WO2020253624A1 - 信号处理方法以及光接收机 - Google Patents

信号处理方法以及光接收机 Download PDF

Info

Publication number
WO2020253624A1
WO2020253624A1 PCT/CN2020/095697 CN2020095697W WO2020253624A1 WO 2020253624 A1 WO2020253624 A1 WO 2020253624A1 CN 2020095697 W CN2020095697 W CN 2020095697W WO 2020253624 A1 WO2020253624 A1 WO 2020253624A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix
signal block
processed
signal
noise compensation
Prior art date
Application number
PCT/CN2020/095697
Other languages
English (en)
French (fr)
Inventor
卢彦兆
黄远达
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20825644.6A priority Critical patent/EP3972157A4/en
Publication of WO2020253624A1 publication Critical patent/WO2020253624A1/zh
Priority to US17/645,188 priority patent/US11870500B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/697Arrangements for reducing noise and distortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/697Arrangements for reducing noise and distortion
    • H04B10/6971Arrangements for reducing noise and distortion using equalisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/616Details of the electronic signal processing in coherent optical receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/06Polarisation multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end

Definitions

  • This application relates to communication technology, and in particular to a signal processing method and an optical receiver.
  • high-order modulation formats and high symbol modulation rates are used to increase the single-wave transmission rate.
  • WDM wavelength division multiplexing
  • the single-wave transmission rate is modulated to 400Gbps.
  • the input power of the optical signal cannot be increased significantly, resulting in the limited signal-to-noise ratio of the signal received by the optical receiver.
  • the transmission distance is limited. Therefore, the transmission performance of the current optical communication network cannot simultaneously meet the requirements for large-capacity and long-distance transmission.
  • the embodiments of the present application provide a signal processing method and an optical receiver, which are used for noise compensation of a signal block to be processed to improve the signal-to-noise ratio of the signal.
  • the first aspect of the embodiments of the present application provides a signal processing method, including:
  • the optical receiver obtains the signal block to be processed; the optical receiver determines the predicted signal block corresponding to the signal block to be processed, and then determines the noise compensation coefficient of the signal block to be processed according to the signal to be processed and the predicted signal block, and according to the noise
  • the compensation coefficient performs noise compensation on the signal block to be processed.
  • the noise compensation coefficient generated by the optical receiver according to the signal block to be processed and the predicted signal block can indicate the signal to be processed.
  • the noise compensation coefficient can realize the noise compensation of the signal block to be processed to improve the signal-to-noise ratio of the signal, thereby satisfying the large-capacity and long-distance transmission of the optical communication network Transmission performance requirements.
  • the noise compensation coefficient indicates the correlation between the symbols included in the signal block to be processed under the interference of noise.
  • the noise compensation coefficient can reflect the correlation between the signal blocks to be processed, and thus the noise compensation of the signal blocks to be processed can be realized by the noise compensation coefficient.
  • the optical receiver determining the predicted signal block corresponding to the signal block to be processed includes: the optical receiver uses a preset decision method, a preset training sequence, and forward error correction (forward error correction). Correction, FEC) process the signal block to be processed to obtain the predicted signal block.
  • FEC forward error correction
  • several implementation means for the optical receiver to determine the predicted signal block are provided.
  • the signal block to be processed includes R 1 to R n , R 1 to R n are n symbols transmitted in time sequence, where n is an integer greater than or equal to 2; the light receiving The machine calculating the noise compensation coefficient according to the signal block to be processed and the predicted signal block includes: First, the optical receiver obtains R n+1 to R n+m-1 , R n+1 to R n+m-1 are The m-1 symbols that are transmitted in time sequence and are arranged after R n ; then, the optical receiver determines the first matrix and the second matrix, the first matrix is [S 1 S 2 ... S n ], and the first matrix is [S 1 S 2 ... S n ].
  • the second matrix is wherein, S 1 to S n are n symbols included in the prediction signal block that are transmitted in time sequence; each column of the second matrix includes the first symbol of each column, and the signal block to be processed is compared with the first symbol Symbol-related m-1 symbols, where n is greater than m and m is an integer greater than 1.
  • the optical receiver multiplies the first matrix by the inverse matrix of the second matrix to obtain a noise compensation matrix including the noise compensation coefficient ,
  • the noise compensation matrix is [h 1 ,h 2 (2003)h m ]. In this possible implementation manner, a specific way for the optical receiver to determine the noise compensation coefficient is provided.
  • the signal block to be processed includes X 1 to X n and Y 1 to Y n , X 1 to X n are n symbols transmitted in time sequence in the first polarization signal, Y 1 To Y n are n symbols transmitted in time sequence in the second polarization signal, where n is an integer greater than or equal to 2;
  • the optical receiver calculates the noise compensation coefficient according to the signal block to be processed and the predicted signal block Including: First, the optical receiver obtains X n+1 to X n+i-1 and Y n+1 to Y n+j-1 , and X n+1 to X n+i-1 are the first polarization signals I-1 symbols transmitted in chronological order and arranged after X n , Y n+1 to Y n+j-1 are j-1 transmitted in chronological order and arranged after Y n in the second polarization signal Symbols; then, the optical receiver determines a first matrix and a second matrix, the first matrix is [S
  • S 1 to S n are n symbols included in the prediction signal block and transmitted in time sequence; each column of the second matrix includes the first symbol of each column, and the first symbol in the first polarization signal Related i-1 symbols, the i+1th symbol in each column, and j-1 symbols related to the i+1th symbol in the second polarization signal, where n is greater than i+j, i is An integer greater than 1, and j is an integer greater than 1.
  • the optical receiver multiplies the first matrix by the inverse matrix of the second matrix to obtain a noise compensation matrix including the noise compensation coefficient, and the noise compensation matrix is [h 1 ,h 2 (2003)h m ]. In this possible implementation manner, a specific method for determining the noise compensation coefficient of the dual polarization signal is provided.
  • a second aspect of the embodiments of the present application provides an optical receiver, which includes:
  • Processing module for obtaining signal blocks to be processed
  • the processing module is also used to determine the predicted signal block corresponding to the signal block to be processed; determine the noise compensation coefficient of the signal block to be processed according to the signal to be processed and the predicted signal block; and determine the noise compensation coefficient of the signal block to be processed according to the noise compensation coefficient
  • the block performs noise compensation.
  • the noise compensation coefficient indicates the correlation between the symbols included in the signal block to be processed under the interference of noise.
  • processing module is specifically used for:
  • the signal block to be processed is processed by any one of a preset decision method, a preset training sequence, and FEC to obtain the predicted signal block.
  • the signal block to be processed includes R 1 to R n , R 1 to R n are n symbols transmitted in time sequence, where n is an integer greater than or equal to 2; the processing module Specifically used for:
  • R n+1 to R n+m-1 where R n+1 to R n+m-1 are m-1 symbols transmitted in chronological order and arranged after R n ;
  • the first matrix is [S 1 S 2 ... S n ], and the second matrix is
  • S 1 to S n are n symbols included in the prediction signal block that are transmitted in time sequence
  • each column of the second matrix includes the first symbol of each column, and the signal block to be processed is compared with the first symbol Symbol-related m-1 symbols, where n is greater than m, and m is an integer greater than 1;
  • the first matrix is multiplied by the inverse matrix of the second matrix to obtain a noise compensation matrix including the noise compensation coefficient, and the noise compensation matrix is [h 1 , h 2 ... H m ].
  • the signal block to be processed includes X 1 to X n and Y 1 to Y n , X 1 to X n are n symbols transmitted in time sequence in the first polarization signal, Y 1 To Y n are n symbols transmitted in time sequence in the second polarization signal, where n is an integer greater than or equal to 2; the processing module is specifically used for:
  • X n+1 to X n+i-1 and Y n+1 to Y n+j-1 are the first polarization signals transmitted in time sequence and arranged in I-1 symbols after X n
  • Y n+1 to Y n+j-1 are j-1 symbols transmitted in time sequence in the second polarization signal and arranged after Y n ;
  • the first matrix is [S 1 S 2 ... S n ], and the second matrix is
  • S 1 to S n are n symbols included in the prediction signal block and transmitted in time sequence
  • each column of the second matrix includes the first symbol of each column, and the first symbol in the first polarization signal
  • Related i-1 symbols, the i+1th symbol in each column, and j-1 symbols related to the i+1th symbol in the second polarization signal where n is greater than i+j, i is An integer greater than 1, j is an integer greater than 1;
  • the first matrix is multiplied by the inverse matrix of the second matrix to obtain a noise compensation matrix including the noise compensation coefficient, and the noise compensation matrix is [h 1 , h 2 ... H m ].
  • the third aspect of the embodiments of the present application provides an optical receiver.
  • the optical receiver includes: a processor and a memory; the memory stores computer instructions; when the processor executes the computer instructions in the memory, it is used for
  • the implementation is the same as any one of the first aspect.
  • the fourth aspect of the embodiments of the present application provides a chip system.
  • the chip system includes at least one processor and a memory.
  • the memory stores instructions in the memory, and the at least one processor is configured to execute The operation of the optical receiver described in any implementation manner of the aspect.
  • the chip system further includes a transceiver, and the transceiver and the at least one processor are interconnected through a wire.
  • the fifth aspect of the embodiments of the present application provides a computer program product including instructions, which is characterized in that when it runs on a computer, the computer is caused to execute any implementation manner in the first aspect.
  • a sixth aspect of the embodiments of the present application provides a computer-readable storage medium, which is characterized by including instructions, which when run on a computer, cause the computer to execute any implementation manner as in the first aspect.
  • the optical receiver obtains the signal block to be processed; the optical receiver determines the predicted signal block corresponding to the signal block to be processed, and then determines the noise of the signal block to be processed according to the signal to be processed and the predicted signal block Compensation coefficient, and perform noise compensation on the signal block to be processed according to the noise compensation coefficient. Because of the interference of noise, the symbols included in the signal block to be processed are correlated, therefore, the noise compensation coefficient generated by the optical receiver according to the signal block to be processed and the predicted signal block can indicate the signal block to be processed.
  • the noise compensation coefficient can realize the noise compensation of the signal block to be processed, improve the signal to noise ratio of the signal to be processed, so as to meet the transmission performance of the large-capacity and long-distance transmission of the optical communication network. demand.
  • Figure 1 is a schematic diagram of a system framework according to an embodiment of the application.
  • FIG. 2A is a schematic diagram of an embodiment of a signal processing method according to an embodiment of the application.
  • 2B is a schematic structural diagram of a signal to be processed according to an embodiment of the application.
  • 2C is a schematic structural diagram of a signal block to be processed according to an embodiment of the application.
  • 2D is a schematic flowchart of a signal processing method according to an embodiment of this application.
  • FIG. 3 is a schematic diagram of another embodiment of a signal processing method according to an embodiment of the application.
