WO2020253403A1 - 一种开销监控方法和装置、计算机可读存储介质 - Google Patents
一种开销监控方法和装置、计算机可读存储介质 Download PDFInfo
- Publication number
- WO2020253403A1 WO2020253403A1 PCT/CN2020/088365 CN2020088365W WO2020253403A1 WO 2020253403 A1 WO2020253403 A1 WO 2020253403A1 CN 2020088365 W CN2020088365 W CN 2020088365W WO 2020253403 A1 WO2020253403 A1 WO 2020253403A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flexe
- transmission rate
- signal
- overhead
- gbps
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 33
- 238000012544 monitoring process Methods 0.000 title claims abstract description 24
- 230000005540 biological transmission Effects 0.000 claims abstract description 220
- 238000012545 processing Methods 0.000 claims abstract description 21
- 238000009432 framing Methods 0.000 claims description 34
- 238000001514 detection method Methods 0.000 claims description 16
- 238000000605 extraction Methods 0.000 claims description 16
- 230000004044 response Effects 0.000 claims description 13
- 238000012806 monitoring device Methods 0.000 claims description 11
- 125000004122 cyclic group Chemical group 0.000 claims description 5
- 239000000945 filler Substances 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000013507 mapping Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J3/00—Time-division multiplex systems
- H04J3/02—Details
- H04J3/14—Monitoring arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J3/00—Time-division multiplex systems
- H04J3/16—Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
- H04J3/1605—Fixed allocated frame structures
- H04J3/1652—Optical Transport Network [OTN]
- H04J3/1658—Optical Transport Network [OTN] carrying packets or ATM cells
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0006—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0056—Systems characterized by the type of code used
- H04L1/0061—Error detection codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0056—Systems characterized by the type of code used
- H04L1/0071—Use of interleaving
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J2203/00—Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
- H04J2203/0001—Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
- H04J2203/0057—Operations, administration and maintenance [OAM]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J2203/00—Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
- H04J2203/0001—Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
- H04J2203/0073—Services, e.g. multimedia, GOS, QOS
- H04J2203/0082—Interaction of SDH with non-ATM protocols
- H04J2203/0085—Support of Ethernet
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/38—Synchronous or start-stop systems, e.g. for Baudot code
- H04L25/40—Transmitting circuits; Receiving circuits
- H04L25/49—Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
- H04L25/4906—Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems using binary codes
- H04L25/4908—Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems using binary codes using mBnB codes
Definitions
- the embodiments of the present application relate to the technical field of Flexible Ethernet (Flexible Ethernet, FlexE), such as an overhead monitoring method and device, and a computer-readable storage medium.
- Flexible Ethernet Flexible Ethernet, FlexE
- FlexE is an interface technology for the bearer network to implement service isolation and network fragmentation. It has the characteristics of flexible and adjustable bandwidth and data isolation. Based on the time division multiplexing mechanism, the FlexE device divides the time domain resources of a physical layer (PHY) transceiver with a transmission rate of 100 gigabits per second (Gbit/s) into 20 time slots, which are used as In one cycle, data is sent and received. In each of these 20 time slots, the transmission and reception rate of the PHY transceiver is 5 Gbit/s. In each cycle, the FlexE device can use the PHY transceiver to send a data block in a time slot or receive a data block in a time slot.
- a FlexE client (FlexE Client) corresponds to one or more time slots.
- the 20 time slots in the time domain resources of the PHY transceiver can correspond to one FlexE client or multiple FlexE clients, and the correspondence between FlexE clients and time slots is called a calendar.
- the data transmitted by a FlexE device using a PHY transceiver consists of a data block and an overhead header (Overhead, OH).
- the data block may be a 64-bit/66-bit (64b/66b) line-coded data block, and each of the overhead headers is a 66-bit data block.
- the FlexE chip external In order to obtain the current PHY information and ensure the reliability of communication, the FlexE chip external (referred to as off-chip) needs to monitor the FlexE overhead in real time, and then respond quickly when the PHY has problems.
- the method of reading the FlexE overhead outside the chip through the Central Processing Unit (CPU) interface has problems such as the overhead that the CPU interface cannot read the changes of each frame, and the slow response of the CPU interface. Therefore, how to effectively monitor the FlexE overhead in real time at the FlexE sender is a technical problem to be solved by those skilled in the art.
- the embodiments of the present application provide an overhead monitoring method and device, and a computer-readable storage medium, so that the FlexE sending end can monitor the FlexE overhead in real time off-chip.
- the embodiment of the present application provides an overhead monitoring method, including:
- the received FlexE signal includes a FlexE signal with a transmission rate of N times Y Gbps and a FlexE signal with a transmission rate of the target transmission rate, and the transmission rate is the target transmission rate
- the FlexE signal whose transmission rate is the target transmission rate and the PHY signal whose deinterleaved transmission rate is Y Gbps select M valid data signals, where M is a natural number greater than or equal to 1;
- the overhead line frame is generated according to the extracted FlexE overhead, and the overhead line frame is output; wherein, the overhead line frame includes the FlexE overhead.
- the embodiments of the present application also provide a computer-readable storage medium, the computer-readable storage medium stores one or more programs, and the one or more programs can be executed by one or more processors to realize The overhead monitoring method described in any of the above.
- An embodiment of the present application also provides an overhead monitoring device, including a processor and a memory, wherein the processor is configured to execute a program stored in the memory, so as to implement the overhead monitoring method described in any one of the above.
- the embodiment of the present application also provides an overhead monitoring device, which includes a receiving module, a deinterleaving module, a cross selection module, an overhead extraction module, and a framing output module, wherein:
- the receiving module is configured to receive FlexE signals of at least one PHY interface, where the received FlexE signals include FlexE signals with a transmission rate of N times Y Gbps and FlexE signals with a transmission rate of the target transmission rate, and the transmission rate is the target transmission rate.
- the de-interleaving module is set to de-interleave the FlexE signal with a transmission rate of N*Y Gbps among the received FlexE signals into N PHY signals with a transmission rate of Y Gbps;
- the cross selection module is set to select M valid data signals from the FlexE signal whose transmission rate is the target transmission rate and the PHY signal whose deinterleaved transmission rate is Y Gbps among the received FlexE signals, where M is greater than or equal to 1 Natural number;
- An overhead extraction module configured to delete stuffing blocks in the M valid data signals, perform frame processing on the M valid data signals, and extract FlexE overhead in the M valid data signals;
- the framing output module is configured to generate an overhead line frame according to the extracted FlexE overhead, and output the overhead line frame; wherein the overhead line frame includes the FlexE overhead.
- Figure 1 is a schematic diagram of the structure of the FlexE overhead header format in the related technology
- FIG. 2 is a schematic flowchart of an overhead monitoring method according to an embodiment of the application.
- FIG. 3 is a schematic flowchart of another overhead monitoring method according to an embodiment of the application.
- FIG. 4 is a schematic diagram of signal flow in another overhead monitoring process according to an embodiment of the application.
- Fig. 5 is a schematic structural diagram of an overhead monitoring device according to an embodiment of the application.
- FlexE binds 1 to n Ethernet PHYs into a high-rate channel, which is called a FlexE group.
- the FlexE protocol defines an Ethernet data stream based on the Medium Access Control (MAC) rate as a FlexE client.
- the rates of multiple FlexE Clients in a FlexE Group can be different.
- a FlexE Group is bound to four 100G PHYs, and the FlexE Client rate can be 10G, 40G, 75G, 150G, 200G, 300G and other multiple rates.
- the mechanism of FlexE makes it possible to support services of multiple rates with only 100G PHY, so that the network can be upgraded at low cost.
- the protocol adds a shim layer between the Reconciliation Sublayer (RS) and the Physical Coding Sublayer (PCS) layer of the IEEE802.3 protocol stack to achieve the adjustment of different MAC rates, thereby Realize this flexible mechanism.
- RS Reconciliation Sublayer
- PCS Physical Coding Sublayer
- the FlexE Shim layer builds a calendar (Calendar) time slot table with a size of 20*n 66-bit blocks according to the number of bound PHYs. Each 66-bit block represents a 5G time slot, where n is the bound Ethernet PHY number, * is the multiplication sign.
- the 20 Calendar time slots of each PHY are called Sub-Calendar.
- the PHY number (Number) and the 0-19 slot number (Slot_ID) in the PHY are used to uniquely identify the Calendar slot.
- the user allocates m*5G time slots according to the service rate. These time slots can be located in the Sub-Calendar of different PHYs of a FlexE Group.
- the FlexE Shim layer on the sending side loads the business data into the 66-bit block of the corresponding Calendar time slot configured.
- an overhead header (Overhead, OH) of a 66-bit block is inserted every 20*1023 66-bit blocks to store related mapping relationships and control information.
- 8 overhead headers form an overhead frame, and 32 overhead frames form a multiframe.
- n Sub-Calendars form a calendar with a size of 20*n, and restore the corresponding customer services according to the mapping relationship stored in the overhead header.
- the C field represents the calendar configuration (Calendar configuration in use); the OMF field represents the overhead header multiframe indicator (Overhead Multiframe Indicator); the RPF field represents the remote PHY fault (Remote PHY Fault)
- the CR field represents the calendar table conversion request (Calendar Switch Request); the CA field represents the calendar table conversion confirmation (Calendar Switch Acknowledge); the SS field represents valid sync header bits (01 or 10); PHY mapping (PHY) The Map) field indicates which PHYs are controlled to belong to the group; the CRC-16 field is the CRC16 calculation result of the first 3 overhead blocks.
- Embodiment 1 Overhead monitoring method
- an embodiment of the present application provides an overhead monitoring method, including:
- Step 210 Receive a flexible Ethernet FlexE signal of at least one physical layer PHY interface, where the received FlexE signal includes a FlexE signal with a transmission rate of N times Y Gbps and a FlexE signal with a transmission rate of the target transmission rate, where the transmission rate is the target
- the transmission rate of the FlexE signal includes the transmission rate of At least one of the Gbps FlexE signal and the FlexE signal with a transmission rate of X Gbps
- Y is a preset basic transmission rate
- X Y*C
- N is a natural number greater than 1
- C is a fixed coefficient.
- the transmission rate of the FlexE signal received from each PHY interface is N times or 103.125*20479/20480Gbps.
