WO2020253145A1 - 一种组合式气化烧嘴及其使用方法 - Google Patents

一种组合式气化烧嘴及其使用方法 Download PDF

Info

Publication number
WO2020253145A1
WO2020253145A1 PCT/CN2019/123456 CN2019123456W WO2020253145A1 WO 2020253145 A1 WO2020253145 A1 WO 2020253145A1 CN 2019123456 W CN2019123456 W CN 2019123456W WO 2020253145 A1 WO2020253145 A1 WO 2020253145A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
fuel
oxidant
water
cooled
Prior art date
Application number
PCT/CN2019/123456
Other languages
English (en)
French (fr)
Inventor
魏佳
张礼
李锡华
Original Assignee
北京航天迈未科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京航天迈未科技有限公司 filed Critical 北京航天迈未科技有限公司
Publication of WO2020253145A1 publication Critical patent/WO2020253145A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/50Fuel charging devices

Definitions

  • the invention relates to the technical field of high-temperature and high-pressure coal gasification reaction equipment, in particular to a gasification burner.
  • Gasification burner is one of the core equipment of coal gasification unit, and its performance directly determines the safety, stability and economy of coal gasification unit operation.
  • mixing the fuel and oxidant as fully and uniformly as possible is a key factor for accelerating the gasification reaction rate, improving the fuel conversion rate and the performance of the gasification burner.
  • the oxygen-to-coal ratio of the primary fuel/oxidant is higher than the predetermined value, resulting in overheating and ablation of the outer fire surface, which shortens the life of the burner; while the oxygen-to-coal ratio of the secondary fuel/oxidant is lower than the predetermined value Value, resulting in low internal temperature, insufficient gasification reaction and low gasification efficiency.
  • CN108728168A relates to a gasification burner, including a mother burner.
  • the inner side of the mother burner is provided with N-level sub-burners.
  • N is an integer greater than or equal to 1.
  • Independent fuel channel and oxidant channel, the mother burner and the sub-burners of each stage are arranged in a coaxially packaged structure from outside to inside; the inner diameter of the mother burner is larger than the outer diameter of the first-stage sub-burner.
  • the inner diameter of the burner is larger than the outer diameter of the next-stage sub-burner; in the limited reaction space and residence time, it can ensure that the fuel and the oxidant are fully and uniformly mixed, accelerate the combustion reaction rate, and thus increase the fuel conversion rate and The gasification performance of the device; however, there is a problem that the various levels of oxidants are entrained and mixed with each other, which affects the combustion performance of the burner.
  • the purpose of the present invention is to provide a combined gasification burner to overcome the above-mentioned shortcomings of the prior art.
  • the burner has multiple fuel and oxidant channels and has a waste liquid combustion function.
  • the present invention provides a combined gasification burner, which includes a first part, a second part, and a third part coaxially sheathed from outside to inside. Each part is independent of each other and connected by fasteners. .
  • the first component includes a first component outer tube and a first component inner tube coaxially arranged from outside to inside; the length of the first component outer tube is less than the length of the first component inner tube, the The outer tube tail of the first component and the inner tube body of the first component are connected by a first component ring plate to form an annular space, and the annular space constitutes a primary fuel passage; the first component ring plate is provided with a primary fuel Inlet; the first part inner tube side wall is provided with a primary oxidant inlet.
  • the first component ring plate is provided with a primary fuel inlet; the first component inner tube side wall is provided with a primary oxidant inlet; the first component outer tube body is provided with a first component body flange The tail of the inner tube of the first component is provided with a first component tail flange.
  • the second part includes a second part sleeve; the side wall of the second part sleeve is provided with a waste liquid/protective gas inlet; the ring between the inner wall of the inner tube of the first part and the outer wall of the second part sleeve The gap constitutes the primary oxidant channel.
  • the second component sleeve body is provided with a second component body flange; the second component sleeve tail is provided with a second component tail flange.
  • the third component includes a third component outer tube and a third component inner tube coaxially arranged from outside to inside; the annulus between the inner wall of the second component sleeve and the outer wall of the third component outer tube constitutes waste liquid / Protective air passage; the length of the outer tube of the third component is less than the length of the inner tube of the third component, and the tail of the third component outer tube and the third component inner tube body are connected by a third component ring plate, An annular space is formed, and the annular space constitutes a secondary oxidant passage; the inner side of the inner tube of the third component constitutes a secondary fuel passage.
  • the waste liquid/protective gas channel is passed into the waste liquid; when the chemical system does not produce waste liquid, the waste liquid/protective gas channel can be switched to the protective gas .
  • the side wall of the outer tube of the third component is provided with a secondary oxidant inlet; the tail of the inner tube of the third component is provided with a secondary fuel inlet; the outer tube body of the third component is provided with a third component body Flange.
  • the tail flange of the first part is connected to the body flange of the second part by a fastener; the tail flange of the second part is connected to the body flange of the third part by a fastener; A part of the body flange is connected with the gasification furnace cover through fasteners.
  • the spatial positions of the primary fuel channel and the primary oxidant channel are interchangeable, and the spatial positions of the secondary oxidant channel and the secondary fuel channel are interchangeable.
  • the arrangement sequence of the media channels from the outside to the inside is primary fuel channel-primary oxidant channel-waste liquid/protective gas channel-secondary oxidant channel-secondary fuel channel.
  • the shielding gas can effectively block the primary oxidant and the secondary oxidant, and avoid the influence of the burner performance due to the entrainment and mixing of the primary and secondary oxidants.
  • a fuel delivery pipe is connected to the primary fuel inlet of the ring plate of the first component.
  • the fuel delivery pipe extends into the primary fuel passage, and N fuel delivery pipes (N is an integer greater than or equal to 1) pass through the fuel delivery pipe to form a spiral in the primary fuel passage.
  • N is an integer greater than or equal to 1
  • Flow field preferably, the fuel delivery pipes are uniformly distributed along the circumferential direction, a single fuel delivery pipe is a spiral pipe or a straight pipe with a swirl structure at the outlet end (the swirl structure is a tangential nozzle, a guide vane Wait). In this way, the fuel delivery pipe structure can increase the tangential velocity of the fuel at the nozzle, and promote the mixing of the fuel and the oxidant.
  • an oxidant swirling device (the gasifying agent swirling device is a tangential nozzle, a guide vane, etc.) is provided at the outlet of the primary oxidant passage and the secondary oxidant passage. In this way, the tangential velocity of the oxidant at the nozzle can be increased, and the mixing of the oxidant and the fuel can be promoted.
  • a first water-cooled interlayer, a primary fuel channel, and a second water-cooled interlayer are sequentially arranged from the inside to the outside along the radial direction of the first component.
  • the upper surface of the first part ring plate is set to be a plane, and the lower surface is set as an annular boss concentric with the first part ring plate; the outer edge of the ring boss and the first part ring There is space on the outer edge of the plate.
  • the middle is an annular boss with a certain thickness
  • the outermost and innermost are circular plates with the same thickness and the thickness of the normal tube wall
  • the inner part of the annular boss is along the first part
  • a number of through pipes are provided in the radial direction, and there are at least three through pipes.
  • the ring plate of the first component is provided with a primary fuel inlet perpendicular to the upper surface of the first component, and the primary fuel inlet does not overlap the position of the through passage.