  • FIG. 4 is a schematic diagram of another embodiment of a signal processing method according to an embodiment of this application.
  • FIG. 5 is a schematic diagram of 200G-16QAM dual-polarization signal transmission in an optical fiber network of 1200 kilometers (km) according to an embodiment of the application;
  • FIG. 6 is a schematic structural diagram of an optical receiver according to an embodiment of the application.
  • FIG. 7 is a schematic diagram of another structure of an optical receiver according to an embodiment of the application.
  • the embodiments of the present application provide a signal processing method and an optical receiver, which are used for noise compensation of a signal block to be processed to improve the signal-to-noise ratio of the signal.
  • FIG. 1 is a schematic diagram of a system framework provided by an embodiment of the application.
  • the optical receiver obtains a signal to be processed, where the signal to be processed is a digital electrical signal obtained by analog-to-digital conversion of an analog electrical signal.
  • the analog electrical signal is an analog electrical signal obtained by photoelectric conversion of the optical signal sent by the optical transmitter.
  • the operation of performing photoelectric conversion processing on the optical signal and the operation of performing analog-to-digital conversion processing on the analog signal may be performed by the optical receiver, or may be performed by other external devices, which is not specifically limited here. Due to the dispersion of the optical fiber link, the optical receiver performs dispersion compensation on the signal to be processed, and performs phase recovery on the signal to be processed, and then performs noise compensation on the signal to be processed through the noise compensation coefficient, and then compensates for the passing noise through FEC The output digital symbol is decoded to obtain a digital bit signal.
  • Figure 1 is only an example.
  • the optical receiver after the optical receiver obtains the signal to be processed, it can directly perform noise compensation on the signal to be processed, and then perform FEC on the digital symbols output by the noise compensation. Decoding.
  • the three processing procedures of dispersion compensation, polarization compensation and phase recovery are optional processing procedures, and can be executed before the processing procedure of noise compensation, or can be executed after the processing procedure of noise compensation, the specific application is not limited .
  • an embodiment of the signal processing method in the embodiment of the present application includes:
  • the optical receiver obtains a signal block to be processed.
  • the signal block to be processed includes n symbols transmitted in time sequence in the signal to be processed, n is an integer greater than or equal to 2, and the value of n is related to the noise intensity of the optical communication network transmitting the signal to be processed, for example , The greater the noise intensity of the optical communication network, the greater the value of n.
  • the signal to be processed may be from the same polarization signal, or from multiple different polarization signals, which is not specifically limited in this application.
  • the signal block to be processed refers to a signal block that has undergone analog-to-digital conversion processing. It should be noted that acquiring the signal block to be processed by the optical receiver may be an external device sending the signal block to be processed after analog-to-digital conversion processing to the optical receiver, or the optical receiver may perform analog-to-digital processing of the received signal block.
  • the signal block to be processed obtained after the conversion is not specifically limited in this application.
  • Figure 2B is a schematic diagram of the structure of the signal to be processed.
  • the signal to be processed includes multiple signal blocks to be processed.
  • the signal to be processed includes Z signal blocks to be processed, respectively The signal block to be processed 1, the signal block to be processed 2... the signal block to be processed Z, Z is a positive integer greater than or equal to 1.
  • the signal block to be processed includes n symbols transmitted in time sequence.
  • the length of the signal block to be processed is n.
  • the transmitted n symbols are R 1 , R 2 ... R n .
  • R 1 is the first symbol of the signal block to be processed
  • R n is the nth symbol of the signal block to be processed.
  • each signal block to be processed included in the signal to be processed may be the same or different, which is not specifically limited in this application. In practical applications, the length of the signal block to be processed can be set according to the noise intensity of the current optical communication network.
  • the optical receiver determines the predicted signal block corresponding to the signal block to be processed.
  • the signal to be processed is referred to as R
  • the signal block to be processed includes n symbols transmitted in time sequence in the signal R to be processed, which are respectively R 1 to R n .
  • the predicted signal S refers to a signal to be processed that is predicted according to the signal to be processed and is close to being unaffected by noise.
  • the prediction signal block includes n symbols transmitted in time sequence in the prediction signal S, which are respectively S 1 to S n .
  • the optical receiver determines that there are multiple prediction signal blocks corresponding to the signal block to be processed, which are described below with an example:
  • the optical receiver processes the signal block to be processed through a preset decision method to obtain a predicted signal block.
  • the optical receiver judges the signal block to be processed through a quadrature phase shift keying (QPSK) modulation code pattern to obtain the predicted signal block.
  • QPSK quadrature phase shift keying
  • 2bit is mapped by QPSK modulation code pattern, corresponding to four combinations, respectively 00, 01, 10, 11.
  • the combination corresponding to the first quadrant is 11, and the optical receiver can determine that the predicted symbol in the predicted signal block is 1+1j.
  • the optical receiver processes the preset training sequence to obtain the predicted signal block.
  • the signal to be processed carries a preset training sequence inserted in the signal to be processed by the optical transmitter, and the optical receiver determines the specific position and modulation information of the preset training sequence in the signal to be processed, and then obtains the predicted signal block .
  • the first five symbols in the signal block to be processed are a preset training sequence, and the optical receiver can calculate the predicted signal block through these five symbols.
  • the optical receiver processes the signal block to be processed in the FEC mode to obtain the predicted signal block.
  • the module that performs noise compensation processing in the optical receiver saves the signal block to be processed, and then sends the signal block to be processed to the FEC module in the optical receiver, and the FEC module The signal block to be processed is subjected to FEC decoding to obtain the predicted signal block, and the predicted signal block is returned to the noise compensation processing module.
  • the optical receiver may also perform chromatic dispersion compensation, polarization compensation, and phase recovery processing on the to-be-processed signal.
  • the optical receiver determines the noise compensation coefficient of the signal block to be processed according to the signal block to be processed and the predicted signal block.
  • the noise compensation coefficient indicates the correlation between the symbols included in the signal block to be processed. It should be noted that each signal block to be processed has a corresponding prediction signal block, so each signal block to be processed has a corresponding noise compensation coefficient. For example, as shown in FIG. 2B, the noise compensation coefficient of the signal block 1 to be processed is A, and the noise compensation coefficient of the signal block 2 to be processed is B.
  • the signals to be processed in the embodiments of the present application may be from the same polarization signal, or may be from multiple different polarization signals.
  • the process of determining the noise compensation coefficient of the signal block to be processed by the optical receiver is described in detail by the embodiment shown in FIG. 3 and the embodiment shown in FIG. 4 respectively.
  • the optical receiver performs noise compensation on the signal block to be processed according to the noise compensation coefficient.
  • the optical receiver multiplies the signal block to be processed by the noise compensation coefficient to obtain the compensated signal block.
  • the optical receiver obtains the signal block to be processed; the optical receiver determines the predicted signal block corresponding to the signal block to be processed, and then determines the noise of the signal block to be processed according to the signal to be processed and the predicted signal block Compensation coefficient, and perform noise compensation on the signal block to be processed according to the noise compensation coefficient. Because of the interference of noise, the symbols included in the signal block to be processed are correlated, therefore, the noise compensation coefficient generated by the optical receiver according to the signal block to be processed and the predicted signal block can indicate the signal block to be processed.
  • the noise compensation coefficient can realize the noise compensation of the signal block to be processed to improve the signal-to-noise ratio of the signal, thereby meeting the transmission performance requirements of the large-capacity and long-distance transmission of the optical communication network .
  • the signal to be processed comes from the same polarization signal, and the signal to be processed is called R here, and the predicted signal corresponding to the signal to be processed is called S.
  • the specific process of the optical receiver to determine the noise compensation coefficient includes:
  • the optical receiver obtains R n+1 to R n+m-1 .
  • R n+1 to R n+m-1 are m-1 symbols arranged after the symbol R n in the signal R to be processed in time sequence.
  • R n+1 to R n+m-1 may be symbols on another signal block to be processed transmitted after the signal block to be processed, or they may be other symbols transmitted after the signal block to be processed.
  • the location of a symbol on a signal block to be processed is determined by the length of the signal block. For example, as shown in Figure 2B, R 1 to R n are the symbols on the signal block 1 to be processed.
  • R n+1 to R n+m-1 are The symbols on the signal block 2 to be processed; if the length of the signal block 2 to be processed is less than m, R n+1 to R n+m-1 may be distributed on the signal block 2 to be processed and the signal block 3 to be processed, or even It is distributed on the signal block 4 to be processed, and its location is determined by the length of the signal block.
  • the optical receiver determines the first matrix and the second matrix.
  • the signal block to be processed includes n symbols transmitted in time sequence in the signal R to be processed, which are respectively R 1 to R n ; in the same way, the predicted signal block corresponding to the signal block to be processed includes the time-based symbols in the predicted signal S
  • the n symbols transmitted in sequence are S 1 and S n respectively , then the first matrix can be [S 1 S 2 ... S n ].
  • the optical receiver can arrange the second matrix as Each column of the second matrix includes the first symbol of each column and m-1 symbols related to the first symbol in the signal to be processed, where n is greater than m, and m is an integer greater than 1, and n is greater than Or an integer equal to 2.
  • the first symbol of the first column of the matrix R 1, and R 2 to R m is 1 and R associated with the order of the transmission time behind R 1 is m-1 th symbol.
  • the optical receiver multiplies the first matrix by the inverse matrix of the second matrix to obtain a noise compensation matrix including a noise compensation coefficient.
  • the noise matrix is
  • the function pinv ⁇ a ⁇ refers to the inverse of matrix a.
  • step 204 shown in FIG. 2A when the signal to be processed comes from the same polarization signal, the signal block after noise compensation is
  • the signal to be processed includes multiple polarization signals with different polarization directions.
  • the signal to be processed includes polarization signals with two polarization directions as an example for illustration, that is, the signal to be processed includes a first polarization signal X and a second polarization signal.
  • Polarization signal Y The predicted signal corresponding to the signal to be processed is called S.
  • the specific process of the optical receiver to determine the noise compensation coefficient includes:
  • the optical receiver obtains X n+1 to X n+i-1 and Y n+1 to Y n+j-1 .
  • X n+1 to X n+i-1 are i-1 symbols after the symbol X n in the first polarization signal X in time sequence
  • Y n+1 to Y n+j-1 are in accordance with The chronological order is j-1 symbols after the symbol Y n in the second polarization signal Y.