- 103.125*16383/16384Gbps or 1/2*103.125*20479/20480Gbps for example, receiving a FlexE signal with a transmission rate of 1/2*103.125*20479/20480Gbps from a 50G PHY interface, and receiving a transmission rate of 103.125*16383 from a 100G PHY interface
- the FlexE signal of /16384Gbps receives the FlexE signal with a transmission rate of 2*103.125*20479/20480Gbps from the 200G PHY interface; the FlexE signal with a transmission rate of 4*103.125*20479/20480Gbps is received from the 400G PHY interface.
- Step 220 De-interleave the FlexE signal with a transmission rate of N*Y Gbps among the received FlexE signals into N PHY signals with a transmission rate of Y Gbps.
- the overhead processing is uniformly based on the 100G PHY interface received.
- the transmission format of the FlexE signal is processed, and the transmission format of the 50G PHY interface and the 100G PHY interface are the same. This requires de-interleaving the FlexE signal received from the 200G PHY interface, 400G PHY interface or other over 100G PHY interface to generate 2, 4 or other numbers of PHY signals with a transmission rate of 103.125*20479/20480Gbps, and then Then carry out overhead extraction and processing.
- Step 230 Select M valid data signals from the FlexE signal whose transmission rate is the target transmission rate and the PHY signal whose de-interleaved transmission rate is Y Gbps among the received FlexE signals, where M is a natural number greater than or equal to 1.
- the valid data signal described in the embodiment of the present application refers to a FlexE signal that transmits valid data.
- Step 240 Delete the stuffing blocks in the M valid data signals, perform framing processing on the M valid data signals, and extract the FlexE overhead in the M valid data signals.
- the pad needs to be deleted before framing. Therefore, if the PHY signal is de-interleaved from the FlexE signal received from the 50G PHY interface or over 100G PHY interface, the pad needs to be deleted; if it is the FlexE signal received from the 100G PHY interface, there is no need to delete the pad. Then, the frame header is searched according to the fixed FlexE frame header pattern, and a fixed framing alarm is generated.
- the position of the FlexE overhead to be extracted is determined according to the fixed interval position, due to the multi-frame indication signal (OMF field in Figure 1) There is only 1 bit (not 0 or 1), so it is necessary to determine the position number i of the FlexE overhead to be extracted in the multiframe, where i is an integer between 0 and 31.
- deleting the stuffing blocks in the M valid data signals includes: the FlexE signal whose transmission rate is the target transmission rate includes a transmission rate of In the case of the FlexE signal of Gbps Gbps and the FlexE signal with a transmission rate of X Gbps is not included, it is determined that there is a stuffing block in each valid data signal of the M valid data signals, and the stuffing block is deleted; the transmission rate is the target
- the FlexE signal of the transmission rate includes the FlexE signal of the transmission rate of X Gbps Gbps and does not include the transmission rate of In the case of a FlexE signal of Gbps, detecting whether each valid data signal of the M valid data signals is a FlexE signal with a transmission rate of X Gbps or a PHY signal with a transmission rate of Y Gbps, and responding to each valid data signal
- the FlexE signal with a transmission rate of X Gbps it is determined that there is no stuffing block in each valid data signal, and in response to the detection result that each valid data signal is a
- each valid data signal is a FlexE signal with a transmission rate of X Gbps
- the transmission rate of each valid data signal is The detection result of the Gbps PHY signal may be a PHY signal with a transmission rate of Y Gbps, it is determined that there is a stuffing block in each valid data signal, and the stuffing block is deleted.
- the performing framing processing on the M valid data signals includes: performing the following operations on the M valid data signals: searching for the FlexE frame header according to a preset frame header pattern; searching After reaching the FlexE frame header, determine the position of the FlexE overhead to be extracted and the position number i of the FlexE overhead to be extracted in the multi-frame, where i is an integer between 0 and 31.
- Step 250 Generate an overhead line frame according to the extracted FlexE overhead, and output the overhead line frame, where the overhead line frame includes the FlexE overhead.
- the FlexE frame has a total of 8 lines, and each line has a 66-bit FlexE overhead. Excluding the synchronization header 2bit, the FlexE overhead of each line is 64 bits. The overhead can be extracted according to the overhead line bandwidth. Multiple lines of FlexE overhead are combined and encapsulated into one overhead line frame or one line of FlexE overhead is split into multiple overhead line frames (for example, two lines of FlexE overhead are combined and encapsulated into one overhead line frame. All FlexE overheads can be transmitted in 4 times). As can be seen from Figure 1, 28 bits in the FlexE overhead in the first row are fixed to all 0s, and multiple bits in the FlexE overhead in the second and third rows are reserved fields. By using this part of the preset fixed all-zero positions or reserved field positions, a variety of overhead alarms can be transmitted, and the chip can monitor these overhead alarms in real time and respond in time.
- the FlexE signal and/or the transmission rate with a transmission rate of X Gbps is The Gbps FlexE signal and the overhead data extracted by multiple PHY signals with a transmission rate of Y Gbps need to be polled and scheduled to be converted into time-division data output.
- the overhead line frame mentioned in this application refers to a frame that contains one or more PHY interface information, FlexE overhead, and other information (such as CRC codes, overhead alarms, etc.).
- the overhead line frame is generated by the FlexE chip and is generated by the FlexE chip.
- the specific frame format can use any pre-defined frame format.
- the embodiments of the present application include receiving FlexE signals of one or more PHY interfaces, where the received FlexE signals include FlexE signals with a transmission rate of N times the Y Gbps and FlexE with a transmission rate of the target transmission rate.
- the FlexE to be received In the signal the FlexE signal with a transmission rate of N*Y Gbps is deinterleaved into N PHY signals with a transmission rate of Y Gbps; in the received FlexE signal, the transmission rate of the FlexE signal is the target transmission rate and the deinterleaved transmission rate is Y Gbps
- select M valid data signals where M is a natural number greater than or equal to 1; delete the stuffing blocks in the M valid data signals, perform frame processing on the M valid data signals, and extract M valid data signals
- M is a natural number greater than or equal to 1
- an embodiment of the present application provides an overhead monitoring method, including:
- Step 310 Receive flexible Ethernet FlexE signals of one or more physical layer PHY interfaces, where the transmission rate of the received FlexE signal is an integer multiple of Y Gbps, where Y is a preset basic transmission rate;
- Y 100.
- the transmission rate of the received FlexE signal is an integer multiple of 100 Gbps, for example, it may be 100 Gbps, 200 Gbps, 400 Gbps, and so on.
- Step 320 De-interleave the received FlexE signal with a transmission rate of N*Y Gbps into N Y Gbps PHY signals, where N is a natural number greater than 1.
- the overhead processing is uniformly processed at the transmission rate of 100Gbps, which requires that the FlexE signal of 200Gbps, 400Gbps or other rates be deinterleaved first.
- the received FlexE signals include n0 200Gbps FlexE signals, n1 400Gbps FlexE signals and n2 100Gbps FlexE signals, then n0 200Gbps FlexE signals and n1 400Gbps FlexE signals They are deinterleaved into n0*2 100Gbps FlexE signals and n1*4 100Gbps FlexE signals.
- Step 330 Select M valid data signals from the received YGbps FlexE signal and the deinterleaved YGbps PHY signal, where M is a natural number greater than or equal to 1;
- M valid data signals are selected among the n2 100Gbps FlexE signals received and the deinterleaved (n0*2+n1*4) 100Gbps FlexE signals.
- the valid data signal described in the embodiment of the present application refers to a FlexE signal that transmits valid data.
- Step 340 Delete stuffing blocks in the M valid data signals, perform framing processing on the M valid data signals, and extract the FlexE overhead in the M valid data signals.
- the position of the FlexE overhead to be extracted is determined according to the fixed interval position, due to the multi-frame indication signal (OMF field in Figure 1) There is only 1 bit (not 0 or 1), so it is necessary to determine the position number i of the FlexE overhead to be extracted in the multiframe, where i is an integer between 0 and 31.
- deleting the stuffing blocks in the M valid data signals includes: detecting that each valid data signal is a received Y Gbps FlexE signal or a deinterleaved Y Gbps PHY signal; if it is If a YGbps FlexE signal is received, it is determined that there is no stuffing block in the valid data signal; if it is a deinterleaved YGbps PHY signal, it is determined that there is a stuffing block in the valid data signal, and the stuffing block is deleted.
- the performing framing processing on the M valid data signals includes: performing the following operations on the M valid data signals: searching for FlexE frames according to a preset frame header pattern Head; After searching for the FlexE frame header, determine the position of the FlexE overhead to be extracted and the position number i of the FlexE overhead to be extracted in the multi-frame, where i is an integer between 0 and 31.
- Step 350 Generate and output an overhead line frame according to the extracted FlexE overhead.
- the overhead data extracted from multiple 100Gbps FlexE signals needs to be polled and scheduled and converted into time-division output. Under the premise that the overhead line meets the bandwidth, simply poll the output in the order of the PHY number.
- CRC Cyclic Redundancy Check
- Add Cyclic Redundancy Check (CRC) code to the FlexE overhead data output by time division and then encapsulate the time division data and CRC code into an overhead line frame format, and encode the overhead line frame (such as 8b/10b encoding) , 64b/66b encoding) after the asynchronous First Input First Output (FIFO) queue is converted to the serializer/deserializer (SERializer/DESerializer, serial) clock domain, and output to the off-chip.
- SERializer/DESerializer, serial serializer/deserializer
- the generating the overhead line frame according to the extracted FlexE overhead includes: dividing a row of the FlexE overhead in the FlexE frame into one or more overhead line frames; or, dividing the FlexE frame The multiple rows of the FlexE overhead form one overhead line frame.
- the generating an overhead line frame according to the extracted FlexE overhead further includes: adding an overhead alarm to a preset fixed all-zero position and/or a reserved field location in the FlexE overhead, and the overhead The alarm is used to indicate the state of the FlexE overhead (for example, it may be normal or error, etc.).
- the FlexE overhead is extracted at a fixed position and processed to generate an overhead alarm.
- the generating the overhead line frame according to the extracted FlexE overhead includes: converting the extracted FlexE overhead into a time-division output according to a preset polling scheduling sequence, and converting the time-division output FlexE
- the overhead is encapsulated into overhead line frames.
