WO2020253667A1 - 一种测量时延的无线中心设备、无线设备及无线通信系统 - Google Patents

一种测量时延的无线中心设备、无线设备及无线通信系统 Download PDF

Info

Publication number
WO2020253667A1
WO2020253667A1 PCT/CN2020/096272 CN2020096272W WO2020253667A1 WO 2020253667 A1 WO2020253667 A1 WO 2020253667A1 CN 2020096272 W CN2020096272 W CN 2020096272W WO 2020253667 A1 WO2020253667 A1 WO 2020253667A1
Authority
WO
WIPO (PCT)
Prior art keywords
clock signal
light wave
wireless
center device
delay
Prior art date
Application number
PCT/CN2020/096272
Other languages
English (en)
French (fr)
Inventor
胡召宇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20827532.1A priority Critical patent/EP3968546A4/en
Publication of WO2020253667A1 publication Critical patent/WO2020253667A1/zh
Priority to US17/554,898 priority patent/US11791894B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/071Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0075Arrangements for synchronising receiver with transmitter with photonic or optical means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • This application relates to the field of wireless communication technology, and in particular to a wireless central device, wireless device and wireless communication system for measuring time delay.
  • the clock synchronization accuracy of each distributed wireless device is a key factor that restricts the performance of the DMIMO system.
  • LTE long-term evolution
  • DMIMO multi-in and multi-out
  • the existing compensation mechanism is mainly based on the round-trip test mechanism.
  • the wireless center device transmits the clock signal to the wireless device, and the wireless device receives the clock signal and locks the phase through the phase-locked loop oscillation.
  • the corresponding local clock signal is output, and then the local clock signal is transmitted back to the wireless center device.
  • the wireless center device measures the interval between the sending clock signal and the receiving clock signal, and completes the optical fiber link transmission delay compensation based on the interval information.
  • the downlink test only includes the optical fiber delay during transmission
  • the uplink test includes not only the optical fiber delay during transmission, but also the clock phase deviation between the wireless center device and each wireless device, so
  • the measured uplink and downlink are actually asymmetrical, and delay compensation based on the existing delay-folding calculation method will bring about a large measurement error, and it is difficult to achieve clock synchronization.
  • the embodiments of the present application provide a wireless center device, a wireless device, and a wireless communication system for measuring time delay, which are used to reduce measurement errors, realize accurate measurement of the time delay control amount, and realize clock synchronization.
  • an embodiment of the present application provides a wireless center device for measuring time delay.
  • the wireless center device is applied to a wireless communication system.
  • the wireless center device may include: a time delay measurement module for acquiring the first time delay of the wireless center device. And send the first clock signal to the modem module; the modem module is used to send the first light wave and the second light wave to the wireless device via the optical fiber link, wherein the first light wave carries the first clock signal, And receiving the second light wave carrying the second clock signal sent by the wireless device and receiving the second light subwave reflected by the wireless device to obtain the second clock signal carried by the second light wave and the first clock carried by the second light wave
  • the signal is sent to the time delay measurement module, the second clock signal is determined by the wireless device according to the first clock signal carried by the first light wave transmitted by the first light wave, and the second light wave is reflected by the wireless device according to the first light wave;
  • the delay measurement module is also used to determine the delay control amount according to the first clock signal carried by the second light wave, the second
  • the modem module in the wireless center device respectively sends the first light wave carrying the first clock signal and the empty second light wave to the wireless device, and the wireless center device can receive a part of the direct reflection from the wireless device during the uplink.
  • the first light wave and the second light wave carrying the second clock signal can measure different transmission delays through different clock signals carried by different light waves, so that different transmission delays do not interfere with each other, reducing measurement errors , So as to determine the precise delay control amount.
  • the modem module may include: a first modem unit and a second modem unit; and a first modem unit for Modulate the first clock signal of the wireless center device sent by the time delay measurement module in the first light wave, and send the first light wave to the wireless device and then receive the reflected second light wave to determine the first clock carried by the second light wave
  • the signal is sent to the delay measurement module; the second modulation and demodulation unit is used to send a second light wave to the wireless device and receive the second light wave carrying the second clock signal sent by the wireless device to determine the second clock signal.
  • the first modem unit may include a first laser, a first electro-optic modulator, and a first photodetector
  • the second modem unit may include a second laser and a second photodetector; the first laser is used to receive the first clock signal of the wireless center device sent by the time delay measurement module, and send the first light wave to the wireless device;
  • the first electro-optical modulator is used to modulate the first clock signal in the first light wave;
  • the first photodetector is used to receive and demodulate the second light sub-wave reflected by the wireless device to determine the second light wave carried by the second light wave
  • a clock signal is sent to the time delay measurement module; the second laser is used to send the second light wave to the wireless device; the second photodetector is used to receive and demodulate the second signal carrying the second clock signal sent by the wireless device
  • the light wave is sent to the delay measurement module after obtaining the second clock signal.
  • the wireless center device may further include: a delay compensation module;
  • the measurement module is also used to send the time delay control amount to the time delay compensation module;
  • the time delay compensation module is used to compensate the service signal according to the time delay control amount.
  • the delay compensation module includes: an optically adjustable delay line controller and an electrically adjustable delay line controller Or digital delay line processor.
  • the use of unused delay line controllers or processors to compensate for the delay of service signals provides a variety of operability for clock synchronization between wireless center equipment and wireless equipment.
  • inventions of the present application provide a wireless device for measuring time delay.
  • the wireless device is applied to a wireless communication system.
  • the wireless device may include: a recovery module for receiving a first light wave sent by a wireless center device via an optical fiber link , Wherein the first light wave carries the first clock signal, and according to the first light wave, the first light wave is transmitted and the second light wave is reflected, and the second light wave is reflected to the wireless center device to demodulate the second light wave.
  • the first clock signal carried by the sub-light wave, the first clock signal carried by the first sub-light wave is used to determine the second clock signal, so that the electro-optical modulation module is modulated in the second light wave; the electro-optical modulation module is used to receive wireless After the second light wave sent by the central device, the second clock signal is modulated in the second light wave, and the second light wave carrying the second clock signal is sent to the wireless central device for demodulating the second clock signal.
  • the recovery module and the electro-optical modulation module respectively send different light waves carrying different clock signals to the wireless center device, so that the wireless center device can distinguish the different measured delays according to different light waves, and solve the different transmission delays. The phenomenon of inaccurate delay control caused by mutual interference.
  • the recovery module may include: a photodetector for receiving the first light wave sent by the wireless center device and reflecting the second sub-light wave to the wireless center device , And demodulate the first clock signal carried by the first sub-light wave to determine the third clock signal and send it to the phase locker; the phase locker is used to determine the second clock signal according to the third clock signal and send it to the electro-optic modulation The module sends the second clock signal.
  • inventions of the present application provide a wireless communication system.
  • the wireless communication system may include a wireless center device such as the first aspect or any one of the possible implementations of the first aspect and at least one such as the second aspect or the second aspect.
  • the wireless center device and the wireless device are connected through an optical fiber link.
  • the wireless device can directly reflect a part of the first light wave, that is, the second light wave to the modulation
  • the demodulation module enables the modulation and demodulation module to demodulate the corresponding first clock signal and send it to the time delay measurement module to measure the optical fiber round-trip delay; the wireless device can modulate and transmit the remaining part of the first light wave, that is, the first
  • the second clock signal determined by the first clock signal carried by a sub-light wave is in the second light wave and sent to the modem module, so that the modem module demodulates the corresponding second clock signal and sends it to the time delay
  • the measurement module can measure the total delay of the optical fiber round-trip delay and the delay deviation between the wireless center device and the wireless device. Therefore, different transmission delays can be measured by using different light waves, making the different transmission delays more There is no mutual interference, so that the delay control amount can be accurately measured, the measurement error is reduced, and the
  • Figure 1 is a schematic diagram of a system architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a wireless center device for measuring time delay provided by an embodiment of the present application
  • FIG. 3 is another schematic structural diagram of a wireless center device for measuring time delay provided by an embodiment of the present application
  • FIG. 4 is another schematic structural diagram of a wireless center device for measuring time delay provided by an embodiment of the present application.
  • FIG. 5 is another schematic structural diagram of a wireless center device for measuring time delay provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a wireless device for measuring time delay provided by an embodiment of the present application.
  • FIG. 7 is another schematic structural diagram of a wireless device for measuring time delay provided by an embodiment of the present application.
  • the embodiments of the present application provide a wireless center device, a wireless device, and a wireless communication system for measuring delay, which are used to accurately measure the delay control amount in the case of asymmetric uplink and downlink, so as to facilitate compensation for service signals.
  • FIG. 1 is a schematic diagram of a system architecture provided by an embodiment of the present application.
  • one wireless center device and at least one wireless device may be included, and the number of wireless devices is not specifically limited in the embodiment of the present application.
  • wireless devices may be included as shown in FIG. 1.
  • Wireless device 2 and wireless device 3 but in practical applications, it may also include wireless device 4, wireless device 5 and other wireless devices.
  • the wireless center device can support and control at least one wireless device, and the wireless center device can be connected to the at least one wireless device through a cable, such as optical fiber, cable, etc.
  • the embodiments of the present application mainly take optical fiber as an example. Description; It also communicates through an open common public radio interface (CPRI) or infrared (infrared, IR) interface.
  • CPRI common public radio interface
  • IR infrared
  • the wireless center device can send its own local clock signal to the remote wireless device through the optical fiber, and the wireless device can receive the local clock signal of the wireless center device from the optical fiber, and then oscillate output
  • the clock signal of the wireless device's own side is fed back to the wireless center device, so that the wireless center device compensates the data transmission service signal according to the phase deviation between the received clock signal of the own side and its own local clock signal.
  • the solutions proposed in the embodiments of the present application can also be applied in scenarios such as positioning and Shuangpin.
  • the wireless center equipment may include a baseband processing unit (BBU) BBU, a cloud baseband processing unit (Cloud-BB), and may also include the fifth generation of mobile communication technology (fifth generation, 5G) new wireless (new radio, NR) system in the next generation node B (next generation node B, gNB) or can also include the cloud access network (Cloud RAN) system centralized unit (centralized unit, CU) with measurement functions Central equipment.
  • BBU baseband processing unit
  • Cloud-BB cloud baseband processing unit
  • 5G fifth generation of mobile communication technology
  • NR new wireless
  • gNB next generation node B
  • Cloud RAN cloud access network
  • centralized unit centralized unit
  • the wireless device includes, but is not limited to, a remote radio unit (RRU), subscriber station (subscriber station), mobile station (mobile), remote station (remote station), and access point ( access point (AP), remote terminal equipment (remote terminal), access terminal equipment (access terminal), etc. It also includes restricted devices, such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities. Examples include barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanners and other information sensing equipment.
  • RRU remote radio unit
  • RFID radio frequency identification
  • GPS global positioning system
  • Modulation It can be understood as processing the clock signal and adding it to the light wave of the carrier, that is, the process of changing the phase or frequency of the light wave to make the clock signal suitable for channel transmission.