  • X n+1 to X n+i-1 may be symbols on another signal block to be processed that are transmitted after the signal block to be processed, or may be other symbols that are transmitted after the signal block to be processed.
  • the location of the symbols on several signal blocks to be processed is determined by the length of the signal block.
  • Y n+1 to Y n+j-1 can be symbols on another signal block to be processed transmitted after the signal block to be processed, or several other symbols to be transmitted after the signal to be processed. Process the symbols on the signal block.
  • the optical receiver determines the first matrix and the second matrix.
  • the signal block to be processed includes n symbols of the first polarization signal X and n symbols of the second polarization signal Y, including X 1 to X n and Y 1 to Y n, respectively .
  • the predicted signal block corresponding to the signal block to be processed includes n symbols transmitted in time sequence, namely S 1 and S n , so the first matrix is [S 1 S 2 ... S n ].
  • the optical receiver can arrange the second matrix as Each column of the second matrix includes the first symbol of each column, the i-1 symbols of the first polarization signal X that are related to the first symbol and are arranged after the first symbol in chronological order, and the symbols of each column The i+1th symbol, j-1 symbols in the second polarization signal Y that are related to the i+1th symbol and are arranged after the i+1th symbol in time sequence, where n is greater than i+ j and i are integers greater than 1, and j is an integer greater than 1.
  • the optical receiver can select values for i and j according to at least one of the following factors:
  • the noise intensity of the optical communication network transmitting the signal to be processed.
  • the noise intensity in the optical communication network is greater, the correlation between the symbols included in the first polarization signal X is greater, and the symbol correlation range is greater, then the value of i Bigger.
  • the second polarization signal Y When the intensity of the noise in the optical communication network is greater, the value of j is greater.
  • the first polarization signal X and the second polarization signal Y may have cross phase noise during the transmission process. If the noise intensity of the cross phase noise is greater, the correlation between the first polarization signal X and the second polarization signal Y is greater. The larger the symbol correlation range is, the larger the value of i and j is.
  • the optical receiver multiplies the first matrix by the inverse matrix of the second matrix to obtain a noise compensation matrix including a noise compensation coefficient.
  • Noise complement matrix The function pinv ⁇ a ⁇ refers to the inverse of matrix a.
  • Figure 5 is a schematic diagram of 200G-16QAM dual-polarization signal transmission in a 1200 kilometers (km) optical fiber network, where the abscissa represents the fiber input power of the signal to be processed, and the ordinate represents the signal quality factor Q represents signal quality, curve 1 represents the signal received by the optical receiver without noise compensation, and curve 2 represents the noise compensated signal obtained after noise compensation is performed on the signal processing method in the embodiment of the present application. It can be seen from FIG.
  • FIG. 6 An embodiment of the optical receiver 600 in the embodiment of the present application is used to implement FIG. 2A, FIG. 3, and FIG.
  • FIG. 2A An embodiment of the optical receiver 600 in the embodiment of the present application is used to implement FIG. 2A, FIG. 3, and FIG.
  • the optical receiver 600 includes: a processing module 601.
  • the processing module 601 is used to obtain signal blocks to be processed
  • the processing module 601 is also used to determine the predicted signal block corresponding to the signal block to be processed; determine the noise compensation coefficient of the signal block to be processed according to the signal block to be processed and the predicted signal block; The signal block to be processed performs noise compensation.
  • the noise compensation coefficient indicates the correlation between the symbols included in the signal block to be processed under the interference of noise.
  • processing module 601 is specifically configured to:
  • the signal block to be processed is processed through any one of a preset decision method, a preset training sequence, and forward error correction FEC to obtain the predicted signal block.
  • the signal block to be processed includes R 1 to R n , R 1 to R n are n symbols transmitted in time sequence, where n is an integer greater than or equal to 2; the processing module 601 is specifically used for :
  • R n+1 to R n+m-1 where R n+1 to R n+m-1 are m-1 symbols transmitted in time sequence and arranged after R n ;
  • the first matrix is [S 1 S 2 ... S n ], and the second matrix is
  • S 1 to S n are n symbols included in the prediction signal block that are transmitted in time sequence
  • each column of the second matrix includes the first symbol of each column, and the signal block to be processed and the first symbol Symbol-related m-1 symbols, where n is greater than m, and m is an integer greater than 1;
  • the first matrix is multiplied by the inverse matrix of the second matrix to obtain a noise compensation matrix including the noise compensation coefficient, and the noise compensation matrix is [h 1 , h 2 ... H m ].
  • the signal block to be processed includes X 1 to X n and Y 1 to Y n , X 1 to X n are n symbols transmitted in time sequence in the first polarization signal, and Y 1 to Y n are The n symbols transmitted in time sequence in the second polarization signal, where n is an integer greater than or equal to 2; the processing module 601 is specifically configured to:
  • X n+1 to X n+i-1 and Y n+1 to Y n+j-1 are the first polarization signals transmitted in time sequence and arranged in I-1 symbols after X n
  • Y n+1 to Y n+j-1 are j-1 symbols transmitted in time sequence in the second polarization signal and arranged after Y n ;
  • the first matrix is [S 1 S 2 ... S n ], and the second matrix is
  • S 1 to S n are n symbols included in the prediction signal block and transmitted in time sequence
  • each column of the second matrix includes the first symbol of each column, and the first symbol in the first polarization signal
  • Related i-1 symbols, the i+1th symbol in each column, and j-1 symbols related to the i+1th symbol in the second polarization signal where n is greater than i+j, i is An integer greater than 1, j is an integer greater than 1;
  • the first matrix is multiplied by the inverse matrix of the second matrix to obtain a noise compensation matrix including the noise compensation coefficient, and the noise compensation matrix is [h 1 , h 2 ... H m ].
  • the processing module 601 obtains the signal block to be processed; the processing module 601 determines the predicted signal block corresponding to the signal block to be processed; then, the processing module 601 determines the signal to be processed based on the signal to be processed and the predicted signal block.
  • the noise compensation coefficient of the signal block and perform noise compensation on the signal block to be processed according to the noise compensation coefficient. Because of the interference of noise, the symbols included in the signal block to be processed are correlated, therefore, the noise compensation coefficient generated by the processing module 601 according to the signal block to be processed and the predicted signal block can indicate the signal block to be processed.
  • the noise compensation coefficient can realize the noise compensation of the signal block to be processed to improve the signal-to-noise ratio of the signal, thereby meeting the transmission performance requirements of the large-capacity and long-distance transmission of the optical communication network .
  • optical receiver in the embodiment of the present application from the perspective of a modular functional entity, and the following describes the optical receiver in the present application from the perspective of hardware processing:
  • the embodiment of the present application also provides an optical receiver, which can be a circuit.
  • the optical receiver can be used to perform the actions performed by the optical receiver in the foregoing method embodiment.
  • this application also provides an optical receiver 700. Please refer to FIG. 7.
  • the transceiver 703 is an optional device.
  • An embodiment of the optical receiver in the embodiment of the present application includes:
  • Computer instructions are stored in the memory 702;
  • the processor 701 executes the computer instructions in the memory 702, it is used to obtain the signal block to be processed; determine the predicted signal block corresponding to the signal block to be processed; determine the signal block to be processed according to the signal block to be processed and the predicted signal block Noise compensation coefficient of the signal block; noise compensation is performed on the signal block to be processed according to the noise compensation coefficient.
  • the noise compensation coefficient indicates the correlation between the symbols included in the signal block to be processed under the interference of noise.
  • processor 701 is specifically configured to:
  • the signal block to be processed is processed through any one of a preset decision method, a preset training sequence, and forward error correction FEC to obtain the predicted signal block.
  • the signal block to be processed includes R 1 to R n , R 1 to R n are n symbols transmitted in time sequence, where n is an integer greater than or equal to 2; the processor 701 is specifically used for:
  • R n+1 to R n+m-1 where R n+1 to R n+m-1 are m-1 symbols transmitted in time sequence and arranged after R n ;
  • the first matrix is [S 1 S 2 ... S n ], and the second matrix is
  • S 1 to S n are n symbols included in the prediction signal block that are transmitted in time sequence
  • each column of the second matrix includes the first symbol of each column, and the signal block to be processed and the first symbol Symbol-related m-1 symbols, where n is greater than m, and m is an integer greater than 1;
  • the first matrix is multiplied by the inverse matrix of the second matrix to obtain a noise compensation matrix including the noise compensation coefficient, and the noise compensation matrix is [h 1 , h 2 ... H m ].
  • the signal block to be processed includes X 1 to X n and Y 1 to Y n , X 1 to X n are n symbols transmitted in time sequence in the first polarization signal, Y 1 To Y n are n symbols transmitted in time sequence in the second polarization signal, where n is an integer greater than or equal to 2; the processor 701 is specifically configured to:
  • X n+1 to X n+i-1 and Y n+1 to Y n+j-1 are the first polarization signals transmitted in time sequence and arranged in I-1 symbols after X n
  • Y n+1 to Y n+j-1 are j-1 symbols transmitted in time sequence in the second polarization signal and arranged after Y n ;
  • the first matrix is [S 1 S 2 ... S n ], and the second matrix is
  • S 1 to S n are n symbols included in the prediction signal block and transmitted in time sequence
  • each column of the second matrix includes the first symbol of each column, and the first symbol in the first polarization signal
  • Related i-1 symbols, the i+1th symbol in each column, and j-1 symbols related to the i+1th symbol in the second polarization signal where n is greater than i+j, i is An integer greater than 1, j is an integer greater than 1;
  • the first matrix is multiplied by the inverse matrix of the second matrix to obtain a noise compensation matrix including the noise compensation coefficient, and the noise compensation matrix is [h 1 , h 2 ... H m ].
  • the optical receiver 700 further includes a transceiver 703, and the transceiver 703 is connected to the processor 701.
  • the optical receiver when the optical receiver is a chip, the chip includes at least a processor and a memory, and instructions are stored in the memory, and the processor is used to perform the operations of the processing module 601 in FIG. 6, and/or The processor is also used to execute other processing steps of the optical receiver in the embodiment of the present application.
  • the chip further includes a transceiver, and the transceiver and the at least one processor are interconnected by wires.
  • a computer-readable storage medium is provided, and an instruction is stored thereon.
  • the instruction is executed, the method of the optical receiver in the foregoing method embodiment is executed.
  • a computer program product containing instructions is provided, and when the instructions are executed, the method of the optical receiver in the foregoing method embodiment is executed.
  • processors mentioned in the embodiments of this application may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processors, DSPs), and application-specific integrated circuits ( Application Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synchlink DRAM, SLDRAM synchronous connection dynamic random access memory
  • DR RAM Direct Rambus RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website site, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • wired such as coaxial cable, optical fiber, digital subscriber line (DSL)
  • wireless such as infrared, wireless, microwave, etc.
  • the computer-readable storage medium may be any available medium that can be stored by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to make a computer device (which can be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