- the generating the overhead line frame according to the extracted FlexE overhead includes: converting the extracted FlexE overhead into a time-division output according to a preset polling scheduling sequence; the FlexE overhead output in the time-division
- the CRC code is added to the CRC, and the FlexE overhead and CRC code output by the time division are encapsulated into an overhead line frame.
- the generating the overhead line frame according to the extracted FlexE overhead further includes: encoding the encapsulated overhead line frame.
- encoding the encapsulated overhead line frame is specifically: performing 8b/10b or 64b/66b encoding on the encapsulated overhead line frame.
- the 8b/10b encoding is to decompose a group of continuous 8-bit data into two groups of data, a group of 3 bits, a group of 5 bits, and after encoding, they become a group of 4-bit codes and a group of 6 bits.
- the code to form a group of 10-bit data is sent out.
- 64b/66b encoding is to encode 64bit data or control information into 66bit blocks for transmission.
- the first two bits of the 66bit block represent the synchronization header.
- 64b/66b encoding is a key part of the PCS layer of 10 Gigabit Ethernet. It is not a real encoding, but an encoding and decoding method based on a scrambling code mechanism. This encoding method is the standard encoding method recommended by IEEE for 10G communication.
- Embodiment 2 Computer readable storage medium
- the embodiments of the present application also provide a computer-readable storage medium, the computer-readable storage medium stores one or more programs, and the one or more programs can be executed by one or more processors to realize The steps of the overhead monitoring method described in any of the above embodiments.
- Embodiment 3 Expense monitoring device one
- An embodiment of the present application also provides an overhead monitoring device, including a processor and a memory, wherein: the processor is configured to execute a program stored in the memory to implement the steps of the overhead monitoring method described in any of the above embodiments .
- Embodiment 4 Expense monitoring device 2
- the overhead extraction module 404 is configured to delete the stuffing blocks in the M valid data signals in the following manner: the FlexE signal with the target transmission rate includes a transmission rate of In the case of the FlexE signal of Gbps Gbps and the FlexE signal with a transmission rate of X Gbps is not included, it is determined that there is a stuffing block in each valid data signal of the M valid data signals, and the stuffing block is deleted; the transmission rate is the target
- the FlexE signal of the transmission rate includes the FlexE signal of the transmission rate of X Gbps Gbps and does not include the transmission rate of In the case of a FlexE signal of Gbps, detecting whether each valid data signal of the M valid data signals is a FlexE signal with a transmission rate of X Gbps or a PHY signal with a transmission rate of Y Gbps, and responding to each valid data signal
- the FlexE signal with a transmission rate of X Gbps it is determined that there are no padding blocks in each valid data signal, and in response to the detection result that each
- each valid data signal is a FlexE signal with a transmission rate of X Gbps
- the transmission rate of each valid data signal is The detection result of the Gbps PHY signal may be a PHY signal with a transmission rate of Y Gbps, it is determined that there is a stuffing block in each valid data signal, and the stuffing block is deleted.
- the overhead extraction module 404 is configured to perform framing processing on the M valid data signals in the following manner: perform the following operations on the M valid data signals: according to a preset frame The header pattern searches for the FlexE frame header; after searching for the FlexE frame header, determine the position of the FlexE overhead to be extracted and the position number i of the FlexE overhead to be extracted in the multiframe, where i is between 0 and 31 The integer.
- the framing output module 405 is configured to generate an overhead line frame according to the extracted FlexE overhead in the following manner: divide a row of the FlexE overhead in the FlexE frame into one or more overhead line frames; Alternatively, multiple rows of the FlexE overhead in the FlexE frame are combined into one overhead line frame.
- the framing output module 405 is configured to generate an overhead line frame according to the extracted FlexE overhead in the following manner: add overhead to a preset fixed all 0 position and/or reserved field position in the FlexE overhead An alarm, the overhead alarm is used to indicate the status of the FlexE overhead.
- the framing output module 405 is configured to generate an overhead line frame according to the extracted FlexE overhead by converting the extracted FlexE overhead into time-division data according to a preset polling scheduling sequence, and Output the time division data; encapsulate the output time division data into an overhead line frame.
- the framing output module 405 is configured to generate an overhead line frame according to the extracted FlexE overhead by converting the extracted FlexE overhead into time-division data according to a preset polling scheduling sequence, And output the time division data; add a cyclic redundancy check CRC code to the output time division data, and encapsulate the output time division data and the CRC code into the overhead line frame.
- the framing output module 405 is further configured to encode the encapsulated overhead line frame.
- the embodiment of the present application also provides an overhead monitoring device, including a receiving module 401, a deinterleaving module 402, a cross selection module 403, an overhead extraction module 404, and a framing output module 405, where: 401.
- the deinterleaving module 402 is set to The received FlexE signal with a transmission rate of N*Y Gbps is de-interleaved into N Y Gbps PHY signals, where N is a natural number greater than 1.
- the cross selection module 403 is set to be used when the received Y Gbps FlexE signal and deinterleaved In the YGbps PHY signal, select M valid data signals, where M is a natural number greater than or equal to 1; the overhead extraction module 404 is configured to delete the stuffing blocks in the M valid data signals, which is valid for the M The data signal undergoes framing processing to extract the FlexE overhead in the M valid data signals; the framing output module 405 is configured to generate and output overhead line frames according to the extracted FlexE overhead.
- Y 100.
- the transmission rate of the FlexE signal received by the receiving module 401 is an integer multiple of 100 Gbps, for example, it may be 100 Gbps, 200 Gbps, 400 Gbps, and so on.
- the overhead processing is uniformly processed at the transmission rate of 100Gbps, which requires the deinterleaving module 402 to first deal with FlexE signals of 200Gbps, 400Gbps or other rates. Perform de-interleaving to generate 2, 4 or other quantities of 100Gbps FlexE signals, and then perform overhead extraction and processing.
- the deinterleaving module 402 combines n0 200Gbps FlexE signals and n1
- the 400Gbps FlexE signal is deinterleaved into n0*2 100Gbps FlexE signals and n1*4 100Gbps FlexE signals.
- the cross selection module 403 selects M valid data signals from the n2 100Gbps FlexE signals received and the deinterleaved (n0*2+n1*4) 100Gbps FlexE signals, where M is between 1 and j
- a natural number, j*100Gbps is the maximum bandwidth of the FlexE chip.
- the valid data signal in the embodiment of the present invention refers to a FlexE signal that transmits valid data.
- the overhead extraction module 404 is configured to delete the stuffing blocks in the M valid data signals by detecting that each valid data signal is a received Y Gbps FlexE signal or Deinterleaved Y Gbps PHY signal; if it is a received Y Gbps FlexE signal, it is determined that there is no padding block in the valid data signal; if it is a deinterleaved Y Gbps PHY signal, it is determined that there is padding in the valid data signal Block and delete the filler block.
- the overhead extraction module 404 is configured to perform framing processing on the M valid data signals in the following manner: perform the following operations on the M valid data signals: Set the frame header pattern to search for the FlexE frame header; after searching for the FlexE frame header, determine the position of the FlexE overhead to be extracted and the position number i of the FlexE overhead to be extracted in the multiframe, where i is 0 to An integer between 31.
- the framing output module 405 is configured to generate an overhead line frame according to the extracted FlexE overhead in the following manner: divide a line of the FlexE overhead in the FlexE frame into one or more overheads Line frame; or, combining multiple rows of the FlexE overhead in the FlexE frame into one overhead line frame.
- the FlexE frame has a total of 8 lines, and each line has a 66-bit FlexE overhead. Excluding the synchronization header 2bit, the FlexE overhead of each line is 64 bits. The overhead can be extracted according to the overhead line bandwidth. Multiple lines of FlexE overhead are encapsulated together into one overhead line frame or one line of FlexE overhead is split into multiple overhead line frames (for example, two lines of FlexE overhead are combined and encapsulated into one overhead line frame, so that one FlexE frame All FlexE overheads can be transmitted in 4 times).
- the framing output module 405 is configured to generate an overhead line frame according to the extracted FlexE overhead in the following manner: preset fixed all-zero positions and/or reserved fields in the FlexE overhead An overhead alarm is added to the location, and the overhead alarm is used to indicate the status of the FlexE overhead.
- the FlexE overhead is extracted at a fixed position and processed to generate an overhead alarm.
- the framing output module 405 is configured to generate an overhead line frame according to the extracted FlexE overhead in the following way: convert the extracted FlexE overhead into a time division according to a preset polling scheduling sequence Output; encapsulate the time-division output FlexE overhead into an overhead line frame.
- the framing output module 405 is configured to generate an overhead line frame according to the extracted FlexE overhead in the following manner: convert the extracted FlexE overhead into a preset polling scheduling sequence Time division output; adding a CRC code to the time division output FlexE overhead, and encapsulate the time division output FlexE overhead and the CRC code into an overhead line frame.
- the framing output module 405 is further configured to encode the encapsulated overhead line frame.
- the framing output module 405 is configured to encode the encapsulated overhead line frame by performing 8b/10b or 64b/ 66b encoding.
- the overhead data extracted from multiple 100Gbps FlexE signals needs to be polled and scheduled to be converted into time-division output.
- the overhead line meets the bandwidth, simply poll the output in the order of physical PHY numbers.
- Add the cyclic redundancy check CRC code to the FlexE overhead data output by the time division and then encapsulate the time division data and the CRC code into the overhead line frame format, and encode the overhead line frame (such as 8b/10b encoding, 64b/66b encoding)
- the asynchronous FIFO is converted to the serdes clock domain, it is output outside the chip.
- This application does not limit how to output the generated overhead line frame outside the chip. For example, it is also possible to output the generated overhead line frame outside the chip through other cross-clock domain conversion methods other than serdes.
