WO2020253539A1 - 虚拟网络群组的组播组的组播方法、装置、设备及系统 - Google Patents

虚拟网络群组的组播组的组播方法、装置、设备及系统 Download PDF

Info

Publication number
WO2020253539A1
WO2020253539A1 PCT/CN2020/094236 CN2020094236W WO2020253539A1 WO 2020253539 A1 WO2020253539 A1 WO 2020253539A1 CN 2020094236 W CN2020094236 W CN 2020094236W WO 2020253539 A1 WO2020253539 A1 WO 2020253539A1
Authority
WO
WIPO (PCT)
Prior art keywords
multicast
group
reference point
upf
address
Prior art date
Application number
PCT/CN2020/094236
Other languages
English (en)
French (fr)
Inventor
王涛
Original Assignee
腾讯科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 腾讯科技(深圳)有限公司 filed Critical 腾讯科技(深圳)有限公司
Priority to EP20825817.8A priority Critical patent/EP3985924A4/en
Priority to JP2021550282A priority patent/JP7394863B2/ja
Priority to KR1020217027403A priority patent/KR20210118170A/ko
Publication of WO2020253539A1 publication Critical patent/WO2020253539A1/zh
Priority to US17/459,623 priority patent/US20210392469A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/16Arrangements for providing special services to substations
    • H04L12/18Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
    • H04L12/185Arrangements for providing special services to substations for broadcast or conference, e.g. multicast with management of multicast group membership
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/16Arrangements for providing special services to substations
    • H04L12/18Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
    • H04L12/189Arrangements for providing special services to substations for broadcast or conference, e.g. multicast in combination with wireless systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4633Interconnection of networks using encapsulation techniques, e.g. tunneling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4641Virtual LANs, VLANs, e.g. virtual private networks [VPN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/14Session management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/14Session management
    • H04L67/146Markers for unambiguous identification of a particular session, e.g. session cookie or URL-encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • H04W4/08User group management