本申请实施例公开了一种信号处理方法以及光接收机,用于对待处理信号块进行噪声补偿,以提高信号的信噪比。本申请实施例方法包括:光接收机获取待处理信号块;所述光接收机确定所述待处理信号块所对应的预测信号块;所述光接收机根据所述待处理信号块和所述预测信号块确定所述待处理信号块的噪声补偿系数;所述光接收机根据所述噪声补偿系数对所述待处理信号块进行噪声补偿。

Description

信号处理方法以及光接收机
本申请要求于2019年6月21日提交中国专利局、申请号为201910543765.2、发明名称为“信号处理方法以及光接收机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术,尤其涉及一种信号处理方法以及光接收机。
背景技术
随着移动互联网的需求日益发展,4K/8K视频技术和虚拟现实(virtual reality,VR)视频技术不断发展,因此,需要提供更大容量的光传输网络和更好的传输质量以满足日益增长的用户需求。
目前,在光通信网络中,为了提高光传输速率,通过高阶调制格式和高符号调制速率来提升单波传输速率,例如,在100G/200G波分复用(wavelength division multiplexing,WDM)传输系统中,将单波传输速率调制至400Gbps。但是由于受限于光纤传输非线性的限制,光信号的入纤功率不能大幅度增加,导致光接收机接收到的信号的信噪比受限,即信号的信噪比较小,使得光信号传输距离受限。因此,当前的光通信网络的传输性能无法同时满足大容量、长距离传输的需求。
发明内容
本申请实施例提供了一种信号处理方法以及光接收机,用于对待处理信号块的噪声补偿,以提高信号的信噪比。
本申请实施例第一方面提供了一种信号处理方法,包括:
光接收机获取待处理信号块;光接收机确定该待处理信号块所对应的预测信号块,然后根据该待处理信号和该预测信号块确定该待处理信号块的噪声补偿系数,并根据噪声补偿系数对该待处理信号块进行噪声补偿。本实施例中,由于在噪声的干扰下,待处理信号块所包括的符号之间具有相关性,因此,光接收机根据该待处理信号块和预测信号块生成的噪声补偿系数可以指示待处理信号块所包括的符号之间的相关性,那么通过该噪声补偿系数可以实现对该待处理信号块的噪声补偿,以提高信号的信噪比,从而满足光通信网络的大容量、长距离传输的传输性能的需求。
一种可能的实现方式中,该噪声补偿系数指示在噪声的干扰下该待处理信号块所包括的符号之间的相关性。在该实施例中,该噪声补偿系数可以体现待处理信号块之间的相关性,由此可以通过该噪声补偿系数来实现对待处理信号块的噪声补偿。
另一种可能的实现方式中,该光接收机确定该待处理信号块所对应的预测信号块包括:光接收机通过预设的判决方式、预设的训练序列和前向纠错(forward error correction,FEC)中的任一项方式对该待处理信号块进行处理,得到该预测信号块。在该可能的实现方式中,提供了几种光接收机确定预测信号块的实现手段。
另一种可能的实现方式中,该待处理信号块包括R 1至R n,R 1至R n为按照时间顺序传 输的n个符号,其中,n为大于或者等于2的整数;该光接收机根据该待处理信号块和该预测信号块计算该噪声补偿系数包括:首先,该光接收机获取R n+1至R n+m-1,R n+1至R n+m-1为按照时间顺序传输且排在R n之后的m-1个符号;然后,光接收机确定第一矩阵和第二矩阵,该第一矩阵为[S 1 S 2 ... S n],该第二矩阵为
Figure PCTCN2020095697-appb-000001
其中,S 1至S n为该预测信号块所包括的按照时间顺序传输的n个符号;该第二矩阵的每一列包括每一列的首个符号,以该待处理信号块中与该首个符号相关的m-1个符号,其中,n大于m,m为大于1的整数;光接收机将该第一矩阵乘以该第二矩阵的逆矩阵,得到包括该噪声补偿系数的噪声补偿矩阵,该噪声补偿矩阵为[h 1,h 2......h m]。在该可能的实现方式中,提供了一种具体的光接收机确定噪声补偿系数的方式。
另一种可能的实现方式中,该待处理信号块包括X 1至X n和Y 1至Y n,X 1至X n为第一偏振信号中的按照时间顺序传输的n个符号,Y 1至Y n为第二偏振信号中的按照时间顺序传输的n个符号,其中,n为大于或者等于2的整数;该光接收机根据该待处理信号块和该预测信号块计算该噪声补偿系数包括:首先,该光接收机获取X n+1至X n+i-1和Y n+1至Y n+j-1,X n+1至X n+i-1为该第一偏振信号中按照时间顺序传输且排在X n之后的i-1个符号,Y n+1至Y n+j-1为该第二偏振信号中按照时间顺序传输且排在Y n之后的j-1个符号;然后,该光接收机确定第一矩阵和第二矩阵,该第一矩阵为[S 1 S 2 ... S n],该第二矩阵为
Figure PCTCN2020095697-appb-000002
其中,S 1至S n为该预测信号块所包括的按照时间顺序传输的n个符号;该第二矩阵的每一列包括每一列的首个符号、该第一偏振信号中与该首个符号相关的i-1个符号、每一列的第i+1个符号、该第二偏振信号中与该第i+1个符号相关的j-1个符号,其中,n大于i+j,i为大于1的整数,j为大于1的整数;该光接收机将该第一矩阵乘以该第二矩阵的逆矩阵,得到包括该噪声补偿系数的噪声补偿矩阵,该噪声补偿矩阵为[h 1,h 2......h m]。在该可能的实现方式中,针对双偏振信号的噪声补偿系数,提供了一种具体的确定方式。
本申请实施例第二方面提供了一种光接收机,该光接收机包括:
处理模块,用于获取待处理信号块;
该处理模块,还用于确定该待处理信号块所对应的预测信号块;根据该待处理信号和该预测信号块确定该待处理信号块的噪声补偿系数;根据噪声补偿系数对该待处理信号块进行噪声补偿。
一种可能的实现方式中,该噪声补偿系数指示在噪声的干扰下该待处理信号块所包括 的符号之间的相关性。
另一种可能的实现方式中,该处理模块具体用于:
通过预设的判决方式、预设的训练序列和FEC中的任一项方式对该待处理信号块进行处理,得到该预测信号块。
另一种可能的实现方式中,该待处理信号块包括R 1至R n,R 1至R n为按照时间顺序传输的n个符号,其中,n为大于或者等于2的整数;该处理模块具体用于:
获取R n+1至R n+m-1,R n+1至R n+m-1为按照时间顺序传输且排在R n之后的m-1个符号;
确定第一矩阵和第二矩阵,该第一矩阵为[S 1 S 2 ... S n],该第二矩阵为
Figure PCTCN2020095697-appb-000003
其中,S 1至S n为该预测信号块所包括的按照时间顺序传输的n个符号;该第二矩阵的每一列包括每一列的首个符号,以该待处理信号块中与该首个符号相关的m-1个符号,其中,n大于m,m为大于1的整数;
将该第一矩阵乘以该第二矩阵的逆矩阵,得到包括该噪声补偿系数的噪声补偿矩阵,该噪声补偿矩阵为[h 1,h 2......h m]。
另一种可能的实现方式中,该待处理信号块包括X 1至X n和Y 1至Y n,X 1至X n为第一偏振信号中的按照时间顺序传输的n个符号,Y 1至Y n为第二偏振信号中的按照时间顺序传输的n个符号,其中,n为大于或者等于2的整数;该处理模块具体用于:
获取X n+1至X n+i-1和Y n+1至Y n+j-1,X n+1至X n+i-1为该第一偏振信号中按照时间顺序传输且排在X n之后的i-1个符号,Y n+1至Y n+j-1为该第二偏振信号中按照时间顺序传输且排在Y n之后的j-1个符号;
确定第一矩阵和第二矩阵,该第一矩阵为[S 1 S 2 ... S n],该第二矩阵为
Figure PCTCN2020095697-appb-000004
其中,S 1至S n为该预测信号块所包括的按照时间顺序传输的n个符号;该第二矩阵的每一列包括每一列的首个符号、该第一偏振信号中与该首个符号相关的i-1个符号、每一列的第i+1个符号、该第二偏振信号中与该第i+1个符号相关的j-1个符号,其中,n大于i+j,i为大于1的整数,j为大于1的整数;
将该第一矩阵乘以该第二矩阵的逆矩阵,得到包括该噪声补偿系数的噪声补偿矩阵,该噪声补偿矩阵为[h 1,h 2......h m]。
本申请实施例中第三方面提供了一种光接收机,该光接收机包括:处理器和存储器; 该存储器中存储有计算机指令;该处理器在执行该存储器中的计算机指令时,用于实现如第一方面任意一种实现方式。
本申请实施例第四方面提供了一种芯片系统,该芯片系统包括至少一个处理器和存储器,所述存储器,所述存储器中存储有指令,所述至少一个处理器用于执行如本申请第一方面任一种实现方式中所述光接收机的操作。
一种可能的实现方式中,该芯片系统还包括收发器,所述收发器与所述至少一个处理器通过线路互联。
本申请实施例第五方面提供了一种包括指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得该计算机执行如第一方面中任一种的实现方式。
本申请实施例第六方面提供了一种计算机可读存储介质,其特征在于,包括指令,当该指令在计算机上运行时,使得计算机执行如第一方面中任一种实现方式。
从以上技术方案可以看出,本申请实施例具有以下优点:
由上述技术方案可知,光接收机获取待处理信号块;光接收机确定该待处理信号块所对应的预测信号块,然后根据该待处理信号和该预测信号块确定该待处理信号块的噪声补偿系数,并根据噪声补偿系数对该待处理信号块进行噪声补偿。由于在噪声的干扰下,待处理信号块所包括的符号之间具有相关性,因此,光接收机根据该待处理信号块和预测信号块生成的噪声补偿系数可以指示待处理信号块所包括的符号之间的相关性,那么通过该噪声补偿系数可以实现对该待处理信号块的噪声补偿,提高待处理信号的信噪比,从而满足光通信网络的大容量、长距离传输的传输性能的需求。
附图说明
图1为本申请实施例的一种系统框架示意图;
图2A为本申请实施例信号处理方法的一个实施例示意图;
图2B为本申请实施例待处理信号的一个结构示意图;
图2C为本申请实施例待处理信号块的一个结构示意图;
图2D为本申请实施例信号处理方法的一个流程示意图;
图3为本申请实施例信号处理方法的另一个实施例示意图;