- the FlexE cost can be monitored off-chip in a flexible manner and with minimal increase of resources, and can be reserved for future use of FlexE cost
- the field is reserved for interfaces.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Communication Control (AREA)
- Maintenance And Management Of Digital Transmission (AREA)
Abstract
本申请公开了一种开销监控方法和装置、计算机可读存储介质,所述方法包括:接收一个或多个PHY接口的灵活以太网FlexE信号,其中,接收的FlexE信号包括传输速率为Y Gbps的N倍的FlexE信号以及传输速率为目标传输速率的FlexE信号,传输速率为目标传输速率的FlexE信号包括传输速率为(I) Gbps的FlexE信号和传输速率为X Gbps的FlexE信号中的至少之一,Y为预设的基础传输速率,X=Y*C,N为大于1的自然数,C为固定系数;将接收的FlexE信号中传输速率为N*Y Gbps的FlexE信号,解交织为N个传输速率为Y Gbps的 PHY信号;在接收的FlexE信号中传输速率为目标传输速率的FlexE信号和解交织的传输速率为Y Gbps的PHY信号中,选择M个有效数据信号,M为大于或等于1的自然数;删除所述M个有效数据信号中的填充块,对M个有效数据信号进行定帧处理,提取M个有效数据信号中的FlexE开销;根据提取的FlexE开销生成开销线帧,并输出开销线帧。
Description
本申请要求在2019年06月19日提交中国专利局、申请号为201910532405.2的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
本申请实施例涉及灵活以太网(Flexible Ethernet,FlexE)技术领域,例如一种开销监控方法和装置、计算机可读存储介质。
FlexE是承载网实现业务隔离承载和网络分片的一种接口技术,具有带宽灵活可调、数据隔离等特点。FlexE设备基于时分复用机制,将传输速率为100吉比特每秒(Gbit/s)的物理层(Physical Layer,PHY)收发器的时域资源划分为20个时隙,以20个时隙为一个周期,进行数据的发送和接收。这20个时隙的每个时隙中,PHY收发器的发送和接收速率为5Gbit/s。每个周期中FlexE设备利用PHY收发器可以在一个时隙中发送一个数据块,也可以在一个时隙中接收一个数据块,一个FlexE客户(FlexE Client)对应于一个或多个时隙。PHY收发器的时域资源中的20个时隙可以对应一个FlexE客户或者多个FlexE客户,FlexE客户和时隙的对应关系被称为日程表(Calendar)。FlexE设备利用一个PHY收发器传送的数据由数据块和开销头(Overhead,OH)组成,每20*1023个连续的数据块之前有一个FlexE开销头,其中,*为乘号,每个所述数据块可以是64比特/66比特(64b/66b)线路编码的数据块,每个所述开销头都是一个66比特的数据块。
为了获取当前PHY的信息以及保证通信的可靠性,FlexE芯片外部(简称片外)需要对FlexE开销进行实时监控,进而在PHY出现问题时快速响应。相关技术中通过中央处理器(Central Processing Unit,CPU)接口在片外读取FlexE开销的方法,存在CPU接口不能读取每帧变化的开销,以及CPU接口响应慢等问题。因此,如何在FlexE发送端有效地对FlexE开销进行实时监控,是本领域技术人员亟待解决的技术问题。
发明内容
本申请实施例提供了一种开销监控方法和装置、计算机可读存储介质,使得FlexE发送端能够在片外对FlexE开销进行实时监控。
本申请实施例提供了一种开销监控方法,包括:
接收至少一个物理层PHY接口的灵活以太网FlexE信号,其中,接收的FlexE信号包括传输速率为Y Gbps的N倍的FlexE信号以及传输速率为目标传输速率的FlexE信号,传输速率为目标传输速率的FlexE信号包括传输速率为
Gbps的FlexE信号和传输速率为X Gbps的FlexE信号中的至少之一,Y为预设的基础传输速率,X=Y*C,N为大于1的自然数,C为固定系数;
将接收的FlexE信号中传输速率为N*Y Gbps的FlexE信号,解交织为N个传输速率为Y Gbps的PHY信号;
在接收的FlexE信号中传输速率为目标传输速率的FlexE信号和解交织的传输速率为Y Gbps的PHY信号中,选择M个有效数据信号,其中,M为大于或等于1的自然数;
删除所述M个有效数据信号中的填充块,对所述M个有效数据信号进行定帧处理,提取所述M个有效数据信号中的FlexE开销;
根据提取的FlexE开销生成开销线帧,并输出开销线帧;其中,开销线帧包括FlexE开销。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如以上任一项所述的开销监控方法。
本申请实施例还提供了一种开销监控装置,包括处理器及存储器,其中:所述处理器设置为执行存储器中存储的程序,以实现如以上任一项所述的开销监控方法。
本申请实施例还提供了一种开销监控装置,包括接收模块、解交织模块、交叉选择模块、开销提取模块和成帧输出模块,其中:
接收模块,设置为接收至少一个PHY接口的FlexE信号,其中,接收的FlexE信号包括传输速率为Y Gbps的N倍的FlexE信号以及传输速率为目标传输速率的FlexE信号,传输速率为目标传输速率的FlexE信号包括传输速率为
Gbps的FlexE信号和传输速率为X Gbps的FlexE信号中的至少之一,Y为预设的基础传输速率,X=Y*C,N为大于1的自然数,C为固定系数;
解交织模块,设置为将接收的FlexE信号中传输速率为N*Y Gbps的FlexE信号,解交织为N个传输速率为Y Gbps的PHY信号;
交叉选择模块,设置为在接收的FlexE信号中传输速率为目标传输速率的FlexE信号和解交织的传输速率为Y Gbps的PHY信号中,选择M个有效数据信号,其中,M为大于或等于1的自然数;
开销提取模块,设置为删除所述M个有效数据信号中的填充块,对所述M个有效数据信号进行定帧处理,提取所述M个有效数据信号中的FlexE开销;
成帧输出模块,设置为根据提取的FlexE开销生成开销线帧,并输出开销线帧;其中,开销线帧包括FlexE开销。
附图用来提供对本申请技术方案的理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1为相关技术中的FlexE开销头格式结构示意图;
图2为本申请实施例的一种开销监控方法的流程示意图;
图3为本申请实施例的另一种开销监控方法的流程示意图;
图4为本申请实施例的另一种开销监控过程中的信号流向示意图;
图5为本申请实施例的一种开销监控装置的结构示意图。
下文中将结合附图对本申请的实施例进行说明。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
FlexE将1至n个以太网PHY绑定成一个大速率通道,称之为一个FlexE组(Group)。FlexE协议定义一个基于介质访问控制(Medium Access Control,MAC)速率的以太网数据流为一个FlexE客户(Client)。一个FlexE Group中的多个FlexE Client的速率可以不同,例如,一个FlexE Group绑定4个100G PHY,其中的FlexE Client速率可以是10G、40G、75G、150G、200G、300G等多种速率。FlexE这种机制使得只需100G PHY就可以支持多种速率的业务, 从而可以低成本地升级网络。该协议在IEEE802.3协议栈的协调子层(Reconciliation Sublayer,RS)和物理编码子层(Physical Coding Sublayer,PCS)层之间增加一个垫片(Shim)层来实现不同MAC速率的调节,从而实现这种灵活机制。
FlexE Shim层根据绑定的PHY数目构建一个大小为20*n个66比特块的日历(Calendar)时隙表,每个66比特块代表一个5G的时隙,其中,n为绑定的以太网PHY数目,*为乘号。每个PHY的20个Calendar时隙,称之为子日历(Sub-Calendar)。在一个FlexE Group中,用PHY编号(Number)和PHY中的0~19的时隙编号(Slot_ID)唯一标识Calendar时隙。用户根据业务速率分配m*5G个时隙,这些时隙可以位于一个FlexE Group的不同PHY的Sub-Calendar中。发送侧的FlexE Shim层将业务数据装进所配置的相应Calendar时隙66比特块中。对于每个PHY的Sub-Calendar,每20*1023个66比特块插入一个66比特块的开销头(Overhead,OH),用来存储相关的映射关系以及控制信息。8个开销头组成一个开销帧,而32个开销帧组成一个复帧。在接收侧,n个Sub-Calendar组成一个大小为20*n的Calendar,根据开销头中存储的映射关系恢复相应的客户业务。
如图1所示的FlexE开销头中,C字段表示日历表配置(Calendar configuration in use);OMF字段表示开销头复帧指示(Overhead Multiframe Indicator);RPF字段表示远端PHY错误(Remote PHY Fault);CR字段表示日历表转换请求(Calendar Switch Request);CA字段表示日历表转换确认(Calendar Switch Acknowledge);SS字段表示有效同步头比特(Valid sync header bits)(01 or 10);PHY映射(PHY Map)字段表示控制哪些PHYs属于该组;CRC-16字段为对前3个开销块的CRC16计算结果。
实施例一:开销监控方法
如图2所示,本申请实施例提供了一种开销监控方法,包括:
步骤210:接收至少一个物理层PHY接口的灵活以太网FlexE信号,其中,接收的FlexE信号包括传输速率为Y Gbps的N倍的FlexE信号以及传输速率为目标传输速率的FlexE信号,传输速率为目标传输速率的FlexE信号包括传输速率为
Gbps的FlexE信号和传输速率为X Gbps的FlexE信号中的至少之一,Y为预设的基础传输速率,X=Y*C,N为大于1的自然数,C为固定系数。
在一种示例性实施例中,Y=103.125*20479/20480,C=20480/20479*16383/16384,则从每个PHY接口接收的FlexE信号的传输速率 为103.125*20479/20480Gbps的N倍或103.125*16383/16384Gbps或1/2*103.125*20479/20480Gbps,例如,从50G PHY接口接收传输速率为1/2*103.125*20479/20480Gbps的FlexE信号,从100G PHY接口接收传输速率为103.125*16383/16384Gbps的FlexE信号,从200G PHY接口接收传输速率为2*103.125*20479/20480Gbps的FlexE信号;从400G PHY接口接收传输速率为4*103.125*20479/20480Gbps的FlexE信号。
步骤220:将接收的FlexE信号中传输速率为N*Y Gbps的FlexE信号,解交织为N个传输速率为Y Gbps的PHY信号。
