WO2020253331A1 - 温度传感器、温度监测方法及装置 - Google Patents

温度传感器、温度监测方法及装置 Download PDF

Info

Publication number
WO2020253331A1
WO2020253331A1 PCT/CN2020/083739 CN2020083739W WO2020253331A1 WO 2020253331 A1 WO2020253331 A1 WO 2020253331A1 CN 2020083739 W CN2020083739 W CN 2020083739W WO 2020253331 A1 WO2020253331 A1 WO 2020253331A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
temperature sensor
preset
electroluminescent device
power supply
Prior art date
Application number
PCT/CN2020/083739
Other languages
English (en)
French (fr)
Inventor
于天成
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/051,516 priority Critical patent/US20210231506A1/en
Publication of WO2020253331A1 publication Critical patent/WO2020253331A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/12Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in colour, translucency or reflectance
    • G01K11/16Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in colour, translucency or reflectance of organic materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/02Means for indicating or recording specially adapted for thermometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/20Clinical contact thermometers for use with humans or animals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K3/00Thermometers giving results other than momentary value of temperature
    • G01K3/005Circuits arrangements for indicating a predetermined temperature

Definitions

  • the embodiments of the present disclosure relate to the field of sensor technology, and in particular to a temperature sensor, a temperature monitoring method and device.
  • Temperature sensor is a kind of electronic components that are widely used in various fields and occasions requiring temperature measurement or overheating protection, such as medical treatment, automobiles, security and fire protection, home appliances, communications, etc., especially in the emerging new energy hybrid and electric vehicle fields.
  • a temperature sensor is used to monitor the temperature of the battery temperature, motor temperature, intake air temperature and cooling system temperature.
  • Related technologies use temperature sensors to monitor temperature. The most common application is to use a temperature sensor based on a negative temperature coefficient thermistor. The resistance value of the thermistor decreases as the temperature increases. The use of thermistor sensor to monitor temperature generally provides a constant voltage.
  • the resistance of the thermistor changes with the monitored temperature, while outputting a varying signal voltage to achieve the purpose of temperature measurement, and can also be used for overheating protection.
  • the temperature sensor using related technology is used to monitor the environmental overheating protection temperature. When the detected temperature exceeds the overheating protection temperature, the temperature sensor outputs an electrical signal and sends out a reminder or alarm through the display terminal.
  • the working mode of the temperature sensor based on the thermistor in the related technology is to sense the temperature of the external environment and output an electrical signal. Its working mode is single, and an additional structure for reminding or alarming is required.
  • embodiments of the present disclosure provide a temperature sensor, a temperature monitoring method, and a device for simultaneously realizing screen display and temperature sensing.
  • An embodiment of the present disclosure provides a temperature sensor, which includes: at least one electroluminescent device; and a power supply device electrically connected to the electroluminescent device; the power supply device is configured to provide The electroluminescent device provides the starting voltage of the electroluminescent device at a preset temperature.
  • the power supply device provides the electroluminescent device with a constant voltage equal to the starting voltage required to light the electroluminescent device at a preset temperature.
  • the turn-on voltage of the electroluminescent device linearly decreases as the temperature increases.
  • the electroluminescent device includes: an anode, a cathode, and an organic light-emitting functional layer located between the anode and the cathode; the anode and the cathode are connected to each other via a wire.
  • the power supply devices are electrically connected and jointly form a closed loop.
  • the temperature sensor includes a plurality of electroluminescent devices, and the pattern of the light-emitting area formed by the plurality of electroluminescent devices is set to a numerical value equal to the value of the preset temperature. On the pattern of the corresponding unit of measurement for measuring temperature.
  • the power supply device includes a DC power supply.
  • a temperature monitoring device provided in an embodiment of the present disclosure includes at least one temperature sensor provided in an embodiment of the present disclosure.
  • the temperature monitoring device includes a plurality of the temperature sensors, and different temperature sensors correspond to different preset temperatures.
  • different temperature sensors are set to emit light in the same color.
  • different temperature sensors are set to emit light in different colors.
  • An embodiment of the present disclosure provides a temperature monitoring method, the method includes:
  • the temperature sensor When the temperature sensor emits light, it is determined whether the temperature of the environment to be monitored reaches the preset temperature of the temperature sensor according to the illuminated temperature sensor.
  • the temperature monitoring device includes only one temperature sensor; when the temperature sensor emits light, the temperature of the environment to be monitored is determined according to the illuminated temperature sensor, specifically include:
  • the temperature sensor When the temperature sensor emits light, it is determined that the temperature of the environment to be monitored is not less than the preset temperature corresponding to the temperature sensor.
  • the temperature monitoring device includes a plurality of the temperature sensors; when the temperature sensor emits light, the temperature of the environment to be monitored is determined according to the emitted temperature sensor, specifically include:
  • the temperature of the environment to be monitored is not less than the preset temperature corresponding to the temperature sensor that emits light later by determining the temperature sensor that emits light later in the temperature sensors that emit light currently.
  • FIG. 1 is a schematic diagram of a temperature sensor provided by an embodiment of the disclosure
  • FIG. 2 is a schematic diagram of another temperature sensor provided by an embodiment of the disclosure.
  • FIG. 3 is a schematic diagram of the relationship between the turn-on voltage and the temperature of the OLED device provided by an embodiment of the disclosure
  • FIG. 4 is a schematic diagram of yet another temperature sensor provided by an embodiment of the disclosure.
  • FIG. 5 is a schematic diagram of a temperature monitoring device provided by an embodiment of the disclosure.
  • FIG. 6 is a schematic diagram of another temperature monitoring device provided by an embodiment of the disclosure.
  • FIG. 7 is a schematic diagram of a temperature monitoring method provided by an embodiment of the disclosure.
  • a temperature sensor is provided. As shown in FIG. 1, the temperature sensor includes: at least one electroluminescent device 1, and A power supply device or circuit 2 to which the electroluminescent device is electrically connected; the power supply device or circuit is configured to provide the electroluminescent device with a starting voltage of the electroluminescent device at a preset temperature.
  • the temperature sensor provided by the embodiments of the present disclosure includes an electroluminescent device and a power supply device or circuit electrically connected to the electroluminescent device.
  • the electroluminescent device has different starting voltages under different temperature conditions, so that the electroluminescent device can be used to start The corresponding relationship between the lighting voltage and the temperature realizes the monitoring of the temperature.
  • the power supply device or circuit provides the electroluminescent device with a lighting voltage at a preset temperature, so that when the temperature reaches the preset temperature, the electroluminescent device Light it up, that is, the temperature sensor can emit light, which facilitates the integration of temperature sensing and display functions.