Definitions

  • This application relates to the field of communications, and in particular to a multicast method, device, equipment and system for a multicast group of a virtual network group.
  • Ethernet (Ethernet) communication is introduced in the 5G system.
  • 5G Virtual Network Group 5G Virtual Network Group, 5G VN Group
  • 5G VN Group 5G Virtual Network Group
  • NR New Radio
  • the embodiments of the present application provide a multicast method, device, equipment and system for a multicast group of a virtual network group.
  • the target broadcast internal interface of the at least two broadcast internal interfaces is used.
  • a multicast method for a multicast group of a virtual network group is applied to a user plane function (User Plane Function, UPF), and the method includes:
  • the multicast group is a regular multicast group in the virtual network group, or the multicast group is a group identified by a virtual local area network identification (Virtual Local Area Network Identify, VID), and the multicast The group member is a VID member, and the multicast data packet is a data packet sent using the broadcast address of the VID.
  • VID Virtual Local Area Network Identify
  • a multicast method for a multicast group of a virtual network group is applied to a session management function (Session Management Function, SMF), and the method includes:
  • the multicast group is a regular multicast group in the virtual network group, or, The multicast group is a group identified by VID;
  • a multicast device for a multicast group of a virtual network group including:
  • a receiving module configured to receive a multicast data packet sent by a member of the virtual network group, where the destination address of the multicast data packet is a multicast address;
  • a sending module configured to send the multicast data packet to a target multicast internal interface among at least two multicast internal interfaces, and send the multicast data packet to the multicast through the target multicast internal interface All multicast group members or all local multicast group members of the group;
  • the multicast group is a regular multicast group in the virtual network group, or the multicast group is a group identified by a VID, the multicast group members are VID members, and the multicast data
  • the packet is a data packet sent using the broadcast address of the VID.
  • a multicast device for a multicast group of a virtual network group including:
  • a generating module for generating at least two sets of multicast rules corresponding to at least two multicast internal interfaces
  • the determining module is configured to determine, among the at least two groups of multicast rules, the required multicast rules on each UPF corresponding to the multicast group; the multicast group is a regular group in the virtual network group A multicast group, or the multicast group is a group identified by a VID;
  • the configuration module is used to configure the required multicast rules for each UPF.
  • a computer device with a user plane function running on the computer device comprising: a processor and a memory; the memory is stored with a computer program, the computer program It is loaded and executed by the processor to implement the multicast method of the multicast group of the virtual network group as described in the above aspect.
  • a computer device having a session management function running on the computer device, the computer device comprising: a processor and a memory; the memory is stored with a computer program, the computer program It is loaded and executed by the processor to implement the multicast method of the multicast group of the virtual network group as described in the above aspect.
  • a computer-readable storage medium stores at least one instruction, at least one program, code set or instruction set, the at least one instruction, the at least one program
  • the code set or instruction set is loaded and executed by the processor to implement the multicast method of the multicast group of the virtual network group as described in the above aspect.
  • UPF By providing at least two multicast internal interfaces, when UPF receives a multicast data packet sent by a member of the virtual network group, it sends the multicast data packet to the target multicast internal of the at least two multicast internal interfaces Interface, through the target multicast internal interface to send multicast data packets to all multicast group members or all local multicast group members of the multicast group, so that one-to-many network communication is realized in the virtual network group, thus Realize the multicast function in the virtual network group.
  • Fig. 1 is a block diagram of a 5G communication system provided by an exemplary embodiment of the present application
  • Fig. 2 is a schematic diagram of N3/N9-based multicast communication provided by an exemplary embodiment of the present application
  • Fig. 3 is a schematic diagram of N6-based multicast communication provided by an exemplary embodiment of the present application.
  • Fig. 4 is a schematic diagram of N19-based multicast communication provided by an exemplary embodiment of the present application.
  • FIG. 5 is a flowchart of a method for multicasting a virtual network group provided by an exemplary embodiment of the present application
  • Fig. 6 is a block diagram of two multicast internal interfaces provided by an exemplary embodiment of the present application.
  • FIG. 7 is a flowchart of a method for multicasting a virtual network group provided by an exemplary embodiment of the present application.
  • Fig. 8 is a schematic diagram of a virtual network group provided by an exemplary embodiment of the present application.
  • FIG. 9 is a schematic diagram of the rule configuration of two multicast internal interfaces provided by an exemplary embodiment of the present application.
  • FIG. 10 is a flowchart of a method for multicasting a virtual network group provided by an exemplary embodiment of the present application.
  • FIG. 11 is a schematic diagram of the rule configuration of three multicast internal interfaces provided by an exemplary embodiment of the present application.
  • FIG. 12 is a flowchart of a method for multicasting a virtual network group provided by an exemplary embodiment of the present application.
  • FIG. 13 is a flowchart of a method for multicasting a virtual network group provided by an exemplary embodiment of the present application
  • FIG. 14 is a flowchart of a method for multicasting a virtual network group provided by an exemplary embodiment of the present application.
  • 15 is a flowchart of a method for multicasting virtual network groups provided by an exemplary embodiment of the present application.
  • FIG. 16 is a flowchart of a multicast method for virtual network groups provided by an exemplary embodiment of the present application.
  • FIG. 17 is a flowchart of a method for multicasting a virtual network group provided by an exemplary embodiment of the present application.
  • FIG. 18 is a flowchart of a method for multicasting a virtual network group provided by an exemplary embodiment of the present application.
  • Figure 19 shows a flow chart of PDU session establishment requested by the UE (for non-roaming and local grooming roaming scenarios);
  • Figure 20 shows a flow chart of establishing a PDU session requested by the UE (used in a home route roaming scenario);
  • Figure 21 shows a flowchart of PDU session modification requested by the UE or the network (for non-roaming and local grooming roaming scenarios);
  • Figure 22 shows a flowchart of PDU session modification requested by the UE or the network (used in a home route roaming scenario);
  • FIG. 23 is a schematic structural diagram of a multicast device for a virtual network group provided by an exemplary embodiment of the present application.
  • FIG. 24 is a schematic structural diagram of a multicast device for a virtual network group provided by an exemplary embodiment of the present application.
  • Fig. 25 is a block diagram of a computer device provided by an exemplary embodiment of the present application.
  • Fig. 1 shows a block diagram of a 5G communication system provided by an exemplary embodiment of the present disclosure.
  • the communication system may be a 5G system based on NR, as well as a 5G system based on the Evolved UMTS Terrestrial Radio Access Network (eUTRAN) and a subsequent evolution system of the 5G system.
  • the communication system is defined to support data connections and services so that technologies such as network function virtualization (NFV) and software-defined networking (SDN) can be used in network deployment.
  • NFV network function virtualization
  • SDN software-defined networking
  • the communication system mainly consists of network functions (Network Function, NF), and uses distributed functions to deploy according to actual needs. The addition and withdrawal of new network functions does not affect the overall network functions.
  • Network Function Network Function
  • the communication system includes: User Equipment (3GPP’s naming of mobile terminals) (User Equipment, UE), (Wireless) Access Network ((R)AN), User Plane Function (UPF), and Data Network (Data Network, DN) and control plane functions.
  • 3GPP User Equipment
  • UE User Equipment
  • R Wireless
  • UPF User Plane Function
  • DN Data Network
  • control plane function includes: access and mobility management function (AMF), session management function (SMF), control strategy function (PCF) and unified data management (UDM).
  • AMF access and mobility management function
  • SMF session management function
  • PCF control strategy function
  • UDM unified data management
  • the UE communicates with the RAN through the air interface.
  • RAN and UPF communicate through the first reference point N3.
  • the two UPFs communicate through the second reference point N9.
  • PSA, UPF and DN communicate through the third reference point N6.
  • PDU Session Anchor User Plane Functions PSA UPF
  • PSA UPF PDU Session Anchor User Plane Functions
  • the two PDU session anchor user plane functions communicate through the fourth reference point N19 (not shown in FIG. 1).
  • the UE and the AMF communicate through the fifth reference point N1.
  • RAN and AMF communicate through the seventh reference point N2.
  • the communication between UPF and SMF is through the eighth reference point N4.
  • N1 Reference point between UE and AMF
  • N2 (R) the reference point between AN and AMF;
  • N3 (R) the reference point between AN and UPF;
  • N4 Reference point between SMF and UPF
  • N6 Reference point between PSA UPF and data network
  • N14 Reference point between two AMFs
  • N19 A reference point between two PSAs and UPFs of 5G LAN-type services (not shown in the figure).
  • N amf service-based interface displayed by AMF
  • N smf Service-based interface displayed by SMF
  • N pcf The service-based interface displayed by PCF
  • N udm The service-based interface displayed by UDM.
  • the communication of the virtual network group includes one-to-one communication and one-to-many communication.
  • One-to-one communication supports forwarding unicast communication between two UEs in a virtual network group or between a UE and a device on the DN.
  • One-to-many communication supports forwarding multicast data from one UE (or device on DN) to multiple UEs and devices on DN in a virtual network group, or transfer multicast data from one UE (or device on DN) Device) forwarded to all UEs and devices on the DN in a multicast group.
  • Multicast communication refers to the multicast data sent by a member (UE or device) in a virtual network group, which must be delivered to each multicast group member of the corresponding multicast group.
  • the embodiment of the present application supports three communication modes of multicast communication:
  • the local switching mode (based on the first reference point N3 or the second reference point N9);
  • the multicast group members of a multicast group include two UEs connected to the same PSA UPF
  • the multicast data between the two UEs is directly exchanged inside the PSA UPF without sending the multicast data to the third party. Outside the reference point N6, the data is returned by the external router or switch.
  • UE1 communicates with RAN1, RAN1 communicates with intermediate UPF1; UE2 communicates with RAN2, and RAN2 communicates with intermediate UPF2. Both UE1 and UE2 are connected to the same PSA UPF.
  • UE1 sends a multicast data packet the multicast data packet is exchanged directly within the PSA UPF, so that the multicast data packet is sent to UE2 without sending the multicast data packet Go beyond the third reference point N6.
  • the multicast group members of a multicast group include a UE and a device on the DN
  • the multicast data between the UE and the device needs to be exchanged through N6.
  • UE1 communicates with RAN1, RAN1 communicates with UPF1, and PSA and UPF1 communicate with DN.
  • UE1 sends a multicast data packet, it needs to pass the multicast data packet to device 3 on the DN through N6.
  • the multicast group members of a multicast group include two UEs connected to different PSAs UPF
  • the multicast data between the two UEs needs to be exchanged through the fourth reference point N19, and N19 is established between the two PSAs UPF tunnel.
  • UE1 communicates with RAN1, RAN1 communicates with intermediate UPF1; UE4 communicates with RAN4, and RAN4 communicates with intermediate UPF4.
  • UE1 and UE2 are respectively connected to different PSAs UPF: PSA UPF1 and PSA UPF2, the N19 tunnel is established between the two PSAs UPF, when UE1 sends multicast packets, it needs to pass through the N19 tunnel between the two PSAs UPF for grouping The exchange of broadcast data packets to send multicast data packets to UE4.
  • Fig. 5 shows a flowchart of a multicast method for a multicast group of a virtual network group provided by an exemplary embodiment of the present application. This method can be executed by the first UPF. The method includes:
  • Step 501 The first UPF receives a multicast data packet sent by a member of the virtual network group, and the destination address of the multicast data packet is the multicast address;
  • the multicast data packet is determined by the destination IP address or destination MAC address.
  • the destination IP/MAC address in the multicast data packet is a multicast address, there can be multiple multicast addresses in the same virtual network group (for example, 3 or 5), and multiple multicast addresses can be Form a multicast address list.
  • the destination address in a multicast data packet is only one multicast address in the multicast address list.
  • Step 502 The first UPF sends the multicast data packet to the target multicast internal interface among the at least two multicast internal interfaces;
  • At least two multicast internal interfaces are provided in the PSA UPF. As shown in Figure 6, at least two multicast internal interfaces include:
  • the first multicast internal interface used to receive multicast data packets sent by local multicast group members through N3/N9, and send all multicasts to the multicast group through at least one reference point among N3/N9, N6, and N19 Group members (optionally including sending members themselves).
  • the first multicast internal interface can be called 5G VN BC internal R, or other names.
  • the second multicast internal interface used to send multicast data packets sent by non-local multicast group members through N6/N19 to all local multicast group members of the multicast group in the PSA UPF through N3/N9.
  • the second multicast internal interface may be called 5G VN BC internal C, or other names.
  • the local multicast group members include UEs in the multicast group that use the current UPF as the PDU session anchor.
  • Step 503 The first UPF sends the multicast data packet to all multicast group members or all local multicast group members of the multicast group through the target multicast internal interface.
  • the method provided in this embodiment provides at least two multicast internal interfaces, and when the UPF receives a multicast data packet sent by a member of the virtual network group, it calculates according to the multicast address
  • the multicast group members who need to receive the multicast data packet send the multicast data packet to the target multicast internal interface among at least two multicast internal interfaces, and send the multicast data packet to the group through the target multicast internal interface
  • All members of the broadcast group enable one-to-many network communication in the virtual network group, thereby realizing the multicast function in the virtual network group.
  • VID Virtual Local Area Network
  • each VID is represented by a VID
  • a VID broadcast composed of a "VID and broadcast address” is regarded as a multicast group communication.
  • the broadcast address of IPv4 is 255.255.255.255 or 192.168.1.255
  • the broadcast MAC address is FF:FF:FF:FF:FF.
  • At least two multicast internal interfaces of UPF have at least the following different implementations:
  • the first implementation two multicast internal interfaces
  • the first multicast internal interface and the second multicast internal interface are The first multicast internal interface and the second multicast internal interface
  • the first multicast internal interface, the second multicast internal interface, and the third multicast internal interface are The first multicast internal interface, the second multicast internal interface, and the third multicast internal interface
  • the third implementation method multiple multicast internal interfaces
  • each second multicast internal interface corresponds to a multicast address, and n is the number of multicast addresses;
  • each second multicast internal interface corresponds to a multicast address
  • each third multicast internal The interface corresponds to a multicast address, and n is the number of multicast addresses;
  • n first multicast internal interfaces n second multicast internal interfaces, each first multicast internal interface corresponds to a multicast address, and each second multicast internal interface corresponds to a multicast address, n is The number of multicast addresses;
  • each first multicast internal interface corresponds to a multicast address
  • each second multicast internal interface The interface corresponds to a multicast address
  • each third multicast internal interface corresponds to a multicast address
  • n is the number of multicast addresses.
  • the above-mentioned multicast internal interface is described from the perspective of a single PSA UPF, but the entire multicast data packet delivery process may involve multiple PSAs UPF, and the processing process of each PSA UPF is the same or similar.
  • Each PSA UPF is delivered to realize multicast communication in the entire virtual network group. This article does not describe each PSA UPF one by one.
  • the first implementation method for conventional multicast groups is the first implementation method for conventional multicast groups
  • FIG. 7 there is shown a flowchart of a multicast method for a multicast group of a virtual network group provided by an exemplary embodiment of the present application.
  • the method may be executed by the first UPF, and the method includes:
  • Step 701 The first UPF receives a multicast data packet sent by a member of the virtual network group, and the destination address of the multicast data packet is the multicast address;
  • member A can be any member in the virtual network group.
  • Member A may be a member of the multicast group, or may not be a member of the multicast group.
  • the same member can be connected to one multicast group or multiple multicast groups.
  • a multicast group member of member A connected to the multicast group is taken as an example for illustration.
  • the destination address of the multicast data packet is one of the multiple multicast addresses.
  • the first UPF When multicast group member A is a local multicast group member of the first UPF, the first UPF receives multicast data packets of member A through N3 or N9; when multicast group member A is a non-local multicast group member of the first UPF , The first UPF receives the multicast data packet of member A through N6 or N19.
  • Step 702 When the multicast data packet is the multicast data from the first reference point or the second reference point, the first UPF sends the multicast data packet to the first multicast internal interface;
  • the first UPF When the first UPF receives the multicast data packet sent by the local multicast group member through N3 or N9, it sends the multicast data packet to the first multicast internal interface.
  • Step 703 The first UPF sends the multicast data packet from the first reference point or the second reference point or the third reference point or the fourth reference point corresponding to each multicast group member in the multicast group through the first multicast internal interface. Point, sent to all members of the multicast group;
  • the first multicast internal interface When there is a multicast group member B that is connected to the same PSA UPF as multicast group member A, the first multicast internal interface The multicast data packet is sent to the multicast group member B through N3 or N9 corresponding to the multicast group member B; when the multicast group member C is a device on the DN, the first multicast internal interface passes the multicast data packet through The N6 corresponding to the multicast group member C is sent to the multicast group member C; when there is a multicast group member D that is connected to a different PSA UPF from the multicast group member A, the first multicast internal interface will multicast data The packet is sent to the multicast group member D through the N19 corresponding to the multicast group member D, as shown in Figure 8.
  • all multicast group members in this step may include the members who send the multicast data packet, or may not include the members who send the multicast data packet.
  • Step 704 When the multicast data packet is the multicast data from the third reference point or the fourth reference point, the first UPF sends the multicast data packet to the second multicast internal interface;
  • the first UPF When the first UPF receives a multicast data packet sent by a non-local multicast group member through N6 or N19, it sends the multicast data packet to the second multicast internal interface.
  • Step 705 The first UPF sends the multicast data packet from the first reference point or the second reference point corresponding to each local multicast group member of the first UPF to all of the first UPF through the second multicast internal interface. Member of the local multicast group.
  • PSA UPF1 receives the multicast packet from N6, puts it on its second multicast internal interface, and passes the second The multicast internal interface sends the multicast data packet to the multicast group member A through the N9 corresponding to the multicast group member A, and sends the multicast data packet to the multicast group member B through the N9 corresponding to the multicast group member B.
  • PSA UPF2 will also receive the multicast data packet from N6, put it into its second multicast internal interface, and then send the multicast data packet to N3 corresponding to member D through the second multicast internal interface Member D. In this way, the multicast data packet sent by the multicast group member C is sent to all the multicast group members.
  • PSA UPF1 receives the multicast data packet from N9, and puts the multicast data packet on its first multicast internal interface , The multicast data packet is sent from the N6 corresponding to the multicast group member C to the multicast group member C through the first multicast internal interface, and the multicast data packet is sent from the multicast group member B corresponding to the multicast group member B through the first multicast internal interface N9 sends to multicast group member B (PSA UPF1 can also send this multicast data packet from N9 to PSA UPF2 according to the network configuration), PSA UPF2 receives the multicast data packet from N19, and puts it into its second group Broadcast the internal interface, and then send the multicast data packet to the local multicast group member D through N3 through the second multicast internal interface. In this way, the multicast data packet sent by multicast group member A is sent to all multicast group members.
  • the multicast data packet of the local multicast group member is first It is sent to the first multicast internal interface, and then sent to all the multicast group members of the multicast group through the first multicast internal interface (on the path other than the current UPF, it may be necessary to continue to pass through the second UPF of other UPFs). Only the multicast internal interface or the third multicast internal interface can be sent to all the members of the multicast group in the multicast group), and the multicast communication in the multicast group can be realized.
  • the multicast data packet from a non-local multicast group member is sent to the first
  • the second multicast internal interface is sent to all local multicast group members connected to UPF through the second multicast internal interface, which can not only realize multicast communication in the multicast group, but also avoid unnecessary traffic forwarding and save the network Transmission resources.
  • the implementation process of multicast traffic forwarding in the multicast group is as follows: For each UPF in the multicast group, at least two multicast internal interfaces in the UPF are used. The multicast data packet is forwarded between the multicast internal interfaces of each UPF through two-step detection.
  • the Packet Detection Rule (PDR) installed in UPF detects multicast packets received from members of any multicast group (via N3 or N9 or N6 or N19).
  • PDR Packet Detection Rule
  • FAR Forwarding Action Rule
  • the PDR rule installed in the multicast internal interface of UPF detects the multicast data packet.
  • the corresponding FAR rule in the multicast internal interface is applied, passing N3 or N6 or N9 or N19 forwards the multicast data packet to all multicast group members or all local multicast group members.
  • N4 rules that is, PDR rules and FAR rules
  • exemplary configurations of PDR rules and FAR rules are as follows:
  • the first PDR rule and the first FAR rule are the first PDR rule and the first FAR rule
  • SMF provides the first PDR rule and the first FAR rule for the N4 session of each multicast group member of the multicast group (that is, the N4 session corresponding to the PDU session of each member), so that the UPF can process the reception from the UE Multicast packets.
  • a first PDR rule and a first FAR rule corresponding to each local multicast group member are set in the UPF.
  • UPF detects through the first PDR rule that the multicast data packet is multicast data from the first reference point N3 or the second reference point N9, it sends the multicast data packet to the first multicast internal interface through the first FAR rule, As shown in Figure 9.
  • the first PDR rule includes: the source interface is set as the access side, the destination address is set as the first multicast address list to which the members of the multicast group belong, and the core network tunnel information is set as the first reference point or the first reference point of the PDU session.
  • the tunnel header of the second reference point (including the uplink IP address and uplink GTP-U TEID information corresponding to the N3 or N9 interface), GTP-U TEID is the abbreviation of GPRS Tunnel Protocol Endpoint Identifier (GPRS Tunnel Protocol Endpoint Identifier);
  • the first FAR rule includes: setting the target interface as the first multicast internal interface.
  • the SMF configures the second PDR rule and the second FAR rule corresponding to the group-level session to the required UPF, so that the UPF can process the multicast data packet received through the N6.
  • a group-level session is a session shared by each multicast group member in a multicast group, and a group-level session is a session between UPF and SMF, that is, a group-level N4 session.
  • the second PDR rule and the second FAR rule corresponding to the group-level session are set in the UPF.
  • the multicast data packet is multicast data from the third reference point N6
  • the multicast data packet is sent to the second multicast internal interface through the second FAR rule, as shown in FIG. 9.
  • the second PDR rule includes: the source interface is set to the core side, and the destination address is set to the second multicast address list; among them, the second multicast address list is connected by the members of the local multicast group through the third reference point N6 List of multicast addresses corresponding to other multicast group members.
  • the second FAR rule includes: the target interface is set as the second multicast internal interface.
  • the SMF configures the third PDR rule and the third FAR rule corresponding to the group-level session to the required UPF, so that the UPF can process the multicast data packet received through the N19.
  • the third PDR rule and the third FAR rule corresponding to the group-level session are set in the UPF.
  • the multicast data packet is sent to the third multicast internal interface through the third FAR rule, as shown in FIG. 9.
  • the third PDR rule includes: the source interface is set to the core side, the destination address is set to the third multicast address list, and the core network tunnel information is set to the fourth reference point tunnel head (including the receiving IP address corresponding to the N19 interface and Receive GTP-U TEID information); where, the third multicast address list is a list of multicast addresses corresponding to other multicast group members connected by local multicast group members through the fourth reference point N19.
  • the third FAR rule includes: the target interface is set as the second multicast internal interface.
  • SMF provides a fourth PDR rule and a fourth FAR rule for the N4 session of each multicast group member of the multicast group (that is, the N4 session corresponding to the PDU session of each member), so that UPF can process the reception from the UE Multicast packets.
  • a fourth PDR rule and a fourth FAR rule corresponding to each local multicast group member are set in the UPF.
  • UPF detects through the fourth PDR rule that the multicast data packet is multicast data from the first multicast internal interface it uses the fourth FAR rule to correspond the multicast data packet to each multicast group member of the multicast group.
  • the first reference point or the second reference point or the third reference point or the fourth reference point is sent to all multicast group members of the multicast group, as shown in FIG. 9.
  • the fourth PDR rule includes: the source port is set to the first multicast internal interface, and the destination address is the first multicast address list to which the members of the multicast group belong;
  • the fourth FAR rule includes: the external header creates tunnel information indicating the first reference point N3 or the second reference point N9 (including the downlink IP address and downlink GTP corresponding to the N3 or N9 interface) -U TEID information), the target interface is the access side; or, corresponding to the device on the DN, the fourth FAR rule also includes: the external header creates information indicating the third reference point N6, and the target interface is the core side; or, corresponding For members connected to the N19 tunnel, the fourth FAR rule also includes: the external header creates tunnel information indicating the fourth reference point N19 (including the IP address and GTP-U TEID information of the other party's PSA UPF corresponding to the N19 interface), and the target interface is the core side.
  • the SMF configures the fifth PDR rule and the fifth FAR rule corresponding to the group-level session to the required UPF in the multicast group, so that the UPF can process the multicast data packet received from the N6.
  • the fifth PDR rule and the fifth FAR rule corresponding to the group-level session are set in the UPF.
  • UPF detects that the multicast data packet is the multicast data of the second multicast internal interface through the fifth PDR rule it will use the fifth FAR rule to transfer the multicast data packet from the first corresponding to each local multicast group member of UPF.
  • a reference point N3 or a second reference point N9 is sent to all local multicast group members of the UPF, as shown in FIG. 9.
  • the fifth PDR rule includes: the source port is set to the second multicast internal interface, and the destination address is the second multicast address list; among them, the second multicast address list is the third reference point of the local multicast group members. List of multicast addresses corresponding to other multicast group members connected to N6.
  • the fifth FAR rule includes: the external header creates tunnel information indicating the first reference point N3 or the second reference point N9 (including the downlink IP address and downlink GTP-U TEID information corresponding to the N3 or N9 interface), and the target interface For the access side.
  • the SMF configures the sixth PDR rule and the sixth FAR rule corresponding to the group-level session to the required UPF in the multicast group, so that the UPF can process the multicast data packet received from the N19.
  • the sixth PDR rule and the sixth FAR rule corresponding to the group-level session are set in the UPF.
  • UPF detects through the sixth PDR rule that the multicast data packet is the multicast data of the second multicast internal interface it uses the sixth FAR rule to transfer the multicast data packet from the first corresponding to each local multicast group member of UPF.
  • a reference point N3 or a second reference point N9 is sent to all local multicast group members of the UPF, as shown in FIG. 9.
  • the sixth PDR rule includes: the source port is set to the second multicast internal interface, and the destination address is the third multicast address list; among them, the third multicast address list is the fourth reference point passed by the local multicast group members List of multicast addresses corresponding to other multicast group members connected to N19.
  • the sixth FAR rule includes: the external header creates tunnel information indicating the first reference point N3 or the second reference point N9 (including the downlink IP address and downlink GTP-U TEID information corresponding to the N3 or N9 interface), and the target interface For the access side.
  • FIG. 10 shows a flowchart of a multicast method for a multicast group of a virtual network group provided by an exemplary embodiment of the present application.
  • the method may be executed by the first UPF, and the method includes:
  • Step 1001 The first UPF receives a multicast data packet sent by a member of the virtual network group, and the destination address of the multicast data packet is the multicast address;
  • member A can be any member in the virtual network group.
  • Member A may be a member of the multicast group, or may not be a member of the multicast group.
  • the same member can be connected to one multicast group or multiple multicast groups.
  • a multicast group member of member A connected to the multicast group is taken as an example for illustration.
  • the destination address of the multicast data packet is one of the multiple multicast addresses.
  • the first UPF When multicast group member A is a local multicast group member of the first UPF, the first UPF receives multicast data packets of multicast group member A through N3 or N9; multicast group member A is a non-local multicast of the first UPF When a group member, the first UPF receives the multicast data packet of multicast group member A through N6 or N19.
  • Step 1002 When the multicast data packet is the multicast data from the first reference point or the second reference point, the first UPF sends the multicast data packet to the first multicast internal interface;
  • the first UPF When the first UPF receives the multicast data packet sent by the local multicast group member through N3 or N9, it sends the multicast data packet to the first multicast internal interface.
  • Step 1003 The first UPF sends the multicast data packet from the first reference point or the second reference point or the third reference point or the fourth reference corresponding to each multicast group member in the multicast group through the first multicast internal interface. Point, sent to all members of the multicast group;
  • the first multicast internal interface sends the multicast data packet to multicast group member B through N3 or N9 corresponding to multicast group member B ;
  • the first multicast internal interface sends the multicast data packet to the member C through the N6 corresponding to the multicast group member C;
  • the first multicast internal interface sends the multicast data packet to the PSA UPF2 connected to the multicast group member D through the N19 corresponding to the multicast group member D, and the PSA UPF2 sends the multicast data
  • the packet is sent to the second multicast internal interface, and the second multicast internal interface is sent from N3 to the multicast group member D, as shown in FIG. 8.
  • all multicast group members in this step may include the members who send the multicast data packet, or may not include the members who send the multicast data packet.
  • Step 1004 When the multicast data packet is the multicast data from the third reference point, the first UPF sends the multicast data packet to the second multicast internal interface;
  • the multicast data packet is sent to the second multicast internal interface.
  • Step 1005 The first UPF sends the multicast data packet from the first reference point or the second reference point corresponding to each local multicast group member of the first UPF to the first UPF through the second multicast internal interface. All local multicast group members of a UPF.
  • PSA UPF1 receives the multicast packet from N6, puts it on its second multicast internal interface, and then passes Second, the multicast internal interface sends the multicast data packet to the multicast group member A through the N9 corresponding to the multicast group member A, and sends the multicast data packet to the multicast group member B through the N9 corresponding to the multicast group member B.
  • PSA UPF2 will also receive the multicast data packet from N6, put it into its second multicast internal interface, and then map the multicast data packet through multicast group member D through its own second multicast internal interface The N3 is sent to the multicast group member D. In this way, the multicast data packet sent by the multicast group member C is sent to all the multicast group members.
  • Step 1006 When the multicast data packet is the multicast data from the fourth reference point, the first UPF sends the multicast data packet to the third multicast internal interface;
  • the UPF When the UPF receives a multicast data packet sent by a non-local multicast group member through N19, it sends the multicast data packet to the third multicast internal interface.
  • Step 1007 The first UPF sends the multicast data packet from the first reference point or the second reference point corresponding to each local multicast group member of the first UPF to all of the first UPF through the third multicast internal interface. Member of the local multicast group.
  • PSA UPF1 when multicast group member A sends a multicast packet, PSA UPF1 receives the multicast packet from N9, puts it on its first multicast internal interface, and passes A multicast internal interface sends the multicast data packet from the N9 interface corresponding to the multicast group member B to the multicast group member B (PSA UPF1 can also send this data from the N9 interface to the multicast group member A itself according to the network configuration) , Sent from the N6 interface to the multicast group member C of the DN, and sent from the N19 interface to PSA UPF2.
  • PSA UPF2 receives the multicast data packet from N19, puts it into its third multicast internal interface, and then sends this multicast data packet to the local multicast group member D through the N3 interface through the third multicast internal interface . In this way, the multicast data packet sent by multicast group member A is sent to all multicast group members.
  • the multicast data packet of the local multicast group member is first Sending to the first multicast internal interface, and then to all the multicast group members of the multicast group through the first multicast internal interface, can realize the multicast communication of the multicast group.
  • the multicast data packet of a non-local multicast group member is first Send to the second multicast internal interface, and then send to all local multicast group members of the multicast group in the current UPF through the second multicast internal interface, which can not only realize the multicast communication of the multicast group, but also avoid unnecessary Traffic forwarding saves network transmission resources.
  • the multicast data packet of a non-local multicast group member is first Send to the third multicast internal interface, and then send to all local multicast group members in the current UPF of the multicast group through the third multicast internal interface, which can not only realize the multicast communication in the multicast group, but also avoid unnecessary
  • the traffic forwarding saves network transmission resources.
  • the implementation process of multicast traffic forwarding in the multicast group is as follows: For each UPF in the multicast group, at least two multicast internal interfaces in the UPF are used. The multicast data packet is forwarded between the multicast internal interfaces of each UPF through two-step detection.
  • the PDR rules installed in the UPF detect multicast packets received from members of any multicast group (via N3 or N9 or N6 or N19). When the multicast packets match the PDR rules, apply The FAR rule in UPF forwards the multicast data packet to the UPF multicast internal interface, that is, the destination interface set for the multicast internal interface.
  • the PDR rule installed in the multicast internal interface of UPF detects the multicast data packet.
  • the FAR rule in the multicast internal interface is applied, passing N3 or N6 Or N9 or N19 forwards the multicast data packet to all members of the multicast group or all members of the local multicast group.
  • N4 rules that is, PDR rules and FAR rules
  • exemplary configurations of PDR rules and FAR rules are as follows:
  • the first PDR rule and the first FAR rule are the first PDR rule and the first FAR rule
  • SMF provides the first PDR rule and the first FAR rule for the N4 session of each multicast group member of the multicast group (that is, the N4 session corresponding to the PDU session of each member), so that the UPF can process the reception from the UE Multicast packets.
  • a first PDR rule and a first FAR rule corresponding to each local multicast group member are set in the UPF.
  • UPF detects through the first PDR rule that the multicast data packet is multicast data from the first reference point N3 or the second reference point N9, it sends the multicast data packet to the first multicast internal interface through the first FAR rule, As shown in Figure 9.
  • the first PDR rule includes: the source interface is set as the access side, the destination address is set as the first multicast address list to which the members of the multicast group belong, and the core network tunnel information is set as the first reference point or the first reference point of the PDU session.
  • the tunnel header of the second reference point (including the upstream IP address and upstream GTP-U TEID information corresponding to the N3 or N9 interface);
  • the first FAR rule includes: setting the target interface as the first multicast internal interface.
  • the multicast address in the multicast data packet is a multicast address in the first multicast address list.
  • the SMF configures the second PDR rule and the second FAR rule corresponding to the group-level session to the required UPF, so that the UPF can process the multicast data packet received through the N6.
  • a group-level session is a session shared by each multicast group member in a multicast group, and a group-level session is a session between UPF and SMF, that is, a group-level N4 session.
  • the second PDR rule and the second FAR rule corresponding to the group-level session are set in the UPF.
  • the multicast data packet is multicast data from the third reference point N6
  • the multicast data packet is sent to the second multicast internal interface through the second FAR rule, as shown in FIG. 9.
  • the second PDR rule includes: the source interface is set to the core side, and the destination address is set to the second multicast address list; among them, the second multicast address list is connected by the members of the local multicast group through the third reference point N6 List of multicast addresses corresponding to other multicast group members.
  • the second FAR rule includes: the target interface is set as the second multicast internal interface.
  • the seventh PDR rule and the seventh FAR rule are The seventh PDR rule and the seventh FAR rule.
  • the SMF configures the seventh PDR rule and the seventh FAR rule corresponding to the group-level session to the required UPF, so that the UPF can process the multicast data packet received through the N19.
  • the seventh PDR rule and the seventh FAR rule corresponding to the group-level session are set in the UPF.
  • the multicast data packet is the multicast data from the fourth reference point N19
  • the multicast data packet is sent to the third multicast internal interface through the seventh FAR rule, as shown in FIG. 11.
  • the seventh PDR rule includes: the source interface is set to the core side, the destination address is set to the third multicast address list, and the core network tunnel information is set to the fourth reference point tunnel header (including the IP address and GTP corresponding to the N19 interface) -U TEID information); where the third multicast address list is a list of multicast addresses corresponding to other multicast group members connected by the local multicast group member through the fourth reference point N19.
  • the seventh FAR rule includes: the target interface is set to the third multicast internal interface.
  • SMF provides a fourth PDR rule and a fourth FAR rule for the N4 session of each multicast group member of the multicast group (that is, the N4 session corresponding to the PDU session of each member), so that UPF can process the reception from the UE Multicast packets.
  • a fourth PDR rule and a fourth FAR rule corresponding to each local multicast group member are set in the UPF.
  • UPF detects through the fourth PDR rule that the multicast data packet is multicast data from the first multicast internal interface it uses the fourth FAR rule to correspond the multicast data packet to each multicast group member of the multicast group.
  • the first reference point or the second reference point or the third reference point or the fourth reference point is sent to all multicast group members of the multicast group, as shown in FIG. 9.
  • the fourth PDR rule includes: the source port is set to the first multicast internal interface, and the destination address is the first multicast address list to which the members of the multicast group belong;
  • the fourth FAR rule includes: the external header creates tunnel information indicating the first reference point N3 or the second reference point N9 (including the downlink IP address and downlink GTP corresponding to the N3 or N9 interface) -U TEID information), the target interface is the access side; or, corresponding to the device on the DN, the fourth FAR rule also includes: the external header creates information indicating the third reference point N6, and the target interface is the core side; or, corresponding For members connected to the N19 tunnel, the fourth FAR rule also includes: the external header creates tunnel information indicating the fourth reference point N19 (including the IP address and GTP-U TEID information corresponding to the N19 interface), and the target interface is the core side.
  • the SMF configures the fifth PDR rule and the fifth FAR rule corresponding to the group-level session to the required UPF in the multicast group, so that the UPF can process the multicast data packet received from the N6.
  • the fifth PDR rule and the fifth FAR rule corresponding to the group-level session are set in the UPF.
  • UPF detects that the multicast data packet is the multicast data of the second multicast internal interface through the fifth PDR rule it will use the fifth FAR rule to transfer the multicast data packet from the first corresponding to each local multicast group member of UPF.
  • a reference point N3 or a second reference point N9 is sent to all local multicast group members of the UPF, as shown in FIG. 9.
  • the fifth PDR rule includes: the source port is set to the second multicast internal interface, and the destination address is the second multicast address list; among them, the second multicast address list is the third reference point of the local multicast group members. List of multicast addresses corresponding to other multicast group members connected to N6.
  • the fifth FAR rule includes: the external header creates tunnel information indicating the first reference point N3 or the second reference point N9 (including the downlink IP address and downlink GTP-U TEID information corresponding to the N3 or N9 interface), and the target interface For the access side.
  • the SMF configures the eighth PDR rule and the eighth FAR rule corresponding to the group-level session to the required UPF in the multicast group, so that the UPF can process the multicast data packet received from the N19.
  • An eighth PDR rule and an eighth FAR rule corresponding to the group-level session are set in the UPF.
  • UPF detects through the eighth PDR rule that the multicast data packet is the multicast data of the third multicast internal interface it uses the eighth FAR rule to transfer the multicast data packet from the first corresponding to each local multicast group member of UPF.
  • a reference point N3 or a second reference point N9 is sent to all local multicast group members of the UPF, as shown in FIG. 11.
  • the eighth PDR rule includes: the source port is set to the third multicast internal interface, and the destination address is the third multicast address list; among them, the third multicast address list is the fourth reference point for local multicast group members List of multicast addresses corresponding to other multicast group members connected to N19.
  • the eighth FAR rule includes: the external header creates tunnel information indicating the first reference point N3 or the second reference point N9 (including the downlink IP address and downlink GTP-U TEID information corresponding to the N3 or N9 interface), and the target interface For the access side.
  • the first multicast address list is all the multicast addresses of the multicast group to which the members of the multicast group belong.
  • the second multicast address list is a collection of multicast address lists of the multicast groups to which all local multicast group members of the first UPF belong.
  • the third multicast address list is the multicast address list of the multicast group to which the local multicast group members of the first UPF belong and the multicast address list of the multicast group to which local multicast group members of the second UPF belong
  • the second UPF is connected to the first UPF through the fourth reference point.
  • the third implementation method for conventional multicast groups is the third implementation method for conventional multicast groups.
  • the multicast address list (first multicast address list, second multicast address list, and third multicast address list) in the above-mentioned PDR rule and the above-mentioned FAR rule includes multiple multicast addresses, such as 3 multicast addresses or 5 Multicast addresses.
  • At least one of the foregoing first, second, and third multicast internal interfaces can be implemented as m multicast internal interfaces , Each multicast internal interface corresponds to a multicast address.
  • m is a positive integer
  • i is an integer not greater than m.
  • the i-th first multicast internal interface corresponds to the i-th multicast address in the first multicast address list, and a multicast data packet is also set
  • the multicast address in is the i-th multicast address.
  • the first PDR rule includes: the source interface is set as the access side, the destination address is set as the i-th multicast address in the first multicast address list, and the core network tunnel information is set as the first reference point or the second reference of the PDU session Point of the tunnel head; the first FAR rule includes: the target interface is set to the i-th first multicast internal interface.
  • the fourth PDR rule includes: the source port is set to the i-th first multicast internal interface, and the destination address is the i-th multicast address in the first multicast address list; the fourth FAR rule includes: the external header creation instruction first The tunnel information of the reference point or the second reference point, the target interface is the access side; or, the fourth FAR rule further includes: the external header creates information indicating the third reference point, and the target interface is the core side; or, the fourth FAR rule It also includes: the external header creates tunnel information indicating the fourth reference point, and the target interface is the core side.
  • the i-th second multicast internal interface corresponds to the i-th multicast address in the second multicast address list, and the multicast data packet is also set
  • the multicast address in is the i-th multicast address.
  • the second PDR rule includes: the source interface is set to the core side, and the target address is set to the i-th multicast address; the second FAR rule includes: the target interface is set to the i-th second multicast internal interface.
  • the fifth PDR rule includes: the source port is set to the i-th second multicast internal interface, and the destination address is the i-th multicast address in the second multicast address list; the fifth FAR rule includes: the external header creation instruction first The tunnel information of the reference point or the second reference point, and the target interface is the access side.
  • the third PDR rule includes: the source interface is set to the core side, the destination address is set to the i-th multicast address in the third multicast address list, and the core network tunnel information is set to the fourth reference point tunnel head; the third FAR rule includes : The target interface is set to the i-th second multicast internal interface, m is a positive integer, and i is an integer not greater than m.
  • the sixth PDR rule includes: the source port is set to the i-th second multicast internal interface, and the destination address is the i-th multicast address in the third multicast address list; the fifth FAR rule includes: the external header creation instruction first The tunnel information of the reference point or the second reference point, and the target interface is the access side.
  • the i-th third multicast internal interface corresponds to the i-th multicast address in the third multicast address list, and a multicast data packet is also set
  • the multicast address in is the i-th multicast address.
  • the seventh PDR rule includes: the source interface is set to the core side, the destination address is set to the i-th multicast address in the third multicast address list, and the core network tunnel information is set to the fourth reference point tunnel head; the seventh FAR rule includes : The target interface is set to the i-th third multicast internal interface.
  • the eighth PDR rule includes: the source port is set to the i-th third multicast internal interface, and the destination address is the i-th multicast address; the eighth FAR rule includes: the external header is created to indicate the first reference point or the second reference point Tunnel information, the target interface is the access side.
  • each second multicast internal interface corresponds to a multicast address, and m is the number of multicast addresses;
  • the first UPF When the multicast data packet is the multicast data from the first reference point or the second reference point, the first UPF sends the multicast data packet to the first multicast internal interface, and sends the multicast data through the first multicast internal interface
  • the packet is sent from the first reference point or the second reference point or the third reference point or the fourth reference point corresponding to each multicast group member in the multicast group to all the multicast group members of the multicast group.
  • the first UPF sends the multicast data packet to the The second multicast internal interface corresponding to the i multicast address, and each local multicast group member of the first UPF from the multicast group through the second multicast internal interface corresponding to the i-th multicast address
  • the corresponding first reference point or second reference point is sent to all local multicast group members of the first UPF.
  • FIG. 12 shows a flowchart of a method for multicasting a VID of a virtual network group provided by an exemplary embodiment of the present application.
  • the method may be executed by the first UPF, and the method includes:
  • Step 1201 The first UPF receives a multicast data packet sent by a member of the virtual network group, and the destination address of the multicast data packet is the VID and the broadcast address;
  • member A can be any member in the virtual network group.
  • the same member can be connected to one VID or multiple VIDs.
  • each VID corresponds to one or more broadcast addresses
  • the destination address of each multicast data packet is one of the multiple broadcast addresses.
  • the first UPF When member A is a local VID member of the first UPF, the first UPF receives the multicast data packet of member A through N3 or N9; when member A is a non-local VID member of the first UPF, the first UPF receives the member through N6 or N19 A's multicast packet.
  • Step 1202 When the multicast data packet is the multicast data from the first reference point or the second reference point, the first UPF sends the multicast data packet to the first multicast internal interface;
  • the UPF When the UPF receives the multicast data packet sent by the local VID member through N3 or N9, it sends the multicast data packet to the first multicast internal interface.
  • Step 1203 The first UPF sends the multicast data packet from the first reference point or the second reference point or the third reference point or the fourth reference point corresponding to each VID member in the VID to the All VID members of VID;
  • the first multicast internal interface passes the multicast data packet through N3 or N9 corresponding to VID member B is sent to VID member B; when VID member C is a device on the DN, the first multicast internal interface sends the multicast data packet to VID member C through N6 corresponding to VID member C; When there is a VID member D that is a member connected to a different PSA UPF from the VID member A, the first multicast internal interface sends the multicast data packet to the VID member D through the N19 corresponding to the VID member D, as shown in FIG. 8.
  • all VID members in this step may include the members who send the multicast data packet, or may not include the members who send the multicast data packet.
  • Step 1204 When the multicast data packet is the multicast data from the third reference point or the fourth reference point, the first UPF sends the multicast data packet to the second multicast internal interface;
  • the first UPF When the first UPF receives a multicast data packet sent by a non-local multicast group member through N6 or N19, it sends the multicast data packet to the second multicast internal interface.
  • Step 1205 Send the multicast data packet from the first reference point or the second reference point corresponding to each local VID member of the first UPF to all the local VID members of the first UPF through the second multicast internal interface.
  • PSA UPF1 receives the multicast data packet from N6, puts it into its second multicast internal interface, and passes the second multicast The internal interface sends the multicast data packet to VID member A through N9 corresponding to VID member A, and sends the multicast data packet to VID member B through N9 corresponding to VID member B.
  • PSA UPF2 will also receive the multicast data packet from N6, put it into its second multicast internal interface, and then send the multicast data packet to N3 corresponding to member D through the second multicast internal interface Member D. In this way, the multicast data packet sent by VID member C is sent to all VID members.
  • PSA UPF1 when VID member A sends a multicast data packet, PSA UPF1 receives the multicast data packet from N9, puts the multicast data packet into its first multicast internal interface, and passes The first multicast internal interface sends the multicast data packet from N6 corresponding to VID member C to VID member C, and sends the multicast data packet from N9 corresponding to VID member B to VID member B through the first multicast internal interface (PSA UPF1 can also send this multicast packet from N9 to PSA UPF2 according to the network configuration.
  • PSA UPF2 receives the multicast packet from N19, puts it on its second multicast internal interface, and then passes the second multicast The internal interface sends the multicast data packet to the local VID member D through N3. In this way, the multicast data packet sent by VID member A is sent to all VID members.
  • the method provided in this embodiment provides the first multicast internal interface in the UPF, and when the multicast data packet of the local VID member is received, the multicast data packet of the local VID member is sent to the first
  • the multicast internal interface is sent to all VID members of the VID through the first multicast internal interface (on the path other than the current UPF, it may be necessary to continue to pass through the second multicast internal interface or the third group of other UPF It can only be sent to all the members of the multicast group in the multicast group through the internal interface of the broadcast, and can realize the multicast communication in the VID.
  • the multicast data packet of a non-local VID member is first sent to the second multicast internal
  • the interface is then sent to all local VID members connected to the UPF through the second multicast internal interface, which can not only implement multicast communication in the VID, but also avoid unnecessary traffic forwarding and save network transmission resources.
  • the implementation process of multicast traffic forwarding in the VID is as follows: For each UPF in the VID, at least two multicast internal interfaces in the UPF are used. The multicast data packet is forwarded between the multicast internal interfaces of each UPF through two-step detection.
  • the PDR rule installed in UPF detects the multicast packet received from any member in the VID (via N3 or N9 or N6 or N19). When the multicast packet matches the PDR rule, UPF is applied
  • the FAR rule in the FAR forwards the multicast data packet to the UPF multicast internal interface, that is, the destination interface set for the multicast internal interface.
  • the PDR rule installed in the multicast internal interface of UPF detects the multicast data packet.
  • the corresponding FAR rule in the multicast internal interface is applied, passing N3 or N6 or N9 or N19 forwards the multicast data packet to all members in the VID.
  • N4 rules that is, PDR rules and FAR rules
  • exemplary configurations of PDR rules and FAR rules are as follows:
  • the first PDR rule and the first FAR rule are the first PDR rule and the first FAR rule
  • SMF provides the first PDR rule and the first FAR rule for the N4 session of each VID member in the VID (that is, the N4 session corresponding to the PDU session of each member), so that the UPF can process the multicast received from the UE data pack.
  • a first PDR rule and a first FAR rule corresponding to the local VID member are set in the UPF.
  • UPF detects through the first PDR rule that the multicast data packet is multicast data from the first reference point N3 or the second reference point N9, it sends the multicast data packet to the first multicast internal interface through the first FAR rule, As shown in Figure 9.
  • the first PDR rule includes: the source interface is set to the access side, the target address is set to the first VID list and broadcast address to which the VID member belongs, and the core network tunnel information is set to the first reference point N3 or the first reference point of the PDU session. 2.
  • the tunnel header of the reference point N9 (including the upstream IP address and upstream GTP-U TEID information corresponding to the N3 or N9 interface);
  • the first FAR rule includes: setting the target interface as the first multicast internal interface.
  • the multicast address in the multicast data packet is a VID in the first VID list to which the VID member belongs, and the broadcast address.
  • the SMF configures the second PDR rule and the second FAR rule corresponding to the group-level session to the required UPF, so that the UPF can process the multicast data packet received through the N6.
  • a group-level session is a session shared by each VID member in a VID, and a group-level session is a session between UPF and SMF, that is, a group-level N4 session.
  • the second PDR rule and the second FAR rule corresponding to the group-level session are set in the UPF.
  • the multicast data packet is multicast data from the third reference point N6
  • the multicast data packet is sent to the second multicast internal interface through the second FAR rule, as shown in FIG. 9.
  • the second PDR rule includes: the source interface is set to the core side, the destination address is set to the second VID list and the broadcast address; among them, the second VID list is other VID members connected by the local VID member through the third reference point N6 The corresponding VID list.
  • the second FAR rule includes: the target interface is set as the second multicast internal interface.
  • the second VID list is a VID list of all VIDs in the virtual network group; or, the second VID list is a collection of VID lists to which all local VID members of the first UPF belong.
  • the SMF configures the third PDR rule and the third FAR rule corresponding to the group-level session to the required UPF, so that the UPF can process the multicast data packet received through the N19.
  • the third PDR rule and the third FAR rule corresponding to the group-level session are set in the UPF.
  • the multicast data packet is sent to the third multicast internal interface through the third FAR rule, as shown in FIG. 9.
  • the third PDR rule includes: the source interface is set to the core side, the destination address is set to the third VID list and broadcast address, and the core network tunnel information is set to the fourth reference point tunnel head (including the receiving IP address corresponding to the N19 interface And receiving GTP-U TEID information); the third VID list is the VID list corresponding to other VID members connected by the local multicast group member through the fourth reference point N19.
  • the third FAR rule includes: the target interface is set as the second multicast internal interface.
  • SMF provides a fourth PDR rule and a fourth FAR rule for the N4 session of each VID member of the VID (that is, the N4 session corresponding to the PDU session of each member), so that the UPF can process the multicast data received from the UE package.
  • the fourth PDR rule and the fourth FAR rule corresponding to the local VID member are set in the UPF.
  • UPF detects through the fourth PDR rule that the multicast data packet is multicast data from the first multicast internal interface it uses the fourth FAR rule to transfer the multicast data packet from the first reference point corresponding to each VID member of the VID. Or the second reference point or the third reference point or the fourth reference point is sent to all VID members of the VID, as shown in FIG. 9.
  • the fourth PDR rule includes: the source port is set to the first multicast internal interface, and the target address is the first VID list to which the VID member belongs and the broadcast address;
  • the fourth FAR rule includes: the external header creates tunnel information indicating the first reference point N3 or the second reference point N9 (including the downlink IP address and downlink GTP corresponding to the N3 or N9 interface) -U TEID information), the target interface is the access side; or, corresponding to the device on the DN, the fourth FAR rule also includes: the external header creates information indicating the third reference point N6, and the target interface is the core side; or, corresponding For members connected to the N19 tunnel, the fourth FAR rule also includes: the external header creates tunnel information indicating the fourth reference point N19 (including the IP address and GTP-U TEID information of the other party's PSA UPF corresponding to the N19 interface), and the target interface is the core side.
  • the SMF configures the fifth PDR rule and the fifth FAR rule corresponding to the required UPF configuration group-level session in the VID, so that the UPF can process the multicast data packet received from the N6 or N19.
  • the fifth PDR rule and the fifth FAR rule corresponding to the group-level session are set in the UPF.
  • UPF detects through the fifth PDR rule that the multicast data packet is the multicast data of the second multicast internal interface it uses the fifth FAR rule to transfer the multicast data packet from the first corresponding to each local multicast group member of UPF.
  • a reference point N3 or a second reference point N9 is sent to all local VID members of the UPF, as shown in FIG. 9.
  • the fifth PDR rule includes: the source port is set to the second multicast internal interface, the destination address is the second VID list of the VID, and the broadcast address;
  • the fifth FAR rule includes: the external header creates tunnel information indicating the first reference point N3 or the second reference point N9 (including the downlink IP address and downlink GTP-U TEID information corresponding to the N3 or N9 interface), and the target interface For the access side.
  • the sixth PDR rule and the sixth FAR rule corresponding to the required UPF configuration group-level session exist in the SMF to the VID, so that the UPF can process the multicast data packet received from the N19.
  • the sixth PDR rule and the sixth FAR rule corresponding to the group-level session are set in the UPF.
  • UPF detects through the sixth PDR rule that the multicast data packet is the multicast data of the second multicast internal interface it uses the sixth FAR rule to transfer the multicast data packet from the first reference corresponding to each local VID member of UPF.
  • Point N3 or the second reference point N9 is sent to all local VID members of UPF, as shown in Figure 9.
  • the sixth PDR rule includes: the source port is set to the second multicast internal interface, the destination address is the third VID list and the broadcast address; among them, the third VID list is connected by the local VID members through the fourth reference point N19 List of multicast addresses corresponding to other VID members.
  • the sixth FAR rule includes: the external header creates tunnel information indicating the first reference point N3 or the second reference point N9 (including the downlink IP address and downlink GTP-U TEID information corresponding to the N3 or N9 interface), and the target interface For the access side.
  • FIG. 13 shows a flowchart of a method for multicasting VIDs of virtual network groups provided by an exemplary embodiment of the present application.
  • the method may be executed by the first UPF, and the method includes:
  • Step 1301 The first UPF receives a multicast data packet sent by a member of the virtual network group, and the destination address of the multicast data packet is the broadcast address of the VID;
  • member A can be any member in the virtual network group.
  • Member A may be a VID member of VID or not a VID member of VID. The same member can be connected to one VID or multiple VIDs.
  • the VID member of the member A connected to the VID is taken as an example for illustration.
  • the destination address of the multicast data packet is one of the multiple broadcast addresses.
  • VID member A When VID member A is a local VID member of the first UPF, UPF receives multicast data packets from VID member A through N3 or N9; when VID member A is a non-local multicast group member of the first UPF, the first UPF passes N6 or N19 receives the multicast data packet of VID member A.
  • Step 1302 When the multicast data packet is the multicast data from the first reference point or the second reference point, the first UPF sends the multicast data packet to the first multicast internal interface;
  • the first UPF When the first UPF receives the multicast data packet sent by the local multicast group member through N3 or N9, it sends the multicast data packet to the first multicast internal interface.
  • Step 1303 The first UPF sends the multicast data packet from the first reference point or the second reference point or the third reference point or the fourth reference point corresponding to each VID member in the VID to the All VID members of VID;