本实施例中,对于从FlexE PHY接口接收的FlexE信号,不管是从50G PHY接口、200G PHY接口、400G PHY接口或其它超100G PHY接口接收的FlexE信号,开销处理统一按照100G PHY接口的接收的FlexE信号的传输格式来处理,其中50G PHY接口和100G PHY接口传输格式一致。这就要求先对从200G PHY接口、400G PHY接口或其它超100G PHY接口接收的FlexE信号进行解交织,生成2个、4个或其它数量的传输速率为103.125*20479/20480Gbps的PHY信号,然后再进行开销提取与处理。
步骤230:在接收的FlexE信号中传输速率为目标传输速率的FlexE信号和解交织的传输速率为Y Gbps的PHY信号中,选择M个有效数据信号,其中,M为大于或等于1的自然数。
。本申请实施例所述的有效数据信号指的是传输有效数据的FlexE信号。
步骤240:删除所述M个有效数据信号中的填充块,对所述M个有效数据信号进行定帧处理,提取所述M个有效数据信号中的FlexE开销。
本实施例中,由于从50G PHY接口、200G PHY接口、400G PHY接口或其它超100G PHY接口接收的FlexE信号中按照固定的周期插入了2个、4个、8个或其它数量个66B的填充块(pad),在进行定帧前需要将pad删除。因此,如果是从50G PHY接口或者超100G PHY接口接收的FlexE信号中解交织出来的PHY信号,需要把pad删除;如果是从100G PHY接口接收接收的FlexE信号,则不需删除pad。然后,按照固定的FlexE帧头图案搜索帧头,产生定帧告警,搜到帧头后按照固定的间隔位置确定待提取的FlexE开销的位置,由于复帧指示信号(图1中的OMF字段)只有1bit(非0即1),所以需要确定待提取的FlexE开销在复帧中的位置号i,其中,i为0至31之间的整数。
在一实施例中,删除所述M个有效数据信号中的填充块,包括:在传输速率为目标传输速率的FlexE信号包括传输速率为
Gbps Gbps的FlexE信号且不包括传输速率为X Gbps的FlexE信号的情况下,判定所述M个有效数据信号中 的每个有效数据信号中有填充块,并删除填充块;在传输速率为目标传输速率的FlexE信号包括传输速率为X Gbps Gbps的FlexE信号且不包括传输速率为
Gbps的FlexE信号的情况下,检测所述M个有效数据信号中的每个有效数据信号为传输速率为X Gbps的FlexE信号还是传输速率为Y Gbps的PHY信号,响应所述每个有效数据信号为传输速率为X Gbps的FlexE信号的检测结果,判定所述每个有效数据信号中没有填充块,响应所述每个有效数据信号为传输速率为Y Gbps的PHY信号的检测结果,判定所述每个有效数据信号中有填充块,并删除填充块;在传输速率为目标传输速率的FlexE信号包括传输速率为
Gbps的FlexE信号和传输速率为X Gbps的FlexE信号的情况下,检测所述M个有效数据信号中的每个有效数据信号为传输速率为X Gbps的FlexE信号、传输速率为
Gbps的FlexE信号还是传输速率为Y Gbps的PHY信号,响应所述每个有效数据信号为传输速率为X Gbps的FlexE信号的检测结果,判定所述每个有效数据信号中没有填充块,响应所述每个有效数据信号为传输速率为
Gbps的PHY信号的检测结果或为传输速率为Y Gbps的PHY信号,判定所述每个有效数据信号中有填充块,并删除填充块。
在一实施例中,所述对所述M个有效数据信号进行定帧处理,包括:对所述M个有效数据信号,分别执行以下操作:根据预设的帧头图案搜索FlexE帧头;搜索到FlexE帧头后,确定待提取的所述FlexE开销的位置以及待提取的所述FlexE开销在复帧中的位置号i,其中,i为0至31之间的整数。
步骤250:根据提取的FlexE开销生成开销线帧,并输出开销线帧;其中,开销线帧包括FlexE开销。
从图1的FlexE开销帧格式可以看出,FlexE帧总共有8行,每行有一个66bit的FlexE开销,除去同步头2bit,每行FlexE开销为64bit,开销提取的时候可以根据开销线带宽把多行FlexE开销合在一起封装成一个开销线帧或者将一行FlexE开销拆分成多个开销线帧(比如把2行FlexE开销合在一起封装成1个开销线帧,这样一个FlexE帧中的所有FlexE开销可以分4次全部传完),从图1中可以看出,第1行FlexE开销中有28bit固定为全0,第2行和第3行FlexE开销中有多个bit为保留字段,利用这部分预设固定全0位置或保留字段位置,可以传送多种开销告警,芯片外面可以实时对这些开销告警进行监控,并及时作出响应。
一实施例中,在提取了FlexE开销后,对传输速率为X Gbps的FlexE信号和/或传输速率为
Gbps的FlexE信号,以及多个传输速率为Y Gbps的PHY信号提取的开销数据,需要经过轮询调度转成时分数据输出,在开销线满足带 宽的前提下,只需简单地按照PHY号的顺序轮询输出,在输出的时分数据中加入循环冗余校验(Cyclic Redundancy Check,CRC)码,然后将时分数据与CRC码一起封装成开销线帧格式,对开销线帧进行编码(比如8b/10b编码、64b/66b编码)后经过异步先进先出(First Input First Output,FIFO)队列转换到串行器/解串器(SERializer/DESerializer,serdes)时钟域,输出到片外。本申请并不限制如何将生成的开销线帧输出至片外,例如,也可以通过除serdes以外的其它的跨时钟域转换方法,将生成的开销线帧输出至片外。
本申请所述的开销线帧指的是一种包含一个或多个PHY接口信息、FlexE开销以及其它信息(例如CRC码、开销告警等)的帧,该开销线帧由FlexE芯片生成,由FlexE片外读取,具体的帧格式可以使用预自定义的任意的帧格式。
与相关技术相比,本申请实施例包括接收一个或多个PHY接口的FlexE信号,其中,接收的的FlexE信号包括传输速率为Y Gbps的N倍的FlexE信号以及传输速率为目标传输速率的FlexE信号,传输速率为目标传输速率的FlexE信号包括传输速率为
Gbps的FlexE信号和传输速率为X Gbps的FlexE信号中的至少之一,Y为预设的基础传输速率,X=Y*C,N为大于1的自然数,C为固定系数;将接收的FlexE信号中传输速率为N*Y Gbps的FlexE信号,解交织为N个传输速率为Y Gbps PHY信号;在接收的FlexE信号中传输速率为目标传输速率的FlexE信号和解交织的传输速率为Y Gbps的PHY信号中,选择M个有效数据信号,M为大于或等于1的自然数;删除所述M个有效数据信号中的填充块,对M个有效数据信号进行定帧处理,提取M个有效数据信号中的FlexE开销;根据提取的FlexE开销生成开销线帧,并输出开销线帧,使得FlexE发送端能够在片外有效地对FlexE开销进行实时监控,并及时作出响应。
如图3所示,本申请实施例提供了一种开销监控方法,包括:
步骤310:接收一个或多个物理层PHY接口的灵活以太网FlexE信号,所述接收的FlexE信号的传输速率为Y Gbps的整数倍,其中,Y为预设的基础传输速率;
在一种示例性实施例中,Y=100。所述接收的FlexE信号的传输速率为100Gbps的整数倍,例如,可以为100Gbps、200Gbps、400Gbps等等。
步骤320:将接收的传输速率为N*Y Gbps的FlexE信号,解交织为N个Y Gbps PHY信号,其中,N为大于1的自然数;
本申请对于FlexE PHY接口,不管是100Gbps、200Gbps、400Gbps或其它传输速率的PHY,开销处理统一按照100Gbps的传输速率来处理,这就要求先对200Gbps、400Gbps或其它速率的FlexE信号进行解交织,生成2个、4个或其它数量的100Gbps FlexE信号,然后再进行开销提取与处理。
例如,如图4所示,假设接收的FlexE信号包括n0个200Gbps的FlexE信号、n1个400Gbps的FlexE信号和n2个100Gbps的FlexE信号,则将n0个200Gbps的FlexE信号和n1个400Gbps的FlexE信号分别解交织成n0*2个100Gbps的FlexE信号和n1*4个100Gbps的FlexE信号。
步骤330:在接收的Y Gbps的FlexE信号和解交织的Y Gbps PHY信号中,选择M个有效数据信号,其中,M为大于或等于1的自然数;
仍然以图4为例,在接收的n2个100Gbps的FlexE信号以及解交织的(n0*2+n1*4)个100Gbps的FlexE信号中,选择M个有效数据信号。本申请实施例所述的有效数据信号指的是传输有效数据的FlexE信号。
步骤340:删除所述M个有效数据信号中的填充块,对所述M个有效数据信号进行定帧处理,提取所述M个有效数据信号中的FlexE开销。
需要说明的是,由于200Gbps、400Gbps或其它非100Gbps的FlexE信号中按照固定的周期插入了4个、8个或其它数量个66B的填充块(pad),在进行定帧前需要将pad删除。因此,如果是从200Gbps、400Gbps或其它非100Gbps的FlexE信号中解交织出来的100Gbps FlexE信号,需要把pad删除;如果是接收的100Gbps的FlexE信号,则不需删除pad。然后,按照固定的FlexE帧头图案搜索帧头,产生定帧告警,搜到帧头后按照固定的间隔位置确定待提取的FlexE开销的位置,由于复帧指示信号(图1中的OMF字段)只有1bit(非0即1),所以需要确定待提取的FlexE开销在复帧中的位置号i,其中,i为0至31之间的整数。
在一种示例性实施例中,删除所述M个有效数据信号中的填充块,包括:检测各个所述有效数据信号为接收的Y Gbps的FlexE信号或解交织的Y Gbps PHY信号;如果为接收的Y Gbps的FlexE信号,则判定所述有效数据信号中没有填充块;如果为解交织的Y Gbps PHY信号,则判定所述有效数据信号中有填充块,并删除所述填充块。
在一种示例性实施例中,所述对所述M个有效数据信号进行定帧处理,包括:对所述M个有效数据信号,分别执行以下操作:根据预设的帧头图案搜索FlexE帧头;搜索到FlexE帧头后,确定待提取的所述FlexE开销的位置以及待提取的所述FlexE开销在复帧中的位置号i,其中,i为0至31之间的整数。
步骤350:根据提取的FlexE开销生成开销线帧并输出。
在提取了FlexE开销后,对多个100Gbps的FlexE信号提取的开销数据需要经过轮询调度转成时分输出,在开销线满足带宽的前提下,只需简单地按照PHY号的顺序轮询输出,在时分输出的FlexE开销数据中加入循环冗余校验(Cyclic Redundancy Check,CRC)码,然后将时分数据与CRC码一起封装成开销线帧格式,对开销线帧进行编码(比如8b/10b编码、64b/66b编码)后经过异步先进先出(First Input First Output,FIFO)队列转换到串行器/解串器(SERializer/DESerializer,serdes)时钟域,输出到片外。本申请并不限制如何将生成的开销线帧输出至片外,例如,也可以通过除serdes以外的其它的跨时钟域转换方法,将生成的开销线帧输出至片外。
在一种示例性实施例中,所述根据提取的FlexE开销生成开销线帧,包括:将FlexE帧中的一行所述FlexE开销分成一个或多个所述开销线帧;或者,将FlexE帧中的多行所述FlexE开销组成一个所述开销线帧。
在一种示例性实施例中,所述根据提取的FlexE开销生成开销线帧,还包括:在所述FlexE开销中的预设固定全0位置和/或保留字段位置加入开销告警,所述开销告警用于指示所述FlexE开销的状态(例如,可以为正常或错误等)。
在该实施例中,搜索到帧头后在固定的位置提取出FlexE开销并处理生成开销告警。
在一种示例性实施例中,所述根据提取的FlexE开销生成开销线帧,包括:将所述提取的FlexE开销按照预设的轮询调度顺序转成时分输出,将所述时分输出的FlexE开销封装成开销线帧。