  • the power supply device or circuit is further configured to provide a constant voltage, for example, always provide the electroluminescent device with a voltage equal to the turn-on voltage provided by the electroluminescent device at a preset temperature.
  • the power supply device or circuit is a battery that provides a constant voltage.
  • the turn-on voltage of the electroluminescent device linearly decreases as the temperature increases.
  • the temperature sensor provided by the embodiment of the present disclosure is used, for example, to monitor the overheating protection temperature.
  • the preset temperature is the overheat protection temperature, and it is assumed that as long as the actual monitored ambient temperature is within a certain preset temperature range including the preset temperature, the lighting voltage of the electroluminescent device is always linear with the increase in temperature Decrease, and furthermore, when the current ambient temperature is lower than the overheating protection temperature, the lighting voltage of the electroluminescent device is greater than the voltage provided by the power supply device or the circuit, so the electroluminescent device cannot be lighted and will not emit light.
  • the lighting voltage of the electroluminescent device is equal to the voltage provided by the power supply device or circuit, and the electroluminescent device is lit and emits light, so as to remind when the ambient temperature reaches the overheating protection temperature .
  • the electroluminescent device 1 includes: an anode 3, a cathode 4, and an organic light-emitting functional layer 5 located between the anode 3 and the cathode 4;
  • the anode 3 and the cathode 4 are respectively electrically connected to the power supply device or the circuit 2 via wires, so that the anode 3, the organic light-emitting functional layer 5, the cathode, and the power supply device or circuit are in common Form a closed loop.
  • the electroluminescent device in the temperature sensor provided by the embodiment of the present disclosure is an organic light-emitting diode (OLED) device.
  • OLED organic light-emitting diode
  • the main mechanism of OLED device carrier injection from the anode and cathode to the organic light-emitting functional layer is hot electron injection, so temperature has a great influence on the carrier injection current. Specifically, as the temperature increases, the injection current increases. At the same time, the mobility of the organic material in the organic light-emitting functional layer is also significantly affected by temperature changes. The increase in temperature can make the carriers overcome the moving barrier and activate the carriers. The electron transport leads to an increase in carrier mobility. Therefore, as the temperature increases, the starting voltage required to light up the electroluminescent device 1 decreases.
  • the effect of temperature on the carrier injection and carrier mobility of OLED devices is macroscopically expressed as the effect of temperature on the turn-on voltage.
  • the relationship between the turn-on voltage of the OLED device and the temperature exhibits a negative temperature effect, that is, the magnitude of the turn-on voltage of the OLED device linearly decreases as the temperature increases.
  • the lighting voltage of the OLED device decreases linearly with the increase of temperature in the temperature range of -40 degrees Celsius (°C) to 100°C, and the temperature range that exhibits negative temperature effects is large, thereby satisfying various overheating protection temperatures. The need for monitoring.
  • the temperature sensor includes a plurality of electroluminescent devices, and a pattern of light-emitting regions formed by the plurality of electroluminescent devices is a pattern of numbers of the preset temperature.
  • the pattern of the light-emitting area formed by the electroluminescent device for example, is set to a number equal to the value of the preset temperature plus a pattern of the corresponding measurement temperature unit (for example, °C or °F).
  • a pattern of the corresponding measurement temperature unit for example, °C or °F.
  • the starting voltage required to light the electroluminescent device is reduced to equal to the voltage actually provided by the power supply device or the circuit, causing the electroluminescent device to be lit and realizing the light-emitting area of the temperature sensor Luminous; in this way, it can be intuitively reminded that the current temperature has reached the overheat protection temperature according to the pattern of the luminous area.
  • the pattern of the light-emitting area 6 formed by a plurality of electroluminescent devices is arranged to be "85°C", and the current ambient temperature is increased to 85 At °C, the light-emitting area 6 emits light and displays a lighted "85°C" pattern.
  • the power supply device or circuit includes a DC power supply.
  • the power supply device or circuit provides a constant voltage signal for the electroluminescent device, so that the voltage difference between the cathode and anode is the starting voltage of the electroluminescent device at a preset temperature, so that when the temperature reaches the preset temperature, the electroluminescent device Lights up and the temperature sensor glows.
  • a temperature monitoring device including at least one of the above-mentioned temperature sensors provided by the embodiments of the present disclosure.
  • the temperature monitoring device provided by the embodiment of the present disclosure may be, for example, an electroluminescent display device including the above-mentioned temperature sensor provided by the embodiment of the present disclosure.
  • the temperature monitoring device is used to detect the overheating protection temperature, when the electroluminescent display device is turned off, it means that the current temperature has not reached the preset temperature, that is, the overheating protection temperature; when the display area of the electroluminescent display device is illuminated , It means that the current temperature reaches the preset temperature, which is the overheat protection temperature. In this way, the user can determine whether the current temperature reaches the overheating protection temperature according to whether the light-emitting area of the temperature monitoring device emits light.
  • the temperature monitoring device 7 provided by the embodiment of the present disclosure includes a temperature sensor 8.
  • the lighting voltage required to light the electroluminescent device is reduced to equal to the actual power supply device or circuit.
  • the provided constant voltage causes the electroluminescent device to light up, and the temperature sensor 8 emits light, thereby realizing the integration of temperature sensing and display functions.
  • the temperature monitoring device includes, for example, a plurality of the temperature sensors, and different temperature sensors correspond to different preset temperatures.
  • the respective power supply device or circuit of each temperature sensor is respectively configured to provide a constant voltage equal to the starting voltage required for the respective electroluminescent device to light up at a preset temperature.
  • the temperature monitoring device 7 includes a first temperature sensor 9 and a second temperature sensor 10.
  • the first temperature sensor 9 corresponds to a first preset temperature
  • the second temperature sensor 10 corresponds to a second preset temperature
  • the first temperature sensor 10 corresponds to a second preset temperature. Set the temperature to be less than the second preset temperature.
  • the first temperature sensor 9 includes a first power supply device or circuit and at least one first electroluminescent device electrically connected to the first power supply device or circuit.
  • the first power supply device or circuit is, for example, configured to To provide a constant first voltage equal to the first lighting voltage required for lighting the first electroluminescent device at a first preset temperature;
  • the second temperature sensor 10 includes a second power supply device or circuit and At least one second electroluminescent device electrically connected to a second power supply device or circuit.
  • the second power supply device or circuit is, for example, configured to provide the second electroluminescent device to light up at a second preset temperature.