  • the first multicast internal interface When VID member B and VID member A are connected to members of the same PSA and UPF, the first multicast internal interface sends the multicast data packet to VID member B through N3 or N9 corresponding to VID member B; when VID member C is on the DN When VID member D and VID member A are connected to different PSA and UPF members, the first multicast internal interface sends the multicast data packet to member C through N6 corresponding to VID member C; The interface sends the multicast data packet to the PSA UPF2 connected to VID member D through N19 corresponding to VID member D. PSA UPF2 sends the multicast data packet to the third multicast internal interface, which is sent from N3 by the third multicast internal interface Go to VID member D, as shown in Figure 8, as shown in Figure 8.
  • all VID members in this step may include the members who send the multicast data packet, or may not include the members who send the multicast data packet.
  • Step 1304 When the multicast data packet is the multicast data from the third reference point, the first UPF sends the multicast data packet to the second multicast internal interface;
  • the multicast data packet is sent to the second multicast internal interface.
  • Step 1305 The first UPF sends the multicast data packet from the first reference point or the second reference point corresponding to each local VID member of the first UPF to all of the first UPF through the second multicast internal interface. Local VID member.
  • PSA UPF1 receives the multicast packet from N6, puts it on its second multicast internal interface, and then passes the second group
  • the broadcast internal interface sends the multicast data packet to VID member A through N9 corresponding to VID member A, and sends to VID member B through N9 corresponding to VID member B.
  • PSA UPF2 will also receive the multicast data packet from N6, put it into its second multicast internal interface, and then pass the multicast data packet through the N3 corresponding to VID member D through its own second multicast internal interface Sent to VID member D. In this way, the multicast data packet sent by VID member C is sent to all VID members.
  • Step 1306 When the multicast data packet is the multicast data from the fourth reference point, the first UPF sends the multicast data packet to the third multicast internal interface;
  • the first UPF When the first UPF receives the multicast data packet sent by the non-local VID member through N19, it sends the multicast data packet to the third multicast internal interface.
  • Step 1307 The first UPF sends the multicast data packet from the first reference point or the second reference point corresponding to each local VID member of the UPF to all the local VID members of the first UPF through the third multicast internal interface.
  • PSA UPF1 receives the multicast packet from N9, puts it on its first multicast internal interface, and passes the first group
  • the internal interface of the broadcast sends the multicast data packet from the N9 interface corresponding to VID member B to VID member B (PSA UPF1 can also send this data from the N9 interface to VID member A itself according to the network configuration), from the N6 interface to the DN VID member C, sent from the N19 interface to PSA UPF2.
  • PSA UPF2 receives the multicast data packet from N19, puts it into its third multicast internal interface, and then sends this multicast data packet to the local VID member D through the N3 interface through the third multicast internal interface. In this way, the multicast data packet sent by VID member A is sent to all VID members.
  • the method provided in this embodiment provides the first multicast internal interface in the UPF, and when the multicast data packet of the local VID member is received, the multicast data packet of the local VID member is sent to the first The multicast internal interface is then sent to all VID members of the VID through the first multicast internal interface, so that the multicast communication in the VID can be realized.
  • the multicast data packet of a non-local VID member is first sent to the second
  • the multicast internal interface is then sent to all the local VID members of the VID in the current UPF through the second multicast internal interface, which can not only realize the multicast communication in the VID, but also avoid unnecessary traffic forwarding and save network transmission resources.
  • the multicast data packet of a non-local VID member is first sent to the third
  • the multicast internal interface is then sent to all local VID members of the VID in the current UPF through the third multicast internal interface, which can not only realize the multicast communication in the VID, but also avoid unnecessary traffic forwarding and save network transmission resources.
  • the implementation process of multicast traffic forwarding in the VID is as follows: For each UPF in the VID, at least two multicast internal interfaces in the UPF are used. The multicast data packet is forwarded between the multicast internal interfaces of each UPF through two-step detection.
  • the PDR rule installed in UPF detects the multicast packet received from any member in the VID (via N3 or N9 or N6 or N19). When the multicast packet matches the PDR rule, it is applied in UPF
  • the FAR rules forward the multicast data packet to the UPF multicast internal interface, that is, the destination interface set for the multicast internal interface.
  • the PDR rule installed in the multicast internal interface of UPF detects the multicast data packet.
  • the FAR rule in the multicast internal interface is applied, passing N3 or N6 Or N9 or N19 forwards the multicast data packet to the VID members of the VID.
  • N4 rules that is, PDR rules and FAR rules
  • exemplary configurations of PDR rules and FAR rules are as follows:
  • the first PDR rule and the first FAR rule are the first PDR rule and the first FAR rule
  • SMF provides the first PDR rule and the first FAR rule for the N4 session of each VID member in the VID (that is, the N4 session corresponding to the PDU session of each member), so that UPF can process the multicast received from the UE data pack.
  • a first PDR rule and a first FAR rule corresponding to the local VID member are set in the UPF.
  • UPF detects through the first PDR rule that the multicast data packet is multicast data from the first reference point N3 or the second reference point N9, it sends the multicast data packet to the first multicast internal interface through the first FAR rule, As shown in Figure 9.
  • the first PDR rule includes: the source interface is set to the access side, the target address is set to the first VID list and broadcast address to which the VID member belongs, and the core network tunnel information is set to the first reference point or the second reference point of the PDU session
  • the tunnel header of the reference point (including the upstream IP address and upstream GTP-U TEID information corresponding to the N3 or N9 interface);
  • the first FAR rule includes: setting the target interface as the first multicast internal interface.
  • the multicast address in the multicast data packet is a VID in the VID list to which the VID belongs and a broadcast address in the broadcast address.
  • the SMF configures the second PDR rule and the second FAR rule corresponding to the group-level session to the required UPF, so that the UPF can process the multicast data packet received through the N6.
  • a group-level session is a session shared by each VID member in a VID, and a group-level session is a session between UPF and SMF, that is, a group-level N4 session.
  • the second PDR rule and the second FAR rule corresponding to the group-level session are set in the UPF.
  • the multicast data packet is multicast data from the third reference point N6
  • the multicast data packet is sent to the second multicast internal interface through the second FAR rule, as shown in FIG. 9.
  • the second PDR rule includes: the source interface is set to the core side, the target address is set to the second VID list of the VID, and the broadcast address;
  • the second FAR rule includes: the target interface is set as the second multicast internal interface.
  • the second multicast address list is a VID list and broadcast addresses of all VIDs in the virtual network group; or, the second multicast address list is a collection of VID lists and broadcast addresses to which all local VID members of the first UPF belong.
  • the seventh PDR rule and the seventh FAR rule are The seventh PDR rule and the seventh FAR rule.
  • the SMF configures the seventh PDR rule and the seventh FAR rule corresponding to the group-level session to the required UPF, so that the UPF can process the multicast data packet received through the N19.
  • the seventh PDR rule and the seventh FAR rule corresponding to the group-level session are set in the UPF.
  • the multicast data packet is the multicast data from the fourth reference point N19
  • the multicast data packet is sent to the third multicast internal interface through the seventh FAR rule, as shown in FIG. 11.
  • the third PDR rule includes: the source interface is set to the core side, the destination address is set to the third VID list and broadcast address, and the core network tunnel information is set to the fourth reference point tunnel head (including the IP address and IP address corresponding to the N19 interface) GTP-U TEID information);
  • the third FAR rule includes: the target interface is set to the third multicast internal interface.
  • SMF provides a fourth PDR rule and a fourth FAR rule for the N4 session of each VID member of the VID (that is, the N4 session corresponding to the PDU session of each member), so that the UPF can process the multicast data received from the UE package.
  • the fourth PDR rule and the fourth FAR rule corresponding to the local VID member are set in the UPF.
  • UPF detects through the fourth PDR rule that the multicast data packet is multicast data from the first multicast internal interface it uses the fourth FAR rule to transfer the multicast data packet from the first reference point corresponding to each VID member of the VID. Or the second reference point or the third reference point or the fourth reference point is sent to all VID members of the VID, as shown in FIG. 11.
  • the fourth PDR rule includes: the source port is set to the first multicast internal interface, and the target address is the first VID list to which the VID member belongs and the broadcast address;
  • the fourth FAR rule includes: the external header creates tunnel information indicating the first reference point N3 or the second reference point N9 (including the downlink IP address corresponding to the N3 or N9 interface and the downlink GTP-U TEID information), the target interface is the access side; or, corresponding to the device on the DN, the fourth FAR rule also includes: the external header creates information indicating the third reference point N6, and the target interface is the core side; or, corresponding to N19
  • the fourth FAR rule also includes: the external header creates tunnel information indicating the fourth reference point N19 (including the IP address and GTP-U TEID information corresponding to the N19 interface), and the target interface is the core side.
  • the SMF configures the fifth PDR rule and the fifth FAR rule corresponding to the required UPF configuration group-level session to the VID, so that the UPF can process the multicast data packet received from the N6.
  • the fifth PDR rule and the fifth FAR rule corresponding to the group-level session are set in the UPF.
  • UPF detects that the multicast data packet is the multicast data of the second multicast internal interface through the fifth PDR rule it will use the fifth FAR rule to transfer the multicast data packet from the first corresponding to each local multicast group member of UPF.
  • a reference point N3 or a second reference point N9 is sent to all local VID members of the UPF, as shown in FIG. 11.
  • the fifth PDR rule includes: the source port is set to the second multicast internal interface, the destination address is the second VID list of the VID, and the broadcast address;
  • the fifth FAR rule includes: the external header creates tunnel information indicating the first reference point N3 or the second reference point N9 (including the downlink IP address and downlink GTP-U TEID information corresponding to the N3 or N9 interface), and the target interface For the access side.
  • the SMF configures the eighth PDR rule and the eighth FAR rule corresponding to the group-level session to the required UPF in the VID, so that the UPF can process the multicast data packet received from the N19.
  • An eighth PDR rule and an eighth FAR rule corresponding to the group-level session are set in the UPF.
  • UPF detects through the eighth PDR rule that the multicast data packet is the multicast data of the third multicast internal interface it uses the eighth FAR rule to transfer the multicast data packet from the first reference corresponding to each local VID member of the UPF.
  • Point N3 or the second reference point N9 is sent to all local VID members of UPF, as shown in Figure 9.
  • the eighth PDR rule includes: the source port is set to the third multicast internal interface, and the destination address is the third VID list; among them, the third VID list is the other VID members connected by the local VID member through the fourth reference point N19 The corresponding VID list.
  • the eighth FAR rule includes: the external header creates tunnel information indicating the first reference point N3 or the second reference point N9 (including the downlink IP address and downlink GTP-U TEID information corresponding to the N3 or N9 interface), and the target interface For the access side.
  • the first VID list is all VIDs to which VID members belong.
  • the second VID list is a VID list of all VIDs in the virtual network group; or, the second VID list is a collection of VID lists to which all local VID members of the first UPF belong.
  • the third VID list is the VID list of all VIDs in the virtual network group; or, the third VID list is the VID list of the local VID members of the first UPF and the VID list of the local VID members of the second UPF The second UPF is connected to the first UPF through the fourth reference point.
  • the VID list and broadcast address in the above PDR rule and the above FAR rule include multiple VID broadcast addresses, such as 3 Broadcast address or 5 broadcast addresses.
  • At least one of the first multicast internal interface, the second multicast internal interface, and the third multicast internal interface can be implemented as m multicast internal interfaces , Each multicast internal interface corresponds to a VID broadcast address.
  • m is a positive integer
  • i is an integer not greater than m
  • the i-th first multicast internal interface corresponds to the i-th VID
  • the multicast address in the multicast data packet is the first VID list The i-th VID and broadcast address in.
  • the first PDR rule includes: the source interface is set to the access side, the target address is set to the i-th VID in the first VID list and the broadcast address, and the core network tunnel information is set to the first reference point or the second reference point of the PDU session Tunnel head; the first FAR rule includes: the target interface is set to the i-th first multicast internal interface.
  • the fourth PDR rule includes: the source port is set to the i-th first multicast internal interface, the target address is the i-th VID in the first VID list and the broadcast address; the fourth FAR rule includes: the external header creation instruction first reference Point or the tunnel information of the second reference point, the target interface is the access side; or, the fourth FAR rule also includes: the external header creates information indicating the third reference point, and the target interface is the core side; or, the fourth FAR rule also Including: the external header creates tunnel information indicating the fourth reference point, and the target interface is the core side.
  • the i-th second multicast internal interface corresponds to the i-th VID in the second VID list, and the multicast in the multicast data packet is also set
  • the address is the i-th VID in the second VID list and the broadcast address.
  • the second PDR rule includes: the source interface is set to the core side, and the target address is set to the i-th VID in the second VID list and the broadcast address; the second FAR rule includes: the target interface is set to the i-th second multicast internal interface .
  • the fifth PDR rule includes: the source port is set to the i-th second multicast internal interface, the destination address is the i-th VID in the second VID list and the broadcast address; the fifth FAR rule includes: the external header creation instruction first reference Point or second reference point tunnel information, the target interface is the access side.
  • the third PDR rule includes: the source interface is set to the core side, the target address is set to the i-th VID in the third VID list and the broadcast address, and the core network tunnel information is set to the fourth reference point tunnel head; the third FAR rule includes: The target interface is set to the i-th second multicast internal interface, m is a positive integer, and i is an integer not greater than m.
  • the sixth PDR rule includes: the source port is set to the ith second multicast internal interface, the destination address is the ith VID in the third VID list and the broadcast address; the sixth FAR rule includes: the external header creation instruction first reference Point or second reference point tunnel information, the target interface is the access side.
  • the i-th third multicast internal interface corresponds to the i-th VID in the third VID list, and the multicast in the multicast data packet is also set
  • the address is the i-th VID in the third VID list.
  • the seventh PDR rule includes: the source interface is set to the core side, the target address is set to the i-th VID in the third VID list and the broadcast address, and the core network tunnel information is set to the fourth reference point tunnel head; the seventh FAR rule includes: The target interface is set to the i-th third multicast internal interface.
  • the eighth PDR rule includes: the source port is set to the i-th third multicast internal interface, the destination address is the i-th VID in the third VID list and the broadcast address; the eighth FAR rule includes: the external header creation instruction first reference Point or second reference point tunnel information, the target interface is the access side.
  • each second multicast internal interface corresponds to a VID, and m is the number of broadcast addresses;
  • UPF When the multicast data packet is the multicast data from the first reference point or the second reference point, UPF sends the multicast data packet to the first multicast internal interface, and sends the multicast data packet from the first multicast internal interface.
  • the first reference point or the second reference point or the third reference point or the fourth reference point corresponding to each VID member in the VID are sent to all VID members of the VID.
  • UPF sends the multicast data packet to the i-th VID corresponding Through the second multicast internal interface corresponding to the i-th VID, send the multicast data packet from the first reference point or the second reference point corresponding to each local VID member of the VID in the UPF, respectively All local VID members to UPF.
  • Fig. 14 shows a flowchart of a multicast method for a multicast group of a virtual network group provided by an exemplary embodiment of the present application.
  • the method can be executed by SMF, and the method includes:
  • Step 1402 SMF generates at least two sets of multicast rules corresponding to at least two multicast internal interfaces
  • Step 1404 Determine the required multicast rules on each UPF corresponding to the multicast group in at least two sets of multicast rules; the multicast group is a regular multicast group in the virtual network group, or the multicast group is Group identified by VID;
  • Step 1406 SMF configures required multicast rules for each UPF.
  • the at least two multicast internal interfaces include the first multicast internal interface
  • the at least two sets of multicast rules include: the first group of multicast rules corresponding to the first multicast internal interface of each multicast group member, the above steps 1402, step 1404, and step 1406 can be implemented as the following steps, as shown in Figure 15:
  • Step 1402a SMF generates a first group multicast rule corresponding to the first multicast internal interface for each multicast group member
  • Step 1404a Determine the UPF to which each multicast group member belongs as the UPF that requires the first group of multicast rules
  • Step 1406a In the process of each multicast group member establishing a PDU session, the SMF configures the first group multicast rule to the UPF to which each multicast group member belongs.
  • the first group of multicast rules includes: the first PDR rule and the first FAR rule mentioned in the foregoing embodiment, and the fourth PDR rule and the fourth FAR rule.
  • the at least two sets of multicast rules include: group-level second group multicast rules of each multicast group corresponding to the second multicast internal interface .
  • the second group of multicast rules is used to forward the multicast data packets from the third reference point N6, the above step 1402, step 1404, and step 1406 can be implemented as the following steps, as shown in Figure 16:
  • Step 1402b The SMF generates a group-level second group multicast rule of each multicast group corresponding to the second multicast internal interface
  • the second group of multicast rules is used to forward multicast data packets from the third reference point.
  • Step 1404b For the first UPF in each UPF corresponding to the multicast group, according to the collection of the multicast address list of the multicast group to which the local multicast group members on the first UPF belong, all the corresponding group-level The second group of multicast rules is determined to be the multicast rules required in the first UPF.
  • the SMF calculates the collection of the multicast address lists of the multicast groups to which the local multicast group members on the first UPF belong.
  • the SMF determines the second group of multicast rules of all the group levels corresponding to the collection of the multicast address list as the required multicast rules in the first UPF.
  • Step 1406b When the collection of the multicast address list changes, the SMF configures the first UPF with all group-level second group multicast rules corresponding to the collection.
  • the SMF configures the first UPF with all group-level second group multicast rules corresponding to the collection of the multicast address list.
  • the second group of multicast rules includes: the second PDR rule and the second FAR rule; the fifth PDR rule and the fifth FAR rule.
  • the at least two sets of multicast rules include: the third group of multicast rules at the group level of each multicast group corresponding to the second multicast internal interface .
  • the third group of multicast rules is used to forward multicast data packets from the fourth reference point N19, the above step 1402, step 1404, and step 1406 can be implemented as the following steps, as shown in Figure 17:
  • Step 1402c The SMF generates a third group multicast rule of the group level of each multicast group corresponding to the second multicast internal interface;
  • the third group of multicast rules is used to forward the multicast data packet from the fourth reference point N19.
  • Step 1404c1 For the first UPF in each UPF corresponding to the multicast group, determine the multicast address list corresponding to the local multicast group members on the first UPF and the multicast address list corresponding to the local multicast group members on the second UPF The intersection of address lists;
  • Step 1404c2 Determine the third group of multicast rules of all group levels corresponding to the intersection as the required multicast rules in the first UPF and the second UPF.
  • the second UPF is the third group of multicast rules corresponding to each UPF of the multicast group.
  • Step 1406c When the intersection changes, the SMF configures the first UPF and the second UPF respectively with third group multicast rules of all group levels corresponding to the intersection.
  • the SMF configures the first UPF and the second UPF respectively with all group-level third group multicast rules corresponding to the intersection.
  • the third group of multicast rules includes: the third PDR rule and the third FAR rule; the sixth PDR rule and the sixth FAR rule.
  • the at least two sets of multicast rules include: the fourth group of multicast rules at the group level of each multicast group corresponding to the third multicast internal interface .
  • the fourth group of multicast rules is used to forward multicast data packets from the fourth reference point N19, the above step 1402, step 1404, and step 1406 can be implemented as the following steps, as shown in Figure 18:
  • Step 1402c The SMF generates a fourth group multicast rule at the group level of each multicast group corresponding to the third multicast internal interface;
  • the fourth group of multicast rules is used to forward multicast data packets from the fourth reference point N19;
  • Step 1404c1 For the first UPF in each UPF corresponding to the multicast group, determine the multicast address list corresponding to the local multicast group members on the first UPF and the multicast address list corresponding to the local multicast group members on the second UPF The intersection of address lists;
  • Step 1404c2 Determine the fourth group of multicast rules of all group levels corresponding to the intersection as the required multicast rules in the first UPF and the second UPF.
  • the second UPF is the third group of multicast rules in each UPF corresponding to the multicast group.
  • Step 1406c When the intersection changes, the SMF configures the first UPF and the second UPF respectively with the fourth group multicast rules of all group levels corresponding to the intersection.
  • the SMF configures the first UPF and the second UPF respectively with the fourth group of multicast rules at all group levels corresponding to the intersection.
  • the fourth group of multicast rules includes: the seventh PDR rule and the seventh FAR rule; the eighth PDR rule and the eighth FAR rule.
  • N6 and N19 are responsible for sending the multicast data packets received by N6 and N19 to the multicast internal interface, and forwarding the data sent from the multicast internal interface to the PDR and FAR of N6 and N19, which are used by virtual network groups
  • the four N4 sessions at the group level are independent of each UE’s N4 session (a UE establishes a PDU session and there is a PDU session level N4 session), that is, these four N4 sessions are all virtual network groups N4 sessions shared by all members (the function is equivalent to these 4 sessions to be used by all members of the virtual network group, but it does not need to be defined separately for each member).
  • FIG. 19 shows a flowchart of PDU session establishment requested by the UE (for non-roaming and local grooming roaming scenarios).
  • FIG. 19 please refer to the description of Figure 4.3.2.2.2 in the standard 23.502 in the 3GPP, which will not be repeated here.
  • each UE in the virtual network group needs to establish a PDU session.
  • SMF can set the first group of multicast rules (the first PDR rule) during the N4 session in step 10a "that is, the N4 session establishment/modification request sent by the SMF to the UPF" ,
  • the first FAR rule, the fourth PDR rule, and the fourth FAR rule are configured into the UPF.
  • SMF can combine the second group multicast rules (second PDR rules, second FAR rules, and second PDR rules, second FAR rules, The five PDR rules and the fifth FAR rule) are issued to the corresponding UPF.
  • SMF can combine the third group multicast rules (third PDR rules, third FAR rules, and third PDR rules, third FAR rules, and third PDR rules) related to the N19 interface at the group level in the "UPF selection process" in step 8.
  • third PDR rules, third FAR rules, and third PDR rules, third FAR rules, and third PDR rules related to the N19 interface at the group level in the "UPF selection process" in step 8.
  • Six PDR rules and sixth FAR rules are issued to the corresponding UPF.
  • SMF can combine the fourth group of multicast rules (the seventh PDR rule, the seventh FAR rule, the seventh PDR rule, the seventh FAR rule, and the seventh PDR rule) related to the N19 interface at the group level in the "UPF selection process" of step 8.
  • the eighth PDR rule and the eighth FAR rule) are issued to the corresponding UPF.
  • FIG. 20 shows a flow chart of PDU session establishment requested by the UE (used in a home route roaming scenario).
  • step 10 UPF selection process
  • step 12a N4 session creation request
  • step 4 UPF selection process
  • step 5 N4 Session Creation Request
  • the PDR rule and the FAR rule include a multicast address list.
  • the multicast address list is changed (added, modified or deleted), the corresponding PDR rules and FAR rules all need to be modified.
  • the first group of multicast rules includes the first multicast address list.
  • the UPF corresponding to each multicast group member in the multicast group Update the first multicast address list.
  • the second group of multicast rules includes a second list of multicast addresses.
  • a multicast address in the second list of multicast addresses is added, modified, or deleted, the UPF that requires the second group of multicast rules is determined again;
  • the UPF of the second group multicast rule updates the second multicast address list.
  • the third group of multicast rules includes the third multicast address list.
  • a multicast address in the third multicast address list is added, modified, or deleted, the UPF that requires the third group of multicast rules is determined again;
  • the UPF of the three-group multicast rule updates the third multicast address list.
  • the fourth group of multicast rules includes the third multicast address list.
  • a multicast address in the third multicast address list is added, modified or deleted, the UPF that requires the fourth group of multicast rules is re-determined;
  • the UPF of the four-group multicast rule updates the third multicast address list.
  • the first group of multicast rules includes the first VID list.
  • the UPF corresponding to each multicast group member in the multicast group is updated to the first VID List.
  • the second group of multicast rules includes a second VID list.
  • a multicast address in the second VID list is added, modified, or deleted, the UPF that requires the second group of multicast rules is determined again;
  • the regular UPF updates the second VID list.
  • the third group of multicast rules includes the third VID list.
  • the multicast address in the third VID list is added, modified, or deleted, the UPF that requires the third group of multicast rules is re-determined; the third group of multicast addresses is required
  • the regular UPF updates the third VID list.
  • the fourth group of multicast rules includes the third VID list.
  • the multicast address in the third VID list is added, modified or deleted, the UPF that requires the fourth group of multicast rules is re-determined; the fourth group of multicast addresses is required
  • the regular UPF updates the third VID list.
  • Figure 21 shows a flowchart of PDU session modification requested by the UE or the network (for non-roaming and local breakthrough roaming scenarios).
  • the process of SMF modifying the multicast address list can be performed in any of the steps in step 2a "N4 session creation/modification request", step 8a "N4 session modification request” and step 12a "N4 session modification request”.
  • step 2a N4 session creation/modification request
  • step 8a N4 session modification request
  • step 12a N4 session modification request
  • Figure 22 shows a flow chart of PDU session modification requested by the UE or the network (used in a home route roaming scenario).
  • the process of SMF modifying the multicast address list can be performed in step 16a "N4 Session Modification Request" between H-SMF and H-UPF.
  • N4 Session Modification Request For the detailed description of Figure 22, refer to the description of Figure 4.3.2.2.2-1 in the standard 23.502 in the 3GPP, which will not be repeated here.
  • the first group multicast rule corresponding to the multicast group member is run on a new or relocated PDU session on another UPF.
  • the above method further includes:
  • the second group of multicast rules is determined as the required multicast rules in the third UPF.
  • the above method further includes:
  • the fifth UPF is the division of each UPF corresponding to the multicast group UPF other than the fourth UPF;
  • the fourth UPF and the fifth UPF are respectively configured with third group multicast rules of all group levels corresponding to the intersection.
  • the above method further includes:
  • the sixth UPF and the seventh UPF are respectively configured with fourth group multicast rules of all group levels corresponding to the intersection.
  • Fig. 23 shows a block diagram of a multicast device for a multicast group of a virtual network group provided by an exemplary embodiment of the present application.
  • the device can be implemented as part of the first UPF.
  • the device includes:
  • the receiving module 2320 is configured to receive a multicast data packet sent by a member of the virtual network group, and the destination address of the multicast data packet is a multicast address;
  • the sending module 2340 is used to send the multicast data packet to the target multicast internal interface among at least two multicast internal interfaces, and send the multicast data packet to all or all members of the virtual network group through the target multicast internal interface Member of the local multicast group.
  • a multicast group is a conventional multicast group in a virtual network group, or a multicast group is a group identified by a virtual local area network identifier VID, a multicast group member is a VID member, and a multicast data packet is a broadcast address using a VID Packets sent.
  • the at least two multicast internal interfaces include: a first multicast internal interface and a second multicast internal interface;
  • the sending module 2340 is used to send the multicast data packet to the first multicast internal interface when the multicast data packet is from the first reference point or the second reference point, and send the multicast data packet to the first multicast internal interface through the first multicast internal interface.
  • the multicast data packet is sent from the first reference point or the second reference point or the third reference point or the fourth reference point corresponding to each multicast group member in the multicast group to all the multicast group members of the multicast group;
  • the sending module 2340 is used to send the multicast data packet to the second multicast internal interface when the multicast data packet is the multicast data from the third reference point or the fourth reference point, and send the multicast data packet to the second multicast internal interface through the second multicast internal interface.
  • the multicast data packet is sent from the first reference point or the second reference point respectively corresponding to each local multicast group member of the first UPF in the multicast group to all local multicast group members of the multicast group;
  • the first reference point is the reference point between the access network and the first UPF
  • the second reference point is the reference point between the first UPF and the internal UPF
  • the third reference point is between the first UPF and the data network
  • the fourth reference point is the reference point between the first UPF and other PSA UPFs.
  • the at least two multicast internal interfaces include: a first multicast internal interface, a second multicast internal interface, and a third multicast internal interface;
  • the sending module 2340 is used to send the multicast data packet to the first multicast internal interface when the multicast data packet is from the first reference point or the second reference point, and send the multicast data packet to the first multicast internal interface through the first multicast internal interface.
  • the multicast data packet is sent from the first reference point or the second reference point or the third reference point or the fourth reference point corresponding to each multicast group member in the multicast group to all the multicast group members of the multicast group;
  • the sending module 2340 is used to send the multicast data packet to the second multicast internal interface when the multicast data packet is from the third reference point, and send the multicast data packet from the second multicast internal interface
  • the first reference point or the second reference point corresponding to each local multicast group member in the first UPF in the multicast group is sent to all local multicast group members of the multicast group;
  • the sending module 2340 is used to send the multicast data packet to the third multicast internal interface when the multicast data packet is from the fourth reference point, and send the multicast data packet from the third multicast internal interface
  • the first reference point or the second reference point respectively corresponding to each local multicast group member in the first UPF in the multicast group is sent to all local multicast group members of the multicast group;
  • the first reference point is the reference point between the access network and the first UPF
  • the second reference point is the reference point between the first UPF and the internal UPF
  • the third reference point is between the first UPF and the data network
  • the fourth reference point is the reference point between the first UPF and other PSA UPFs.
  • the first PDR rule and the first FAR rule corresponding to the multicast group members in the multicast group are set in the UPF;
  • the sending module 2340 is used to send the multicast data packet to the first multicast through the first FAR rule when it is detected through the first PDR rule that the multicast data packet is the multicast data from the first reference point or the second reference point Internal interface.
  • the first PDR rule includes: the source interface is set as the access side, the destination address is set as the first multicast address list to which the members of the multicast group belong, and the core The network tunnel information is set as the tunnel header of the first reference point or the second reference point of the protocol data unit PDU session; the first FAR rule includes: the target interface is set as the first multicast internal interface;
  • the i-th first multicast internal interface corresponds to the i-th multicast address in the first multicast address list, and the i-th multicast address is the multicast in the multicast packet Address
  • the first PDR rule includes: the source interface is set to the access side, the destination address is set to the i-th multicast address, and the core network tunnel information is set to the tunnel head of the first reference point or the second reference point of the PDU session;
  • a FAR rule includes: the target interface is set to the i-th first multicast internal interface, m is a positive integer, and i is an integer not greater than m;
  • the first PDR rule includes: the source interface is set as the access side, the destination address is set as the first VID list and broadcast address to which the VID member belongs, and the core network tunnel information is set as the first part of the PDU session.
  • the reference point or the tunnel head of the second reference point includes: the target interface is set as the first multicast internal interface;
  • the i-th first multicast internal interface corresponds to the i-th VID in the first VID list.
  • the i-th VID and broadcast address are the multicast addresses in the multicast data packet.
  • a PDR rule includes: the source interface is set to the access side, the target address is set to the i-th VID and broadcast address, the core network tunnel information is set to the tunnel head of the first reference point or the second reference point of the PDU session; the first FAR The rules include: the target interface is set to the i-th first multicast internal interface, m is a positive integer, and i is an integer not greater than m.
  • the multicast address in the multicast data packet is a multicast address in the first multicast address list; or, the multicast address in the multicast data packet is a multicast address in the first VID list A VID.
  • the second PDR rule and the second FAR rule corresponding to the group-level session are set in the UPF, and the group-level session is UPF and Conversations between SMFs;
  • the sending module 2340 is configured to send the multicast data packet to the second multicast internal interface through the second FAR rule when it is detected through the second PDR rule that the multicast data packet is the multicast data from the third reference point.
  • the second PDR rule includes: the source interface is set to the core side, and the target address is set to the second multicast address list; the second FAR rule includes: the target interface Set as the second multicast internal interface;
  • the i-th second multicast internal interface corresponds to the i-th multicast address in the second multicast address list, and the i-th multicast address is the multicast in the multicast packet Address
  • the second PDR rule includes: the source interface is set to the core side, and the destination address is set to the i-th multicast address
  • the second FAR rule includes: the target interface is set to the i-th second multicast internal interface, and m is a positive integer , I is an integer not greater than m;
  • the second PDR rule includes: the source interface is set to the core side, and the target address is set to the second VID list to which the VID members belong and the broadcast address; the second FAR rule includes: the target interface is set to second Multicast internal interface;
  • the i-th second multicast internal interface corresponds to the i-th VID in the second VID list.
  • the i-th VID and broadcast address are the multicast addresses in the multicast data packet.
  • Two PDR rules include: the source interface is set to the core side, the target address is set to the i-th VID and broadcast address; the second FAR rule includes: the target interface is set to the i-th second multicast internal interface, m is a positive integer, i Is an integer not greater than m.
  • the second multicast address list is the multicast address list of all the multicast groups in the virtual network group; or, the second multicast address list is all the local multicast group members of the first UPF The collection of multicast address lists of the multicast group; or, the second VID list is the VID list of all VIDs in the virtual network group; or, the second VID list is the VID list of all local VID members of the first UPF Collection.
  • the third PDR rule and the third FAR rule corresponding to the group-level session are set in the first UPF.
  • the session is the session between the first UPF and SMF;
  • the sending module 2340 is configured to send the multicast data packet to the second multicast internal interface according to the third FAR rule when it is detected through the third PDR rule that the multicast data packet is the multicast data from the fourth reference point.
  • the third PDR rule includes: the source interface is set to the core side, the destination address is set to the third multicast address list, and the core network tunnel information is set to fourth Reference point tunnel head; the third FAR rule includes: the target interface is set as the second multicast internal interface;
  • the i-th second multicast internal interface corresponds to the i-th multicast address in the third multicast address list, and the i-th multicast address is the multicast in the multicast packet
  • the third PDR rule includes: the source interface is set to the core side, the destination address is set to the i-th multicast address, and the core network tunnel information is set to the fourth reference point tunnel head; the third FAR rule includes: the target interface is set to the first i second multicast internal interface, m is a positive integer, i is an integer not greater than m;
  • the third PDR rule includes: the source interface is set to the core side, the destination address is set to the third VID list and broadcast address of the VID member, and the core network tunnel information is set to the fourth reference point tunnel header ;
  • the third FAR rule includes: the target interface is set to the second multicast internal interface;
  • the i-th second multicast internal interface corresponds to the i-th VID and broadcast address in the third VID list and the broadcast address.
  • the i-th VID and broadcast address are in the multicast packet
  • the third PDR rule includes: the source interface is set to the core side, the target address is set to the i-th VID and broadcast address, and the core network tunnel information is set to the fourth reference point tunnel head; the third FAR rule includes: target The interface is set to the i-th second multicast internal interface, m is a positive integer, and i is an integer not greater than m.
  • the third multicast address list is a list of multicast addresses of all multicast groups in the virtual network group; or, the third multicast address list is a member of the local multicast group of the first UPF The intersection of the multicast address list of the multicast group and the multicast address list of the multicast group to which the local multicast group members of the second UPF belong, the second UPF is connected to the first UPF through the fourth reference point; or, the third VID The list is the VID list of all VIDs in the virtual network group; or, the third VID list is the intersection of the VID list to which the local VID members of the first UPF belong and the VID list to which the local VID members of the second UPF belong, and the second UPF is Connect to the first UPF through the fourth reference point.
  • a fourth PDR rule and a fourth FAR rule corresponding to multicast group members in the multicast group are set in the first UPF;
  • the sending module 2340 is used to send the multicast data packet from each multicast group of the multicast group through the fourth FAR rule when it is detected through the fourth PDR rule that the multicast data packet is the multicast data from the first multicast internal interface
  • the first reference point or the second reference point or the third reference point or the fourth reference point corresponding to the group members are sent to all the multicast group members of the multicast group.
  • the fourth PDR rule includes: the source port is set to the first multicast internal interface, and the destination address is the first multicast address list to which the members of the multicast group belong ;
  • the fourth FAR rule includes: the external header creates tunnel information indicating the first reference point or the second reference point, and the target interface is the access side; or, the fourth FAR rule also includes: the external header creates information indicating the third reference point , The target interface is the core side; or, the fourth FAR rule further includes: the external header creates tunnel information indicating the fourth reference point, and the target interface is the core side;
  • the fourth PDR rule includes: the source port is set to the i-th first multicast internal interface, and the destination address is the i-th multicast address;
  • the fourth FAR rule includes: the external header creates the first reference point or the second reference Point tunnel information, the target interface is the access side; or, the fourth FAR rule also includes: external header creation information indicating the third reference point, and the target interface is the core side; or, the fourth FAR rule also includes: external header creation Indicates the tunnel information of the fourth reference point, and the target interface is the core side;
  • the fourth PDR rule includes: the source port is set to the first multicast internal interface, and the destination address is the first VID list to which the VID member belongs and the broadcast address; the fourth FAR rule includes: external header creation Indicate the tunnel information of the first reference point or the second reference point, the target interface is the access side; or, the fourth FAR rule also includes: the external header creates information indicating the third reference point, and the target interface is the core side; or, Four FAR rules also include: the external header creates tunnel information indicating the fourth reference point, and the target interface is the core side;
  • the four PDR rules include: the source port is set to the i-th first multicast internal interface, the destination address is the i-th VID and the broadcast address; the fourth FAR rule includes: the external header is created to indicate the first reference point or the second reference point Tunnel information, the target interface is the access side; or, the fourth FAR rule further includes: external header creation information indicating the third reference point, and the target interface is the core side; or, the fourth FAR rule further includes: external header creation instruction Tunnel information of four reference points, the target interface is the core side;
  • n is a positive integer
  • i is an integer not greater than m.
  • the fifth PDR rule and the fifth FAR rule corresponding to the group-level session are set in the first UPF;
  • the session is the session between the first UPF and SMF;
  • the sending module 2340 is used to send the multicast data packet from the multicast group in the first UPF through the fifth FAR rule when it is detected through the fifth PDR rule that the multicast data packet is the multicast data of the second multicast internal interface.
  • the first reference point or the second reference point corresponding to each local multicast group member is sent to all local multicast group members of the multicast group.
  • the fifth PDR rule includes: the source port is set to the second multicast internal interface, and the destination address is the second multicast address list of VID; the fifth FAR The rules include: the external header creates tunnel information indicating the first reference point or the second reference point, and the target interface is the access side;
  • the fifth PDR rule includes: the source port is set to the i-th second multicast internal interface, and the destination address is the i-th multicast address;
  • the fifth FAR rule includes: the external header is created to indicate the first reference point or the 2.
  • the tunnel information of the reference point, the target interface is the access side, m is a positive integer, and i is an integer not greater than m;
  • the fifth PDR rule includes: the source port is set to the second multicast internal interface, and the target address is the second VID list and broadcast address of the VID to which the VID member belongs; the fifth FAR rule includes: The external head creates tunnel information indicating the first reference point or the second reference point, and the target interface is the access side;
  • the fifth PDR rule includes: the source port is set to the i-th second multicast internal interface, the destination address is the i-th VID and the broadcast address; the fifth FAR rule includes: the external header creation instruction first reference The tunnel information of the point or the second reference point, the target interface is the access side, m is a positive integer, and i is an integer not greater than m.
  • the sixth PDR rule and the sixth FAR rule corresponding to the group-level session are set in the first UPF;
  • the group-level The session is the session between the first UPF and SMF;
  • the sending module 2340 is used to send the multicast data packet from the multicast group to the first UPF through the sixth FAR rule when it is detected through the sixth PDR rule that the multicast data packet is the multicast data of the second multicast internal interface.
  • the first reference point or the second reference point corresponding to each local multicast group member is sent to all local multicast group members of the multicast group.
  • the sixth PDR rule includes: the source port is set to the second multicast internal interface, and the destination address is the third multicast address list; the sixth FAR rule includes : The external header creates tunnel information indicating the first reference point or the second reference point, and the target interface is the access side;
  • the sixth PDR rule includes: the source port is set to the i-th second multicast internal interface, and the destination address is the i-th multicast address;
  • the sixth FAR rule includes: the external header creation indicates the first reference point or the second reference The tunnel information of the point, the target interface is the access side, m is a positive integer, and i is an integer not greater than m;
  • the sixth PDR rule includes: the source port is set to the second multicast internal interface, and the destination address is the third VID list to which the VID member belongs and the broadcast address;
  • the sixth FAR rule includes: external header creation Indicates the tunnel information of the first reference point or the second reference point, and the target interface is the access side;
  • the i-th second multicast internal interface corresponds to the i-th VID in the third VID list.
  • the i-th VID and broadcast address are the multicast addresses in the multicast data packet.
  • Six PDR rules include: the source port is set to the i-th second multicast internal interface, the destination address is the i-th VID and the broadcast address; the sixth FAR rule includes: the external header creates an indication of the first reference point or the second reference point Tunnel information, the target interface is the access side, m is a positive integer, and i is an integer not greater than m.
  • the seventh PDR rule and the seventh FAR rule corresponding to the group-level session are set in the first UPF.
  • the session is the session between the first UPF and SMF;
  • the sending module 2340 is configured to send the multicast data packet to the third multicast internal interface through the seventh FAR rule when it is detected through the seventh PDR rule that the multicast data packet is the multicast data from the fourth reference point.
  • the seventh PDR rule includes: the source interface is set to the core side, the destination address is set to the third multicast address list, and the core network tunnel information is set to fourth Reference point tunnel head; the seventh FAR rule includes: the target interface is set to the third multicast internal interface;
  • the seventh PDR rule includes: the source interface is set to the core side, the destination address is set to the i-th multicast address, and the core network tunnel information is set to the fourth reference point tunnel head;
  • the seventh FAR rule includes: target interface setting Is the i-th third multicast internal interface, m is a positive integer, and i is an integer not greater than m;
  • the seventh PDR rule includes: the source interface is set to the core side, the destination address is set to the third VID list and broadcast address of the VID to which the VID member belongs, and the core network tunnel information is set to fourth Reference point tunnel head; the seventh FAR rule includes: the target interface is set to the third multicast internal interface;
  • the seventh PDR rule includes: the source interface is set to the core side, the destination address is set to the i-th VID and broadcast address, and the core network tunnel information is set to the fourth reference point tunnel header; the seventh FAR rule includes : The target interface is set to the i-th third multicast internal interface, m is a positive integer, and i is an integer not greater than m.
  • the eighth PDR rule and the eighth FAR rule corresponding to the group-level session are set in the first UPF;
  • the group-level The session is the session between the first UPF and SMF;
  • the sending module 2340 is used to send the multicast data packet from the multicast group in the first UPF through the eighth FAR rule when it is detected through the eighth PDR rule that the multicast data packet is the multicast data of the third multicast internal interface.
  • the first reference point or the second reference point corresponding to each local multicast group member is sent to all local multicast group members of the multicast group.
  • the seventh PDR rule includes: the source interface is set to the core side, the destination address is set to the third multicast address list, and the core network tunnel information is set to fourth Reference point tunnel head; the seventh FAR rule includes: the target interface is set to the third multicast internal interface;
  • the seventh PDR rule includes: the source interface is set to the core side, the destination address is set to the i-th multicast address, and the core network tunnel information is set to the fourth reference point tunnel head; the seventh FAR rule includes: the target interface is set to the first i third multicast internal interface, m is a positive integer, i is an integer not greater than m;
  • the seventh PDR rule includes: the source interface is set to the core side, the destination address is set to the third VID list and broadcast address to which the VID member belongs, and the core network tunnel information is set to the fourth reference point tunnel Header; the seventh FAR rule includes: the target interface is set to the third multicast internal interface;
  • the i-th third multicast internal interface corresponds to the i-th VID in the third VID list.
  • the i-th VID and broadcast address are the multicast addresses in the multicast data packet.
  • Seven PDR rules include: the source interface is set to the core side, the target address is set to the i-th VID and broadcast address, the core network tunnel information is set to the fourth reference point tunnel head; the seventh FAR rule includes: the target interface is set to the i-th For the third multicast internal interface, m is a positive integer, and i is an integer not greater than m.
  • Fig. 23 shows a block diagram of a multicast device for a virtual network group provided by an exemplary embodiment of the present application.
  • the device can be implemented as part of the session management function SMF.
  • the device includes:
  • a generating module 2320 configured to generate at least two sets of multicast rules corresponding to at least two multicast internal interfaces
  • the determining module 2330 is used to determine the required multicast rules on each UPF corresponding to the multicast group among at least two sets of multicast rules;
  • the multicast group is a conventional multicast group in a virtual network group, or, a multicast A group is a group identified by VID;
  • the configuration module 2340 is used to configure required multicast rules for each UPF
  • the at least two multicast internal interfaces include: a first multicast internal interface; at least two sets of multicast rules include: the first multicast internal interface of each multicast group member corresponding to the first multicast internal interface A set of multicast rules;
  • the determining module 2330 is configured to determine the UPF to which each multicast group member belongs as the UPF that requires the first group of multicast rules;
  • the configuration module 2340 is configured to configure the first group of multicast rules to the UPF to which each multicast group member belongs during the process of each multicast group member establishing a protocol data unit PDU session.
  • the first group of multicast rules includes:
  • the first PDR rule and the first FAR rule are The first PDR rule and the first FAR rule
  • the fourth PDR rule and the fourth FAR rule are The fourth PDR rule and the fourth FAR rule.
  • the at least two multicast internal interfaces include: a second multicast internal interface, and the multicast rule includes: a group-level second group multicast rule corresponding to the second multicast internal interface, The second group of multicast rules is used to forward multicast data packets from the third reference point;
  • the determining module 2330 is configured to, for the first UPF in each UPF corresponding to the multicast group, gather all the corresponding groups according to the collection of the multicast address lists of the multicast groups to which the local multicast group members on the first UPF belong
  • the second group multicast rule at the group level is determined as the multicast rule required in the first UPF;
  • the configuration module 2340 is configured to configure the first UPF with all group-level second group multicast rules corresponding to the collection of the multicast address list when the collection changes.
  • the second group of multicast rules includes:
  • the fifth PDR rule and the fifth FAR rule are The fifth PDR rule and the fifth FAR rule.
  • the at least two multicast internal interfaces include: a second multicast internal interface, and the multicast rule includes: a group-level third group multicast rule corresponding to the second multicast internal interface, The third group of multicast rules is used to forward multicast data packets from the fourth reference point;
  • the determining module 2330 is configured to determine, for the first UPF in each UPF corresponding to the multicast group, the multicast address list corresponding to the local multicast group members on the first UPF and the corresponding local multicast group members on the second UPF The intersection of the list of multicast addresses; the third group of multicast rules of all group levels corresponding to the intersection is determined as the multicast rules required in the first UPF and the second UPF, and the second UPF is the multicast rule corresponding to the multicast group UPFs other than the first UPF in each UPF;
  • the configuration module 2340 is configured to configure the first UPF and the second UPF respectively with the third group multicast rules of all group levels corresponding to the intersection when the intersection changes.
  • the third group of multicast rules includes:
  • the sixth PDR rule and the sixth FAR rule are The sixth PDR rule and the sixth FAR rule.
  • the at least two multicast internal interfaces include: a third multicast internal interface
  • the multicast rules include: a fourth group multicast rule at the group level corresponding to the third multicast internal interface, The fourth group of multicast rules is used to forward multicast data packets from the fourth reference point;
  • the determining module 2330 is configured to determine, for the first UPF in each UPF corresponding to the multicast group, the multicast address list corresponding to the local multicast group members on the first UPF and the corresponding local multicast group members on the second UPF The intersection of the list of multicast addresses; the fourth group of multicast rules of all the group levels corresponding to the intersection is determined as the required multicast rule in the first UPF and the second UPF, and the second UPF is the corresponding multicast group UPFs other than the first UPF in each UPF;
  • the configuration module 2340 is configured to configure the first UPF and the second UPF respectively with the fourth group multicast rule of all group levels corresponding to the intersection when the intersection changes.
  • the fourth group of multicast rules includes:
  • the seventh PDR rule and the seventh FAR rule are The seventh PDR rule and the seventh FAR rule.
  • the first group of multicast rules includes the first multicast address list:
  • the configuration module 2340 is configured to update the first multicast address list with the UPF corresponding to each multicast group member in the multicast group when the multicast address in the first multicast address list is added, modified or deleted.
  • the second group of multicast rules includes a second list of multicast addresses:
  • the configuration module 2340 is used to re-determine the UPF that requires the second group of multicast rules when the multicast address in the second multicast address list is added, modified or deleted; update to the UPF that requires the second group of multicast rules The second multicast address list.
  • the third group of multicast rules includes a third multicast address list:
  • the configuration module 2340 is used to re-determine the UPF that requires the third group of multicast rules when the multicast address in the third multicast address list is added, modified or deleted; update to the UPF that requires the third group of multicast rules The third multicast address list.
  • the fourth group of multicast rules includes a third list of multicast addresses:
  • the configuration module 2340 is used to re-determine the UPF that requires the fourth group of multicast rules when the multicast address in the third multicast address list is added, modified or deleted; update to the UPF that requires the fourth group of multicast rules The third multicast address list.
  • the first group of multicast rules includes the first VID list:
  • the configuration module 2340 is configured to update the first VID list with the UPF corresponding to each multicast group member in the multicast group when a VID in the first VID list is added, modified or deleted.
  • the second group multicast rule includes a second VID list:
  • the configuration module 2340 is used to re-determine the UPF that requires the second group of multicast rules when the VID in the second VID list is added, modified or deleted; update the second VID list to the UPF that requires the second group of multicast rules .
  • the third group of multicast rules includes a third VID list:
  • the configuration module 2340 is used to re-determine the UPF that requires the third group of multicast rules when the VID in the third VID list is added, modified or deleted; update the third VID list to the UPF that requires the third group of multicast rules .
  • the fourth group of multicast rules includes a third VID list:
  • the configuration module 2340 is used to re-determine the UPF that requires the fourth group of multicast rules when the VID in the third VID list is added, modified or deleted; update the third VID list to the UPF that requires the fourth group of multicast rules .
  • the device further includes:
  • the configuration module 2340 is used for when a multicast group member moves from one UPF to another UPF, the first group multicast rule corresponding to the multicast group member is run on a new or relocated PDU session on another UPF.
  • the device further includes:
  • the configuration module 2340 is used to calculate the collection of the multicast address lists of the multicast groups that the local multicast group members on the third UPF belong to when a multicast group member moves from the first UPF to the third UPF, and the corresponding collections
  • the second group of multicast rules of all group levels are determined as the required multicast rules in the third UPF; the second group of multicast rules of all group levels corresponding to the collection is configured to the third UPF.
  • the device further includes:
  • the configuration module 2340 is used to calculate the multicast address list corresponding to the local multicast group member on the fourth UPF and the local multicast group on the fifth UPF when a multicast group member moves from the first UPF to the fourth UPF.
  • the intersection of the multicast address lists corresponding to the members; the third group of multicast rules of all group levels corresponding to the intersection is determined as the required multicast rules in the fourth UPF and the fifth UPF, and the fifth UPF corresponds to the multicast group In each UPF except the fourth UPF; when the intersection changes, the fourth UPF and the fifth UPF are respectively configured with the third group multicast rules of all group levels corresponding to the intersection.
  • the device further includes:
  • the configuration module 2340 is used to calculate the multicast address list corresponding to the local multicast group member on the sixth UPF and the local multicast group on the seventh UPF when a multicast group member moves from the first UPF to the sixth UPF.
  • the intersection of the multicast address lists corresponding to the members; the fourth group multicast rule of all group levels corresponding to the intersection is determined as the multicast rule required in the sixth UPF and the seventh UPF.
  • the seventh UPF corresponds to the multicast group Each UPF except the sixth UPF in each UPF; when the intersection changes, the sixth UPF and the seventh UPF are respectively configured with the fourth group multicast rules of all group levels corresponding to the intersection.
  • Fig. 25 shows a block diagram of a computer device provided by an exemplary embodiment of the present application.
  • the computer device 2500 includes a central processing unit (CPU) 2501, a system memory 2504 including a random access memory (RAM) 2502 and a read-only memory (ROM) 2503, and a connection between the system memory 2504 and the central processing unit 2501
  • the computer device 2500 also includes a basic input/output system (I/O system) 2506 that helps to transfer information between various devices in the computer, and a large capacity for storing the operating system 2513, application programs 2514, and other program modules 2515.
  • the basic input/output system 2506 includes a display 2508 for displaying information and an input device 2509 such as a mouse and a keyboard for the user to input information.
  • the display 2508 and the input device 2509 are both connected to the central processing unit 2501 through the input and output controller 2510 connected to the system bus 2505.
  • the basic input/output system 2506 may also include an input and output controller 2510 for receiving and processing input from multiple other devices such as a keyboard, a mouse, or an electronic stylus.
  • the input and output controller 2510 also provides output to a display screen, a printer, or other types of output devices.
  • the mass storage device 2507 is connected to the central processing unit 2501 through a mass storage controller (not shown) connected to the system bus 2505.
  • the mass storage device 2507 and its associated computer-readable medium provide non-volatile storage for the computer device 2500. That is, the mass storage device 2507 may include a computer-readable medium (not shown) such as a hard disk or a CD-ROM drive.
  • the computer-readable media may include computer storage media and communication media.
  • Computer storage media includes volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storing information such as computer readable instructions, data structures, program modules or other data.
  • Computer storage media include RAM, ROM, EPROM, EEPROM, flash memory or other solid-state storage technologies, CD-ROM, DVD or other optical storage, tape cartridges, magnetic tape, disk storage or other magnetic storage devices.
  • RAM random access memory
  • ROM read-only memory
  • EPROM Erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • the memory stores one or more programs, the one or more programs are configured to be executed by one or more central processing units 2501, and the one or more programs contain instructions for implementing the multicast method of the virtual network group mentioned above.
  • the processing unit 2501 executes the one or more programs to implement the multicast method of the multicast group of the virtual network group provided in the foregoing method embodiments.
  • the computer device 2500 may also be connected to a remote computer on the network through a network such as the Internet to run. That is, the computer device 2500 can be connected to the network 2512 through the network interface unit 2511 connected to the system bus 2505, or in other words, the network interface unit 2511 can also be used to connect to other types of networks or remote computer systems (not shown) ).
  • a user plane function runs on the computer device
  • the computer device includes: a processor and a memory; a computer program is stored in the memory, and the computer program is loaded and executed by the processor to implement The multicast method of the multicast group of the virtual network group as described in the above aspect.
  • a session management function runs on the computer device, the computer device includes: a processor and a memory; a computer program is stored in the memory, and the computer program is loaded and executed by the processor to implement The multicast method of the multicast group of the virtual network group as described in the above aspect.
  • a computer-readable storage medium stores at least one instruction, at least one program, code set or instruction set, the at least one instruction, the At least one program, the code set or the instruction set is loaded and executed by the processor to implement the multicast method of the multicast group of the virtual network group as described in the above aspect.
  • a computer program product stores at least one instruction, at least one program, code set or instruction set, the at least one instruction, the at least one program, The code set or instruction set is loaded and executed by the processor to implement the multicast method of the multicast group of the virtual network group as described in the above aspect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Multimedia (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种虚拟网络群组的组播组的组播方法、装置、设备及系统,连接到通信领域。所述方法包括:接收所述虚拟网络群组的一个成员发送的组播数据包,所述组播数据包的目的地址是组播地址;将所述组播数据包发送至至少两个组播内部接口中的目标组播内部接口;通过所述目标组播内部接口将所述组播数据包发送至所述虚拟网络群组的全部成员或全部本地组播组成员。本申请实现了在5G VN中的组播通信。