  • Demodulation It can be understood as the inverse process of modulation. Generally, there are sine wave demodulation and pulse wave demodulation. In this embodiment, frequency demodulation and phase demodulation in sine wave demodulation are mainly used, that is, the clock is derived from light waves. The signal recovery is understood as recovering the clock signal originally in the electrical domain from the optical domain.
  • FIG. 2 is a schematic structural diagram of a wireless center device for measuring time delay provided in an embodiment of the present application.
  • the wireless center device for measuring time delay may include: a time delay measurement module 201 and a modem module 202.
  • the time delay measurement module 201 is configured to obtain the first clock signal of the wireless center device, and send the first clock signal to the modem module 202.
  • the modem module 202 is configured to send a first light wave and a second light wave to a wireless device via an optical fiber link, where the first light wave carries the first clock signal, and receives the second clock signal sent by the wireless device.
  • the second light wave of the signal and the second light subwave reflected by the wireless device are received to obtain the second clock signal carried by the second light wave and the first clock signal carried by the second light wave.
  • the time delay measurement module 201 sends, the second clock signal is determined by the wireless device according to the first clock signal carried by the first sub-wave transmitted by the first light wave, and the second sub-light wave is determined by the wireless device.
  • the device reflects out according to the first light wave.
  • the time delay measurement module 201 is further configured to determine according to the first clock signal carried by the second light wave, the second clock signal carried by the second light wave, and the first clock signal of the wireless center device The delay control amount, which is used to compensate the service signal.
  • the clock source (CLK Driver) in the wireless center device will output the local clock signal of the local side. After the output, it will first be evenly divided into two clock signals. Among them, one clock signal is used to pass through CPRI.
  • the interface implements the transmission of service signals, and another clock signal is output to the delay measurement module 201, so the delay measurement module 201 obtains the local clock signal of the wireless center device side, that is, the aforementioned first clock signal.
  • the first clock signal is generated in the electrical domain and needs to be transmitted to the remote wireless device with the help of optical fiber links. Therefore, the first clock signal in the electrical domain needs to be converted to the optical domain.
  • the modulation and demodulation module 202 modulates the first clock signal to the light wave, that is, modulates the first clock signal to the above-mentioned first light wave, so as to be transmitted to the remote wireless device through the optical fiber link;
  • the second light wave is sent to the remote wireless device through the optical fiber link.
  • the second light wave sent by the modem module 202 to the wireless device in this implementation is actually a null light wave, that is, it should be understood that the second light wave sent to the wireless device on the downlink fiber link is not modulated. Or carry any clock signal or other information.
  • the wireless device When the wireless device receives the first light wave from the optical fiber link, it will divide the first light wave into two sub-waves.
  • the two sub-waves here can be evenly divided or unequally divided.
  • one light wave that is, the second light wave described above
  • the purpose of direct reflection is to pass the first clock signal carried by the second light wave and the local clock signal of the wireless center device
  • the phase deviation between the two can measure the fiber round-trip delay T1, which includes the fiber delay of the uplink and the fiber delay of the downlink.
  • the fiber delay of the downlink can be obtained by converting in half. It is also necessary for the wireless device to reflect the second sub-wave through the optical fiber link back to the modem module 202.
  • the other light wave, the first light wave described above, is the light wave transmitted by the wireless device. Therefore, the wireless device demodulates the first light wave to recover the first light wave carried by the first light wave.
  • the clock signal is understood as demodulating the first clock signal from the optical domain to the electrical domain, thereby generating and locking the second clock signal that is consistent with the phase of the first clock signal in the electrical domain through oscillation, the so-called oscillation It can be understood as adjusting the frequency and phase of the second clock signal output by the wireless device itself according to the voltage of the first clock signal.
  • the so-called locking can be understood as converting the phase difference between the first clock signal and the second clock signal into a voltage value,
  • the power supply voltage is adjusted based on the voltage value to ensure that the phase difference between the output second clock signal and the first clock signal is zero.
  • the second clock signal can be regarded as the local clock signal of the wireless device.
  • the wireless device In order to enable the delay measurement module 201 to accurately measure the total delay T2 of the optical fiber round-trip delay and the clock deviation delay between the wireless center device and the wireless device, it is also necessary for the wireless device to receive the modulation and demodulation module 202 after receiving the total delay. After the empty second light wave, modulate the second clock signal on the empty second light wave, which can be understood as modulating the second clock signal in the electrical domain to the second light wave in the optical domain, This can be sent to the modem module 202 of the wireless center device via the optical fiber link.
  • the modem module 202 After the modem module 202 receives the second light wave reflected by the wireless device and the second light wave carrying the second clock signal, it needs to separate the first clock signal and the second light wave in the second light wave in the optical domain.
  • the second clock signal in the second light wave is demodulated to the electrical domain. Therefore, after the modulation and demodulation module 202 demodulates the first clock signal and the second clock signal, they are sent to the delay measurement module 201.
  • the delay measurement module 201 can determine the phase of receiving the first clock signal of the second light wave according to the first clock signal carried by the second light wave, and combine it with the local clock of the wireless center device.
  • the phase when the signal is sent, the optical fiber round-trip delay T1 can be obtained according to the phase deviation value of the two, that is, the T1 includes the fiber delay of the uplink and the fiber delay of the downlink.
  • the time delay measurement module 201 can determine the phase when receiving the second clock signal according to the second clock signal carried by the second light wave, and combine it with the phase when sending the local clock signal of the wireless center device to This phase deviation value determines the total delay T2 of the optical fiber round-trip delay and the clock deviation delay between the wireless center device and the wireless device.
  • the above-mentioned optical fiber link may adopt a single optical fiber, a dual optical fiber, or other optical fibers, which is not specifically limited here.
  • the wireless center device at this time may also include an optical wavelength splitter and combiner. After modulating the first clock signal to the first light wave, the optical wavelength splitter and combiner combine the first light wave, the second light wave and The service signal is combined and sent to the wireless device through a single fiber or dual fiber.
  • the wireless center device may further include: a delay compensation module 203, configured to compensate the service signal according to the delay control amount.
  • a delay compensation module 203 configured to compensate the service signal according to the delay control amount.
  • the delay measurement module 201 measures the delay control amount ⁇ T, it can send the ⁇ T to the delay compensation module 203, so that the delay compensation module 203 performs delay compensation on the service signal used for data transmission. Compensation is performed on the time delay line, the compensation is performed on the electronically adjustable time delay line, or the compensation is performed on the digital delay line. In practical applications, it may also be compensated on other delay lines according to the delay control amount , The specifics are not limited here.
  • the delay compensation module 203 may include an optically adjustable delay line controller 2031, an electrically adjustable delay line controller 2032, or a digital delay line processor 2033.
  • the delay measurement module 201 needs to send the delay control amount ⁇ T to the corresponding optically adjustable delay line controller 2031, so that the optically adjustable delay line
  • the line controller 2031 compensates for the delay of the service signal; in the same way, when it is desired to compensate the service signal on the electrically adjustable delay line, the delay measurement module 201 is required to send the delay control amount ⁇ T to the corresponding
  • the electronically adjustable delay line controller 2032 enables the electronically adjustable delay line controller 2032 to compensate for the delay of the service signal; when it is desired to compensate the service signal on the digital delay line, the delay measurement module 201 is required Send the delay control quantity ⁇ T to the corresponding digital delay line controller 2033, so that the digital delay line controller 2033 compensates for the delay of the service signal.
  • the digital delay controller 2033 is set on the
  • the different transmission delays are different from each other. Interference, so as to determine the precise time delay control amount, reduce the measurement error, and achieve clock synchronization.
  • Fig. 3 is another schematic structural diagram of a wireless center device for measuring time delay provided by an embodiment of the present application.
  • another embodiment of the wireless center device for measuring time delay may further include: the modem module 202 includes a first modem The modulation unit 2021 and the second modem unit 2022.
  • the first modulation and demodulation unit 2021 is configured to modulate the first clock signal of the wireless center device sent by the time delay measurement module 201 in the first light wave, and send the first light wave to the wireless device and then receive the reflected second sub-light wave, To determine the first clock signal carried by the second sub-light wave and send it to the delay measurement module 201; the second modem unit 2022 is used to send the second light wave to the wireless device and receive the wireless device The sent second light wave carrying the second clock signal is sent to the delay measurement module 201 after determining the second clock signal.
  • the first modem unit 2021 and the second modem unit 2022 can be used to demodulate the clock signal and send it.
  • the delay measurement module 201 is used to determine a more accurate delay control amount, so that different transmission delays do not interfere with each other.
  • the first modem unit 2021 obtains the local clock signal of the wireless center device from the time delay measurement module 201, that is, the first clock signal of the wireless center device mentioned above, due to the first clock signal at this time It is generated in the electrical domain and needs to be transmitted to the remote wireless device with the help of an optical fiber link. Therefore, the first clock signal in the electrical domain needs to be converted to the optical domain. At this time, the first modem unit 2021 is required.
  • the available modulation function modulates the first clock signal to the light wave, that is, modulates the first clock signal to the above-mentioned first light wave, so as to be sent to the remote wireless device through the optical fiber link.
  • the second modem unit 2022 is also required to send the second light wave to the remote wireless device through the optical fiber link.
  • the second light wave sent by the second modem unit 2022 to the wireless device in this implementation is actually a null light wave, which should be understood as the second light wave sent to the wireless device on the downlink optical fiber link. It is not modulated or carries any clock signal or other information.
  • the wireless device When the wireless device receives the first light wave from the optical fiber link, it will divide the first light wave into two sub-waves. Among them, one light wave, the second light wave described above, will be directly reflected by the wireless device, and the purpose of direct reflection is to measure the optical fiber round-trip delay T1 through the second light wave, which includes the uplink. The optical fiber delay of the road and the optical fiber delay of the downlink, therefore, the wireless device is also required to reflect the second sub-wave through the optical fiber link back to the first modem unit 2021.
  • the first modem unit 2021 After receiving the second sub-light wave reflected from the wireless device, the first modem unit 2021 demodulates the first clock signal in the second sub-light wave from the optical domain to the electrical domain, thereby converting the second sub-light wave
  • the carried first clock signal is sent to the delay measurement module 201. Therefore, after the time delay measurement module 201 receives the first clock signal carried by the second light subwave, it determines that T1 can be understood with reference to FIG. 2 above, and will not be repeated here.
  • the other light wave, the first light wave described above, is the light wave transmitted by the wireless device according to the first light wave. Therefore, the wireless device will demodulate the first light wave to recover the light wave carried by the first light wave.
  • the first clock signal is understood as demodulating the first clock signal from the optical domain to the electrical domain, so that the second clock signal that is consistent with the phase of the first clock signal is determined in the electrical domain through oscillation At this time, the second clock signal can be regarded as the local clock signal of the wireless device.
  • the wireless device In order to enable the delay measurement module 201 to accurately measure the total delay T2 of the optical fiber round-trip delay and the clock deviation delay between the wireless center device and the wireless device, it is also necessary for the wireless device to receive the second modem unit After the empty second light wave sent by 2022, the second clock signal is modulated on the second light wave, and sent to the second modem unit 2022 of the wireless center device through the optical fiber link.
