tank. It is common. On the other hand, in the present embodiment, if the lid portion 9B is removed and the discharge path 9A on the bottom surface 2a is opened, the impurities D accumulated on the bottom surface 2a of the tank body 2 can be removed from the upper part of the tank at an opportunity such as during a regular inspection inside the tank. It can be easily removed to the outside without having to lift it up to the doorway. This makes it easier to clean the inside of the tank.
 なお、タンク底面2aに排出路9Aと蓋部9Bを設ける構成は、第1実施形態のタンク1や第2実施形態のタンク1Aに適用してもよい。この場合、導入路3のからのLNGの落下位置の近傍の領域R1に主に不純物Dが堆積するので、領域R1に排出路9Aと蓋部9Bが設けられるのが好ましい。 The configuration in which the discharge path 9A and the lid portion 9B are provided on the bottom surface 2a of the tank may be applied to the tank 1 of the first embodiment and the tank 1A of the second embodiment. In this case, since impurities D are mainly deposited in the region R1 near the drop position of LNG from the introduction path 3, it is preferable that the discharge path 9A and the lid portion 9B are provided in the region R1.
 [第4実施形態]
 図9を参照して第4実施形態を説明する。図9は、第4実施形態に係るタンク1Cの縦断面図である。図9に示すように、第4実施形態のタンク1Cは、周壁8の代わりに網目状部材10を設ける点で第3実施形態と異なる。網目状部材10は、LNGを通過可能であり、かつ、LNGに含まれる不純物Dの導通を抑制可能である。なお、第4実施形態のタンク1Cは、図1に示したタンク1に相当する。
[Fourth Embodiment]
A fourth embodiment will be described with reference to FIG. FIG. 9 is a vertical sectional view of the tank 1C according to the fourth embodiment. As shown in FIG. 9, the tank 1C of the fourth embodiment is different from the third embodiment in that a mesh member 10 is provided instead of the peripheral wall 8. The mesh-like member 10 can pass through LNG and can suppress the conduction of impurities D contained in LNG. The tank 1C of the fourth embodiment corresponds to the tank 1 shown in FIG.
 第4実施形態に係るタンク1Cは、網目状部材10を設けることにより、第2実施形態と同様に、領域R1に残るLNGの量を低減でき、不純物Dの捕捉率向上と、ガス・フリー・オペレーションの作業効率の向上とを両立できる。 By providing the mesh member 10 in the tank 1C according to the fourth embodiment, the amount of LNG remaining in the region R1 can be reduced as in the second embodiment, the capture rate of impurities D can be improved, and gas-free. It is possible to improve the work efficiency of operations at the same time.
 以上、具体例を参照しつつ本実施形態について説明した。しかし、本開示はこれらの具体例に限定されるものではない。これら具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素およびその配置、条件、形状などは、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。 The present embodiment has been described above with reference to specific examples. However, the present disclosure is not limited to these specific examples. Those skilled in the art with appropriate design changes to these specific examples are also included in the scope of the present disclosure as long as they have the features of the present disclosure. Each element included in each of the above-mentioned specific examples, its arrangement, conditions, shape, etc. is not limited to the illustrated one, and can be appropriately changed. The combinations of the elements included in each of the above-mentioned specific examples can be appropriately changed as long as there is no technical contradiction.
 上記実施形態では、タンク1が貯留する低引火点燃料の一例としてLNGを挙げて説明したが、LPG(Liquefied Petroleum Gas:液化石油ガス)などの他の液化ガス、液体水素、エタノール燃料などを含む他の低引火点燃料も適用可能である。 In the above embodiment, LNG has been described as an example of the low flammability fuel stored in the tank 1, but it also includes other liquefied gas such as LPG (Liquefied Petroleum Gas: liquefied petroleum gas), liquid hydrogen, ethanol fuel and the like. Other low flammability fuels are also applicable.
 1、1A、1B、1C  タンク
 2  タンク本体
 3  導入路
 4  導出路
 5  ポンプ
 6  仕切り板(内壁部)
 7  導通部
 8  周壁(内壁部)
 9A  排出路
 9B  蓋部
 10  網目状部材(内壁部)
1, 1A, 1B, 1C Tank 2 Tank body 3 Introductory path 4 Outlet path 5 Pump 6 Partition plate (inner wall)
7 Conductive part 8 Peripheral wall (inner wall part)
9A discharge path 9B lid part 10 mesh member (inner wall part)