  • a constant second voltage equal to the required second lighting voltage.
  • the first turn-on voltage of the first electroluminescent device in the first temperature sensor 9 is equal to the first voltage actually provided by the first power supply device or circuit, so that the first The temperature sensor 9 emits light, and the second lighting voltage of the second electroluminescent device in the second temperature sensor 10 is greater than the second voltage actually provided by the second power supply device or circuit (that is, the second voltage in the second temperature sensor 10).
  • the second turn-on voltage of the electroluminescent device has not been reduced to be equal to the voltage actually provided by the second power supply device or circuit), and the second temperature sensor 10 does not emit light, that is, when the temperature rises to the first preset temperature, the first temperature sensor 9 It emits light and the second temperature sensor 10 does not emit light.
  • the first turn-on voltage of the first electroluminescent device in the first temperature sensor 9 continues to decrease to less than the first power supply device Or the first voltage actually provided by the circuit, so that the first temperature sensor 9 keeps emitting light, and the second turn-on voltage of the second electroluminescent device in the second temperature sensor 10 is greater than the second actual voltage provided by the second power supply device or circuit. Voltage, the second temperature sensor 10 still does not emit light.
  • the first turn-on voltage of the first electroluminescent device in the first temperature sensor 9 continues to decrease, that is, it is still lower than the first voltage actually provided by the first power supply device or circuit . So that the first temperature sensor 9 keeps emitting light, the second turn-on voltage of the second electroluminescent device in the second temperature sensor 10 is equal to the second voltage actually provided by the second power supply device or the circuit, and the second temperature sensor 10 emits light, That is, when the temperature rises to the second preset temperature, the first temperature sensor 9 keeps emitting light and the second temperature sensor 10 starts emitting light. Therefore, the ambient temperature can be reminded according to the light-emitting conditions of the first temperature sensor and the second temperature sensor.
  • the light emission colors of different temperature sensors are set to be the same as each other, for example.
  • the light emission colors of different temperature sensors are set to be different from each other, for example.
  • the temperature range of the current environment can be determined intuitively according to the respective light-emitting colors.
  • the light emission color of the temperature sensor is, for example, red, blue, or green.
  • a temperature monitoring method is also provided. As shown in FIG. 7, the method includes:
  • the temperature monitoring method provided in the embodiments of the present disclosure uses the temperature monitoring device provided in the embodiments of the present disclosure to monitor the ambient temperature, so that the integration of temperature sensing and display functions can be realized.
  • the temperature monitoring device includes, for example, only one temperature sensor; when the temperature sensor emits light, the temperature of the environment to be monitored is determined according to the illuminated temperature sensor, Specifically:
  • the temperature sensor When the temperature sensor emits light, it is determined that the temperature of the environment to be monitored is not less than the preset temperature corresponding to the temperature sensor.
  • the temperature sensor When the temperature sensor does not emit light, it is determined that the current temperature has not reached the preset temperature, that is, the overheat protection temperature. If the ambient temperature rises to the preset temperature, the lighting voltage of the electroluminescent device in the temperature sensor is accordingly reduced to equal to the constant voltage provided by the power supply device or circuit, so that the temperature sensor emits light. If the ambient temperature continues to rise more than At a preset temperature, the lighting voltage of the electroluminescent device in the temperature sensor continues to decrease to less than the voltage provided by the power supply device or the circuit, and the temperature sensor still keeps emitting light. Therefore, when the temperature sensor emits light, it is determined that the temperature of the environment to be monitored is not less than (that is, equal to or greater than) the preset temperature.
  • the temperature sensor glows, it is determined that the current temperature reaches the preset temperature, that is, the overheat protection temperature.
  • the user can determine whether the current temperature reaches the overheating protection temperature according to whether the light-emitting area of the temperature monitoring device is luminous.
  • the temperature monitoring device includes, for example, a plurality of the temperature sensors; when the temperature sensor emits light, the temperature of the environment to be monitored is determined according to the emitted temperature sensor. Temperature, including:
  • the temperature sensor that emits light later in the temperature sensors that currently emit light is determined to determine that the temperature of the environment to be monitored is not less than the preset temperature corresponding to the temperature sensor that emits light later.
  • the temperature monitoring device includes a first temperature sensor and a second temperature sensor, the first temperature sensor corresponds to a first preset temperature, the second temperature sensor corresponds to a second preset temperature, and the first preset temperature is less than the second preset temperature.
  • the first temperature sensor includes a first power supply device or circuit and at least one first electroluminescent device electrically connected to the first power supply device or circuit.
  • the first power supply device or circuit is, for example, configured to Provide a constant first voltage equal to the first starting voltage required for the first electroluminescent device to light up at the first preset temperature;
  • the second temperature sensor includes a second power supply device or circuit and is connected to the second At least one second electroluminescent device electrically connected to a power supply device or circuit, and the second power supply device or circuit is, for example, configured to provide the second electroluminescent device required for lighting at a second preset temperature.
  • the second lighting voltage is equal to the constant second voltage. If the temperature of the environment to be monitored is less than the first preset temperature, neither the first temperature sensor nor the second temperature sensor emits light.
  • the first temperature sensor emits light and the second temperature sensor does not emit light. If the temperature of the environment to be monitored is greater than or equal to the second preset temperature, both the first temperature sensor and the second temperature sensor emit light.
  • the temperature sensor, temperature monitoring method and device provided by the embodiments of the present disclosure have at least the following superior technical effects:
  • the temperature sensor since the temperature sensor includes an electroluminescent device and a power supply device or circuit electrically connected to the electroluminescent device, the electroluminescent device is lit at different temperatures.
  • the lighting voltage required by the device is different, so that the corresponding relationship between the lighting voltage and the temperature of the electroluminescent device can be used (that is, as the temperature rises, the lighting voltage required to light the electroluminescent device decreases).
  • the power supply device or circuit provides the electroluminescent device with a constant voltage equal to the starting voltage required to light the electroluminescent device at a preset temperature, so that when the temperature reaches the preset temperature, the electroluminescent device The light-emitting device is lit to realize the temperature sensor to emit light, thereby realizing the integration of temperature sensing and display functions.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of El Displays (AREA)

