WO2020254737A1 - Systeme et procede d'ajout de matiere sur une surface determinee d'une piece au moyen d'un faisceau laser oriente par une tete a balayage laser et d'une injection de poudre laterale - Google Patents

Systeme et procede d'ajout de matiere sur une surface determinee d'une piece au moyen d'un faisceau laser oriente par une tete a balayage laser et d'une injection de poudre laterale Download PDF

Info

Publication number
WO2020254737A1
WO2020254737A1 PCT/FR2020/050863 FR2020050863W WO2020254737A1 WO 2020254737 A1 WO2020254737 A1 WO 2020254737A1 FR 2020050863 W FR2020050863 W FR 2020050863W WO 2020254737 A1 WO2020254737 A1 WO 2020254737A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser beam
powder
determined
injection device
powder injection
Prior art date
Application number
PCT/FR2020/050863
Other languages
English (en)
Inventor
Jonathan FRECHARD
Frédérique MACHI
Thierry Engel
Original Assignee
Beam
Irepa Laser
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beam, Irepa Laser filed Critical Beam
Priority to US17/620,422 priority Critical patent/US20220347750A1/en
Priority to KR1020227001059A priority patent/KR20220020914A/ko
Priority to CN202080050754.1A priority patent/CN114126799A/zh
Priority to EP20739747.2A priority patent/EP3983153A1/fr
Priority to JP2021575331A priority patent/JP2022536957A/ja
Publication of WO2020254737A1 publication Critical patent/WO2020254737A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/354Working by laser beam, e.g. welding, cutting or boring for surface treatment by melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/368Temperature or temperature gradient, e.g. temperature of the melt pool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/22Driving means
    • B22F12/222Driving means for motion along a direction orthogonal to the plane of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/49Scanners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/034Observing the temperature of the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0626Energy control of the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0665Shaping the laser beam, e.g. by masks or multi-focusing by beam condensation on the workpiece, e.g. for focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4097Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using design data to control NC machines, e.g. CAD/CAM
    • G05B19/4099Surface or curve machining, making 3D objects, e.g. desktop manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/22Driving means
    • B22F12/226Driving means for rotary motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/53Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • B22F2007/068Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts repairing articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/144Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor the fluid stream containing particles, e.g. powder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • TITLE SYSTEM AND METHOD FOR ADDING MATERIAL TO A DETERMINED SURFACE OF A PART BY MEANS OF A LASER BEAM ORIENTED BY A LASER SCAN HEAD AND BY A POWDER INJECTION
  • the present invention relates to the field of hardfacing, construction and repair and more specifically to a system and a method for adding material to a determined area of a part by means of a laser beam.
  • the method of depositing material under concentrated energy is based on the principle of depositing metal powders in the molten state on a solid substrate.
  • the initial principle consists in using a tool to send metal powder in solid form, with a defined particle size, typically of the order of 45 to 90 ⁇ m, in a power beam such as a laser beam or a beam. of electrons. Passing through the laser beam, the powder is heated and melted and metallurgically bonds to the substrate to form a deposit. As the tool moves, it is thus possible to create metallic beads on the substrate. The layers are then superimposed to create solid parts.
  • Metallic powder is the basis of all construction carried out with LMD technology (in English: Laser Metal Deposition).
  • the powder of very fine particle size, is sent in the form of a jet composed of: a transport gas (called carrier gas), and particles of metal powder.
  • This jet is used to carry the powder to the laser beam.
  • the gas flow rate is expressed in liters / minutes and the powder flow rate in grams / minutes.
  • the powder jet comes from a powder dispenser and travels through a tube to the dispensing tool, as close as possible to the laser beam, into which it is injected.
  • the mechanical element through which the powder jet comes out is called a nozzle.
  • the metal powder is deposited on the substrate, a few millimeters away from the nozzle.
  • the latter has the role of guiding in a controlled manner the powder jet including the carrier gas so that said powder jet reaches the laser beam in an optimal manner.
  • the nozzle is made up of several mechanical parts, including concentric cones, which aim to guide the powder.
  • the guiding of the powder jet depends on two cones: the outer cone and the intermediate cone.
  • the nozzle is adapted to guide the powder jet and comprises in its center a laser beam adapted to heat the powder.
  • the powder is thus directed into the laser beam by a jet of annular conical shape.
  • the powder jet is like “focused” in the laser beam, which is located in the center of this conical jet.
  • the powder jet and the laser beam are brought in parallel directions.
  • the presence of the nozzle creates a problem of clutter in accessing relatively narrow areas when performing a hardfacing, repair or manufacturing process.
  • the object of the invention relates to a system for adding material by melting powder on a determined surface of a part by means of a laser beam to build a volume, said system comprising: a device emission of a laser beam to emit an incident laser beam,
  • a laser scanning head provided with at least two galvanometric mirrors for reflecting and moving the incident laser beam at least in the plane of the surfaces to be recharged, repaired or constructed according to a determined pattern, and provided with a lens for focusing the laser beam incident reflected on the determined surface
  • the system comprising the laser scanning head being kept stationary relative to the part during the construction of said volume, a powder injection device placed laterally relative to the reflected incident laser beam focused to distribute the powder on the determined surface, the powder being distributed continuously during the construction of said volume, the fusion of the powder being carried out by the focused reflected incident laser beam emitted on the powder distributed on the determined surface.
  • the system comprises at least one poly-articulated support making it possible to move the system and / or the part to allow the positioning of the system with respect to the part in order to access the determined surface.
  • the powder injection device comprises a tube for distributing the powder over the determined surface.
  • the powder injection device comprises a first device for lateral adjustment of the tube in a plane parallel to the determined surface of the part.
  • the powder injection device comprises a second adjustment device for adjusting the angle from which the powder is distributed over the determined surface.
  • the powder injection device comprises a third adjustment device for adjusting the height of the tube relative to the determined surface.
  • the powder injection device comprises a fourth adjustment device for adjusting the height of the powder injection device relative to the surface of the workpiece.
  • the system comprises a lighting device to illuminate the determined area.
  • the system comprises a camera making it possible to locate the pattern and to position the system.
  • the system comprises a device for analyzing the volume of material to be added, such as a feeler, a three-dimensional scanner or a camera.
  • a device for analyzing the volume of material to be added such as a feeler, a three-dimensional scanner or a camera.
  • the system comprises an adaptive programming unit to create the trajectories adapted to the volume of material to be added.
  • the system comprises a unit for acquiring the temperature of the room during a preheating step before the addition of material and during a post-heating step after the addition of material.
  • the system comprises a unit for automatically launching the addition of material at a determined temperature.
  • the system comprises a unit for automatic management of a complete material addition cycle.
  • the system includes an information analysis unit to monitor the addition of material.
  • the system comprises a unit for analyzing the geometry of the constructed volume and a unit for comparison with a three-dimensional model.
  • the system comprises a unit for automatic management of the arrival of the powder.
  • the system comprises a unit for controlling the emission power of the laser beam as a function of the temperature.
  • the object of the invention relates to a method for adding material to a determined surface of a part by means of a laser scanning head, of a device for emitting a laser beam and a powder injection device, the laser scanning head being provided with two galvanometric mirrors for reflecting and focusing an incident laser beam, and moving the reflected incident laser beam focused on the determined surface according to a determined pattern, during the rotation of the galvanometric mirrors and the laser scanning head, the device for emitting a laser beam, and the powder injection device being stationary relative to the part, said method comprising the following steps: identification of the surface to reload, build or repair on the part, relative positioning of the laser scanning head, of the device for emitting a laser beam, and of the powder injection device and / or of the part, activation of the d powder injection device to allow the powder to flow over the determined identified surface,
  • the method comprises a preheating step, in which the focused reflected incident laser beam is emitted on the determined surface identified according to a predefined pattern, the preheating step taking place before the step of activating the device. powder injection.
  • the method comprises a post-heating step, the post-heating step taking place after the step of deactivating the powder injection device.
  • FIG. 1 shows a side view of the system according to the invention
  • FIG. 2 shows in a detailed perspective view the system according to Figure 1,
  • FIG. 3 shows in a perspective view the powder injection device according to the invention
  • FIG. 4 shows a diagram of the steps of the process according to the invention
  • FIG. 5 shows a top view photograph of a repair with a spiral path of the laser beam according to the invention
  • FIG. 6 shows a top view photograph of a repair with a zig-zag-shaped laser beam path on a square-shaped part, according to the invention
  • FIG. 7 shows another top view photograph of a repair with a spiral path of the laser beam, according to the invention
  • FIG. 8 shows a photograph of a repair after polishing and etching of a cross section of the treated part, according to the invention. Detailed description of an embodiment
  • the present invention relates to the additive manufacturing process, that is to say of surfacing, repair or construction which consists in particular in constructing an element on a substrate or on a part, layer after layer, by the fusion of injected metal powders. laterally relative to the emission of a laser beam.
  • the element or volume to be constructed consists of n layers. Each layer is scanned by the laser beam in a specific way which may be different depending on the layer.
  • the present invention also relates to the method of repairing a part and the method of reloading a part.
  • FIG. 1 shows a system 10 according to the invention.
  • the system 10 comprises a focusing lens 11, a laser scanning head 12, a laser emission device (not shown) such as a fiber laser, a laser beam 13, a powder injection device 14 and a protective device (in English: cross jet) 15 of the focusing lens 1 1.
  • the powder injection device 14 is supplied with metal powder by a powder supply device (not shown).
  • the laser beam used comes from a multimode fiber laser source with a wavelength around 1 micrometer.
  • the laser beam can also include other wavelengths.
  • the laser source can also be single mode.
  • Relative movement between the laser beam and the workpiece is produced within system 10 using laser scanning head 12 rather than the poly-articulated axes of state-of-the-art machines.
  • This use of the laser scanning head 12 allows the use of trajectory and scanning speed of the laser beam that are different and markedly faster than that generally obtained in the state of the art by the use of poly-articulated axes.
  • the use of a thin lateral tube 16 makes it possible to bring the powder close to the surfaces of the part which are difficult to access with respect to the geometry of the part.
  • the thin tube has an internal diameter of the order of a few millimeters, for example 8 mm.
  • the laser scanning head 12 comprises at least two mirrors called galvanometric mirrors allowing the displacement of the focused laser beam at least in the plane of the surfaces to be recharged, repaired or constructed.
  • Each mirror is driven in rotation around its axis by a motor called a galvanometric motor.
  • the galvanometric motor comprises two electric coils, a permanent magnet to which is attached a rotor which drives the corresponding galvanometric mirror. When an electric current flows through the electric coils, they operate like electromagnets and generate a magnetic field. The permanent magnet then rotates to align with the magnetic field. Insofar as the permanent magnet is connected to the mirror by the rotor, the permanent magnet drives in its movement the mirror which also rotates. Control means make it possible to control the galvanometric motors.
  • the output of the scanning head 12 includes a focusing system.
  • the laser scanning head makes it possible to produce a focused reflected incident laser beam 13 shown in FIGS. 1, 2 and 3.
  • the Focused reflected incident laser beam 13 is indicated as being the laser beam 13 in the remainder of the description.
  • the power of the laser beam is, for example, less than 1 kilowatt.
  • the speed of movement of the laser beam 13 is, for example, greater than 50 meters per minute with a pitch less than 200 micrometers.
  • the diameter of the laser beam 13 is 1 millimeter for example.
  • the movement of the laser beam 13 provided by the laser scanning head 12 allows an increase and maintenance of the surface temperature of the part to be treated by the method according to the invention, which allows the treatment of materials requiring preheating before the addition of material or post-heating, that is to say heating after the addition of material according to the invention.
  • the laser scanning head enables the deflection of the laser beam at high speed and precision.
  • the laser beam 13 can produce trajectories or patterns of all shapes, thus avoiding the problems of acceleration, inertia and difficulty of access.
  • the laser beam 13 therefore moves in a determined pattern.
  • the laser beam 13 can produce trajectories in the form of a spiral, a square, a circle, or a “zig-zag”.
  • the system 10 comprises the powder injection device 14 placed laterally with respect to the laser beam 13 when the latter is emitted.
  • the powder injection device 14 comprises a thin tube 16 which makes it possible to disperse or distribute material in powder form, in the form of a cloud, on the generally reduced surface to be built, to be recharged or to be repaired, and generally difficult to access.
  • the mass flow rate of the powder is less than 20 grams per minute for example.
  • the thin tube 16 contains a carrier gas which makes it possible to transport the powder from the powder supply device (not shown) to the outlet of the fine tube 16.
  • the flow rate of the carrier gas is a few liters per minute for example. Thanks to this flow rate, no shielding gas is necessary to prevent oxidation of the powder since the carrier gas is sufficient and protects the molten bath and the powder from oxidation.
  • the powder injection device 14 also includes four adjustment devices 18, 20, 22 and 24 which can be motorized.
  • the first adjustment device 18 allows lateral adjustment of the thin tube 16 in a plane parallel to the surface of the workpiece.
  • the second adjuster 20 adjusts the angle from which the powder is dispersed on the workpiece surface.
  • the third adjustment device 22 makes it possible to adjust the height of the thin tube 16 relative to the surface of the part.
  • the fourth adjustment device 24 adjusts the height of the powder injection device 14 relative to the surface of the workpiece.
  • the powder jet is fixed relative to the surface to be repaired, recharged or built and covers the whole of it.
  • the adjustment devices 18, 20, 22 and 24 allow angular and Cartesian adjustment with respect to the surface of the workpiece.
  • the angle of inclination of thin tube 16 from the normal of the workpiece surface is 25 °.
  • the distance of the thin tube 16 to the workpiece is 15 millimeters.
  • the powder injection device 14 allows the powder to be delivered to areas of the room that are difficult to access.
  • the powder injection device 14 can also operate with non-metallic powders.
  • the system 10 comprises the laser scanning head and the powder injection device 14 placed on a poly-articulated support (not shown), that is to say a support articulated along several axes to make it possible to position system 10 relative to the surface to be treated and to keep the system 10 stationary during the deposition of material on the surface to be treated.
  • a poly-articulated support not shown
  • the poly-articulated support thus makes it possible to move the system 10 to a determined position, above the part to be treated. Then, during reloading, repair or construction, the system 10 is stationary relative to the workpiece.
  • system 10 can be fixed to a frame in order to be stationary.
  • the poly-articulated support then makes it possible to move the workpiece to a determined position with respect to the system 10.
  • the system 10 also comprises a camera making it possible to locate the surface to be constructed, to be repaired or to be recharged and to position the system 10.
  • the system 10 comprises an analysis device (not shown) capable of measuring the part in order to deduce therefrom the shape of the defect to be repaired, to be recharged or of the surface of the part to be constructed, repaired or recharged.
  • the analysis device comprises, for example, a feeler, a three-dimensional scanner or a line camera.
  • the system 10 comprises an adaptive programming unit (not shown) to create the trajectories or patterns adapted to the volume of material to be added.
  • the system 10 comprises a temperature acquisition unit (not shown) or temperature sensor of the room to be built, to be repaired or to be recharged during preheating before the addition of material and during post-heating. after adding material.
  • the system 10 comprises a unit for automatically launching (not shown) the construction at the appropriate temperature, that is to say at a determined temperature.
  • the system 10 according to the invention comprises an automatic management unit (not shown) of the complete cycle of adding material (not shown).
  • the system 10 includes an information analysis unit (not shown) for monitoring the addition of material.
  • the system 10 comprises a unit for analyzing the geometry of the constructed volume and for comparing it with a three-dimensional model (not shown).
  • the system 10 comprises an automatic control unit for the arrival of the powder (not shown).
  • the system 10 comprises a unit for controlling the emission power of the laser beam as a function of the temperature (not shown).
  • system 10 When in use, the system 10 according to the invention operates according to a method comprising the following steps shown in the diagram of Figure 4.
  • an identification of the defect is carried out by the analysis device (not shown) and the system 10 is aligned above the defect via the poly-articulated system with respect to the surface to be repaired, recharged or built according to a determined distance and orientation.
  • This alignment can be manual or automatic.
  • system 10 is aligned with the fault, system 10 is ready to repair, reload the fault, or build the volume.
  • step 101 the user decides whether preheating of the determined surface is necessary, that is to say heating prior to step 105 of recharging, construction or repair described below.
  • step 102 comprises emitting the laser beam 13 by means of which the laser scanning head 12 traces a predefined pattern on the determined surface of the part.
  • This pattern which may be different from the manufacturing pattern, makes it possible to raise the temperature in the area to be reload, repair or build homogeneously and allow deposition on a preheated material thus avoiding cracking.
  • the temperature sensor makes it possible to monitor the temperature of the surface to be recharged, to be repaired or to be constructed. Once the determined temperature setpoint is reached, the process goes to step 104.
  • step 104 the powder injection device is activated to allow the powder to flow through the thin tube 16.
  • the laser emitting device is activated.
  • the laser beam then scans the predefined pattern.
  • This pattern can be a pattern made up of multiple layers, each layer potentially having its own pattern.
  • the powder is melted by the laser beam 13 in a very localized manner and the sequence of the pattern and the layers allows the shape to be deposited.
  • step 106 the user decides whether post-heating of the determined area is necessary.
  • Post-heating is a step subsequent to step 105, during which the powder injection device 14 is deactivated and the laser beam 13 is emitted on the determined surface identified according to the predefined pattern.
  • step 107 the powder injection device 14 is deactivated so that the powder stops flowing and the laser beam 13 sweeps the preset pattern across the workpiece.
  • the temperature sensor makes it possible to monitor the temperature of the post-heating in order to determine whether it is necessary to continue the heating by adjusting the parameters of the laser beam 13 to follow the cooling profile of the room or s' it is necessary to stop the post-heating.
  • the user visually verifies or the system 10 automatically verifies, using a probe, a three-dimensional scanner, a linear camera, the geometry of the shape deposited on the determined surface in order to validate the respect of the geometry with respect to a determined model.
  • the speed of recharging, construction or repair is 13 meters per minute
  • the flow rate of the carrier gas is 3 liters per minute
  • the angle of inclination of the thin tube is 25 degrees relative to the normal of the part surface.
  • Figure 5 shows a top view photograph of a repair with a spiral path of the laser beam.
  • Figure 6 shows a top view photograph of a repair with a zig-zag-shaped laser beam path on a square-shaped part.
  • Figure 7 shows a top view photograph of a repair with a spiral path of the laser beam.
  • Figure 8 shows a photograph of a repair after polishing and etching of a cross section of the treated part.
  • the system according to the invention makes it possible to use a laser scanning head 12 for an LMD (in English: Laser Métal Déposition) process without a fixed powder bed, while keeping the system 10 stationary relative to the part to be treat.
  • the powder jet is dynamic, that is to say it is present for the duration of the repair, reloading or construction.
  • the pattern necessary for the construction of said volume is achieved solely through the movements of the galvanometric mirrors.
  • the displacement dynamics that is to say the speed and the acceleration of the laser beam in the plane of the part are higher than in the systems of repair, reloading and construction of the state. art.
  • the rapid movement of the laser beam allows a more homogeneous thermal distribution of the treated surface.
  • the invention it is possible to achieve thermal management of a localized construction. Indeed, insofar as the supply of powder and the supply of thermal energy are dissociated within the present invention, it is possible to preheating the surface to be constructed, repaired or recharged by means of the path of the laser beam described above and post-heating the surface constructed, repaired or recharged as described above.
  • This thermal management can therefore be carried out before and after the construction, repair or resurfacing of a specific surface.
  • the dilution rate is very low and equivalent to that of the laser resurfacing solutions of the prior art.
  • the system according to the invention makes it possible to repair, reload or construct parts on small surfaces, of the order of a few centimeters.
  • the system according to the invention also makes it possible to repair, reload or construct part surfaces in areas of said parts which are currently not accessible due to the size of a deposit nozzle according to the state of the art.
  • the system according to the invention also makes it possible to carry out repair, resurfacing or construction operations on materials liable to crack, according to the state of the art. Thanks to the system according to the invention, these materials do not crack at the end of the process according to the invention. In fact, the thermal management according to the invention makes it possible to prevent cracking.
  • the system according to the invention makes it possible to dissociate the size of the deposit of material on the part from the size of the laser beam thanks to the movement dynamics of the laser beam.
  • system according to the invention can easily be adapted to existing additive manufacturing machines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Thermal Sciences (AREA)
  • Powder Metallurgy (AREA)
  • Laser Beam Processing (AREA)
  • Analytical Chemistry (AREA)

Abstract

Système pour ajouter de la matière par fusion de poudre sur une surface déterminée d'une pièce au moyen d'un faisceau laser pour construire un volume, ledit système comprenant : - un dispositif d'émission d'un faisceau laser, - une tête à balayage laser pourvue d'au moins deux miroirs galvanométriques et pourvue d'une lentille pour focaliser le faisceau laser incident réfléchi sur la surface déterminée, le système comprenant la tête à balayage laser étant maintenu immobile par rapport à la pièce lors de la construction dudit volume, - un dispositif d'injection de poudre placé latéralement par rapport au faisceau laser incident réfléchi focalisé pour distribuer la poudre sur la surface déterminée, - la fusion de poudre étant réalisée par le faisceau laser incident réfléchi focalisé émis sur la poudre distribuée sur la surface déterminée.

Description

DESCRIPTION
TITRE : SYSTEME ET PROCEDE D’AJOUT DE MATIERE SUR UNE SURFACE DETERMINEE D’UNE PIECE AU MOYEN D’UN FAISCEAU LASER ORIENTE PAR UNE TETE A BALAYAGE LASER ET D’UNE INJECTION DE POUDRE
LATERALE
Domaine de l’invention
La présente invention concerne le domaine du rechargement, de la construction et de la réparation et plus précisément, un système et un procédé pour ajouter de la matière sur une surface déterminée d’une pièce au moyen d’un faisceau laser.
Etat de l’art
De nos jours, le rechargement, la construction et la réparation sont considérés comme une technologie de production industrielle. A ce titre, la construction ou fabrication additive est utilisée dans de nombreux secteurs industriels tels que l’aéronautique ou le médical qui appartiennent à des domaines exigeants. Par conséquent, il est nécessaire de produire des pièces de très bonne qualité pour le client final.
Dans l’art antérieur, le procédé de dépôt de matière sous énergie concentrée repose sur le principe de dépôt de poudres métalliques à l’état fondu sur un substrat solide.
En effet, le principe initial consiste à utiliser un outil pour envoyer de la poudre métallique sous forme solide, avec une granulométrie définie, typiquement de l’ordre de 45 à 90pm, dans un faisceau de puissance tel qu’un faisceau laser ou un faisceau d’électrons. En traversant le faisceau laser, la poudre est échauffée et fondue et se lie par un procédé métallurgique au substrat pour former un dépôt. L’outil se déplaçant, il est ainsi possible de créer des cordons métalliques sur le substrat. Les couches sont ensuite superposées de manière à créer des pièces volumiques. La poudre métallique est à la base de toute construction effectuée avec la technologie LMD (en anglais : Laser Métal Déposition).
La poudre, de granulométrie très fine, est envoyée sous forme d’un jet composé : d’un gaz de transport (appelé gaz porteur), et de particules de poudre métallique. Ce jet permet de porter la poudre jusqu’au faisceau laser. Le débit de gaz s’exprime en litres/minutes et le débit de poudre en grammes/minutes.
Le jet de poudre est issu d’un distributeur de poudre et voyage dans un tube jusqu’à l’outil de dépose, au plus près du faisceau laser, dans lequel il est injecté. L’élément mécanique par lequel sort le jet de poudre est appelé buse. La poudre métallique est déposée sur le substrat, distant de quelques millimètres de la buse. Cette dernière a pour rôle de guider de manière maîtrisée le jet de poudre incluant le gaz porteur afin que ledit jet de poudre atteigne le faisceau laser de manière optimale. La buse se compose de plusieurs pièces mécaniques, dont des cônes concentriques, qui ont pour but de guider la poudre. Le guidage du jet de poudre dépend de deux cônes : le cône extérieur et le cône intermédiaire. Ainsi, la buse est adaptée pour guider le jet de poudre et comprend en son centre un faisceau laser adapté pour chauffer la poudre.
La poudre est ainsi dirigée dans le faisceau laser par un jet de forme conique annulaire. Le jet de poudre est comme « focalisé » dans le faisceau laser, qui se trouve au centre de ce jet conique. Ainsi, le jet de poudre et le faisceau laser sont amenés selon des directions parallèles.
Cependant, la présence de la buse génère un problème d’encombrement pour accéder à des zones relativement étroites lors de la réalisation d’un procédé de rechargement, de réparation ou de fabrication.
De plus, avec le système selon l’art antérieur, certains matériaux se fissurent sous l’effet de la chaleur du faisceau laser. En effet, l’apport d’énergie au moyen d’un faisceau laser qui agit lentement, c’est-à-dire moins de 5 mètres par minute, engendre la fissuration de ces matériaux.
Dans l’art antérieur, certains systèmes DED (en anglais : Directed Energy Déposition) utilisent une tête à balayage LASER afin de grossir artificiellement le faisceau. En effet, afin d’augmenter la taille des dépôts, le faisceau est déplacé de façon très rapide et la trajectoire de dépose est effectuée par le déplacement de la tête à balayage. Les difficultés liées à la fissuration et à l’encombrement ne sont pas résolues par ce type de système qui est divulgué dans le document Pekkarinen [1]
Il s’avère alors nécessaire de proposer un système et un procédé qui surmontent les inconvénients mentionnés ci-dessus.
Résumé de l’invention
Selon un premier aspect, l’objet de l’invention concerne un système pour ajouter de la matière par fusion de poudre sur une surface déterminée d’une pièce au moyen d’un faisceau laser pour construire un volume, ledit système comprenant : un dispositif d’émission d’un faisceau laser pour émettre un faisceau laser incident,
une tête à balayage laser pourvue d’au moins deux miroirs galvanométriques pour réfléchir et déplacer le faisceau laser incident au moins dans le plan des surfaces à recharger, réparer ou construire selon un motif déterminé, et pourvue d’une lentille pour focaliser le faisceau laser incident réfléchi sur la surface déterminée, le système comprenant la tête à balayage laser étant maintenu immobile par rapport à la pièce lors de la construction dudit volume, un dispositif d’injection de poudre placé latéralement par rapport au faisceau laser incident réfléchi focalisé pour distribuer la poudre sur la surface déterminée, la poudre étant distribuée de manière continue pendant la construction dudit volume, la fusion de la poudre étant réalisée par le faisceau laser incident réfléchi focalisé émis sur la poudre distribuée sur la surface déterminée.
De manière préférée, le système comprend au moins un support poly-articulé permettant de déplacer le système et/ou la pièce pour permettre le positionnement du système par rapport à la pièce afin d’accéder à la surface déterminée. De manière préférée, le dispositif d’injection de poudre comprend un tube pour distribuer la poudre sur la surface déterminée.
De manière préférée, le dispositif d’injection de poudre comprend un premier dispositif de réglage latéral du tube dans un plan parallèle à la surface déterminée de la pièce.
De manière préférée, le dispositif d’injection de poudre comprend un deuxième dispositif de réglage pour régler l’angle à partir duquel la poudre est distribuée sur la surface déterminée.
De manière préférée, le dispositif d’injection de poudre comprend un troisième dispositif de réglage pour régler la hauteur du tube par rapport à la surface déterminée.
De manière préférée, le dispositif d’injection de poudre comprend un quatrième dispositif de réglage pour régler la hauteur du dispositif d’injection de poudre par rapport à la surface de la pièce.
De manière préférée, le système comprend un dispositif d’éclairage pour éclairer la surface déterminée.
De manière préférée, le système comprend une caméra permettant de localiser le motif et de positionner le système.
De manière préférée, le système comprend un dispositif d’analyse du volume de matière à ajouter, tel qu’un palpeur, un scanner tridimensionnel ou une caméra.
De manière préférée, le système comprend une unité de programmation adaptative pour créer les trajectoires adaptées au volume de matière à ajouter.
De manière préférée, le système comprend une unité d’acquisition de la température de la pièce lors d’une étape de préchauffage avant l’ajout de matière et lors d’une étape de post-chauffage après l’ajout de matière.
De manière préférée, le système comprend une unité de lancement automatique de l’ajout de matière à une température déterminée. De manière préférée, le système comprend une unité de gestion automatique d’un cycle complet d’ajout de matière.
De manière préférée, le système comprend une unité d’analyse des informations pour surveiller l’ajout de matière.
De manière préférée, le système comprend une unité d’analyse de la géométrie du volume construit et une unité de comparaison avec un modèle tridimensionnel.
De manière préférée, le système comprend une unité de gestion automatique de l’arrivée de la poudre.
De manière préférée, le système comprend une unité d’asservissement de la puissance d’émission du faisceau laser en fonction de la température.
Selon un deuxième aspect, l’objet de l’invention concerne une procédé pour ajouter de la matière sur une surface déterminée d’une pièce au moyen d’une tête à balayage laser, d’un dispositif d’émission d’un faisceau laser et d’un dispositif d’injection de poudre, la tête à balayage laser étant pourvue de deux miroirs galvanométriques pour réfléchir et focaliser un faisceau laser incident, et déplacer le faisceau laser incident réfléchi focalisé sur la surface déterminée selon un motif déterminé, lors de la rotation des miroirs galvanométriques et la tête à balayage laser, le dispositif d’émission d’un faisceau laser, et le dispositif d’injection de poudre étant immobiles par rapport à la pièce, ledit procédé comprenant les étapes suivantes : identification de la surface à recharger, construire ou réparer sur la pièce, positionnement relatif de la tête à balayage laser, du dispositif d’émission d’un faisceau laser, et du dispositif d’injection de poudre et/ou de la pièce, activation du dispositif d’injection de poudre pour permettre l’écoulement de la poudre sur la surface déterminée identifiée,