  • the second modem unit 2022 receives the second light wave carrying the second clock signal sent from the wireless device, it also needs to demodulate the second clock signal in the second light wave in the optical domain to the electrical domain. , So that the second clock signal can be sent to the delay measurement module 201. Therefore, the time delay measurement module 201 determines T2 after receiving the second clock signal, which can be understood with reference to FIG. 2, and will not be repeated here.
  • the service signal used to transmit data is compensated for delay.
  • it can be compensated on an optically adjustable delay line, an electrically adjustable delay line or a digital delay line.
  • the first light wave and the second light wave are used to measure different transmission delays, it is only necessary to send the first light wave to the wireless device through the first modem unit 2021 to measure the optical fiber round-trip delay, And the second light wave sent by the second modem unit 2022 to the wireless device measures the total delay of the optical fiber round-trip delay and the delay deviation between the wireless center device and the wireless device, so that different transmission delays are different from each other. Interference, so as to determine the precise time delay control amount, reduce the measurement error, and achieve clock synchronization.
  • FIG. 4 is another schematic structural diagram of a wireless center device for measuring time delay provided by an embodiment of the present application.
  • another embodiment of the wireless center device for measuring time delay may further include: the first modem unit 2021 includes a first The laser 20211, the first electro-optical modulator 20112, and the first photodetector 20113, and the second modem unit 2022 includes a second laser 20221 and a second photodetector 20222.
  • the first laser 20211 is used to receive the first clock signal of the wireless center device sent by the time delay measurement module 201 and send the first light wave to the wireless device; the first electro-optical modulator 20112 is used to modulate the first light wave in the first light wave. Clock signal; the first photodetector 20113, used to receive and demodulate the second sub-light wave reflected by the wireless device to determine the first clock signal carried by the second sub-light wave and send it to the delay measurement module 201; the second laser 20221, used to send the second light wave to the wireless device; the second photodetector 20222, used to receive and demodulate the second light wave carrying the second clock signal sent by the wireless device to obtain the second clock signal backward delay
  • the measurement module 201 sends.
  • the first photodetector 20213 and the second photodetector 20222 can be used to demodulate the clock signal and send it to the time.
  • the delay measurement module 201 calculates a relatively accurate delay control amount so that different transmission delays do not interfere with each other.
  • the first laser 20211 obtains the local clock signal of the wireless center device from the time delay measurement module 201, that is, the first clock signal of the wireless center device mentioned above, since the first clock signal at this time is in power Generated on the domain and need to use the optical fiber link to transmit to the remote wireless device, the first clock signal on the electrical domain needs to be converted to the optical domain, so the first clock signal needs to be sent to the first electro-optical modulator 20212, by means of the modulation function of the first electro-optical modulator 20212, the first clock signal is modulated to the light wave, that is, the first clock signal is modulated to the first light wave mentioned above, so that the first laser 20111 is used A light wave is sent to the remote wireless device.
  • the second laser 20221 is also required to send the second light wave to the remote wireless device through the optical fiber link.
  • the second light wave sent by the second laser 20221 to the wireless device in this implementation is actually an empty light wave, that is, it should be understood that the second light wave sent to the wireless device on the downlink fiber link is not modulated. Or carry any clock signal or other information.
  • the first photodetector 20213 When the first photodetector 20213 receives the second sub-wave reflected by the wireless device through the uplink fiber link, it will use the demodulation function to convert the first clock signal carried by the second sub-wave from the optical domain to the electrical In terms of domain, the obtained first clock signal is thus sent to the delay measurement module 201, and the delay measurement module 201 determines that T1 can be understood with reference to the foregoing FIG. 3, and will not be repeated here.
  • the second photodetector 20222 needs to use the demodulation function to demodulate the second clock signal in the second light wave in the optical domain.
  • the obtained second clock signal is sent to the time delay measurement module 201.
  • the time delay measurement module 201 determines that T2 can be understood with reference to FIG. 3, and will not be repeated here.
  • the first clock signal carried by the second subcarrier and the second clock signal carried by the second carrier are sent to the delay measurement module 201 through the first photodetector 20113 and the second photodetector 20222 respectively,
  • the total delay of the operator makes the different transmission delays do not interfere with each other, thereby determining the precise delay control amount, reducing the measurement error, and achieving clock synchronization.
  • FIG. 5 is another schematic structural diagram of a wireless center device for measuring time delay provided by an embodiment of the present application.
  • another embodiment of the wireless center device for measuring delay provided in the embodiment of the present application may further include: a delay compensation module 203;
  • the time delay measurement module 201 is also used to send the time delay control amount to the time delay compensation module 203; the time delay compensation module 203 is used to compensate the service signal according to the time delay control amount.
  • the delay compensation module 203 can be used, for example, an optically adjustable delay line controller, an electrically adjustable delay line controller or a digital delay line processor can be used.
  • the delay control value compensates for the delay of the service signal for transmitting data, so that the wireless center device and the wireless device can achieve a clock synchronization state.
  • the delay compensation module 203 compensates for the service signal of the transmitted data, so that clock synchronization can be achieved when the wireless center device and the wireless device exchange data.
  • Fig. 6 is a schematic structural diagram of a wireless device for measuring time delay provided by an embodiment of the present application.
  • an embodiment of the wireless device for measuring time delay may include: a recovery module S201 and an electro-optical modulation module S202.
  • the recovery module S201 is used to receive the first light wave sent by the wireless center device via the optical fiber link, where the first light wave carries the first clock signal and transmits the first light wave and reflects the second light wave according to the first light wave , Reflect the second sub-light wave to the wireless center device to demodulate the first clock signal carried by the second sub-light wave, and the first clock signal carried by the first sub-light wave is used to determine the second clock signal, so that
  • the electro-optical modulation module S202 modulates the second light wave; the electro-optical modulation module S202 is used to modulate the second clock signal in the second light wave after receiving the second light wave sent by the wireless center device, and send the second light wave to the wireless center device.
  • the second light wave of the second clock signal is used to demodulate the second clock signal.
  • the recovery module S201 when the recovery module S201 receives the first light wave sent by the wireless center device from the optical fiber link, it will divide the first light wave into two sub-light waves. It can be understood that one of the sub-light waves will be on the end surface of the recovery module S201.
  • the above is reflected by the recovery module S201 to form the second sub-wave as described above, and the purpose of direct reflection is to measure the optical fiber round-trip delay T1 through the second sub-wave, that is, the optical fiber that includes the uplink Time delay and the fiber delay of the downlink, therefore, the recovery module S201 is also required to return the second sub-light wave to the modem module 202 via the fiber link.
  • the recovery module S201 will also transmit the remaining one sub-light wave according to the first light wave, that is, the first sub-light wave described above. Therefore, the recovery module S201 recovers the first clock signal carried in the first sub-wave after demodulating the first sub-wave, which is understood as demodulating the first clock signal from the optical domain to the electrical domain, thereby The second clock signal that is consistent with the phase of the first clock signal is generated and locked through the above oscillation.
  • the so-called oscillation can be understood as adjusting the frequency and phase of the second clock signal output by the wireless device itself according to the voltage of the first clock signal.
  • the so-called locking can be understood as converting the phase difference between the first clock signal and the second clock signal into a voltage value, and adjusting the power supply voltage based on the voltage value to ensure that the phase difference between the output second clock signal and the first clock signal is zero.
  • the second clock signal can be regarded as the local clock signal of the wireless device.
  • the recovery module S201 is also required to send the second clock signal to the electro-optic Modulation module S202.
  • the electro-optical modulation module S202 mainly modulates the second clock signal received from the recovery module S201 on the second light wave after receiving the empty second light wave sent by the wireless center device, so that it passes through the upstream optical fiber link
  • the second light wave sent to the wireless center device carries the second clock signal, so that the wireless center device can measure T2.
  • the above-mentioned optical fiber link may adopt a single optical fiber, a dual optical fiber, or other optical fibers, which is not specifically limited here.
  • the wireless device at this time may also include an optical wavelength splitter and combiner, which can be used to separate the first light wave and the second light wave on the single fiber or the double fiber, and the After the second clock signal is modulated to the second light wave, the second light wave sub-wave, the second light wave, and the service signal are combined by the optical wavelength splitter and combiner, and sent to the wireless center device through a single fiber or a double fiber.
  • the recovery module S201 and the electro-optical modulation module S202 respectively send different light waves carrying different clock signals to the wireless center device, so that the wireless center device can distinguish the measured time according to the different light waves sent by the wireless device. It solves the problem of inaccurate delay control amount caused by mutual interference between different transmission delays.
  • FIG. 7 is another schematic structural diagram of a wireless device for measuring time delay provided by an embodiment of the present application.
  • another embodiment of the wireless device for measuring time delay may include: the recovery module S201 includes a photodetector S2011 and a phase locker S2012.
  • the photodetector S2011 is used to receive the first light wave sent by the wireless center device and reflect the second light sub-wave to the wireless center device, and demodulate the first clock signal carried by the first light wave to determine the backward direction of the third clock signal
  • the phase locker S2012 sends; the phase locker S2012 is used to determine the second clock signal according to the third clock signal, and send the second clock signal to the electro-optical modulation module S202.
  • the phase locker S2012 is used to determine the second clock signal to distinguish the two, thereby determining the delay deviation value between the wireless center device and the wireless device, and providing a more accurate deviation value for measuring the delay control amount.
  • the photodetector S2011 After the photodetector S2011 receives the first light wave from the optical fiber link, it will reflect a part of the sub light waves, that is, the second light wave according to the first light wave, and also transmit the remaining light waves to form the first light wave. For the second sub-light wave, it will be directly reflected back to the wireless center device through the optical fiber link on the end face. The details can be understood with reference to FIG. 4, which will not be repeated here.
  • the photodetector S2011 demodulates the first sub-wave, which means that the first clock signal is demodulated from the optical domain to the electrical domain.
  • the clock signal recovered in the electrical domain is different from the first clock signal in the optical domain. Therefore, the third clock signal that is different from the first clock signal is obtained at this time.
  • the third clock signal is a signal determined according to the first clock signal. Therefore, the third clock signal needs to be sent to the phase locker S2012, so that the phase locker S2012 can be in the electrical domain according to the third clock signal.
  • the second clock signal that is consistent with the phase of the first clock signal is locked, so the second clock signal can be regarded as the local clock signal of the wireless device.
  • the phase locker S2012 is also required to send the second clock signal to Electro-optical modulation module S202.
  • the electro-optical modulation module S202 modulates the second clock signal after receiving the empty second light wave sent by the wireless center device, which can be understood with reference to FIG. 4, and will not be repeated here.
  • the second sub-light wave is reflected to the wireless center device through the photodetector S2011, and the local clock signal of the wireless device is accurately locked through the phase locker S2012, that is, after the second clock signal, the electro-optical modulation module S202 sends the modulated signal.
  • the second light wave of the second clock signal enables the wireless center device to distinguish different measured delays according to different light waves, which solves the problem of inaccurate delay control caused by mutual interference between different transmission delays. phenomenon.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)