Abstract

提供一种温度传感器、温度监测方法及装置,用以同时实现画面显示和温度的感知。所述温度传感器包括:至少一个电致发光器件(1),以及与所述电致发光器件(1)电连接的供电单元(2);所述供电单元(2)用于为所述电致发光器件(1)提供预设电压,所述预设电压为在预设温度下所述电致发光器件(1)的启亮电压。

Description

温度传感器、温度监测方法及装置
相关申请的交叉引用
本公开实施例要求于2019年6月21日递交中国专利局的、申请号为201910543186.8的中国专利申请的权益,该申请的全部内容以引用方式并入本文。
技术领域
本公开实施例涉及传感器技术领域,尤其涉及一种温度传感器、温度监测方法及装置。
背景技术
温度传感器是一种广泛应用于医疗,汽车,安防消防,家电,通讯等各种需要测温或者过热保护领域和场合的电子元器件,尤其在新兴的新能源混合动力、电动汽车领域中,广泛使用了温度传感器用来监测电池温度、电机温度、进气温度和冷却系统温度等温度。相关技术利用温度传感器来监测温度,最常见的应用是利用基于负温度系数热敏电阻的温度传感器,热敏电阻的电阻值随着温度的升高而下降。利用热敏电阻传感器来监测温度,一般是提供一恒定电压,热敏电阻阻值随着监测温度而变化,同时输出变化的信号电压,从而达到测温的目的,进而还可以进行过热保护。利用相关技术的温度传感器,用于进行对环境过热保护温度的监测,被检测温度超过过热保护温度时,温度传感器输出电信号,通过显示终端发出提醒或者报警。综上,相关技术基于热敏电阻的温度传感器的工作方式是感知外界环境的温度,输出电信号,其工作方式单一,且需要额外设置用于实现提醒或报警的结构。
发明内容
为至少部分地克服上述相关技术中的缺陷和/或不足,本公开实施例提供了一种温度传感器、温度监测方法及装置,用以同时实现画面显示和温度的感知。
本公开的实施例提供技术方案如下:
本公开实施例提供的一种温度传感器,所述温度传感器包括:至少一个电致发光器件;以及供电装置,与所述电致发光器件电连接;所述供电装置配置成用于为所述电致发光器件提供在预设温度下所述电致发光器件的启亮电压。
在本公开的示例性实施例中,所述供电装置为电致发光器件提供与在预设温度下点亮该电致发光器件所需的启亮电压相等的恒定电压。
在本公开的示例性实施例中,在包括所述预设温度的预设温度范围内,所述电致发光器件的启亮电压随温度升高而线性降低。
在本公开的示例性实施例中,所述电致发光器件包括:阳极,阴极以及位于所述阳极和所述阴极之间的有机发光功能层;所述阳极和所述阴极分别经由导线与所述供电装置电连接且共同形成闭合回路。
在本公开的示例性实施例中,所述温度传感器包括多个电致发光器件,多个所述电致发光器件形成的发光区的图案设置成与所述预设温度的数值相等的数字加上相应的计量温度的度量单位的图案。
在本公开的示例性实施例中,所述供电装置包括直流电源。
本公开实施例提供的一种温度监测装置,包括至少一个本公开实施例提供的上述温度传感器。
在本公开的示例性实施例中,所述温度监测装置包括多个所述温度传感器,不同所述温度传感器对应不同所述预设温度。
在本公开的示例性实施例中,不同所述温度传感器设置成发光颜色相同。
在本公开的示例性实施例中,不同所述温度传感器设置成各自发光颜色不相同。
本公开实施例提供的一种温度监测方法,所述方法包括:
将本公开实施例提供的上述温度监测装置置于待监测环境;
确定所述温度传感器是否发光;
当所述温度传感器发光时,根据所述发光的温度传感器确定所述待监测环境的温度是否达到所述温度传感器的预设温度。
在本公开的示例性实施例中,所述温度监测装置仅包括一个所述温度传感器;所述当所述温度传感器发光时,根据所述发光的温度传感器确定所述待监测环境的温度,具体包括:
当所述温度传感器发光时,则确定所述待监测环境的温度不小于所述温度传感器对应的所述预设温度。
在本公开的示例性实施例中,所述温度监测装置包括多个所述温度传感器;所述当所述温度传感器发光时,根据所述发光的温度传感器确定所述待监测环境的温度,具体包括:
通过确定当前发光的所述温度传感器中较晚发光的所述温度传感器,来确定所述待监测环境的温度不小于较晚发光的所述温度传感器对应的所述预设温度。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本公开实施例的其它特征、目的和优点将会变得更明显。为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。本公开实施例上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本公开实施例提供的一种温度传感器的示意图;
图2为本公开实施例提供的另一种温度传感器的示意图;
图3为本公开实施例提供的OLED器件启亮电压与温度的关系的示意图;
图4为本公开实施例提供的又一种温度传感器的示意图;
图5为本公开实施例提供的一种温度监测装置的示意图;
图6为本公开实施例提供的另一种温度监测装置的示意图;
图7为本公开实施例提供的一种温度监测方法的示意图。
具体实施方式
下面结合附图和实施例对本公开实施例作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与发明相关的部分。为了清楚起见,附图中的各个部分没有按比例绘制。此外,在图中可能未示出某些公知的部分。
在下文中描述了本公开的实施例的许多特定的细节,例如部件的结构、材料、尺寸、处理工艺和技术,以便更清楚地理解本公开的实施例。但正如本领域的技术人员能够理解的那样,可以不按照这些特定的细节来实现本公开的实施例。
附图中各部件尺寸和形状不反映本公开的实施例的一种温度传感器及温度监测装置的部件的真实比例,目的只是示意说明本公开的实施例内容。
需要说明的是,在不冲突的情况下,本公开实施例中的实施例及实施例中的特征可以相互组合。
根据本公开实施例的总体技术构思,在本公开实施例的一方面,提供了一种温度传感器,如图1所示,所述温度传感器包括:至少一个电致发光器件1,以及与所述电致发光器件电连接的供电装置或电路2;所述供电装置或电路配置成用于为所述电致发光器件提供在预设温度下所述电致发光器件的启亮电压。
本公开实施例提供的温度传感器包括电致发光器件以及与电致发光器件电连接的供电装置或电路,不同温度条件下电致发光器件的启亮电压不同,从而可以利用电致发光器件的启亮电压与温度的对应关系实现对温度的监测,具体地即,供电装置或电路为电致发光器件提供在预设温度下的启亮电压,从而当温度到达预设温度时,电致发光器件点亮,即实现了温度传感器发光,便利了实现温度的感知和显示功能一体化。
作为示例,所述供电装置或电路进一步配置成提供恒定电压,例如始终向所述电致发光器件提供与所述电致发光器件提供在预设温度下的启亮电压相等的电压。例如,所述供电装置或电路是提供恒定电压的电池。
在本公开的示例性实施例中,在包括所述预设温度的预设温度范围内,所述电致发光器件的启亮电压随温度升高而线性降低。
如此,本公开实施例提供的温度传感器例如用于对过热保护温度进行监测。预设温度即为过热保护温度,并且假设只要实际监测的环境温度在包括所述预设温度的一定的预设温度范围内,所述电致发光器件的启亮电压始终随温度升高而线性降低,进而,在当前环境温度低于过热保护温度时,电致发光器件的启亮电压大于供电装置或电路提供的电压,因此电致发光器件不能被点亮从而不会发光。当前环境温度升高到过热保护温度时,电致发光器件的启亮电压等于供电装置或电路提供的电压,电致发光器件被点亮而发光,从而实现当环境温度到达过热保护温度时进行提醒。
在本公开的示例性实施例中,如图2所示,所述电致发光器件1包括:阳极3,阴极4以及位于所述阳极3和所述阴极4之间的有机发光功能层5;所述阳极3和所述阴极4分别经由导线与所述供电装置或电路2电连接,由此所述阳极3、所述有机发光功能层5、所述阴极、以及所述供电装置或电路共同形成闭合回路。
换言之,本公开实施例提供的温度传感器中的电致发光器件为有机发光二极管(Organic Light-Emitting Diode,OLED)器件。OLED器件载流子从阴阳极注入到有机发光功能层的主要机理是热电子注入,因此温度对载流子注入电流影响很大。具体地,随着温度的升高,注入电流增加,同时,有机发光功能层中有机材料的迁移率也 受温度变化的显著影响,温度升高可以使载流子克服移动势垒,活化载流子输运,导致载流子迁移率的提高,因此,温度升高,点亮所述电致发光器件1所需的启亮电压随之降低。温度对OLED器件载流子注入和载流子迁移率的影响,宏观上表现为温度对启亮电压的影响。如图3所示,OLED器件启亮电压与温度之间的关系呈现出负温度效应,即OLED器件启亮电压的量值随着温度的升高而线性降低。并且,OLED器件启亮电压在-40摄氏度(℃)~100℃的温度范围内随着温度的升高而线性降低,呈现出负温度效应的温度范围大,由此满足对各种过热保护温度进行监测的需要。
需要说明的是,例如通过改变OLED器件的有机发光功能层的材料、厚度或掺杂比等手段,得到在不同预设温度下能够点亮的OLED器件。
在本公开的示例性实施例中,所述温度传感器包括多个电致发光器件,多个所述电致发光器件形成的发光区的图案为所述预设温度的数字的图案。
电致发光器件形成的发光区的图案例如设置成与所述预设温度的数值相等的数字加上相应的计量温度的度量单位(例如,℃或°F)的图案,当环境温度未到达预设温度时,点亮电致发光器件所需的启亮电压大于供电装置或电路实际提供的电压,因此电致发光器件不能被点亮,温度传感器的发光区不会发光。当前环境温度升高到过热保护温度时,点亮电致发光器件所需的启亮电压降低至等于供电装置或电路实际提供的电压,导致电致发光器件被点亮,实现温度传感器的发光区发光;如此,可以根据发光区的图案直观提醒当前温度已到达过热保护温度。
以预设温度为85℃为例,如图4所示,在具体实施时,多个所述电致发光器件形成的发光区6的图案布置成“85℃”,当前环境温度升高到85℃时,发光区6发光,显示点亮的“85℃”图案。
在本公开的示例性实施例中,所述供电装置或电路包括直流电源。
即供电装置或电路为电致发光器件提供恒定电压信号,使得阴极阳极之间的电压差值为预设温度下电致发光器件的启亮电压,从而当温度到达预设温度,电致发光器件点亮,温度传感器发光。
基于同一发明构思,在本公开实施例的另一方面,还提供了一种温度监测装置,包括至少一个本公开实施例提供的上述温度传感器。
本公开实施例提供的温度监测装置例如可以是包括本公开实施例提供的上述温度传感器的电致发光显示装置。在温度监测装置用于检测过热保护温度的情况下,当电致发光显示装置熄屏时,则意味着当前的温度未到达预设温度即过热保护温度;当 电致发光显示装置显示区发光时,则意味着当前的温度到达预设温度即过热保护温度。如此,用户可以根据温度监测装置的发光区是否发光来确定当前温度是否达到过热保护温度。
如图5所示,本公开实施例提供的温度监测装置7包括一个温度传感器8,当温度到达预设温度,则点亮电致发光器件所需的启亮电压降低至等于供电装置或电路实际提供的恒定电压,导致电致发光器件点亮,实现温度传感器8发光,由此实现温度的感知和显示功能一体化。
在本公开的示例性实施例中,所述温度监测装置例如包括多个所述温度传感器,不同所述温度传感器对应不同所述预设温度。具体地,即每个温度传感器各自的供电装置或电路分别配置成用于提供与各自电致发光器件在预设温度下点亮所需的启亮电压相等的恒定电压。
以温度监测装置包括两个温度传感器为例,对本公开实施例提供的温度监测装置进行举例说明。如图6所示,温度监测装置7包括第一温度传感器9和第二温度传感器10,第一温度传感器9对应第一预设温度,第二温度传感器10对应第二预设温度,第一预设温度小于第二预设温度。具体地,第一温度传感器9包括第一供电装置或电路和与所述第一供电装置或电路电连接的至少一个第一电致发光器件,所述第一供电装置或电路例如是配置成用于提供与第一电致发光器件在第一预设温度下点亮所需的第一启亮电压相等的恒定的第一电压;第二温度传感器10包括第二供电装置或电路和与所述第二供电装置或电路电连接的至少一个第二电致发光器件,所述第二供电装置或电路例如是配置成用于提供与第二电致发光器件在第二预设温度下点亮所需的第二启亮电压相等的恒定的第二电压。这样,当温度升高到达第一预设温度时,第一温度传感器9中的第一电致发光器件的第一启亮电压等于第一供电装置或电路实际提供的第一电压,从而第一温度传感器9发光,而第二温度传感器10中的第二电致发光器件的第二启亮电压大于第二供电装置或电路实际提供的第二电压(即第二温度传感器10中的第二电致发光器件的第二启亮电压尚未降低到等于第二供电装置或电路实际提供的电压),第二温度传感器10不发光,即当温度升高到达第一预设温度时第一温度传感器9发光且第二温度传感器10不发光。当温度继续升高,当前温度大于第一预设温度且小于第二预设温度时,第一温度传感器9中的第一电致发光器件的第一启亮电压继续降低至小于第一供电装置或电路实际提供的第一电压,从而第一温度传感器9维持发光,而第二温度传感器10中的第二电致发光器件的第二启亮电压大于第二供电装 置或电路实际提供的第二电压,第二温度传感器10仍旧不发光。当温度继续升高到第二预设温度时,第一温度传感器9中的第一电致发光器件的第一启亮电压继续降低即仍然处于小于第一供电装置或电路实际提供的第一电压,从而第一温度传感器9维持发光,第二温度传感器10中的第二电致发光器件的第二启亮电压等于第二供电装置或电路实际提供的第二电压,第二温度传感器10发光,即当温度升高到达第二预设温度时第一温度传感器9维持发光且第二温度传感器10开始发光。从而可以根据第一温度传感器和第二温度传感器的发光情况对环境温度进行提醒。
在本公开的示例性实施例中,不同所述温度传感器发光颜色例如设置成彼此相同。
在本公开的示例性实施例中,不同所述温度传感器发光颜色例如设置成彼此不相同。
这样可以根据各自发光颜色直观确定当前环境的温度范围。
在本公开的示例性实施例中,所述温度传感器发光颜色例如为红色、蓝色或绿色。
基于同一发明构思,在本公开实施例的又一方面,还提供了一种温度监测方法,如图7所示,所述方法包括:
S101、将本公开实施例提供的上述温度监测装置置于待监测环境;
S102、确定所述温度传感器是否发光;
S103、当所述温度传感器发光时,根据所述发光的温度传感器确定所述待监测环境的温度是否达到所述温度传感器的预设温度。
本公开实施例提供的温度监测方法,利用本公开实施例提供的温度监测装置对环境温度进行监测,从而可以实现温度的感知和显示功能一体化。
在本公开的示例性实施例中,所述温度监测装置例如仅包括一个所述温度传感器;所述当所述温度传感器发光时,根据所述发光的温度传感器确定所述待监测环境的温度,具体包括:
当所述温度传感器发光时,则确定所述待监测环境的温度不小于所述温度传感器对应的所述预设温度。
当温度传感器不发光时,则确定当前的温度未到达预设温度即过热保护温度。若环境温度升高到预设温度,温度传感器中的电致发光器件的启亮电压随之相应地降低到等于供电装置或电路提供的恒定电压,从而温度传感器发光,若环境温度继续升高超过预设温度,温度传感器中的电致发光器件的启亮电压继续降低至小于供电装置或电路提供的电压,温度传感器仍维持发光。因此当所述温度传感器发光时,由此确定 待监测环境的温度不小于(即等于或大于)预设温度。
当温度传感器发光,则确定当前的温度到达预设温度即过热保护温度。用户由此根据温度监测装置的发光区是否发光来确定当前温度是否达到过热保护温度。
在本公开的示例性的替代实施例中,所述温度监测装置例如包括多个所述温度传感器;所述当所述温度传感器发光时,根据所述发光的温度传感器确定所述待监测环境的温度,具体包括:
确定当前发光的所述温度传感器中较晚发光的所述温度传感器,则确定所述待监测环境的温度不小于较晚发光的所述温度传感器对应的所述预设温度。
例如,温度监测装置包括第一温度传感器和第二温度传感器,第一温度传感器对应第一预设温度,第二温度传感器对应第二预设温度,第一预设温度小于第二预设温度。具体地,第一温度传感器包括第一供电装置或电路和与所述第一供电装置或电路电连接的至少一个第一电致发光器件,所述第一供电装置或电路例如是配置成用于提供与第一电致发光器件在第一预设温度下点亮所需的第一启亮电压相等的恒定的第一电压;第二温度传感器包括第二供电装置或电路和与所述第二供电装置或电路电连接的至少一个第二电致发光器件,所述第二供电装置或电路例如是配置成用于提供与第二电致发光器件在第二预设温度下点亮所需的第二启亮电压相等的恒定的第二电压。若待监测环境的温度小于第一预设温度,则第一温度传感器和第二温度传感器均不发光。若待监测环境的温度大于等于第一预设温度且小于第二预设温度,则第一温度传感器发光且第二温度传感器均不发光。若待监测环境的温度大于等于第二预设温度,则第一温度传感器和第二温度传感器均发光。
相较于相关技术,基于上述技术方案,本公开实施例提供的温度传感器、温度监测方法及装置至少具有下列优越的技术效果:
综上所述,本公开实施例提供的温度传感器、温度监测方法及装置,由于温度传感器包括电致发光器件以及与电致发光器件电连接的供电装置或电路,不同温度下点亮电致发光器件所需的启亮电压不同,从而可以利用电致发光器件的启亮电压与温度的对应关系(即随着温度升高,点亮电致发光器件所需的启亮电压随之降低)实现对温度的监测,供电装置或电路为电致发光器件提供与在预设温度下点亮该电致发光器件所需的启亮电压相等的恒定电压,从而当温度到达预设温度时,电致发光器件点亮,实现温度传感器发光,从而可以实现温度的感知和显示功能一体化。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离公开 的精神和范围。这样,倘若本公开实施例的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (13)