  • the first water-cooled interlayer is composed of the outer wall of the inner tube of the first component, the first water-cooled interlayer sleeve wall, the first water-cooled ring plate and the space between the first water-cooled end cover;
  • the second water-cooled interlayer It is composed of the space between the inner wall of the outer tube of the first component, the wall of the second water-cooled sandwich casing, the ring plate of the first component, and the second water-cooled end cover;
  • the outer edges of the component ring plates are connected; the first water-cooled sandwich casing wall and the second water-cooled sandwich casing wall pass through the inner and outer edges of the lower surface of the annular boss on the first component ring plate
  • the space between the first water-cooled jacketed casing wall, the second water-cooled jacketed casing wall and the lower surface of the first component ring plate is a primary fuel passage.
  • a first partition is further provided between the wall of the first water-cooled sandwich casing and the outer wall of the inner tube of the first part, and the tail of the first partition is perpendicular to the inner edge of the ring plate of the first part Connected and fixed, the head of the first partition plate is provided with a first water-cooled bluff body, and a gap is left between the first water-cooled bluff body and the first water-cooled end cover of the first water-cooled interlayer head, Allow the cooling medium to pass.
  • a second partition is also provided between the second water-cooled jacketed casing wall and the inner wall of the outer tube of the first component, and the outer edge of the annular boss on the lower surface of the first component ring plate and the The space between the outer edges of the ring plates of the first component is connected to the tail of the second partition, and the head of the second partition is provided with a second water-cooled bluff body, and the second water-cooled bluff body is connected to the A gap is left between the second water-cooled end caps of the second water-cooled interlayer head to allow the cooling medium to pass through.
  • the outer tail of the outer tube of the first component is provided with a first water-cooling inlet
  • the outer tail of the first water-cooled sandwich casing wall is provided with a first water-cooling outlet.
  • a third water-cooled interlayer is arranged from inside to outside along the radial direction of the second component.
  • the third water-cooled interlayer is composed of the outer wall of the second component casing, the third water-cooled interlayer casing wall, the second water-cooled ring plate, and the space between the third water-cooled end cover; the third water-cooled interlayer casing wall
  • the tail and the outer wall of the second component sleeve are connected by a second water-cooled ring plate, and the third water-cooled sandwich sleeve wall head and the second component sleeve outer wall head pass through a third water-cooled end Cover connection.
  • a third partition is further provided between the third water-cooled sandwich casing wall and the outer wall of the second component casing, and the tail of the third partition is vertically connected and fixed to the second water-cooled ring plate ,
  • the head of the third partition plate is provided with a third water-cooled bluff body, and a gap is left between the third water-cooled bluff body and the third water-cooled end cover of the third water-cooled interlayer head to cool down The medium can pass.
  • a second water cooling inlet and a second component water cooling outlet are respectively opened at the outer tail of the third water-cooled sandwich casing wall.
  • a fourth water-cooled interlayer, a secondary oxidant channel, and a fifth water-cooled interlayer are sequentially arranged from inside to outside along the radial direction of the third component.
  • the upper surface of the third component ring plate is set as a plane, and the lower surface is set as an annular boss concentric with the third component ring plate; the outer edge of the ring boss and the third component ring A space is left on the outer edge of the plate, the so-called inner edge of the ring boss and the inner edge of the third part ring plate are left there; inside the ring boss is provided a number of through pipes along the radial direction of the third part There are at least three through-pipes.
  • the fourth water-cooled interlayer is composed of the outer wall of the inner tube of the third component, the fourth water-cooled interlayer casing wall, the third water-cooled ring plate, and the space between the fourth water-cooled end cover;
  • the fifth water-cooled interlayer It is composed of the space between the inner wall of the outer pipe of the third component, the wall of the fifth water-cooled sandwich casing, the ring plate of the third component and the fifth water-cooled end cover; the tail of the outer pipe of the third component and the third The outer edges of the component ring plates are connected; the fourth water-cooled sandwich casing wall and the fifth water-cooled sandwich casing wall are connected by the inner and outer edges of the annular boss on the third component ring plate, and the fourth The space between the water-cooled jacketed casing wall, the fifth water-cooled jacketed casing wall and the lower surface of the third component ring plate is a secondary oxidant channel.
  • a fourth partition is further provided between the fourth water-cooled sandwich casing wall and the outer wall of the inner tube of the third component, and the tail of the fourth partition is perpendicular to the inner edge of the third component ring plate Connected and fixed, the head of the fourth partition is provided with a fourth water-cooled bluff body, and a gap is left between the fourth water-cooled bluff body and the fourth water-cooled end cover of the fourth water-cooled interlayer head, Allow the cooling medium to pass.
  • a fifth partition is further provided between the fifth water-cooled sandwich casing wall and the inner wall of the third component outer tube, and the outer edge of the annular boss on the lower surface of the third component ring plate and the The space between the outer edges of the ring plates of the third component is connected to the tail of the fifth partition, and the head of the fifth partition is provided with a fifth water-cooled bluff body, and the fifth water-cooled bluff body is connected to the A gap is left between the fifth water-cooled end caps of the fifth water-cooled sandwich head to allow the cooling medium to pass through.
  • a third water-cooling inlet is provided at the outer tail of the outer tube of the third component, and a third water-cooling outlet is provided at the outer tail of the fifth water-cooled sandwich casing wall.
  • the ability of the burner head to resist high temperature ablation toward the fire end surface can be enhanced, and the service life of the burner can be prolonged.
  • the inner and outer cooling water channels of the corresponding component are connected, so that the inner and outer cooling water share one Group cooling water inlet and outlet, simplifying the number of burner nozzles and reducing the difficulty of burner processing.
  • the gasification burner has two groups of fuel and oxidant feed channels whose flow can be adjusted independently, and a waste liquid or protective gas channel whose flow can be independently adjusted;
  • the primary fuel It is input into the fuel delivery pipe through the first fuel inlet, enters the primary fuel passage from the outlet end of the fuel delivery pipe, and is injected into the gasification chamber;
  • the secondary fuel enters through the secondary fuel inlet To the secondary fuel channel and injected into the gasification chamber; when the fuel enters the gasification chamber, the speed range of the injection port is 1-50m/s;
  • the primary oxidant enters the primary oxidant inlet through the primary oxidant
  • the primary oxidant passage, the secondary oxidant enters the secondary oxidant passage through the secondary oxidant inlet, the primary oxidant is injected into the gasification chamber through the primary oxidant passage, and the secondary oxidant passes through the secondary oxidant
  • the secondary oxidant channel is sprayed into the gasification chamber; the velocity range of the primary oxidant and the secondary
  • the waste liquid enters the waste liquid/protection gas channel through the waste liquid/protective gas inlet; the speed of the waste liquid at the outlet of the gasification chamber is 1-100m/ s;
  • the waste liquid/protective gas inlet is passed into the protective gas, and the speed of the protective gas at the outlet of the gasification chamber is 1-200 m/s.
  • the gasification burner of the present invention has two independent fuel and oxidant channels. Under the premise that the total feed volume, the reaction space of the gasification chamber and the residence time are unchanged, compared to the single-channel fuel and oxidant channel burners, It effectively increases the contact area of fuel and oxidant, promotes the full and uniform mixing of fuel and oxidant, accelerates the gasification reaction rate, and improves the fuel conversion rate and gasification burner performance.
  • the protective gas is passed between the primary and secondary oxidant channels, which not only effectively blocks the primary and secondary oxidants, but also prevents the entrainment and mixing of the primary and secondary oxidants from affecting the combustion.