Description

虚拟网络群组的组播组的组播方法、装置、设备及系统
本申请要求于2019年6月17日提交的申请号为201910523828.8、发明名称为“虚拟网络群组的组播组的组播方法、装置、设备及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,特别涉及一种虚拟网络群组的组播组的组播方法、装置、设备及系统。
背景技术
在5G系统中引入了以太网(Ethernet)通信。
在新空口NR(New Radio,NR)系统的版本16(Release 16)中引入了支持IP与以太网通信的5G虚拟网络群组(5G Virtual Network Group,5G VN Group)的定义。并且提出了一种基于用户平面功能网络接口,在5G VN Group中实现一对一通信的方法。
但是相关技术中的5G VN Group无法实现一对多通信的解决方案。
发明内容
本申请实施例提供了一种虚拟网络群组的组播组的组播方法、装置、设备及系统,通过在UPF提供至少两个广播内部接口,使用至少两个广播内部接口中的目标广播内部接口,将组播数据包发送至组播组的全部成员或全部本地成员,从而在虚拟网络群组中实现一对多通信的解决方案。所述技术方案如下:
根据本申请的一个方面,提供了一种虚拟网络群组的组播组的组播方法,所述方法应用于用户平面功能(User Plane Function,UPF)中,所述方法包括:
接收所述虚拟网络群组的一个成员发送的组播数据包,所述组播数据包的目的地址是组播地址;
将所述组播数据包发送至至少两个组播内部接口中的目标组播内部接口,通过所述目标组播内部接口将所述组播数据包发送至所述组播组的全部组播组成员或全部本地组播组成员;
其中,所述组播组是所述虚拟网络群组中的常规组播组,或者,所述组播组是采用虚拟局域网标识(Virtual Local Area Network Identify,VID)标识的组,所述组播组成员是VID成员,所述组播数据包是采用所述VID的广播地址发送的数据包。
根据本申请的另一方面,提供了一种虚拟网络群组的组播组的组播方法,所述方法应用于会话管理功能(Session Management Function,SMF)中,所述方法包括:
生成至少两个组播内部接口对应的至少两组组播规则;
在所述至少两组组播规则中,确定所述组播组对应的每个UPF上需要的组播规则;所述组播组是所述虚拟网络群组中的常规组播组,或者,所述组播组是采用VID标识的组;
向所述每个UPF配置需要的所述组播规则。
根据本申请的另一方面,提供了一种虚拟网络群组的组播组的组播装置,所述装置包括:
接收模块,用于接收所述虚拟网络群组的一个成员发送的组播数据包,所述组播数据包的目的地址是组播地址;
发送模块,用于将所述组播数据包发送至至少两个组播内部接口中的目标组播内部接口,通过所述目标组播内部接口将所述组播数据包发送至所述组播组的全部组播组成员或全部本地组播组成员;
其中,所述组播组是所述虚拟网络群组中的常规组播组,或者,所述组播组是采用VID标识的组,所述组播组成员是VID成员,所述组播数据包是采用所述VID的广播地址发送的数据包。
根据本申请的另一方面,提供了一种虚拟网络群组的组播组的组播装置,所述装置包括:
生成模块,用于生成至少两个组播内部接口对应的至少两组组播规则;
确定模块,用于在所述至少两组组播规则中,确定所述组播组对应的每个UPF上需要的组播规则;所述组播组是所述虚拟网络群组中的常规组播组,或者,所述组播组是采用VID标识的组;
配置模块,用于向所述每个UPF配置需要的所述组播规则。
根据本申请的另一方面,提供了一种计算机设备,所述计算机设备上运行有用户平面功能,所述计算机设备包括:处理器和存储器;所述存储器中存储有计算机程序,所述计算机程序由所述处理器加载并执行以实现如上方面所述的虚拟网络群组的组播组的组播方法。
根据本申请的另一方面,提供了一种计算机设备,所述计算机设备上运行有会话管理功能,所述计算机设备包括:处理器和存储器;所述存储器中存储有计算机程序,所述计算机程序由所述处理器加载并执行以实现如上方面所述的虚拟网络群组的组播组的组播方法。
根据本申请的另一方面,提供了一种计算机可读存储介质,所述存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由处理器加载并执行以实现如上方面所述的虚拟网络群组的组播组的组播方法。
本申请实施例提供的技术方案带来的有益效果至少包括:
通过提供至少两个组播内部接口,当UPF接收到虚拟网络群组中的一个成员发送的组播数据包时,将组播数据包发送至至少两个组播内部接口中的目标组播内部接口,通过目标组播内部接口将组播数据包发送至组播组的全部组播组成员或全部本地组播组成员,使得在虚拟网络群组中实现了一对多的网络通信,从而在虚拟网络群组中实现组播功能。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个示例性实施例提供的5G通信系统中的框图;
图2是本申请一个示例性实施例提供的基于N3/N9的组播通信的示意图;
图3是本申请一个示例性实施例提供的基于N6的组播通信的示意图;
图4是本申请一个示例性实施例提供的基于N19的组播通信的示意图;
图5是本申请一个示例性实施例提供的虚拟网络群组的组播方法的流程图;
图6是本申请一个示例性实施例提供的两个组播内部接口的框图;
图7是本申请一个示例性实施例提供的虚拟网络群组的组播方法的流程图;
图8是本申请一个示例性实施例提供的虚拟网络群组的示意图;
图9是本申请一个示例性实施例提供的两个组播内部接口的规则配置示意图;
图10是本申请一个示例性实施例提供的虚拟网络群组的组播方法的流程图;
图11是本申请一个示例性实施例提供的三个组播内部接口的规则配置示意图;
图12是本申请一个示例性实施例提供的虚拟网络群组的组播方法的流程图;
图13是本申请一个示例性实施例提供的虚拟网络群组的组播方法的流程图;
图14是本申请一个示例性实施例提供的虚拟网络群组的组播方法的流程图;
图15是本申请一个示例性实施例提供的虚拟网络群组的组播方法的流程图;
图16是本申请一个示例性实施例提供的虚拟网络群组的组播方法的流程图;
图17是本申请一个示例性实施例提供的虚拟网络群组的组播方法的流程图;
图18是本申请一个示例性实施例提供的虚拟网络群组的组播方法的流程图;
图19示出了UE请求的PDU会话建立的流程图(用于非漫游和本地疏导漫游场景);
图20示出了UE请求的PDU会话建立的流程图(用于归属路由漫游场景);
图21示出了UE或网络请求的PDU会话修改的流程图(用于非漫游和本地疏导漫游场景);
图22示出了UE或网络请求的PDU会话修改的流程图(用于归属路由漫游场景);
图23是本申请一个示例性实施例提供的虚拟网络群组的组播装置的结构示意图;
图24是本申请一个示例性实施例提供的虚拟网络群组的组播装置的结构示意图;
图25是本申请一个示例性实施例提供的计算机设备的框图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
图1示出了本公开一个示例性实施例提供的5G通信系统的框图。该通信系统可以是基于NR的5G系统,也包含基于演进的UMTS陆地无线接入网(Evolved UMTS Terrestrial Radio Access Network,eUTRAN)的5G系统以及5G系统的后续演进系统。该通信系统被定义为支持数据连接和服务,以便于网络部署时能够使用诸如网络功能虚拟化(NFV)和软件定义网络(SDN)之类的技术。该通信系统主要有网络功能(Network Function,NF)组成,采用分布式的功能来根据实际需要部署。新的网络功能的加入和撤出,并不影响整体网络的功能。该通信系统包括:用户设备(3GPP对移动终端的命名)(User Equipment,UE)、(无线)接入网络((R)AN)、用户平面功能(User Plane Function,UPF)、数据网络(Data Network,DN)和控制平面功能。
其中,控制平面功能包括:接入和移动管理功能(AMF)、会话管理功能(SMF)、控制策略功能(PCF)和统一数据管理(UDM)。
UE通过空中接口与RAN通信。RAN与UPF之间通过第一参考点N3通信。两个UPF之间通过第二参考点N9通信。PSA UPF与DN之间通过第三参考点N6通信。
上述UE、RAN、UPF和DN均可能为多个。当UPF为多个时,存在一些UPF是UE的PDU会话锚用户平面功能(PSA UPF)。两个PDU会话锚用户平面功能(PSA UPF)之间通过第四参考点N19通信(图1中未示出)。
UE和AMF之间通过第五参考点N1通信。RAN和AMF之间通过第七参考点N2通信。UPF和SMF之间通过第八参考点N4通信。
在图1所示的网络架构中,包括如下参考点:
N1:UE和AMF之间的参考点;
N2:(R)AN和AMF之间的参考点;
N3:(R)AN和UPF之间的参考点;
N4:SMF和UPF之间的参考点;
N6:PSA UPF和数据网络之间的参考点;
N9:两个UPF之间的参考点;
N14:两个AMF之间的参考点;
N19:5G LAN型业务的两个PSA UPF之间的参考点(图中未示出)。
在图1所示的网络架构中,包括如下基于服务的接口:
N amf:AMF展示的基于服务的接口;
N smf:SMF展示的基于服务的接口;
N pcf:PCF展示的基于服务的接口;
N udm:UDM展示的基于服务的接口。
虚拟网络群组的通信包括一对一通信和一对多通信。一对一通信支持在虚拟网络群组内的两个UE之间或一个UE和一个在DN上的设备之间转发单播通信。一对多通信支持将组播数据从一个UE(或DN上的设备)转发到虚拟网络群组内的多个UE和DN上的设备,或者,将组播数据从一个UE(或DN上的设备)转发到一个组播组内的所有UE和DN上的设备。
虚拟网络群组中可以有多个组播组。组播通信是指虚拟网络群组中的一个成员(UE或设备)发出的组播数据,必须要传递到相应组播组的每个组播组成员。基于上述图1所示的通信系统,本申请实施例支持组播通信的三种通信方式:
第一,本地交换方式(基于第一参考点N3或第二参考点N9);
当一个组播组的组播组成员包括连接到同一个PSA UPF的两个UE时,两个UE之间的组播数据直接在PSA UPF内部进行交换,而无需将组播数据发送到第三参考点N6之外,再被外部路由器或交换机将数据返回来。
结合参考图2,UE1与RAN1通信,RAN1与中间UPF1通信;UE2与RAN2通信,RAN2与中间UPF2通信。UE1和UE2均连接到同一个PSA UPF,当UE1发送组播数据包时,直接在PSA UPF内部进行组播数据包的交换,从而将组播数据包发送至UE2,无需将组播数据包发送到第三参考点N6之外。
第二,基于第三参考点N6的方式;
当一个组播组的组播组成员包括一个UE和DN上的一个设备时,对于UE和设备之间的组播数据需要通过N6来交换。
结合参考图3,UE1与RAN1通信,RAN1与UPF1通信,PSA UPF1与DN通信。当UE1发送组播数据包时,需要通过N6将组播数据包传递至DN上的设备3。
第三,基于第四参考点N19的方式。
当一个组播组的组播组成员包括连接到不同PSA UPF的两个UE时,两个UE之间的组播数据需要通过第四参考点N19来交换,两个PSA UPF之间建立有N19隧道。
结合参考图4,UE1与RAN1通信,RAN1与中间UPF1通信;UE4与RAN4通信,RAN4与中间UPF4通信。UE1和UE2分别连接到不同的PSA UPF:PSA UPF1和PSA UPF2,两个PSA UPF之间建立有N19隧道,当UE1发送组播数据包时,需要经过两个PSA UPF之间的N19隧道进行组播数据包的交换,从而将组播数据包发送至UE4。
图5示出了本申请一个示例性实施例提供的虚拟网络群组的组播组的组播方法的流程图。该方法可以由第一UPF来执行。该方法包括:
步骤501,第一UPF接收虚拟网络群组的一个成员发送的组播数据包,组播数据包的目的地址是组播地址;
组播数据包是通过目标IP地址或目的MAC地址来确定的。示例性的,组播数据包中的目的IP/MAC地址是组播地址,同一个虚拟网络群组中的组播地址可以存在多个(比如3个或5个),多个组播地址可构成一个组播地址列表。一个组播数据包中的目的地址是组播地址列表中的一个组播地址即可。
步骤502,第一UPF将组播数据包发送至至少两个组播内部接口中的目标组播内部接口;
PSA UPF中提供有至少两个组播内部接口。结合图6所示,至少两个组播内部接口包括:
第一组播内部接口:用于接收本地组播组成员通过N3/N9发送的组播数据包,通过N3/N9、N6、N19中的至少一个参考点来发送至组播组的全部组播组成员(可选包括发送成员本身)。以5G系统为例,第一组播内部接口可称为5G VN BC internal R,或者其他名称。
第二组播内部接口:用于将非本地组播组成员通过N6/N19发送的组播数据包,通过N3/N9来发送至组播组在PSA UPF的全部本地组播组成员。以5G系统为例,第二组播内部接口可称为5G VN BC internal C,或者其他名称。
可选地,本地组播组成员包括在该组播组中以当前UPF为PDU会话锚点的UE。
步骤503,第一UPF通过目标组播内部接口将组播数据包发送至组播组的全部组播组成员或全部本地组播组成员。
综上所述,本实施例提供的方法,通过提供至少两个组播内部接口,当UPF接收到虚拟网络群组中的一个成员发送的组播数据包时,根据所述组播地址计算出需要接收所述组播数据包的组播组成员,将组播数据包发送至至少两个组播内部接口中的目标组播内部接口,通过目标组播内部接口将组播数据包发送至组播组的全部成员,使得在虚拟网络群组中实现了一对多的网络通信,从而在虚拟网络群组中实现组播功能。
组播组存在两种形态:
第一:常规组播组;
第二:虚拟局域网(Virtual Local Area Network,VID),每个VID采用一个VID表示,一个“VID和广播地址”所构成的VID广播,视为一个组播组的通信。如IPv4的广播地址是255.255.255.255或192.168.1.255,广播MAC地址是FF:FF:FF:FF:FF:FF。
UPF的至少两个组播内部接口至少存在如下不同的实现方式:
第一种实现方式:两个组播内部接口;
第一组播内部接口和第二组播内部接口;
第二种实现方式:三个组播内部接口;
第一组播内部接口、第二组播内部接口和第三组播内部接口;
第三种实现方式:多个组播内部接口;
1个第一组播内部接口和n个第二组播内部接口,每个第二组播内部接口对应一个组播地址,n为组播地址的数量;
或,1个第一组播内部接口、n个第二组播内部接口、n个第三组播内部接口,每个第二组播内部接口对应一个组播地址,每个第三组播内部接口对应一个组播地址,n为组播地址的数量;
或,n个第一组播内部接口、n个第二组播内部接口,每个第一组播内部接口对应一个组播地址,每个第二组播内部接口对应一个组播地址,n为组播地址的数量;
或,n个第一组播内部接口、n个第二组播内部接口、n个第三组播内部接口,每个第一组播内部接口对应一个组播地址,每个第二组播内部接口对应一个组播地址,每个第三组播内部接口对应一个组播地址,n为组播地址的数量。
以下实施例中采用单个PSA UPF的角度来对上述组播内部接口进行描述,但是整个组播数据包的传递过程可能涉及到多个PSA UPF,每个PSA UPF的处理过程相同或类似,通过多个PSA UPF的传递来实现整个虚拟网络群组中的组播通信,本文中不对每个PSA UPF均一一赘述。
针对常规组播组的第一种实现方式:
参考图7,示出了本申请一个示例性实施例提供的虚拟网络群组的组播组的组播方法的流程图。该方法可以由第一UPF来执行,该方法包括:
步骤701,第一UPF接收虚拟网络群组的一个成员发送的组播数据包,组播数据包的目的地址是组播地址;
设发送组播数据包的成员为成员A,成员A可以是虚拟网络群组中的任一成员。成员A可以是组播组的组播组成员,也可以不是组播组的组播组成员。同一个成员可以连接到一个组播组或多个组播组。本实施例中,以成员A连接到组播组的组播组成员为例来举例说明。
当组播组成员A连接到多个组播组,每个组播组对应一个组播地址时,组播数据包的目的地址是多个组播地址中的一个组播地址。
组播组成员A是第一UPF的本地组播组成员时,第一UPF通过N3或N9接收成员A的 组播数据包;组播组成员A是第一UPF的非本地组播组成员时,第一UPF通过N6或N19接收成员A的组播数据包。
步骤702,当组播数据包是来自第一参考点或第二参考点的组播数据时,第一UPF将组播数据包发送至第一组播内部接口;
当第一UPF接收到本地组播组成员通过N3或N9发送的组播数据包时,将该组播数据包发送至第一组播内部接口。
步骤703,第一UPF通过第一组播内部接口将组播数据包从组播组中每个组播组成员分别对应的第一参考点或第二参考点或第三参考点或第四参考点,发送至组播组的全部组播组成员;
以成员A、成员B、成员C和成员D属于同一个组播组为例,当存在组播组成员B是与组播组成员A连接到同一PSA UPF的成员时,第一组播内部接口将组播数据包通过组播组成员B对应的N3或N9发送至组播组成员B;当存在组播组成员C是DN上的设备时,第一组播内部接口将组播数据包通过组播组成员C对应的N6发送至组播组成员C;当存在组播组成员D是与组播组成员A连接到不同的PSA UPF的成员时,第一组播内部接口将组播数据包通过组播组成员D对应的N19发送至组播组成员D,如图8所示。
需要说明的是,本步骤中的“全部组播组成员”可以包括发送该组播数据包的成员,也可以不包括发送该组播数据包的成员。
步骤704,当组播数据包是来自第三参考点或第四参考点的组播数据时,第一UPF将组播数据包发送至第二组播内部接口;
当第一UPF接收到非本地组播组成员通过N6或N19发送的组播数据包时,将该组播数据包发送至第二组播内部接口。
步骤705,第一UPF通过第二组播内部接口将组播数据包从第一UPF的每个本地组播组成员分别对应的第一参考点或第二参考点,发送至第一UPF的全部本地组播组成员。
如图8给出的一个示例,当组播组成员C发送组播数据包时,PSA UPF1接收来自N6的组播数据包,将其放入到自身的第二组播内部接口,通过第二组播内部接口将组播数据包通过组播组成员A对应的N9发送至组播组成员A,将组播数据包通过组播组成员B对应的N9发送至组播组成员B。PSA UPF2同样也会接收到来自N6的组播数据包,将其放入到自身的第二组播内部接口,然后通过第二组播内部接口将组播数据包通过成员D对应的N3发送至成员D。这样,组播组成员C发送的组播数据包发送到全部组播组成员。
如图8给出的另一示例,当组播组成员A发送组播数据包时,PSA UPF1接收来自N9的组播数据包,将组播数据包放入到自身的第一组播内部接口,通过第一组播内部接口将组播数据包从组播组成员C对应的N6发送给组播组成员C,通过第一组播内部接口将组播数据包从组播组成员B对应的N9发送给组播组成员B(PSA UPF1也可以根据网络配置将这个组播数据包从N9发送至PSA UPF2),PSA UPF2接收来自N19的组播数据包,将其放入到其第二组播内部接口,然后通过第二组播内部接口将组播数据包通过N3发送至本地组播组成员D。这样,组播组成员A发出的组播数据包发送到全部组播组成员。
综上所述,本实施例提供的方法,通过在UPF提供第一组播内部接口,当接收到本地组播组成员的组播数据包时,将本地组播组成员的组播数据包先发送到第一组播内部接口,再通过第一组播内部接口发送至组播组的全部组播组成员(在除当前UPF之外的路径上,还有可能需要继续通过其它UPF的第二组播内部接口或第三组播内部接口,才能发送到组播组中的全部组播组成员),能够实现组播组中的组播通信。
本实施例提供的方法,通过在UPF提供第二组播内部接口,当接收到非本地组播组成员的组播数据包时,将非本地组播组成员的组播数据包先发到第二组播内部接口,再通过第二组播内部接口发送至连接到UPF的全部本地组播组成员,既能够实现组播组中的组播通信,还能够避免不必要的流量转发,节省网络传输资源。
基于图7的可选实施例中,组播组内的组播流量转发的实现过程如下:对于组播组内的每个UPF,使用UPF内的至少两个组播内部接口。通过两步检测在每个UPF的组播内部接口之间进行组播数据包的转发。
在第一步中,安装在UPF中的包检测(Packet Detection Rule,PDR)规则检测从任何组播组内的成员(通过N3或N9或N6或N19)接收的组播数据包,当组播数据包匹配PDR规则后,就应用UPF中的包转发(Forwarding Action Rule,FAR)规则将组播数据包转发到UPF的组播内部接口,也即为组播内部接口设置的目的接口。
在第二步中,安装在UPF的组播内部接口中的PDR规则检测到组播数据包,当组播数据包匹配PDR规则后,就应用组播内部接口中对应的FAR规则,通过N3或N6或N9或N19将组播数据包转发给全部组播组成员或全部本地组播组成员。
因此,对于组播组内的每个UPF中配置有N4规则(也即,PDR规则和FAR规则),PDR规则和FAR规则的示例性配置如下:
第一PDR规则和第一FAR规则
SMF为组播组的每个组播组成员的N4会话(也即与每个成员的PDU会话相对应的N4会话)提供有第一PDR规则和第一FAR规则,以便UPF处理从该UE接收的组播数据包。
对于组播组中的每个UPF,UPF中设置有与每个本地组播组成员对应的第一PDR规则和第一FAR规则。UPF通过第一PDR规则检测到组播数据包是来自第一参考点N3或第二参考点N9的组播数据时,通过第一FAR规则将组播数据包发送至第一组播内部接口,如图9所示。
为了检测流量,第一PDR规则包括:源接口设置为接入侧,目标地址设置为组播组成员所属的第一组播地址列表,核心网隧道信息设置为PDU会话的第一参考点或第二参考点的隧道头(包括N3或N9接口对应的上行IP地址和上行GTP-U TEID信息),GTP-U TEID是GPRS隧道协议端点标识(GPRS Tunnel Protocol Tunnel Endpoint Identifier)的缩写;
为了转发流量,第一FAR规则包括:目标接口设置为第一组播内部接口。
第二PDR规则和第二FAR规则
SMF向存在需要的UPF配置组级别会话对应的第二PDR规则和第二FAR规则,以便UPF处理通过N6接收到的组播数据包。组级别会话是组播组中的每个组播组成员共用的会话,组级别会话是UPF和SMF之间的会话,也即组级N4会话。
对于组播组中的存在需要的UPF,UPF中设置有与组级别会话对应的第二PDR规则和第二FAR规则。通过第二PDR规则检测到组播数据包是来自第三参考点N6的组播数据时,通过第二FAR规则将组播数据包发送至第二组播内部接口,如图9所示。
为了检测流量,第二PDR规则包括:源接口设置为核心侧,目标地址设置为第二组播地址列表;其中,第二组播地址列表是本地组播组成员通过第三参考点N6相连的其它组播组成员所对应的组播地址列表。
为了转发流量,第二FAR规则包括:目标接口设置为第二组播内部接口。
第三PDR规则和第三FAR规则
SMF向需要的UPF配置组级别会话对应的第三PDR规则和第三FAR规则,以便UPF处理通过N19接收到的组播数据包。
对于组播组中存在需要的UPF,UPF中设置有与组级别会话对应的第三PDR规则和第三FAR规则。通过第三PDR规则检测到组播数据包是来自第四参考点N19的组播数据时,通过第三FAR规则将组播数据包发送至第三组播内部接口,如图9所示。
为了检测流量,第三PDR规则包括:源接口设置为核心侧,目标地址设置为第三组播地址列表,核心网隧道信息设置为第四参考点隧道头(包括N19接口对应的接收IP地址和接收GTP-U TEID信息);其中,第三组播地址列表是本地组播组成员通过第四参考点N19相连的其它组播组成员所对应的组播地址列表。
为了转发流量,第三FAR规则包括:目标接口设置为第二组播内部接口。
第四PDR规则和第四FAR规则
SMF为组播组的每个组播组成员的N4会话(也即与每个成员的PDU会话相对应的N4会话)提供有第四PDR规则和第四FAR规则,以便UPF处理从该UE接收的组播数据包。
对于组播组中存在需要的UPF,UPF中设置有与每个本地组播组成员对应的第四PDR规则和第四FAR规则。UPF通过第四PDR规则检测到组播数据包是来自第一组播内部接口的组播数据时,通过第四FAR规则将组播数据包从组播组的每个组播组成员分别对应的第一参考点或第二参考点或第三参考点或第四参考点,发送至组播组的全部组播组成员,如图9所示。
为了检测流量,第四PDR规则包括:源端口设置为第一组播内部接口,目标地址为组播组成员所属的第一组播地址列表;
为了转发流量,对应于本地组播组成员,第四FAR规则包括:外部头创建指示第一参考点N3或第二参考点N9的隧道信息(包括N3或N9接口对应的下行IP地址和下行GTP-U TEID信息),目标接口为接入侧;或,对应于DN上的设备,第四FAR规则还包括:外部头创建指示第三参考点N6的信息,目标接口为核心侧;或,对应于N19隧道相连的成员,第四FAR规则还包括:外部头创建指示第四参考点N19的隧道信息(包括N19接口对应的对方PSA UPF的IP地址和GTP-U TEID信息),目标接口为核心侧。
第五PDR规则和第五FAR规则
SMF向组播组中存在需要的UPF配置组级别会话对应的第五PDR规则和第五FAR规则,以便UPF处理从N6接收的组播数据包。
UPF中设置有与组级别会话对应的第五PDR规则和第五FAR规则。UPF通过第五PDR规则检测到组播数据包是第二组播内部接口的组播数据时,通过第五FAR规则将组播数据包,从UPF的每个本地组播组成员分别对应的第一参考点N3或第二参考点N9,发送至UPF的全部本地组播组成员,如图9所示。
为了检测流量,第五PDR规则包括:源端口设置为第二组播内部接口,目标地址为第二组播地址列表;其中,第二组播地址列表是本地组播组成员通过第三参考点N6相连的其它组播组成员所对应的组播地址列表。
为了转发流量,第五FAR规则包括:外部头创建指示第一参考点N3或第二参考点N9的隧道信息(包括N3或N9接口对应的下行IP地址和下行GTP-U TEID信息),目标接口为接入侧。
第六PDR规则和第六FAR规则
SMF向组播组中存在需要的UPF配置组级别会话对应的第六PDR规则和第六FAR规则,以便UPF处理从N19接收的组播数据包。
UPF中设置有与组级别会话对应的第六PDR规则和第六FAR规则。UPF通过第六PDR规则检测到组播数据包是第二组播内部接口的组播数据时,通过第六FAR规则将组播数据包,从UPF的每个本地组播组成员分别对应的第一参考点N3或第二参考点N9,发送至UPF的全部本地组播组成员,如图9所示。
为了检测流量,第六PDR规则包括:源端口设置为第二组播内部接口,目标地址为第三组播地址列表;其中,第三组播地址列表是本地组播组成员通过第四参考点N19相连的其它组播组成员所对应的组播地址列表。
为了转发流量,第六FAR规则包括:外部头创建指示第一参考点N3或第二参考点N9的隧道信息(包括N3或N9接口对应的下行IP地址和下行GTP-U TEID信息),目标接口为接入侧。
针对常规组播组的第二种实现方式:
参考图10,示出了本申请一个示例性实施例提供的虚拟网络群组的组播组的组播方法的流程图。该方法可以由第一UPF来执行,该方法包括:
步骤1001,第一UPF接收虚拟网络群组的一个成员发送的组播数据包,组播数据包的目的地址是组播地址;
设发送组播数据包的成员为成员A,成员A可以是虚拟网络群组中的任一成员。成员A可以是组播组的组播组成员,也可以不是组播组的组播组成员。同一个成员可以连接到一个组播组或多个组播组。本实施例中,以成员A连接到组播组的组播组成员为例来举例说明。
当组播组成员A连接到多个组播组,每个组播组对应一个组播地址时,组播数据包的目的地址是多个组播地址中的一个组播地址。
组播组成员A是第一UPF的本地组播组成员时,第一UPF通过N3或N9接收组播组成员A的组播数据包;组播组成员A是第一UPF的非本地组播组成员时,第一UPF通过N6或N19接收组播组成员A的组播数据包。
步骤1002,当组播数据包是来自第一参考点或第二参考点的组播数据时,第一UPF将组播数据包发送至第一组播内部接口;
当第一UPF接收到本地组播组成员通过N3或N9发送的组播数据包时,将该组播数据包发送至第一组播内部接口。
步骤1003,第一UPF通过第一组播内部接口将组播数据包从组播组中每个组播组成员分别对应的第一参考点或第二参考点或第三参考点或第四参考点,发送至组播组的全部组播组成员;
当组播组成员B与组播组成员A连接到同一PSA UPF的成员时,第一组播内部接口将组播数据包通过组播组成员B对应的N3或N9发送至组播组成员B;当组播组成员C是DN上的设备时,第一组播内部接口将组播数据包通过组播组成员C对应的N6发送至成员C;当组播组成员D与组播组成员A连接到不同的PSA UPF的成员时,第一组播内部接口将组播数据包通过组播组成员D对应的N19发送至组播组成员D所连接的PSA UPF2,PSA UPF2将组播数据包发送到第二组播内部接口,由第二组播内部接口从N3发送到组播组成员D,如图8所示。
需要说明的是,本步骤中的“全部组播组成员”可以包括发送该组播数据包的成员,也可以不包括发送该组播数据包的成员。
步骤1004,当组播数据包是来自第三参考点的组播数据时,第一UPF将组播数据包发送至第二组播内部接口;
当第一UPF接收到非本地组播组成员通过N6发送的组播数据包时,将该组播数据包发送至第二组播内部接口。
步骤1005,第一UPF通过第二组播内部接口将组播数据包从组播组在第一UPF的每个本地组播组成员分别对应的第一参考点或第二参考点,发送至第一UPF的全部本地组播组成员。
如图8给出的一个示例,当组播组成员C发送组播数据包时,PSA UPF1接收来自N6的组播数据包,将其放入到自身的第二组播内部接口,然后通过第二组播内部接口将组播数据包通过组播组成员A对应的N9发送至组播组成员A,通过组播组成员B对应的N9发送至组播组成员B。PSA UPF2同样也会接收到来自N6的组播数据包,将其放入到其第二组播内部接口,然后通过自身的第二组播内部接口将组播数据包通过组播组成员D对应的N3发送至组播组成员D。这样,组播组成员C发出的组播数据包发送到全部组播组成员。
步骤1006,当组播数据包是来自第四参考点的组播数据时,第一UPF将组播数据包发送至第三组播内部接口;
当UPF接收到非本地组播组成员通过N19发送的组播数据包时,将该组播数据包发送至第三组播内部接口。
步骤1007,第一UPF通过第三组播内部接口将组播数据包从第一UPF的每个本地组播组成员分别对应的第一参考点或第二参考点,发送至第一UPF的全部本地组播组成员。
如图8给出的另一示例,当组播组成员A发送组播数据包时,PSA UPF1接收来自N9 的组播数据包,将其放入到自身的第一组播内部接口,通过第一组播内部接口将组播数据包从组播组成员B对应的N9接口发送至组播组成员B(PSA UPF1也可以根据网络配置将这个数据从N9接口发送到组播组成员A自己),从N6接口发送至DN的组播组成员C,从N19接口发送至PSA UPF2。PSA UPF2接收来自N19的组播数据包,将其放入到自身的第三组播内部接口,然后通过第三组播内部接口将此组播数据包通过N3接口发送至本地组播组成员D。这样,组播组成员A发出的组播数据包发送到全部组播组成员。
综上所述,本实施例提供的方法,通过在UPF提供第一组播内部接口,当接收到本地组播组成员的组播数据包时,将本地组播组成员的组播数据包先发送到第一组播内部接口,再通过第一组播内部接口发送至组播组的全部组播组成员,能够实现组播组的组播通信。
本实施例提供的方法,通过在UPF提供第二组播内部接口,当接收到来自N6的非本地组播组成员的组播数据包时,将非本地组播组成员的组播数据包先发到第二组播内部接口,再通过第二组播内部接口发送至组播组在当前UPF的全部本地组播组成员,既能够实现组播组的组播通信,还能够避免不必要的流量转发,节省网络传输资源。
本实施例提供的方法,通过在UPF提供第三组播内部接口,当接收到来自N19的非本地组播组成员的组播数据包时,将非本地组播组成员的组播数据包先发到第三组播内部接口,再通过第三组播内部接口发送至组播组在当前UPF的全部本地组播组成员,既能够实现组播组中的组播通信,还能够避免不必要的流量转发,节省网络传输资源。
基于图10的可选实施例中,组播组内的组播流量转发的实现过程如下:对于组播组内的每个UPF,使用UPF内的至少两个组播内部接口。通过两步检测在每个UPF的组播内部接口之间进行组播数据包的转发。
在第一步中,安装在UPF中的PDR规则检测从任何组播组内的成员(通过N3或N9或N6或N19)接收的组播数据包,当组播数据包匹配PDR规则时,应用UPF中的FAR规则将组播数据包转发到UPF的组播内部接口,也即为组播内部接口设置的目的接口。
在第二步中,安装在UPF的组播内部接口中的PDR规则检测到组播数据包,当组播数据包匹配PDR规则后,就应用组播内部接口中的FAR规则,通过N3或N6或N9或N19将组播数据包转发给组播组的全部组播组成员或全部本地组播组成员。
因此,对于组播组内的每个UPF中配置有N4规则(也即,PDR规则和FAR规则),PDR规则和FAR规则的示例性配置如下:
第一PDR规则和第一FAR规则
SMF为组播组的每个组播组成员的N4会话(也即与每个成员的PDU会话相对应的N4会话)提供有第一PDR规则和第一FAR规则,以便UPF处理从该UE接收的组播数据包。
对于组播组中的每个UPF,UPF中设置有与每个本地组播组成员对应的第一PDR规则和第一FAR规则。UPF通过第一PDR规则检测到组播数据包是来自第一参考点N3或第二参考点N9的组播数据时,通过第一FAR规则将组播数据包发送至第一组播内部接口,如图9所示。
为了检测流量,第一PDR规则包括:源接口设置为接入侧,目标地址设置为组播组成员所属的第一组播地址列表,核心网隧道信息设置为PDU会话的第一参考点或第二参考点的隧道头(包括N3或N9接口对应的上行IP地址和上行GTP-U TEID信息);
为了转发流量,第一FAR规则包括:目标接口设置为第一组播内部接口。
其中,组播数据包中的组播地址是第一组播地址列表中的一个组播地址。
第二PDR规则和第二FAR规则
SMF向存在需要的UPF配置组级别会话对应的第二PDR规则和第二FAR规则,以便UPF处理通过N6接收到的组播数据包。组级别会话是组播组中的每个组播组成员共用的会话,组级别会话是UPF和SMF之间的会话,也即组级N4会话。
对于组播组中的存在需要的UPF,UPF中设置有与组级别会话对应的第二PDR规则和第 二FAR规则。通过第二PDR规则检测到组播数据包是来自第三参考点N6的组播数据时,通过第二FAR规则将组播数据包发送至第二组播内部接口,如图9所示。
为了检测流量,第二PDR规则包括:源接口设置为核心侧,目标地址设置为第二组播地址列表;其中,第二组播地址列表是本地组播组成员通过第三参考点N6相连的其它组播组成员所对应的组播地址列表。
为了转发流量,第二FAR规则包括:目标接口设置为第二组播内部接口。
第七PDR规则和第七FAR规则
SMF向存在需要的UPF配置组级别会话对应的第七PDR规则和第七FAR规则,以便UPF处理通过N19接收到的组播数据包。
对于组播组中的存在需要的UPF,UPF中设置有与组级别会话对应的第七PDR规则和第七FAR规则。通过第七PDR规则检测到组播数据包是来自第四参考点N19的组播数据时,通过第七FAR规则将组播数据包发送至第三组播内部接口,如图11所示。
为了检测流量,第七PDR规则包括:源接口设置为核心侧,目标地址设置为第三组播地址列表,核心网隧道信息设置为第四参考点隧道头(包括N19接口对应的IP地址和GTP-U TEID信息);其中,第三组播地址列表是本地组播组成员通过第四参考点N19相连的其它组播组成员所对应的组播地址列表。
为了转发流量,第七FAR规则包括:目标接口设置为第三组播内部接口。
第四PDR规则和第四FAR规则
SMF为组播组的每个组播组成员的N4会话(也即与每个成员的PDU会话相对应的N4会话)提供有第四PDR规则和第四FAR规则,以便UPF处理从该UE接收的组播数据包。
对于组播组中存在需要的UPF,UPF中设置有与每个本地组播组成员对应的第四PDR规则和第四FAR规则。UPF通过第四PDR规则检测到组播数据包是来自第一组播内部接口的组播数据时,通过第四FAR规则将组播数据包从组播组的每个组播组成员分别对应的第一参考点或第二参考点或第三参考点或第四参考点,发送至组播组的全部组播组成员,如图9所示。
为了检测流量,第四PDR规则包括:源端口设置为第一组播内部接口,目标地址为组播组成员所属的第一组播地址列表;
为了转发流量,对应于本地组播组成员,第四FAR规则包括:外部头创建指示第一参考点N3或第二参考点N9的隧道信息(包括N3或N9接口对应的下行IP地址和下行GTP-U TEID信息),目标接口为接入侧;或,对应于DN上的设备,第四FAR规则还包括:外部头创建指示第三参考点N6的信息,目标接口为核心侧;或,对应于N19隧道相连的成员,第四FAR规则还包括:外部头创建指示第四参考点N19的隧道信息(包括N19接口对应的IP地址和GTP-U TEID信息),目标接口为核心侧。
第五PDR规则和第五FAR规则
SMF向组播组中存在需要的UPF配置组级别会话对应的第五PDR规则和第五FAR规则,以便UPF处理从N6接收的组播数据包。