  1. 一种温度传感器,包括:
    至少一个电致发光器件,以及
    供电装置,与所述电致发光器件电连接;
    其中,所述供电装置配置成用于为所述电致发光器件提供在预设温度下所述电致发光器件的启亮电压。
  2. 根据权利要求1所述的温度传感器,其中,所述供电装置为电致发光器件提供与在预设温度下点亮该电致发光器件所需的启亮电压相等的恒定电压。
  3. 根据权利要求1所述的温度传感器,其中,在包括所述预设温度的预设温度范围内,所述电致发光器件的启亮电压随温度升高而线性降低。
  4. 根据权利要求1所述的温度传感器,其中,所述电致发光器件包括:阳极,阴极以及位于所述阳极和所述阴极之间的有机发光功能层;所述阳极和所述阴极分别经由导线与所述供电装置电连接且共同形成闭合回路。
  5. 根据权利要求1所述的温度传感器,其中,所述温度传感器包括多个电致发光器件,多个所述电致发光器件形成的发光区的图案设置成与所述预设温度的数值相等的数字加上相应的计量温度的度量单位的图案。
  6. 根据权利要求1所述的温度传感器,其中,所述供电装置包括直流电源。
  7. 一种温度监测装置,其中,包括至少一个根据权利要求1~6任一项所述的温度传感器。
  8. 根据权利要求7所述的温度监测装置,其中,所述温度监测装置包括多个所述温度传感器,不同所述温度传感器对应不同所述预设温度。
  9. 根据权利要求8所述的温度监测装置,其中,不同所述温度传感器设置成发光颜色相同。
  10. 根据权利要求8所述的温度监测装置,其中,不同所述温度传感器设置成各自发光颜色不相同。
  11. 一种温度监测方法,其中,所述方法包括:
    将权利要求7~10任一项所述的温度监测装置置于待监测环境;
    确定所述温度传感器是否发光;
    当所述温度传感器发光时,根据所述发光的温度传感器确定所述待监测环境的温 度是否达到所述温度传感器的预设温度。
  12. 根据权利要求11所述的方法,其中,所述温度监测装置仅包括一个所述温度传感器;所述当所述温度传感器发光时,根据所述发光的温度传感器确定所述待监测环境的温度,具体包括:
    当所述温度传感器发光时,则确定所述待监测环境的温度不小于所述温度传感器对应的所述预设温度。
  13. 根据权利要求11所述的方法,其中,所述温度监测装置包括多个所述温度传感器;所述当所述温度传感器发光时,根据所述发光的温度传感器确定所述待监测环境的温度,具体包括:
    通过确定当前发光的所述温度传感器中较晚发光的所述温度传感器,来确定所述待监测环境的温度不小于较晚发光的所述温度传感器对应的所述预设温度。
PCT/CN2020/083739 2019-06-21 2020-04-08 温度传感器、温度监测方法及装置 WO2020253331A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/051,516 US20210231506A1 (en) 2019-06-21 2020-04-08 Temperature sensor, temperature monitoring method and device thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910543186.8A CN110207844B (zh) 2019-06-21 2019-06-21 一种温度传感器、温度监测方法及装置
CN201910543186.8 2019-06-21