  • the performance of the nozzle, and the protective gas introduced has an obvious cooling protection effect on the burner head to the fire end surface, which prolongs the service life of the burner.
  • Water vapor is one of the reactants of the gasification reaction. Due to the structural limitations of other existing technologies, water vapor is generally mixed with oxidant and sprayed into the gasification chamber. In order to avoid condensation of water vapor, the oxidant must be heated through an oxygen preheater. Preheat until the water vapor is above the saturation temperature of the corresponding pressure.
  • the gasification burner of the present invention can separately pass water vapor into the waste liquid/protective gas channel as the protective gas, and is no longer mixed with the primary and secondary oxidants, so the preheating temperature of the primary and secondary oxidants can be reduced and energy is saved.
  • the gasification burner of the present invention has flexible and diverse adjustment methods during operation: it can adjust the ratio of the primary and secondary fuel and the oxidizer feeding amount, or It is the flow of protective gas to adjust the combustion flame shape to achieve the flow field and temperature field that match the gasification chamber.
  • the gasification burner of the present invention integrates the waste liquid incineration function: when the chemical system produces waste liquid, the waste liquid can be passed into the waste liquid/protective gas channel, and the adjacent primary and secondary oxidant channels spray
  • the high-speed swirling oxidant acts not only as a reactant in the combustion reaction, but also as an atomizer for the waste liquid.
  • the waste liquid stream is sprayed coaxially with the primary and secondary fuel and oxidant streams, avoiding the interference of the waste liquid side spray on the flow field of the main burner.
  • the gasification burner of the present invention can be equipped with a water-cooled cooling system, and a water-cooled interlayer is attached to the pipe wall of each component. In this way, the ability of the burner head to resist high temperature ablation toward the fire end surface can be enhanced, and the service life of the burner can be prolonged.
  • the gasification burner of the present invention can be equipped with a water cooling system.
  • a water cooling system for the first component and the third component, through the provision of a through cooling water channel in the ring plate of the corresponding component, the inner and outer layers of the corresponding component are connected
  • the cooling water channel allows the inner and outer cooling water to share a set of cooling water inlet and outlet, which simplifies the number of burner nozzles and reduces the difficulty of burner processing.
  • Figure 1 is a schematic cross-sectional view of a combined gasification burner provided by the present invention
  • FIG. 2 is a schematic cross-sectional view of the first component of the combined gasification burner provided by the present invention
  • FIG. 3 is a schematic cross-sectional view of the second part of the combined gasification burner provided by the present invention.
  • FIG. 4 is a schematic cross-sectional view of the third component of the combined gasification burner provided by the present invention.
  • FIG. 5 is a schematic cross-sectional view of the water-cooling structure of the first component sleeve of the combined gasification burner provided by the present invention.
  • FIG. 6 is a schematic cross-sectional view of the water-cooling structure of the second part of the combined gasification burner provided by the present invention.
  • FIG. 7 is a schematic cross-sectional view of the water-cooling structure of the third component sleeve of the combined gasification burner provided by the present invention.
  • Fig. 8 is a schematic bottom view of the ring plate of the first component of the combined gasification burner provided by the present invention.
  • 1 is the first part
  • 2 is the second part
  • 3 is the third part
  • 4 is the outer tube of the first part
  • 5 is the inner tube of the first part
  • 6 is the ring plate of the first part
  • 7 is the primary fuel inlet
  • 8 is the primary oxidant inlet
  • 9 is the body flange of the first part
  • 10 is the tail flange of the first part
  • 11 is the second part casing
  • 12 is the waste liquid/protective gas inlet
  • 13 is the second part body Flange
  • 14 is the second part tail flange
  • 15 is the third part outer tube
  • 16 is the third part inner tube
  • 17 is the third part ring plate
  • 18 is the secondary oxidant inlet
  • 19 is the secondary fuel inlet
  • 20 is the third part body flange
  • 21 is the primary fuel channel
  • 22 is the primary oxidizer channel
  • 23 is the waste liquid/protective gas channel
  • 24 is the secondary oxidizer channel
  • 25 is the secondary fuel channel
  • 26 is the
  • Fig. 1 is a schematic cross-sectional view of an embodiment of the combined gasification burner provided by the present invention, as shown in Fig. 1:
  • the combined gasification burner of this embodiment includes: a first part 1, a second part 2 and a third part 3 coaxially sleeved from the outside to the inside, and each part is independent of each other and connected as a whole by a fastener.
  • the inner diameter of the first part 1 is greater than the outer diameter of the second part 2, and the inner diameter of the second part 2 is greater than the outer diameter of the third part 3.
  • the first part 1 and the third part 3 respectively have independent fuel passages and oxidant passages.
  • Figure 2 is a schematic cross-sectional view of the first component of the embodiment shown in Figure 1, as shown in Figure 2:
  • the first component 1 includes a first component outer tube 4 and a first component inner tube 5 coaxially arranged from outside to inside, and the first component outer tube 4 and the first component outer tube 5 are connected by a first component ring plate 6;
  • the first component ring plate 6 is provided with a primary fuel inlet 7;
  • the body of the first component outer tube 4 is provided with a first component body flange 8;
  • the first component inner tube 5 is provided with a first component tail flange 9 at the tail.
  • Fig. 3 is a schematic cross-sectional view of the second part of the embodiment shown in Fig. 1, as shown in Fig. 3:
  • the second part 2 includes a second part sleeve 11; the side wall of the first part sleeve 11 is provided with a waste liquid/protective gas inlet 12; the body of the second part sleeve 11 is provided with a second part body flange 13 ; The second part sleeve 11 is provided with a second part tail flange 14.
  • Fig. 4 is a schematic cross-sectional view of the third component of the embodiment shown in Fig. 1, as shown in Fig. 4:
  • the third part 3 includes a third part outer tube 15 and a third part inner tube 16 coaxially arranged from outside to inside, and the third part outer tube 15 and the third part inner tube 16 are connected by a third part ring plate 17;
  • the side wall of the three-part outer tube 15 is provided with a secondary oxidant inlet 18;
  • the third part inner tube 16 is provided with a secondary fuel inlet 19 at the tail;
  • the body of the third-part outer tube 15 is provided with a third-part body flange 20.
  • the first part outer tube 4, the first part inner tube 5, the second part sleeve 11, the third part outer tube 15 and the third part inner tube 16 are stainless steel tubes or nickel-based alloy tubes with a certain thickness, Has sufficient strength and corrosion resistance.
  • the components are independent of each other and are connected as a whole by fasteners.
  • the tail flange 10 of the first part is connected with the body flange 13 of the second part by fasteners.
  • the two-part tail flange 14 is connected to the third part body flange 20 by fasteners, and the first part body flange 9 is connected to the gasification furnace cover by fasteners.
  • the annulus between the inner wall of the first part outer tube 4 and the outer wall of the first part inner tube 5 constitutes the primary fuel passage 21; the gap between the inner wall of the first part inner tube 5 and the outer wall of the second part sleeve 11
  • the annulus constitutes the primary oxidant passage 22;
  • the annulus between the inner wall of the second part sleeve 11 and the outer wall 15 of the third part outer pipe constitutes the waste liquid/protective gas passage 23;
  • a secondary oxidant passage 24 is formed between the outer walls of the 16; a secondary fuel passage 25 is formed inside the inner tube 16 of the third component.
  • the spatial positions of the primary fuel channel 21 and the primary oxidant channel 22 are interchangeable, and the spatial positions of the secondary oxidant channel 24 and the secondary fuel channel 25 are interchangeable.
  • this embodiment adopts an arrangement of primary fuel-primary oxidizer-waste liquid/protective gas-secondary oxidizer-secondary fuel.
  • N fuel delivery pipes 26 are preferably arranged in the primary fuel passage 21, and the inlet end of the fuel delivery pipe 26 is connected to the primary fuel inlet. 7.
  • the outlet end has a swirling structure; more preferably, the fuel delivery pipe 26 is evenly distributed along the circumferential direction, and a single fuel delivery pipe is a spiral pipe or the outlet end has a guide vane or a tangential nozzle.
  • this embodiment is preferably provided with an oxidant swirling device 27 (guide vane or guide vane) at the outlet of the primary oxidant passage 22 and the secondary oxidant passage 24 Tangential nozzle).
  • oxidant swirling device 27 guide vane or guide vane
  • the combined gasification burner in this embodiment has two sets of fuel and oxidant whose flow can be adjusted independently, and one waste liquid or protective gas whose flow can be adjusted independently.
  • the primary fuel is input into the fuel delivery pipe 26 through the first fuel inlet 7, enters the primary fuel passage 21 from the outlet end of the fuel delivery pipe 26, and is injected into the gasification chamber; the secondary fuel enters the secondary fuel through the secondary fuel inlet 19 Channel 25, and sprayed into the gasification chamber; the speed range of the fuel at the nozzle is 1-50m/s.
  • the primary oxidant enters the primary oxidant channel 22 through the primary oxidant inlet 8
  • the secondary oxidant enters the secondary oxidant channel 24 through the secondary oxidant inlet 18, and is sprayed into the gasification chamber from the respective oxidant channel outlet; the oxidant is at the nozzle
  • the speed range is 1 ⁇ 200m/s.
  • the waste liquid enters the waste liquid/shielding gas channel 23 through the waste liquid/shielding gas inlet 12, and the speed of the waste liquid at the outlet is 1-100 m/s.
  • the waste liquid can be switched to protective gas, and the speed of the protective gas at the outlet is 1 to 200m/s.
  • the gasification pressure is 1-10MPa, and the gasification temperature 1200 ⁇ 1800°C.
  • the combined gasification burner in the above embodiment increases the fuel passage and
  • the number of oxidizer channels increases the contact area of fuel and oxidizer, ensures that fuel and oxidizer are quickly mixed fully and uniformly, and improves fuel conversion rate and burner performance.
  • the flow of each fuel and oxidant can be adjusted individually, under the premise that the total load remains unchanged, the flow field can be reorganized and the combustion flame shape can be flexibly adjusted by appropriately adjusting the ratio of the primary and secondary fuel or the oxidant.
  • the primary and secondary oxidants are effectively blocked, and the primary and secondary oxygen-to-coal ratios deviate from the design due to entrainment and mixing of the primary and secondary oxidants.
  • the turbulence of the value or the head flow field affects the performance and life of the burner.
  • the introduced protective gas has an obvious cooling and protective effect on the burner head to the fire end face, avoiding high temperature ablation on the fire end face, and prolonging the life of the burner.
  • the flow field of the burner head can be appropriately adjusted, and the combustion flame shape can be flexibly adjusted to ensure the stable operation of the burner.
  • Water vapor is one of the reactants of the gasification reaction. Due to the structural limitations of other existing technologies, water vapor can generally only be mixed with oxidant and sprayed into the gasification chamber. In order to avoid condensation of water vapor, it must pass through an oxygen preheater. The oxidant is preheated until the water vapor is above the saturation temperature of the corresponding pressure.
  • the gasification burner of the above-mentioned embodiment can separately pass water vapor into the waste liquid/protective gas channel, and no longer mix with the primary and secondary oxidants, so the preheating temperature of the primary and secondary oxidants can be lowered and energy is saved.
  • the waste liquid can be passed into the waste liquid/protective gas channel.
  • the high-speed swirling oxidant sprayed from the adjacent primary and secondary oxidant channels serves as the waste liquid combustion
  • the oxidizing agent of the reaction acts as an atomizer for the waste liquid: a high-speed airflow with a certain tangential velocity.
  • the waste liquid stream is sprayed coaxially with the primary and secondary fuel and oxidant streams, avoiding the interference of the waste liquid side spray on the flow field of the main burner.
  • the fuel of the combined gasification burner is pulverized coal or coal slurry
  • the oxidant is one of oxygen or air or its mixture with water vapor, carbon dioxide, etc.
  • the protective gas is nitrogen, carbon dioxide or water vapor.
  • the waste liquid is organic waste liquid, inorganic waste liquid or heavy metal waste liquid.
  • this combined gasification burner can also use other solid, liquid, and gaseous combustible substances as fuel, and can also use other solid, liquid, and gaseous substances as waste liquid.
  • a first water-cooled interlayer, a primary fuel channel 21, and a second water-cooled interlayer are sequentially arranged from the inside to the outside along the radial direction of the first component 1.
  • the upper surface of the first part ring plate 6 is set as a plane, and the lower surface is set as an annular boss concentric with the first part ring plate 6; the outer part of the ring boss There is a space left between the edge and the outer edge of the first part ring plate 6, the so-called inner edge of the ring boss and the inner edge of the first part ring plate 6 leave a space; the inside of the ring boss is along the first part
  • a component 1 is provided with a plurality of through pipes in the radial direction, and there are at least three through pipes.
  • the first component ring plate 6 is provided with a primary fuel inlet perpendicular to the upper surface of the first component 1, and the primary fuel inlet does not overlap the position of the through passage.
  • the first water-cooled interlayer is composed of the space between the outer wall of the inner tube 5 of the first component, the first water-cooled interlayer sleeve wall 29A, the first water-cooled ring plate 32A and the first water-cooled end cover 31A;
  • the second water-cooled interlayer is composed of the space between the inner wall of the first component outer tube 4, the second water-cooled interlayer sleeve wall 29B, the first component ring plate 6 and the second water-cooled end cover 31B;
  • the sandwich casing wall 29A and the second water-cooled sandwich casing wall 29B are connected by the inner and outer edges of the annular boss on the first component ring plate 6.
  • the first water-cooled sandwich casing wall 29A and the second The space between the two water-cooled sandwich casing wall 29B and the lower surface of the first component ring plate 6 is the primary fuel passage 21.
  • a first partition 28A is provided between the first water-cooled sandwich casing wall 29A and the outer wall of the first component inner tube 5, and the tail of the first partition 28A is connected to the first component ring
  • the inner edge of the plate 6 is vertically connected and fixed.
  • the head of the first partition 28A is provided with a first water-cooled bluff body 30A.
  • the first water-cooled bluff body 30A and the first water-cooled A gap is left between the end caps 31A to allow the cooling medium to pass through.
  • a second partition 28B is provided between the second water-cooled sandwich casing wall 29B and the inner wall of the first component outer tube 4, and the annular boss on the lower surface of the first component ring plate 6 The space between the rim and the outer edge of the first part ring plate 6 is connected to the tail of the second partition 28B.
  • the head of the second partition 28B is provided with a second water-cooled bluff body 30B. A gap is left between the second water-cooled bluff body 30B and the second water-cooled end cap 31B of the second water-cooled interlayer head, so that the cooling medium can pass through.
  • a first water-cooling inlet 33A is provided at the outer tail of the outer tube 4 of the first component, and a first water-cooling outlet 34A is provided at the outer tail of the first water-cooled sandwich casing wall 29A.
  • the coolant enters the space between the inner wall of the outer tube 4 of the first component and the second partition 28B from the first water-cooled inlet 33A, passes through the second water-cooled bluff body 30B of the head, and then enters the second partition.
  • the space between 28B and the second water-cooled jacketed casing wall 29B passes through the through pipe inside the annular boss on the lower surface of the first component ring plate 6, and then flows into the first water-cooled jacketed casing wall 29A and the first partition
  • the space between 28A passes through the first water-cooled bluff body 30A of the head, and then passes through the space between the first partition 28A and the outer wall of the first part inner tube 5, and finally flows out through the first water-cooled outlet 34A.
  • a third water-cooled interlayer is arranged from the inside to the outside along the radial direction of the second component 2.
  • the third water-cooled interlayer consists of the space between the outer wall of the second component sleeve 11, the third water-cooled interlayer sleeve wall 29C, the second water-cooled ring plate 32B, and the third water-cooled end cover 31C;
  • the tail of the sandwich casing wall 29C and the outer wall of the second component casing 11 are connected by a second water-cooled ring plate 32B.
  • the head of the third water-cooled sandwich casing wall 29C is connected to the outer wall of the second component casing 11
  • the heads are connected by a third water-cooled end cover 31C.
  • a third partition 28C is also provided between the third water-cooled sandwich casing wall 29C and the outer wall of the second component casing 11, and the tail of the third partition 28C is connected to the second water-cooled ring
  • the plate 32B is vertically connected and fixed, the head of the third partition 28C is provided with a third water-cooled bluff body 30C, the third water-cooled bluff body 30C and the third water-cooled end cover of the third water-cooled sandwich head There is a gap between 31C to allow the cooling medium to pass.
  • a second water-cooled inlet 33B and a second water-cooled outlet 34B are respectively provided at the outer tail of the third water-cooled jacket casing wall 29C.
  • the coolant enters the space between the third water-cooled jacket casing wall 29C and the third partition 28C from the second water-cooled inlet 33B, passes through the third water-cooled bluff body 30C of the head, and then enters the third partition.
  • the space between the plate 28C and the outer wall of the second component sleeve 11 finally flows out through the second water cooling outlet 34B.
  • a fourth water-cooled interlayer, a secondary oxidant channel 24, and a fifth water-cooled interlayer are sequentially arranged from the inside to the outside along the radial direction of the third component 3.
  • the fourth water-cooled interlayer is composed of the space between the outer wall of the third component inner tube 16, the fourth water-cooled interlayer sleeve wall 29D, the third water-cooled ring plate 32C, and the fourth water-cooled end cover 31D;
  • the fifth water-cooled interlayer is composed of the space between the inner wall of the third component outer tube 15, the fifth water-cooled interlayer sleeve wall 29E, the third component ring plate 17, and the fifth water-cooled end cover 31E; the third component The tail of the outer tube 15 is connected to the outer edge of the third component ring plate 17; the fourth water-cooled sandwich casing wall 29D and the fifth water-cooled sandwich casing wall 29E pass through the third component ring plate The inner and outer edges of the annular boss are connected, and the space between the fourth water-cooled sandwich casing wall 29D, the fifth water-cooled sandwich casing wall 29E and the lower surface of the third component ring plate 17 is a secondary oxidant passage 24 .
  • a fourth partition 28D is provided between the fourth water-cooled sandwich casing wall 29D and the outer wall of the third component inner tube 16, and the tail of the fourth partition 28D is connected to the third component ring.
  • the inner edge of the plate 17 is vertically connected and fixed.
  • the head of the fourth partition 28D is provided with a fourth water-cooled bluff body 30D.
  • the fourth water-cooled bluff body 30D and the fourth water-cooled A gap is left between the end caps 31D to allow the cooling medium to pass through.
  • a fifth partition 28E is provided between the fifth water-cooled sandwich casing wall 29E and the inner wall of the third component outer tube 15, and the annular boss on the lower surface of the third component ring plate 17 The space between the rim and the outer edge of the third component ring plate 17 is connected to the tail of the fifth partition 28E.
  • the head of the fifth partition 28E is provided with a fifth water-cooled bluff body 30E. A gap is left between the fifth water-cooled bluff body 30E and the fifth water-cooled end cap 31E of the fifth water-cooled interlayer head, so that the cooling medium can pass through.
  • a third water cooling inlet 33C is provided at the outer tail of the third component outer tube 15, and a third water cooling outlet 34C is provided at the outer tail of the fifth water-cooled sandwich casing wall 29E.
  • the coolant enters the space between the inner wall of the third component outer tube 15 and the fifth partition 28E through the third water-cooled inlet 33C, and then enters after passing through the fifth water-cooled bluff body 30E.
  • To the space between the fifth partition 28E and the fifth water-cooled sandwich casing wall 29E pass through the through pipe inside the annular boss on the lower surface of the third component ring plate 17, and then flow into the first
  • the space between the four water-cooled sandwich casing wall 29D and the fourth partition 28D passes through the fourth water-cooled bluff body 30D of the head, and then passes through the fourth partition 28D and the third part inner tube 16
  • the space between the outer walls finally flows out through the third water cooling outlet 34C.
  • the coolant may be water or other suitable cooling medium.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)

Abstract

一种组合式气化烧嘴及其使用方法,该烧嘴包括由外到内依次同轴套装的第一部件(1)、第二部件(2)、第三部件(3),所述的第一部件(1)、第二部件(2)和第三部件(3)各部件相互独立,通过紧固件连接为整体;所述的第一部件(1)和第三部件(3)分别具有独立的燃料通道和氧化剂通道。在相同的总投料量、气化室反应空间及停留时间情况下,与仅有单路燃料、氧化剂的气化烧嘴相比,上述实施例中的组合式气化烧嘴增加了燃料通道和氧化剂通道的数量,增大了燃料及氧化剂的接触面积,保证了燃料、氧化剂快速地掺混充分、均匀,提高了燃料转化率及烧嘴性能。

Description

一种组合式气化烧嘴及其使用方法 技术领域
本发明涉及煤炭的高温高压气化反应设备技术领域,具体涉及一种气化烧嘴。
背景技术
在高温、高压煤气化领域,煤气化设备在工业应用的过程中,普遍存在气化反应速度慢和燃料转化率低这些问题。气化烧嘴是煤气化装置的核心设备之一,其使用性能直接决定了煤气化装置运行的安全性、稳定性及经济性。在气化室较小的反应空间及较短的停留时间内,使燃料和氧化剂尽可能充分、均匀地掺混,是加快气化反应速率,提高燃料转化率和气化烧嘴性能的关键因素。
在现有的煤气化技术中,保持总投料量、气化室反应空间及停留时间不变,增加气化烧嘴内燃料及氧化剂通道的数量,可有效增加燃料及氧化剂的接触面积,促进燃料和氧化剂充分、均匀掺混。但是在实际过程中,因为烧嘴的各路燃料或者氧化剂在通道口处的动量与速度各不相同,所以相邻通道处的燃料或者氧化剂之间必定会相互卷吸、掺混,影响烧嘴的运营性能。例如:由外向内依次为一次燃料-一次氧化剂-二次氧化剂-二次燃料的多通道气化烧嘴,其一次氧化剂的速度、动量如大于二次氧化剂,必定会有部分二次氧化剂被卷吸至一次氧化剂中,使一次燃料/氧化剂的氧煤比高于预定值,导致外侧向火面超温、烧蚀,缩短烧嘴使用寿命;而二次燃料/氧化剂的氧煤比低于预定值,导致内侧温度低,气化反应不充分,气化效率低。
例如在CN108728168A中涉及一种气化烧嘴,包括母烧嘴,母烧嘴的内侧设置有N级子烧嘴,N为大于或等于1的整数,母烧嘴和各级子烧嘴分别具有独立 的燃料通道和氧化剂通道,母烧嘴和各级子烧嘴设置为由外至内依次同轴套装的结构;母烧嘴的内径大于第一级子烧嘴的外径,每一级子烧嘴的内径均大于其下一级子烧嘴的外径;其在有限的反应空间和停留时间内,能够保证燃料和氧化剂充分且均匀地混合,加快燃烧反应速率,从而提高燃料转化率和装置气化性能;但是存在问题在于,各级氧化剂相互卷吸、掺混,从而影响烧嘴燃烧性能。
此外在化工设备的运行过程中会生了大量的废液,为了利用其中的化学能以及避免直接排放而造成的环境破坏,一般在主烧嘴周围设置若干个独立烧嘴用于燃烧废液。但是,此种布置方式不仅增加了气化炉炉盖的加工难度及主烧嘴、辅助烧嘴的安装难度,而且从辅助烧嘴喷出的高速气流,会对主烧嘴流场产生干扰,影响主烧嘴性能。
为此,提供一种结构创新的、具备废液燃烧功能、具备保护气通路的组合式烧嘴,成为亟待解决的技术问题。
发明内容
本发明的目的在于提供一种组合式气化烧嘴,以克服上述现有技术的不足,该烧嘴具有多路燃料以及氧化剂通道,同时具备废液燃烧功能。
为了实现上述目的,本发明提供一种组合式气化烧嘴,包括由外到内依次同轴装套的第一部件、第二部件、第三部件,各个部件相互独立,通过紧固件连接。
所述第一部件,包括由外到内同轴设置的第一部件外管和第一部件内管;所述的第一部件外管长度小于所述的第一部件内管长度,所述的第一部件外管尾部和所述的第一部件内管身部通过第一部件环板连接,构成环形空间,所述环 形空间构成一次燃料通道;所述第一部件环板上设置有一次燃料进口;所述第一部件内管侧壁设置有一次氧化剂进口。
进一步地,所述第一部件环板上设置有一次燃料进口;所述第一部件内管侧壁设置有一次氧化剂进口;所述第一部件外管身部设置有第一部件身部法兰;所述第一部件内管尾部设置有第一部件尾部法兰。
所述第二部件,包括第二部件套管;所述第二部件套管侧壁设置有废液/保护气进口;所述第一部件内管内壁和第二部件套管外壁之间的环隙构成一次氧化剂通道。
进一步地,所述第二部件套管身部设置有第二部件身部法兰;所述第二部件套管尾部设置有第二部件尾部法兰。
所述第三部件,包括由外到内同轴布置的第三部件外管和第三部件内管;所述第二部件套管内壁和第三部件外管外壁之间的环隙构成废液/保护气通道;所述的第三部件外管长度小于所述第三部件内管长度,所述第三部件外管尾部和所述第三部件内管身部通过第三部件环板连接,构成环形空间,所述环形空间构成二次氧化剂通道;所述第三部件内管内侧构成二次燃料通道。
具体地,当化工系统产生废液的情况下,所述废液/保护气通道通入废液;当化工系统不产生废液的情况下,所述废液/保护气通道可切换为保护气。
进一步地,所述第三部件外管侧壁设置有二次氧化剂进口;所述第三部件内管尾部设置有二次燃料进口;所述第三部件外管身部设置有第三部件身部法兰。
进一步地,所述第一部件尾部法兰通过紧固件与第二部件身部法兰连接;所述第二部件尾部法兰通过紧固件与第三部件身部法兰连接;所述第一部件身部法兰通过紧固件与气化炉炉盖连接。
可选地,所述的一次燃料通道和一次氧化剂通道的空间位置可互换,所述二 次氧化剂通道和二次燃料通道的空间位置可互换。优选地,各介质通道由外向内的排列顺序依次为一次燃料通道-一次氧化剂通道-废液/保护气通道-二次氧化剂通道-二次燃料通道。这样,当废液/保护气通道通入废液后,其两侧的一次氧化剂通道、二次氧化剂通道喷出的高速氧气流,既可以助燃,又充当了废液的雾化气。当废液/保护气通道通入保护气后,保护气可有效阻隔一次氧化剂和二次氧化剂,避免因一、二次氧化剂相互卷吸、掺混而影响烧嘴性能。
进一步地,所述第一部件环板的一次燃料进口处接有燃料输送管。优选地,所述燃料输送管伸入到所述一次燃料通道内,所述燃料输送管有N根(N为大于等于1的整数)通过所述燃料输送管在所述一次燃料通道内形成旋流场;优选地,所述燃料输送管沿圆周方向均布,单根燃料输送管为螺旋管或出口端有产生旋流结构的直管(所述旋流结构为切向喷嘴、导流叶片等)。这样,所述燃料输送管结构能够增加燃料在喷口处的切向速度,促进燃料和氧化剂两者的掺混。
进一步地,所述一次氧化剂通道和所述二次氧化剂通道出口处均设置有氧化剂旋流装置(所述气化剂旋流装置为切向喷嘴、导流叶片等)。这样,能够增加氧化剂在喷口处地切向速度,促进氧化剂和燃料两者的掺混。
在另一种实施方式中,沿所述第一部件径向方向由内向外依次设置第一水冷夹层、一次燃料通道、第二水冷夹层。
进一步的,所述第一部件环板上表面设置为平面,下表面设置为与所述第一部件环板同圆心的环形凸台;所述环形凸台的外缘与所述第一部件环板的外缘留有空间,所谓环形凸台的内缘与所述第一部件环板的内缘留有空间,即,所述环形凸台将所述第一部件环板的下表面的环形分割为三个同心圆形,中间为具有一定厚度的环形凸台、最外和最内为厚度相同切与正常管壁厚度一致的圆 形板;所述环形凸台内部沿所述第一部件径向方向设置有若干贯通管道,所述贯通管道至少为三个。所述第一部件环板上开设有垂直于所述第一部件上表面的一次燃料进口,所述一次燃料进口不与所述贯通通道位置相重叠。
进一步地,所述第一水冷夹层由所述第一部件内管外壁、第一水冷夹层套管壁、第一水冷环板以及第一水冷端盖之间的空间组成;所述第二水冷夹层由所述第一部件外管内壁、所述第二水冷夹层套管壁、第一部件环板以及第二水冷端盖之间的空间组成;所述第一部件外管尾部与所述第一部件环板外缘相连接;所述第一水冷夹层套管壁和所述第二水冷夹层套管壁之间通过所述第一部件环板上环形凸台的下表面的内缘和外缘连接,所述第一水冷夹层套管壁、所述第二水冷夹层套管壁和所述第一部件环板的下表面之间的空间为一次燃料通道。
进一步地,所述第一水冷夹层套管壁和所述第一部件内管外壁之间还设置有第一隔板,所述第一隔板的尾部与所述第一部件环板内缘垂直连接固定,所述第一隔板的头部设置有第一水冷钝体,所述第一水冷钝体与所述第一水冷夹层头部的所述第一水冷端盖之间留有空隙,使冷却介质能够通过。
进一步地,所述第二水冷夹层套管壁和所述第一部件外管内壁之间还设置有第二隔板,所述第一部件环板下表面上的环形凸台外缘和所述第一部件环板外缘之间的空间与所述第二隔板的尾部相连接,所述第二隔板的头部设置有第二水冷钝体,所述第二水冷钝体与所述第二水冷夹层头部的所述第二水冷端盖之间留有空隙,使冷却介质能够通过。
进一步的,所述第一部件外管外侧尾部开设有第一水冷进口,所述第一水冷夹层套管壁外侧尾部开设有第一水冷出口。
沿所述第二部件径向方向由内向外设置有第三水冷夹层。所述第三水冷夹层由所述第二部件套管外壁、第三水冷夹层套管壁、第二水冷环板以及第三水 冷端盖之间的空间组成;所述第三水冷夹层套管壁尾部和所述第二部件套管外壁尾部之间通过第二水冷环板连接,所述第三水冷夹层套管壁头部和所述第二部件套管外壁头部之间通过第三水冷端盖连接。
进一步地,所述第三水冷夹层套管壁和所述第二部件套管外壁之间还设置有第三隔板,所述第三隔板的尾部与所述第二水冷环板垂直连接固定,所述第三隔板的头部设置有第三水冷钝体,所述第三水冷钝体与所述第三水冷夹层头部的所述第三水冷端盖之间留有空隙,使冷却介质能够通过。
进一步的,所述第三水冷夹层套管壁外侧尾部分别开设有第二水冷进口和第二部件水冷出口。
沿所述第三部件径向方向由内向外依次设置第四水冷夹层、二次氧化剂通道、第五水冷夹层。
进一步的,所述第三部件环板上表面设置为平面,下表面设置为与所述第三部件环板同圆心的环形凸台;所述环形凸台的外缘与所述第三部件环板的外缘留有空间,所谓环形凸台的内缘与所述第三部件环板的内缘留有空间;所述环形凸台内部沿所述第三部件径向方向设置有若干贯通管道,所述贯通管道至少为三个。
进一步地,所述第四水冷夹层由所述第三部件内管外壁、第四水冷夹层套管壁、第三水冷环板以及第四水冷端盖之间的空间组成;所述第五水冷夹层由所述第三部件外管内壁、所述第五水冷夹层套管壁、第三部件环板以及第五水冷端盖之间的空间组成;所述第三部件外管尾部与所述第三部件环板外缘相连接;所述第四水冷夹层套管壁和所述第五水冷夹层套管壁之间通过所述第三部件环板上环形凸台的内外缘连接,所述第四水冷夹层套管壁、所述第五水冷夹层套管壁和所述第三部件环板下表面之间的空间为二次氧化剂通道。
进一步地,所述第四水冷夹层套管壁和所述第三部件内管外壁之间还设置有第四隔板,所述第四隔板的尾部与所述第三部件环板内缘垂直连接固定,所述第四隔板的头部设置有第四水冷钝体,所述第四水冷钝体与所述第四水冷夹层头部的所述第四水冷端盖之间留有空隙,使冷却介质能够通过。
进一步地,所述第五水冷夹层套管壁和所述第三部件外管内壁之间还设置有第五隔板,所述第三部件环板下表面上的环形凸台外缘和所述第三部件环板外缘之间的空间与所述第五隔板的尾部相连接,所述第五隔板的头部设置有第五水冷钝体,所述第五水冷钝体与所述第五水冷夹层头部的所述第五水冷端盖之间留有空隙,使冷却介质能够通过。
进一步的,所述第三部件外管外侧尾部开设有第三水冷进口,所述第五水冷夹层套管壁外侧尾部开设有第三水冷出口
这样,能够增强烧嘴头部向火端面抗高温烧蚀能力,延长烧嘴使用寿命。同时,对于第一部件及第三部件,通过在相应的部件环板中设置有贯穿的冷却水通道,连通了相应部件内、外两层冷却水通道,使内、外两层冷却水共用一组冷却水进、出口,简化了烧嘴管口数量,降低了烧嘴的加工难度。
所述的气化烧嘴的使用方法,所述气化烧嘴具有两组流量能够独立调节的燃料和氧化剂给料通道,以及一路流量能够独立调节的废液或保护气通道;所述一次燃料通过所述第一燃料进口输入到所述燃料输送管内,从所述燃料输送管出口端进入所述一次燃料通道,并喷入气化室;所述二次燃料通过所述二次燃料进口进入到所述二次燃料通道,并喷入气化室;燃料在进入气化室时在喷口入的速度范围为1-50m/s;,所述一次氧化剂通过所述一次氧化剂进口进入到所述一次氧化剂通道,所述二次氧化剂通过所述二次氧化剂进口进入到所述二次氧化剂通道,所述一次氧化剂通过所述一次氧化剂通道喷入气化室,所述二次 氧化剂通过所述二次氧化剂通道喷入气化室;所述一次氧化剂和所述二次氧化剂在烧嘴喷口处的速度范围为1-200m/s;