Abstract

本申请公开了一种测量时延的无线中心设备、无线设备及无线通信系统,降低了测量误差,精准测量时延控制量,实现了对业务信号的时延补偿,从而实现时钟同步。本申请中的无线中心设备包括:时延测量模块,用于获取无线中心设备的第一时钟信号;调制解调模块,用于经由光纤链路向无线设备发送第一光波和第二光波,其中,第一光波携带第一时钟信号,并接收无线设备发送的携带第二时钟信号的第二光波以及接收无线设备反射的第二子光波,以得到第二光波所携带的第二时钟信号以及第二子光波所携带的第一时钟信号后向时延测量模块发送,使得时延测量模块结合无线中心设备的第一时钟信号确定时延控制量。

Description

一种测量时延的无线中心设备、无线设备及无线通信系统
本申请要求于2019年6月17日提交中国专利局、申请号为201910522196.3、发明名称为“一种测量时延的无线中心设备、无线设备及无线通信系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,具体涉及一种测量时延的无线中心设备、无线设备及无线通信系统。
背景技术
在长期演进(long term evolution,LTE)的多入多出分布式系统(distribution multi in and multi out,DMIMO)系统中,各分布式无线设备的时钟同步精度是制约DMIMO系统性能的一个关键因素。然而由于受到无线中心设备到各无线设备的传输距离并不完全相同、器件温漂、光纤链路的热胀冷缩现象、以及工艺偏差等因素影响,导致无线中心设备传输到各无线设备的传输时延存在差异,因此,各分布式无线设备的时钟无法实现完全同步。
针对各分布式无线设备的时钟无法完全同步的现象,现有的补偿机制主要基于往返测试机制,无线中心设备将时钟信号传送到无线设备,无线设备接收到时钟信号后通过锁相环振荡锁相出相应的本地时钟信号,然后将该本地时钟信号回传给无线中心设备,无线中心设备测量发送时钟信号和接收时钟信号的间隔,基于该间隔信息完成光纤链路传输时延补偿。
然而,由于进行下行测试时的仅包含了传输时的光纤时延,而进行上行测试时不仅包含了传输时的光纤时延还包含了无线中心设备和个无线设备之间的时钟相位偏差,因此测量的上行链路与下行链路实际是不对称的,基于现有的时延折半的计算方式进行时延补偿将带来较大的测量误差,实现时钟同步较为困难。
发明内容
本申请实施例提供了一种测量时延的无线中心设备、无线设备及无线通信系统,用于降低测量误差,实现精确地测量时延控制量,从而实现时钟同步。
有鉴于此,本申请实施例提供如下方案:
第一方面,本申请实施例提供一种测量时延的无线中心设备,该无线中心设备应用于无线通信系统,该无线中心设备可以包括:时延测量模块,用于获取无线中心设备的第一时钟信号,并向调制解调模块发送第一时钟信号;调制解调模块,用于经由光纤链路向无线设备发送第一光波和第二光波,其中,第一光波携带有第一时钟信号,并接收无线设备发送的携带有第二时钟信号的第二光波以及接收无线设备反射的第二子光波,以得到第二光波所携带的第二时钟信号以及第二子光波所携带的第一时钟信号后向时延测量模块发送,第二时钟信号由无线设备根据第一光波透射出的第一子光波所携带的第一时钟信号确定, 第二子光波由无线设备根据第一光波反射出;时延测量模块,还用于根据第二子光波所携带的第一时钟信号、第二光波所携带的第二时钟信号以及无线中心设备的第一时钟信号确定时延控制量,时延控制量用于对业务信号进行补偿。由于在下行时,无线中心设备中的调制解调模块分别向无线设备发送携带有第一时钟信号的第一光波以及空的第二光波,在上行时无线中心设备可以接收无线设备直接反射的一部分第一光波以及携带有第二时钟信号的第二光波,通过不同的光波所携带的不同的时钟信号可以测量不同的传输时延,使得不同的传输时延之间互不干扰,降低了测量误差,从而确定出精确的时延控制量。
可选地,结合上述第一方面,在第一种可能的实现方式中,调制解调模块可以包括:第一调制解调单元和第二调制解调单元;第一调制解调单元,用于在第一光波中调制时延测量模块发送的无线中心设备的第一时钟信号,并向无线设备发送第一光波后接收反射的第二子光波,以确定第二子光波所携带的第一时钟信号后向时延测量模块发送;第二调制解调单元,用于向无线设备发送第二光波,并接收无线设备发送的携带有第二时钟信号的第二光波,以确定第二时钟信号后向时延测量模块发送。
可选地,结合上述第一方面第一种可能的实现方式,在第二种可能的实现方式中,第一调制解调单元可以包括第一激光器、第一电光调制器和第一光电探测器,第二调制解调单元可以包括第二激光器和第二光电探测器;第一激光器,用于接收时延测量模块发送的无线中心设备的第一时钟信号,并向无线设备发送第一光波;第一电光调制器,用于在第一光波中调制第一时钟信号;第一光电探测器,用于接收并解调无线设备反射的第二子光波,以确定第二子光波所携带的第一时钟信号后向时延测量模块发送;第二激光器,用于向无线设备发送第二光波;第二光电探测器,用于接收并解调无线设备发送的携带有第二时钟信号的第二光波,以得到第二时钟信号后向时延测量模块发送。
可选地,结合上述第一方面、第一方面第一种至第二种可能的实现方式,在第三种可能的实现方式中,该无线中心设备还可以包括:时延补偿模块;时延测量模块,还用于向时延补偿模块发送时延控制量;时延补偿模块,用于根据时延控制量对业务信号进行补偿。
可选地,结合上述第一方面第三种可能的实现方式,在第四种可能的实现方式中,时延补偿模块包括:光可调时延线控制器、电可调时延线控制器或数字时延线处理器。利用不用的时延线控制器或处理器对业务信号进行时延的补偿,为无线中心设备与无线设备间能够实现时钟同步提供了多种可操作性。
第二方面,本申请实施例提供一种测量时延的无线设备,无线设备应用于无线通信系统,该无线设备可以包括:恢复模块,用于接收无线中心设备经由光纤链路发送的第一光波,其中,第一光波携带有第一时钟信号,并根据第一光波透射出第一子光波和反射出第二子光波,向无线中心设备反射第二子光波,以用于解调出第二子光波所携带的第一时钟信号,第一子光波所携带的第一时钟信号用于确定第二时钟信号,以使电光调制模块在第二光波中调制;电光调制模块,用于在接收无线中心设备发送的第二光波后,在第二光波中调制第二时钟信号,并向无线中心设备发送携带有第二时钟信号的第二光波,以用于解调出第二时钟信号。通过恢复模块、电光调制模块分别向无线中心设备发送不同携带有不同时钟信号的不同光波,使得无线中心设备能够根据不同的光波来区别所测量的不同的时 延,解决了因不同的传输时延之间互扰所导致时延控制量不准的现象。
可选地,结合上述第二方面,在第一种可能的实现方式中,恢复模块可以包括:光电探测器,用于接收无线中心设备发送的第一光波后向无线中心设备反射第二子光波,并解调第一子光波所携带的第一时钟信号,以确定第三时钟信号后向锁相器发送;锁相器,用于根据第三时钟信号确定第二时钟信号,并向电光调制模块发送第二时钟信号。
第三方面,本申请实施例提供一种无线通信系统,无线通信系统可以包括一个如第一方面或第一方面任意一种可能实现方式中的无线中心设备和至少一个如第二方面或第二方面任意一种可能实现方式中的无线设备,无线中心设备与无线设备通过光纤链路连接。
从以上技术方案可以看出,本申请实施例具有以下优点:
由于无线中心设备中的调制解调模块分别向无线设备发送携带有第一时钟信号的第一光波以及空的第二光波,使得无线设备可以直接反射一部分第一光波,即第二子光波至调制解调模块,使调制解调模块解调出相应的第一时钟信号后发送至时延测量模块,从而测量出光纤往返时延;无线设备可以调制根据透射出剩余的一部分第一光波,即第一子光波所携带的第一时钟信号所确定的第二时钟信号在第二光波中,并发送至调制解调模块,使调制解调模块解调出相应的第二时钟信号后发送至时延测量模块,从而测量出光纤往返时延、无线中心设备与无线设备间的时延偏差这两者的总时延,因此使用不同的光波可以测量不同的传输时延,使得不同的传输时延之间互不干扰,从而精确地测量出时延控制量,降低了测量误差,实现时钟同步。
附图说明
图1是是本申请实施例提供的系统架构示意图;
图2是是本申请实施例提供的测量时延的无线中心设备的一个结构示意图;
图3是是本申请实施例提供的测量时延的无线中心设备的另一个结构示意图;