图4为本申请实施例信号处理方法的另一个实施例示意图;
图5为本申请实施例200G-16QAM双偏振信号在1200千米(km)的光纤网络传输的示意图;
图6为本申请实施例光接收机的一个结构示意图;
图7为本申请实施例光接收机的另一个结构示意图。
具体实施方式
本申请实施例提供了一种信号处理方法以及光接收机,用于对待处理信号块的噪声补偿,以提高信号的信噪比。
为了提高信号的信噪比,以满足光通信网络的大容量和长距离传输的传输性能需求, 本申请提出光接收机对接收到的待处理信号进行噪声补偿。请参阅图1,图1为本申请实施例提供的一种系统框架示意图,光接收机获取待处理信号,其中,该待处理信号是将模拟电信号经过模数转换得到的数字电信号,该模拟电信号是将光发射机发送的光信号经过光电转换得到的模拟电信号。具体对光信号进行光电转换处理的操作以及对该模拟信号进行模数转换处理的操作可以是由该光接收机来执行,也可以是由其他外部设备来执行的,具体此处不做限定。由于光纤链路存在色散,光接收机对该待处理信号进行色散补偿,并对该待处理信号进行相位恢复,再通过噪声补偿系数对该待处理信号进行噪声补偿,然后通过FEC对通过噪声补偿输出的数字符号进行译码,得到数字比特信号。
需要说明的是,图1仅仅是一个示例,实际应用中,光接收机在获取到该待处理信号之后,可以直接对该待处理信号进行噪声补偿,再通过FEC对噪声补偿输出的数字符号进行译码。其中,色散补偿、偏振补偿和相位恢复这三个处理过程为可选的处理过程,且可以在噪声补偿的处理过程之前执行,也可以在噪声补偿的处理过程之后执行,具体本申请不做限定。
下面通过图2A详细说明本申请实施例中,光接收机对该待处理信号进行噪声补偿的过程,请参阅图2A,本申请实施例中信号处理方法的一个实施例包括:
201、光接收机获取待处理信号块。
其中,待处理信号块包括该待处理信号中按照时间顺序传输的n个符号,n为大于或者等于2的整数,n的取值与传输该待处理信号的光通信网络的噪声强度相关,例如,光通信网络的噪声强度越大,n的取值越大。需要说明的是,待处理信号可以是来自同一偏振信号,也可以是来自多个不同的偏振信号,具体本申请不做限定。
本申请实施例中,待处理信号块指的是经过模数转换处理后的信号块。需要说明的是,光接收机获取该待处理信号块可以是外部设备向光接收机发送经过模数转换处理后的待处理信号块,也可以是光接收机将接收到的信号块进行模数转换之后得到的待处理信号块,具体本申请不做限定。
下面先介绍待处理信号的传输结构,请参阅图2B,图2B为待处理信号的一个结构示意图,待处理信号包括多个待处理信号块,如待处理信号包括Z个待处理信号块,分别为待处理信号块1、待处理信号块2……待处理信号块Z,Z为大于或者等于1的正整数。若待处理信号块的长度为n,则该待处理信号块包括按照时间顺序传输的n个符号,具体请参阅图2C,待处理信号块的长度为n,该待处理信号块包括按照时间顺序传输的n个符号,分别为R 1、R 2……R n。例如,R 1为该待处理信号块的第一个符号,R n为该待处理信号块的第n个符号。
需要说明的是,该待处理信号所包括的每个待处理信号块的长度可以相同,也可以不相同,具体本申请不做限定。在实际应用中,可以根据当前光通信网络的噪声强度来设置待处理信号块的长度。
202、光接收机确定待处理信号块所对应的预测信号块。
如图2C所示,称待处理信号为R,待处理信号块包括待处理信号R中按照时间顺序传输的n个符号,分别为R 1至R n。而该预测信号S是指根据该待处理信号预测得到的接近未 受噪声影响的待处理信号。该预测信号块包括预测信号S中按照时间顺序传输的n个符号,分别为S 1至S n。可选的,本申请实施例中,光接收机确定待处理信号块所对应的预测信号块有多种,下面举例说明:
1、光接收机通过预设的判决方式对该待处理信号块进行处理,得到预测信号块。
例如,光接收机通过正交移键控(quadrature phase shift keying,QPSK)调制码型方式对待处理信号块进行判决,以得到该预测信号块。2bit通过QPSK调制码型方式映射,对应有四种组合,分别为00,01,10,11。例如,当确定待处理信号块中的符号落入第一象限,则第一象限对应的组合为11,那么光接收机可以确定预测信号块中的预测符号为1+1j。
2、光接收机通过预设的训练序列进行处理,得到预测信号块。
该待处理信号携带有光发射机在该待处理信号中插入的预设的训练序列,光接收机确定该预设的训练序列在该待处理信号的具体位置和调制信息,进而得到预测信号块。例如,待处理信号块中的前五个符号为预设的训练序列,光接收机可以通过这五个符号计算得到该预测信号块。
3、光接收机通过FEC方式对该待处理信号块进行处理,得到预测信号块。
示例性的,如图2D所示,光接收机中执行噪声补偿处理的模块保存该待处理信号块,然后向光接收机中的FEC模块发送该待处理信号块,并通过该FEC模块对该待处理信号块进行FEC译码,得到该预测信号块,并将该预测信号块返回噪声补偿处理的模块。其中,光接收机在通过噪声补偿处理的模块向该FEC模块发送该待处理信号块之前,光接收机还可以对该待处理信号执行色散补偿、偏振补偿和相位恢复的处理。
203、光接收机根据待处理信号块和预测信号块确定待处理信号块的噪声补偿系数。
其中,该噪声补偿系数指示该待处理信号块所包括的符号之间的相关性。需要说明的是,每个待处理信号块都有对应的预测信号块,所以每个待处理信号块都有对应噪声补偿系数。例如,如图2B所示,待处理信号块1的噪声补偿系数为A,待处理信号块2的噪声补偿为B。
具体的,本申请实施例的待处理信号可以是来自同一偏振信号,也可以是来自多个不同的偏振信号。针对这两种情况,光接收机确定待处理信号块的噪声补偿系数的过程分别通过后续图3所示的实施例和图4所示的实施例详细说明。
204、光接收机根据噪声补偿系数对待处理信号块进行噪声补偿。
一种可能的实现方式中,光接收机将该待处理信号块乘以噪声补偿系数,得到补偿后的信号块。
本申请实施例中,光接收机获取待处理信号块;光接收机确定该待处理信号块所对应的预测信号块,然后根据该待处理信号和该预测信号块确定该待处理信号块的噪声补偿系数,并根据噪声补偿系数对该待处理信号块进行噪声补偿。由于在噪声的干扰下,待处理信号块所包括的符号之间具有相关性,因此,光接收机根据该待处理信号块和预测信号块生成的噪声补偿系数可以指示待处理信号块所包括的符号之间的相关性,那么通过该噪声补偿系数可以实现对该待处理信号块的噪声补偿,以提高信号的信噪比,从而满足光通信 网络的大容量、长距离传输的传输性能的需求。
首先,请参阅图3,待处理信号来自同一偏振信号,且这里称待处理信号为R,该待处理信号所对应的预测信号称为S。光接收机确定噪声补偿系数的具体过程包括:
301、光接收机获取R n+1至R n+m-1
其中,R n+1至R n+m-1为按照时间顺序排在该待处理信号R中的符号R n之后的m-1个符号。
需要说明的是,R n+1至R n+m-1可以是在该待处理信号块之后传输的另一个待处理信号块上符号,也可以是在该待处理信号块之后传输的另外几个待处理信号块上的符号,具体由信号块的长度决定其所在的位置。例如,如图2B所示,R 1至R n为待处理信号块1上的符号,若待处理信号块2的长度大于或者等于m时,则R n+1至R n+m-1为该待处理信号块2上的符号;若待处理信号块2的长度小于m,则R n+1至R n+m-1可能分布在待处理信号块2和待处理信号块3上,甚至分布在待处理信号块4上,具体由信号块的长度决定其所在的位置。
302、光接收机确定第一矩阵和第二矩阵。
待处理信号块包括待处理信号R中的按照时间顺序传输的n个符号,分别为R 1至R n;同理,该待处理信号块所对应的预测信号块包括预测信号S中的按照时间顺序传输的n个符号,分别为S 1和S n,那么,第一矩阵可以为[S 1 S 2 ... S n]。而光接收机可以将第二矩阵排布为
Figure PCTCN2020095697-appb-000005
第二矩阵的每一列包括该每一列的首个符号和该待处理信号中与该首个符号相关的m-1个符号,其中,n大于m,且m为大于1的整数,n为大于或者等于2的整数。
由于光通信网络的噪声的干扰,待处理信号块所包括的符号之间存在相关性,且噪声强度越大,符号之间的相关性越大,符号相关范围越大,则m的取值越大。例如,由上述第二矩阵可知,该矩阵的第一列的首个符号为R 1,而R 2至R m为与R 1相关的且按照时间顺序传输排在R 1之后的m-1个符号。
303、光接收机将第一矩阵乘以第二矩阵的逆矩阵,得到包括噪声补偿系数的噪声补偿矩阵。
其中,噪声矩阵为
Figure PCTCN2020095697-appb-000006
而函数pinv{a}是指对矩阵a求逆。
结合上述图2A所示的步骤204,当待处理信号来自同一偏振信号时,噪声补偿后的信 号块为
Figure PCTCN2020095697-appb-000007
请参阅图4,待处理信号包括多个不同偏振方向的偏振信号,这里以该待处理信号包括两个偏振方向的偏振信号为例进行说明,即待处理信号包括第一偏振信号X和第二偏振信号Y。该待处理信号所对应的预测信号称为S。光接收机确定噪声补偿系数的具体过程包括:
401、光接收机获取X n+1至X n+i-1和Y n+1至Y n+j-1
其中,X n+1至X n+i-1为按照时间顺序排在第一偏振信号X中的符号X n之后的i-1个符号,Y n+1至Y n+j-1为按照时间顺序排在第二偏振信号Y中的符号Y n之后的j-1个符号。
需要说明的是,X n+1至X n+i-1可以是在该待处理信号块之后传输的另一个待处理信号块上的符号,也可以是在该待处理信号块之后传输的另外几个待处理信号块上的符号,具体由信号块的长度决定其所在的位置。同理,Y n+1至Y n+j-1可以是在该待处理信号块之后传输的另一个待处理信号块上的符号,也可以是在该待处理信号之后传输的另外几个待处理信号块上的符号。
402、光接收机确定第一矩阵和第二矩阵。
该待处理信号块包括第一偏振信号X的n个符号和第二偏振信号Y的n个符号,分别包括X 1至X n和Y 1至Y n。同理,该待处理信号块所对应的预测信号块包括按照时间顺序传输的n个符号,分别为S 1和S n,那么,第一矩阵为[S 1 S 2 ... S n]。