在另一种示例性实施例中,所述根据提取的FlexE开销生成开销线帧,包括:将所述提取的FlexE开销按照预设的轮询调度顺序转成时分输出;在时分输出的FlexE开销中加入CRC码,将所述时分输出的FlexE开销和CRC码封装成开销线帧。
在一种示例性实施例中,所述根据提取的FlexE开销生成开销线帧,还包括:对封装成的所述开销线帧进行编码。
在该实施例的一示例中,对封装成的所述开销线帧进行编码,具体为:对封装成的所述开销线帧进行8b/10b或64b/66b编码。
需要说明的是,8b/10b编码是将一组连续的8位数据分解成两组数据,一组3位,一组5位,经过编码后分别成为一组4位的代码和一组6位的代码,从而组成一组10位的数据发送出去。
64b/66b编码是将64bit数据或控制信息编码成66bit块传输,66bit块的前两位表示同步头。64b/66b编码是万兆以太网PCS层的关键部分,它并不是真正的编码,而是一种基于扰码机制编解码方式。这种编码方式,是IEEE推荐的10G通信的标准编码方式。
实施例二:计算机可读存储介质
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如以上任一实施例所述的开销监控方法的步骤。
实施例三:开销监控装置一
本申请实施例还提供了一种开销监控装置,包括处理器及存储器,其中:所述处理器设置为执行存储器中存储的程序,以实现如以上任一实施例所述的开销监控方法的步骤。
实施例四:开销监控装置二
如图5所示,本申请实施例还提供了一种开销监控装置,包括接收模块401、解交织模块402、交叉选择模块403、开销提取模块404和成帧输出模块405,其中:接收模块401,设置为接收至少一个PHY接口的FlexE信号,其中,接收的FlexE信号包括传输速率为Y Gbps的N倍的FlexE信号以及传输速率为目标传输速率的FlexE信号,传输速率为目标传输速率的FlexE信号包括传输速率为
Gbps的FlexE信号和传输速率为X Gbps的FlexE信号中的至少之一,Y为预设的基础传输速率,X=Y*C,N为大于1的自然数,C为固定系数;解交织模块402,设置为将接收的FlexE信号中传输速率为N*Y Gbps的FlexE信号,解交织为N个传输速率为Y Gbps的PHY信号;交叉选择模块403,设置为在接收的FlexE信号中传输速率为目标传输速率的FlexE信号和解交织的传输速率为Y Gbps的PHY信号中,选择M个有效数据信号,其中,M为大于或等于1的自然数;开销提取模块404,设置为删除M个有效数据信号中的填充块,对M个有效数据信号进行定帧处理,提取M个有效数据信号中的FlexE开销;成帧输出模块405,设置为根据提取的FlexE开销生成开销线帧,并输出开销线帧;其中,开销线帧包括FlexE开销。
在一实施例中,所述开销提取模块404是设置为通过如下方式删除M个有效数据信号中的填充块:在传输速率为目标传输速率的FlexE信号包括传输速率为
Gbps Gbps的FlexE信号且不包括传输速率为X Gbps的FlexE信号的情况下,判定所述M个有效数据信号中的每个有效数据信号中有填充块,并删除填充块;在传输速率为目标传输速率的FlexE信号包括传输速率为X Gbps Gbps的FlexE信号且不包括传输速率为
Gbps的FlexE信号的情况下,检测所述M个有效数据信号中的每个有效数据信号为传输速率为X Gbps的FlexE信号还是 传输速率为Y Gbps的PHY信号,响应所述每个有效数据信号为传输速率为X Gbps的FlexE信号的检测结果,判定所述每个有效数据信号中没有填充块,响应所述每个有效数据信号为传输速率为Y Gbps的PHY信号的检测结果,判定每个所述有效数据信号中有填充块,并删除填充块;在传输速率为目标传输速率的FlexE信号包括传输速率为
Gbps的FlexE信号和传输速率为X Gbps的FlexE信号的情况下,检测所述M个有效数据信号中的每个有效数据信号为传输速率为X Gbps的FlexE信号、传输速率为
Gbps的FlexE信号还是传输速率为Y Gbps的PHY信号,响应所述每个有效数据信号为传输速率为X Gbps的FlexE信号的检测结果,判定所述每个有效数据信号中没有填充块,响应所述每个有效数据信号为传输速率为
Gbps的PHY信号的检测结果或为传输速率为Y Gbps的PHY信号,判定所述每个有效数据信号中有填充块,并删除填充块。
在一实施例中,所述开销提取模块404是设置为通过如下方式对所述M个有效数据信号进行定帧处理:对所述M个有效数据信号,分别执行以下操作:根据预设的帧头图案搜索FlexE帧头;搜索到FlexE帧头后,确定待提取的所述FlexE开销的位置以及待提取的所述FlexE开销在复帧中的位置号i,其中,i为0至31之间的整数。
在一实施例中,所述成帧输出模块405是设置为通过如下方式根据提取的FlexE开销生成开销线帧:将FlexE帧中的一行所述FlexE开销分成一个或多个所述开销线帧;或者,将FlexE帧中的多行所述FlexE开销组成一个所述开销线帧。
在一实施例中,所述成帧输出模块405是设置为通过如下方式根据提取的FlexE开销生成开销线帧:在所述FlexE开销中的预设固定全0位置和/或保留字段位置加入开销告警,所述开销告警用于指示所述FlexE开销的状态。
在一实施例中,所述成帧输出模块405是设置为通过如下方式根据提取的FlexE开销生成开销线帧:将所述提取的FlexE开销按照预设的轮询调度顺序转成时分数据,并输出所述时分数据;将所述输出的时分数据封装成开销线帧。
在另一实施例中,所述成帧输出模块405是设置为通过如下方式根据提取的FlexE开销生成开销线帧:将所述提取的FlexE开销按照预设的轮询调度顺序转成时分数据,并输出所述时分数据;在输出的所述时分数据中加入循环冗余校验CRC码,将所述输出的时分数据和所述CRC码封装成所述开销线帧。
在一种示例性实施例中,所述成帧输出模块405还设置为:对封装成的所述开销线帧进行编码。
如图5所示,本发明申请实施例还提供了一种开销监控装置,包括接收模 块401、解交织模块402、交叉选择模块403、开销提取模块404和成帧输出模块405,其中:接收模块401,设置为接收一个或多个PHY接口的FlexE信号,所述接收的FlexE信号的传输速率为Y Gbps的整数倍,其中,Y为预设的基础传输速率;解交织模块402,设置为将接收的传输速率为N*Y Gbps的FlexE信号,解交织为N个Y Gbps PHY信号,其中,N为大于1的自然数;交叉选择模块403,设置为在接收的Y Gbps的FlexE信号和解交织的Y Gbps PHY信号中,选择M个有效数据信号,其中,M为大于或等于1的自然数;开销提取模块404,设置为删除所述M个有效数据信号中的填充块,对所述M个有效数据信号进行定帧处理,提取所述M个有效数据信号中的FlexE开销;成帧输出模块405,设置为根据提取的FlexE开销生成开销线帧并输出。
在一种示例性实施例中,Y=100。所述接收模块401接收的FlexE信号的传输速率为100Gbps的整数倍,例如,可以为100Gbps、200Gbps、400Gbps等等。
本申请对于FlexE PHY接口,不管是100Gbps、200Gbps、400Gbps或其它传输速率的PHY,开销处理统一按照100Gbps的传输速率来处理,这就要求解交织模块402先对200Gbps、400Gbps或其它速率的FlexE信号进行解交织,生成2个、4个或其它数量的100Gbps FlexE信号,然后再进行开销提取与处理。
例如,如图3所示,假设接收的FlexE信号包括n0个200Gbps的FlexE信号、n1个400Gbps的FlexE信号和n2个100Gbps的FlexE信号,则解交织模块402将n0个200Gbps的FlexE信号和n1个400Gbps的FlexE信号分别解交织成n0*2个100Gbps的FlexE信号和n1*4个100Gbps的FlexE信号。交叉选择模块403在接收的n2个100Gbps的FlexE信号以及解交织的(n0*2+n1*4)个100Gbps的FlexE信号中,选择M个有效数据信号,所述M为1至j之间的自然数,j*100Gbps为FlexE芯片的最大带宽。本发明实施例所述的有效数据信号指的是传输有效数据的FlexE信号。
在一种示例性实施例中,所述开销提取模块404是设置为通过如下方式删除所述M个有效数据信号中的填充块:检测各个所述有效数据信号为接收的Y Gbps的FlexE信号或解交织的Y Gbps PHY信号;如果为接收的Y Gbps的FlexE信号,则判定所述有效数据信号中没有填充块;如果为解交织的Y Gbps PHY信号,则判定所述有效数据信号中有填充块,并删除所述填充块。
在一种示例性实施例中,所述开销提取模块404是设置为通过如下方式对所述M个有效数据信号进行定帧处理:对所述M个有效数据信号,分别执行以下操作:根据预设的帧头图案搜索FlexE帧头;搜索到FlexE帧头后,确定待提取的所述FlexE开销的位置以及待提取的所述FlexE开销在复帧中的位置号i, 其中,i为0至31之间的整数。
在一种示例性实施例中,所述成帧输出模块405是设置为通过如下方式根据提取的FlexE开销生成开销线帧:将FlexE帧中的一行所述FlexE开销分成一个或多个所述开销线帧;或者,将FlexE帧中的多行所述FlexE开销组成一个所述开销线帧。
从图1的FlexE开销帧格式可以看出,FlexE帧总共有8行,每行有一个66bit的FlexE开销,除去同步头2bit,每行FlexE开销为64bit,开销提取的时候可以根据开销线带宽把多行FlexE开销合在一起封装成一个开销线帧或者将一行FlexE开销拆分成多个开销线帧(比如,把2行FlexE开销合在一起封装成1个开销线帧,这样一个FlexE帧中的所有FlexE开销可以分4次全部传完)。
在一种示例性实施例中,所述成帧输出模块405是设置为通过如下方式根据提取的FlexE开销生成开销线帧:在所述FlexE开销中的预设固定全0位置和/或保留字段位置加入开销告警,所述开销告警用于指示所述FlexE开销的状态。
在该实施例中,搜索到帧头后在固定的位置提取出FlexE开销并处理生成开销告警。
从图1中可以看出,第1行FlexE开销中有28bit固定为全0,第2行和第3行FlexE开销中有多个bit为保留字段,利用这部分预设固定全0位置或保留字段位置,可以传送多种开销告警,芯片外面可以实时对这些开销告警进行监控,并及时作出响应。
在一种示例性实施例中,所述成帧输出模块405是设置为通过如下方式根据提取的FlexE开销生成开销线帧:将所述提取的FlexE开销按照预设的轮询调度顺序转成时分输出;将所述时分输出的FlexE开销封装成开销线帧。
在另一种示例性实施例中,所述成帧输出模块405是设置为通过如下方式根据提取的FlexE开销生成开销线帧:将所述提取的FlexE开销按照预设的轮询调度顺序转成时分输出;在时分输出的FlexE开销中加入CRC码,将所述时分输出的FlexE开销和CRC码封装成开销线帧。
在一种示例性实施例中,所述成帧输出模块405还设置为:对封装成的所述开销线帧进行编码。
在该实施例的一示例中,所述成帧输出模块405是设置为通过如下方式对封装成的所述开销线帧进行编码:对封装成的所述开销线帧进行8b/10b或64b/66b编码。
在提取了FlexE开销后,对多个100Gbps FlexE信号提取的开销数据需要经过轮询调度转成时分输出,在开销线满足带宽的前提下,只需简单地按照物理PHY号的顺序轮询输出,在时分输出的FlexE开销数据中加入循环冗余校验CRC码,然后将时分数据与CRC码一起封装成开销线帧格式,对开销线帧进行编码(比如8b/10b编码、64b/66b编码)后经过异步FIFO转换到serdes时钟域,输出到片外。本申请并不限制如何将生成的开销线帧输出至片外,例如,也可以通过除serdes以外的其它的跨时钟域转换方法,将生成的开销线帧输出至片外。