UPF中设置有与组级别会话对应的第五PDR规则和第五FAR规则。UPF通过第五PDR规则检测到组播数据包是第二组播内部接口的组播数据时,通过第五FAR规则将组播数据包,从UPF的每个本地组播组成员分别对应的第一参考点N3或第二参考点N9,发送至UPF的全部本地组播组成员,如图9所示。
为了检测流量,第五PDR规则包括:源端口设置为第二组播内部接口,目标地址为第二组播地址列表;其中,第二组播地址列表是本地组播组成员通过第三参考点N6相连的其它组播组成员所对应的组播地址列表。
为了转发流量,第五FAR规则包括:外部头创建指示第一参考点N3或第二参考点N9的隧道信息(包括N3或N9接口对应的下行IP地址和下行GTP-U TEID信息),目标接口为接入侧。
第八PDR规则和第八FAR规则
SMF向组播组中存在需要的UPF配置组级别会话对应的第八PDR规则和第八FAR规则,以便UPF处理从N19接收的组播数据包。
UPF中设置有与组级别会话对应的第八PDR规则和第八FAR规则。UPF通过第八PDR规则检测到组播数据包是第三组播内部接口的组播数据时,通过第八FAR规则将组播数据包,从UPF的每个本地组播组成员分别对应的第一参考点N3或第二参考点N9,发送至UPF的全部本地组播组成员,如图11所示。
为了检测流量,第八PDR规则包括:源端口设置为第三组播内部接口,目标地址为第三组播地址列表;其中,第三组播地址列表是本地组播组成员通过第四参考点N19相连的其它组播组成员所对应的组播地址列表。
为了转发流量,第八FAR规则包括:外部头创建指示第一参考点N3或第二参考点N9的隧道信息(包括N3或N9接口对应的下行IP地址和下行GTP-U TEID信息),目标接口为接入侧。
在一个实施例中,第一组播地址列表是组播组成员所属的组播组的全部组播地址。
在一个实施例中,第二组播地址列表是第一UPF的全部本地组播组成员所属组播组的组播地址列表的合集。
在一个实施例中,第三组播地址列表是第一UPF的本地组播组成员所属组播组的组播地址列表和第二UPF的本地组播组成员所属组播组的组播地址列表的交集,第二UPF是通过第四参考点与第一UPF相连。
针对常规组播组的第三种实现方式:
上述PDR规则和上述FAR规则中的组播地址列表(第一组播地址列表、第二组播地址列表、第三组播地址列表)包括多个组播地址,比如3个组播地址或5个组播地址。
当组播地址列表中的组播地址为m个时,上述第一组播内部接口、第二组播内部接口、第三组播内部接口中的至少一个接口可实现成为m个组播内部接口,每个组播内部接口对应一个组播地址。其中,m为正整数,i为不大于m的整数。
当第一组播内部接口实现成为m个第一组播内部接口时,第i个第一组播内部接口对应第一组播地址列表中的第i个组播地址,同时设组播数据包中的组播地址是第i个组播地址。
第一PDR规则包括:源接口设置为接入侧,目标地址设置为第一组播地址列表中的第i个组播地址,核心网隧道信息设置为PDU会话的第一参考点或第二参考点的隧道头;第一FAR规则包括:目标接口设置为第i个第一组播内部接口。
第四PDR规则包括:源端口设置为第i个第一组播内部接口,目标地址为第一组播地址列表中的第i个组播地址;第四FAR规则包括:外部头创建指示第一参考点或第二参考点的隧道信息,目标接口为接入侧;或,第四FAR规则还包括:外部头创建指示第三参考点的信息,目标接口为核心侧;或,第四FAR规则还包括:外部头创建指示第四参考点的隧道信息,目标接口为核心侧。
当第二组播内部接口实现成为m个第二组播内部接口时,第i个第二组播内部接口对应第二组播地址列表中的第i个组播地址,同时设组播数据包中的组播地址是第i个组播地址。
第二PDR规则包括:源接口设置为核心侧,目标地址设置为第i个组播地址;第二FAR规则包括:目标接口设置为第i个第二组播内部接口。
第五PDR规则包括:源端口设置为第i个第二组播内部接口,目标地址为第二组播地址列表中的第i个组播地址;第五FAR规则包括:外部头创建指示第一参考点或第二参考点的隧道信息,目标接口为接入侧。
第三PDR规则包括:源接口设置为核心侧,目标地址设置为第三组播地址列表中的第i个组播地址,核心网隧道信息设置为第四参考点隧道头;第三FAR规则包括:目标接口设置为第i个第二组播内部接口,m为正整数,i为不大于m的整数。
第六PDR规则包括:源端口设置为第i个第二组播内部接口,目标地址为第三组播地址列表中的第i个组播地址;第五FAR规则包括:外部头创建指示第一参考点或第二参考点的隧道信息,目标接口为接入侧。
当第三组播内部接口实现成为m个第三组播内部接口时,第i个第三组播内部接口对应第三组播地址列表中的第i个组播地址,同时设组播数据包中的组播地址是第i个组播地址。
第七PDR规则包括:源接口设置为核心侧,目标地址设置为第三组播地址列表中的第i个组播地址,核心网隧道信息设置为第四参考点隧道头;第七FAR规则包括:目标接口设置为第i个第三组播内部接口。
第八PDR规则包括:源端口设置为第i个第三组播内部接口,目标地址为第i个组播地址;第八FAR规则包括:外部头创建指示第一参考点或第二参考点的隧道信息,目标接口为接入侧。
以至少两个组播内部接口包括:第一组播内部接口和m个第二组播内部接口为例,每个第二组播内部接口对应一个组播地址,m为组播地址的数量;
当组播数据包是来自第一参考点或第二参考点的组播数据时,第一UPF将组播数据包发送至第一组播内部接口,通过第一组播内部接口将组播数据包从组播组中每个组播组成员分别对应的第一参考点或第二参考点或第三参考点或第四参考点,发送至组播组的全部组播组成员。
当组播数据包是来自第三参考点或第四参考点的组播数据,且组播数据包的组播地址是第i个组播地址时,第一UPF将组播数据包发送至第i个组播地址对应的第二组播内部接口,通过第i个组播地址对应的第二组播内部接口将组播数据包从组播组在第一UPF的每个本地组播组成员分别对应的第一参考点或第二参考点,发送至第一UPF的全部本地组播组成员。
对于m个第一组播内部接口的实施例,或者m个第三组播内部接口的实施例,为本领域技术人员根据上述实施例所易于思及的内容,不再一一赘述。
针对VID的第一种实现方式:
参考图12,示出了本申请一个示例性实施例提供的虚拟网络群组的VID的组播方法的流程图。该方法可以由第一UPF来执行,该方法包括:
步骤1201,第一UPF接收虚拟网络群组的一个成员发送的组播数据包,组播数据包的目的地址是VID以及广播地址;
设发送组播数据包的成员为成员A,成员A可以是虚拟网络群组中的任一成员。同一个成员可以连接到一个VID或多个VID。
当成员A连接到多个VID,每个VID对应一个或多个广播地址时,每个组播数据包的目的地址是多个广播地址中的一个广播地址。
成员A是第一UPF的本地VID成员时,第一UPF通过N3或N9接收成员A的组播数据包;成员A是第一UPF的非本地VID成员时,第一UPF通过N6或N19接收成员A的组播数据包。
步骤1202,当组播数据包是来自第一参考点或第二参考点的组播数据时,第一UPF将组播数据包发送至第一组播内部接口;
当UPF接收到本地VID成员通过N3或N9发送的组播数据包时,将该组播数据包发送至第一组播内部接口。
步骤1203,第一UPF通过第一组播内部接口将组播数据包从VID中每个VID成员分别对应的第一参考点或第二参考点或第三参考点或第四参考点,发送至VID的全部VID成员;
以成员A、成员B、成员C和成员D属于同一个VID为例,当存在VID成员B是与VID成员A连接到同一PSA UPF的成员时,第一组播内部接口将组播数据包通过VID成员B对应的N3或N9发送至VID成员B;当存在VID成员C是DN上的设备时,第一组播内部接口将组播数据包通过VID成员C对应的N6发送至VID成员C;当存在VID成员D是与VID 成员A连接到不同的PSA UPF的成员时,第一组播内部接口将组播数据包通过VID成员D对应的N19发送至VID成员D,如图8所示。
需要说明的是,本步骤中的“全部VID成员”可以包括发送该组播数据包的成员,也可以不包括发送该组播数据包的成员。
步骤1204,当组播数据包是来自第三参考点或第四参考点的组播数据时,第一UPF将组播数据包发送至第二组播内部接口;
当第一UPF接收到非本地组播组成员通过N6或N19发送的组播数据包时,将该组播数据包发送至第二组播内部接口。
步骤1205,通过第二组播内部接口将组播数据包从第一UPF的每个本地VID成员分别对应的第一参考点或第二参考点,发送至第一UPF的全部本地VID成员。
如图8给出的一个示例,当VID成员C发送组播数据包时,PSA UPF1接收来自N6的组播数据包,将其放入到自身的第二组播内部接口,通过第二组播内部接口将组播数据包通过VID成员A对应的N9发送至VID成员A,将组播数据包通过VID成员B对应的N9发送至VID成员B。PSA UPF2同样也会接收到来自N6的组播数据包,将其放入到自身的第二组播内部接口,然后通过第二组播内部接口将组播数据包通过成员D对应的N3发送至成员D。这样,VID成员C发送的组播数据包发送到全部VID成员。
如图8给出的另一示例,当VID成员A发送组播数据包时,PSA UPF1接收来自N9的组播数据包,将组播数据包放入到自身的第一组播内部接口,通过第一组播内部接口将组播数据包从VID成员C对应的N6发送给VID成员C,通过第一组播内部接口将组播数据包从VID成员B对应的N9发送给VID成员B(PSA UPF1也可以根据网络配置将这个组播数据包从N9发送至PSA UPF2),PSA UPF2接收来自N19的组播数据包,将其放入到其第二组播内部接口,然后通过第二组播内部接口将组播数据包通过N3发送至本地VID成员D。这样,VID成员A发出的组播数据包发送到全部VID成员。
综上所述,本实施例提供的方法,通过在UPF提供第一组播内部接口,当接收到本地VID成员的组播数据包时,将本地VID成员的组播数据包先发送到第一组播内部接口,再通过第一组播内部接口发送至VID的全部VID成员(在除当前UPF之外的路径上,还有可能需要继续通过其它UPF的第二组播内部接口或第三组播内部接口,才能发送到组播组中的全部组播组成员),能够实现VID中的组播通信。
本实施例提供的方法,通过在UPF提供第二组播内部接口,当接收到非本地VID成员的组播数据包时,将非本地VID成员的组播数据包先发到第二组播内部接口,再通过第二组播内部接口发送至连接到UPF的全部本地VID成员,既能够实现VID中的组播通信,还能够避免不必要的流量转发,节省网络传输资源。
基于图12的可选实施例中,VID内的组播流量转发的实现过程如下:对于VID内的每个UPF,使用UPF内的至少两个组播内部接口。通过两步检测在每个UPF的组播内部接口之间进行组播数据包的转发。
在第一步中,安装在UPF中的PDR规则检测从任何VID内的成员(通过N3或N9或N6或N19)接收的组播数据包,当组播数据包匹配PDR规则后,就应用UPF中的FAR规则将组播数据包转发到UPF的组播内部接口,也即为组播内部接口设置的目的接口。
在第二步中,安装在UPF的组播内部接口中的PDR规则检测到组播数据包,当组播数据包匹配PDR规则后,就应用组播内部接口中对应的FAR规则,通过N3或N6或N9或N19将组播数据包转发给VID中的全部成员。
因此,对于VID内的每个UPF中配置有N4规则(也即,PDR规则和FAR规则),PDR规则和FAR规则的示例性配置如下:
第一PDR规则和第一FAR规则
SMF为VID中的每个VID成员的N4会话(也即与每个成员的PDU会话相对应的N4 会话)提供有第一PDR规则和第一FAR规则,以便UPF处理从该UE接收的组播数据包。
对于VID中的每个UPF,UPF中设置有与本地VID成员对应的第一PDR规则和第一FAR规则。UPF通过第一PDR规则检测到组播数据包是来自第一参考点N3或第二参考点N9的组播数据时,通过第一FAR规则将组播数据包发送至第一组播内部接口,如图9所示。
为了检测流量,第一PDR规则包括:源接口设置为接入侧,目标地址设置为VID成员所属的第一VID列表以及广播地址,核心网隧道信息设置为PDU会话的第一参考点N3或第二参考点N9的隧道头(包括N3或N9接口对应的上行IP地址和上行GTP-U TEID信息);
为了转发流量,第一FAR规则包括:目标接口设置为第一组播内部接口。
其中,组播数据包中的组播地址是VID成员所属的第一VID列表中的一个VID,以及广播地址。
第二PDR规则和第二FAR规则
SMF向存在需要的UPF配置组级别会话对应的第二PDR规则和第二FAR规则,以便UPF处理通过N6接收到的组播数据包。组级别会话是VID中的每个VID成员共用的会话,组级别会话是UPF和SMF之间的会话,也即组级N4会话。
对于VID中的存在需要的UPF,UPF中设置有与组级别会话对应的第二PDR规则和第二FAR规则。通过第二PDR规则检测到组播数据包是来自第三参考点N6的组播数据时,通过第二FAR规则将组播数据包发送至第二组播内部接口,如图9所示。
为了检测流量,第二PDR规则包括:源接口设置为核心侧,目标地址设置为第二VID列表以及广播地址;其中,第二VID列表是本地VID成员通过第三参考点N6相连的其它VID成员所对应的VID列表。
为了转发流量,第二FAR规则包括:目标接口设置为第二组播内部接口。
其中,第二VID列表是虚拟网络群组中全部VID的VID列表;或,第二VID列表是第一UPF的本地全部VID成员所属的VID列表的合集。
第三PDR规则和第三FAR规则
SMF向需要的UPF配置组级别会话对应的第三PDR规则和第三FAR规则,以便UPF处理通过N19接收到的组播数据包。
对于VID中存在需要的UPF,UPF中设置有与组级别会话对应的第三PDR规则和第三FAR规则。通过第三PDR规则检测到组播数据包是来自第四参考点N19的组播数据时,通过第三FAR规则将组播数据包发送至第三组播内部接口,如图9所示。
为了检测流量,第三PDR规则包括:源接口设置为核心侧,目标地址设置为第三VID列表以及广播地址,核心网隧道信息设置为第四参考点隧道头(包括N19接口对应的接收IP地址和接收GTP-U TEID信息);第三VID列表是本地组播组成员通过第四参考点N19相连的其它VID成员所对应的VID列表。
为了转发流量,第三FAR规则包括:目标接口设置为第二组播内部接口。
第四PDR规则和第四FAR规则
SMF为VID的每个VID成员的N4会话(也即与每个成员的PDU会话相对应的N4会话)提供有第四PDR规则和第四FAR规则,以便UPF处理从该UE接收的组播数据包。
对于VID中存在需要的UPF,UPF中设置有与本地VID成员对应的第四PDR规则和第四FAR规则。UPF通过第四PDR规则检测到组播数据包是来自第一组播内部接口的组播数据时,通过第四FAR规则将组播数据包从VID的每个VID成员分别对应的第一参考点或第二参考点或第三参考点或第四参考点,发送至VID的全部VID成员,如图9所示。
为了检测流量,第四PDR规则包括:源端口设置为第一组播内部接口,目标地址为VID成员所属的第一VID列表以及广播地址;
为了转发流量,对应于本地组播组成员,第四FAR规则包括:外部头创建指示第一参考点N3或第二参考点N9的隧道信息(包括N3或N9接口对应的下行IP地址和下行GTP-U TEID信息),目标接口为接入侧;或,对应于DN上的设备,第四FAR规则还包括:外部头创建 指示第三参考点N6的信息,目标接口为核心侧;或,对应于N19隧道相连的成员,第四FAR规则还包括:外部头创建指示第四参考点N19的隧道信息(包括N19接口对应的对方PSA UPF的IP地址和GTP-U TEID信息),目标接口为核心侧。
第五PDR规则和第五FAR规则
SMF向VID中存在需要的UPF配置组级别会话对应的第五PDR规则和第五FAR规则,以便UPF处理从N6或N19接收的组播数据包。
UPF中设置有与组级别会话对应的第五PDR规则和第五FAR规则。UPF通过第五PDR规则检测到组播数据包是第二组播内部接口的组播数据时,通过第五FAR规则将组播数据包,从UPF的每个本地组播组成员分别对应的第一参考点N3或第二参考点N9,发送至UPF的全部本地VID成员,如图9所示。
为了检测流量,第五PDR规则包括:源端口设置为第二组播内部接口,目标地址为VID的第二VID列表以及广播地址;
为了转发流量,第五FAR规则包括:外部头创建指示第一参考点N3或第二参考点N9的隧道信息(包括N3或N9接口对应的下行IP地址和下行GTP-U TEID信息),目标接口为接入侧。
第六PDR规则和第六FAR规则
SMF向VID中存在需要的UPF配置组级别会话对应的第六PDR规则和第六FAR规则,以便UPF处理从N19接收的组播数据包。
UPF中设置有与组级别会话对应的第六PDR规则和第六FAR规则。UPF通过第六PDR规则检测到组播数据包是第二组播内部接口的组播数据时,通过第六FAR规则将组播数据包,从UPF的每个本地VID成员分别对应的第一参考点N3或第二参考点N9,发送至UPF的全部本地VID成员,如图9所示。
为了检测流量,第六PDR规则包括:源端口设置为第二组播内部接口,目标地址为第三VID列表及广播地址;其中,第三VID列表是本地VID成员通过第四参考点N19相连的其它VID成员所对应的组播地址列表。
为了转发流量,第六FAR规则包括:外部头创建指示第一参考点N3或第二参考点N9的隧道信息(包括N3或N9接口对应的下行IP地址和下行GTP-U TEID信息),目标接口为接入侧。
针对VID的第二种实现方式:
参考图13,示出了本申请一个示例性实施例提供的虚拟网络群组的VID的组播方法的流程图。该方法可以由第一UPF来执行,该方法包括:
步骤1301,第一UPF接收虚拟网络群组的一个成员发送的组播数据包,组播数据包的目的地址是VID的广播地址;
设发送组播数据包的成员为成员A,成员A可以是虚拟网络群组中的任一成员。成员A可以是VID的VID成员,也可以不是VID的VID成员。同一个成员可以连接到一个VID或多个VID。本实施例中,以成员A连接到VID的VID成员为例来举例说明。
当VID成员A连接到多个VID,每个VID对应一个广播地址时,组播数据包的目的地址是多个广播地址中的一个广播地址。
VID成员A是第一UPF的本地VID成员时,UPF通过N3或N9接收VID成员A的组播数据包;VID成员A是第一UPF的非本地组播组成员时,第一UPF通过N6或N19接收VID成员A的组播数据包。
步骤1302,当组播数据包是来自第一参考点或第二参考点的组播数据时,第一UPF将组播数据包发送至第一组播内部接口;
当第一UPF接收到本地组播组成员通过N3或N9发送的组播数据包时,将该组播数据包发送至第一组播内部接口。
步骤1303,第一UPF通过第一组播内部接口将组播数据包从VID中每个VID成员分别对应的第一参考点或第二参考点或第三参考点或第四参考点,发送至VID的全部VID成员;
当VID成员B与VID成员A连接到同一PSA UPF的成员时,第一组播内部接口将组播数据包通过VID成员B对应的N3或N9发送至VID成员B;当VID成员C是DN上的设备时,第一组播内部接口将组播数据包通过VID成员C对应的N6发送至成员C;当VID成员D与VID成员A连接到不同的PSA UPF的成员时,第一组播内部接口将组播数据包通过VID成员D对应的N19发送至VID成员D所连接的PSA UPF2,PSA UPF2将组播数据包发送到第三组播内部接口,由第三组播内部接口从N3发送到VID成员D,如图8所示,如图8所示。
需要说明的是,本步骤中的“全部VID成员”可以包括发送该组播数据包的成员,也可以不包括发送该组播数据包的成员。
步骤1304,当组播数据包是来自第三参考点的组播数据时,第一UPF将组播数据包发送至第二组播内部接口;
当第一UPF接收到非本地组播组成员通过N6发送的组播数据包时,将该组播数据包发送至第二组播内部接口。
步骤1305,第一UPF通过第二组播内部接口将组播数据包从VID在第一UPF的每个本地VID成员分别对应的第一参考点或第二参考点,发送至第一UPF的全部本地VID成员。
如图8给出的一个示例,当VID成员C发送组播数据包时,PSA UPF1接收来自N6的组播数据包,将其放入到自身的第二组播内部接口,然后通过第二组播内部接口将组播数据包通过VID成员A对应的N9发送至VID成员A,通过VID成员B对应的N9发送至VID成员B。PSA UPF2同样也会接收到来自N6的组播数据包,将其放入到其第二组播内部接口,然后通过自身的第二组播内部接口将组播数据包通过VID成员D对应的N3发送至VID成员D。这样,VID成员C发出的组播数据包发送到全部VID成员。
步骤1306,当组播数据包是来自第四参考点的组播数据时,第一UPF将组播数据包发送至第三组播内部接口;
当第一UPF接收到非本地VID成员通过N19发送的组播数据包时,将该组播数据包发送至第三组播内部接口。
步骤1307,第一UPF通过第三组播内部接口将组播数据包从UPF的每个本地VID成员分别对应的第一参考点或第二参考点,发送至第一UPF的全部本地VID成员。
如图8给出的另一示例,当VID成员A发送组播数据包时,PSA UPF1接收来自N9的组播数据包,将其放入到自身的第一组播内部接口,通过第一组播内部接口将组播数据包从VID成员B对应的N9接口发送至VID成员B(PSA UPF1也可以根据网络配置将这个数据从N9接口发送到VID成员A自己),从N6接口发送至DN的VID成员C,从N19接口发送至PSA UPF2。PSA UPF2接收来自N19的组播数据包,将其放入到自身的第三组播内部接口,然后通过第三组播内部接口将此组播数据包通过N3接口发送至本地VID成员D。这样,VID成员A发出的组播数据包发送到全部VID成员。
综上所述,本实施例提供的方法,通过在UPF提供第一组播内部接口,当接收到本地VID成员的组播数据包时,将本地VID成员的组播数据包先发送到第一组播内部接口,再通过第一组播内部接口发送至VID的全部VID成员,能够实现VID中的组播通信。
本实施例提供的方法,通过在UPF提供第二组播内部接口,当接收到来自N6的非本地VID成员的组播数据包时,将非本地VID成员的组播数据包先发到第二组播内部接口,再通过第二组播内部接口发送至VID在当前UPF的全部本地VID成员,既能够实现VID中的组播通信,还能够避免不必要的流量转发,节省网络传输资源。
本实施例提供的方法,通过在UPF提供第三组播内部接口,当接收到来自N19的非本地VID成员的组播数据包时,将非本地VID成员的组播数据包先发到第三组播内部接口,再通过第三组播内部接口发送至VID在当前UPF的全部本地VID成员,既能够实现VID中的组 播通信,还能够避免不必要的流量转发,节省网络传输资源。
基于图13的可选实施例中,VID内的组播流量转发的实现过程如下:对于VID内的每个UPF,使用UPF内的至少两个组播内部接口。通过两步检测在每个UPF的组播内部接口之间进行组播数据包的转发。
在第一步中,安装在UPF中的PDR规则检测从任何VID内的成员(通过N3或N9或N6或N19)接收的组播数据包,当组播数据包匹配PDR规则时,应用UPF中的FAR规则将组播数据包转发到UPF的组播内部接口,也即为组播内部接口设置的目的接口。
在第二步中,安装在UPF的组播内部接口中的PDR规则检测到组播数据包,当组播数据包匹配PDR规则后,就应用组播内部接口中的FAR规则,通过N3或N6或N9或N19将组播数据包转发给VID的VID成员。
因此,对于VID内的每个UPF中配置有N4规则(也即,PDR规则和FAR规则),PDR规则和FAR规则的示例性配置如下:
第一PDR规则和第一FAR规则
SMF为VID中的每个VID成员的N4会话(也即与每个成员的PDU会话相对应的N4会话)提供有第一PDR规则和第一FAR规则,以便UPF处理从该UE接收的组播数据包。
对于VID中的每个UPF,UPF中设置有与本地VID成员对应的第一PDR规则和第一FAR规则。UPF通过第一PDR规则检测到组播数据包是来自第一参考点N3或第二参考点N9的组播数据时,通过第一FAR规则将组播数据包发送至第一组播内部接口,如图9所示。
为了检测流量,第一PDR规则包括:源接口设置为接入侧,目标地址设置为VID成员所属的第一VID列表以及广播地址,核心网隧道信息设置为PDU会话的第一参考点或第二参考点的隧道头(包括N3或N9接口对应的上行IP地址和上行GTP-U TEID信息);
为了转发流量,第一FAR规则包括:目标接口设置为第一组播内部接口。
其中,组播数据包中的组播地址是VID所属的VID列表中的一个VID以及广播地址中的一个广播地址。
第二PDR规则和第二FAR规则
SMF向存在需要的UPF配置组级别会话对应的第二PDR规则和第二FAR规则,以便UPF处理通过N6接收到的组播数据包。组级别会话是VID中的每个VID成员共用的会话,组级别会话是UPF和SMF之间的会话,也即组级N4会话。
对于VID中的存在需要的UPF,UPF中设置有与组级别会话对应的第二PDR规则和第二FAR规则。通过第二PDR规则检测到组播数据包是来自第三参考点N6的组播数据时,通过第二FAR规则将组播数据包发送至第二组播内部接口,如图9所示。
为了检测流量,第二PDR规则包括:源接口设置为核心侧,目标地址设置为VID的第二VID列表以及广播地址;
为了转发流量,第二FAR规则包括:目标接口设置为第二组播内部接口。
其中,第二组播地址列表是虚拟网络群组中全部VID的VID列表以及广播地址;或,第二组播地址列表是第一UPF的本地全部VID成员所属的VID列表以及广播地址的合集。
第七PDR规则和第七FAR规则
SMF向需要的UPF配置组级别会话对应的第七PDR规则和第七FAR规则,以便UPF处理通过N19接收到的组播数据包。
对于VID中存在需要的UPF,UPF中设置有与组级别会话对应的第七PDR规则和第七FAR规则。通过第七PDR规则检测到组播数据包是来自第四参考点N19的组播数据时,通过第七FAR规则将组播数据包发送至第三组播内部接口,如图11所示。
为了检测流量,第三PDR规则包括:源接口设置为核心侧,目标地址设置为第三VID列表以及广播地址,核心网隧道信息设置为第四参考点隧道头(包括N19接口对应的IP地址和GTP-U TEID信息);
为了转发流量,第三FAR规则包括:目标接口设置为第三组播内部接口。
第四PDR规则和第四FAR规则
SMF为VID的每个VID成员的N4会话(也即与每个成员的PDU会话相对应的N4会话)提供有第四PDR规则和第四FAR规则,以便UPF处理从该UE接收的组播数据包。
对于VID中存在需要的UPF,UPF中设置有与本地VID成员对应的第四PDR规则和第四FAR规则。UPF通过第四PDR规则检测到组播数据包是来自第一组播内部接口的组播数据时,通过第四FAR规则将组播数据包从VID的每个VID成员分别对应的第一参考点或第二参考点或第三参考点或第四参考点,发送至VID的全部VID成员,如图11所示。
为了检测流量,第四PDR规则包括:源端口设置为第一组播内部接口,目标地址为VID成员所属的第一VID列表以及广播地址;
为了转发流量,对应于本地VID成员,第四FAR规则包括:外部头创建指示第一参考点N3或第二参考点N9的隧道信息(包括N3或N9接口对应的下行IP地址和下行GTP-U TEID信息),目标接口为接入侧;或,对应于DN上的设备,第四FAR规则还包括:外部头创建指示第三参考点N6的信息,目标接口为核心侧;或,对应于N19隧道相连的成员,第四FAR规则还包括:外部头创建指示第四参考点N19的隧道信息(包括N19接口对应的IP地址和GTP-U TEID信息),目标接口为核心侧。
第五PDR规则和第五FAR规则
SMF向VID中存在需要的UPF配置组级别会话对应的第五PDR规则和第五FAR规则,以便UPF处理从N6接收的组播数据包。
UPF中设置有与组级别会话对应的第五PDR规则和第五FAR规则。UPF通过第五PDR规则检测到组播数据包是第二组播内部接口的组播数据时,通过第五FAR规则将组播数据包,从UPF的每个本地组播组成员分别对应的第一参考点N3或第二参考点N9,发送至UPF的全部本地VID成员,如图11所示。
为了检测流量,第五PDR规则包括:源端口设置为第二组播内部接口,目标地址为VID的第二VID列表以及广播地址;
为了转发流量,第五FAR规则包括:外部头创建指示第一参考点N3或第二参考点N9的隧道信息(包括N3或N9接口对应的下行IP地址和下行GTP-U TEID信息),目标接口为接入侧。
第八PDR规则和第八FAR规则
SMF向VID中存在需要的UPF配置组级别会话对应的第八PDR规则和第八FAR规则,以便UPF处理从N19接收的组播数据包。
UPF中设置有与组级别会话对应的第八PDR规则和第八FAR规则。UPF通过第八PDR规则检测到组播数据包是第三组播内部接口的组播数据时,通过第八FAR规则将组播数据包,从UPF的每个本地VID成员分别对应的第一参考点N3或第二参考点N9,发送至UPF的全部本地VID成员,如图9所示。
为了检测流量,第八PDR规则包括:源端口设置为第三组播内部接口,目标地址为第三VID列表;其中,第三VID列表是本地VID成员通过第四参考点N19相连的其它VID成员所对应的VID列表。
为了转发流量,第八FAR规则包括:外部头创建指示第一参考点N3或第二参考点N9的隧道信息(包括N3或N9接口对应的下行IP地址和下行GTP-U TEID信息),目标接口为接入侧。
在一个实施例中,第一VID列表是VID成员所属的全部VID。
在一个实施例中,第二VID列表是虚拟网络群组中全部VID的VID列表;或,第二VID列表是第一UPF的全部本地VID成员所属VID列表的合集。
在一个实施例中,第三VID列表是虚拟网络群组中全部VID的VID列表;或,第三VID列表是第一UPF的本地VID成员所属VID列表和第二UPF的本地VID成员所属VID列表 的交集,第二UPF是通过第四参考点与第一UPF相连。
针对VID的第三种实现方式:
上述PDR规则和上述FAR规则中的VID列表以及广播地址(第一VID列表以及广播地址、第二VID列表以及广播地址、第三VID列表以及广播地址)包括多个VID的广播地址,比如3个广播地址或5个广播地址。
当VID列表以及广播地址中的广播地址为m个时,上述第一组播内部接口、第二组播内部接口、第三组播内部接口中的至少一个接口可实现成为m个组播内部接口,每个组播内部接口对应一个VID的广播地址。其中,m为正整数,i为不大于m的整数
当第一组播内部接口实现成为m个第一组播内部接口时,第i个第一组播内部接口对应第i个VID,同时设组播数据包中的组播地址是第一VID列表以中的第i个VID以及广播地址。
第一PDR规则包括:源接口设置为接入侧,目标地址设置为第一VID列表中第i个VID以及广播地址,核心网隧道信息设置为PDU会话的第一参考点或第二参考点的隧道头;第一FAR规则包括:目标接口设置为第i个第一组播内部接口。
第四PDR规则包括:源端口设置为第i个第一组播内部接口,目标地址为第一VID列表中的第i个VID以及广播地址;第四FAR规则包括:外部头创建指示第一参考点或第二参考点的隧道信息,目标接口为接入侧;或,第四FAR规则还包括:外部头创建指示第三参考点的信息,目标接口为核心侧;或,第四FAR规则还包括:外部头创建指示第四参考点的隧道信息,目标接口为核心侧。
当第二组播内部接口实现成为m个第二组播内部接口时,第i个第二组播内部接口对应第二VID列表中的第i个VID,同时设组播数据包中的组播地址是第二VID列表中的第i个VID以及广播地址。
第二PDR规则包括:源接口设置为核心侧,目标地址设置为第二VID列表中的第i个VID以及广播地址;第二FAR规则包括:目标接口设置为第i个第二组播内部接口。
第五PDR规则包括:源端口设置为第i个第二组播内部接口,目标地址为第二VID列表中的第i个VID以及广播地址;第五FAR规则包括:外部头创建指示第一参考点或第二参考点的隧道信息,目标接口为接入侧。
第三PDR规则包括:源接口设置为核心侧,目标地址设置为第三VID列表中的第i个VID以及广播地址,核心网隧道信息设置为第四参考点隧道头;第三FAR规则包括:目标接口设置为第i个第二组播内部接口,m为正整数,i为不大于m的整数。
第六PDR规则包括:源端口设置为第i个第二组播内部接口,目标地址为第三VID列表中的第i个VID以及广播地址;第六FAR规则包括:外部头创建指示第一参考点或第二参考点的隧道信息,目标接口为接入侧。
当第三组播内部接口实现成为m个第三组播内部接口时,第i个第三组播内部接口对应第三VID列表中的第i个VID,同时设组播数据包中的组播地址是第三VID列表中的第i个VID以及。
第七PDR规则包括:源接口设置为核心侧,目标地址设置为第三VID列表中的第i个VID以及广播地址,核心网隧道信息设置为第四参考点隧道头;第七FAR规则包括:目标接口设置为第i个第三组播内部接口。
第八PDR规则包括:源端口设置为第i个第三组播内部接口,目标地址为第三VID列表中的第i个VID以及广播地址;第八FAR规则包括:外部头创建指示第一参考点或第二参考点的隧道信息,目标接口为接入侧。
以至少两个组播内部接口包括:第一组播内部接口和m个第二组播内部接口为例,每个第二组播内部接口对应一个VID,m为广播地址的数量;
当组播数据包是来自第一参考点或第二参考点的组播数据时,UPF将组播数据包发送至 第一组播内部接口,通过第一组播内部接口将组播数据包从VID中每个VID成员分别对应的第一参考点或第二参考点或第三参考点或第四参考点,发送至VID的全部VID成员。
当组播数据包是来自第三参考点或第四参考点的组播数据,且组播数据包的广播地址是第i个广播地址时,UPF将组播数据包发送至第i个VID对应的第二组播内部接口,通过第i个VID对应的第二组播内部接口将组播数据包从VID在UPF的每个本地VID成员分别对应的第一参考点或第二参考点,发送至UPF的全部本地VID成员。
对于m个第一组播内部接口的实施例,或者m个第三组播内部接口的实施例,为本领域技术人员根据上述实施例所易于思及的内容,不再一一赘述。
PDR规则和FAR规则的配置过程
上述PDR规则和FAR规则由SWF向相应的UPF配置。图14示出了本申请一个示例性实施例提供的虚拟网络群组的组播组的组播方法的流程图。该方法可以由SMF来执行,该方法包括:
步骤1402,SMF生成至少两个组播内部接口对应的至少两组组播规则;
步骤1404,在至少两组组播规则中,确定组播组对应的每个UPF上需要的组播规则;组播组是虚拟网络群组中的常规组播组,或者,组播组是采用VID标识的组;
步骤1406,SMF向每个UPF配置需要的组播规则。
根据上述实施例可知,至少两个组播内部接口存在多种实现方式。
当至少两个组播内部接口包括第一组播内部接口时,至少两组组播规则包括:每个组播组成员的与第一组播内部接口对应的第一组组播规则,上述步骤1402、步骤1404和步骤1406可实现成为如下步骤,如图15所示:
步骤1402a,SMF生成每个组播组成员的与第一组播内部接口对应的第一组组播规则;
步骤1404a,对于每个组播组成员所属的UPF,确定为需要第一组组播规则的UPF;
步骤1406a,在每个组播组成员建立PDU会话的过程中,SMF向每个组播组成员所属的UPF配置第一组组播规则。
其中,第一组组播规则包括:上述实施例中提及的第一PDR规则和第一FAR规则,以及第四PDR规则和第四FAR规则。
当至少两个组播内部接口包括第二组播内部接口时,至少两组组播规则包括:与第二组播内部接口对应的每个组播组的群组级别的第二组组播规则,第二组组播规则用于转发来自第三参考点N6的组播数据包,上述步骤1402、步骤1404和步骤1406可实现成为如下步骤,如图16所示:
步骤1402b,SMF生成与第二组播内部接口对应的每个组播组的群组级别的第二组组播规则;
其中,第二组组播规则用于转发来自第三参考点的组播数据包。
步骤1404b,对于组播组对应的每个UPF中的第一UPF,根据第一UPF上的本地组播组成员所属组播组的组播地址列表的合集,将合集对应的所有群组级别的第二组组播规则,确定为第一UPF中需要的组播规则。
当第一UPF下的UE发生增加或减少时,SMF计算第一UPF上的本地组播组成员所属组播组的组播地址列表的合集。SMF将组播地址列表的合集对应的所有群组级别的第二组组播规则,确定为第一UPF中需要的组播规则。
步骤1406b,在组播地址列表的合集发生改变时,SMF向第一UPF配置合集对应的所有群组级别的第二组组播规则。
当该合集发生改变(新增UE或删除UE)时,SMF向第一UPF配置组播地址列表的合集对应的所有群组级别的第二组组播规则。
其中,第二组组播规则包括:第二PDR规则和第二FAR规则;第五PDR规则和第五FAR 规则。
需要说明的是,因为虚拟网络群组中的成员可能为多个,则选中的UPF也可能是多个,多个UPF之间是建议共用的一个N6GTP-U隧道。
当至少两个组播内部接口包括第二组播内部接口时,至少两组组播规则包括:与第二组播内部接口对应的每个组播组的群组级别的第三组组播规则,第三组组播规则用于转发来自第四参考点N19的组播数据包,上述步骤1402、步骤1404和步骤1406可实现成为如下步骤,如图17所示:
步骤1402c,SMF生成与第二组播内部接口对应的每个组播组的群组级别的第三组组播规则;
其中,第三组组播规则用于转发来自第四参考点N19的组播数据包。
步骤1404c1,对于组播组对应的每个UPF中的第一UPF,确定第一UPF上的本地组播组成员对应的组播地址列表和第二UPF上的本地组播组成员对应的组播地址列表的交集;
步骤1404c2,将交集对应的所有群组级别的第三组组播规则,确定为第一UPF和第二UPF中需要的组播规则,第二UPF是组播组对应的每个UPF中除第一UPF之外的UPF;