Publications (1)

Publication Number Publication Date
WO2020253331A1 true WO2020253331A1 (zh) 2020-12-24

Family

ID=67793956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/083739 WO2020253331A1 (zh) 2019-06-21 2020-04-08 温度传感器、温度监测方法及装置

Country Status (3)

Country Link
US (1) US20210231506A1 (zh)
CN (1) CN110207844B (zh)
WO (1) WO2020253331A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110207844B (zh) * 2019-06-21 2021-10-01 京东方科技集团股份有限公司 一种温度传感器、温度监测方法及装置
CN111839472B (zh) * 2020-07-09 2022-12-02 北京服装学院 体温异常监测器件的制备方法、服装、床垫、系统
KR20230023450A (ko) * 2021-08-10 2023-02-17 삼성전자주식회사 멀티 윈도우를 지원하는 전자 장치 및 이의 제어 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60151526A (ja) * 1984-01-18 1985-08-09 Sharp Corp 温度センサ−
JPH09250954A (ja) * 1996-03-14 1997-09-22 Osaka Gas Co Ltd 温度面分布表示素子
CN1308736A (zh) * 1998-07-06 2001-08-15 艾利森电话股份有限公司 液晶显示器粘附材料中的温度测量
JP2005281353A (ja) * 2004-03-26 2005-10-13 Fuji Photo Film Co Ltd 膜、温度履歴記録体、及び二波長発光素子
CN101040175A (zh) * 2004-10-15 2007-09-19 皇家飞利浦电子股份有限公司 温度指示器
CN101040174A (zh) * 2004-10-15 2007-09-19 皇家飞利浦电子股份有限公司 颜色变换温度指示器
CN110207844A (zh) * 2019-06-21 2019-09-06 京东方科技集团股份有限公司 一种温度传感器、温度监测方法及装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1804601A3 (en) * 1990-01-26 1993-03-23 Чephяkoba Maльbиha Meepobha Temperature meter
KR101065320B1 (ko) * 2010-02-24 2011-09-16 삼성모바일디스플레이주식회사 유기전계발광표시장치 및 그 구동방법
JP2011249087A (ja) * 2010-05-25 2011-12-08 Sanyo Electric Co Ltd 表示装置
CN102625540B (zh) * 2012-03-31 2014-06-25 浙江西盈科技有限公司 一种led照明灯温度补偿式调光电路及其调光方法
TWI553603B (zh) * 2012-08-27 2016-10-11 群邁通訊股份有限公司 背光模組控制電路
JP6330439B2 (ja) * 2014-04-09 2018-05-30 日本精機株式会社 照明制御装置
FR3041202B1 (fr) * 2015-09-14 2017-09-15 Valeo Vision Source lumineuse led a micro- ou nano-fils comprenant des moyens de mesure de la temperature
CN109029768B (zh) * 2018-07-27 2021-02-19 Oppo广东移动通信有限公司 电子设备的温度提醒方法、装置、存储介质和电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60151526A (ja) * 1984-01-18 1985-08-09 Sharp Corp 温度センサ−
JPH09250954A (ja) * 1996-03-14 1997-09-22 Osaka Gas Co Ltd 温度面分布表示素子
CN1308736A (zh) * 1998-07-06 2001-08-15 艾利森电话股份有限公司 液晶显示器粘附材料中的温度测量
JP2005281353A (ja) * 2004-03-26 2005-10-13 Fuji Photo Film Co Ltd 膜、温度履歴記録体、及び二波長発光素子
CN101040175A (zh) * 2004-10-15 2007-09-19 皇家飞利浦电子股份有限公司 温度指示器
CN101040174A (zh) * 2004-10-15 2007-09-19 皇家飞利浦电子股份有限公司 颜色变换温度指示器
CN110207844A (zh) * 2019-06-21 2019-09-06 京东方科技集团股份有限公司 一种温度传感器、温度监测方法及装置

Also Published As

Publication number Publication date
US20210231506A1 (en) 2021-07-29
CN110207844B (zh) 2021-10-01
CN110207844A (zh) 2019-09-06

Similar Documents

Publication Publication Date Title
WO2020253331A1 (zh) 温度传感器、温度监测方法及装置
US20080111505A1 (en) Light emitting diode apparatus
WO2018192510A1 (zh) 电致发光显示面板、其驱动方法、驱动装置以及显示装置
EP1941484B1 (en) Illumination device
JP2009083590A (ja) 車載用のled照明装置
CN103477715A (zh) 在全面照明应用中提供可视警报信号的固态照明器件及相关操作方法
TW201116157A (en) LED-based lighting fixtures and related methods for thermal management
US8011814B2 (en) Illuminating device
US20180039129A1 (en) Touch display device and method for manufacturing the same
US20150028755A1 (en) Light emitting diode illumination device
CN109524564B (zh) 一种有机发光晶体管、温感装置及其温度测试方法
CN113053965B (zh) 一种显示器件、制备方法以及温度检测方法
TW201411902A (zh) 有機電致發光裝置及其電源供應裝置
KR101252795B1 (ko) Oled 터치스크린형 프로그래머블 스위치를 통한 빌딩내 멀티감시제어장치
CN110798929B (zh) 一种集成nfc及电量计量的led灯驱动控制器
CN104951115A (zh) 一种触控模组及电子设备
CN107731157A (zh) 一种显示面板、显示装置及其亮度调节方法
US20160334091A1 (en) Led lighting apparatus
JP2015022879A (ja) 点灯装置
US9018839B2 (en) LED cooling system
CN105914225B (zh) 一种有机电致发光显示装置
KR102504734B1 (ko) 광전자 회로 및 광전자 회로를 동작시키기 위한 방법
WO2013054621A1 (ja) 発光装置及び有機el素子の駆動方法
US20160330804A1 (en) Light-emitting diode lighting device for being directly electrically connected to alternating current power supply
CN111458052B (zh) 一种变色oled温度传感器组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20825612

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20825612

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20825612

Country of ref document: EP

Kind code of ref document: A1