émission du faisceau laser incident réfléchi focalisé sur la surface déterminée identifiée selon un motif prédéfini,
fusion de la poudre sur la surface déterminée identifiée, simultanément à l’émission du faisceau laser incident réfléchi focalisé. De manière préférée, le procédé comprend une étape de préchauffage, dans laquelle le faisceau laser incident réfléchi focalisé est émis sur la surface déterminée identifiée selon un motif prédéfini, l’étape de préchauffage ayant lieu avant l’étape d’activation du dispositif d’injection de poudre.
De manière préférée, le procédé comprend une étape de post-chauffage, l’étape de post-chauffage ayant lieu après l’étape de désactivation du dispositif d’injection de poudre.
Brève description des dessins
Les buts, objets et caractéristiques de l’invention apparaîtront plus clairement à la lecture de la description qui suit faite en référence aux dessins dans lesquels :
[Fig. 1] montre selon une vue de côté le système selon l’invention,
[Fig. 2] montre selon une vue détaillée et en perspective le système selon la figure 1 ,
[Fig. 3] montre selon une vue en perspective le dispositif d’injection de poudre selon l’invention,
[Fig. 4] montre un diagramme des étapes du procédé selon l’invention, [Fig. 5] montre une photographie vue de dessus d’une réparation avec une trajectoire en spirale du faisceau laser selon l’invention,
[Fig. 6] montre une photographie vue de dessus d’une réparation avec une trajectoire du faisceau laser en forme de zig-zag sur une pièce en forme de carré, selon l’invention,
[Fig. 7] montre une autre photographie vue de dessus d’une réparation avec une trajectoire en spirale du faisceau laser, selon l’invention,
[Fig. 8] montre une photographie d’une réparation après un polissage et une attaque d’une coupe transversale de la pièce traitée, selon l’invention. Description détaillée d’un mode de réalisation
La présente invention concerne le procédé de fabrication additive, c’est-à-dire de rechargement, de réparation ou construction qui consiste notamment à construire un élément sur un substrat ou sur une pièce, couche après couche, par la fusion de poudres métalliques injectées latéralement par rapport à l’émission d’un faisceau laser. L’élément ou le volume à construire est constituée de n couches. Chaque couche est balayée par le faisceau laser d’une manière spécifique qui peut être différente selon les couches.
La présente invention concerne également le procédé de réparation d’une pièce et le procédé de rechargement d’une pièce.
La figure 1 montre un système 10 selon l’invention. Le système 10 comprend une lentille de focalisation 1 1 , une tête à balayage laser 12, un dispositif d’émission laser (non montré) tel qu’un laser fibré, un faisceau laser 13, un dispositif d’injection de poudre 14 et un dispositif de protection (en anglais : cross jet) 15 de la lentille de focalisation 1 1 . Le dispositif d’injection de poudre 14 est alimenté en poudre métallique par un dispositif d’apport de poudre (non montré).
Le faisceau laser utilisé est issu d’une source laser fibrée multimode avec une longueur d’onde autour de 1 micromètre. Le faisceau laser peut également comprendre d’autres longueurs d’onde. La source laser peut également être monomode.
Le mouvement relatif entre le faisceau laser et la pièce est produit au sein du système 10 en utilisant la tête à balayage laser 12 plutôt que les axes poly-articulés des machines de l’état de l’art. Cette utilisation de la tête à balayage laser 12 permet l'utilisation de trajectoire et de vitesse de balayage du faisceau laser différentes et nettement plus rapides que celle obtenues généralement dans l’état de l’art par l’utilisation des axes poly-articulés. L’utilisation d’un tube fin latéral 16 permet d’amener la poudre près des surfaces de la pièce difficiles d’accès par rapport à la géométrie de la pièce. Le tube fin possède un diamètre interne de l’ordre de quelques millimètres, par exemple 8 mm. La tête à balayage laser 12 comprend au moins deux miroirs dits miroirs galvanométriques permettant le déplacement du faisceau laser focalisé au moins dans le plan des surfaces à recharger, réparer ou construire. Chaque miroir est entraîné en rotation autour de son axe par un moteur dit moteur galvanométrique. Le moteur galvanométrique comprend deux bobines électriques, un aimant permanent auquel est fixé un rotor qui entraîne le miroir galvanométrique correspondant. Lorsqu’un courant électrique circule dans les bobines électriques, celles-ci opèrent comme des électro-aimants et génèrent un champ magnétique. L’aimant permanent pivote alors pour s’aligner avec le champ magnétique. Dans la mesure où l’aimant permanent est relié au miroir par le rotor, l’aimant permanent entraîne dans son mouvement le miroir qui pivote également. Des moyens de commande permettent de commander les moteurs galvanométriques. La sortie de la tête à balayage 12 comporte un système de focalisation. Ainsi, à partir de l’émission d’un faisceau laser incident (non montré), la tête à balayage laser permet de produire un faisceau laser incident réfléchi focalisé 13 montré sur les figures 1 , 2 et 3. Pour des raisons pratiques, le faisceau laser incident réfléchi focalisé 13 est indiqué comme étant le faisceau laser 13 dans la suite de la description. La puissance du faisceau laser est, par exemple, inférieure à 1 kilowatt. La vitesse de déplacement du faisceau laser 13 est, par exemple, supérieure à 50 mètres par minute avec un pas inférieur à 200 micromètres. Le diamètre du faisceau laser 13 est de 1 millimètre par exemple.
Le mouvement du faisceau laser 13 assuré par la tête à balayage laser 12 permet une élévation et un maintien de température en surface de la pièce à traiter par le procédé selon l’invention, ce qui permet le traitement de matériaux nécessitant un préchauffage avant l’ajout de matière ou un post-chauffage c’est-à-dire un chauffage après l’ajout de matière selon l’invention.
La tête de balayage laser permet d’assurer la déviation du faisceau laser à grande vitesse et avec précision.
Par conséquent, grâce à la tête à balayage laser, le faisceau laser 13 peut réaliser des trajectoires ou des motifs de toutes formes évitant ainsi les problèmes d’accélération, d’inertie et de difficulté d’accès. Le faisceau laser 13 se déplace donc selon un motif déterminé. Ainsi, le faisceau laser 13 peut réaliser des trajectoires en forme de spirale, de carré, de cercle, ou de « zig-zag ». Le système 10 comprend le dispositif d’injection de poudre 14 placé latéralement par rapport au faisceau laser 13 lorsque ce dernier est émis. Le dispositif d’injection de poudre 14 comprend un tube fin 16 qui permet de disperser ou distribuer de la matière sous forme de poudre, sous la forme d’un nuage, sur la surface généralement réduite à construire, à recharger ou à réparer, et généralement difficile d’accès. Le débit massique de la poudre est inférieur à 20 grammes par minute par exemple. Le tube fin 16 contient un gaz porteur qui permet de transporter la poudre depuis le dispositif d’apport de poudre (non montré) jusqu’à la sortie du tube fin 16. Le débit du gaz porteur est de quelques litres par minute par exemple. Grâce à ce débit, aucun gaz de protection n’est nécessaire pour éviter l’oxydation de la poudre puisque le gaz porteur suffit et protège le bain de fusion et la poudre de l’oxydation.
Comme montré sur la figure 3, le dispositif d’injection de poudre 14 comprend également quatre dispositifs de réglage 18, 20, 22 et 24 pouvant être motorisés. Le premier dispositif de réglage 18 permet un réglage latéral du tube fin 16 dans un plan parallèle à la surface de la pièce. Le deuxième dispositif de réglage 20 permet de régler l’angle à partir duquel la poudre est dispersée sur la surface de la pièce. Le troisième dispositif de réglage 22 permet de régler la hauteur du tube fin 16 par rapport à la surface de la pièce. Le quatrième dispositif de réglage 24 permet de régler la hauteur du dispositif d’injection de poudre 14 par rapport à la surface de la pièce.
Le jet de poudre est fixe par rapport à la surface à réparer, à recharger ou à construire et couvre l’ensemble de celle-ci. Les dispositifs de réglage 18, 20, 22 et 24 permettent un réglage angulaire et cartésien par rapport à la surface de la pièce. Par exemple, l’angle d’inclinaison du tube fin 16 par rapport à la normale de la surface de la pièce est de 25°. La distance du tube fin 16 à la pièce est de 15 millimètres. Ainsi, le dispositif d’injection de poudre 14 permet d’amener la poudre dans des zones de la pièce difficiles d’accès. Le dispositif d’injection de poudre 14 peut également fonctionner avec des poudres non métalliques.
Le système 10 selon l’invention comprend la tête à balayage laser et le dispositif d’injection de poudre 14 placés sur un support poly-articulé (non montré) c’est-à-dire un support articulé selon plusieurs axes pour permettre de positionner le système 10 par rapport à la surface à traiter et de maintenir le système 10 immobile lors du dépôt de matière sur la surface à traiter.