步骤1406c,在交集发生改变时,SMF向第一UPF和第二UPF分别配置交集对应的所有群组级别的第三组组播规则。
当该交集发生改变(新增UE或删除UE)时,SMF向第一UPF和第二UPF分别配置交集对应的所有群组级别的第三组组播规则。
其中,第三组组播规则包括:第三PDR规则和第三FAR规则;第六PDR规则和第六FAR规则。
当至少两个组播内部接口包括第三组播内部接口时,至少两组组播规则包括:与第三组播内部接口对应的每个组播组的群组级别的第四组组播规则,第四组组播规则用于转发来自第四参考点N19的组播数据包,上述步骤1402、步骤1404和步骤1406可实现成为如下步骤,如图18所示:
步骤1402c,SMF生成与第三组播内部接口对应的每个组播组的群组级别的第四组组播规则;
其中,第四组组播规则用于转发来自第四参考点N19的组播数据包;
步骤1404c1,对于组播组对应的每个UPF中的第一UPF,确定第一UPF上的本地组播组成员对应的组播地址列表和第二UPF上的本地组播组成员对应的组播地址列表的交集;
步骤1404c2,将交集对应的所有群组级别的第四组组播规则,确定为第一UPF和第二UPF中需要的组播规则,第二UPF是组播组对应的每个UPF中除第一UPF之外的UPF;
步骤1406c,在交集发生改变时,SMF向第一UPF和第二UPF分别配置交集对应的所有群组级别的第四组组播规则。
当该交集发生改变(新增UE或删除UE)时,SMF向第一UPF和第二UPF分别配置交集对应的所有群组级别的第四组组播规则。
其中,第四组组播规则包括:第七PDR规则和第七FAR规则;第八PDR规则和第八FAR规则。
需要说明的是,负责将N6,N19接收到的组播数据包发送到组播内部接口,以及从组播内部接口发出的数据转发给N6,N19的PDR,FAR,是虚拟网络群组所使用的组级别的4个N4会话,即是独立于每个UE的N4会话(一个UE建立一个PDU会话就有一个PDU会话级别的N4会话),也就是这4个N4会话是所有虚拟网络群组成员都共同使用的N4会话(功能相当于这4个会话要被虚拟网络群组的所有成员来使用,但无需单独为每个成员来定义)。
在一个示例性的例子中,图19示出了UE请求的PDU会话建立的流程图(用于非漫游和本地疏导漫游场景)。有关该图19的细节描述可参考3GPP中的标准23.502中的附图4.3.2.2.2的描述,本文不再赘述。
针对图15所示出的配置过程,虚拟网络群组中的每个UE都需要建立一个PDU会话。针对虚拟网络群组中的每个UE,SMF可以在步骤10a的N4会话过程中“也即SMF向UPF发送的N4会话建立/修改请求中”,将第一组组播规则(第一PDR规则、第一FAR规则、第四PDR规则和第四FAR规则)配置到UPF中。
针对图16所示出的配置过程,SMF可以在步骤8的“UPF选择过程”中,将群组级别的N6接口相关的第二组组播规则(第二PDR规则、第二FAR规则、第五PDR规则和第五FAR规则)下发到相应的UPF中。
针对图17所示出的配置过程,SMF可以在步骤8的“UPF选择过程”中,将群组级别的N19接口相关的第三组组播规则(第三PDR规则、第三FAR规则、第六PDR规则和第六FAR规则)下发到相应的UPF中。
针对图18所示出的配置过程,SMF可以在步骤8的“UPF选择过程”中,将群组级别的N19接口相关的第四组组播规则(第七PDR规则、第七FAR规则、第八PDR规则和第八FAR规则)下发到相应的UPF中。
在一个示例性的例子中,图20示出了UE请求的PDU会话建立的流程图(用于归属路由漫游场景)。针对图15或图16或图17或图18所示出的配置过程,是在图20中的步骤10“UPF选择过程”以及步骤12a“N4会话创建请求”中执行的,而非步骤4“UPF选择过程”和步骤5“N4会话创建请求”中执行。有关该图18的细节描述可参考3GPP中的标准23.502中的附图4.3.2.2.2-1的描述,本文不再赘述。
上述第一种实现方式和第二种实现方式中,PDR规则和FAR规则中包含有组播地址列表。当组播地址列表发生改变(增加、修改或删除)时,相应的PDR规则和FAR规则全部需要修改。
第一组组播规则包括第一组播地址列表,当第一组播地址列表中的组播地址发生新增、修改或删除时,将组播组中的每个组播组成员对应的UPF更新第一组播地址列表。
第二组组播规则包括第二组播地址列表,当第二组播地址列表中的组播地址发生新增、修改或删除时,重新确定需要第二组组播规则的UPF;向需要第二组组播规则的UPF更新第二组播地址列表。
第三组组播规则包括第三组播地址列表,当第三组播地址列表中的组播地址发生新增、修改或删除时,重新确定需要第三组组播规则的UPF;向需要第三组组播规则的UPF更新第三组播地址列表。
第四组组播规则包括第三组播地址列表,当第三组播地址列表中的组播地址发生新增、修改或删除时,重新确定需要第四组组播规则的UPF;向需要第四组组播规则的UPF更新第三组播地址列表。
或者,
第一组组播规则包括第一VID列表,当第一VID列表中的组播地址发生新增、修改或删除时,将组播组中的每个组播组成员对应的UPF更新第一VID列表。
第二组组播规则包括第二VID列表,当第二VID列表中的组播地址发生新增、修改或删除时,重新确定需要第二组组播规则的UPF;向需要第二组组播规则的UPF更新第二VID列表。
第三组组播规则包括第三VID列表,当第三VID列表中的组播地址发生新增、修改或删除时,重新确定需要第三组组播规则的UPF;向需要第三组组播规则的UPF更新第三VID列表。
第四组组播规则包括第三VID列表,当第三VID列表中的组播地址发生新增、修改或删除时,重新确定需要第四组组播规则的UPF;向需要第四组组播规则的UPF更新第三VID列表。
图21示出了UE或网络请求的PDU会话修改的流程图(用于非漫游和本地突破漫游场景)。SMF修改组播地址列表的过程,可以在步骤2a“N4会话创建/修改请求”、步骤8a“N4会话修改请求”和步骤12a“N4会话修改请求”中的任一步骤中执行。有关图21的细节描述可参考3GPP中的标准23.502中的附图4.3.2.2.2的描述,本文不再赘述。
图22示出了UE或网络请求的PDU会话修改的流程图(用于归属路由漫游场景)。SMF修改组播地址列表的过程,可以在H-SMF和H-UPF之间的步骤16a“N4会话修改请求”中执行。有关图22的细节描述可参考3GPP中的标准23.502中的附图4.3.2.2.2-1的描述,本文不再赘述。
针对UE从一个UPF移动到另一个UPF的场景:
当一个组播组成员从一个UPF移动到另一UPF时,将组播组成员对应的第一组组播规则在另一UPF上新建或重定位的PDU会话上运行。
在一个可选的实施例中,上述方法还包括:
当一个组播组成员从第一UPF移动到第三UPF时,计算第三UPF上的本地组播组成员所属组播组的组播地址列表的合集,将合集对应的所有群组级别的第二组组播规则,确定为第三UPF中需要的组播规则。
在一个可选的实施例中,上述方法还包括:
当一个组播组成员从第一UPF移动到第四UPF时,计算第四UPF上的本地组播组成员对应的组播地址列表和第五UPF上的本地组播组成员对应的组播地址列表的交集;将交集对应的所有群组级别的第三组组播规则,确定为第四UPF和第五UPF中需要的组播规则,第五UPF是组播组对应的每个UPF中除第四UPF之外的UPF;
在交集发生改变时,向第四UPF和第五UPF分别配置交集对应的所有群组级别的第三组组播规则。
在一个可选的实施例中,上述方法还包括:
当一个组播组成员从第一UPF移动到第六UPF时,计算第六UPF上的本地组播组成员对应的组播地址列表和第七UPF上的本地组播组成员对应的组播地址列表的交集;将交集对应的所有群组级别的第四组组播规则,确定为第六UPF和第七UPF中需要的组播规则,第七UPF是组播组对应的每个UPF中除第六UPF之外的UPF;
在交集发生改变时,向第六UPF和第七UPF分别配置交集对应的所有群组级别的第四组组播规则。
上述四个步骤的执行先后顺序不限,且每个步骤可以互相独立执行,本申请实施例对此不加以限定。
以下为本申请实施例的装置实施例,对于装置实施例中未详细描述的细节,可以参考上述方法实施例。
图23示出了本申请一个示例性实施例提供的一种虚拟网络群组的组播组的组播装置的框图。该装置可以实现成为第一UPF的一部分。该装置包括:
接收模块2320,用于接收虚拟网络群组的一个成员发送的组播数据包,组播数据包的目的地址是组播地址;
发送模块2340,用于将组播数据包发送至至少两个组播内部接口中的目标组播内部接口,通过目标组播内部接口将组播数据包发送至虚拟网络群组的全部成员或全部本地组播组成员。其中,组播组是虚拟网络群组中的常规组播组,或者,组播组是采用虚拟局域网标识VID 标识的组,组播组成员是VID成员,组播数据包是采用VID的广播地址发送的数据包。
在一个可选的实施例中,至少两个组播内部接口包括:第一组播内部接口和第二组播内部接口;
发送模块2340,用于当组播数据包是来自第一参考点或第二参考点的组播数据时,将组播数据包发送至第一组播内部接口,通过第一组播内部接口将组播数据包从组播组中每个组播组成员分别对应的第一参考点或第二参考点或第三参考点或第四参考点,发送至组播组的全部组播组成员;
发送模块2340,用于当组播数据包是来自第三参考点或第四参考点的组播数据时,将组播数据包发送至第二组播内部接口,通过第二组播内部接口将组播数据包从组播组中在第一UPF的每个本地组播组成员分别对应的第一参考点或第二参考点,发送至组播组的全部本地组播组成员;
其中,第一参考点是接入网和第一UPF之间的参考点,第二参考点是第一UPF和内部UPF之间的参考点,第三参考点是第一UPF和数据网络之间的参考点,第四参考点是第一UPF和其它PSA UPF之间的参考点。
在一个可选的实施例中,至少两个组播内部接口包括:第一组播内部接口、第二组播内部接口和第三组播内部接口;
发送模块2340,用于当组播数据包是来自第一参考点或第二参考点的组播数据时,将组播数据包发送至第一组播内部接口,通过第一组播内部接口将组播数据包从组播组中每个组播组成员分别对应的第一参考点或第二参考点或第三参考点或第四参考点,发送至组播组的全部组播组成员;
发送模块2340,用于当组播数据包是来自第三参考点的组播数据时,将组播数据包发送至第二组播内部接口,通过第二组播内部接口将组播数据包从组播组中在第一UPF的每个本地组播组成员分别对应的第一参考点或第二参考点,发送至组播组的全部本地组播组成员;
发送模块2340,用于当组播数据包是来自第四参考点的组播数据时,将组播数据包发送至第三组播内部接口,通过第三组播内部接口将组播数据包从组播组中在第一UPF本地的每个本地组播组成员分别对应的第一参考点或第二参考点,发送至组播组的全部本地组播组成员;
其中,第一参考点是接入网和第一UPF之间的参考点,第二参考点是第一UPF和内部UPF之间的参考点,第三参考点是第一UPF和数据网络之间的参考点,第四参考点是第一UPF和其它PSA UPF之间的参考点。
在一个可选的实施例中,UPF中设置有与组播组中的组播组成员对应的第一PDR规则和第一FAR规则;
发送模块2340,用于通过第一PDR规则检测到组播数据包是来自第一参考点或第二参考点的组播数据时,通过第一FAR规则将组播数据包发送至第一组播内部接口。
在一个可选的实施例中,第一组播内部接口为一个,第一PDR规则包括:源接口设置为接入侧,目标地址设置为组播组成员所属的第一组播地址列表,核心网隧道信息设置为协议数据单元PDU会话的第一参考点或第二参考点的隧道头;第一FAR规则包括:目标接口设置为第一组播内部接口;
或,
第一组播内部接口为m个,第i个第一组播内部接口对应第一组播地址列表中的第i个组播地址,第i个组播地址是组播数据包中的组播地址,第一PDR规则包括:源接口设置为接入侧,目标地址设置为第i个组播地址,核心网隧道信息设置为PDU会话的第一参考点或第二参考点的隧道头;第一FAR规则包括:目标接口设置为第i个第一组播内部接口,m为正整数,i为不大于m的整数;
或,
第一组播内部接口为一个,第一PDR规则包括:源接口设置为接入侧,目标地址设置为 VID成员所属的第一VID列表以及广播地址,核心网隧道信息设置为PDU会话的第一参考点或第二参考点的隧道头;第一FAR规则包括:目标接口设置为第一组播内部接口;
或,
第一组播内部接口为m个,第i个第一组播内部接口对应第一VID列表中的第i个VID,第i个VID以及广播地址是组播数据包中的组播地址,第一PDR规则包括:源接口设置为接入侧,目标地址设置为第i个VID以及广播地址,核心网隧道信息设置为PDU会话的第一参考点或第二参考点的隧道头;第一FAR规则包括:目标接口设置为第i个第一组播内部接口,m为正整数,i为不大于m的整数。
在一个可选的实施例中,组播数据包中的组播地址是第一组播地址列表中的一个组播地址;或,组播数据包中的组播地址是第一VID列表中的一个VID。
在一个可选的实施例中,当UPF需要接收来自第三参考点的组播数据时,UPF中设置有与组级别会话对应的第二PDR规则和第二FAR规则,组级别会话是UPF和SMF之间的会话;
发送模块2340,用于通过第二PDR规则检测到组播数据包是来自第三参考点的组播数据时,通过第二FAR规则将组播数据包发送至第二组播内部接口。
在一个可选的实施例中,第二组播内部接口为一个,第二PDR规则包括:源接口设置为核心侧,目标地址设置为第二组播地址列表;第二FAR规则包括:目标接口设置为第二组播内部接口;
或,
第二组播内部接口为m个,第i个第二组播内部接口对应第二组播地址列表中的第i个组播地址,第i个组播地址是组播数据包中的组播地址,第二PDR规则包括:源接口设置为核心侧,目标地址设置为第i个组播地址;第二FAR规则包括:目标接口设置为第i个第二组播内部接口,m为正整数,i为不大于m的整数;
或,
第二组播内部接口为一个,第二PDR规则包括:源接口设置为核心侧,目标地址设置为VID成员所属的第二VID列表以及广播地址;第二FAR规则包括:目标接口设置为第二组播内部接口;
或,
第二组播内部接口为m个,第i个第二组播内部接口对应第二VID列表中的第i个VID,第i个VID以及广播地址是组播数据包中的组播地址,第二PDR规则包括:源接口设置为核心侧,目标地址设置为第i个VID以及广播地址;第二FAR规则包括:目标接口设置为第i个第二组播内部接口,m为正整数,i为不大于m的整数。
在一个可选的实施例中,第二组播地址列表是虚拟网络群组中全部组播组的组播地址列表;或,第二组播地址列表是第一UPF的全部本地组播组成员所属组播组的组播地址列表的合集;或,第二VID列表是虚拟网络群组中全部VID的VID列表;或,第二VID列表是第一UPF的全部本地VID成员所属的VID列表的合集。
在一个可选的实施例中,当第一UPF需要接收来自第四参考点的组播数据时,第一UPF中设置有与组级别会话对应的第三PDR规则和第三FAR规则,组级别会话是第一UPF和SMF之间的会话;
发送模块2340,用于通过第三PDR规则检测到组播数据包是来自第四参考点的组播数据时,通过第三FAR规则将组播数据包发送至第二组播内部接口。
在一个可选的实施例中,第二组播内部接口为一个,第三PDR规则包括:源接口设置为核心侧,目标地址设置为第三组播地址列表,核心网隧道信息设置为第四参考点隧道头;第三FAR规则包括:目标接口设置为第二组播内部接口;
或,
第二组播内部接口为m个,第i个第二组播内部接口对应第三组播地址列表中的第i个组播地址,第i个组播地址是组播数据包中的组播地址,第三PDR规则包括:源接口设置为 核心侧,目标地址设置为第i个组播地址,核心网隧道信息设置为第四参考点隧道头;第三FAR规则包括:目标接口设置为第i个第二组播内部接口,m为正整数,i为不大于m的整数;
或,
第二组播内部接口为一个,第三PDR规则包括:源接口设置为核心侧,目标地址设置为VID成员所属的第三VID列表以及广播地址,核心网隧道信息设置为第四参考点隧道头;第三FAR规则包括:目标接口设置为第二组播内部接口;
或,
第二组播内部接口为m个,第i个第二组播内部接口对应第三VID列表以及广播地址中的第i个VID以及广播地址,第i个VID以及广播地址是组播数据包中的组播地址,第三PDR规则包括:源接口设置为核心侧,目标地址设置为第i个VID以及广播地址,核心网隧道信息设置为第四参考点隧道头;第三FAR规则包括:目标接口设置为第i个第二组播内部接口,m为正整数,i为不大于m的整数。
在一个可选的实施例中,第三组播地址列表是虚拟网络群组中全部组播组的组播地址列表;或,第三组播地址列表是第一UPF的本地组播组成员所属组播组的组播地址列表和第二UPF的本地组播组成员所属组播组的组播地址列表的交集,第二UPF是通过第四参考点与第一UPF相连;或,第三VID列表是虚拟网络群组中全部VID的VID列表;或,第三VID列表是第一UPF的本地VID成员所属的VID列表和第二UPF的本地VID成员所属的VID列表的交集,第二UPF是通过第四参考点与第一UPF相连。
在一个可选的实施例中,第一UPF中设置有与组播组中的组播组成员对应的第四PDR规则和第四FAR规则;
发送模块2340,用于通过第四PDR规则检测到组播数据包是来自第一组播内部接口的组播数据时,通过第四FAR规则将组播数据包从组播组的每个组播组成员分别对应的第一参考点或第二参考点或第三参考点或第四参考点,发送至组播组的全部组播组成员。
在一个可选的实施例中,第一组播内部接口为一个,第四PDR规则包括:源端口设置为第一组播内部接口,目标地址为组播组成员所属的第一组播地址列表;第四FAR规则包括:外部头创建指示第一参考点或第二参考点的隧道信息,目标接口为接入侧;或,第四FAR规则还包括:外部头创建指示第三参考点的信息,目标接口为核心侧;或,第四FAR规则还包括:外部头创建指示第四参考点的隧道信息,目标接口为核心侧;
或,
第一组播内部接口为m个,第i个第一组播内部接口对应第一组播地址列表中的第i个组播地址,第i个组播地址是组播数据包中的组播地址;第四PDR规则包括:源端口设置为第i个第一组播内部接口,目标地址为第i个组播地址;第四FAR规则包括:外部头创建指示第一参考点或第二参考点的隧道信息,目标接口为接入侧;或,第四FAR规则还包括:外部头创建指示第三参考点的信息,目标接口为核心侧;或,第四FAR规则还包括:外部头创建指示第四参考点的隧道信息,目标接口为核心侧;
或,
第一组播内部接口为一个,第四PDR规则包括:源端口设置为第一组播内部接口,目标地址为VID成员所属的第一VID列表以及广播地址;第四FAR规则包括:外部头创建指示第一参考点或第二参考点的隧道信息,目标接口为接入侧;或,第四FAR规则还包括:外部头创建指示第三参考点的信息,目标接口为核心侧;或,第四FAR规则还包括:外部头创建指示第四参考点的隧道信息,目标接口为核心侧;
或,
第一组播内部接口为m个,第i个第一组播内部接口对应第一VID列表中的第i个VID,第i个VID以及广播地址是组播数据包中的组播地址;第四PDR规则包括:源端口设置为第i个第一组播内部接口,目标地址为第i个VID以及广播地址;第四FAR规则包括:外部头 创建指示第一参考点或第二参考点的隧道信息,目标接口为接入侧;或,第四FAR规则还包括:外部头创建指示第三参考点的信息,目标接口为核心侧;或,第四FAR规则还包括:外部头创建指示第四参考点的隧道信息,目标接口为核心侧;
其中,m为正整数,i为不大于m的整数。
在一个可选的实施例中,当第一UPF需要接收来自第三参考点的组播数据时,第一UPF中设置有与组级别会话对应的第五PDR规则和第五FAR规则;组级别会话是第一UPF和SMF之间的会话;
发送模块2340,用于通过第五PDR规则检测到组播数据包是第二组播内部接口的组播数据时,通过第五FAR规则将组播数据包,从组播组中在第一UPF的每个本地组播组成员分别对应的第一参考点或第二参考点,发送至组播组的全部本地组播组成员。
在一个可选的实施例中,第二组播内部接口为一个,第五PDR规则包括:源端口设置为第二组播内部接口,目标地址为VID的第二组播地址列表;第五FAR规则包括:外部头创建指示第一参考点或第二参考点的隧道信息,目标接口为接入侧;
或,第二组播内部接口为m个,第i个第二组播内部接口对应第二组播地址列表中的第i个组播地址,第i个组播地址是组播数据包中的组播地址,第五PDR规则包括:源端口设置为第i个第二组播内部接口,目标地址为第i个组播地址;第五FAR规则包括:外部头创建指示第一参考点或第二参考点的隧道信息,目标接口为接入侧,m为正整数,i为不大于m的整数;
或,第二组播内部接口为一个,第五PDR规则包括:源端口设置为第二组播内部接口,目标地址为VID成员所属VID的第二VID列表以及广播地址;第五FAR规则包括:外部头创建指示第一参考点或第二参考点的隧道信息,目标接口为接入侧;
或,第二组播内部接口为m个,第i个第二组播内部接口对应第二VID列表以及广播地址的第i个VID以及广播地址,第i个VID以及广播地址是组播数据包中的组播地址,第五PDR规则包括:源端口设置为第i个第二组播内部接口,目标地址为第i个VID以及广播地址;第五FAR规则包括:外部头创建指示第一参考点或第二参考点的隧道信息,目标接口为接入侧,m为正整数,i为不大于m的整数。
在一个可选的实施例中,当第一UPF需要接收来自第四参考点的组播数据时,第一UPF中设置有与组级别会话对应的第六PDR规则和第六FAR规则;组级别会话是第一UPF和SMF之间的会话;
发送模块2340,用于通过第六PDR规则检测到组播数据包是第二组播内部接口的组播数据时,通过第六FAR规则将组播数据包,从组播组中在第一UPF的每个本地组播组成员分别对应的第一参考点或第二参考点,发送至组播组的全部本地组播组成员。
在一个可选的实施例中,第二组播内部接口为一个,第六PDR规则包括:源端口设置为第二组播内部接口,目标地址为第三组播地址列表;第六FAR规则包括:外部头创建指示第一参考点或第二参考点的隧道信息,目标接口为接入侧;
或,
第二组播内部接口为m个,第i个第二组播内部接口对应第三组播地址列表中的第i个组播地址,第i个组播地址是组播数据包中的组播地址,第六PDR规则包括:源端口设置为第i个第二组播内部接口,目标地址为第i个组播地址;第六FAR规则包括:外部头创建指示第一参考点或第二参考点的隧道信息,目标接口为接入侧,m为正整数,i为不大于m的整数;
或,
第二组播内部接口为一个,第六PDR规则包括:源端口设置为第二组播内部接口,目标地址为VID成员所属的第三VID列表以及广播地址;第六FAR规则包括:外部头创建指示第一参考点或第二参考点的隧道信息,目标接口为接入侧;
或,
第二组播内部接口为m个,第i个第二组播内部接口对应第三VID列表中的第i个VID,第i个VID以及广播地址是组播数据包中的组播地址,第六PDR规则包括:源端口设置为第i个第二组播内部接口,目标地址为第i个VID以及广播地址;第六FAR规则包括:外部头创建指示第一参考点或第二参考点的隧道信息,目标接口为接入侧,m为正整数,i为不大于m的整数。
在一个可选的实施例中,当第一UPF需要接收来自第四参考点的组播数据时,第一UPF中设置有与组级别会话对应的第七PDR规则和第七FAR规则,组级别会话是第一UPF和SMF之间的会话;
发送模块2340,用于通过第七PDR规则检测到组播数据包是来自第四参考点的组播数据时,通过第七FAR规则将组播数据包发送至第三组播内部接口。
在一个可选的实施例中,第三组播内部接口为一个,第七PDR规则包括:源接口设置为核心侧,目标地址设置为第三组播地址列表,核心网隧道信息设置为第四参考点隧道头;第七FAR规则包括:目标接口设置为第三组播内部接口;
或,第三组播内部接口为m个,第i个第三组播内部接口对应第三组播地址列表中的第i个组播地址,第i个组播地址是组播数据包中的组播地址,第七PDR规则包括:源接口设置为核心侧,目标地址设置为第i个组播地址,核心网隧道信息设置为第四参考点隧道头;第七FAR规则包括:目标接口设置为第i个第三组播内部接口,m为正整数,i为不大于m的整数;
或,第三组播内部接口为一个,第七PDR规则包括:源接口设置为核心侧,目标地址设置为VID成员所属的VID的第三VID列表以及广播地址,核心网隧道信息设置为第四参考点隧道头;第七FAR规则包括:目标接口设置为第三组播内部接口;
或,第三组播内部接口为m个,第i个第三组播内部接口对应第三VID列表以及广播地址中的第i个VID以及广播地址,第i个VID以及广播地址是组播数据包中的组播地址,第七PDR规则包括:源接口设置为核心侧,目标地址设置为第i个VID以及广播地址,核心网隧道信息设置为第四参考点隧道头;第七FAR规则包括:目标接口设置为第i个第三组播内部接口,m为正整数,i为不大于m的整数。
在一个可选的实施例中,当第一UPF需要接收来自第四参考点的组播数据时,第一UPF中设置有与组级别会话对应的第八PDR规则和第八FAR规则;组级别会话是第一UPF和SMF之间的会话;
发送模块2340,用于通过第八PDR规则检测到组播数据包是第三组播内部接口的组播数据时,通过第八FAR规则将组播数据包,从组播组中在第一UPF的每个本地组播组成员分别对应的第一参考点或第二参考点,发送至组播组的全部本地组播组成员。
在一个可选的实施例中,第三组播内部接口为一个,第七PDR规则包括:源接口设置为核心侧,目标地址设置为第三组播地址列表,核心网隧道信息设置为第四参考点隧道头;第七FAR规则包括:目标接口设置为第三组播内部接口;
或,
第三组播内部接口为m个,第i个第三组播内部接口对应第三组播地址列表中的第i个组播地址,第i个组播地址是组播数据包中的组播地址,第七PDR规则包括:源接口设置为核心侧,目标地址设置为第i个组播地址,核心网隧道信息设置为第四参考点隧道头;第七FAR规则包括:目标接口设置为第i个第三组播内部接口,m为正整数,i为不大于m的整数;
或,
第三组播内部接口为一个,第七PDR规则包括:源接口设置为核心侧,目标地址设置为VID成员所属的的第三VID列表以及广播地址,核心网隧道信息设置为第四参考点隧道头;第七FAR规则包括:目标接口设置为第三组播内部接口;
或,
第三组播内部接口为m个,第i个第三组播内部接口对应第三VID列表中的第i个VID,第i个VID以及广播地址是组播数据包中的组播地址,第七PDR规则包括:源接口设置为核心侧,目标地址设置为第i个VID以及广播地址,核心网隧道信息设置为第四参考点隧道头;第七FAR规则包括:目标接口设置为第i个第三组播内部接口,m为正整数,i为不大于m的整数。
图23示出了本申请一个示例性实施例提供的一种虚拟网络群组的组播装置的框图。该装置可以实现成为会话管理功能SMF的一部分。该装置包括:
生成模块2320,用于生成至少两个组播内部接口对应的至少两组组播规则;
确定模块2330,用于在至少两组组播规则中,确定组播组对应的每个UPF上需要的组播规则;组播组是虚拟网络群组中的常规组播组,或者,组播组是采用VID标识的组;
配置模块2340,用于向每个UPF配置需要的组播规则;
在一个可选的实施例中,至少两个组播内部接口包括:第一组播内部接口;至少两组组播规则包括:每个组播组成员的与第一组播内部接口对应的第一组组播规则;
确定模块2330,用于对于每个组播组成员所属的UPF,确定为需要第一组组播规则的UPF;
配置模块2340,用于在每个组播组成员建立协议数据单元PDU会话的过程中,向每个组播组成员所属的UPF配置第一组组播规则。
在一个可选的实施例中,第一组组播规则包括:
第一PDR规则和第一FAR规则;
第四PDR规则和第四FAR规则。
在一个可选的实施例中,至少两个组播内部接口包括:第二组播内部接口,组播规则包括:与第二组播内部接口对应的群组级别的第二组组播规则,第二组组播规则用于转发来自第三参考点的组播数据包;
确定模块2330,用于对于组播组对应的每个UPF中的第一UPF,根据第一UPF上的本地组播组成员所属组播组的组播地址列表的合集,将合集对应的所有群组级别的第二组组播规则,确定为第一UPF中需要的组播规则;
配置模块2340,用于在合集发生改变时,向第一UPF配置组播地址列表的合集对应的所有群组级别的第二组组播规则。
在一个可选的实施例中,第二组组播规则包括:
第二PDR规则和第二FAR规则;
第五PDR规则和第五FAR规则。
在一个可选的实施例中,至少两个组播内部接口包括:第二组播内部接口,组播规则包括:与第二组播内部接口对应的群组级别的第三组组播规则,第三组组播规则用于转发来自第四参考点的组播数据包;
确定模块2330,用于对于组播组对应的每个UPF中的第一UPF,确定第一UPF上的本地组播组成员对应的组播地址列表和第二UPF上的本地组播组成员对应的组播地址列表的交集;将交集对应的所有群组级别的第三组组播规则,确定为第一UPF和第二UPF中需要的组播规则,第二UPF是组播组对应的每个UPF中除第一UPF之外的UPF;
配置模块2340,用于在交集发生改变时,向第一UPF和第二UPF分别配置交集对应的所有群组级别的第三组组播规则。
在一个可选的实施例中,第三组组播规则包括:
第三PDR规则和第三FAR规则;
第六PDR规则和第六FAR规则。
在一个可选的实施例中,至少两个组播内部接口包括:第三组播内部接口,组播规则包括:与第三组播内部接口对应的群组级别的第四组组播规则,第四组组播规则用于转发来自 第四参考点的组播数据包;
确定模块2330,用于对于组播组对应的每个UPF中的第一UPF,确定第一UPF上的本地组播组成员对应的组播地址列表和第二UPF上的本地组播组成员对应的组播地址列表的交集;将交集对应的所有群组级别的第四组组播规则,确定为第一UPF和第二UPF中需要的组播规则,第二UPF是组播组对应的每个UPF中除第一UPF之外的UPF;
配置模块2340,用于在交集发生改变时,向第一UPF和第二UPF分别配置交集对应的所有群组级别的第四组组播规则。
在一个可选的实施例中,第四组组播规则包括:
第七PDR规则和第七FAR规则;
第八PDR规则和第八FAR规则。
在一个可选的实施例中,第一组组播规则包括第一组播地址列表:
配置模块2340,用于当第一组播地址列表中的组播地址发生新增、修改或删除时,将组播组中的每个组播组成员对应的UPF更新第一组播地址列表。
在一个可选的实施例中,第二组组播规则包括第二组播地址列表:
配置模块2340,用于当第二组播地址列表中的组播地址发生新增、修改或删除时,重新确定需要第二组组播规则的UPF;向需要第二组组播规则的UPF更新第二组播地址列表。
在一个可选的实施例中,第三组组播规则包括第三组播地址列表:
配置模块2340,用于当第三组播地址列表中的组播地址发生新增、修改或删除时,重新确定需要第三组组播规则的UPF;向需要第三组组播规则的UPF更新第三组播地址列表。
在一个可选的实施例中,第四组组播规则包括第三组播地址列表:
配置模块2340,用于当第三组播地址列表中的组播地址发生新增、修改或删除时,重新确定需要第四组组播规则的UPF;向需要第四组组播规则的UPF更新第三组播地址列表。
在一个可选的实施例中,第一组组播规则包括第一VID列表:
配置模块2340,用于当第一VID列表中的VID发生新增、修改或删除时,将组播组中的每个组播组成员对应的UPF更新第一VID列表。
在一个可选的实施例中,第二组组播规则包括第二VID列表:
配置模块2340,用于当第二VID列表中的VID发生新增、修改或删除时,重新确定需要第二组组播规则的UPF;向需要第二组组播规则的UPF更新第二VID列表。
在一个可选的实施例中,第三组组播规则包括第三VID列表:
配置模块2340,用于当第三VID列表中的VID发生新增、修改或删除时,重新确定需要第三组组播规则的UPF;向需要第三组组播规则的UPF更新第三VID列表。
在一个可选的实施例中,第四组组播规则包括第三VID列表:
配置模块2340,用于当第三VID列表中的VID发生新增、修改或删除时,重新确定需要第四组组播规则的UPF;向需要第四组组播规则的UPF更新第三VID列表。
在一个可选的实施例中,装置还包括:
配置模块2340,用于当一个组播组成员从一个UPF移动到另一UPF时,将组播组成员对应的第一组组播规则在另一UPF上新建或重定位的PDU会话上运行。
在一个可选的实施例中,装置还包括:
配置模块2340,用于当一个组播组成员从第一UPF移动到第三UPF时,计算第三UPF上的本地组播组成员所属组播组的组播地址列表的合集,将合集对应的所有群组级别的第二组组播规则,确定为第三UPF中需要的组播规则;向第三UPF配置合集对应的所有群组级别的第二组组播规则。
在一个可选的实施例中,装置还包括:
配置模块2340,用于当一个组播组成员从第一UPF移动到第四UPF时,计算第四UPF上的本地组播组成员对应的组播地址列表和第五UPF上的本地组播组成员对应的组播地址列表的交集;将交集对应的所有群组级别的第三组组播规则,确定为第四UPF和第五UPF中 需要的组播规则,第五UPF是组播组对应的每个UPF中除第四UPF之外的UPF;在交集发生改变时,向第四UPF和第五UPF分别配置交集对应的所有群组级别的第三组组播规则。
在一个可选的实施例中,装置还包括:
配置模块2340,用于当一个组播组成员从第一UPF移动到第六UPF时,计算第六UPF上的本地组播组成员对应的组播地址列表和第七UPF上的本地组播组成员对应的组播地址列表的交集;将交集对应的所有群组级别的第四组组播规则,确定为第六UPF和第七UPF中需要的组播规则,第七UPF是组播组对应的每个UPF中除第六UPF之外的UPF;在交集发生改变时,向第六UPF和第七UPF分别配置交集对应的所有群组级别的第四组组播规则。
图25示出了本申请一个示例性实施例提供的一种计算机设备的框图。具体来讲:所述计算机设备2500包括中央处理单元(CPU)2501、包括随机存取存储器(RAM)2502和只读存储器(ROM)2503的系统存储器2504,以及连接系统存储器2504和中央处理单元2501的系统总线2505。所述计算机设备2500还包括帮助计算机内的各个器件之间传输信息的基本输入/输出系统(I/O系统)2506,和用于存储操作系统2513、应用程序2514和其他程序模块2515的大容量存储设备2507。
所述基本输入/输出系统2506包括有用于显示信息的显示器2508和用于用户输入信息的诸如鼠标、键盘之类的输入设备2509。其中所述显示器2508和输入设备2509都通过连接到系统总线2505的输入输出控制器2510连接到中央处理单元2501。所述基本输入/输出系统2506还可以包括输入输出控制器2510以用于接收和处理来自键盘、鼠标、或电子触控笔等多个其他设备的输入。类似地,输入输出控制器2510还提供输出到显示屏、打印机或其他类型的输出设备。
所述大容量存储设备2507通过连接到系统总线2505的大容量存储控制器(未示出)连接到中央处理单元2501。所述大容量存储设备2507及其相关联的计算机可读介质为计算机设备2500提供非易失性存储。也就是说,所述大容量存储设备2507可以包括诸如硬盘或者CD-ROM驱动器之类的计算机可读介质(未示出)。
不失一般性,所述计算机可读介质可以包括计算机存储介质和通信介质。计算机存储介质包括以用于存储诸如计算机可读指令、数据结构、程序模块或其他数据等信息的任何方法或技术实现的易失性和非易失性、可移动和不可移动介质。计算机存储介质包括RAM、ROM、EPROM、EEPROM、闪存或其他固态存储其技术,CD-ROM、DVD或其他光学存储、磁带盒、磁带、磁盘存储或其他磁性存储设备。当然,本领域技术人员可知所述计算机存储介质不局限于上述几种。上述的系统存储器2504和大容量存储设备2507可以统称为存储器。
存储器存储有一个或多个程序,一个或多个程序被配置成由一个或多个中央处理单元2501执行,一个或多个程序包含用于实现上述虚拟网络群组的组播方法的指令,中央处理单元2501执行该一个或多个程序实现上述各个方法实施例提供的虚拟网络群组的组播组的组播方法。
根据本申请的各种实施例,所述计算机设备2500还可以通过诸如因特网等网络连接到网络上的远程计算机运行。也即计算机设备2500可以通过连接在所述系统总线2505上的网络接口单元2511连接到网络2512,或者说,也可以使用网络接口单元2511来连接到其他类型的网络或远程计算机系统(未示出)。
在一个示例中,所述计算机设备上运行有用户平面功能,所述计算机设备包括:处理器和存储器;所述存储器中存储有计算机程序,所述计算机程序由所述处理器加载并执行以实现如上方面所述的虚拟网络群组的组播组的组播方法。
在一个示例中,所述计算机设备上运行有会话管理功能,所述计算机设备包括:处理器和存储器;所述存储器中存储有计算机程序,所述计算机程序由所述处理器加载并执行以实现如上方面所述的虚拟网络群组的组播组的组播方法。
根据本申请的另一方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中 存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由处理器加载并执行以实现如上方面所述的虚拟网络群组的组播组的组播方法。
根据本申请的另一方面,提供了一种计算机程序产品,所述计算机程序产品中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由处理器加载并执行以实现如上方面所述的虚拟网络群组的组播组的组播方法。
应当理解的是,在本文中提及的“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (47)