采用本申请实施例的开销监控方法和装置、计算机可读存储介质,可以以一种灵活的方式、增加极少的资源就可以实现片外对FlexE开销的监控,同时可以为以后利用FlexE开销保留字段留有接口。
Claims (10)
- 一种开销监控方法,包括:接收至少一个物理层PHY接口的灵活以太网FlexE信号,其中,接收的所述FlexE信号包括传输速率为Y Gbps的N倍的FlexE信号以及传输速率为目标传输速率的FlexE信号,所述传输速率为目标传输速率的FlexE信号包括传输速率为 YGbps的FlexE信号和传输速率为X Gbps的FlexE信号中的至少之一,Y为预设的基础传输速率,X=Y*C,N为大于1的自然数,C为固定系数;将接收的所述FlexE信号中传输速率为N*Y Gbps的FlexE信号,解交织为N个传输速率为Y Gbps的PHY信号;在接收的所述FlexE信号中传输速率为所述目标传输速率的FlexE信号和解交织的所述传输速率为Y Gbps的PHY信号中,选择M个有效数据信号,其中,M为大于或等于1的自然数;删除所述M个有效数据信号中的填充块,对所述M个有效数据信号进行定帧处理,提取所述M个有效数据信号中的FlexE开销;根据提取的所述FlexE开销生成开销线帧,并输出所述开销线帧;其中,所述开销线帧包括所述FlexE开销。
- 根据权利要求1所述的开销监控方法,其中,所述对所述M个有效数据信号进行定帧处理,包括:对所述M个有效数据信号,分别执行以下操作:根据预设的帧头图案搜索FlexE帧头;搜索到所述FlexE帧头后,确定待提取的所述FlexE开销的位置以及待提取的所述FlexE开销在复帧中的位置号i,其中,i为0至31之间的整数。
- 根据权利要求1所述的开销监控方法,其中,所述根据提取的所述FlexE开销生成开销线帧,包括:将FlexE帧中的一行所述FlexE开销分成至少一个所述开销线帧;或者,将FlexE帧中的多行所述FlexE开销组成一个所述开销线帧。
- 根据权利要求1所述的开销监控方法,其中,所述根据提取的所述FlexE开销生成开销线帧,包括:在所述FlexE开销中的预设固定全0位置和保留字段位置中的至少一个位置加入开销告警,所述开销告警用于指示所述FlexE开销的状态。
- 根据权利要求1所述的开销监控方法,其中,所述根据提取的所述FlexE开销生成开销线帧,包括:将所述提取的FlexE开销按照预设的轮询调度顺序转成时分数据,并输出所述时分数据;在输出的所述时分数据中加入循环冗余校验CRC码,将所述输出的时分数据和所述CRC码封装成所述开销线帧;对封装成的所述开销线帧进行编码。
- 根据权利要求1至5任一所述的开销监控方法,其中,所述删除所述M个有效数据信号中的填充块,包括:在所述传输速率为目标传输速率的FlexE信号包括所述传输速率为 Gbps Gbps的FlexE信号且不包括所述传输速率为X Gbps的FlexE信号的情况下,判定所述M个有效数据信号中的每个有效数据信号中有所述填充块,并删除所述填充块;在所述传输速率为目标传输速率的FlexE信号包括所述传输速率为X Gbps Gbps的FlexE信号且不包括所述传输速率为 Gbps的FlexE信号的情况下,检测所述M个有效数据信号中的每个有效数据信号为所述传输速率为X Gbps的FlexE信号还是所述传输速率为Y Gbps的PHY信号;响应所述每个有效数据信号为所述传输速率为X Gbps的FlexE信号的检测结果,判定所述每个有效数据信号中没有所述填充块;响应所述每个有效数据信号为所述传输速率为Y Gbps的PHY信号的检测结果,判定所述每个有效数据信号中有所述填充块,并删除所述填充块;在所述传输速率为目标传输速率的FlexE信号包括所述传输速率为 Gbps的FlexE信号和所述传输速率为X Gbps的FlexE信号的情况下,检测所述M个有效数据信号中的每个有效数据信号为所述传输速率为X Gbps的FlexE信号、所述传输速率为 Gbps的FlexE信号还是所述传输速率为Y Gbps的PHY信号;响应所述每个有效数据信号为所述传输速率为X Gbps的FlexE信号的检测结果,判定所述每个有效数据信号中没有所述填充块;响应所述每个有效数据信号为所述传输速率为 Gbps的PHY信号的检测结果或为所述传输速率为Y Gbps的PHY信号,判定所述每个有效数据信号中有所述填充块,并删除所述填充块。
- 一种计算机可读存储介质,存储有至少一个程序,所述至少一个程序可被至少一个处理器执行,以实现如权利要求1至权利要求6中任一项所述的开销监控方法。
- 一种开销监控装置,包括处理器及存储器,其中:所述处理器设置为执 行所述存储器中存储的程序,以实现如权利要求1至权利要求6中任一项所述的开销监控方法。
- 一种开销监控装置,包括接收模块、解交织模块、交叉选择模块、开销提取模块和成帧输出模块,其中:接收模块,设置为接收至少一个物理层PHY接口的灵活以太网FlexE信号,其中,接收的所述FlexE信号包括传输速率为Y Gbps的N倍的FlexE信号以及传输速率为目标传输速率的FlexE信号,所述传输速率为目标传输速率的FlexE信号包括传输速率为 YGbps的FlexE信号和传输速率为X Gbps的FlexE信号中的至少之一,Y为预设的基础传输速率,X=Y*C,N为大于1的自然数,C为固定系数;解交织模块,设置为将接收的所述FlexE信号中传输速率为N*Y Gbps的FlexE信号,解交织为N个传输速率为Y Gbps的PHY信号;交叉选择模块,设置为在接收的所述FlexE信号中传输速率为所述目标传输速率的FlexE信号和解交织的所述传输速率为Y Gbps的PHY信号中,选择M个有效数据信号,其中,M为大于或等于1的自然数;开销提取模块,设置为删除所述M个有效数据信号中的填充块,对所述M个有效数据信号进行定帧处理,提取所述M个有效数据信号中的FlexE开销;成帧输出模块,设置为根据提取的所述FlexE开销生成开销线帧,并输出所述开销线帧;其中,所述开销线帧包括所述FlexE开销。
- 根据权利要求9所述的开销监控装置,其中,所述开销提取模块是设置为通过如下方式删除所述M个有效数据信号中的填充块:在所述传输速率为目标传输速率的FlexE信号包括所述传输速率为 Gbps Gbps的FlexE信号且不包括所述传输速率为X Gbps的FlexE信号的情况下,判定所述M个有效数据信号中的每个有效数据信号中有所述填充块,并删除所述填充块;在所述传输速率为目标传输速率的FlexE信号包括所述传输速率为X Gbps Gbps的FlexE信号且不包括所述传输速率为 Gbps的FlexE信号的情况下,检测所述M个有效数据信号中的每个所述有效数据信号为所述传输速率为X Gbps的FlexE信号还是所述传输速率为Y Gbps的PHY信号;响应所述每个有效数据信号为所述传输速率为X Gbps的FlexE信号的检测结果,判定所述有效数据信号中没有所述填充块;响应所述每个有效数据信号为所述传输速率为Y Gbps的PHY信号的检测结果,判定所述有效数据信号中有所述填充块,并删除所述填充块;在所述传输速率为目标传输速率的FlexE信号包括所述传输速率为 Gbps的FlexE信号和所述传输速率为X Gbps的FlexE信号的情况下,检测所述M个有效数据信号中的每个有效数据信号为所述传输速率为X Gbps的FlexE信号、所述传输速率为 Gbps的FlexE信号还是所述传输速率为Y Gbps的PHY信号;响应所述每个有效数据信号为所述传输速率为X Gbps的FlexE信号的检测结果,判定所述每个有效数据信号中没有所述填充块;响应所述每个有效数据信号为所述传输速率为 Gbps的PHY信号的检测结果或为所述传输速率为Y Gbps的PHY信号,判定所述每个有效数据信号中有所述填充块,并删除所述填充块。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20827175.9A EP3958486A4 (en) | 2019-06-19 | 2020-04-30 | OVERHEAD MONITORING METHOD AND APPARATUS AND COMPUTER READABLE STORAGE MEDIUM |
US17/612,407 US12063106B2 (en) | 2019-06-19 | 2020-04-30 | Overhead monitoring method and apparatus, and computer-readable storage medium |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910532405.2 | 2019-06-19 | ||
CN201910532405.2A CN112118197B (zh) | 2019-06-19 | 2019-06-19 | 一种开销监控方法和装置、计算机可读存储介质 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020253403A1 true WO2020253403A1 (zh) | 2020-12-24 |
Family
ID=73795603
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/088365 WO2020253403A1 (zh) | 2019-06-19 | 2020-04-30 | 一种开销监控方法和装置、计算机可读存储介质 |
Country Status (4)
Country | Link |
---|---|
US (1) | US12063106B2 (zh) |
EP (1) | EP3958486A4 (zh) |
CN (1) | CN112118197B (zh) |
WO (1) | WO2020253403A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112118197B (zh) * | 2019-06-19 | 2021-07-09 | 深圳市中兴微电子技术有限公司 | 一种开销监控方法和装置、计算机可读存储介质 |
CN112311510B (zh) * | 2019-07-26 | 2024-04-09 | 华为技术有限公司 | 业务数据传输的方法和通信装置 |
JP7305882B2 (ja) * | 2019-09-12 | 2023-07-10 | 華為技術有限公司 | スロットネゴシエーション方法およびデバイス |
CN114124307B (zh) * | 2021-11-30 | 2024-02-23 | 新华三半导体技术有限公司 | 一种数据处理方法、装置、电子设备及存储介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170005742A1 (en) * | 2015-06-30 | 2017-01-05 | Ciena Corporation | Flexible ethernet switching systems and methods |
CN107437973A (zh) * | 2016-05-25 | 2017-12-05 | 中兴通讯股份有限公司 | 灵活以太网开销复帧锁定方法及装置、otn设备 |
US20180123714A1 (en) * | 2015-07-06 | 2018-05-03 | Huawei Technologies Co., Ltd. | Method, Device, and System for Sending and Receiving Code Block Data Stream |