而光接收机可以将第二矩阵排布为
Figure PCTCN2020095697-appb-000008
第二矩阵的每一列包括每一列的首个符号、该第一偏振信号X中与该首个符号相关的且按照时间顺序排在该首个符号之后的i-1个符号、该每一列的第i+1个符号、第二偏振信号Y中与该第i+1个符号相关的且按照时间顺序排在该第i+1个符号之后的j-1个符号,其中,n大于i+j,i为大于1的整数,j为大于1的整数。
其中,光接收机可以根据以下至少一种因素对i和j进行取值:
1、传输该待处理信号的光通信网络的噪声强度。
由于光通信网络的噪声的干扰,待处理信号块所包括的符号之间存在相关性。对第一偏振信号X来说,当该光通信网络中的噪声强度越大时,第一偏振信号X所包括的符号之 间的相关性越大,符号相关范围越大,则i的取值越大。对于第二偏振信号Y也同理,当该光通信网络中的噪声强度越大时,j的取值越大。
2、第一偏振信号X和第二偏振信号Y之间产生的交叉相位噪声的噪声强度。
第一偏振信号X和第二偏振信号Y在传输过程中可能出现交叉相位噪声,如果该交叉相位噪声的噪声强度越大,则第一偏振信号X和第二偏振信号Y之间的相关性越大,符号相关范围也越大,则i和j的取值越大。
403、光接收机将该第一矩阵乘以第二矩阵的逆矩阵,得到包括噪声补偿系数的噪声补偿矩阵。
噪声补矩阵
Figure PCTCN2020095697-appb-000009
函数pinv{a}是指对矩阵a求逆。
结合上述图2A所示的步骤204,当待处理信号来自多个不同的偏振信号时,如来自两个偏振信号,待处理信号块经过噪声补偿后得到的信号块为
Figure PCTCN2020095697-appb-000010
Figure PCTCN2020095697-appb-000011
例如,如图5所示,图5为200G-16QAM双偏振信号在1200千米(km)的光纤网络传输的示意图,其中,横坐标为待处理信号的入纤功率,纵坐标表示信号质量因子Q,代表信号质量,曲线1表示光接收机接收到未经噪声补偿的信号,曲线2表示对经过本申请实施例中信号处理方法进行噪声补偿之后,得到的噪声补偿后的信号。由图5可知,经过噪声补偿后的信号的信号质量因子Q相比于未经过噪声补偿的信号的Q较大,可见噪声补偿后的信号的信号质量较好。经过实验数据表示,噪声补偿后的信号的功率最高可提升0.4分贝(dB)。
下面对本申请实施例中提供的一种光接收机进行描述,请参阅图6,本申请实施例中光接收机600的一个实施例,该光接收机600用于执行图2A、图3和图4所示实施例中光接收机执行的步骤,可以参考上述实施例中的相关描述。
该光接收机600包括:处理模块601。
该处理模块601,用于获取待处理信号块;
该处理模块601,还用于确定该待处理信号块所对应的预测信号块;根据该待处理信号块和该预测信号块确定该待处理信号块的噪声补偿系数;根据该噪声补偿系数对该待处理信号块进行噪声补偿。
本实施例中,该噪声补偿系数指示在噪声的干扰下该待处理信号块所包括的符号之间的相关性。
本实施例中,该处理模块601具体用于:
通过预设的判决方式、预设的训练序列和前向纠错FEC中的任一种方式对该待处理信号块进行处理,得到该预测信号块。
本实施例中,该待处理信号块包括R 1至R n,R 1至R n为按照时间顺序传输的n个符号,其中,n为大于或者等于2的整数;该处理模块601具体用于:
获取R n+1至R n+m-1,该R n+1至R n+m-1为按照时间顺序传输且排在R n之后的m-1个符号;
确定第一矩阵和第二矩阵,该第一矩阵为[S 1 S 2 ... S n],该第二矩阵为
Figure PCTCN2020095697-appb-000012
其中,S 1至S n为该预测信号块所包括的按照时间顺序传输的n个符号;该第二矩阵的每一列包括每一列的首个符号,以及该待处理信号块中与该首个符号相关的m-1个符号,其中,n大于m,m为大于1的整数;
将该第一矩阵乘以该第二矩阵的逆矩阵,得到包括该噪声补偿系数的噪声补偿矩阵,该噪声补偿矩阵为[h 1,h 2......h m]。
本实施例中,该待处理信号块包括X 1至X n和Y 1至Y n,X 1至X n为第一偏振信号中的按照时间顺序传输的n个符号,Y 1至Y n为第二偏振信号中的按照时间顺序传输的n个符号,其中,n为大于或者等于2的整数;该处理模块601具体用于:
获取X n+1至X n+i-1和Y n+1至Y n+j-1,X n+1至X n+i-1为该第一偏振信号中按照时间顺序传输且排在X n之后的i-1个符号,Y n+1至Y n+j-1为该第二偏振信号中按照时间顺序传输且排在Y n之后的j-1个符号;
确定第一矩阵和第二矩阵,该第一矩阵为[S 1 S 2 ... S n],该第二矩阵为
Figure PCTCN2020095697-appb-000013
其中,S 1至S n为该预测信号块所包括的按照时间顺序传输的n个符号;该第二矩阵的每一列包括每一列的首个符号、该第一偏振信号中与该首个符号相关的i-1个符号、每一列的第i+1个符号、该第二偏振信号中与该第i+1个符号相关的j-1个符号,其中,n大于i+j,i为大于1的整数,j为大于1的整数;
将该第一矩阵乘以该第二矩阵的逆矩阵,得到包括该噪声补偿系数的噪声补偿矩阵,该噪声补偿矩阵为[h 1,h 2......h m]。
本申请实施例中,处理模块601获取待处理信号块;处理模块601确定该待处理信号块所对应的预测信号块;然后,处理模块601根据该待处理信号和该预测信号块确定该待处理信号块的噪声补偿系数,并根据噪声补偿系数对该待处理信号块进行噪声补偿。由于在噪声的干扰下,待处理信号块所包括的符号之间具有相关性,因此,处理模块601根据该待处理信号块和预测信号块生成的噪声补偿系数可以指示待处理信号块所包括的符号之间的相关性,那么通过该噪声补偿系数可以实现对该待处理信号块的噪声补偿,以提高信号的信噪比,从而满足光通信网络的大容量、长距离传输的传输性能的需求。
上面从模块化功能实体的角度对本申请实施例中的光接收机进行了描述,下面从硬件处理的角度对本申请中的光接收机进行描述:
本申请实施例还提供一种光接收机,该光接收机可以电路。该光接收机可以用于执行上述方法实施例中光接收机所执行的动作。
在另一种可能的设计中,本申请还提供一种光接收机700,请参阅图7,其中,收发器703为可选器件,本申请实施例中光接收机一个实施例包括:
处理器701和存储器702;
该存储器702中存储有计算机指令;
该处理器701在执行存储器702中的计算机指令时,用于获取待处理信号块;确定该待处理信号块所对应的预测信号块;根据该待处理信号块和该预测信号块确定该待处理信号块的噪声补偿系数;根据该噪声补偿系数对该待处理信号块进行噪声补偿。
一种可能的实现方式中,该噪声补偿系数指示在噪声的干扰下该待处理信号块所包括的符号之间的相关性。
另一种可能的实现方式中,该处理器701具体用于:
通过预设的判决方式、预设的训练序列和前向纠错FEC中的任一种方式对该待处理信号块进行处理,得到该预测信号块。
另一种可能的实现方式中,该待处理信号块包括R 1至R n,R 1至R n为按照时间顺序传输的n个符号,其中,n为大于或者等于2的整数;该处理器701具体用于:
获取R n+1至R n+m-1,该R n+1至R n+m-1为按照时间顺序传输且排在R n之后的m-1个符号;
确定第一矩阵和第二矩阵,该第一矩阵为[S 1 S 2 ... S n],该第二矩阵为
Figure PCTCN2020095697-appb-000014
其中,S 1至S n为该预测信号块所包括的按照时间顺序传输的n个符号;该第二矩阵的每一列包括每一列的首个符号,以及该待处理信号块中与该首个符号相关的m-1个符号,其中,n大于m,m为大于1的整数;
将该第一矩阵乘以该第二矩阵的逆矩阵,得到包括该噪声补偿系数的噪声补偿矩阵,该噪声补偿矩阵为[h 1,h 2......h m]。
另一种可能的实现方式中,该待处理信号块包括X 1至X n和Y 1至Y n,X 1至X n为第一偏振信号中的按照时间顺序传输的n个符号,Y 1至Y n为第二偏振信号中的按照时间顺序传输的n个符号,其中,n为大于或者等于2的整数;该处理器701具体用于:
获取X n+1至X n+i-1和Y n+1至Y n+j-1,X n+1至X n+i-1为该第一偏振信号中按照时间顺序传输且排在X n之后的i-1个符号,Y n+1至Y n+j-1为该第二偏振信号中按照时间顺序传输且排在Y n之后的j-1个符号;
确定第一矩阵和第二矩阵,该第一矩阵为[S 1 S 2 ... S n],该第二矩阵为
Figure PCTCN2020095697-appb-000015
其中,S 1至S n为该预测信号块所包括的按照时间顺序传输的n个符号;该第二矩阵的每一列包括每一列的首个符号、该第一偏振信号中与该首个符号相关的i-1个符号、每一列的第i+1个符号、该第二偏振信号中与该第i+1个符号相关的j-1个符号,其中,n大于i+j,i为大于1的整数,j为大于1的整数;
将该第一矩阵乘以该第二矩阵的逆矩阵,得到包括该噪声补偿系数的噪声补偿矩阵,该噪声补偿矩阵为[h 1,h 2......h m]。
一种可能的实现方式中,该光接收机700还包括收发器703,该收发器703与该处理器701连接。
在另一种可能的设计中,当该光接收机为芯片时,该芯片至少包括一个处理器和存储器,存储器中存储有指令,处理器用于执行图6中处理模块601的操作,和/或处理器还用于执行本申请实施例中光接收机的其他处理步骤。
一种可能的实现方式中,该芯片还包括收发器,该收发器与该至少一个处理器通过线 路互联。
作为本实施例的另一种形式,提供一种计算机可读存储介质,其上存储有指令,该指令被执行时执行上述方法实施例中光接收机的方法。
作为本实施例的另一种形式,提供一种包含指令的计算机程序产品,该指令被执行时执行上述方法实施例中光接收机的方法。
应理解,本申请实施例中提及的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数 据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (17)