Le support poly-articulé permet ainsi de déplacer le système 10 jusqu’à une position déterminée, au-dessus de la pièce à traiter. Ensuite, lors du rechargement, de la réparation ou de la construction, le système 10 est immobile par rapport à la pièce à traiter.
De manière alternative, le système 10 peut être fixé sur un bâti afin d’être immobile. Le support poly-articulé permet alors de déplacer la pièce à traiter jusqu’à une position déterminée par rapport au système 10.
Le système 10 selon l’invention comprend également une caméra permettant de localiser la surface à construire, à réparer ou à recharger et de positionner le système 10.
Le système 10 selon l’invention comprend un dispositif d’analyse (non montré) capable de mesurer la pièce pour en déduire la forme du défaut à réparer, à recharger ou de la surface de la pièce à construire, réparer ou recharger. Le dispositif d’analyse comprend par exemple un palpeur, un scanner tridimensionnel ou une caméra linéaire.
Le système 10 selon l’invention comprend une unité de programmation adaptative (non montrée) pour créer les trajectoires ou des motifs adaptés au volume de matière à ajouter.
Le système 10 selon l’invention comprend une unité d’acquisition de la température (non montrée) ou capteur de température de la pièce à construire, à réparer ou à recharger lors du préchauffage avant l’ajout de matière et lors du post-chauffage après l’ajout de matière.
Le système 10 selon l’invention comprend une unité de lancement automatique (non montrée) de la construction à la température adéquate c’est-à-dire à une température déterminée. Le système 10 selon l’invention comprend une unité de gestion automatique (non montrée) du cycle complet d’ajout de matière (non montrée).
Le système 10 selon l’invention comprend une unité d’analyse des informations (non montrée) pour surveiller l’ajout de matière.
Le système 10 selon l’invention comprend une unité d’analyse de la géométrie du volume construit et de comparaison avec un modèle tridimensionnel (non montrée).
Le système 10 selon l’invention comprend une unité de gestion automatique de l’arrivée de la poudre (non montrée).
Le système 10 selon l’invention comprend une unité d’asservissement de la puissance d’émission du faisceau laser en fonction de la température (non montrée).
Lors de son utilisation, le système 10 selon l’invention fonctionne selon un procédé comprenant les étapes suivantes montrées sur le diagramme de la figure 4.
Au sein de l’étape 100, une identification du défaut, c’est-à-dire de la surface déterminée, est réalisée par le dispositif d’analyse (non montré) et le système 10 s’aligne au-dessus du défaut via le système poly-articulé par rapport à la surface à réparer, recharger ou construire selon une distance et une orientation déterminée.
Cet alignement peut être manuel ou automatique. Lorsque le système 10 est aligné avec le défaut, le système 10 est prêt à réparer, recharger le défaut ou construire le volume.
Au sein de l’étape 101 , l’utilisateur décide si le préchauffage de la surface déterminée est nécessaire, c’est-à-dire le chauffage préalablement à l’étape 105 de rechargement, de construction ou de réparation décrite ci-après.
Si le préchauffage est nécessaire, alors le procédé se poursuit avec l’étape 102 qui comprend l’émission du faisceau laser 13 au moyen duquel la tête à balayage laser 12 trace un motif prédéfini sur la surface déterminée de la pièce. Ce motif, pouvant être différent du motif de fabrication, permet d’élever la température sur la zone à recharger, réparer ou construire de façon homogène et de permettre la déposition sur un matériau préchauffé évitant ainsi la fissuration.
Dans une étape 103, le capteur de température permet de surveiller la température de la surface à recharger, à réparer ou à construire. Dès lors que la consigne de température déterminée est atteinte, le processus passe à l’étape 104.
Au sein de l’étape 104, le dispositif d’injection de poudre est activé afin de permettre à la poudre de s’écouler au sein du tube fin 16.
Ensuite, au sein de l’étape 105, le dispositif d’émission laser est activé. Le faisceau laser balaie alors le motif prédéfini. Ce motif peut être un motif composé de plusieurs couches, chaque couche ayant potentiellement son propre motif. La poudre est fondue par le faisceau laser 13 de façon très localisée et l’enchainement du motif et des couches permet de réaliser la forme à déposer.
Au sein de l’étape 106, l’utilisateur décide si le post-chauffage de la surface déterminée est nécessaire. Le post-chauffage est une étape postérieure à l’étape 105, durant laquelle le dispositif d’injection de poudre 14 est désactivé et le faisceau laser 13 est émis sur la surface déterminée identifiée selon le motif prédéfini.
Si le post-chauffage est nécessaire, alors le procédé se poursuit avec l’étape 107. Au sein de l’étape 107, le dispositif d’injection de poudre 14 est désactivé afin que la poudre cesse de s’écouler et le faisceau laser 13 balaie le motif prédéfini sur la pièce.
Dans une étape 108, le capteur de température permet de surveiller la température du post-chauffage afin de déterminer s’il est nécessaire de poursuivre le chauffage en ajustant les paramètres du faisceau laser 13 pour suivre le profil de refroidissement de la pièce ou s’il est nécessaire de stopper le post-chauffage.
Ensuite, au sein de l’étape optionnelle 109, l’utilisateur vérifie de manière visuelle ou le système 10 vérifie de manière automatique, à l’aide d’un palpeur, d’un scanner tridimensionnel, d’une caméra linéaire la géométrie de la forme déposée sur la surface déterminée afin de valider le respect de la géométrie par rapport à un modèle déterminé. Selon un mode de réalisation préféré, la vitesse de rechargement, construction ou réparation est de 13 mètres par minute, le débit du gaz porteur est de 3 litres par minute et l’angle d’inclinaison du tube fin est de 25 degrés par rapport à la normale de la surface de la pièce.
La figure 5 montre une photographie vue de dessus d’une réparation avec une trajectoire en spirale du faisceau laser.
La figure 6 montre une photographie vue de dessus d’une réparation avec une trajectoire du faisceau laser en forme de zig-zag sur une pièce en forme de carré.
La figure 7 montre une photographie vue de dessus d’une réparation avec une trajectoire en spirale du faisceau laser.
La figure 8 montre une photographie d’une réparation après un polissage et une attaque d’une coupe transversale de la pièce traitée.
Le système selon l’invention permet d’utiliser une tête à balayage laser 12 pour un procédé LMD (en anglais : Laser Métal Déposition) et ce, sans lit de poudre fixe, tout en conservant le système 10 immobile par rapport à la pièce à traiter. Au sein de l’invention, le jet de poudre est dynamique c’est-à-dire qu’il est présent pendant la durée de la réparation, du rechargement ou de la construction. Le motif nécessaire à la construction dudit volume est réalisé uniquement grâce aux mouvements des miroirs galvanométriques.
Grâce à l’invention, la dynamique de déplacement, c’est-à-dire la vitesse et l’accélération du faisceau laser dans le plan de la pièce sont plus élevées que dans les systèmes de réparation, rechargement et construction de l’état de l’art. Ainsi, le mouvement rapide du faisceau laser permet une répartition thermique plus homogène de la surface traitée.
Grâce à l’invention, il est possible de réaliser une gestion thermique d’une construction localisée. En effet, dans la mesure où l’apport de poudre et l’apport d’énergie thermique sont dissociés au sein de la présente invention, il est possible de préchauffer la surface à construire, à réparer ou à recharger au moyen de la trajectoire du faisceau laser décrit précédemment et de post-chauffer la surface construite, réparée ou rechargée comme décrit précédemment.
Cette gestion thermique peut donc être réalisée avant et après la construction, la réparation ou le rechargement d’une surface déterminée.
A l’issue du procédé selon l’invention, le taux de dilution est très faible et équivalent à celui des solutions de rechargement laser de l’art antérieur.
Le système selon l’invention permet de réparer, recharger ou construire des pièces sur des surfaces de faible dimension, de l’ordre de quelques centimètres.
Le système selon l’invention permet également de réparer, recharger ou construire des surfaces de pièces dans des zones desdites pièces actuellement non accessibles en raison de l’encombrement d’une buse de dépôt selon l’état de l’art.
Le système selon l’invention permet aussi d’effectuer les opérations de réparation, de rechargement ou de construction sur des matériaux susceptibles de se fissurer, selon l’état de l’art. Grâce au système selon l’invention, ces matériaux ne se fissurent pas à l’issue du procédé selon l’invention. En effet, la gestion thermique selon l’invention permet d’éviter la fissuration.
Le système selon l’invention permet de dissocier la taille du dépôt de matière sur la pièce de la taille du faisceau laser grâce à la dynamique de déplacement du faisceau laser.
Par ailleurs, le système selon l’invention peut s’adapter facilement aux machines de fabrication additive existantes.
Les modes de réalisation précédemment décrits sont indiqués à titre d’exemples uniquement. Bibliographie
[1] Pekkarinen J. “Scanning optics enabled possibilities and challenges in laser cladding” Physics Procedia 78, (2015), pages 285-295.