  1. 一种虚拟网络群组的组播组的组播方法,其特征在于,应用于第一用户平面功能UPF中,所述方法包括:
    接收所述虚拟网络群组的一个成员发送的组播数据包,所述组播数据包的目的地址是组播地址;
    将所述组播数据包发送至至少两个组播内部接口中的目标组播内部接口,通过所述目标组播内部接口将所述组播数据包发送至所述组播组的全部组播组成员或全部本地组播组成员;
    其中,所述组播组是所述虚拟网络群组中的常规组播组,或者,所述组播组是采用虚拟局域网标识VID标识的组,所述组播组成员是VID成员。
  2. 根据权利要求1所述的方法,其特征在于,所述至少两个组播内部接口包括:第一组播内部接口和第二组播内部接口;
    所述将所述组播数据包发送至至少两个组播内部接口中的目标组播内部接口,通过所述目标组播内部接口将所述组播数据包发送至所述组播组的全部组播组成员或全部本地组播组成员,包括:
    当所述组播数据包是来自第一参考点或第二参考点的组播数据时,将所述组播数据包发送至所述第一组播内部接口,通过所述第一组播内部接口将所述组播数据包从所述组播组中每个组播组成员分别对应的所述第一参考点或所述第二参考点或第三参考点或第四参考点,发送至所述组播组的全部组播组成员;
    当所述组播数据包是来自所述第三参考点或所述第四参考点的组播数据时,将所述组播数据包发送至所述第二组播内部接口,通过所述第二组播内部接口将所述组播数据包从所述组播组中在所述第一UPF的每个本地组播组成员分别对应的所述第一参考点或所述第二参考点,发送至所述组播组的全部本地组播组成员;
    其中,所述第一参考点是接入网和所述第一UPF之间的参考点,所述第二参考点是所述第一UPF和内部UPF之间的参考点,所述第三参考点是所述第一UPF和数据网络之间的参考点,所述第四参考点是所述第一UPF和其它协议数据单元会话锚用户平面功能PSA UPF之间的参考点。
  3. 根据权利要求1所述的方法,其特征在于,所述至少两个组播内部接口包括:第一组播内部接口、第二组播内部接口和第三组播内部接口;
    所述将所述组播数据包发送至至少两个组播内部接口中的目标组播内部接口,通过所述目标组播内部接口将所述组播数据包发送至所述组播组的全部组播组成员或全部本地组播组成员,包括:
    当所述组播数据包是来自第一参考点或第二参考点的组播数据时,将所述组播数据包发送至所述第一组播内部接口,通过所述第一组播内部接口将所述组播数据包从所述组播组中每个组播组成员分别对应的所述第一参考点或所述第二参考点或第三参考点或第四参考点,发送至所述组播组的全部组播组成员;
    当所述组播数据包是来自所述第三参考点的组播数据时,将所述组播数据包发送至所述第二组播内部接口,通过所述第二组播内部接口将所述组播数据包从所述组播组中在所述第一UPF的每个本地组播组成员分别对应的所述第一参考点或所述第二参考点,发送至所述组播组的全部本地组播组成员;
    当所述组播数据包是来自所述第四参考点的组播数据时,将所述组播数据包发送至所述第三组播内部接口,通过所述第三组播内部接口将所述组播数据包从所述组播组中在所述第一UPF的每个本地组播组成员分别对应的所述第一参考点或所述第二参考点,发送至所述组播组的全部本地组播组成员;
    其中,所述第一参考点是接入网和所述第一UPF之间的参考点,所述第二参考点是所述第一UPF和内部UPF之间的参考点,所述第三参考点是所述第一UPF和数据网络之间的参考点,所述第四参考点是所述第一UPF和其它协议数据单元会话锚用户平面功能PSA UPF之间的参考点。
  4. 根据权利要求2或3所述的方法,其特征在于,所述第一UPF中设置有与所述组播组中的组播组成员对应的第一包检测PDR规则和第一转发操作FAR规则;
    所述当所述组播数据包是来自第一参考点或第二参考点的组播数据时,将所述组播数据包发送至所述第一组播内部接口,包括:
    通过所述第一PDR规则检测到所述组播数据包是来自所述第一参考点或所述第二参考点的组播数据时,通过所述第一FAR规则将所述组播数据包发送至所述第一组播内部接口。
  5. 根据权利要求4所述的方法,其特征在于,
    所述第一组播内部接口为一个,所述第一PDR规则包括:源接口设置为接入侧,目标地址设置为所述组播组成员所属的第一组播地址列表,核心网隧道信息设置为协议数据单元PDU会话的所述第一参考点或所述第二参考点的隧道头;所述第一FAR规则包括:目标接口设置为所述第一组播内部接口;
    或,
    所述第一组播内部接口为m个,第i个第一组播内部接口对应所述第一组播地址列表中的第i个组播地址,所述第i个组播地址是所述组播数据包中的组播地址,所述第一PDR规则包括:源接口设置为接入侧,目标地址设置为所述第i个组播地址,核心网隧道信息设置为PDU会话的所述第一参考点或所述第二参考点的隧道头;所述第一FAR规则包括:目标接口设置为所述第i个第一组播内部接口,m为正整数,i为不大于m的整数;
    或,
    所述第一组播内部接口为一个,所述第一PDR规则包括:源接口设置为接入侧,目标地址设置为所述VID成员所属的第一VID列表以及广播地址,核心网隧道信息设置为PDU会话的所述第一参考点或所述第二参考点的隧道头;所述第一FAR规则包括:目标接口设置为所述第一组播内部接口;
    或,
    所述第一组播内部接口为m个,第i个第一组播内部接口对应所述第一VID列表中的第i个VID,所述第i个VID以及广播地址是所述组播数据包中的组播地址,所述第一PDR规则包括:源接口设置为接入侧,目标地址设置为所述第i个VID以及广播地址,核心网隧道信息设置为PDU会话的所述第一参考点或所述第二参考点的隧道头;所述第一FAR规则包括:目标接口设置为所述第i个第一组播内部接口,m为正整数,i为不大于m的整数。
  6. 根据权利要求5所述的方法,其特征在于,
    所述组播数据包中的组播地址是所述第一组播地址列表中的一个组播地址;
    或,
    所述组播数据包中的组播地址是所述第一VID列表中的一个VID以及广播地址。
  7. 根据权利要求2或3所述的方法,其特征在于,当所述第一UPF需要接收来自所述第三参考点的组播数据时,所述第一UPF中设置有与组级别会话对应的第二包检测PDR规则和第二转发操作FAR规则,所述组级别会话是所述第一UPF和会话管理功能SMF之间的会话;
    所述当所述组播数据包是来自所述第三参考点的组播数据时,将所述组播数据包发送至所述第二组播内部接口,包括:
    通过所述第二PDR规则检测到所述组播数据包是来自所述第三参考点的组播数据时,通过所述第二FAR规则将所述组播数据包发送至所述第二组播内部接口。
  8. 根据权利要求7所述的方法,其特征在于,
    所述第二组播内部接口为一个,所述第二PDR规则包括:源接口设置为核心侧,目标地址设置为第二组播地址列表;所述第二FAR规则包括:目标接口设置为所述第二组播内部接口;
    或,
    所述第二组播内部接口为m个,第i个第二组播内部接口对应所述第二组播地址列表中的第i个组播地址,所述第i个组播地址是所述组播数据包中的组播地址,所述第二PDR规则包括:源接口设置为核心侧,目标地址设置为所述第i个组播地址;所述第二FAR规则包括:目标接口设置为所述第i个第二组播内部接口,m为正整数,i为不大于m的整数;
    或,
    所述第二组播内部接口为一个,所述第二PDR规则包括:源接口设置为核心侧,目标地址设置为第二VID列表以及广播地址;所述第二FAR规则包括:目标接口设置为所述第二组播内部接口;
    或,
    所述第二组播内部接口为m个,第i个第二组播内部接口对应所述第二VID列表中的第i个VID,所述第i个VID以及广播地址是所述组播数据包中的组播地址,所述第二PDR规则包括:源接口设置为核心侧,目标地址设置为所述第i个VID以及广播地址;所述第二FAR规则包括:目标接口设置为所述第i个第二组播内部接口,m为正整数,i为不大于m的整数。
  9. 根据权利要求8所述的方法,其特征在于,
    所述第二组播地址列表是所述虚拟网络群组中全部组播组的组播地址列表;
    或,
    所述第二组播地址列表是所述第一UPF的全部本地组播组成员所属组播组的组播地址列表的合集;
    或,
    所述第二VID列表是所述虚拟网络群组中全部VID的VID列表;
    或,
    所述第二VID列表是所述第一UPF的全部本地VID成员所属的VID列表的合集。
  10. 根据权利要求2所述的方法,其特征在于,当所述第一UPF需要接收来自所述第四参考点的组播数据时,所述第一UPF中设置有与组级别会话对应的第三包检测PDR规则和第三转发操作FAR规则,所述组级别会话是所述第一UPF和SMF之间的会话;
    所述当所述组播数据包是来自所述第四参考点的组播数据时,将所述组播数据包发送至所述第二组播内部接口,包括:
    通过所述第三PDR规则检测到所述组播数据包是来自所述第四参考点的组播数据时,通过所述第三FAR规则将所述组播数据包发送至所述第二组播内部接口。
  11. 根据权利要求10所述的方法,其特征在于,
    所述第二组播内部接口为一个,所述第三PDR规则包括:源接口设置为核心侧,目标地址设置为第三组播地址列表,核心网隧道信息设置为第四参考点隧道头;所述第三FAR规则包括:目标接口设置为所述第二组播内部接口;
    或,
    所述第二组播内部接口为m个,第i个第二组播内部接口对应所述第三组播地址列表中的第i个组播地址,所述第i个组播地址是所述组播数据包中的组播地址,所述第三PDR规则包括:源接口设置为核心侧,目标地址设置为所述第i个组播地址,核心网隧道信息设置为第四参考点隧道头;所述第三FAR规则包括:目标接口设置为所述第i个第二组播内部接口,m为正整数,i为不大于m的整数;
    或,
    所述第二组播内部接口为一个,所述第三PDR规则包括:源接口设置为核心侧,目标地 址设置为第三VID列表以及广播地址,核心网隧道信息设置为第四参考点隧道头;所述第三FAR规则包括:目标接口设置为所述第二组播内部接口;
    或,
    所述第二组播内部接口为m个,第i个第二组播内部接口对应所述第三VID列表中的第i个VID,所述第i个VID以及广播地址是所述组播数据包中的组播地址,所述第三PDR规则包括:源接口设置为核心侧,目标地址设置为所述第i个VID以及广播地址,核心网隧道信息设置为第四参考点隧道头;所述第三FAR规则包括:目标接口设置为所述第i个第二组播内部接口,m为正整数,i为不大于m的整数。
  12. 根据权利要求11所述的方法,其特征在于,
    所述第三组播地址列表是所述虚拟网络群组中全部组播组的组播地址列表;
    或,
    所述第三组播地址列表是所述第一UPF的本地组播组成员所属组播组的组播地址列表和第二UPF的本地组播组成员所属组播组的组播地址列表的交集,所述第二UPF是通过所述第四参考点与所述第一UPF相连;
    或,
    所述第三VID列表是所述虚拟网络群组中全部VID的VID列表;
    或,
    所述第三VID列表是所述第一UPF的本地VID成员所属的VID列表和第二UPF的本地VID成员所属的VID列表的交集,所述第二UPF通过所述第四参考点与所述第一UPF相连。
  13. 根据权利要求2或3所述的方法,其特征在于,所述第一UPF中设置有与所述组播组中的组播组成员对应的第四包检测PDR规则和第四转发操作FAR规则;
    所述通过所述第一组播内部接口将所述组播数据包从所述组播组中每个组播组成员分别对应的所述第一参考点或所述第二参考点或第三参考点或第四参考点,发送至所述组播组的全部组播组成员,包括:
    通过所述第四PDR规则检测到所述组播数据包是来自所述第一组播内部接口的组播数据时,通过所述第四FAR规则将所述组播数据包从所述组播组的每个组播组成员分别对应的所述第一参考点或所述第二参考点或所述第三参考点或所述第四参考点,发送至所述组播组的全部组播组成员。
  14. 根据权利要求13所述的方法,其特征在于,
    所述第一组播内部接口为一个,所述第四PDR规则包括:源端口设置为所述第一组播内部接口,目标地址为所述组播组成员所属的第一组播地址列表;所述第四FAR规则包括:外部头创建指示所述第一参考点或所述第二参考点的隧道信息,目标接口为接入侧;或,所述第四FAR规则还包括:外部头创建指示所述第三参考点的信息,目标接口为核心侧;或,所述第四FAR规则还包括:外部头创建指示所述第四参考点的隧道信息,目标接口为核心侧;
    或,
    所述第一组播内部接口为m个,第i个第一组播内部接口对应所述第一组播地址列表中的第i个组播地址,所述第i个组播地址是所述组播数据包中的组播地址;所述第四PDR规则包括:源端口设置为所述第i个第一组播内部接口,目标地址为所述第i个组播地址;所述第四FAR规则包括:外部头创建指示所述第一参考点或所述第二参考点的隧道信息,目标接口为接入侧;或,所述第四FAR规则还包括:外部头创建指示所述第三参考点的信息,目标接口为核心侧;或,所述第四FAR规则还包括:外部头创建指示所述第四参考点的隧道信息,目标接口为核心侧;
    或,
    所述第一组播内部接口为一个,所述第四PDR规则包括:源端口设置为所述第一组播内部接口,目标地址为所述VID成员所属的第一VID列表以及广播地址;所述第四FAR规则 包括:外部头创建指示所述第一参考点或所述第二参考点的隧道信息,目标接口为接入侧;或,所述第四FAR规则还包括:外部头创建指示所述第三参考点的信息,目标接口为核心侧;或,所述第四FAR规则还包括:外部头创建指示所述第四参考点的隧道信息,目标接口为核心侧;
    或,
    所述第一组播内部接口为m个,第i个第一组播内部接口对应所述第一VID列表中的第i个VID,所述第i个VID以及广播地址是所述组播数据包中的组播地址;所述第四PDR规则包括:源端口设置为所述第i个第一组播内部接口,目标地址为所述第i个VID以及广播地址;所述第四FAR规则包括:外部头创建指示所述第一参考点或所述第二参考点的隧道信息,目标接口为接入侧;或,所述第四FAR规则还包括:外部头创建指示所述第三参考点的信息,目标接口为核心侧;或,所述第四FAR规则还包括:外部头创建指示所述第四参考点的隧道信息,目标接口为核心侧;
    其中,m为正整数,i为不大于m的整数。
  15. 根据权利要求2或3所述的方法,其特征在于,当所述第一UPF需要接收来自第三参考点的组播数据时,所述第一UPF中设置有与组级别会话对应的第五包检测PDR规则和第五转发操作FAR规则;所述组级别会话是所述第一UPF和SMF之间的会话;
    所述通过所述第二组播内部接口将所述组播数据包从所述组播组中在所述第一UPF的每个本地组播组成员分别对应的所述第一参考点或所述第二参考点,发送至所述组播组的全部本地组播组成员,包括:
    通过所述第五PDR规则检测到所述组播数据包是所述第二组播内部接口的组播数据时,通过所述第五FAR规则将所述组播数据包,从所述组播组中在所述第一UPF的每个本地组播组成员分别对应的所述第一参考点或所述第二参考点,发送至所述组播组的全部本地组播组成员。
  16. 根据权利要求15所述的方法,其特征在于,
    所述第二组播内部接口为一个,所述第五PDR规则包括:源端口设置为所述第二组播内部接口,目标地址为第二组播地址列表;所述第五FAR规则包括:外部头创建指示所述第一参考点或所述第二参考点的隧道信息,目标接口为接入侧;
    或,
    所述第二组播内部接口为m个,第i个第二组播内部接口对应所述第二组播地址列表中的第i个组播地址,所述第i个组播地址是所述组播数据包中的组播地址,所述第五PDR规则包括:源端口设置为所述第i个第二组播内部接口,目标地址为所述第i个组播地址;所述第五FAR规则包括:外部头创建指示所述第一参考点或所述第二参考点的隧道信息,目标接口为接入侧,m为正整数,i为不大于m的整数;
    或,
    所述第二组播内部接口为一个,所述第五PDR规则包括:源端口设置为所述第二组播内部接口,目标地址为第二VID列表以及广播地址;所述第五FAR规则包括:外部头创建指示所述第一参考点或所述第二参考点的隧道信息,目标接口为接入侧;
    或,
    所述第二组播内部接口为m个,第i个第二组播内部接口对应所述第二VID列表的第i个VID,所述第i个VID以及广播地址是所述组播数据包中的组播地址,所述第五PDR规则包括:源端口设置为所述第i个第二组播内部接口,目标地址为第i个VID以及广播地址;所述第五FAR规则包括:外部头创建指示所述第一参考点或所述第二参考点的隧道信息,目标接口为接入侧,m为正整数,i为不大于m的整数。
  17. 根据权利要求2或3所述的方法,其特征在于,当所述第一UPF需要接收来自第四参考点的组播数据时,所述第一UPF中设置有与组级别会话对应的第六包检测PDR规则和 第六转发操作FAR规则;所述组级别会话是所述第一UPF和会话管理功能SMF之间的会话;
    所述通过所述第二组播内部接口将所述组播数据包从所述组播组中在所述第一UPF的每个本地组播组成员分别对应的所述第一参考点或所述第二参考点,发送至所述组播组的全部本地组播组成员,包括:
    通过所述第六PDR规则检测到所述组播数据包是所述第二组播内部接口的组播数据时,通过所述第六FAR规则将所述组播数据包,从所述组播组中在所述第一UPF的每个本地组播组成员分别对应的所述第一参考点或所述第二参考点,发送至所述组播组的全部本地组播组成员。
  18. 根据权利要求17所述的方法,其特征在于,
    所述第二组播内部接口为一个,所述第六PDR规则包括:源端口设置为所述第二组播内部接口,目标地址为第三组播地址列表;所述第六FAR规则包括:外部头创建指示所述第一参考点或所述第二参考点的隧道信息,目标接口为接入侧;
    或,
    所述第二组播内部接口为m个,第i个第二组播内部接口对应所述第三组播地址列表中的第i个组播地址,所述第i个组播地址是所述组播数据包中的组播地址,所述第六PDR规则包括:源端口设置为所述第i个第二组播内部接口,目标地址为所述第i个组播地址;所述第六FAR规则包括:外部头创建指示所述第一参考点或所述第二参考点的隧道信息,目标接口为接入侧,m为正整数,i为不大于m的整数;
    或,
    所述第二组播内部接口为一个,所述第六PDR规则包括:源端口设置为所述第二组播内部接口,目标地址为第三VID列表以及广播地址;所述第六FAR规则包括:外部头创建指示所述第一参考点或所述第二参考点的隧道信息,目标接口为接入侧;
    或,
    所述第二组播内部接口为m个,第i个第二组播内部接口对应所述第三VID列表中的第i个VID,所述第i个VID以及广播地址是所述组播数据包中的组播地址,所述第六PDR规则包括:源端口设置为所述第i个第二组播内部接口,目标地址为所述第i个VID以及广播地址;所述第六FAR规则包括:外部头创建指示所述第一参考点或所述第二参考点的隧道信息,目标接口为接入侧,m为正整数,i为不大于m的整数。
  19. 根据权利要求3所述的方法,其特征在于,当所述第一UPF需要接收来自第四参考点的组播数据时,所述第一UPF中设置有与组级别会话对应的第七包检测PDR规则和第七转发操作FAR规则,所述组级别会话是所述第一UPF和SMF之间的会话;
    所述当所述组播数据包是来自所述第四参考点的组播数据时,将所述组播数据包发送至所述第三组播内部接口,包括:
    通过所述第七PDR规则检测到所述组播数据包是来自所述第四参考点的组播数据时,通过所述第七FAR规则将所述组播数据包发送至所述第三组播内部接口。
  20. 根据权利要求19所述的方法,其特征在于,
    所述第三组播内部接口为一个,所述第七PDR规则包括:源接口设置为核心侧,目标地址设置为第三组播地址列表,核心网隧道信息设置为第四参考点隧道头;所述第七FAR规则包括:目标接口设置为所述第三组播内部接口;
    或,
    所述第三组播内部接口为m个,第i个第三组播内部接口对应所述第三组播地址列表中的第i个组播地址,所述第i个组播地址是所述组播数据包中的组播地址,所述第七PDR规则包括:源接口设置为核心侧,目标地址设置为所述第i个组播地址,核心网隧道信息设置为第四参考点隧道头;所述第七FAR规则包括:目标接口设置为所述第i个第三组播内部接口,m为正整数,i为不大于m的整数;
    或,
    所述第三组播内部接口为一个,所述第七PDR规则包括:源接口设置为核心侧,目标地址设置为第三VID列表以及广播地址,核心网隧道信息设置为第四参考点隧道头;所述第七FAR规则包括:目标接口设置为所述第三组播内部接口;
    或,
    所述第三组播内部接口为m个,第i个第三组播内部接口对应所述第三VID列表中的第i个VID,所述第i个VID以及广播地址是所述组播数据包中的组播地址,所述第七PDR规则包括:源接口设置为核心侧,目标地址设置为所述第i个VID以及广播地址,核心网隧道信息设置为第四参考点隧道头;所述第七FAR规则包括:目标接口设置为所述第i个第三组播内部接口,m为正整数,i为不大于m的整数。
  21. 根据权利要求3所述的方法,其特征在于,当所述第一UPF需要接收来自第四参考点的组播数据时,所述第一UPF中设置有与组级别会话对应的第八包检测PDR规则和第八转发操作FAR规则;所述组级别会话是所述第一UPF和会话管理功能SMF之间的会话;
    所述通过所述第三组播内部接口将所述组播数据包从所述组播组中在所述第一UPF的每个本地组播组成员分别对应的所述第一参考点或所述第二参考点,发送至所述组播组的全部本地组播组成员,包括:
    通过所述第八PDR规则检测到所述组播数据包是所述第三组播内部接口的组播数据时,通过所述第八FAR规则将所述组播数据包,从所述组播组中在所述第一UPF的每个本地组播组成员分别对应的所述第一参考点或所述第二参考点,发送至所述组播组的全部本地组播组成员。
  22. 根据权利要求21所述的方法,其特征在于,
    所述第三组播内部接口为一个,所述第八PDR规则包括:源端口设置为所述第三组播内部接口,目标地址为第三组播地址列表;所述第八FAR规则包括:外部头创建指示所述第一参考点或所述第二参考点的隧道信息,目标接口为接入侧;
    或,
    所述第三组播内部接口为m个,第i个第三组播内部接口对应所述第三组播地址列表中的第i个组播地址,所述第i个组播地址是所述组播数据包中的组播地址,所述第八PDR规则包括:源端口设置为所述第i个第三组播内部接口,目标地址为所述第i个组播地址;所述第八FAR规则包括:外部头创建指示所述第一参考点或所述第二参考点的隧道信息,目标接口为接入侧,m为正整数,i为不大于m的整数;
    或,
    所述第三组播内部接口为一个,所述第八PDR规则包括:源端口设置为所述第三组播内部接口,目标地址为第三VID列表以及广播地址;所述第八FAR规则包括:外部头创建指示所述第一参考点或所述第二参考点的隧道信息,目标接口为接入侧;
    或,
    所述第三组播内部接口为m个,第i个第三组播内部接口对应所述第三VID列表中的第i个VID,所述第i个VID以及广播地址是所述组播数据包中的组播地址,所述第八PDR规则包括:源端口设置为所述第i个第三组播内部接口,目标地址为所述第i个VID以及广播地址;所述第八FAR规则包括:外部头创建指示所述第一参考点或所述第二参考点的隧道信息,目标接口为接入侧,m为正整数,i为不大于m的整数。
  23. 一种虚拟网络群组的组播组的组播方法,其特征在于,应用于会话管理功能SMF中,所述方法包括:
    生成至少两个组播内部接口对应的至少两组组播规则;
    在所述至少两组组播规则中,确定所述组播组对应的每个用户平面功能UPF上需要的组播规则;所述组播组是所述虚拟网络群组中的常规组播组,或者,所述组播组是采用虚拟局 域网标识VID标识的组;
    向所述每个UPF配置需要的所述组播规则。
  24. 根据权利要求23所述的方法,其特征在于,所述至少两个组播内部接口包括:第一组播内部接口;所述至少两组组播规则包括:每个组播组成员的与所述第一组播内部接口对应的第一组组播规则;
    所述在所述至少两组组播规则中,确定组播组对应的每个UPF中需要的组播规则,包括:
    对于每个组播组成员所属的UPF,确定为需要所述第一组组播规则的UPF;
    所述向所述每个UPF配置需要的所述组播规则,包括:
    在所述每个组播组成员建立协议数据单元PDU会话的过程中,向所述每个组播组成员所属的UPF配置所述第一组组播规则。
  25. 根据权利要求24所述的方法,其特征在于,所述第一组组播规则包括:第一包检测PDR规则和第一转发操作FAR规则,以及第四包检测PDR规则和第四转发操作FAR规则;
    所述第一组播内部接口为一个,所述第一PDR规则包括:源接口设置为接入侧,目标地址设置为所述组播组成员所属的第一组播地址列表,核心网隧道信息设置为协议数据单元PDU会话的所述第一参考点或所述第二参考点的隧道头;所述第一FAR规则包括:目标接口设置为所述第一组播内部接口;所述第四PDR规则包括:源端口设置为所述第一组播内部接口,目标地址为所述组播组成员所属的第一组播地址列表;所述第四FAR规则包括:外部头创建指示所述第一参考点或所述第二参考点的隧道信息,目标接口为接入侧;或,所述第四FAR规则还包括:外部头创建指示所述第三参考点的信息,目标接口为核心侧;或,所述第四FAR规则还包括:外部头创建指示所述第四参考点的隧道信息,目标接口为核心侧;
    或,
    所述第一组播内部接口为m个,第i个第一组播内部接口对应所述第一组播地址列表中的第i个组播地址,所述第i个组播地址是所述组播数据包中的组播地址,所述第一PDR规则包括:源接口设置为接入侧,目标地址设置为所述第i个组播地址,核心网隧道信息设置为PDU会话的所述第一参考点或所述第二参考点的隧道头;所述第一FAR规则包括:目标接口设置为所述第i个第一组播内部接口,m为正整数,i为不大于m的整数;所述第四PDR规则包括:源端口设置为所述第i个第一组播内部接口,目标地址为所述第i个组播地址;所述第四FAR规则包括:外部头创建指示所述第一参考点或所述第二参考点的隧道信息,目标接口为接入侧;或,所述第四FAR规则还包括:外部头创建指示所述第三参考点的信息,目标接口为核心侧;或,所述第四FAR规则还包括:外部头创建指示所述第四参考点的隧道信息,目标接口为核心侧;
    或,
    所述第一组播内部接口为一个,所述第一PDR规则包括:源接口设置为接入侧,目标地址设置为所述VID成员所属的第一VID列表以及广播地址,核心网隧道信息设置为PDU会话的所述第一参考点或所述第二参考点的隧道头;所述第一FAR规则包括:目标接口设置为所述第一组播内部接口;所述第四PDR规则包括:源端口设置为所述第一组播内部接口,目标地址为所述VID成员所属VID的第一VID列表以及广播地址;所述第四FAR规则包括:外部头创建指示所述第一参考点或所述第二参考点的隧道信息,目标接口为接入侧;或,所述第四FAR规则还包括:外部头创建指示所述第三参考点的信息,目标接口为核心侧;或,所述第四FAR规则还包括:外部头创建指示所述第四参考点的隧道信息,目标接口为核心侧;
    或,
    所述第一组播内部接口为m个,第i个第一组播内部接口对应所述第一VID列表中的第i个VID,所述第i个VID以及广播地址是所述组播数据包中的组播地址,所述第一PDR规则包括:源接口设置为接入侧,目标地址设置为所述第i个VID以及广播地址,核心网隧道信息设置为PDU会话的所述第一参考点或所述第二参考点的隧道头;所述第一FAR规则包 括:目标接口设置为所述第i个第一组播内部接口;所述第四PDR规则包括:源端口设置为所述第i个第一组播内部接口,目标地址为所述第i个VID以及广播地址;所述第四FAR规则包括:外部头创建指示所述第一参考点或所述第二参考点的隧道信息,目标接口为接入侧;或,所述第四FAR规则还包括:外部头创建指示所述第三参考点的信息,目标接口为核心侧;或,所述第四FAR规则还包括:外部头创建指示所述第四参考点的隧道信息,目标接口为核心侧,m为正整数,i为不大于m的整数。
  26. 根据权利要求23所述的方法,其特征在于,所述至少两个组播内部接口包括:第二组播内部接口,所述组播规则包括:与所述第二组播内部接口对应的群组级别的第二组组播规则,所述第二组组播规则用于转发来自第三参考点的组播数据包,所述第三参考点是UPF与数据网络之间的参考点;
    所述在所述至少两组组播规则中,确定组播组对应的每个UPF中需要的组播规则,包括:
    对于所述组播组对应的每个UPF中的第一UPF,根据所述第一UPF上的本地组播组成员所属组播组的组播地址列表的合集,将所述合集对应的所有群组级别的第二组组播规则,确定为所述第一UPF中需要的组播规则;
    所述向所述每个UPF配置需要的所述组播规则,包括:
    在所述合集发生改变时,向所述第一UPF配置所述组播地址列表的合集对应的所有群组级别的第二组组播规则。
  27. 根据权利要求26所述的方法,其特征在于,所述第二组组播规则包括:第二包检测PDR规则和第二转发操作FAR规则,以及第五包检测PDR规则和第五转发操作FAR规则;
    所述第二组播内部接口为一个,所述第二PDR规则包括:源接口设置为核心侧,目标地址设置为第二组播地址列表;所述第二FAR规则包括:目标接口设置为所述第二组播内部接口;所述第五PDR规则包括:源端口设置为所述第二组播内部接口,目标地址为所述第二组播地址列表;所述第五FAR规则包括:外部头创建指示所述第一参考点或所述第二参考点的隧道信息,目标接口为接入侧;
    或,
    所述第二组播内部接口为m个,第i个第二组播内部接口对应所述第二组播地址列表中的第i个组播地址,所述第i个组播地址是所述组播数据包中的组播地址,所述第二PDR规则包括:源接口设置为核心侧,目标地址设置为所述第i个组播地址;所述第二FAR规则包括:目标接口设置为所述第i个第二组播内部接口,m为正整数,i为不大于m的整数;所述第五PDR规则包括:源端口设置为所述第i个第二组播内部接口,目标地址为所述第i个组播地址;所述第五FAR规则包括:外部头创建指示所述第一参考点或所述第二参考点的隧道信息,目标接口为接入侧,m为正整数,i为不大于m的整数;
    或,
    所述第二组播内部接口为一个,所述第二PDR规则包括:源接口设置为核心侧,目标地址设置为第二VID列表以及广播地址;所述第二FAR规则包括:目标接口设置为所述第二组播内部接口;所述第五PDR规则包括:源端口设置为所述第二组播内部接口,目标地址为所述VID成员所属VID的第二VID列表以及广播地址;所述第五FAR规则包括:外部头创建指示所述第一参考点或所述第二参考点的隧道信息,目标接口为接入侧;
    或,
    所述第二组播内部接口为m个,第i个第二组播内部接口对应所述第二VID列表中的第i个VID,所述第i个VID以及广播地址是所述组播数据包中的组播地址,所述第二PDR规则包括:源接口设置为核心侧,目标地址设置为所述第i个VID以及广播地址;所述第二FAR规则包括:目标接口设置为所述第i个第二组播内部接口;所述第五PDR规则包括:源端口设置为所述第i个第二组播内部接口,目标地址为所述第i个VID以及广播地址;所述第五FAR规则包括:外部头创建指示所述第一参考点或所述第二参考点的隧道信息,目标接口为 接入侧,m为正整数,i为不大于m的整数;m为正整数,i为不大于m的整数。
  28. 根据权利要求23所述的方法,其特征在于,所述至少两个组播内部接口包括:第二组播内部接口,所述组播规则包括:与所述第二组播内部接口对应的群组级别的第三组组播规则,所述第三组组播规则用于转发来自第四参考点的组播数据包;所述第四参考点是UPF与其它协议数据单元会话锚用户平面功能之间的参考点;
    所述在所述至少两组组播规则中,确定组播组对应的每个UPF中需要的组播规则,包括:
    对于所述组播组对应的每个UPF中的第一UPF,确定所述第一UPF上的本地组播组成员对应的组播地址列表和第二UPF上的本地组播组成员对应的组播地址列表的交集;将所述交集对应的所有群组级别的第三组组播规则,确定为所述第一UPF和所述第二UPF中需要的组播规则,所述第二UPF是所述组播组对应的每个UPF中除所述第一UPF之外的UPF;
    所述向所述每个UPF配置需要的所述组播规则,包括:
    在所述交集发生改变时,向所述第一UPF和所述第二UPF分别配置所述交集对应的所有群组级别的第三组组播规则。
  29. 根据权利要求28所述的方法,其特征在于,所述第三组组播规则包括:第三PDR规则和第三FAR规则,以及第六PDR规则和第六FAR规则;
    所述第二组播内部接口为一个,所述第三PDR规则包括:源接口设置为核心侧,目标地址设置为第三组播地址列表,核心网隧道信息设置为第四参考点隧道头;所述第三FAR规则包括:目标接口设置为所述第二组播内部接口;所述第六PDR规则包括:源端口设置为所述第二组播内部接口,目标地址为所述第三组播地址列表;所述第六FAR规则包括:外部头创建指示所述第一参考点或所述第二参考点的隧道信息,目标接口为接入侧;
    或,
    所述第二组播内部接口为m个,第i个第二组播内部接口对应所述第三组播地址列表中的第i个组播地址,所述第i个组播地址是所述组播数据包中的组播地址,所述第三PDR规则包括:源接口设置为核心侧,目标地址设置为所述第i个组播地址,核心网隧道信息设置为第四参考点隧道头;所述第三FAR规则包括:目标接口设置为所述第i个第二组播内部接口;所述第六PDR规则包括:源端口设置为所述第i个第二组播内部接口,目标地址为所述第i个组播地址;所述第六FAR规则包括:外部头创建指示所述第一参考点或所述第二参考点的隧道信息,目标接口为接入侧,m为正整数,i为不大于m的整数,m为正整数,i为不大于m的整数;
    或,
    所述第二组播内部接口为一个,所述第三PDR规则包括:源接口设置为核心侧,目标地址设置为所述VID成员所属的第三VID列表以及广播地址,核心网隧道信息设置为第四参考点隧道头;所述第三FAR规则包括:目标接口设置为所述第二组播内部接口;所述第六PDR规则包括:源端口设置为所述第二组播内部接口,目标地址为所述VID成员所属VID的第三VID列表以及广播地址;所述第六FAR规则包括:外部头创建指示所述第一参考点或所述第二参考点的隧道信息,目标接口为接入侧;
    或,
    所述第二组播内部接口为m个,第i个第二组播内部接口对应所述第三VID列表的第i个VID,所述第i个VID以及广播地址是所述组播数据包中的组播地址,所述第三PDR规则包括:源接口设置为核心侧,目标地址设置为所述第i个VID以及广播地址,核心网隧道信息设置为第四参考点隧道头;所述第三FAR规则包括:目标接口设置为所述第i个第二组播内部接口;所述第六PDR规则包括:源端口设置为所述第i个第二组播内部接口,目标地址为所述第i个VID以及广播地址;所述第六FAR规则包括:外部头创建指示所述第一参考点或所述第二参考点的隧道信息,目标接口为接入侧,m为正整数,i为不大于m的整数。
  30. 根据权利要求22所述的方法,其特征在于,所述至少两个组播内部接口包括:第三 组播内部接口,所述组播规则包括:与所述第三组播内部接口对应的群组级别的第四组组播规则,所述第四组组播规则用于转发来自第四参考点的组播数据包;
    所述在所述至少两组组播规则中,确定组播组对应的每个UPF中需要的组播规则,包括:
    对于所述组播组对应的每个UPF中的第一UPF,确定所述第一UPF上的本地组播组成员对应的组播地址列表和第二UPF上的本地组播组成员对应的组播地址列表的交集;将所述交集对应的所有群组级别的第四组组播规则,确定为所述第一UPF和所述第二UPF中需要的组播规则,所述第二UPF是所述组播组对应的每个UPF中除所述第一UPF之外的UPF;
    所述向所述每个UPF配置需要的所述组播规则,包括:
    在所述交集发生改变时,向所述第一UPF和所述第二UPF分别配置所述交集对应的所有群组级别的第四组组播规则。
  31. 根据权利要求30所述的方法,其特征在于,所述第四组组播规则包括:第七PDR规则和第七FAR规则,以及第八PDR规则和第八FAR规则;
    所述第三组播内部接口为一个,所述第七PDR规则包括:源接口设置为核心侧,目标地址设置为第三组播地址列表,核心网隧道信息设置为第四参考点隧道头;所述第七FAR规则包括:目标接口设置为所述第三组播内部接口;所述第八PDR规则包括:源端口设置为所述第三组播内部接口,目标地址为所述第三组播地址列表;所述第八FAR规则包括:外部头创建指示所述第一参考点或所述第二参考点的隧道信息,目标接口为接入侧;
    或,
    所述第三组播内部接口为m个,第i个第三组播内部接口对应所述第三组播地址列表中的第i个组播地址,所述第i个组播地址是所述组播数据包中的组播地址,所述第七PDR规则包括:源接口设置为核心侧,目标地址设置为所述第i个组播地址,核心网隧道信息设置为第四参考点隧道头;所述第七FAR规则包括:目标接口设置为所述第i个第三组播内部接口;所述第八PDR规则包括:源端口设置为所述第i个第三组播内部接口,目标地址为所述第i个组播地址;所述第八FAR规则包括:外部头创建指示所述第一参考点或所述第二参考点的隧道信息,目标接口为接入侧,m为正整数,i为不大于m的整数,m为正整数,i为不大于m的整数;
    或,
    所述第三组播内部接口为一个,所述第七PDR规则包括:源接口设置为核心侧,目标地址设置为第三VID列表以及广播地址,核心网隧道信息设置为第四参考点隧道头;所述第七FAR规则包括:目标接口设置为所述第三组播内部接口;所述第八PDR规则包括:源端口设置为所述第三组播内部接口,目标地址为所述VID成员所属VID的第三VID列表以及广播地址;所述第八FAR规则包括:外部头创建指示所述第一参考点或所述第二参考点的隧道信息,目标接口为接入侧;
    或,
    所述第三组播内部接口为m个,第i个第三组播内部接口对应所述第三VID列表中的第i个VID,所述第i个VID以及广播地址是所述组播数据包中的组播地址,所述第七PDR规则包括:源接口设置为核心侧,目标地址设置为所述第i个VID以及广播地址,核心网隧道信息设置为第四参考点隧道头;所述第七FAR规则包括:目标接口设置为所述第i个第三组播内部接口;所述第八PDR规则包括:源端口设置为所述第i个第三组播内部接口,目标地址为所述第i个VID以及广播地址;所述第八FAR规则包括:外部头创建指示所述第一参考点或所述第二参考点的隧道信息,目标接口为接入侧,m为正整数,i为不大于m的整数。
  32. 根据权利要求24或25所述的方法,其特征在于,所述方法还包括:
    所述第一组组播规则包括第一组播地址列表,当所述第一组播地址列表中的组播地址发生新增、修改或删除时,将所述组播组中的每个组播组成员对应的UPF更新所述第一组播地址列表;
    或,
    所述第一组组播规则包括第一VID列表,当所述第一VID列表中的VID发生新增、修改或删除时,将所述VID中的每个VID成员对应的UPF更新所述第一VID列表。
  33. 根据权利要求32所述的方法,其特征在于,
    所述第一组播地址列表是所述组播组成员所属的组播组的全部组播地址;
    所述第一VID列表是所述VID成员所属的全部VID。
  34. 根据权利要求26或27所述的方法,其特征在于,所述方法还包括:
    所述第二组组播规则包括第二组播地址列表,当所述第二组播地址列表中的组播地址发生新增、修改或删除时,重新确定需要所述第二组组播规则的UPF;向需要所述第二组组播规则的UPF更新所述第二组播地址列表;
    或,
    所述第二组组播规则包括第二VID列表,当所述第二VID列表中的VID发生新增、修改或删除时,重新确定需要所述第二组组播规则的UPF;向需要所述第二组组播规则的UPF更新所述第二VID列表。
  35. 根据权利要求34所述的方法,其特征在于,
    所述第二组播地址列表是所述虚拟网络群组中全部组播组的组播地址列表,或,所述第二组播地址列表是所述第一UPF上所有本地组播组成员所属的组播地址的合集;
    所述第二VID列表是所述虚拟网络群组中全部VID的VID列表;或,所述第二VID列表是所述第一UPF的全部本地VID成员所属的VID列表的合集。
  36. 根据权利要求28或29所述的方法,其特征在于,所述方法还包括:
    所述第三组组播规则包括第三组播地址列表,当所述第三组播规则列表中的组播地址发生新增、修改或删除时,重新确定需要所述第三组组播规则的UPF;向需要所述第三组组播规则的UPF更新所述第三组播地址列表;
    或,
    所述第三组组播规则包括第三VID列表,当所述第三组播规则列表中的VID发生新增、修改或删除时,重新确定需要所述第三组组播规则的UPF;向需要所述第三组组播规则的UPF更新所述第三VID列表。
  37. 根据权利要求30或31所述的方法,其特征在于,所述方法还包括:
    所述第四组组播规则包括第三组播地址列表,当所述第三组播地址列表中的组播地址发生新增、修改或删除时,重新确定需要所述第四组组播规则的UPF;向需要所述第四组组播规则的UPF更新所述第三组播地址列表;
    或,
    所述第四组组播规则包括第三VID列表,当所述第三组播规则列表中的VID发生新增、修改或删除时,重新确定需要所述第四组组播规则的UPF;向需要所述第三组组播规则的UPF更新所述第三VID列表。
  38. 根据权利要求36或37所述的方法,其特征在于,
    所述第三组播地址列表是所述虚拟网络群组中全部组播组的组播地址列表;或,所述第三组播地址列表是所述第一UPF的本地组播组成员所属组播组的组播地址列表和第二UPF的本地组播组成员所属组播组的组播地址列表的交集,所述第二UPF是通过所述第四参考点与所述第一UPF相连;
    所述第三VID列表是所述虚拟网络群组中全部VID的VID列表;或,所述第三VID列表是所述第一UPF的本地VID成员所属的VID列表和第二UPF的本地VID成员所属的VID列表的交集,所述第二UPF是通过所述第四参考点与所述第一UPF相连。
  39. 根据权利要求24或25所述的方法,其特征在于,所述方法还包括:
    当一个组播组成员从一个UPF移动到另一UPF时,将所述组播组成员对应的所述第一 组组播规则在所述另一UPF上新建或重定位的PDU会话上运行。
  40. 根据权利要求26或27所述的方法,其特征在于,所述方法还包括:
    当一个组播组成员从所述第一UPF移动到第三UPF时,计算所述第三UPF上的本地组播组成员所属组播组的组播地址列表的合集,将所述合集对应的所有群组级别的第二组组播规则,确定为所述第三UPF中需要的组播规则;
    向所述第三UPF配置所述合集对应的所有群组级别的第二组组播规则。
  41. 根据权利要求28或29所述的方法,其特征在于,所述方法还包括:
    当一个组播组成员从所述第一UPF移动到第四UPF时,计算所述第四UPF上的本地组播组成员对应的组播地址列表和第五UPF上的本地组播组成员对应的组播地址列表的交集;将所述交集对应的所有群组级别的第三组组播规则,确定为所述第四UPF和所述第五UPF中需要的组播规则,所述第五UPF是所述组播组对应的每个UPF中除所述第四UPF之外的UPF;
    在所述交集发生改变时,向所述第四UPF和所述第五UPF分别配置所述交集对应的所有群组级别的第三组组播规则。
  42. 根据权利要求30所述的方法,其特征在于,所述方法还包括:
    当一个组播组成员从所述第一UPF移动到第六UPF时,计算所述第六UPF上的本地组播组成员对应的组播地址列表和第七UPF上的本地组播组成员对应的组播地址列表的交集;将所述交集对应的所有群组级别的第四组组播规则,确定为所述第六UPF和所述第七UPF中需要的组播规则,所述第七UPF是所述组播组对应的每个UPF中除所述第六UPF之外的UPF;
    在所述交集发生改变时,向所述第六UPF和所述第七UPF分别配置所述交集对应的所有群组级别的第四组组播规则。
  43. 一种虚拟网络群组的组播组的组播装置,其特征在于,应用于第一用户平面功能UPF中,所述装置包括:
    接收模块,用于接收所述虚拟网络群组的一个成员发送的组播数据包,所述组播数据包的目的地址是组播地址;
    发送模块,用于将所述组播数据包发送至至少两个组播内部接口中的目标组播内部接口,通过所述目标组播内部接口将所述组播数据包发送至所述组播组的全部组播组成员或全部本地组播组成员;
    其中,所述组播组是所述虚拟网络群组中的常规组播组,或者,所述组播组是采用虚拟局域网标识VID标识的组,所述组播组成员是VID成员。
  44. 一种虚拟网络群组的组播组的组播装置,其特征在于,应用于第一用户平面功能SMF中,所述装置包括:
    生成模块,用于生成至少两个组播内部接口对应的至少两组组播规则;
    确定模块,用于在所述至少两组组播规则中,确定所述组播组对应的每个UPF上需要的组播规则;所述组播组是所述虚拟网络群组中的常规组播组,或者,所述组播组是VID;
    配置模块,用于向所述每个UPF配置需要的所述组播规则。
  45. 一种计算机设备,其特征在于,所述计算机设备上运行有用户平面功能,所述计算机设备包括:处理器和存储器;所述存储器中存储有计算机程序,所述计算机程序由所述处理器加载并执行以实现如上权利要求1至权利要求22任一所述的虚拟网络群组的组播组的组播方法。
  46. 一种计算机设备,其特征在于,所述计算机设备上运行有会话管理功能,所述计算机设备包括:处理器和存储器;所述存储器中存储有计算机程序,所述计算机程序由所述处理器加载并执行以实现如上权利要求23至权利要求42任一所述的虚拟网络群组的组播组的组播方法。
  47. 一种计算机设备,其特征在于,所述存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由处理器加载并执行以实现如上权利要求1至权利要求42任一所述的虚拟网络群组的组播组的组播方法。
PCT/CN2020/094236 2019-06-17 2020-06-03 虚拟网络群组的组播组的组播方法、装置、设备及系统 WO2020253539A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20825817.8A EP3985924A4 (en) 2019-06-17 2020-06-03 METHOD, APPARATUS, DEVICE AND MULTICASTING SYSTEM FOR VIRTUAL NETWORK GROUP MULTICASTING GROUP
JP2021550282A JP7394863B2 (ja) 2019-06-17 2020-06-03 仮想ネットワークグループのマルチキャストグループのマルチキャスト方法、装置、コンピュータ機器及びプログラム
KR1020217027403A KR20210118170A (ko) 2019-06-17 2020-06-03 가상 네트워크 그룹의 멀티캐스트 그룹을 위한 멀티캐스트 방법, 장치, 기기 및 시스템
US17/459,623 US20210392469A1 (en) 2019-06-17 2021-08-27 Multicast method, apparatus, device, and system for multicast group of virtual network group