  1. 一种信号处理方法,其特征在于,所述方法包括:
    光接收机获取待处理信号块;
    所述光接收机确定所述待处理信号块所对应的预测信号块;
    所述光接收机根据所述待处理信号块和所述预测信号块确定所述待处理信号块的噪声补偿系数;
    所述光接收机根据所述噪声补偿系数对所述待处理信号块进行噪声补偿。
  2. 根据权利要求1所述的方法,其特征在于,所述噪声补偿系数指示在噪声的干扰下所述待处理信号块所包括的符号之间的相关性。
  3. 根据权利要求1或2所述的方法,其特征在于,所述光接收机确定所述待处理信号块所对应的预测信号块包括:
    所述光接收机通过预设的判决方式、预设的训练序列和前向纠错FEC中的任一种方式对所述待处理信号块进行处理,得到所述预测信号块。
  4. 根据权利要求1至3中的任一项所述的方法,其特征在于,所述待处理信号块包括R 1至R n,所述R 1至R n为按照时间顺序传输的n个符号,其中,n为大于或者等于2的整数;
    所述光接收机根据所述待处理信号块和所述预测信号块计算所述噪声补偿系数包括:
    所述光接收机获取R n+1至R n+m-1,所述R n+1至R n+m-1为按照时间顺序传输且排在R n之后的m-1个符号;
    所述光接收机确定第一矩阵和第二矩阵,所述第一矩阵为[S 1 S 2 ... S n],所述第二矩阵为
    Figure PCTCN2020095697-appb-100001
    其中,S 1至S n为所述预测信号块所包括的按照时间顺序传输的n个符号;所述第二矩阵的每一列包括每一列的首个符号,以及所述待处理信号块中与所述首个符号相关的m-1个符号,其中,n大于m,m为大于1的整数;
    所述光接收机将所述第一矩阵乘以所述第二矩阵的逆矩阵,得到包括所述噪声补偿系数的噪声补偿矩阵,所述噪声补偿矩阵为[h 1,h 2......h m]。
  5. 根据权利要求1至3中的任一项所述的方法,其特征在于,所述待处理信号块包括X 1至X n和Y 1至Y n,所述X 1至X n为第一偏振信号中的按照时间顺序传输的n个符号,所述Y 1至Y n为第二偏振信号中的按照时间顺序传输的n个符号,其中,n为大于或者等于2的整数;
    所述光接收机根据所述待处理信号块和所述预测信号块计算所述噪声补偿系数包括:
    所述光接收机获取X n+1至X n+i-1和Y n+1至Y n+j-1,所述X n+1至X n+i-1为所述第一偏振信号中按照时间顺序传输且排在所述X n之后的i-1个符号,所述Y n+1至Y n+j-1为所述第二偏振信号中按照时间顺序传输且排在所述Y n之后的j-1个符号;
    所述光接收机确定第一矩阵和第二矩阵,所述第一矩阵为[S 1 S 2 ... S n],所述第二 矩阵为
    Figure PCTCN2020095697-appb-100002
    其中,S 1至S n为所述预测信号块所包括的按照时间顺序传输的n个符号;所述第二矩阵的每一列包括每一列的首个符号、所述第一偏振信号中与所述首个符号相关的i-1个符号、每一列的第i+1个符号、所述第二偏振信号中与所述第i+1个符号相关的j-1个符号,其中,n大于i+j,i为大于1的整数,j为大于1的整数;
    所述光接收机将所述第一矩阵乘以所述第二矩阵的逆矩阵,得到包括所述噪声补偿系数的噪声补偿矩阵,所述噪声补偿矩阵为[h 1,h 2......h m]。
  6. 一种光接收机,其特征在于,所述光接收机包括:
    处理模块,用于获取待处理信号块;
    所述处理模块,还用于确定所述待处理信号块所对应的预测信号块;根据所述待处理信号块和所述预测信号块确定所述待处理信号块的噪声补偿系数;根据所述噪声补偿系数对所述待处理信号块进行噪声补偿。
  7. 根据权利要求6所述的光接收机,其特征在于,所述噪声补偿系数指示在噪声的干扰下所述待处理信号块所包括的符号之间的相关性。
  8. 根据权利要求6或7所述的光接收机,其特征在于,所述处理模块具体用于:
    通过预设的判决方式、预设的训练序列和前向纠错FEC中的任一种方式对所述待处理信号块进行处理,得到所述预测信号块。
  9. 根据权利要求6至8中的任一项所述的光接收机,其特征在于,所述待处理信号块包括R 1至R n,所述R 1至R n为按照时间顺序传输的n个符号,其中,n为大于或者等于2的整数;所述处理模块具体用于:
    获取R n+1至R n+m-1,所述R n+1至R n+m-1为按照时间顺序传输且排在R n之后的m-1个符号;
    确定第一矩阵和第二矩阵,所述第一矩阵为[S 1 S 2 ... S n],所述第二矩阵为
    Figure PCTCN2020095697-appb-100003
    其中,S 1至S n为所述预测信号块所包括的按照时间顺序传输的n个符号;所述第二矩阵的每一列包括每一列的首个符号,以及所述待处理信号块中与所述首个符号相关的m-1个符号,其中,n大于m,m为大于1的整数;
    将所述第一矩阵乘以所述第二矩阵的逆矩阵,得到包括所述噪声补偿系数的噪声补偿 矩阵,所述噪声补偿矩阵为[h 1,h 2......h m]。
  10. 根据权利要求6至8中的任一项所述的光接收机,其特征在于,所述待处理信号块包括X 1至X n和Y 1至Y n,所述X 1至X n为第一偏振信号中的按照时间顺序传输的n个符号,所述Y 1至Y n为第二偏振信号中的按照时间顺序传输的n个符号,其中,n为大于或者等于2的整数;所述处理模块具体用于:
    获取X n+1至X n+i-1和Y n+1至Y n+j-1,所述X n+1至X n+i-1为所述第一偏振信号中按照时间顺序传输且排在所述X n之后的i-1个符号,所述Y n+1至Y n+j-1为所述第二偏振信号中按照时间顺序传输且排在所述Y n之后的j-1个符号;
    确定第一矩阵和第二矩阵,所述第一矩阵为[S 1 S 2 ... S n],所述第二矩阵为
    Figure PCTCN2020095697-appb-100004
    其中,S 1至S n为所述预测信号块所包括的按照时间顺序传输的n个符号;所述第二矩阵的每一列包括每一列的首个符号、所述第一偏振信号中与所述首个符号相关的i-1个符号、每一列的第i+1个符号、所述第二偏振信号中与所述第i+1个符号相关的j-1个符号,其中,n大于i+j,i为大于1的整数,j为大于1的整数;
    将所述第一矩阵乘以所述第二矩阵的逆矩阵,得到包括所述噪声补偿系数的噪声补偿矩阵,所述噪声补偿矩阵为[h 1,h 2......h m]。
  11. 一种光接收机,其特征在于,所述光接收机包括:
    处理器和存储器;
    所述存储器中存储有计算机指令;
    所述处理器在执行所述存储器中的计算机指令时,用于获取待处理信号块;确定所述待处理信号块所对应的预测信号块;根据所述待处理信号块和所述预测信号块确定所述待处理信号块的噪声补偿系数;根据所述噪声补偿系数对所述待处理信号块进行噪声补偿。
  12. 根据权利要求11所述的光接收机,其特征在于,所述噪声补偿系数指示在噪声的干扰下所述待处理信号块所包括的符号之间的相关性。
  13. 根据权利要求11或12所述的光接收机,其特征在于,所述处理器具体用于:
    通过预设的判决方式、预设的训练序列和前向纠错FEC中的任一种方式对所述待处理信号块进行处理,得到所述预测信号块。
  14. 根据权利要求11至13中的任一项所述的光接收机,其特征在于,所述待处理信号块包括R 1至R n,所述R 1至R n为按照时间顺序传输的n个符号,其中,n为大于或者等于2的整数;所述处理具体用于:
    获取R n+1至R n+m-1,所述R n+1至R n+m-1为按照时间顺序传输且排在R n之后的m-1个符号;
    确定第一矩阵和第二矩阵,所述第一矩阵为[S 1 S 2 ... S n],所述第二矩阵为
    Figure PCTCN2020095697-appb-100005
    其中,S 1至S n为所述预测信号块所包括的按照时间顺序传输的n个符号;所述第二矩阵的每一列包括每一列的首个符号,以及所述待处理信号块中与所述首个符号相关的m-1个符号,其中,n大于m,m为大于1的整数;
    将所述第一矩阵乘以所述第二矩阵的逆矩阵,得到包括所述噪声补偿系数的噪声补偿矩阵,所述噪声补偿矩阵为[h 1,h 2......h m]。
  15. 根据权利要求11至13中的任一项所述的光接收机,其特征在于,所述待处理信号块包括X 1至X n和Y 1至Y n,所述X 1至X n为第一偏振信号中的按照时间顺序传输的n个符号,所述Y 1至Y n为第二偏振信号中的按照时间顺序传输的n个符号,其中,n为大于或者等于2的整数;所述处理器具体用于:
    获取X n+1至X n+i-1和Y n+1至Y n+j-1,所述X n+1至X n+i-1为所述第一偏振信号中按照时间顺序传输且排在所述X n之后的i-1个符号,所述Y n+1至Y n+j-1为所述第二偏振信号中按照时间顺序传输且排在所述Y n之后的j-1个符号;
    确定第一矩阵和第二矩阵,所述第一矩阵为[S 1 S 2 ... S n],所述第二矩阵为
    Figure PCTCN2020095697-appb-100006
    其中,S 1至S n为所述预测信号块所包括的按照时间顺序传输的n个符号;所述第二矩阵的每一列包括每一列的首个符号、所述第一偏振信号中与所述首个符号相关的i-1个符号、每一列的第i+1个符号、所述第二偏振信号中与所述第i+1个符号相关的j-1个符号,其中,n大于i+j,i为大于1的整数,j为大于1的整数;
    将所述第一矩阵乘以所述第二矩阵的逆矩阵,得到包括所述噪声补偿系数的噪声补偿矩阵,所述噪声补偿矩阵为[h 1,h 2......h m]。
  16. 一种包含指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得所述计算机执行如权利要求1至5中任一项所述的方法。
  17. 一种计算机可读存储介质,其特征在于,包括指令,当所述指令在计算机上运行时,使得计算机执行如权利要求1至5中任一项所述的方法。
PCT/CN2020/095697 2019-06-21 2020-06-12 信号处理方法以及光接收机 WO2020253624A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20825644.6A EP3972157A4 (en) 2019-06-21 2020-06-12 SIGNAL PROCESSING METHOD AND OPTICAL RECEIVER
US17/645,188 US11870500B2 (en) 2019-06-21 2021-12-20 Signal processing method and optical receiver

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910543765.2A CN112118053B (zh) 2019-06-21 2019-06-21 信号处理方法以及光接收机
CN201910543765.2 2019-06-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/645,188 Continuation US11870500B2 (en) 2019-06-21 2021-12-20 Signal processing method and optical receiver

Publications (1)

Publication Number Publication Date
WO2020253624A1 true WO2020253624A1 (zh) 2020-12-24

Family

ID=73796490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095697 WO2020253624A1 (zh) 2019-06-21 2020-06-12 信号处理方法以及光接收机

Country Status (4)

Country Link
US (1) US11870500B2 (zh)
EP (1) EP3972157A4 (zh)
CN (1) CN112118053B (zh)
WO (1) WO2020253624A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117118524A (zh) * 2021-04-20 2023-11-24 华为技术有限公司 一种用于光通信的传输方法、接收方法及相应设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040042802A1 (en) * 2002-09-03 2004-03-04 Keangpo Ho Optical receiver having compensation for Kerr effect phase noise
CN107888250A (zh) * 2016-09-30 2018-04-06 电信科学技术研究院 相位噪声补偿参考信号的传输方法、估计方法及通信设备
CN109450553A (zh) * 2018-09-20 2019-03-08 武汉邮电科学研究院有限公司 一种光通信系统噪声的补偿方法及系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100447201B1 (ko) * 2002-08-01 2004-09-04 엘지전자 주식회사 채널 등화 장치 및 이를 이용한 디지털 tv 수신기
CN101834825A (zh) * 2010-04-20 2010-09-15 北京邮电大学 光ofdm系统中基于琼斯矩阵抗ase噪声的信道补偿方法
EP2381595B1 (en) 2010-04-21 2012-06-20 Alcatel Lucent Phase skew compensation at a coherent optical receiver
JP5733465B2 (ja) * 2011-03-31 2015-06-10 富士通株式会社 バタフライフィルタの係数設定方法とその装置、受信機、及び受信方法
US10333645B2 (en) 2013-11-13 2019-06-25 Ramot At Tel Aviv University Ltd Nonlinear noise cancellation in wavelength division multiplexing (WDM) systems
JP6156807B2 (ja) * 2013-11-15 2017-07-05 国立研究開発法人産業技術総合研究所 受信信号処理装置、通信システム及び受信信号処理方法
EP3131247B1 (en) * 2014-04-29 2019-01-30 Huawei Technologies Co., Ltd. Signal receiving method and receiver
US9537683B1 (en) 2015-10-06 2017-01-03 Huawei Technologies Co., Ltd. Method and apparatus for residual phase noise compensation
US9876566B1 (en) * 2016-07-14 2018-01-23 Cisco Technology, Inc. Optical transceiver compensation, monitoring and alarming
JP6690091B2 (ja) * 2016-07-27 2020-04-28 富士通株式会社 信号処理装置および信号処理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040042802A1 (en) * 2002-09-03 2004-03-04 Keangpo Ho Optical receiver having compensation for Kerr effect phase noise
CN107888250A (zh) * 2016-09-30 2018-04-06 电信科学技术研究院 相位噪声补偿参考信号的传输方法、估计方法及通信设备
CN109450553A (zh) * 2018-09-20 2019-03-08 武汉邮电科学研究院有限公司 一种光通信系统噪声的补偿方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3972157A4

Also Published As

Publication number Publication date
EP3972157A4 (en) 2022-08-10
CN112118053A (zh) 2020-12-22
US20220140915A1 (en) 2022-05-05
US11870500B2 (en) 2024-01-09
CN112118053B (zh) 2022-01-14
EP3972157A1 (en) 2022-03-23

Similar Documents

Publication Publication Date Title
JP2020501472A (ja) 符号化されたコードワードを送信する送信機、方法及び非一時的コンピューター可読記憶媒体
US10574263B2 (en) Method for implementing turbo equalization compensation, turbo equalizer and system
JP2013536650A (ja) 幾つかのマッピング行列間に符号語を分配する多入力多出力チャネルにおける送信及び受信のための方法及びデバイス、並びに対応するコンピュータプログラム
WO2020253624A1 (zh) 信号处理方法以及光接收机
KR20190092067A (ko) Mimo 채널에 대한 폴라 코드 생성 장치 및 방법
WO2019106544A1 (en) Encoding systematic punctured polar codes concatenated with inner code
JPWO2017221926A1 (ja) 光受信機、光伝送装置及び光受信機のための方法
JP2009509422A (ja) 制御ループ応答時間最適化のための方法およびシステム
CN110519004B (zh) 一种编码方法及相关设备
JP7443534B2 (ja) オーディオ符号化および復号方法ならびにオーディオ符号化および復号デバイス
KR20220087547A (ko) Pmi 보고 및 사용을 위한 조합 인디케이터에 대한 윈도우 fd 기반의 매핑
US20230239056A1 (en) Methods, systems, and apparatuses for passive optical networks
JP2014050107A (ja) Mac層のレベルにおいてデータ伝送のリソースを最適化する方法、及びその方法を実施する装置
US20180295051A1 (en) Link cost determination for network links
US20230027981A1 (en) Method, electronic device, and computer program product for video processing
US20140064118A1 (en) Apparatus and method for controlling satellite terminal
WO2008066694A2 (en) Encoding and decoding architecture and method for pipelining encoded data or pipelining with a look-ahead strategy
US11265025B2 (en) Reconfigurable FEC
CN113794479A (zh) 极化调节卷积码的生成方法及相关设备
CN109962875B (zh) 信号处理方法、装置及存储介质
JP2023523254A (ja) 符号化方法及び装置、復号方法及び装置、並びにデバイス
EP3447926B1 (en) Convolutional ldpc decoding method, device, decoder, and system
WO2018202151A1 (zh) 通信方法和通信装置
CN117675101A (zh) 数据传输方法、装置、系统及计算机可读存储介质
Radonjic et al. Integer codes correcting burst errors within two bytes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20825644

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020825644

Country of ref document: EP

Effective date: 20211217