图4是是本申请实施例提供的测量时延的无线中心设备的另一个结构示意图;
图5是是本申请实施例提供的测量时延的无线中心设备的另一个结构示意图;
图6是本申请实施例提供的测量时延的无线设备的一个结构示意图;
图7是本申请实施例提供的测量时延的无线设备的另一个结构示意图。
具体实施方式
本申请实施例提供了一种测量时延的无线中心设备、无线设备及无线通信系统,用于上下行链路不对称的情况下精准测量时延控制量,便于对业务信号提供补偿。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的 任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
为了便于理解,下面对本申请实施例中所适用的架构示意图进行介绍:
本申请实施例所提出的方案主要应用于无线通信系统,该无线通信系统可以是多入多出分布式系统(distribution multi in and multi out,DMIMO)。图1是本申请实施例提供的系统架构示意图。如图1所示,在该架构下,可以包括一个无线中心设备与至少一个无线设备,而对于无线设备的数目在本申请实施例中具体不做限定,例如可以如图1所示包括无线设备1、无线设备2以及无线设备3,但在实际应用中,还可以包括无线设备4、无线设备5等等无线设备。该无线中心设备可以支持并控制至少一个无线设备,并且该无线中心设备可以与该至少一个无线设备之间通过线缆进行连接,比如:光纤,电缆等,本申请实施例主要以光纤为例予以说明;还通过基于开放式通用公共无线电接口(common public radio interface,CPRI)或红外线(infrared,IR)接口进行通信。无线中心设备在获取到自身的本地时钟信号后可以通过该光纤将自身的本地时钟信号发送给远端的无线设备,而无线设备从光纤中接收到无线中心设备的本地时钟信号,便可以振荡输出无线设备己侧的时钟信号,并反馈给无线中心设备,使得无线中心设备根据接收的己侧的时钟信号与自身的本地时钟信号之间的相位偏差值对传输数据的业务信号进行补偿。此外,本申请实施例所提出的方案还可以应用在定位、双拼等场景中。
该无线中心设备可以包括基带处理单元(base band unit,BBU)BBU、云基带处理单元(cloud base band unit,Cloud-BB)、也可以包括第五代移动通信技术(fifth generation,5G)新无线(new radio,NR)系统中的下一代节点B(next generation node B,gNB)或者也可以包括云接入网(Cloud RAN)系统中的集中式单元(centralized unit,CU)等具备测量功能的中心设备。
该无线设备包括但不限于射频拉远单元(remote radio unit,RRU)、用户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point,AP)、远程终端设备(remote terminal)、接入终端设备(access terminal)等。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
为便于更好地理解本申请实施例所提出的方案,首先需要理解一些相关术语:
调制:可以理解成对时钟信号进行处理后加到载体的光波上,即通过改变光波的相位或频率等使得时钟信号变成适合于信道传输的过程。
解调:可以理解成调制的逆过程,一般有正弦波解调和脉冲波解调,本实施例中主要运用了正弦波解调中的频率解调和相位解调,即从光波中将时钟信号恢复出来,也就是理解成从光域上恢复出原来处于电域上的时钟信号。
下面对本实施例中的具体流程进行介绍,图2是本申请实施例提供的测量时延的无线中心设备的一个结构示意图。
如图2所示,本申请实施例提供的测量时延的无线中心设备可以包括:时延测量模块201、调制解调模块202。
时延测量模块201,用于获取无线中心设备的第一时钟信号,并向调制解调模块202发送该第一时钟信号。
调制解调模块202,用于经由光纤链路向无线设备发送第一光波和第二光波,其中,第一光波携带有该第一时钟信号,并接收所述无线设备发送的携带有第二时钟信号的第二光波以及接收无线设备反射的第二子光波,以得到所述第二光波所携带的所述第二时钟信号以及所述第二子光波所携带的第一时钟信号后向所述时延测量模块201发送,所述第二时钟信号由所述无线设备根据所述第一光波透射出的第一子光波所携带的第一时钟信号确定,所述第二子光波由所述无线设备根据所述第一光波反射出。
时延测量模块201,还用于根据所述第二子光波所携带的第一时钟信号、所述第二光波所携带的所述第二时钟信号以及所述无线中心设备的第一时钟信号确定时延控制量,所述时延控制量用于对业务信号进行补偿。
本实施例中,无线中心设备中的时钟源(CLK Driver)会输出本侧的本地时钟信号,在输出之后首先会被均匀等分地分成两路时钟信号,其中,一路时钟信号用于经过CPRI接口实现业务信号的传输,另外一路时钟信号会输出到时延测量模块201,因此时延测量模块201在获取到该无线中心设备侧的本地时钟信号,即上述所提及的第一时钟信号。
此时的第一时钟信号是在电域上产生的并且需要借助光纤链路才能传输到远端的无线设备,因此需要把电域上的第一时钟信号转换到光域上,此时就需要通过调制解调模块202将该第一时钟信号调制到光波上,即将第一时钟信号调制到上述所提及的第一光波,从而通过光纤链路发送给远端的无线设备;并且还需要将第二光波通过该光纤链路发送给远端的无线设备中。
需要说明的一点是,本实施中由调制解调模块202发送给无线设备的第二光波实际上是空光波,即应当理解成在下行的光纤链路上发送给无线设备的第二光波没有调制或承载有任何时钟信号或者是其他的信息。
当无线设备从光纤链路上接收到第一光波后,会将该第一光波分成两路子光波,当然此处的两路子光波可以是均匀等分也可以是按照不等分的方式进行,具体此处不做限定。其中,一路子光波,即上述所描述的第二子光波会直接被无线设备反射出,而直接反射的目的是为了通过第二子光波所携带的第一时钟信号与无线中心设备的本地时钟信号之间的相位偏差值便可以测量出光纤往返时延T1,即包括了上行链路的光纤时延和下行链路的光纤时延,对半折算便可以得到下行链路的光纤时延,因此还需要无线设备将该第二子光波经该光纤链路反射回到调制解调模块202。
另外一路子光波,即上述所描述的第一子光波是被无线设备经过透射得到的光波,因此无线设备会解调该第一子光波,从而恢复出该第一子光波所携带有的第一时钟信号,也就是理解成从光域上将第一时钟信号解调到电域上,从而在电域上经过振荡产生并锁定出与第一时钟信号的相位一致的第二时钟信号,所谓振荡可以理解成根据第一时钟信号的电压来调整控制无线设备本身输出的第二时钟信号的频率和相位,所谓锁定可以理解成将第 一时钟信号与第二时钟信号的相位差转换成电压值,并基于该电压值调整电源电压,确保输出的第二时钟信号与第一时钟信号的相位差为零,此时可以把第二时钟信号当作是无线设备的本地时钟信号。
为了使得时延测量模块201能够精准地测量出光纤往返时延、无线中心设备与无线设备的时钟偏差时延这两者的时延总和T2,还需要无线设备在接收了调制解调模块202发送的空的第二光波后,将该第二时钟信号调制在该空的第二光波上,也就是可以理解成把处在电域中的第二时钟信号调制在处于光域的第二光波,这才能经过光纤链路发送到无线中心设备的调制解调模块202。
调制解调模块202在接收无线设备反射回来的第二子光波,以及接收携带有第二时钟信号的第二光波后,需要分别把处于光域上的第二子光波中的第一时钟信号和第二光波中的第二时钟信号解调到电域上,因此调制解调模块202在解调出第一时钟信号和第二时钟信号后,将这两者发送给时延测量模块201。
此时,时延测量模块201就可以根据第二子光波所携带的的第一时钟信号,确定出接收该第二子光波的第一时钟信号时的相位,并结合将无线中心设备的本地时钟信号发送出去时的相位,根据这两者的相位偏差值就可以得到光纤往返时延T1,即该T1包括了上行链路的光纤时延和下行链路的光纤时延。同理,时延测量模块201可以根据第二光波所携带的第二时钟信号,确定出接收该第二时钟信号时的相位,并结合将无线中心设备的本地时钟信号发送出去时的相位,以此相位偏差值确定出光纤往返时延、无线中心设备与无线设备的时钟偏差时延这两者的时延总和T2。所以,时延测量模块201根据T1和T2可以确定出时延控制量ΔT,即单程下行链路的光纤时延、无线中心设备与无线设备的时钟偏差时延,所以ΔT=T1/2+(T2-T1)。