Claims

Revendications
1. Système (10) pour ajouter de la matière par fusion de poudre sur une surface déterminée d’une pièce au moyen d’un faisceau laser (13) pour construire un volume, ledit système (10) comprenant : un dispositif d’émission d’un faisceau laser pour émettre un faisceau laser incident,
une tête à balayage laser (12) pourvue d’au moins deux miroirs galvanométriques pour réfléchir et déplacer le faisceau laser incident au moins dans le plan des surfaces à recharger, réparer ou construire selon un motif déterminé, et pourvue d’une lentille pour focaliser le faisceau laser incident réfléchi sur la surface déterminée, le système (10) comprenant la tête à balayage laser (12) étant maintenu immobile par rapport à la pièce lors de la construction dudit volume,
un dispositif d’injection de poudre (14) placé latéralement par rapport au faisceau laser incident réfléchi focalisé (13) pour distribuer la poudre sur la surface déterminée, la poudre étant distribuée de manière continue pendant la construction dudit volume, la fusion de la poudre étant réalisée par le faisceau laser incident réfléchi focalisé (13) émis sur la poudre distribuée sur la surface déterminée.
2. Système (10) selon la revendication 1 , comprenant au moins un support poly- articulé permettant de déplacer le système (10) et/ou la pièce pour permettre le positionnement du système (10) par rapport à la pièce afin d’accéder à la surface déterminée.
3. Système (10) selon la revendication 1 ou 2, le dispositif d’injection de poudre (14) comprenant un tube (16) pour distribuer la poudre sur la surface déterminée.
4. Système selon la revendication 3, dans lequel le dispositif d’injection de poudre (14) comprend un premier dispositif (18) de réglage latéral du tube (16) dans un plan parallèle à la surface déterminée de la pièce.
5. Système (10) selon l’une des revendications précédentes, dans lequel le dispositif d’injection de poudre (14) comprend un deuxième dispositif (20) de réglage pour régler l’angle à partir duquel la poudre est distribuée sur la surface déterminée.
6. Système (10) selon la revendication 3, dans lequel le dispositif d’injection de poudre (14) comprend un troisième dispositif de réglage (22) pour régler la hauteur du tube (16) par rapport à la surface déterminée.
7. Système (10) selon l’une des revendications précédentes, dans lequel le dispositif d’injection de poudre (14) comprend un quatrième dispositif de réglage (24) pour régler la hauteur du dispositif d’injection de poudre (14) par rapport à la surface de la pièce.
8. Système (10) selon l’une des revendications précédentes, ledit système comprenant un dispositif d’éclairage pour éclairer la surface déterminée.
9. Système (10) selon l’une des revendications précédentes, ledit système comprenant une caméra permettant de localiser le motif et de positionner le système
(10).
10. Système (10) selon l’une des revendications précédentes, ledit système comprenant un dispositif d’analyse du volume de matière à ajouter, tel qu’un palpeur, un scanner tridimensionnel ou une caméra.
1 1 . Système (10) selon l’une des revendications précédentes, ledit système comprenant une unité de programmation adaptative pour créer les trajectoires adaptées au volume de matière à ajouter.
12. Système (10) selon l’une des revendications précédentes, ledit système comprenant une unité d’acquisition de la température de la pièce lors d’une étape de préchauffage (102) avant l’ajout de matière et lors d’une étape de post-chauffage (107) après l’ajout de matière.
13. Système (10) selon l’une des revendications précédentes, ledit système comprenant une unité de lancement automatique de l’ajout de matière à une température déterminée.
14. Système (10) selon l’une des revendications précédentes, ledit système comprenant une unité de gestion automatique d’un cycle complet d’ajout de matière.
15. Système (10) selon l’une des revendications précédentes, ledit système comprenant une unité d’analyse des informations pour surveiller l’ajout de matière.
16. Système (10) selon l’une des revendications précédentes, ledit système comprenant une unité d’analyse de la géométrie du volume construit et une unité de comparaison avec un modèle tridimensionnel.
17. Système (10) selon l’une des revendications précédentes, ledit système comprenant une unité de gestion automatique de l’arrivée de la poudre.
18. Système (10) selon l’une des revendications précédentes, ledit système comprenant une unité d’asservissement de la puissance d’émission du faisceau laser en fonction de la température.
19. Procédé pour ajouter de la matière sur une surface déterminée d’une pièce au moyen d’une tête à balayage laser (12), d’un dispositif d’émission d’un faisceau laser et d’un dispositif d’injection de poudre (14), la tête à balayage laser (12) étant pourvue de deux miroirs galvanométriques pour réfléchir et focaliser un faisceau laser incident, et déplacer le faisceau laser incident réfléchi focalisé (13) sur la surface déterminée selon un motif déterminé, lors de la rotation des miroirs galvanométriques et la tête à balayage laser (12), le dispositif d’émission d’un faisceau laser, et le dispositif d’injection de poudre (14) étant immobiles par rapport à la pièce, ledit procédé comprenant les étapes suivantes : identification (100) de la surface à recharger, construire ou réparer sur la pièce, positionnement (100) relatif de la tête à balayage laser (12), du dispositif d’émission d’un faisceau laser, et du dispositif d’injection de poudre (14) et/ou de la pièce,
activation (104) du dispositif d’injection de poudre (14) pour permettre l’écoulement de la poudre sur la surface déterminée identifiée, émission (105) du faisceau laser incident réfléchi focalisé (13) sur la surface déterminée identifiée selon un motif prédéfini,
Fusion (105) de la poudre sur la surface déterminée identifiée, simultanément à l’émission du faisceau laser incident réfléchi focalisé (13).
20. Procédé selon la revendication 19, comprenant une étape de préchauffage (102), dans laquelle le faisceau laser incident réfléchi focalisé (13) est émis sur la surface déterminée identifiée selon un motif prédéfini, l’étape de préchauffage (102) ayant lieu avant l’étape d’activation (104) du dispositif d’injection de poudre (14).
21. Procédé selon l’une des revendications 19 ou 20, comprenant une étape de post chauffage (107), l’étape de post-chauffage (107) ayant lieu après l’étape de désactivation du dispositif d’injection de poudre (14).
PCT/FR2020/050863 2019-06-17 2020-05-25 Systeme et procede d'ajout de matiere sur une surface determinee d'une piece au moyen d'un faisceau laser oriente par une tete a balayage laser et d'une injection de poudre laterale WO2020254737A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/620,422 US20220347750A1 (en) 2019-06-17 2020-05-25 System and method for adding material to a determined surface of a workpiece by means of a laser beam directed by a laser scanning head and laterial powder injection
KR1020227001059A KR20220020914A (ko) 2019-06-17 2020-05-25 레이저 스캐닝 헤드 및 측방향 분말 분사에 의해 지향된 레이저 빔에 의해 작업편의 결정된 표면에 재료를 추가하기 위한 시스템 및 방법
CN202080050754.1A CN114126799A (zh) 2019-06-17 2020-05-25 通过由激光扫描头定向的激光束以及侧向粉末注入向部件的确定的表面添加材料的系统和方法
EP20739747.2A EP3983153A1 (fr) 2019-06-17 2020-05-25 Systeme et procede d'ajout de matiere sur une surface determinee d'une piece au moyen d'un faisceau laser oriente par une tete a balayage laser et d'une injection de poudre laterale
JP2021575331A JP2022536957A (ja) 2019-06-17 2020-05-25 レーザ走査ヘッドによって方向づけられたレーザビームおよび横方向粉末射出によって加工物の定められた表面に材料を付加するシステムおよび方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR1906482 2019-06-17
FR1906482A FR3097164B1 (fr) 2019-06-17 2019-06-17 Systeme et procede d’ajout de matiere sur une surface determinee d’une piece au moyen d’un faisceau laser oriente par une tete a balayage laser et d’une injection de poudre laterale