Claims (8)

  1.  船舶に搭載されるタンクであって、
     低引火点燃料を貯留するタンク本体と、
     前記低引火点燃料を前記タンク本体に導入する導入路と、
     前記タンク本体に貯留されている前記低引火点燃料を吸引するポンプと、
     前記ポンプにより吸引された前記低引火点燃料を前記タンク本体から外部に導出する導出路と、
     前記タンク本体の底面を、前記導入路からの前記低引火点燃料の落下位置を含む領域と、前記ポンプによる前記低引火点燃料の吸引位置を含む領域とに区分する内壁部と、
    を備えるタンク。
    A tank mounted on a ship
    The tank body that stores low flash point fuel and
    An introduction path for introducing the low flash point fuel into the tank body, and
    A pump that sucks the low flash point fuel stored in the tank body, and
    A lead-out path for leading the low flash point fuel sucked by the pump to the outside from the tank body, and
    An inner wall portion that divides the bottom surface of the tank body into a region including a drop position of the low flash point fuel from the introduction path and a region including a suction position of the low flash point fuel by the pump.
    A tank equipped with.
  2.  前記内壁部は、
     前記底面のうち前記落下位置の近傍に設けられ、その両端がそれぞれ前記タンク本体の側壁と接続する仕切り板によって形成される、
    請求項1に記載のタンク。
    The inner wall portion
    It is provided on the bottom surface in the vicinity of the drop position, and both ends thereof are formed by partition plates connected to the side walls of the tank body.
    The tank according to claim 1.
  3.  前記仕切り板は、主面の少なくとも一部に前記低引火点燃料を通過可能であり、かつ、前記低引火点燃料に含まれる不純物の導通を抑制可能な導通部を有する、
    請求項2に記載のタンク。
    The partition plate has a conductive portion that allows the low flash point fuel to pass through at least a part of the main surface and can suppress the conduction of impurities contained in the low flash point fuel.
    The tank according to claim 2.
  4.  前記導入路の先端部は、前記仕切り板に向かない方向に開口される、
    請求項2または3に記載のタンク。
    The tip of the introduction path is opened in a direction not facing the partition plate.
    The tank according to claim 2 or 3.
  5.  前記内壁部は、
     前記底面のうち前記吸引位置の周囲を包囲する周壁によって形成される、
    請求項1~4のいずれか1項に記載のタンク。
    The inner wall portion
    Of the bottom surface, formed by a peripheral wall surrounding the suction position.
    The tank according to any one of claims 1 to 4.
  6.  前記周壁は、前記低引火点燃料を通過可能であり、かつ、前記低引火点燃料に含まれる不純物の導通を抑制可能な網目状部材である、
    請求項5に記載のタンク。
    The peripheral wall is a mesh member that can pass through the low flash point fuel and can suppress the conduction of impurities contained in the low flash point fuel.
    The tank according to claim 5.
  7.  前記底面のうち前記落下位置を含む領域に設けられ、前記低引火点燃料に含まれる不純物を前記タンク本体から外部へ排出可能な排出路と、
     前記排出路を開閉可能に封止する蓋部と、
    を備える、請求項1~6のいずれか1項に記載のタンク。
    A discharge path provided in a region of the bottom surface including the drop position and capable of discharging impurities contained in the low flash point fuel from the tank body to the outside.
    A lid that seals the discharge path so that it can be opened and closed,
    The tank according to any one of claims 1 to 6, wherein the tank comprises.
  8.  請求項1~7のいずれか1項に記載のタンクを搭載する船舶。 A ship equipped with the tank according to any one of claims 1 to 7.
PCT/JP2019/024098 2019-06-18 2019-06-18 Tank and ship WO2020255254A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019553128A JP6775695B1 (en) 2019-06-18 2019-06-18 Tanks and ships
PL436494A PL436494A1 (en) 2019-06-18 2019-06-18 Tank and ship
KR1020207035619A KR102421897B1 (en) 2019-06-18 2019-06-18 tanks and ships
CN201980041665.8A CN112400057B (en) 2019-06-18 2019-06-18 Storage tank and ship
PCT/JP2019/024098 WO2020255254A1 (en) 2019-06-18 2019-06-18 Tank and ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/024098 WO2020255254A1 (en) 2019-06-18 2019-06-18 Tank and ship