CN108809901A (zh) * | 2017-05-02 | 2018-11-13 | 华为技术有限公司 | 一种业务承载的方法、设备和系统 |
CN109257139A (zh) * | 2017-07-14 | 2019-01-22 | 深圳市中兴微电子技术有限公司 | 一种物理层数据的发送、接收方法及其装置 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7787502B1 (en) * | 2006-06-30 | 2010-08-31 | Cortina Systems Inc. | Port multiplexing apparatus and methods |
US7839839B2 (en) * | 2008-10-13 | 2010-11-23 | Applied Micro Circuits Corporation | Differential inverse multiplexing virtual channels in 40G ethernet applications |
US10097480B2 (en) * | 2015-09-29 | 2018-10-09 | Ciena Corporation | Time transfer systems and methods over flexible ethernet |
US9838290B2 (en) * | 2015-06-30 | 2017-12-05 | Ciena Corporation | Flexible ethernet operations, administration, and maintenance systems and methods |
US10218823B2 (en) * | 2015-06-30 | 2019-02-26 | Ciena Corporation | Flexible ethernet client multi-service and timing transparency systems and methods |
US10567352B2 (en) * | 2015-12-11 | 2020-02-18 | Ciena Corporation | Flexible ethernet encryption systems and methods |
JP2018046373A (ja) * | 2016-09-13 | 2018-03-22 | 富士通株式会社 | 伝送装置及び伝送方法 |
CN108075903B (zh) * | 2016-11-15 | 2020-04-21 | 华为技术有限公司 | 用于建立灵活以太网群组的方法和设备 |
US10382167B2 (en) * | 2016-12-13 | 2019-08-13 | Ciena Corporation | Flexible ethernet enhanced forward error correction |
CN110224946B (zh) * | 2018-03-01 | 2022-05-27 | 中兴通讯股份有限公司 | 一种业务发送方法及装置、业务接收方法及装置 |
CN113557696B (zh) * | 2019-03-20 | 2023-08-04 | 瑞典爱立信有限公司 | 在网络中路由FlexE数据 |
CN112118197B (zh) * | 2019-06-19 | 2021-07-09 | 深圳市中兴微电子技术有限公司 | 一种开销监控方法和装置、计算机可读存储介质 |
FR3115391B1 (fr) * | 2020-10-16 | 2022-10-21 | Framatome Sa | Dispositif d’extraction d’un crayon de combustible nucléaire ou d’un crayon de grappe et procédé d’extraction utilisant un tel dispositif d’extraction |
US20230389960A1 (en) * | 2022-06-06 | 2023-12-07 | Intelligent Surgical Devices LLC | Expandable pneumo-occluder with sealable instrument port |
-
2019
- 2019-06-19 CN CN201910532405.2A patent/CN112118197B/zh active Active
-
2020
- 2020-04-30 EP EP20827175.9A patent/EP3958486A4/en active Pending
- 2020-04-30 WO PCT/CN2020/088365 patent/WO2020253403A1/zh unknown
- 2020-04-30 US US17/612,407 patent/US12063106B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170005742A1 (en) * | 2015-06-30 | 2017-01-05 | Ciena Corporation | Flexible ethernet switching systems and methods |
US20180123714A1 (en) * | 2015-07-06 | 2018-05-03 | Huawei Technologies Co., Ltd. | Method, Device, and System for Sending and Receiving Code Block Data Stream |
CN107437973A (zh) * | 2016-05-25 | 2017-12-05 | 中兴通讯股份有限公司 | 灵活以太网开销复帧锁定方法及装置、otn设备 |
CN108809901A (zh) * | 2017-05-02 | 2018-11-13 | 华为技术有限公司 | 一种业务承载的方法、设备和系统 |
CN109257139A (zh) * | 2017-07-14 | 2019-01-22 | 深圳市中兴微电子技术有限公司 | 一种物理层数据的发送、接收方法及其装置 |
Non-Patent Citations (2)
Title |
---|
GORSHE, STEVEN S.: "OTN Interface Standards for Rates Beyond 100 Gb/s", JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 36, no. 1,, 31 January 2018 (2018-01-31), XP011677732, DOI: 20200709143847 * |
See also references of EP3958486A4 * |
Also Published As
Publication number | Publication date |
---|---|
CN112118197B (zh) | 2021-07-09 |
EP3958486A1 (en) | 2022-02-23 |
US20220231777A1 (en) | 2022-07-21 |
EP3958486A4 (en) | 2022-06-22 |
US12063106B2 (en) | 2024-08-13 |
CN112118197A (zh) | 2020-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020253403A1 (zh) | 一种开销监控方法和装置、计算机可读存储介质 | |
ES2836221T3 (es) | Método de transmisión de datos, transmisor y receptor | |
US12074643B2 (en) | Data transmission method and apparatus, terminal device and storage medium | |
US9319348B2 (en) | Octal serial gigabit media-independent interface | |
WO2019056899A1 (zh) | Oam消息传输方法、传输设备及存储介质 | |
US20160070615A1 (en) | Fec coding/decoding data processing method and related apparatus | |
CN108631908B (zh) | 使用FlexE承载信号帧的方法、FlexE信号帧还原的方法及装置 | |
JP2019528614A (ja) | エラーコード検出方法、装置、システム及びコンピュータ可読記憶媒体 | |
JP7047233B2 (ja) | ビットブロックストリーム・ビットエラー検出方法およびデバイス | |
WO2008141525A1 (en) | A method and device for transferring and receiving high speed ethernet mii block | |
WO2017063457A1 (zh) | 一种速率适配方法和装置、计算机存储介质 | |
US20200288468A1 (en) | Data transmission method and device | |
CN108092739A (zh) | 业务的传输方法和装置 | |
JP3522247B2 (ja) | 多重転送システム及び装置 | |
JP3707537B2 (ja) | 通信システムおよび関連デスキュー方法 | |
JP2002280991A (ja) | データマッパおよびデータマッピング方法 | |
CN115694739A (zh) | 一种千兆以太网的数据传输装置及方法 | |
JP5509438B2 (ja) | データ転送装置及びデータ転送システム | |
WO2021013025A1 (zh) | 数据接收方法及装置、数据发送方法及装置 | |
CN111385058A (zh) | 一种数据传输的方法和装置 | |
JP2003518874A (ja) | データ通信 | |
WO2005015821A1 (fr) | Appareil de reconnaissance d'une sequence de controle de trame dans une configuration d'integration d'une procedure de mise en trame generique, et procede s'y rapportant | |
CN113078980A (zh) | 一种数据传输的方法以及装置 | |
CN109818705B (zh) | 传送、接收子速率信号方法及装置、设备 | |
CN103856283B (zh) | 一种40g以太网的编码装置和方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20827175 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020827175 Country of ref document: EP Effective date: 20211116 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |