WO2020253590A1 - 检测面板、显示装置、检测面板驱动方法和制作方法 - Google Patents

检测面板、显示装置、检测面板驱动方法和制作方法 Download PDF

Info

Publication number
WO2020253590A1
WO2020253590A1 PCT/CN2020/095367 CN2020095367W WO2020253590A1 WO 2020253590 A1 WO2020253590 A1 WO 2020253590A1 CN 2020095367 W CN2020095367 W CN 2020095367W WO 2020253590 A1 WO2020253590 A1 WO 2020253590A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection panel
detection
upper electrode
piezoelectric material
material layer
Prior art date
Application number
PCT/CN2020/095367
Other languages
English (en)
French (fr)
Inventor
张晨阳
王海生
刘英明
李秀锋
韩艳玲
郭玉珍
赵利军
李佩笑
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/254,971 priority Critical patent/US11402949B2/en
Publication of WO2020253590A1 publication Critical patent/WO2020253590A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/043Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using propagating acoustic waves
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/043Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using propagating acoustic waves
    • G06F3/0436Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using propagating acoustic waves in which generating transducers and detecting transducers are attached to a single acoustic waves transmission substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0644Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element
    • B06B1/0662Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/32Arrangements for suppressing undesired influences, e.g. temperature or pressure variations, compensating for signal noise
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • G06F3/041661Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving using detection at multiple resolutions, e.g. coarse and fine scanning; using detection within a limited area, e.g. object tracking window
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1306Sensors therefor non-optical, e.g. ultrasonic or capacitive sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1329Protecting the fingerprint sensor against damage caused by the finger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B2201/00Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups
    • B06B2201/50Application to a particular transducer type
    • B06B2201/55Piezoelectric transducer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04107Shielding in digitiser, i.e. guard or shielding arrangements, mostly for capacitive touchscreens, e.g. driven shields, driven grounds

Definitions

  • the present disclosure relates to the field of ultrasonic detection, and in particular, to a detection panel, a display device including the detection panel, a method for driving the detection panel, and a method for manufacturing the detection panel.
  • Ultrasonic detection is a detection method that uses the ability of ultrasonic waves to penetrate materials and generate echoes of different sizes depending on the material, emit ultrasonic waves to the detected object, and detect the surface material and shape of the object according to the echo reflected on the surface of the object.
  • Ultrasonic transducer is a commonly used ultrasonic testing equipment, composed of upper and lower electrodes and piezoelectric materials between the upper and lower electrodes. The shape of the piezoelectric material changes under the action of the electric field applied by the upper and lower electrodes to generate ultrasonic waves, thereby completing the transmission of ultrasonic pulses.
  • the echo from the front side of the ultrasonic transducer (the side facing the object to be detected) is a useful signal.
  • the interference clutter reflected by the film on the back of the ultrasonic transducer will affect the accuracy of ultrasonic detection. Need to be eliminated.
  • the thickness of the backing block on the back of the ultrasonic transducer is usually set as large as possible, so that the acoustic energy emitted by the piezoelectric material to the back of the ultrasonic transducer is almost All consumed in it.
  • a detection panel which includes an upper electrode layer, a piezoelectric material layer and a conductive backing that are sequentially stacked, and the piezoelectric material layer is used for detecting ultrasonic waves received by the detection panel.
  • the electric field between the upper electrode layer and the conductive backing is changed under control, and the piezoelectric material layer is also used to generate ultrasonic waves under the control of the electric field, wherein the conductive backing includes a plurality of noise cancellation parts, In the direction away from the piezoelectric material layer, the size of the noise cancellation portion in a direction parallel to the detection panel gradually decreases.
  • the multiple noise cancellation parts are formed as a whole on a side close to the piezoelectric material layer.
  • the conductive backing further includes a conductive substrate main body, which is located between the piezoelectric material layer and the plurality of noise cancellation parts, and the plurality of noise cancellation parts are located on the conductive substrate.
  • the main body is away from the side of the piezoelectric material layer.
  • the cross section of the noise cancellation part along a direction perpendicular to the detection panel is triangular.
  • the detection panel further includes a sound-absorbing backing, the sound-absorbing backing is located on the side of the plurality of noise cancellation parts away from the piezoelectric material layer, and the sound-absorbing backing fills and covers all The multiple noise cancellation parts.
  • the acoustic impedance of the conductive substrate body and the plurality of noise canceling parts are equal and greater than the acoustic impedance of the piezoelectric material layer.
  • the material of the conductive substrate body and the plurality of noise cancellation parts includes conductive metal oxide and metal.
  • the conductive metal oxide includes at least one of indium tin oxide and indium zinc oxide, and the metal includes at least one of silver, copper, iron, and nickel.
  • the thickness of the conductive backing is in the range of 15 ⁇ m to 30 ⁇ m, and the thickness of the conductive substrate body is in the range of 2 ⁇ m to 5 ⁇ m.
  • the material of the sound-absorbing backing includes epoxy resin, wherein the epoxy resin is doped with at least one of tungsten, tungsten oxide, iron oxide, titanium dioxide, silicon dioxide, and talc.
  • the thickness of the sound-absorbing backing is in the range of 15 ⁇ m-30 ⁇ m.
  • the material of the piezoelectric material layer includes at least one of polyvinylidene fluoride and polyvinylidene fluoride trifluoroethylene, with a thickness in the range of 5 ⁇ m-15 ⁇ m.
  • the upper electrode layer includes a plurality of upper electrodes arranged in multiple rows and multiple columns
  • the detection panel further includes an upper electrode driving module configured to receive a plurality of upper electrodes row by row. The electrical signals of the upper electrode are output, and the electrical signals from the plurality of upper electrodes are output line by line.
  • the upper electrode driving module includes a plurality of touch gate lines, a plurality of touch data lines, and a plurality of switch transistors corresponding to the plurality of upper electrodes one-to-one.
  • the gate lines and the multiple touch data lines are arranged on different layers, and the multiple touch gate lines and the multiple touch data lines are interlaced to divide the detection panel into multiple rows and multiple columns.
  • Each of the plurality of touch units has an upper electrode; each of the touch units is provided with the switch transistor and one upper electrode, the switch transistor The first electrode is electrically connected to the corresponding upper electrode; the gates of the switching transistors corresponding to the upper electrodes in the same row of touch units are electrically connected to the same touch gate line, and the upper electrodes in the same column of touch units correspond to the switching transistors The second pole is electrically connected to the same data line.
  • the detection panel further includes a touch base substrate, the upper electrode driving module is formed on the touch base substrate, and the touch base substrate and the upper electrode driving module , The upper electrode layer is sequentially stacked along the thickness direction of the detection panel.
  • Detection drive stage provide the first electrical signal to the conductive backing and provide the second electrical signal to the upper electrode layer, so that the piezoelectric material layer generates ultrasonic waves; in the detection stage: float the conductive backing Set and stop providing the second electrical signal to the upper electrode layer, so that the piezoelectric material layer changes the electric field between the conductive backing and the upper electrode layer under the influence of the reflected ultrasonic waves;
  • the electrical signal in the electrode layer; the biological feature is determined according to the detected electrical signal, the biological feature including the fingerprint topography and/or the touch point position.
  • a display device including a display panel and a detection panel, wherein the detection panel is the above-mentioned detection panel, and the detection panel is arranged on the backlight side of the display panel ,
  • the display device further includes a detection drive module and a biometric detection module, the detection drive module is used to provide a first electrical signal to the conductive backing and a second electrical signal to the upper electrode layer in the detection drive phase , So that the piezoelectric material layer generates ultrasonic waves; the biometric detection module is used to detect the conductive backing after floating the conductive backing and stopping the second electrical signal to the upper electrode layer in the detection phase
  • the electrical signals in the upper electrode layer are used to determine biological characteristics based on the detected electrical signals.
  • the biological characteristics include fingerprint topography and/or touch point positions.
  • the display device further includes an acoustic impedance matching layer provided between the display panel and the detection panel.
  • the acoustic impedance of the material of the acoustic impedance matching layer is the acoustic impedance of the film layer in contact with the acoustic impedance matching layer in the display panel and the acoustic impedance matching layer in the detection panel and the acoustic impedance matching layer.
  • the material of the acoustic impedance matching layer includes epoxy resin, wherein the epoxy resin is doped with at least one of tungsten, tungsten oxide, iron oxide, titanium dioxide, silicon dioxide, and talc
  • the thickness of the acoustic impedance matching layer is a quarter of the wavelength of the ultrasonic wave passing through it.
  • a method for manufacturing a detection panel includes: forming a pattern including an upper electrode layer on a touch base substrate; A piezoelectric material layer is formed on the pattern; a conductive backing is formed on the piezoelectric material layer, the conductive backing includes a plurality of noise canceling parts, and in a direction away from the piezoelectric material layer, the noise canceling part The size along the direction parallel to the detection panel gradually decreases.
  • FIG. 1 is a schematic structural diagram of a detection panel of an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of the functional principle of the detection panel of the embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram of a detection panel of an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a part of the circuit of the detection panel of the embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a part of the circuit of the detection panel of the embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a display device of an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a display device of an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of a partial circuit of a display device of an embodiment of the present disclosure.
  • FIG. 9 is a flowchart of a detection method of a detection panel according to an embodiment of the present disclosure.
  • FIG. 10 is a flowchart of a manufacturing method of a detection panel according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of the detection panel in one step of the manufacturing method of the embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram of the detection panel in one step of the manufacturing method of the embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of a detection panel of an embodiment of the present disclosure in a step of the manufacturing method.
  • FIG. 14 is a schematic diagram of the detection panel in one step of the manufacturing method of the embodiment of the present disclosure.
  • the thickness of the backing block on the back of the ultrasonic transducer is usually set as large as possible, so that the acoustic energy emitted by the piezoelectric material to the back of the ultrasonic transducer is almost All is consumed inside, but this will cause the thickness of the entire ultrasonic transducer to be too large. Therefore, how to provide an ultrasonic transducer structure that does not increase the thickness of the transducer while improving the accuracy of ultrasonic detection has become an urgent technical problem in this field.
  • the present disclosure provides a detection panel 10.
  • the detection panel 10 includes an upper electrode layer 100 and a piezoelectric material stacked in the thickness direction (that is, perpendicular to the detection panel 10).
  • Layer 300 and conductive backing 200 are used to change the electric field between the upper electrode layer 100 and the conductive backing 200 under the control of the ultrasonic waves received by the detection panel 10, and the piezoelectric material layer 300 is also used to generate ultrasonic waves under the control of the electric field.
  • the conductive backing 200 includes a plurality of noise canceling parts 220. In the direction away from the piezoelectric material layer 300, the noise canceling part 220 gradually decreases in lateral size along the direction parallel to the detection panel 10.
  • a plurality of noise cancellation parts 220 are integrally formed on a side close to the piezoelectric material layer 300, and the integral plurality of noise cancellation parts 220 can be used as a lower electrode layer corresponding to the upper electrode layer 100.
  • the piezoelectric material layer 300 therein can emit ultrasonic waves.
  • the conductive backing 200 further includes a conductive substrate body 210, which is located between the piezoelectric material layer 300 and the plurality of noise cancellation parts 220, and the plurality of noise cancellation parts 220 are located on the conductive substrate body 210 away from the piezoelectric material layer. 300 on the side.
  • the conductive substrate body 210 can be used as a flat section of the conductive backing 200 to contact the piezoelectric material layer 300, and can be used as a lower electrode layer.
  • the conductive substrate main body 210 and the plurality of noise cancellation parts 220 may be integrally formed.
  • the detection panel 10 of the present disclosure can be used in conjunction with a display panel or other electronic devices.
  • the detection panel 10 can be used to determine the position of the touch point, and can also be used to determine the fingerprint shape on the finger covering at least a part of the touch panel 10.
  • the upper electrode layer 100 includes at least one upper electrode.
  • the upper electrode layer 100 includes a plurality of upper electrodes 110 arranged in multiple rows and multiple columns.
  • Each upper electrode 110 forms an independent capacitor with the conductive backing body 210.
  • each upper electrode 110 needs to be detected, and the position of the touch point can be judged based on the position of the upper electrode 110 that has a different potential from other upper electrodes 110, or the potential difference between each upper electrode 110 can be used to determine which The electrodes 110 correspond to the ridges of the fingerprint, and which upper electrodes 110 correspond to the valleys of the fingerprint, thereby identifying the fingerprint.
  • FIG. 9 is a flowchart of a detection method of a detection panel according to an embodiment of the present disclosure. As shown in FIG. 9, the detection method is a method for detecting biological characteristics, and the method for detecting biological characteristics includes multiple detection periods.
  • Determining the position of the touch point includes two stages: the first stage is the detection drive stage, and the second stage is the detection stage.
  • the finger is covered above the detection panel 10 (that is, the upper electrode layer is located between the finger and the conductive backing).
  • First provide a corresponding alternating voltage signal (ie, a first electrical signal) to the conductive backing of the detection panel 10, and ground the upper electrode in the upper electrode layer 100 (ie, a second electrical signal), so that the detection panel 10 is upwardly (The up and down directions here refer to the up and down directions in the figure) to emit initial ultrasonic waves.
  • the initial ultrasonic waves are reflected on the interface between the finger and the detection panel 10 and the interface between the air and the detection panel 10 and then generate reflected ultrasonic waves.
  • the initial ultrasonic waves are almost completely reflected at the interface where the air contacts the detection panel 10 to form reflected ultrasonic waves. Since the acoustic impedance of the finger is closer to the acoustic impedance of the material in the detection panel 10 than the air, a larger proportion of the initial ultrasonic waves will be injected into the finger from the interface where the finger contacts the detection panel 10. That is, the intensity of the reflected ultrasonic waves formed at the touch point position is smaller than the intensity of the reflected ultrasonic waves formed at other positions.
  • the conductive backing is floated and stopped to provide the second electrical signal to the upper electrode layer, and the signal generated by the upper electrode 110 in the upper electrode layer is received.
  • the piezoelectric material layer 300 of the detection panel 10 As the reflected ultrasonic waves propagate downward to the piezoelectric material layer 300 of the detection panel 10 again, the piezoelectric material layer 300 generates a corresponding electric field. It can be seen that the electric field intensity at the position touched by the finger is different from the electric field intensity at the position not touched by the finger. Therefore, the signal output by the upper electrode at the position touched by the finger is different from the upper electrode 110 at the position touched by the finger. The output signal is different. The position of the touch point can be determined by the signal intensity output by the upper electrode 110 at different positions.
  • Determining the fingerprint appearance also includes two stages: the first stage is the detection drive stage, and the second stage is the detection stage.
  • the detection driving phase the end of the finger is covered above the detection panel 10.
  • the initial ultrasound is emitted upwards.
  • the initial ultrasonic wave at the valley position of the finger fingerprint can hardly enter the air, and almost all of the initial ultrasonic wave can be reflected to form a reflected ultrasonic wave. Therefore, the upper surface of the detection panel 10 corresponding to the ridge position of the finger fingerprint and the valley position of the finger fingerprint will generate reflected ultrasonic waves of different intensities.
  • the conductive backing is floated and stopped to provide the second electrical signal to the upper electrode layer, and the signal generated by the upper electrode 110 in the upper electrode layer 100 is received.
  • the different reflected ultrasonic waves generated by the ridge position of the finger fingerprint and the valley position of the finger fingerprint respectively propagate downward to different positions on the piezoelectric material layer 300 of the detection panel 10, so that the different positions of the piezoelectric material layer 300 generate corresponding electric field. It can be seen that the ridge position of the finger fingerprint and the valley position of the finger fingerprint have different electric field strengths at different positions of the piezoelectric material layer 300. Therefore, the signal output by the upper electrode 110 corresponding to the ridge position of the finger fingerprint is different from that of the finger fingerprint.
  • the signals output by the upper electrode 110 corresponding to the valley position are also different. According to the potential difference between the top electrodes 110, it is possible to identify which top electrodes 110 correspond to the ridges of the fingerprint and which top electrodes 110 correspond to the valleys of the fingerprint, so as to identify the topography of the fingerprint.
  • the following describes how the noise elimination part in the conductive backing eliminates noise and improves detection accuracy.
  • the initial ultrasonic waves emitted upward from the detection panel 10 include the first type ultrasonic waves generated by the piezoelectric material layer 300 and directly propagating upward, the second type ultrasonic waves directly reflected upward by the conductive backing 200 after being emitted downward by the piezoelectric material layer 300, And the third type of ultrasonic waves that are emitted downward from the piezoelectric material layer 300 and then transmitted downward through the conductive backing 200 and reflected upward by the film layer under the conductive backing 200.
  • the first type ultrasonic wave and the second type ultrasonic wave can be used to realize the ultrasonic touch function of the present disclosure or recognize fingerprint topography due to less refraction and reflection and regular waveforms.
  • Ultrasound-like waves are noises harmful to the ultrasonic touch function of the present disclosure (that is, noises that need to be eliminated by the noise canceling unit 220 of the present disclosure).
  • the conductive backing 200 is provided to include a conductive backing main body 210 and a plurality of noise canceling parts 220 formed on the conductive backing main body 210.
  • the noise cancellation part 220 has a triangular cross section along the direction perpendicular to the detection panel 10.
  • FIG. 2 shows a schematic diagram of the sound wave conduction path of the third type of ultrasonic waves reflected and refracted at the interface between the noise cancellation portion 220 and the adjacent film layer.
  • the lateral size of the noise cancellation part 220 of the present disclosure gradually decreases downwards, a plurality of wedge structures are formed, so that the third type of ultrasonic waves (ie, noise) occurs at the interface between the noise cancellation part 220 and its adjacent film layer.
  • the third type of ultrasonic waves ie, noise
  • the detection panel 10 of the present disclosure can eliminate the noise by using the noise cancellation part 220, it is not necessary to set the conductive backing 200 and the film layer under the conductive backing 200 thick enough to improve the damping of the noise propagation, so the detection can be effectively reduced.
  • the thickness of the panel 10 reduces the weight of the detection panel 10.
  • the acoustic impedance of the material of the conductive backing 200 is greater than 1.5 ⁇ 10 7 pa*s/m.
  • the acoustic impedance of the conductive substrate main body 210 and the plurality of noise cancellation parts 220 are equal and greater than the acoustic impedance of the piezoelectric material layer 300. That is, the conductive substrate main body 210 and the plurality of noise cancellation parts 220 may be made of the same material.
  • the present disclosure does not specifically limit the thickness of the conductive backing 200.
  • the thickness of the conductive backing main body 210 is 2-5 ⁇ m, and the conductive backing 200 has a thickness of 2-5 ⁇ m.
  • the overall thickness is 15-30 ⁇ m.
  • the present disclosure does not specifically limit the material of the conductive backing 200.
  • the material of the conductive backing 200 includes at least one of silver, copper, iron, and nickel.
  • the longitudinal section of the noise cancellation part 220 perpendicular to the detection panel 10 is a triangle.
  • the cross section of the noise cancellation part 220 may also be another shape such as a trapezoid that causes the third type of ultrasonic waves to be attenuated by multiple reflections and refractions on the interface between the noise cancellation part 220 and the adjacent film layer, such as a trapezoid.
  • the present disclosure does not specifically limit how to drive the detection panel 10 to sense the reflected ultrasonic waves, as long as the potential value on each electrode 110 can be effectively obtained.
  • a plurality of upper electrodes 110 are arranged in multiple rows and multiple columns, and the detection panel 10 further includes an upper electrode driving module, which is used for row-by-row grounding.
  • the electrical signals generated by the multiple upper electrodes 110 are received, and the electrical signals from the multiple upper electrodes 110 are output row by row.
  • the upper electrode 110 is arranged in a multi-row and multi-column array, and under the influence of the reflected ultrasonic wave, the upper electrode 110 at each position generates different electric signals.
  • the upper electrode driving module receives the electric signal line by line, thereby realizing the perception of the reflected ultrasonic wave.
  • the upper electrode driving module includes multiple touch gate lines (gate1, gate2, gate3, gate4...), multiple touch Data lines (data1, data2, data3, data4%) and a plurality of switching transistors T corresponding to the plurality of upper electrodes 110 one-to-one.
  • the touch gate lines and the touch data lines are arranged in different layers, and a plurality of touch gate lines and a plurality of touch data lines are interlaced, and the detection panel 10 is divided into a plurality of touches arranged in a plurality of rows and columns. unit.
  • Each touch unit is provided with a switch transistor T and an upper electrode 110, and the first electrode of the switch transistor is electrically connected to the corresponding upper electrode 110.
  • the multiple upper electrodes are arranged in multiple rows and multiple columns.
  • the gates of the switching transistors T corresponding to the upper electrodes 110 in the same row of touch units are electrically connected to the same touch gate line, and the upper electrodes in the same column of touch units correspond to The second pole of the switching transistor T is electrically connected to the same data line.
  • the shape and size of the upper electrode 110 are not particularly limited.
  • the shape of the upper electrode 110 may be rectangular.
  • the detection panel 10 provided by the present disclosure is used for fingerprint recognition.
  • the side length of each upper electrode 110 is 60-70 ⁇ m.
  • the present disclosure provides that the first poles of a plurality of switching transistors T are electrically connected to their corresponding upper electrodes 110.
  • an independent upper electrode 110 corresponding to each switching transistor T and the conductive backing body 210 forms an independent Capacitance C.
  • the piezoelectric material layer 300 is affected by the reflected ultrasonic waves, the amount of charge on each capacitor C will change, so that the potential of each upper electrode 110 will change.
  • each switch transistor T When each switch transistor T is turned on under the control of the touch gate line, the potential of its corresponding upper electrode 110 can be derived to the corresponding touch data line, so that each switch transistor T can be sequentially obtained by scanning row by row.
  • the potential of each upper electrode 110 of the row realizes the perception of reflected ultrasonic waves on the entire surface.
  • the switching transistor T may include a gate 103, a source 101, a drain 102, and an active layer 104, where the source 102 is formed as a switch.
  • the first pole and drain 102 of the transistor T are formed as the second pole of the switching transistor T.
  • a gate insulating layer 105 and an insulating dielectric layer 106 for insulating and separating the gate electrode 103, the source electrode 102, and the drain electrode 102 from the upper electrode 110 may be formed on the detection panel 10 accordingly.
  • the detection panel 10 does not specifically limit how to drive the detection panel 10 to emit initial ultrasonic waves upward.
  • the detection panel 10 further includes a sound driving module.
  • the sound driving module includes an initial ultrasonic signal line connected with the conductive backing 200 and a plurality of ground lines electrically connected with the plurality of upper electrodes 110 in a one-to-one correspondence.
  • the initial ultrasonic signal line is used to introduce an alternating voltage signal (ie, the first electrical signal) corresponding to the electrical field that enables the piezoelectric material layer 300 to generate the initial ultrasonic wave into the conductive backing 200 and to provide grounding to the upper electrode layer.
  • Signal ie, the second electrical signal
  • the ground wire is used to ground each upper electrode 110 when the detection panel 10 outputs the initial ultrasonic wave.
  • an alternating voltage signal is input to the conductive backing 200 through the initial ultrasonic signal line, and the grounding line grounds each upper electrode 110 so that the conductive backing 200 and each grounded upper electrode 110 form an alternating current.
  • the electric field is changed so that the piezoelectric material layer emits ultrasonic waves under the action of the alternating electric field.
  • the initial ultrasonic signal line floats the conductive backing 200, the ground line stops grounding the upper electrode 110, and the upper electrode outputs a signal corresponding to the reflected ultrasonic wave through the switch transistor T and the corresponding scanning circuit.
  • the detection panel 10 further includes a touch base substrate 500, and the upper electrode driving module is formed on the touch base substrate 500, and the touch base substrate 500, the upper electrode driving module, and the upper The electrode layer 100 is sequentially stacked along the thickness direction of the detection panel 10.
  • the touch base substrate 500 may be made of glass.
  • the detection panel 10 further includes a sound-absorbing backing 400.
  • the sound-absorbing backing 400 is located on the side of the conductive backing 200 away from the piezoelectric material layer 300, and the sound-absorbing backing 400 covers the conductive backing 200 The surface of the backing 400 can absorb ultrasonic waves.
  • the present disclosure does not specifically limit the material of the sound-absorbing backing 400.
  • the material of the sound-absorbing backing 400 includes epoxy resin doped with impedance fillers.
  • the impedance filler is used to adjust the sound attenuation coefficient of the sound-absorbing backing 400 and increase the sound impedance of the sound-absorbing backing 400.
  • the present disclosure does not specifically limit the impedance filler.
  • the impedance filler includes at least one of tungsten, tungsten oxide, iron oxide, titanium dioxide, silicon dioxide, and talc.
  • the present disclosure does not specifically limit the thickness of the sound-absorbing backing 400.
  • the thickness of the sound-absorbing backing 400 is 15-30 ⁇ m.
  • the lateral size of the noise cancellation part 220 of the present disclosure gradually decreases in the direction away from the piezoelectric material layer, forming a plurality of wedge structures, so that the noise is reflected multiple times at the interface between the noise cancellation part 220 and the sound-absorbing backing 400. Refraction, most of the noise is injected into the sound-absorbing backing 400 or attenuated during multiple reflections and refractions, thereby effectively absorbing the noise, preventing the noise from being reflected back to the piezoelectric material layer 300 and affecting the ultrasonic touch function of the detection panel 10.
  • the present disclosure does not specifically limit the material of the piezoelectric material layer 300.
  • the material of the piezoelectric material layer 300 includes at least one of polyvinylidene fluoride and polyvinylidene fluoride trifluoroethylene. .
  • the piezoelectric material layer can be obtained by two simple processes of coating and curing. Therefore, the use of polyvinylidene fluoride and polyvinylidene fluoride trifluoroethylene to make the piezoelectric material layer 300 can effectively reduce the piezoelectric material layer 300 Difficulty of production.
  • the present disclosure does not specifically limit the thickness of the piezoelectric material layer 300.
  • the thickness of the piezoelectric material layer 300 is 5-15 ⁇ m.
  • the detection panel 10 of the present disclosure can not only realize the fingerprint recognition function alone, but also can form a display device with touch function with the display panel.
  • a method for biometric detection using the detection panel 10 described in the previous embodiment includes a plurality of detection cycles, and each detection cycle includes two detection cycles. Stages.
  • Fig. 9 is a flowchart of a detection method of a detection panel according to an embodiment of the present disclosure.
  • the conductive backing 200 is provided with a first electrical signal and the upper electrode layer is provided with a second electrical signal, so that the piezoelectric material layer 300 generates ultrasonic waves.
  • the detection panel 10 is used to emit an initial ultrasonic wave toward the finger in the detection driving phase of each detection cycle, and then the electrical signal generated on the upper electrode layer 100 is received in the detection phase.
  • the detection of biological characteristics by the detection panel 10 is realized.
  • a display device including a display panel and a detection panel.
  • the detection panel is the detection panel 10 described above, and the detection panel 10 is arranged on the backlight side of the display panel 20.
  • the display device further includes a detection driving module 50 and a biological feature detection module 60.
  • the detection driving module 50 is used for providing a first electrical signal to the conductive backing 200 and a second electrical signal to the upper electrode layer in the detection driving phase, so that the piezoelectric material layer 300 generates ultrasonic waves.
  • the biometric detection module 60 is used to detect the electrical signal in the upper electrode layer 100 after floating the conductive backing 200 and stop providing the second electrical signal to the upper electrode layer in the detection phase, and determine the biological feature according to the detected electrical signal , Wherein the biometric features include fingerprint topography and/or touch point location.
  • backlight side refers to the side opposite to the light emitting side of the display panel.
  • the display panel 20 may be an organic light emitting diode display panel or a liquid crystal display panel.
  • the detection panel 10 of the present disclosure uses the principle of ultrasonic waves to realize screen fingerprint recognition or screen touch, which will not affect the normal display of the display panel 20.
  • the detection panel 10 of the present disclosure can eliminate the noise by using the noise cancellation part 220, it is only necessary to provide a thin film layer under the conductive backing 200, or even without a film layer under the conductive backing 200, to increase noise
  • the damping of propagation can effectively reduce the overall thickness of the display device, reduce the total weight of the display device, and achieve a lighter and thinner product.
  • the detection driving module 50 and the biometric detection module 60 are both located in the binding area of the display device.
  • the display device further includes an acoustic impedance matching layer 30 arranged between the display panel 20 and the detection panel 10.
  • an acoustic impedance matching layer 30 is provided between the display panel 20 and the detection panel 10, so that the difference in acoustic impedance between the film layers in contact between the display panel 20 and the detection panel 10 can be avoided, causing ultrasonic waves to display The interface between the panel 20 and the detection panel 10 is reflected, thereby improving the propagation efficiency of the initial ultrasonic wave.
  • the acoustic impedance of the material of the acoustic impedance matching layer 30 is the acoustic impedance of the film layer in contact with the acoustic impedance matching layer in the display panel 20 and the acoustic impedance matching in the detection panel 10
  • the present disclosure does not specifically limit the material of the acoustic impedance matching layer 30.
  • the material of the acoustic impedance matching layer 30 includes epoxy resin added with filler, and the filler includes tungsten, tungsten oxide, and oxide. At least one of iron, titanium dioxide, silica, and talc.
  • the present disclosure does not specifically limit the thickness of the acoustic impedance matching layer 30.
  • the thickness of the acoustic impedance matching layer 30 is a quarter of the wavelength of the ultrasonic wave emitted by the detection panel 10.
  • the display device further includes a detection control unit for determining the touch position and/or the electrical signal received through the upper electrode of the touch data line of the detection panel 10 Fingerprint morphology.
  • the display device further includes an upper cover 40, and the material of the upper cover 40 may be glass.
  • FIG. 10 is a flowchart of a method for manufacturing a detection panel according to an embodiment of the present disclosure
  • FIGS. 11 to 14 are cross-sectional views of the detection panel corresponding to each step.
  • the manufacturing method includes the following steps S210 to S230.
  • a pattern including the upper electrode layer 100 is formed on the touch base substrate 500.
  • the piezoelectric material layer 300 is formed on the pattern including the upper electrode layer.
  • a conductive backing 200 layer is formed on the piezoelectric material layer.
  • the conductive backing 200 layer includes a plurality of noise cancellation parts 220, and in the direction away from the piezoelectric material layer 300, the lateral size of the noise cancellation part 220 along the direction parallel to the detection panel gradually decreases.
  • the conductive backing 200 further includes a conductive substrate body 210 located between the piezoelectric material layer 300 and the plurality of noise canceling parts 220, and the plurality of noise canceling parts 220 are located on the side of the conductive substrate body 210 away from the piezoelectric material layer 300 .
  • the conductive substrate body 210 can be used as a flat section of the conductive backing 200 to contact the piezoelectric material layer 300, and can be used as a lower electrode layer.
  • the conductive substrate main body 210 and the plurality of noise cancellation parts 220 may be integrally formed.
  • the detection panel 10 manufactured by the above-mentioned manufacturing method includes the noise cancellation part 220, which can cause the noise to be repeatedly reflected, refracted and attenuated at the interface between the noise cancellation part 220 and the adjacent film layer, thereby effectively absorbing the noise and avoiding The noise affects the ultrasonic touch function of the detection panel 10.
  • the detection panel 10 of the present disclosure can eliminate the noise by using the noise cancellation part 220, it is not necessary to set the conductive backing 200 and the film layer under the conductive backing 200 thick enough to improve the damping of the noise propagation, so the detection can be effectively reduced.
  • the thickness of the panel 10 reduces the weight of the detection panel 10.
  • the manufacturing method further includes forming the sound-absorbing backing 400 after forming the conductive backing 200 layer.
  • the material of the sound-absorbing backing 400 includes epoxy resin doped with impedance fillers, and the sound-absorbing backing 400 is formed by a method of thermocompression curing.
  • the method of forming the conductive backing 200 layer includes any one of an imprinting process, an etching process, and a screen printing process.
  • the method of manufacturing the detection panel 10 further includes forming an upper electrode driving module before the step of preparing the upper electrode layer 100 on the backplane substrate, the upper electrode driving module including a plurality of touch gate lines (gate1, gate2, gate3, gate4...), multiple touch data lines (data1, data2, data3, data4...), and multiple switching transistors T corresponding to the multiple upper electrodes 110 one-to-one.
  • the upper electrode driving module including a plurality of touch gate lines (gate1, gate2, gate3, gate4...), multiple touch data lines (data1, data2, data3, data4...), and multiple switching transistors T corresponding to the multiple upper electrodes 110 one-to-one.
  • the touch gate lines and the touch data lines are arranged in different layers, and a plurality of touch gate lines and a plurality of touch data lines are interlaced to divide the detection panel 10 into a plurality of touch units.
  • Each touch control unit is provided with a switch transistor T and an upper electrode 110, and the first electrode of the switch transistor is electrically connected to the corresponding upper electrode 110.
  • the multiple upper electrodes are arranged in multiple rows and multiple columns.
  • the gates of the switching transistors T corresponding to the upper electrodes 110 in the same row of touch units are electrically connected to the same touch gate line, and the upper electrodes in the same column of touch units correspond to The second pole of the switching transistor T is electrically connected to the same data line.

Abstract

本公开提供一种检测面板、显示装置、检测面板驱动方法和制作方法,包括依次层叠设置的上电极层、压电材料层和导电背衬,该压电材料层用于在超声波的控制下改变上电极层与导电背衬之间的电场,还用于在电场控制下产生超声波,所述导电背衬包括多个杂音消除部,在远离所述压电材料层的方向上,所述杂音消除部沿平行所述检测面板方向的尺寸逐渐减小。

Description

检测面板、显示装置、检测面板驱动方法和制作方法
相关申请的交叉引用
本申请要求于2019年6月17日在中国知识产权局提交的申请号为201910462128.2的中国专利申请的优先权,该中国专利申请的全部内容通过引用合并于此。
技术领域
本公开涉及超声波探测领域,具体地,涉及一种检测面板、一种包括该检测面板的显示装置、一种用于驱动该检测面板的方法以及一种用于制作该检测面板的方法。
背景技术
超声波检测是一种利用超声波具有穿透材料能力且随材料的不同产生不同大小回波的性质,向被检测物体发射超声波,并根据物体表面反射的回波检测物体表面材料、形状的检测方法。超声波换能器是一种常用的超声波检测设备,由上下电极和位于上下电极之间的压电材料组成。压电材料的形状在上下电极施加的电场作用下发生改变产生超声波,从而完成超声波脉冲的发射。
在超声波检测和超声波诊断技术中,来自超声波换能器正面(朝向被检测物体的一面)的回波是有用信号,超声波换能器背面膜层反射的干扰杂波会影响超声波检测的精确性,需要被消除。在相关技术中,为了消除换能器背面的干扰杂波,通常将超声波换能器背面的背衬块厚度设置得尽可能大,以使得压电材料向超声波换能器背面发射的声能几乎全部消耗在里面。
发明内容
根据本公开的一个方面,提供了一种检测面板,包括依次层叠设置的上电极层、压电材料层和导电背衬,所述压电材料层用于在所 述检测面板接收到的超声波的控制下改变所述上电极层与所述导电背衬之间的电场,且所述压电材料层还用于在电场控制下产生超声波,其中,所述导电背衬包括多个杂音消除部,在远离所述压电材料层的方向上,所述杂音消除部沿平行所述检测面板方向的尺寸逐渐减小。
在一些实施例中,所述多个杂音消除部在靠近所述压电材料层的一侧形成为一体。
在一些实施例中,所述导电背衬还包括导电衬底主体,其位于所述压电材料层和所述多个杂音消除部之间,所述多个杂音消除部位于所述导电衬底主体远离所述压电材料层的一侧。
在一些实施例中,所述杂音消除部沿垂直于所述检测面板方向的截面为三角形。
在一些实施例中,所述检测面板还包括吸音背衬,所述吸音背衬位于所述多个杂音消除部远离所述压电材料层的一侧,且所述吸音背衬填充并覆盖所述多个杂音消除部。
在一些实施例中,所述导电衬底主体和所述多个杂音消除部的声阻抗相等,并且大于所述压电材料层的声阻抗。
在一些实施例中,所述导电衬底主体和所述多个杂音消除部的材料包括导电金属氧化物和金属。
在一些实施例中,所述导电金属氧化物包括氧化铟锡和氧化铟锌中的至少一种,所述金属包括银、铜、铁、镍中的至少一种。
在一些实施例中,所述导电背衬的厚度在15μm-30μm范围内,所述导电衬底主体的厚度在2μm-5μm范围内。
在一些实施例中,所述吸音背衬的材料包括环氧树脂,其中,所述环氧树脂掺杂有钨、氧化钨、氧化铁、二氧化钛、二氧化硅、滑石粉中的至少一种以作为阻抗填料,所述吸音背衬的厚度在15μm-30μm范围内。
在一些实施例中,所述压电材料层的材料包括聚偏氟乙烯和聚偏二氟乙烯三氟乙烯中的至少一种,其厚度在5μm-15μm范围内。
在一些实施例中,所述上电极层包括呈多行多列排列的多个上 电极,所述检测面板还包括上电极驱动模块,所述上电极驱动模块用于逐行地接收多个所述上电极的电信号,并逐行地将来自多个所述上电极的电信号输出。
在一些实施例中,所述上电极驱动模块包括多条触控栅线、多条触控数据线、以及与所述多个上电极一一对应的多个开关晶体管,所述多条触控栅线与所述多条触控数据线设置在不同层,所述多条触控栅线与所述多条触控数据线交错,将所述检测面板划分为排列为多行多列的多个触控单元,并且所述多个触控单元中的每一个均具有一个上电极;每个所述触控单元内均设置有所述开关晶体管和一个所述上电极,所述开关晶体管的第一极与相应的上电极电连接;同一行触控单元内的上电极对应的开关晶体管的栅极与同一条触控栅线电连接,同一列触控单元内的上电极对应的开关晶体管的第二极与同一条数据线电连接。
在一些实施例中,所述检测面板还包括触控衬底基板,所述上电极驱动模块形成在所述触控衬底基板上,且所述触控衬底基板、所述上电极驱动模块、所述上电极层沿所述检测面板的厚度方向依次层叠设置。
根据本公开的另一方面,还提供了一种利用上述检测面板进行生物特征检测的方法,其中,所述生物特征检测的方法包括多个检测周期,在每个检测周期都执行以下操作:在检测驱动阶段:向所述导电背衬提供第一电信号和向所述上电极层提供第二电信号,以使得所述压电材料层产生超声波;在检测阶段:将所述导电背衬浮置和停止向所述上电极层提供第二电信号,以使得所述压电材料层在反射回的超声波的影响下改变所述导电背衬与所述上电极层之间的电场;检测所述上电极层中的电信号;根据检测到的电信号确定生物特征,所述生物特征包括指纹形貌和/或触控点位置。
根据本公开的另一方面,还提供了一种显示装置,包括显示面板和检测面板,其中,所述检测面板为以上所述的检测面板,所述检测面板设置在所述显示面板的背光侧,所述显示装置还包括检测驱动模块和生物特征检测模块,所述检测驱动模块用于在检测驱动阶段向 所述导电背衬提供第一电信号以及向所述上电极层提供第二电信号,以使得所述压电材料层产生超声波;所述生物特征检测模块用于在检测阶段,将所述导电背衬浮置以及停止向所述上电极层提供第二电信号后,检测所述上电极层中的电信号,并根据检测到的电信号确定生物特征,所述生物特征包括指纹形貌和/或触控点位置。
在一些实施例中,所述显示装置还包括设置在所述显示面板和所述检测面板之间的声阻抗匹配层。
在一些实施例中,所述声阻抗匹配层的材料的声阻抗为所述显示面板中与所述声阻抗匹配层接触的膜层的声阻抗和所述检测面板中与所述声阻抗匹配层接触的膜层的声阻抗的几何平均值。
在一些实施例中,所述声阻抗匹配层的材料包括环氧树脂,其中,所述环氧树脂掺杂有钨、氧化钨、氧化铁、二氧化钛、二氧化硅、滑石粉中的至少一种以作为阻抗填料,所述声阻抗匹配层的厚度为通过其的超声波波长的四分之一。
根据本公开的另一方面,还提供了一种检测面板的制作方法,其中,所述制作方法包括:在触控衬底基板上形成包括上电极层的图形;在包括所述上电极层的图形上形成压电材料层;在所述压电材料层上形成导电背衬,所述导电背衬包括多个杂音消除部,在远离所述压电材料层的方向上,所述杂音消除部沿平行所述检测面板方向的尺寸逐渐减小。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1是本公开实施例的检测面板的结构示意图;
图2是本公开实施例的检测面板的功能原理示意图;
图3是本公开实施例的检测面板的示意图;
图4是本公开实施例的检测面板的部分电路的示意图;
图5是本公开实施例的检测面板的部分电路的示意图;
图6是本公开实施例的显示装置的结构示意图;
图7是本公开实施例的显示装置的结构示意图;
图8是本公开实施例的显示装置的部分电路的示意图;
图9是本公开实施例的检测面板的检测方法的流程图;
图10是本公开实施例的检测面板的制作方法的流程图;
图11是本公开实施例的检测面板在制作方法的一个步骤中的示意图;
图12是本公开实施例的检测面板在制作方法的一个步骤中的示意图;
图13是本公开实施例的检测面板在制作方法的一个步骤中的示意图;以及
图14是本公开实施例的检测面板在制作方法的一个步骤中的示意图。
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
在相关技术中,为了消除换能器背面的干扰杂波,通常将超声波换能器背面的背衬块厚度设置得尽可能大,以使得压电材料向超声波换能器背面发射的声能几乎全部消耗在里面,然而这会导致整个超声波换能器的厚度过大。因此,如何提供一种在提高超声波检测精确性的同时不增加换能器厚度的超声波换能器结构,成为本领域亟待解决的技术问题
为解决上述技术问题,本公开提供一种检测面板10,如图1所示,检测面板10包括沿厚度方向(即沿垂直于该检测面板10)依次层叠设置的上电极层100、压电材料层300和导电背衬200。压电材料层300用于在检测面板10接收到的超声波的控制下改变上电极层100与导电背衬200之间的电场,且压电材料层300还用于在电场控制下产生超声波。其中,导电背衬200包括多个杂音消除部220,在 远离压电材料层300的方向上,杂音消除部220沿平行检测面板10方向的横向尺寸逐渐减小。
可选地,多个杂音消除部220在靠近压电材料层300的一侧形成为一体,并可以将该一体的多个杂音消除部220作为与上电极层100对应的下电极层。通过向上电极层100和一体的多个杂音消除部220施加相应的电信号,可以使得其中的压电材料层300发出超声波。
可选地,导电背衬200还包括导电衬底主体210,其位于压电材料层300和多个杂音消除部220之间,多个杂音消除部220位于导电衬底主体210远离压电材料层300的一侧。导电衬底主体210可作为导电背衬200的平整段而与压电材料层300相接触,并且可作为下电极层。导电衬底主体210与多个杂音消除部220可一体成形。
本公开的检测面板10可与显示面板或者其他电子设备配合使用。该检测面板10可以用于确定触摸点的位置,也可以用于确定覆盖触摸面板10的至少一部分的手指上的指纹形貌。
需要解释的是,上电极层100包括至少一个上电极。可选地,如图3所示,上电极层100包括呈多行多列排列的多个上电极110。每个上电极110均与导电背衬主体210之间形成一个独立的电容。当手指上反射回来的反射超声波引起压电材料层300振动时,压电材料层300的不同位置将根据各位置的反射超声波产生不同的电场,进而影响各个上电极110处于不同的电位。此时只需要检测各个上电极110的电位大小,即可根据与其他上电极110电位不同的上电极110所在的位置判断触摸点位置,或者根据各个上电极110之间的电位差别来判断哪些上电极110对应于指纹的脊,哪些上电极110对应于指纹的谷,从而识别指纹。
图9是本公开实施例的检测面板的检测方法的流程图。如图9所示,该检测方法为对生物特征进行检测的方法,该生物特征检测的方法包括多个检测周期。
下面简要介绍检测面板10如何实现上述“确定触摸点的位置”这一功能:
确定触摸点的位置包括两个阶段:第一个阶段为检测驱动阶段, 第二个阶段为检测阶段。
在检测驱动阶段,手指覆盖在检测面板10的上方(即,上电极层位于手指和导电背衬之间)。首先,向检测面板10的导电背衬提供相应的交变电压信号(即,第一电信号)、将上电极层100中的上电极接地(即,第二电信号),使得检测面板10向上(此处的上、下方向是指图中的上、下方向)发出初始超声波。所述初始超声波在手指与检测面板10接触的交界面上以及空气与检测面板10接触的交界面上发生反射后产生反射超声波。由于空气的声阻抗通常远小于检测面板10中材料的声阻抗,因此初始超声波在空气与检测面板10接触的交界面上几乎全部反射形成反射超声波。由于与空气相比,手指的声阻抗更加接近检测面板10中材料的声阻抗,因此会有更大比例的初始超声波由手指与检测面板10接触的交界面射入手指。即,触摸点位置形成的反射超声波强度小于其他位置形成的反射超声波的强度。
在检测阶段,将导电背衬浮置和停止向上电极层提供第二电信号,接收上电极层中的上电极110产生的信号。由于所述反射超声波重新向下传播到检测面板10的压电材料层300上,使压电材料层300产生相应的电场。由此可知,有手指触摸的位置处的电场强度与无手指触摸的位置处的电场强度不同,因此,有手指触摸的位置处的上电极输出的信号与无手指触摸的位置处的上电极110输出的信号不同。通过不同位置处的上电极110输出的信号强度即可确定触摸点的位置。
下面简要介绍检测面板10如何实现上述“确定指纹形貌”这一功能:
确定指纹形貌同样包括两个阶段:第一个阶段为检测驱动阶段,第二个阶段为检测阶段。在检测驱动阶段,手指末端覆盖在检测面板10的上方。首先,向检测面板10的导电背衬提供相应的交变电压信号(即,第一电信号)、将上电极层100中的上电极接地(即,提供第二电信号),使得检测面板10向上发出初始超声波。由于在手指指纹的脊位置一部分初始超声波能够通过手指指纹的脊与检测面板 10的交界面射入手指,而在手指指纹的谷位置初始超声波几乎无法射入空气中,几乎全部反射形成反射超声波,因此检测面板10的上表面对应于手指指纹的脊位置和手指指纹的谷位置将产生不同强度的反射超声波。
在检测阶段,将导电背衬浮置和停止向上电极层提供第二电信号,接收上电极层100中的上电极110产生的信号。分别由手指指纹的脊位置和手指指纹的谷位置产生的不同的反射超声波均向下传播到检测面板10的压电材料层300上的不同位置,使压电材料层300的不同位置产生相应的电场。由此可知,手指指纹的脊位置和手指指纹的谷位置所对应的压电材料层300的不同位置的电场强度不同,因此,手指指纹的脊位置对应的上电极110输出的信号和手指指纹的谷位置所对应的上电极110输出的信号也不同。根据各个上电极110之间的电位差别,即可识别哪些上电极110对应于指纹的脊,哪些上电极110对应于指纹的谷,从而识别指纹形貌。
下面介绍导电背衬中的杂音消除部如何消除杂音、提高检测精度。
检测面板10向上发出的初始超声波包括由压电材料层300产生的直接向上传播的第一类超声波、由压电材料层300向下发出后直接被导电背衬200向上反射的第二类超声波、以及由压电材料层300向下发出后透过导电背衬200向下传播时被导电背衬200下方的膜层向上反射的第三类超声波。其中,所述第一类超声波和所述第二类超声波由于经过的折射、反射较少,波形整齐规范,能够用于实现本公开的超声波触控功能或者识别指纹形貌,而所述第三类超声波是对本公开的超声波触控功能有害的杂波(即本公开的杂音消除部220需要消除的杂音)。
为了消除所述第三类超声波,在本公开中,将导电背衬200设置为包括导电背衬主体210和形成在导电背衬主体210上的多个杂音消除部220。如图1所示,杂音消除部220沿垂直于检测面板10方向的截面为三角形。图2中所示为所述第三类超声波在杂音消除部220与其相邻膜层的界面上发生反射、折射的声波传导路径示意图。 由于本公开的杂音消除部220的横向尺寸向下逐渐减小,形成了多个尖劈结构,使得所述第三类超声波(即杂音)在杂音消除部220与其相邻膜层的界面上发生多次反射、折射而衰减,从而有效地吸收了杂音,避免了杂音影响检测面板10的超声波触控功能,提高了确定触控点的位置或者识别指纹形貌的精确性。
并且,由于本公开的检测面板10能够利用杂音消除部220消除杂音,不必将导电背衬200以及导电背衬200下方的膜层设置得足够厚来提高杂音传播的阻尼,因此可以有效减小检测面板10的厚度,减轻检测面板10的重量。
为了提高压电材料层300向下发出的超声波在导电背衬200上发生反射得到所述第二类超声波的概率,可选地,所述导电背衬200的材料的声阻抗大于1.5×10 7pa*s/m。可选地,导电衬底主体210和多个杂音消除部220的声阻抗相等,并且大于压电材料层300的声阻抗。即,导电衬底主体210和多个杂音消除部220可由同一种材料制成。
本公开对所述导电背衬200的厚度不作具体限定,作为本公开的一种优选实施方式,可选地,所述导电背衬主体210的厚度为2~5μm,所述导电背衬200的整体厚度为15~30μm。
本公开对所述导电背衬200的材料不作具体限定,作为本公开的一种优选实施方式,可选地,所述导电背衬200的材料包括银、铜、铁、镍中的至少一者,还可以包括导电金属氧化物,如氧化铟锡和氧化铟锌中的至少一种。
为了在简化工艺的同时确保杂音消除部220的杂音消除功能,可选地,如图1所示,杂音消除部220的垂直于检测面板10的纵向截面为三角形。可选地,杂音消除部220的截面还可以为使得第三类超声波在杂音消除部220与其相邻膜层的界面上发生多次反射、折射而衰减的其它形状,如梯形。
本公开对如何驱动检测面板10感知所述反射超声波不作具体限定,只要能够有效获取各个电极110上的电位值即可。例如,作为本公开的一种实施方式,如图4所示,多个上电极110排列为多行多列, 检测面板10还包括上电极驱动模块,所述上电极驱动模块用于逐行地接收多个上电极110产生的电信号,并逐行地将来自多个上电极110的电信号输出。
在本公开中,上电极110沿多行多列阵列排列,在所述反射超声波的影响下,各位置的上电极110产生的不同电信号。所述上电极驱动模块逐行接收该电信号,从而实现了所述反射超声波的感知。
为实现上述逐行接收电信号的功能,可选地,如图4所示,所述上电极驱动模块包括多条触控栅线(gate1,gate2,gate3,gate4……)、多条触控数据线(data1,data2,data3,data4……)、以及与多个上电极110一一对应的多个开关晶体管T。
所述触控栅线与所述触控数据线设置在不同层,多条触控栅线与多条触控数据线交错,将检测面板10划分为排列为多行多列的多个触控单元。
每个触控单元内均设置有一个开关晶体管T和一个上电极110,开关晶体管的第一极与相应的上电极110电连接。
多个上电极排列为多行多列,同一行触控单元内的上电极110对应的开关晶体管T的栅极与同一条触控栅线电连接,同一列触控单元内的上电极对应的开关晶体管T的第二极与同一条数据线电连接。
在本公开中,对上电极110的形状和尺寸不做特殊的限定。为了便于制造,上电极110的形状可以为矩形。当本公开提供的检测面板10用于进行指纹识别时。可选地,每个上电极110的边长为60-70μm。
本公开设置多个开关晶体管T的第一极与其对应的上电极110电连接,如图4所示,每个开关晶体管T对应的上电极110均与导电背衬主体210之间形成一个独立的电容C。当压电材料层300收到所述反射超声波的影响时,各个电容C上的电荷量均会发生改变,使得各个上电极110的电位发生改变。
每个开关晶体管T均能够在受到触控栅线的控制而导通时,将其对应的上电极110的电位导出到相应的触控数据线上,从而能够通 过逐行扫描的方式依次获取各个行的各个上电极110的电位,从而实现了整个面上的反射超声波的感知。
本公开对开关晶体管T的结构不作具体限定,例如,如图3所示,开关晶体管T可以包括:栅极103、源极101、漏极102、有源层104,其中源极102形成为开关晶体管T的第一极,漏极102形成为开关晶体管T的第二极。可选地,检测面板10上还可以相应地形成有栅绝缘层105和用于将栅极103、源极102和漏极102与上电极110绝缘隔开的绝缘介质层106。
本公开对如何驱动检测面板10向上发射初始超声波不作具体限定。在上电极层100包括多个上电极110的情况下,为简化电路结构,作为本公开的一种优选实施方式,如图5所示,检测面板10还包括发声驱动模块。所述发声驱动模块包括与导电背衬200连接的初始超声波信号线和多条与多个上电极110一一对应电连接的接地线。
其中,所述初始超声波信号线用于向导电背衬200导入能够使压电材料层300产生所述初始超声波的电场所对应的交变电压信号(即第一电信号)和向上电极层提供接地信号(即第二电信号),以使得检测面板10输出所述初始超声波。
所述接地线用于在检测面板10输出所述初始超声波时,将各个上电极110接地。
在检测驱动阶段,通过所述初始超声波信号线向导电背衬200输入交变电压信号,所述接地线将各个上电极110接地,使得导电背衬200与各个接地的上电极110之间形成交变电场,从而使压电材料层在该交变电场的作用下发出超声波。在检测阶段,所述初始超声波信号线将导电背衬200浮置,所述接地线停止将上电极110接地,上电极通过开关晶体管T以及相应的扫描电路输出反射超声波对应的信号。
为了便于制造,可选地,检测面板10还包括触控衬底基板500,所述上电极驱动模块形成在触控衬底基板500上,且触控衬底基板500、上电极驱动模块、上电极层100沿检测面板10的厚度方向依次层叠。可选地,可以利用玻璃制成触控衬底基板500。
为提高杂音的消除率,可选地,检测面板10还包括吸音背衬400,吸音背衬400位于导电背衬200远离压电材料层300的一侧,且吸音背衬400覆盖导电背衬200的表面,制成吸引背衬400的材料能够吸收超声波。
本公开对所述吸音背衬400的材料不作具体限定,作为本公开的一种优选实施方式,吸音背衬400的材料包括掺杂有阻抗填料的环氧树脂。
需要说明的是,所述阻抗填料用于调节吸音背衬400的声衰减系数并提高吸音背衬400的声阻抗。本公开对所述阻抗填料不作具体限定,作为本公开的一种优选实施方式,所述阻抗填料包括钨、氧化钨、氧化铁、二氧化钛、二氧化硅、滑石粉中的至少一者。
本公开对吸音背衬400的厚度不作具体限定,作为本公开的一种优选实施方式,吸音背衬400的厚度为15-30μm。
本公开的杂音消除部220的横向尺寸沿远离压电材料层方向逐渐减小,形成了多个尖劈结构,使得杂音在杂音消除部220与吸音背衬400的交界面上发生多次反射、折射,大部分杂音均射入吸音背衬400或者在多次反射、折射中衰减,从而有效地吸收了杂音,避免了杂音反射回压电材料层300,影响检测面板10的超声波触控功能。
本公开对压电材料层300的材料不作具体限定,作为本公开的一种优选实施方式,压电材料层300的材料包括聚偏氟乙烯和聚偏二氟乙烯三氟乙烯中的至少一者。仅通过涂敷、固化两道简单工序即可获得压电材料层,因此,利用聚偏氟乙烯和聚偏二氟乙烯三氟乙烯制成压电材料层300可以有效降低压电材料层300的制作难度。
本公开对压电材料层300的厚度不作具体限定,作为本公开的一种优选实施方式,压电材料层300的厚度为5~15μm。
本公开的检测面板10不仅可以单独实现指纹识别功能,还能够与显示面板组成具有触控功能的显示装置。
作为本公开的第二个方面,提供一种利用上一实施例中所述的检测面板10进行生物特征检测的方法,所述生物特征检测方法包括多个检测周期,每个检测周期都包括两个阶段。图9是本公开实施例 的检测面板的检测方法的流程图。在S110,在检测驱动阶段,向导电背衬200提供第一电信号和向上电极层提供第二电信号,以使得压电材料层300产生超声波。在S120,在检测阶段,将导电背衬200浮置和停止向上电极层提供第二电信号,以使得压电材料层300在反射回的超声波的影响下改变导电背衬200与上电极层100之间的电场,并检测上电极层100中的电信号,并根据检测到的电信号确定生物特征,其中,所述生物特征包括指纹形貌和/或触控点位置。
在本公开中,利用检测面板10在每个检测周期的检测驱动阶段向手指方向发出初始超声波,并紧接着在检测阶段接收上电极层100上产生的电信号。从而实现了检测面板10对生物特征的检测。
作为本公开的第三个方面,提供一种显示装置,所述显示装置包括显示面板和检测面板。其中,如图6所示,所述检测面板为上文中所述的检测面板10,检测面板10设置在显示面板20的背光侧。
如图8所示,所述显示装置还包括检测驱动模块50和生物特征检测模块60。检测驱动模块50用于在检测驱动阶段向导电背衬200提供第一电信号以及向上电极层提供第二电信号,以使得压电材料层300产生超声波。生物特征检测模块60用于在检测阶段,将导电背衬200浮置以及停止向上电极层提供第二电信号后,检测上电极层100中的电信号,并根据检测到的电信号确定生物特征,其中,所述生物特征包括指纹形貌和/或触控点位置。
需要说明的是,此处所述的“背光侧”是指与显示面板的出光侧相反的一侧。
在所述显示装置中,显示面板20可以是有机发光二极管显示面板,也可以是液晶显示面板。本公开的检测面板10利用超声波原理实现屏幕指纹识别或屏幕触控,不会影响显示面板20的正常显示。
并且,由于本公开的检测面板10能够利用杂音消除部220消除杂音,只需在导电背衬200下方设置厚度较小的膜层、甚至无需在导电背衬200的下方设置膜层即可增加杂音传播的阻尼,因此可以有效减小显示装置整体的厚度,减轻显示装置的总重量,实现产品的轻薄化。
可选地,检测驱动模块50和生物特征检测模块60均位于所述显示装置的绑定区。
为提高所述初始超声波的传播效率,可选地,如图7所示,所述显示装置还包括设置在显示面板20和检测面板10之间的声阻抗匹配层30。
在本公开提供的显示装置中,显示面板20和检测面板10之间设置有声阻抗匹配层30,从而可以避免显示面板20和检测面板10相接触的膜层之间的声阻抗差异导致超声波在显示面板20和检测面板10的交界位置发生反射,从而提高所述初始超声波的传播效率。
为实现初始超声波的传播效率最大化,可选地,声阻抗匹配层30的材料的声阻抗为显示面板20中与声阻抗匹配层接触的膜层的声阻抗和检测面板10中与声阻抗匹配层接触的膜层的声阻抗的几何平均值。
本公开对声阻抗匹配层30的材料不作具体限定,作为本公开的一种优选实施方式,声阻抗匹配层30的材料包括添加有填料的环氧树脂,所述填料包括钨、氧化钨、氧化铁、二氧化钛、二氧化硅、滑石粉中的至少一者。
本公开对声阻抗匹配层30的厚度不作具体限定,作为本公开的一种优选实施方式,声阻抗匹配层30的厚度为检测面板10发出的超声波波长的四分之一。
为实现检测面板10的触控识别功能,可选地,所述显示装置还包括检测控制单元,用于根据检测面板10的触控数据线通过上电极接收到的电信号确定触摸位置和/或指纹形貌。
为提高显示装置的强度、保护显示装置中的发光元件,可选地,所述显示装置还包括上盖板40,上盖板40的材料可以是玻璃。
作为本公开的第四个方面,还提供一种检测面板10的制作方法。图10是本公开实施例的检测面板的制作方法的流程图,图11至图14为各步骤对应的检测面板的截面图。如图10所示,所述制作方法包括以下步骤S210至S230。
在S210,在触控衬底基板500上形成包括上电极层100的图形。
在S220,在包括上电极层的图形上形成压电材料层300。
在S230,在压电材料层上形成导电背衬200层。导电背衬200层包括多个杂音消除部220,在远离压电材料层300的方向上,杂音消除部220沿平行检测面板方向的的横向尺寸逐渐减小。导电背衬200还包括导电衬底主体210,其位于压电材料层300和多个杂音消除部220之间,多个杂音消除部220位于导电衬底主体210远离压电材料层300的一侧。导电衬底主体210可作为导电背衬200的平整段而与压电材料层300相接触,并且可作为下电极层。导电衬底主体210与多个杂音消除部220可一体成形。
采用上述制作方法制作得到的检测面板10包括杂音消除部220,能够使得杂音在杂音消除部220与其相邻膜层的界面上发生多次反射、折射而衰减,从而有效地吸收了杂音,避免了杂音影响检测面板10的超声波触控功能。
此外,由于本公开的检测面板10能够利用杂音消除部220消除杂音,不必将导电背衬200以及导电背衬200下方的膜层设置得足够厚来提高杂音传播的阻尼,因此可以有效减小检测面板10的厚度,减轻检测面板10的重量。
为提高杂音的消除率,可选地,所述制作方法还包括在形成导电背衬200层之后形成吸音背衬400。
可选地,吸音背衬400的材料包括掺杂有阻抗填料的环氧树脂,吸音背衬400通过热压固化的方法形成。
可选地,形成导电背衬200层的方法包括:压印工艺、刻蚀工艺和丝网印刷工艺中的任意一者。
可选地,制作检测面板10的方法还包括在在背板基底上方制作上电极层100的步骤之前形成上电极驱动模块,所述上电极驱动模块包括多条触控栅线(gate1,gate2,gate3,gate4……)、多条触控数据线(data1,data2,data3,data4……)、以及与多个上电极110一一对应的多个开关晶体管T。
所述触控栅线与所述触控数据线设置在不同层,多条触控栅线与多条触控数据线交错,将检测面板10划分为多个触控单元。每个 触控单元内均设置有一个开关晶体管T和一个上电极110,开关晶体管的第一极与相应的上电极110电连接。多个上电极排列为多行多列,同一行触控单元内的上电极110对应的开关晶体管T的栅极与同一条触控栅线电连接,同一列触控单元内的上电极对应的开关晶体管T的第二极与同一条数据线电连接。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (20)

  1. 一种检测面板,包括依次层叠设置的上电极层、压电材料层和导电背衬,所述压电材料层用于在所述检测面板接收到的超声波的控制下改变所述上电极层与所述导电背衬之间的电场,且所述压电材料层还用于在电场控制下产生超声波,
    其中,所述导电背衬包括多个杂音消除部,在远离所述压电材料层的方向上,所述杂音消除部沿平行所述检测面板方向的尺寸逐渐减小。
  2. 根据权利要求1所述的检测面板,其中,所述多个杂音消除部在靠近所述压电材料层的一侧形成为一体。
  3. 根据权利要求1或2所述的检测面板,其中,所述导电背衬还包括导电衬底主体,其位于所述压电材料层和所述多个杂音消除部之间,所述多个杂音消除部位于所述导电衬底主体远离所述压电材料层的一侧。
  4. 根据权利要求1-3中任一项所述的检测面板,其中,所述杂音消除部沿垂直于所述检测面板方向的截面为三角形。
  5. 根据权利要求1-4中任一项所述的检测面板,还包括吸音背衬,所述吸音背衬位于所述多个杂音消除部远离所述压电材料层的一侧,且所述吸音背衬填充并覆盖所述多个杂音消除部。
  6. 根据权利要求3所述的检测面板,其中,所述导电衬底主体和所述多个杂音消除部的声阻抗相等,并且大于所述压电材料层的声阻抗。
  7. 根据权利要求6所述的检测面板,其中,所述导电衬底主体 和所述多个杂音消除部的材料包括导电金属氧化物和金属。
  8. 根据权利要求7所述的检测面板,其中,所述导电金属氧化物包括氧化铟锡和氧化铟锌中的至少一种,
    所述金属包括银、铜、铁、镍中的至少一种。
  9. 根据权利要求8所述的检测面板,其中,所述导电背衬的厚度在15μm-30μm范围内,所述导电衬底主体的厚度在2μm-5μm范围内。
  10. 根据权利要求5所述的检测面板,其中,所述吸音背衬的材料包括环氧树脂,其中,所述环氧树脂掺杂有钨、氧化钨、氧化铁、二氧化钛、二氧化硅、滑石粉中的至少一种以作为阻抗填料,所述吸音背衬的厚度在15μm-30μm范围内。
  11. 根据权利要求1所述的检测面板,其中,所述压电材料层的材料包括聚偏氟乙烯和聚偏二氟乙烯三氟乙烯中的至少一种,其厚度在5μm-15μm范围内。
  12. 根据权利要求1-11中任一项所述的检测面板,其中,所述上电极层包括呈多行多列排列的多个上电极,
    所述检测面板还包括上电极驱动模块,所述上电极驱动模块用于逐行地接收多个所述上电极的电信号,并逐行地将来自多个所述上电极的电信号输出。
  13. 根据权利要求12所述的检测面板,其中,所述上电极驱动模块包括多条触控栅线、多条触控数据线、以及与所述多个上电极一一对应的多个开关晶体管,
    所述多条触控栅线与所述多条触控数据线设置在不同层,所述多条触控栅线与所述多条触控数据线交错,将所述检测面板划分为排 列为多行多列的多个触控单元,并且所述多个触控单元中的每一个均具有一个上电极;
    每个所述触控单元内均设置有所述开关晶体管和一个所述上电极,所述开关晶体管的第一极与相应的上电极电连接;
    同一行触控单元内的上电极对应的开关晶体管的栅极与同一条触控栅线电连接,同一列触控单元内的上电极对应的开关晶体管的第二极与同一条数据线电连接。
  14. 根据权利要求13所述的检测面板,其中,所述检测面板还包括触控衬底基板,所述上电极驱动模块形成在所述触控衬底基板上,且所述触控衬底基板、所述上电极驱动模块、所述上电极层沿所述检测面板的厚度方向依次层叠设置。
  15. 一种利用权利要求1至14中任意一项所述的检测面板进行生物特征检测的方法,其中,所述生物特征检测的方法包括多个检测周期,在每个检测周期都执行以下操作:
    在检测驱动阶段:向所述导电背衬提供第一电信号和向所述上电极层提供第二电信号,以使得所述压电材料层产生超声波;
    在检测阶段:将所述导电背衬浮置和停止向所述上电极层提供第二电信号,以使得所述压电材料层在反射回的超声波的影响下改变所述导电背衬与所述上电极层之间的电场;检测所述上电极层中的电信号;根据检测到的电信号确定生物特征,所述生物特征包括指纹形貌和/或触控点位置。
  16. 一种显示装置,包括显示面板和检测面板,其中,所述检测面板为权利要求1至14中任意一项所述的检测面板,所述检测面板设置在所述显示面板的背光侧,所述显示装置还包括检测驱动模块和生物特征检测模块,
    所述检测驱动模块用于在检测驱动阶段向所述导电背衬提供第一电信号以及向所述上电极层提供第二电信号,以使得所述压电材料 层产生超声波;
    所述生物特征检测模块用于在检测阶段,将所述导电背衬浮置以及停止向所述上电极层提供第二电信号后,检测所述上电极层中的电信号,并根据检测到的电信号确定生物特征,所述生物特征包括指纹形貌和/或触控点位置。
  17. 根据权利要求16所述的显示装置,其中,所述显示装置还包括设置在所述显示面板和所述检测面板之间的声阻抗匹配层。
  18. 根据权利要求17所述的显示装置,其中,所述声阻抗匹配层的材料的声阻抗为所述显示面板中与所述声阻抗匹配层接触的膜层的声阻抗和所述检测面板中与所述声阻抗匹配层接触的膜层的声阻抗的几何平均值。
  19. 根据权利要求17或18所述的显示装置,其中,所述声阻抗匹配层的材料包括环氧树脂,其中,所述环氧树脂掺杂有钨、氧化钨、氧化铁、二氧化钛、二氧化硅、滑石粉中的至少一种以作为阻抗填料,所述声阻抗匹配层的厚度为通过其的超声波波长的四分之一。
  20. 一种检测面板的制作方法,其中,所述制作方法包括:
    在触控衬底基板上形成包括上电极层的图形;
    在包括所述上电极层的图形上形成压电材料层;
    在所述压电材料层上形成导电背衬,所述导电背衬包括多个杂音消除部,在远离所述压电材料层的方向上,所述杂音消除部沿平行所述检测面板方向的尺寸逐渐减小。
PCT/CN2020/095367 2019-06-17 2020-06-10 检测面板、显示装置、检测面板驱动方法和制作方法 WO2020253590A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/254,971 US11402949B2 (en) 2019-06-17 2020-06-10 Detection panel, display apparatus, driving method and manufacturing method for the detection panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910521562.3 2019-06-17
CN201910521562.3A CN110201872B (zh) 2019-06-17 2019-06-17 一种检测面板、显示装置、检测面板驱动方法和制作方法

Publications (1)

Publication Number Publication Date
WO2020253590A1 true WO2020253590A1 (zh) 2020-12-24

Family

ID=67792926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095367 WO2020253590A1 (zh) 2019-06-17 2020-06-10 检测面板、显示装置、检测面板驱动方法和制作方法

Country Status (3)

Country Link
US (1) US11402949B2 (zh)
CN (1) CN110201872B (zh)
WO (1) WO2020253590A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4089512A1 (en) * 2021-05-13 2022-11-16 Apple Inc. Geometric structures for acoustic impedance matching and improved touch sensing and fingerprint imaging
US11715321B2 (en) 2021-05-13 2023-08-01 Apple Inc. Geometric structures for acoustic impedance matching and improved touch sensing and fingerprint imaging

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110201872B (zh) * 2019-06-17 2021-08-27 京东方科技集团股份有限公司 一种检测面板、显示装置、检测面板驱动方法和制作方法
CN111782090B (zh) * 2020-06-30 2024-02-02 京东方科技集团股份有限公司 显示模组、超声波触控检测方法、超声波指纹识别方法
CN112633166B (zh) * 2020-12-23 2022-12-09 厦门天马微电子有限公司 一种超声波指纹识别模组、显示模组和电子设备
CN112957069A (zh) * 2021-01-29 2021-06-15 中科绿谷(深圳)医疗科技有限公司 超声换能器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04218765A (ja) * 1990-03-26 1992-08-10 Toshiba Corp 超音波プローブ
US5569968A (en) * 1993-06-04 1996-10-29 The Regents Of The University Of California Microfabricated acoustic source and receiver
CN102265333A (zh) * 2008-12-23 2011-11-30 皇家飞利浦电子股份有限公司 具有乱真声学模式抑制的集成电路及其制造方法
CN106250834A (zh) * 2016-07-25 2016-12-21 京东方科技集团股份有限公司 指纹识别显示面板、其制作方法、其驱动方法及显示装置
CN106824734A (zh) * 2017-02-28 2017-06-13 无锡市翱宇特新科技发展有限公司 一种具有单向传播功能的超声波换能器
CN207430654U (zh) * 2017-11-15 2018-06-01 成都楷模电子科技有限公司 快速消除内腔余震的超声波传感器
US20180290176A1 (en) * 2017-04-10 2018-10-11 Konica Minolta Inc. Ultrasonic probe
CN109829419A (zh) * 2019-01-28 2019-05-31 京东方科技集团股份有限公司 指纹识别模组及其驱动方法和制作方法、显示装置
CN110201872A (zh) * 2019-06-17 2019-09-06 京东方科技集团股份有限公司 一种检测面板、显示装置、检测面板驱动方法和制作方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6564899B1 (en) * 1998-09-24 2003-05-20 Dresser Industries, Inc. Method and apparatus for absorbing acoustic energy
US6467138B1 (en) * 2000-05-24 2002-10-22 Vermon Integrated connector backings for matrix array transducers, matrix array transducers employing such backings and methods of making the same
US20050168941A1 (en) * 2003-10-22 2005-08-04 Sokol John L. System and apparatus for heat removal
US9105836B2 (en) * 2011-12-13 2015-08-11 Piezotech Llc Enhanced bandwidth transducer for well integrity measurement
GB2498213B (en) * 2012-01-09 2018-11-21 Bae Systems Plc Transducer arrangement
US9323393B2 (en) * 2013-06-03 2016-04-26 Qualcomm Incorporated Display with peripherally configured ultrasonic biometric sensor
KR101613413B1 (ko) * 2013-12-09 2016-04-19 삼성메디슨 주식회사 초음파 프로브 및 그 제조방법
CN104552718B (zh) * 2014-11-26 2017-07-25 深圳市理邦精密仪器股份有限公司 一种高衰减背衬材料的制备方法
US10235552B2 (en) * 2016-10-12 2019-03-19 Qualcomm Incorporated Hybrid capacitive and ultrasonic sensing
CN107248518B (zh) * 2017-05-26 2020-04-17 京东方科技集团股份有限公司 光电传感器及其制作方法、显示装置
CN108924277A (zh) * 2018-05-31 2018-11-30 业成科技(成都)有限公司 面板结构
CN109244108B (zh) * 2018-08-29 2020-11-03 京东方科技集团股份有限公司 一种oled显示基板及其制作方法、oled显示装置
CN109633614B (zh) * 2018-11-29 2023-08-01 哈尔滨工程大学 一种低后辐射高频换能器线阵

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04218765A (ja) * 1990-03-26 1992-08-10 Toshiba Corp 超音波プローブ
US5569968A (en) * 1993-06-04 1996-10-29 The Regents Of The University Of California Microfabricated acoustic source and receiver
CN102265333A (zh) * 2008-12-23 2011-11-30 皇家飞利浦电子股份有限公司 具有乱真声学模式抑制的集成电路及其制造方法
CN106250834A (zh) * 2016-07-25 2016-12-21 京东方科技集团股份有限公司 指纹识别显示面板、其制作方法、其驱动方法及显示装置
CN106824734A (zh) * 2017-02-28 2017-06-13 无锡市翱宇特新科技发展有限公司 一种具有单向传播功能的超声波换能器
US20180290176A1 (en) * 2017-04-10 2018-10-11 Konica Minolta Inc. Ultrasonic probe
CN207430654U (zh) * 2017-11-15 2018-06-01 成都楷模电子科技有限公司 快速消除内腔余震的超声波传感器
CN109829419A (zh) * 2019-01-28 2019-05-31 京东方科技集团股份有限公司 指纹识别模组及其驱动方法和制作方法、显示装置
CN110201872A (zh) * 2019-06-17 2019-09-06 京东方科技集团股份有限公司 一种检测面板、显示装置、检测面板驱动方法和制作方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4089512A1 (en) * 2021-05-13 2022-11-16 Apple Inc. Geometric structures for acoustic impedance matching and improved touch sensing and fingerprint imaging
US11715321B2 (en) 2021-05-13 2023-08-01 Apple Inc. Geometric structures for acoustic impedance matching and improved touch sensing and fingerprint imaging

Also Published As

Publication number Publication date
CN110201872A (zh) 2019-09-06
US20210149510A1 (en) 2021-05-20
CN110201872B (zh) 2021-08-27
US11402949B2 (en) 2022-08-02

Similar Documents

Publication Publication Date Title
WO2020253590A1 (zh) 检测面板、显示装置、检测面板驱动方法和制作方法
CN111758099B (zh) 指纹识别模组及其驱动方法、制作方法、显示装置
KR102433315B1 (ko) 초음파 트랜스듀서가 임베디드된 유기 발광 다이오드 패널 및 이를 포함하는 표시 장치
US9465972B2 (en) Fingerprint sensor and electronic device including the same
CN109492623B (zh) 超声波指纹识别模组及显示面板
CN205281517U (zh) 指纹传感器
CN112733790B (zh) 指纹识别模组、显示面板及其驱动方法、显示装置
TWI531936B (zh) 觸控顯示裝置
US20130181940A1 (en) Capacitive Touch Display Device
CN109427975B (zh) 柔性基板及其制备方法、检测弯曲的方法以及柔性显示装置
US10802651B2 (en) Ultrasonic touch detection through display
EP3729331A1 (en) Display arrangement comprising ultrasonic biometric sensing system and method for manufacturing the display arrangement
KR20160092373A (ko) 지문 센서
CN110210435A (zh) 一种显示面板、其控制方法及显示装置
US11231816B2 (en) Ultrasonic water-agnostic touch detection sensor
TWI621982B (zh) 指紋識別裝置、其製造方法、顯示裝置
KR20160016330A (ko) 지문 센서
US11475694B2 (en) Touch recognition device, display device and manufacturing method thereof
US20210260620A1 (en) Ultrasonic sensor, driving method thereof and manufacturing method thereof
WO2022061897A1 (zh) 柔性传感器
TW200530922A (en) Acoustic wave contact detecting apparatus
CN114120878A (zh) 一种显示面板、其驱动方法及显示装置
WO2023070733A1 (zh) 自容式触控面板
CN117943267A (zh) 超声换能器、指纹识别模组及电子设备
CN115933897A (zh) 触控模组及触控显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20827348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20827348

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20827348

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27.07.2022)