Publications (1)

Publication Number Publication Date
WO2020255254A1 true WO2020255254A1 (en) 2020-12-24

Family

ID=72916070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024098 WO2020255254A1 (en) 2019-06-18 2019-06-18 Tank and ship

Country Status (5)

Country Link
JP (1) JP6775695B1 (en)
KR (1) KR102421897B1 (en)
CN (1) CN112400057B (en)
PL (1) PL436494A1 (en)
WO (1) WO2020255254A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130134141A (en) * 2012-05-30 2013-12-10 현대중공업 주식회사 Fuel storage system for ship
KR20150139156A (en) * 2014-06-03 2015-12-11 대우조선해양 주식회사 Fuel oil supply system and method for drillship
KR20180003126A (en) * 2016-06-30 2018-01-09 삼성중공업 주식회사 Vessel

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2955621B2 (en) * 1995-12-28 1999-10-04 ニッカ株式会社 Cleaning waste liquid recovery unit for printing machine cylinder cleaning unit
KR20130089538A (en) * 2012-02-02 2013-08-12 현대중공업 주식회사 Membrane cargo tanks of ships
CN104527928A (en) * 2014-12-17 2015-04-22 陈映宏 Ship fuel tank
CN204846285U (en) * 2015-08-01 2015-12-09 广东海洋大学 Prevent sedimentation ballast tank
JP7078204B2 (en) 2017-05-10 2022-05-31 三井E&S造船株式会社 Liquefied gas fuel ship

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130134141A (en) * 2012-05-30 2013-12-10 현대중공업 주식회사 Fuel storage system for ship
KR20150139156A (en) * 2014-06-03 2015-12-11 대우조선해양 주식회사 Fuel oil supply system and method for drillship
KR20180003126A (en) * 2016-06-30 2018-01-09 삼성중공업 주식회사 Vessel

Also Published As

Publication number Publication date
CN112400057A (en) 2021-02-23
KR20210010499A (en) 2021-01-27
KR102421897B1 (en) 2022-07-19
JP6775695B1 (en) 2020-10-28
PL436494A1 (en) 2021-10-25
JPWO2020255254A1 (en) 2021-09-13
CN112400057B (en) 2022-05-03

Similar Documents

Publication Publication Date Title
JP6287967B2 (en) Fuel tank structure
JP6775695B1 (en) Tanks and ships
CN103299062A (en) Fuel supply device
JP2009068420A (en) Fuel supply system
JP3651365B2 (en) Fuel supply device
JP2012132365A (en) Fuel supply device
KR20070025711A (en) Valve device
JP2008180112A (en) Fuel supply device
JP2020077569A (en) Fuel cell system
JP2012036792A (en) Fuel supply device
JP6646940B2 (en) Vehicle fuel tank
KR100882644B1 (en) Canister for vehicle
JP5508635B2 (en) Fuel supply device
JP2006226222A (en) Fuel pump module
CN107617232A (en) A kind of water-oil separating fluid reservoir
JP5500205B2 (en) Fuel supply / discharge mechanism of traveling crane
CN110581086B (en) Apparatus for capturing powder of semiconductor manufacturing equipment
US20210108600A1 (en) Fuel supply device
US20240262187A1 (en) Reservoir cup assembly of lpg fuel tank for vehicle
JP2011086565A (en) Fuel cell system
JP5530853B2 (en) Fuel supply device
JP6527360B2 (en) Vehicle fuel tank
JP2006188090A (en) Structure of fuel storing part
JP5768680B2 (en) Fuel supply device
JP2024530235A (en) Liquid gas storage and/or transport tanks for ships

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019553128

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207035619

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19934307

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19934307

Country of ref document: EP

Kind code of ref document: A1