可以理解的是,上述所提及的光纤链路可以是采用单光纤或者是双光纤,或是其他的光纤,具体此处不做限定。当采用单光纤或者双光纤时,此时的无线中心设备还可以包括光波分合器,在把第一时钟信号调制到第一光波后利用该光波分合器将第一光波、第二光波和业务信号进行合路,通过单光纤或双光纤发送给无线设备。
可选地,该无线中心设备还可以包括:时延补偿模块203,用于根据时延控制量对业务信号进行补偿。当时延测量模块201在测量出时延控制量ΔT后,可以向时延补偿模块203发送该ΔT,使得时延补偿模块203对传输数据所使用的业务信号进行时延补偿,例如可以在光可调时延线上进行补偿、电可调节时延线上进行补偿或者是在数字时延线上进行补偿,在实际应用中,还可能根据该时延控制量在其他的时延线上进行补偿,具体此处不做限定。
可选地,该时延补偿模块203可以包括光可调时延线控制器2031、电可调时延线控制器2032或数字时延线处理器2033。当想要在光可调时延线对业务信号进行补偿时,需要时延测量模块201将该时延控制量ΔT发给相应的光可调时延线控制器2031,使得光可调时延线控制器2031对业务信号进行时延的补偿;同理,当想要在电可调时延线对业务信号进行补偿时,需要时延测量模块201将该时延控制量ΔT发给相应的电可调时延线控制器2032,使得电可调时延线控制器2032对业务信号进行时延的补偿;当想要在数字时延线对业务信号进行补偿时,需要时延测量模块201将该时延控制量ΔT发给相应的数字时延线控制器2033, 使得数字时延线控制器2033对业务信号进行时延的补偿,此时的数字时延控制器2033是设置在CPRI接口中。
本申请实施例中,由于无线中心设备中的调制解调模块202分别向无线设备发送的第一光波以及第二光波可以用来测量不同的传输时延,使得不同的传输时延之间互不干扰,从而确定出精确的时延控制量,降低了测量误差,实现时钟同步。
图3是本申请实施例提供的测量时延的无线中心设备的另一个结构示意图。
在上述图2对应的实施例的基础上,如图3所示,本申请实施例提供的测量时延的无线中心设备的另一实施例还可以包括:调制解调模块202包括第一调制解调单元2021和第二调制解调单元2022。
第一调制解调单元2021,用于在第一光波中调制时延测量模块201发送的该无线中心设备的第一时钟信号,并向无线设备发送第一光波后接收反射的第二子光波,以确定第二子光波所携带的第一时钟信号后向时延测量模块201发送;第二调制解调单元2022,用于向所述无线设备发送所述第二光波,并接收所述无线设备发送的携带有所述第二时钟信号的第二光波,以确定所述第二时钟信号后向所述时延测量模块201发送。
本实施例中,由于第一光波与第二光波是分别用来测量不同的传输时延,因此可以分别使用第一调制解调单元2021与第二调制解调单元2022解调出时钟信号后发送给时延测量模块201,从而确定出更加精确的时延控制量,使得不同的传输时延之间互不干扰。
因此,在第一调制解调单元2021从时延测量模块201处获取到了无线中心设备的本地时钟信号,即上述提及的无线中心设备的第一时钟信号之后,由于此时的第一时钟信号是在电域上产生并且需要借助光纤链路才能传输到远端的无线设备,因此需要把电域上的第一时钟信号转换到光域上,此时就需要通过第一调制解调单元2021所具备的调制功能将该第一时钟信号调制到光波上,即将第一时钟信号调制到上述所提及的第一光波,从而通过光纤链路发送给远端的无线设备中。
同理,也需要第二调制解调单元2022将第二光波通过该光纤链路发送给远端的无线设备中。需要说明的一点是,本实施中由第二调制解调单元2022发送给无线设备的第二光波实际上是空光波,即应当理解成在下行的光纤链路上发送给无线设备的第二光波没有调制或承载有任何时钟信号或者是其他的信息。
当无线设备从光纤链路上接收到第一光波后,会将该第一光波分成两路子光波。其中,一路子光波,即上述所描述的第二子光波会直接被无线设备反射出,而直接反射的目的是为了通过第二子光波便可以测量出光纤往返时延T1,即包括了上行链路的光纤时延和下行链路的光纤时延,因此还需要无线设备将该第二子光波经该光纤链路反射回到第一调制解调单元2021。
第一调制解调单元2021在接收从无线设备反射回来的第二子光波后,从光域上把该第二子光波里的第一时钟信号解调到电域,从而把该第二子光波所所携带的第一时钟信号发送给时延测量模块201。因此,该时延测量模块201在接收到该第二子光波所携带的第一时钟信号后,确定出T1可以参照上述图2进行理解,此处不做赘述。
另外一路子光波,即上述所描述的第一子光波是由无线设备根据第一光波透射得到的 光波,因此无线设备会解调该第一子光波,从而恢复出该第一子光波所携带有的第一时钟信号,也就是理解成从光域上将第一时钟信号解调到电域上,从而在电域上经过振荡产生并确定出与第一时钟信号的相位一致的第二时钟信号,此时可以把第二时钟信号当作是无线设备的本地时钟信号。为了使得时延测量模块201能够精准地测量出光纤往返时延、无线中心设备与无线设备的时钟偏差时延这两者的时延总和T2,还需要无线设备在接收了第二调制解调单元2022发送的空的第二光波后,把第二时钟信号调制在该第二光波上,经过光纤链路发送到无线中心设备的第二调制解调单元2022。
同理,第二调制解调单元2022接收从无线设备发送的携带有第二时钟信号的第二光波后,也需要把处于光域的第二光波中的第二时钟信号解调到电域上,从而才能将该第二时钟信号发送给时延测量模块201。因此,该时延测量模块201在接收了第二时钟信号后确定出T2可以参照上述图2进行理解,此处不做赘述。
所以,时延测量模块201根据T1和T2可以确定出时延控制量ΔT,即单程下行链路的光纤时延、无线中心设备与无线设备的时钟偏差时延,所以ΔT=T1/2+(T2-T1)。
因此根据该时延控制量ΔT对传输数据所使用的业务信号进行时延补偿,如可以在光可调时延线上进行补偿、电可调节时延线上进行补偿或者是在数字时延线上进行补偿,在实际应用中,还可能根据该时延控制量在其他的时延线上进行补偿,具体此处不做限定。
本申请实施例中,由于第一光波与第二光波是分别用来测量不同的传输时延,因此仅需要通过第一调制解调单元2021向无线设备发送第一光波来测量光纤往返时延、以及第二调制解调单元2022向无线设备发送的第二光波测量光纤往返时延、无线中心设备与无线设备的时延偏差这两者的总时延,使得不同的传输时延之间互不干扰,从而确定出精确的时延控制量,降低了测量误差,实现时钟同步。
图4是本申请实施例提供的测量时延的无线中心设备的另一个结构示意图。
在上述图3对应的实施例的基础上,如图4所示,本申请实施例提供的测量时延的无线中心设备的另一实施例还可以包括:第一调制解调单元2021包括第一激光器20211、第一电光调制器20212和第一光电探测器20213,第二调制解调单元2022包括第二激光器20221和第二光电探测器20222。
第一激光器20211,用于接收时延测量模块201发送的无线中心设备的第一时钟信号,并向无线设备发送第一光波;第一电光调制器20212,用于在第一光波中调制第一时钟信号;第一光电探测器20213,用于接收并解调无线设备反射的第二子光波,以确定第二子光波所携带的第一时钟信号后向时延测量模块201发送;第二激光器20221,用于向无线设备发送第二光波;第二光电探测器20222,用于接收并解调无线设备发送的携带有第二时钟信号的第二光波,以得到第二时钟信号后向时延测量模块201发送。
本实施例中,由于第一光波与第二光波是分别用来测量不同的传输时延,因此可以分别使用第一光电探测器20213与第二光电探测器20222解调出时钟信号后发送给时延测量模块201,从而计算出较为精确的时延控制量,使得不同的传输时延之间互不干扰。
因此,在第一激光器20211从时延测量模块201处获取到了无线中心设备的本地时钟信号,即上述提及的无线中心设备的第一时钟信号之后,由于此时的第一时钟信号是在电域 上产生并且需要借助光纤链路才能传输到远端的无线设备,则需要把电域上的第一时钟信号转换到光域上,所以需要将该第一时钟信号发送给第一电光调制器20212,借助第一电光调制器20212所具备的调制功能将该第一时钟信号调制到光波上,即将第一时钟信号调制到上述所提及的第一光波,从而利用第一激光器20211将该第一光波发送给远端的无线设备。