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910523828.8 2019-06-17
CN201910523828.8A CN110247779B (zh) 2019-06-17 2019-06-17 虚拟网络群组的组播组的组播方法、装置、设备及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/459,623 Continuation US20210392469A1 (en) 2019-06-17 2021-08-27 Multicast method, apparatus, device, and system for multicast group of virtual network group

Publications (1)

Publication Number Publication Date
WO2020253539A1 true WO2020253539A1 (zh) 2020-12-24

Family

ID=67887606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094236 WO2020253539A1 (zh) 2019-06-17 2020-06-03 虚拟网络群组的组播组的组播方法、装置、设备及系统

Country Status (6)

Country Link
US (1) US20210392469A1 (zh)
EP (1) EP3985924A4 (zh)
JP (1) JP7394863B2 (zh)
KR (1) KR20210118170A (zh)
CN (2) CN110247779B (zh)
WO (1) WO2020253539A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110247779B (zh) * 2019-06-17 2021-08-10 腾讯科技(深圳)有限公司 虚拟网络群组的组播组的组播方法、装置、设备及系统
CN112866931B (zh) * 2019-06-17 2022-04-15 腾讯科技(深圳)有限公司 虚拟网络群组的广播方法、装置、设备及系统
CN112584328B (zh) * 2019-09-30 2023-03-24 华为技术有限公司 组播通信方法及其装置
CN114731491A (zh) * 2019-09-30 2022-07-08 中兴通讯股份有限公司 多播通信的方法、系统和设备
CN112887184A (zh) * 2019-11-29 2021-06-01 华为技术有限公司 通信方法、装置以及系统
CN114830606B (zh) * 2019-12-18 2024-04-12 华为技术有限公司 组播通信方法及其装置
CN111314347A (zh) * 2020-02-19 2020-06-19 联想(北京)有限公司 一种非法流量的处理方法、装置、系统和存储介质
CN114828165A (zh) * 2021-01-18 2022-07-29 华为技术有限公司 一种通信方法及通信装置
CN117135574A (zh) * 2022-05-18 2023-11-28 中国移动通信有限公司研究院 广播消息的传送方法、装置、网络功能及存储介质
CN115086106B (zh) * 2022-06-22 2023-12-19 杭州云合智网技术有限公司 Vxlan已知组播出端口为隧道的hash方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180234259A1 (en) * 2017-02-13 2018-08-16 International Business Machines Corporation MULTICAST TRAFFIC ACROSS VIRTUAL NETWORKS (VNs)
CN110121155A (zh) * 2019-06-17 2019-08-13 腾讯科技(深圳)有限公司 虚拟网络群组的广播方法、装置、设备及系统
CN110247779A (zh) * 2019-06-17 2019-09-17 腾讯科技(深圳)有限公司 虚拟网络群组的组播组的组播方法、装置、设备及系统
CN111200791A (zh) * 2018-11-19 2020-05-26 华为技术有限公司 群组通信方法、设备及系统

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7751416B2 (en) * 2003-09-18 2010-07-06 Cisco Technology, Inc. Virtual network device
CN100566282C (zh) * 2005-08-31 2009-12-02 杭州华三通信技术技术有限公司 控制组播数据转发的设备及方法
US7830883B1 (en) * 2006-12-19 2010-11-09 World Wide Packets, Inc. Modifying duplicate packets to have different transport formats
CN101222345B (zh) * 2008-01-25 2011-06-22 中兴通讯股份有限公司 组播消息发送方法
KR20150094238A (ko) * 2014-02-11 2015-08-19 한국전자통신연구원 종단 시스템의 라이프 사이클에 따라 가상 확장 랜의 세그먼트를 위한 멀티캐스팅 터널을 자동적으로 구성하는 가상 확장 랜 네트워크 시스템 및 그 동작 방법
CN106656823A (zh) * 2015-07-13 2017-05-10 中兴通讯股份有限公司 一种组播方法、组播中继设备和系统
US11005750B2 (en) * 2016-08-05 2021-05-11 Huawei Technologies Co., Ltd. End point to edge node interaction in wireless communication networks
US10779163B2 (en) * 2017-01-05 2020-09-15 Huawei Technologies Co., Ltd. Network architecture having multicast and broadcast multimedia subsystem capabilities
CN110169038B (zh) * 2017-01-09 2022-04-22 诺基亚技术有限公司 用于在多播/广播网络中的协调内容传递的方法和装置
EP3603126A1 (en) * 2017-03-24 2020-02-05 INTEL Corporation Systems and methods for group based services provisioning
CN109699013B (zh) * 2017-10-24 2020-08-25 华为技术有限公司 一种通信系统、通信方法及其装置
US10932095B2 (en) * 2017-11-22 2021-02-23 Huawei Technologies Co., Ltd. Method and system for multicast and broadcast services
CN109842854B (zh) * 2017-11-29 2021-01-05 华为技术有限公司 一种报文组播、报文广播方法及设备
CN109194559B (zh) * 2018-08-29 2021-04-30 迈普通信技术股份有限公司 组播方法及vtep设备
CN113225697B (zh) * 2021-07-07 2021-11-09 中兴通讯股份有限公司 群组用户通信方法、装置、网络设备和存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180234259A1 (en) * 2017-02-13 2018-08-16 International Business Machines Corporation MULTICAST TRAFFIC ACROSS VIRTUAL NETWORKS (VNs)
CN111200791A (zh) * 2018-11-19 2020-05-26 华为技术有限公司 群组通信方法、设备及系统
CN110121155A (zh) * 2019-06-17 2019-08-13 腾讯科技(深圳)有限公司 虚拟网络群组的广播方法、装置、设备及系统
CN110247779A (zh) * 2019-06-17 2019-09-17 腾讯科技(深圳)有限公司 虚拟网络群组的组播组的组播方法、装置、设备及系统

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
3GPP TECHNICAL SPECIFICATION 23.502
HUAWEI; HISILICON: "S2-1907700: Support of forwarding of broadcast and multicast packets", 3GPP DRAFT; S2-1908330 WAS S2-1907700 TS23.501 CR1659 SUPPORT OF FORWARDING OF BROADCAST AND MULTICAST PACKETS R1, vol. SA WG2, 28 June 2019 (2019-06-28), Sapporo, Japan, pages 1 - 8, XP051755171 *
NOKIA; NOKIA SHANGHAI BELL: "5G LAN group communication with UPF autonomous traffic forwarding", 3GPP DRAFT; S2-1905197 5GL 23501 LOCAL SWITCH WAS S2-1903311 VF, vol. SA WG2, 7 May 2019 (2019-05-07), Reno, Nevada, pages 1 - 10, XP051720706 *
OPPO: "Data forwording for 5G-LAN multicast", 3GPP DRAFT; S2-1906686_WAS_S2-1906564_WAS_S2-1905152_CR1328_23501_DATA FORWORDING FOR MULTICAST, vol. SA WG2, 20 May 2019 (2019-05-20), Reno, USA, pages 1 - 6, XP051744065 *
See also references of EP3985924A4
TENCENT: "S2-1907545: Support for Groupcast Traffic Forwarding of a 5G VN", 3GPP DRAFT; S2-1907545 TS23.501 R16 TSN MC TRAFFIC FORWARDING OF A 5G VN GROUP, vol. SA WG2, 18 June 2019 (2019-06-18), Sapporo, Japan, pages 1 - 4, XP051752504 *
TENCENT: "Support for broadcast traffic forwarding of a 5G VN", 3GPP DRAFT; S2-1907142 TS23.501 R16 TSN BC TRAFFIC FORWARDING OF A 5G VN GROUP, vol. SA WG2, 18 June 2019 (2019-06-18), Sapporo, Japan, pages 1 - 5, XP051752115 *

Also Published As

Publication number Publication date
CN110247779A (zh) 2019-09-17
JP7394863B2 (ja) 2023-12-08
CN113660102A (zh) 2021-11-16
CN113660102B (zh) 2022-10-21
EP3985924A1 (en) 2022-04-20
JP2022522301A (ja) 2022-04-15
CN110247779B (zh) 2021-08-10
KR20210118170A (ko) 2021-09-29
EP3985924A4 (en) 2022-11-09
US20210392469A1 (en) 2021-12-16

Similar Documents

Publication Publication Date Title
WO2020253539A1 (zh) 虚拟网络群组的组播组的组播方法、装置、设备及系统
WO2020253538A1 (zh) 虚拟网络群组的广播方法、装置、设备及系统
US11653180B2 (en) Group communications method and system, and device
CN110012437B (zh) 一种组播报文的发送方法、装置及系统
WO2021037017A1 (zh) 通信处理方法、通信处理装置以及系统
US8656029B2 (en) Multicast session setup in networks by determining a multicast session parameter based on a pre-existing unicast session parameter
WO2020253737A1 (zh) 多播通信方法、装置及系统
WO2022048505A1 (zh) 多流关联传输的方法、装置及系统
BRPI0608949A2 (pt) sistema e método para distribuir pacotes de dados voip em comunicações de grupo dentre dispositivos de telecomunicações sem fio
WO2020024961A1 (zh) 数据处理方法、设备及系统
WO2017133477A1 (zh) 业务流传输方法、装置及系统
JP2023531857A (ja) マルチキャスト/ブロードキャストセッションのためのアクセスネットワークシグナリングおよびリソース配分
CN111092937A (zh) 会话创建方法、控制方法、会话创建系统、网元及介质
CN113973399A (zh) 报文转发方法、装置及系统
WO2018010519A1 (zh) 一种建立组播隧道的方法和装置
WO2020211538A1 (zh) 一种数据传输方法及装置
CN107959985B (zh) 混合mesh网络构建方法、数据传输方法及装置
WO2023019998A1 (zh) 一种通信隧道管理方法、装置及系统
CN111866759B (zh) 群组通信方法及装置
WO2022198410A1 (zh) 通信方法及装置
WO2024120299A1 (zh) 一种通信方法和通信装置
WO2022194193A1 (zh) 用于获取路径的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20825817

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217027403

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021550282

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020825817

Country of ref document: EP

Effective date: 20220117