Publications (1)

Publication Number Publication Date
WO2020254737A1 true WO2020254737A1 (fr) 2020-12-24

Family

ID=68425005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2020/050863 WO2020254737A1 (fr) 2019-06-17 2020-05-25 Systeme et procede d'ajout de matiere sur une surface determinee d'une piece au moyen d'un faisceau laser oriente par une tete a balayage laser et d'une injection de poudre laterale

Country Status (7)

Country Link
US (1) US20220347750A1 (fr)
EP (1) EP3983153A1 (fr)
JP (1) JP2022536957A (fr)
KR (1) KR20220020914A (fr)
CN (1) CN114126799A (fr)
FR (1) FR3097164B1 (fr)
WO (1) WO2020254737A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3130275B1 (fr) 2021-12-10 2024-04-05 Office National Detudes Rech Aerospatiales Procede de fabrication additive de piece ceramique oxyde

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6459951B1 (en) * 1999-09-10 2002-10-01 Sandia Corporation Direct laser additive fabrication system with image feedback control
US6605795B1 (en) * 1999-11-04 2003-08-12 Mts Systems Corporation Control system for depositing powder to a molten puddle
US7045738B1 (en) * 2002-10-01 2006-05-16 Southern Methodist University Powder delivery system and method
US20160311027A1 (en) * 2014-03-18 2016-10-27 Kabushiki Kaisha Toshiba Nozzle, layered object manufacturing apparatus, and method for manufacture layered object
WO2018069809A1 (fr) * 2016-10-14 2018-04-19 Prima Industrie S.P.A. Machine de travail au laser pour une fabrication additive par traitement thermique au laser, en particulier par fusion, et procédé correspondant

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6504127B1 (en) * 1999-09-30 2003-01-07 National Research Council Of Canada Laser consolidation methodology and apparatus for manufacturing precise structures
DE202008013569U1 (de) * 2008-10-09 2008-12-24 Hochschule Mittweida (Fh) Einrichtung zum Aufbringen von Schichtstrukturen auf wenigstens ein Substrat mittels Laserauftragschweißen
CN103407296A (zh) * 2013-07-29 2013-11-27 南京鼎科纳米技术研究所有限公司 一种激光熔融辅助纳米墨水实现高熔点材料3d打印的方法
EP3183108B1 (fr) * 2014-08-20 2020-12-09 Etxe-Tar, S.A. Procédé et système de fabrication par addition de couches à l'aide d'un faisceau d'énergie
GB201420717D0 (en) * 2014-11-21 2015-01-07 Renishaw Plc Additive manufacturing apparatus and methods
US10919090B2 (en) * 2015-07-18 2021-02-16 Vulcanforms Inc. Additive manufacturing by spatially controlled material fusion
CN106148947B (zh) * 2016-07-11 2018-10-16 浙江工业大学 一种矩形光斑激光熔覆涂层单条宽度调整机构
US20180141160A1 (en) * 2016-11-21 2018-05-24 General Electric Company In-line laser scanner for controlled cooling rates of direct metal laser melting
KR20180040530A (ko) * 2018-02-22 2018-04-20 주식회사 인스텍 3d 프린팅 레이저빔 조사 장치 및 이를 포함하는 3d 프린팅 레이저빔 조사 시스템
CN108705083A (zh) * 2018-05-31 2018-10-26 华中科技大学 一种基于多激光器的选区熔化粉末实时预热系统及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6459951B1 (en) * 1999-09-10 2002-10-01 Sandia Corporation Direct laser additive fabrication system with image feedback control
US6605795B1 (en) * 1999-11-04 2003-08-12 Mts Systems Corporation Control system for depositing powder to a molten puddle
US7045738B1 (en) * 2002-10-01 2006-05-16 Southern Methodist University Powder delivery system and method
US20160311027A1 (en) * 2014-03-18 2016-10-27 Kabushiki Kaisha Toshiba Nozzle, layered object manufacturing apparatus, and method for manufacture layered object
WO2018069809A1 (fr) * 2016-10-14 2018-04-19 Prima Industrie S.P.A. Machine de travail au laser pour une fabrication additive par traitement thermique au laser, en particulier par fusion, et procédé correspondant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PEKKARINEN J.: "Scanning optics enabled possibilities and challenges in laser cladding", PHYSICS PROCEDIA, vol. 78, 2015, pages 285 - 295, XP029318896, DOI: 10.1016/j.phpro.2015.11.039

Also Published As

Publication number Publication date
CN114126799A (zh) 2022-03-01
JP2022536957A (ja) 2022-08-22
KR20220020914A (ko) 2022-02-21
FR3097164B1 (fr) 2024-05-24
EP3983153A1 (fr) 2022-04-20
FR3097164A1 (fr) 2020-12-18
US20220347750A1 (en) 2022-11-03

Similar Documents

Publication Publication Date Title
CH640448A5 (fr) Procede d'ebavurage d'une piece mecanique et dispositif de mise en oeuvre du procede.
TWI781202B (zh) 增材製造方法和設備
US9272369B2 (en) Method for automated superalloy laser cladding with 3D imaging weld path control
JP6125640B2 (ja) 三次元画像化溶接経路制御を有する自動化された超合金レーザークラッディングシステム
JP5364856B1 (ja) 加工装置、加工方法
EP3352974B1 (fr) Systeme et procede de fabrication additive par fusion laser d'un lit de poudre
US20170008126A1 (en) An additive manufacturing system with a multi-energy beam gun and method of operation
US20120267345A1 (en) Method of manufacturing a component
EP3397393B1 (fr) Procédé et système pour le réglage d'un dispositif de fabrication additive
JP2015535745A5 (fr)
FR2698182A1 (fr) Dispositif de contrôle du centrage d'un faisceau lumineux, application à l'introduction de ce faisceau dans une fibre optique.
US20160151862A1 (en) Device for laser processing of a surface of a workpiece or for post-treatment of a coating on the outside or the inside of a workpiece
CN113165108A (zh) 用能量射束照射材料的方法和装置
WO2020254737A1 (fr) Systeme et procede d'ajout de matiere sur une surface determinee d'une piece au moyen d'un faisceau laser oriente par une tete a balayage laser et d'une injection de poudre laterale
WO2004007136A2 (fr) Systeme et procede d'usinage d'objets a l'aide d'un laser
EP0934797B1 (fr) Procédé de réglage de la position d'une caméra de contrôle thermographique d'une soudure
EP0038297B1 (fr) Procédé d'ébavurage d'un instrument acéré, dispositif de mise en oeuvre du procédé et instrument acéré obtenu par le procédé
WO2018055281A1 (fr) Dispositif et procede de guidage d'un faisceau laser en deplacement rotatif et lateral pour faire varier l'excentrement du faisceau laser
FR3131238A1 (fr) Dispositif de surveillance et/ou de contrôle de puissance d’un faisceau laser pour fabrication additive
FR3126633A1 (fr) Procédé de dépôt de fil métallique fondu à l’aide d’un faisceau laser balayé sur la surface de la pièce
EP4149714A1 (fr) Chauffage laser pour la fabrication ou la reparation d'aube de turbine
FR3097463A1 (fr) Systeme et procede de fabrication controlee
FR3030332A1 (fr) Procede d'elaboration laser d'une piece de turbomachine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20739747

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021575331

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227001059

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020739747

Country of ref document: EP

Effective date: 20220117