同理,也需要第二激光器20221将第二光波通过该光纤链路发送给远端的无线设备。
需要说明的一点是,本实施中由第二激光器20221发送给无线设备的第二光波实际上是空的光波,即应当理解成在下行的光纤链路上发送给无线设备的第二光波没有调制或承载有任何时钟信号或者是其他的信息。
当第一光电探测器20213经过上行的光纤链路接收了无线设备反射的第二子光波后,会利用解调的功能将第二子光波所携带的第一时钟信号从光域上转换到电域上,从而将所得到的第一时钟信号发送给时延测量模块201,该时延测量模块201确定出T1可以参照上述图3进行理解,此处不做赘述。
同理,第二光电探测器20222在接收从无线设备发送的携带有第二时钟信号的第二光波后,需要利用解调的功能把处于光域上第二光波中的第二时钟信号解调到电域上,从而将所得到的第二时钟信号发送给时延测量模块201,该时延测量模块201确定出T2可以参照上述图3进行理解,此处不做赘述。
本实施例中,分别通过第一光电探测器20213、第二光电探测器20222向时延测量模块201发送第二子载波所携带的第一时钟信号、第二载波所携带的第二时钟信号,使得时延测量模块201测量出不同的传输时延,因此仅需要通过第一光波来测量光纤往返时延、以及第二光波测量光纤往返时延、无线中心设备与无线设备的时延偏差这两者的总时延,使得不同的传输时延之间互不干扰,从而确定出精确的时延控制量,降低了测量误差,实现时钟同步。
图5是本申请实施例提供的测量时延的无线中心设备的另一个结构示意图。
在上述图2至图4对应的实施例的基础上,如图5所示,本申请实施例提供的测量时延的无线中心设备的另一实施例还可以包括:时延补偿模块203;
时延测量模块201,还用于向时延补偿模块203发送时延控制量;时延补偿模块203,用于根据时延控制量对业务信号进行补偿。
本实施例中,对于确定出时延控制量后,可以通过时延补偿模块203,比如可以通过光可调时延线控制器、电可调时延线控制器或数字时延线处理器利用该时延控制量对进行传输数据的业务信号进行时延的补偿,使得无线中心设备与无线设备之间可以达到时钟同步的状态。
本申请实施例中,在得到精准的时延控制量后,通过时延补偿模块203对传输数据的业务信号进行补偿,使得无线中心设备与无线设备之间进行数据交互时能够实现时钟同步。
上述实施例描述了测量时延的无线中心设备的结构,下面将介绍测量时延的无线设备的结构。
图6是本申请实施例提供的测量时延的无线设备的一个结构示意图。
如图6所示,本申请实施例提供的测量时延的无线设备的一实施例可以包括:恢复模块 S201、电光调制模块S202。
恢复模块S201,用于接收无线中心设备经由光纤链路发送的第一光波,其中,第一光波携带有第一时钟信号,并根据第一光波透射出第一子光波和反射出第二子光波,向无线中心设备反射第二子光波,以用于解调出第二子光波所携带的第一时钟信号,第一子光波所携带的第一时钟信号用于确定第二时钟信号,以使电光调制模块S202在第二光波中调制;电光调制模块S202,用于在接收无线中心设备发送的第二光波后,在第二光波中调制第二时钟信号,并向无线中心设备发送携带有第二时钟信号的第二光波,以用于解调出第二时钟信号。
本实施例中,当恢复模块S201从光纤链路上接收无线中心设备发送的第一光波,会将该第一光波分成两路子光波,可以理解成其中一路子光波是会在恢复模块S201的端面上被恢复模块S201反射得到,从而形成即上述所描述的第二子光波,而直接反射的目的是为了通过第二子光波便可以测量出光纤往返时延T1,即包括了上行链路的光纤时延和下行链路的光纤时延,因此还需要该恢复模块S201将该第二子光波经该光纤链路返回到调制解调模块202。
另外,恢复模块S201还会根据第一光波透射出剩余的一路子光波,即上述所描述的第一子光波。因此,恢复模块S201经过解调该第一子光波,恢复出其中所携带有的第一时钟信号,也就是理解成从光域上将第一时钟信号解调到电域上,从而在电域上经过振荡产生并锁定出与第一时钟信号的相位一致的第二时钟信号,所谓振荡可以理解成根据第一时钟信号的电压来调整控制无线设备本身输出的第二时钟信号的频率和相位,所谓锁定可以理解成将第一时钟信号与第二时钟信号的相位差转换成电压值,并基于该电压值调整电源电压,确保输出的第二时钟信号与第一时钟信号的相位差为零,此时可以把第二时钟信号当作是无线设备的本地时钟信号。为了使得时延测量模块201能够精准地测量出光纤往返时延、无线中心设备与无线设备的时钟偏差时延这两者的时延总和T2,还需要恢复模块S201将第二时钟信号发送到电光调制模块S202。
此时电光调制模块S202主要是在接收了无线中心设备发送的空的第二光波后,把从恢复模块S201处接收的第二时钟信号调制在该第二光波上,使得经过上行的光纤链路发送给无线中心设备的第二光波携带有第二时钟信号,以使得无线中心设备能够测量出T2。
可以理解的是,上述所提及的光纤链路可以是采用单光纤或者是双光纤,或是其他的光纤,具体此处不做限定。当采用单光纤或者双光纤时,此时的无线设备还可以包括光波分合器,可以利用该光波分合器分离出单纤或双光纤上的第一光波和第二光波,并且还在把第二时钟信号调制到第二光波后利用该光波分合器将第二子光波、第二光波和业务信号进行合路,通过单光纤或双光纤发送给无线中心设备。
本实施例中,通过恢复模块S201、电光调制模块S202分别向无线中心设备发送不同携带有不同时钟信号的不同光波,使得无线中心设备能够根据无线设备发送不同的光波来区别所测量的不同的时延,解决了因不同的传输时延之间互扰所导致时延控制量不准的现象。
图7是本申请实施例提供的测量时延的无线设备的另一个结构示意图。
如图7所示,本申请实施例提供的测量时延的无线设备的另一实施例可以包括:恢复模 块S201包括光电探测器S2011和锁相器S2012。
光电探测器S2011,用于接收无线中心设备发送的第一光波后向无线中心设备反射第二子光波,并解调第一子光波所携带的第一时钟信号,以确定第三时钟信号后向锁相器S2012发送;锁相器S2012,用于根据第三时钟信号确定第二时钟信号,并向电光调制模块S202发送第二时钟信号。
本实施例中,在上述图6所描述实施例的基础上,由于第一光波发送到光电探测器S2011后,一部分光波会被直接反射,另一部分光波会用来确定第二时钟信号,因此可以通过锁相器S2012来确定出第二时钟信号将这两者区分开来,从而确定无线中心设备与无线设备之间的时延偏差值,为测量时延控制量提供较为准确的偏差值。
当光电探测器S2011从光纤链路上接收到第一光波后,会根据该第一光波反射出一部分子光波,即第二子光波,并且也会将其余的光波透射出来形成第一子光波。对于第二子光波,会在端面上又经过光纤链路直接反射回到无线中心设备,具体可以参照图4进行理解,此处不做赘述。
针对第一子光波,光电探测器S2011会解调该第一子光波,即理解成从光域上将第一时钟信号解调到电域上,然而由于受到环境等因素的影响会存在随机飘移等情况,使得此时在电域上恢复出来的时钟信号与在光域上的第一时钟信号有差别,因此此时得到的是有异于第一时钟信号的第三时钟信号,应当理解的是,该第三时钟信号是根据该第一时钟信号确定的信号,因此还需要把该第三时钟信号发送给锁相器S2012,使得锁相器S2012可以根据该第三时钟信号在电域上锁定出与第一时钟信号的相位一致的第二时钟信号,因此可以把第二时钟信号当作是无线设备的本地时钟信号。为了使得时延测量模块201能够精准地测量出光纤往返时延、无线中心设备与无线设备的时钟偏差时延这两者的时延总和T2,还需要锁相器S2012将第二时钟信号发送到电光调制模块S202。电光调制模块S202在接收了无线中心设备发送的空的第二光波后,调制第二时钟信号可以参照上述图4进行理解,此处不做赘述。
本实施例中,通过光电探测器S2011向无线中心设备反射第二子光波,并通过锁相器S2012准确锁定出无线设备的本地时钟信号,即第二时钟信号后借助电光调制模块S202发送调制有该第二时钟信号的第二光波,使得无线中心设备能够根据不同的光波来区别所测量的不同的时延,解决了因不同的传输时延之间互扰所导致时延控制量不准的现象。

Claims (8)

  1. 一种测量时延的无线中心设备,所述无线中心设备应用于无线通信系统,其特征在于,包括:
    时延测量模块,用于获取所述无线中心设备的第一时钟信号,并向调制解调模块发送所述第一时钟信号;
    所述调制解调模块,用于经由光纤链路向无线设备发送第一光波和第二光波,其中,所述第一光波携带有所述第一时钟信号,并接收所述无线设备发送的携带有第二时钟信号的第二光波以及接收无线设备反射的第二子光波,以得到所述第二光波所携带的所述第二时钟信号以及所述第二子光波所携带的第一时钟信号后向所述时延测量模块发送,所述第二时钟信号由所述无线设备根据所述第一光波透射出的第一子光波所携带的第一时钟信号确定,所述第二子光波由所述无线设备根据所述第一光波反射出;
    所述时延测量模块,还用于根据所述第二子光波所携带的第一时钟信号、所述第二光波所携带的所述第二时钟信号以及所述无线中心设备的第一时钟信号确定时延控制量,所述时延控制量用于对业务信号进行补偿。
  2. 根据权利要求1所述的无线中心设备,其特征在于,所述调制解调模块包括:第一调制解调单元和第二调制解调单元;
    所述第一调制解调单元,用于在所述第一光波中调制所述时延测量模块发送的所述无线中心设备的第一时钟信号,并向所述无线设备发送所述第一光波后接收反射的所述第二子光波,以确定所述第二子光波所携带的第一时钟信号后向所述时延测量模块发送;
    所述第二调制解调单元,用于向所述无线设备发送所述第二光波,并接收所述无线设备发送的携带有所述第二时钟信号的第二光波,以确定所述第二时钟信号后向所述时延测量模块发送。
  3. 根据权利要求2所述的无线中心设备,其特征在于,所述第一调制解调单元包括第一激光器、第一电光调制器和第一光电探测器,所述第二调制解调单元包括第二激光器和第二光电探测器;
    所述第一激光器,用于接收所述时延测量模块发送的所述无线中心设备的第一时钟信号,并向所述无线设备发送所述第一光波;
    所述第一电光调制器,用于在所述第一光波中调制所述第一时钟信号;
    所述第一光电探测器,用于接收并解调所述无线设备反射的所述第二子光波,以确定所述第二子光波所携带的第一时钟信号后向所述时延测量模块发送;
    所述第二激光器,用于向所述无线设备发送所述第二光波;
    所述第二光电探测器,用于接收并解调所述无线设备发送的携带有所述第二时钟信号的第二光波,以得到所述第二时钟信号后向所述时延测量模块发送。
  4. 根据权利要求1至3中任一所述的无线中心设备,其特征在于,还包括:时延补偿模块;
    所述时延测量模块,还用于向所述时延补偿模块发送所述时延控制量;
    所述时延补偿模块,用于根据所述时延控制量对所述业务信号进行补偿。
  5. 根据权利要求4所述的无线中心设备,其特征在于,所述时延补偿模块包括:光可调时延线控制器、电可调时延线控制器或数字时延线处理器。
  6. 一种测量时延的无线设备,所述无线设备应用于无线通信系统,其特征在于,包括:
    恢复模块,用于接收无线中心设备经由光纤链路发送的第一光波,其中,所述第一光波携带有第一时钟信号,并根据所述第一光波透射出第一子光波和反射出第二子光波,向无线中心设备反射所述第二子光波,以用于解调出所述第二子光波所携带的第一时钟信号,所述第一子光波所携带的第一时钟信号用于确定第二时钟信号,以使电光调制模块在第二光波中调制;
    所述电光调制模块,用于在接收所述无线中心设备发送的所述第二光波后,在所述第二光波中调制所述第二时钟信号,并向所述无线中心设备发送携带有所述第二时钟信号的第二光波,以用于解调出所述第二时钟信号。
  7. 根据权利要求6所述的无线设备,其特征在于,所述恢复模块包括:
    光电探测器,用于接收所述无线中心设备发送的第一光波后向所述无线中心设备反射所述第二子光波,并解调所述第一子光波所携带的第一时钟信号,以确定第三时钟信号后向锁相器发送;
    所述锁相器,用于根据所述第三时钟信号确定所述第二时钟信号,并向所述电光调制模块发送所述第二时钟信号。
  8. 一种无线通信系统,其特征在于,所述无线通信系统包括一个如权利要求1至5中任一项所述的无线中心设备和至少一个如权利要求6至7中任一所述的无线设备,所述无线中心设备与所述无线设备通过所述光纤链路连接。
PCT/CN2020/096272 2019-06-17 2020-06-16 一种测量时延的无线中心设备、无线设备及无线通信系统 WO2020253667A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20827532.1A EP3968546A4 (en) 2019-06-17 2020-06-16 WIRELESS DELAY MEASUREMENT HUB, WIRELESS DEVICE AND WIRELESS COMMUNICATION SYSTEM
US17/554,898 US11791894B2 (en) 2019-06-17 2021-12-17 Wireless center device and wireless device for delay measurement, and wireless communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910522196.3 2019-06-17
CN201910522196.3A CN112104413B (zh) 2019-06-17 2019-06-17 一种测量时延的无线中心设备、无线设备及无线通信系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/554,898 Continuation US11791894B2 (en) 2019-06-17 2021-12-17 Wireless center device and wireless device for delay measurement, and wireless communication system

Publications (1)

Publication Number Publication Date
WO2020253667A1 true WO2020253667A1 (zh) 2020-12-24

Family

ID=73748877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096272 WO2020253667A1 (zh) 2019-06-17 2020-06-16 一种测量时延的无线中心设备、无线设备及无线通信系统

Country Status (4)

Country Link
US (1) US11791894B2 (zh)
EP (1) EP3968546A4 (zh)
CN (1) CN112104413B (zh)
WO (1) WO2020253667A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11799710B2 (en) * 2020-12-10 2023-10-24 Qualcomm Incorporated Techniques for signaling a source of dominant noise at a user equipment
CN116547940A (zh) * 2021-01-11 2023-08-04 华为技术有限公司 时钟同步方法和通信装置
WO2023137718A1 (zh) * 2022-01-21 2023-07-27 Oppo广东移动通信有限公司 同步控制方法、终端设备、网络设备、芯片和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008182385A (ja) * 2007-01-24 2008-08-07 Nec Corp 移動通信システム、タイムサーバ及びそれらに用いる局間同期方法
CN102457372A (zh) * 2010-11-02 2012-05-16 中兴通讯股份有限公司 一种通信系统以及利用光纤传输时钟信号的方法
US20120213508A1 (en) * 2011-02-23 2012-08-23 Jeffrey Scott Moynihan Network element clock synchronization systems and methods using optical transport network delay measurement
CN109375494A (zh) * 2018-12-03 2019-02-22 中国人民解放军陆军工程大学 一种基于单光子检测的光纤高精度授时装置和方法
CN109565344A (zh) * 2016-09-09 2019-04-02 华为技术有限公司 用于确定传播延迟的系统与方法
CN109756321A (zh) * 2017-11-01 2019-05-14 中兴通讯股份有限公司 一种时间同步装置及方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100328571B1 (ko) * 2000-02-09 2002-03-15 이진섭 시간 지연을 보상할 수 있는 이동통신 시스템
CN102412955B (zh) 2011-11-28 2015-08-19 华为技术有限公司 光纤不对称时主从设备间的时间偏差获取方法和通信系统
WO2012092892A2 (zh) * 2012-02-01 2012-07-12 华为技术有限公司 时间同步方法和设备及系统
CN103168440B (zh) * 2012-02-21 2016-08-10 华为技术有限公司 时间路径补偿方法和装置
CN103840902B (zh) * 2012-11-20 2017-06-27 中兴通讯股份有限公司 检测光纤非对称性的同步系统、方法及主从光模块设备
CN103840877B (zh) * 2012-11-23 2017-11-24 中兴通讯股份有限公司 自动检测光纤非对称性的时间同步装置及方法
US10263763B2 (en) * 2015-02-26 2019-04-16 New York University Systems, methods, and computer-accessible media for measuring or modeling a wideband, millimeter-wave channel and methods and systems for calibrating same
WO2018045088A1 (en) * 2016-08-30 2018-03-08 Finisar Corporation Bi-directional transceiver with time synchronization
US10341083B2 (en) * 2016-09-09 2019-07-02 Huawei Technologies Co., Ltd. System and methods for network synchronization
CN109818701B (zh) * 2019-02-19 2021-03-02 烽火通信科技股份有限公司 通信设备的高精度时钟同步方法及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008182385A (ja) * 2007-01-24 2008-08-07 Nec Corp 移動通信システム、タイムサーバ及びそれらに用いる局間同期方法
CN102457372A (zh) * 2010-11-02 2012-05-16 中兴通讯股份有限公司 一种通信系统以及利用光纤传输时钟信号的方法
US20120213508A1 (en) * 2011-02-23 2012-08-23 Jeffrey Scott Moynihan Network element clock synchronization systems and methods using optical transport network delay measurement
CN109565344A (zh) * 2016-09-09 2019-04-02 华为技术有限公司 用于确定传播延迟的系统与方法
CN109756321A (zh) * 2017-11-01 2019-05-14 中兴通讯股份有限公司 一种时间同步装置及方法
CN109375494A (zh) * 2018-12-03 2019-02-22 中国人民解放军陆军工程大学 一种基于单光子检测的光纤高精度授时装置和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ASTON HEKKALA , LUKKA HARJULA: "ANALYSIS OF AND COMPENSATION FOR NON-IDEAL ROF LINKS IN DAS", IEEE WIRELESS COMMUNICATIONS, vol. 17, no. 3, 1 June 2010 (2010-06-01), pages 52 - 59, XP011311808 *

Also Published As

Publication number Publication date
CN112104413A (zh) 2020-12-18
CN112104413B (zh) 2021-07-16
US20220109499A1 (en) 2022-04-07
US11791894B2 (en) 2023-10-17
EP3968546A1 (en) 2022-03-16
EP3968546A4 (en) 2022-08-10

Similar Documents

Publication Publication Date Title
WO2020253667A1 (zh) 一种测量时延的无线中心设备、无线设备及无线通信系统
CN110224776B (zh) 高精度光纤时间传递系统及方法
KR102307426B1 (ko) 포지셔닝 방법 및 관련 기기
US8208963B2 (en) Communication method and system
KR20210097784A (ko) 포지셔닝 방법 및 관련 기기
US10505653B1 (en) Methods and apparatus for fine timing measurement with frequency domain processing
CN110176982B (zh) 单信道时间频率高精度传递装置
CN105472723A (zh) 同步装置和方法
CN105230089A (zh) Wifi测距的频率偏移补偿
EP3132651B1 (en) A first network node, a second network node and methods therein
JP7416704B2 (ja) ロケーションネットワークを同期するための方法及び装置
CN115769515A (zh) 采用光帧模板的通信系统
CN108738127A (zh) 射频拉远单元、基带处理单元、分布式基站及其同步方法
US5469467A (en) Method for synchronizing the reference frequency oscillator of a metallic-based microcell to a master oscillator
CN106027190A (zh) 一种时钟同步方法及装置
CN113824485B (zh) 传输信号补偿方法、网络侧设备和终端
US20220337322A1 (en) Communication system employing optical frame templates
Akiyama et al. Phase stabilized RF reference signal dissemination over optical fiber employing instantaneous frequency control by VCO
US20090213008A1 (en) Multiple RF receiver and locating method using the same
CN104980222A (zh) 一种时间传递装置及方法
US20240056293A1 (en) Method and device for using auxiliary information being transmitted from forward direction of bidirectional quantum key distribution procedure in communication system
WO2020026817A1 (ja) 時刻同期システム及び時刻同期方法
CN106230511B (zh) 5g分布式基站天线射频光传输系统
CN110518964A (zh) 一种基于光载无线网络的卫星地面站高精度时间同步方法
CN104581927A (zh) 一种基站时间同步的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20827532

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020827532

Country of ref document: EP

Effective date: 20211208

NENP Non-entry into the national phase

Ref country code: DE