进一步地,当化工装置产生废液时,所述废液通过废液/保护气进口进入到所述废液/保护气通道;所述废液在气化室出口处的速度为1-100m/s;
进一步地,当化工装置不产生废液时,所述废液/保护气进口通入保护气,所述保护气在气化室出口处的速度为1-200m/s。
本发明方法具有如下优点:
1、本发明的气化烧嘴,具有两路独立的燃料及氧化剂通道,在总投料量、气化室反应空间及停留时间不变的前提下,相比单路燃料及氧化剂通道烧嘴,有效增加了燃料及氧化剂的接触面积,促进了燃料和氧化剂充分、均匀地掺混,加快了气化反应速率,提高燃料转化率和气化烧嘴性能。
2、本发明的气化烧嘴,在一、二次氧化剂通道之间通入保护气,不仅有效地阻隔了一、二次氧化剂,避免因一、二次氧化剂卷吸、掺混而影响烧嘴性能,而且通入的保护气对烧嘴头部向火端面有明显的冷却保护作用,延长了烧嘴使用寿命。
3、水蒸气为气化反应的反应物之一,现有其他技术因结构限制,水蒸气一般与氧化剂掺混后喷入气化室,为避免水蒸气冷凝,必须通过氧气预热器将氧化剂预热至水蒸气在对应压力的饱和温度以上。本发明的气化烧嘴可在废液/保护气通道单独通入水蒸气作为保护气,不再与一、二次氧化剂掺混,因此可降低一、二次氧化剂的预热温度,节省能量。
4、本发明的气化烧嘴,相比于单路燃料及氧化剂通道的烧嘴,运行过程中的调节手段灵活、多样:可以通过调整一、二次燃料及氧化剂投料量的配比, 或是通入保护气的流量,调节燃烧火焰形态,实现与气化室相匹配的流场、温度场。
5、本发明的气化烧嘴,集成有废液焚烧功能:当化工系统产生废液时,可在废液/保护气通道中通入废液,相邻一、二次氧化剂通道喷出的高速旋流氧化剂,既充当燃烧反应的反应物,又充当了废液的雾化剂。同时,废液流与一、二次燃料及氧化剂流同轴喷出,避免了废液侧喷对主烧嘴流场的干扰。
6、本发明的气化烧嘴,可装备水冷冷却系统,在每个部件的管壁上都附着有水冷夹层。这样,能够增强烧嘴头部向火端面抗高温烧蚀能力,延长烧嘴使用寿命。
7、本发明的气化烧嘴,可装备水冷冷却系统,对于第一部件及第三部件,通过在相应的部件环板中设置有贯穿的冷却水通道,连通了相应部件内、外两层冷却水通道,使内、外两层冷却水共用一组冷却水进、出口,简化了烧嘴管口数量,降低了烧嘴的加工难度。
附图说明
图1是本发明提供的组合式气化烧嘴的剖面示意图;
图2是本发明提供的组合式气化烧嘴第一部件剖面示意图;
图3是本发明提供的组合式气化烧嘴第二部件剖面示意图;
图4是本发明提供的组合式气化烧嘴第三部件剖面示意图;
图5是本发明提供的组合式气化烧嘴第一部件套管水冷结构的剖面示意图;
图6是本发明提供的组合式气化烧嘴第二部件套管水冷结构的剖面示意图;
图7是本发明提供的组合式气化烧嘴第三部件套管水冷结构的剖面示意图;
图8是本发明提供的组合式气化烧嘴第一部件环板的仰视剖面示意图。
图中,1为第一部件,2为第二部件,3为第三部件,4为第一部件外管,5 为第一部件内管,6为第一部件环板,7为一次燃料进口,8为一次氧化剂进口,9为第一部件身部法兰,10为第一部件尾部法兰,11为第二部件套管,12为废液/保护气进口,13为第二部件身部法兰,14为第二部件尾部法兰,15为第三部件外管,16为第三部件内管,17为第三部件环板,18为二次氧化剂进口,19为二次燃料进口,20为第三部件身部法兰,21为一次燃料通道,22为一次氧化剂通道,23为废液/保护气通道,24为二次氧化剂通道,25为二次燃料通道,26为燃料输送管,27为氧化剂旋流装置,28A第一隔板,29A为第一水冷夹层套管壁,30A为第一水冷钝体,30B为第二水冷钝体,30C第三水冷钝体,30D为第四水冷钝体,30E为第五水冷钝体,31A为第一水冷端盖,32A为第一水冷环板,33A为第一水冷进口,34A为第一水冷出口,28B第二隔板,29B为第二水冷夹层套管壁,31B为第二水冷端盖,32B为第二水冷环板,33B为第二水冷进口,34B为第二水冷出口,28C第三隔板,29C为第三水冷夹层套管壁,31C为第三水冷端盖,32C为第三水冷环板,33C为第三水冷进口,34C为第三水冷出口,28D第四隔板,29D为第四水冷夹层套管壁,31D为第四水冷端盖,28E第五隔板,29E为第五水冷夹层套管壁,31E为第五水冷端盖。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明一部分实施例,而不是全部实施例。基于本发明的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
图1为本发明提供的组合式气化烧嘴的一个实施例的剖面示意图,如图1所 示:
本实施例的组合式气化烧嘴包括:由外到内依次同轴套装的第一部件1、第二部件2和第三部件3,各部件相互独立,通过紧固件连接为整体。第一部件1的内径大于第二部件2的外径,第二部件2的内径大于第三部件3的外径。第一部件1和第三件3分别具有独立的燃料通道和氧化剂通道。
图2为图1所示实施例的第一部件剖面示意图,如图2所示:
第一部件1包括由外到内依次同轴布置的第一部件外管4和第一部件内管5,第一部件外管4和第一部件外管5通过第一部件环板6连接;第一部件环板6上设置有一次燃料进口7;第一部件外管4身部设置有第一部件身部法兰8;第一部件内管5尾部设置有第一部件尾部法兰9。
图3为图1所示实施例的第二部件剖面示意图,如图3所示:
第二部件2包括第二部件套管11;第一部件套管11侧壁设置有废液/保护气进口12;所述第二部件套管11身部设置有第二部件身部法兰13;第二部件套管11尾部设置有第二部件尾部法兰14。
图4为图1所示实施例的第三部件剖面示意图,如图4所示:
第三部件3包括由外至内同轴布置的第三部件外管15和第三部件内管16,第三部件外管15和第三部件内管16通过第三部件环板17连接;第三部件外管15侧壁设置有二次氧化剂进口18;第三部件内管16尾部设置有二次燃料进口19;第三部件外管15身部设置有第三部件身部法兰20。
优选地,第一部件外管4、第一部件内管5、第二部件套管11、第三部件外管15和第三部件内管16为具有一定厚度的不锈钢管或镍基合金管,具有足够的强度及抗腐蚀能力。
本实施例的组合式气化烧嘴,各部件相互独立,通过紧固件连接为整体,具 体地,第一部件尾部法兰10通过紧固件与第二部件身部法兰13连接,第二部件尾部法兰14通过紧固件与第三部件身部法兰20连接,第一部件身部法兰9通过紧固件与气化炉炉盖连接。这样,当某一部件损坏后,仅需将损坏部件单独拆下维修,不必对烧嘴进行整体分解维修,有效降低了维修工作量。
在本实施例中,第一部件外管4内壁和第一部件内管5外壁之间的环隙构成一次燃料通道21;第一部件内管5内壁和第二部件套管11外壁之间的环隙构成一次氧化剂通道22;第二部件套管11内壁和第三部件外管外壁15之间的环隙构成废液/保护气通道23;第三部件外管15内壁和第三部件内管16外壁之间构成二次氧化剂通道24;第三部件内管16内侧构成二次燃料通道25。
需要说明的是,本实施例中,一次燃料通道21和一次氧化剂通道22的空间位置可互换,二次氧化剂通道24和二次燃料通道25的空间位置可互换,各路介质沿烧嘴径向由外至内的排列方式有如下四种:一次燃料-一次氧化剂-废液/保护气-二次氧化剂-二次燃料、一次燃料-一次氧化剂-废液/保护气-二次燃料-二次氧化剂、一次氧化剂-一次燃料-废液/保护气-二次燃料-二次氧化剂、一次氧化剂-一次燃料-废液/保护气-二次氧化剂-二次燃料。本实施例为便于说明,采用了一次燃料-一次氧化剂-废液/保护气-二次氧化剂-二次燃料的排列方式。
为了增加烧嘴出口处燃料的切向速度,促进燃料和氧化剂的掺混,本实施例优选地在一次燃料通道21内设置有N根燃料输送管26,燃料输送管26入口端连接一次燃料进口7,出口端为旋流结构;更优选地,燃料输送管26沿圆周方向均布,单根燃料输送管为螺旋管或出口端有导流叶片或切向喷嘴。
为了增加烧嘴出口处氧化剂的切向速度,促进氧化剂和燃料的掺混,本实施例优选地在一次氧化剂通道22和二次氧化剂通道24出口处设置有氧化剂旋流装置27(导流叶片或者切向喷嘴)。
具体工作过程为:本实施例中的组合式气化烧嘴,具有两组流量能够独立调节的燃料和氧化剂,及一路流量能够独立调节的废液或保护气。一次燃料通过第一燃料进口7输入到燃料输送管26内,从燃料输送管26出口端进入一次燃料通道21,并喷入气化室;二次燃料通过二次燃料进口19进入到二次燃料通道25,并喷入气化室;燃料在喷口处的速度范围为1~50m/s。相应的,一次氧化剂通过一次氧化剂进口8进入到一次氧化剂通道22,二次氧化剂通过二次氧化剂进口18进入到二次氧化剂通道24,并由各自的氧化剂通道出口喷入气化室;氧化剂在喷口处的速度范围1~200m/s。当化工装置产生废液时,废液通过废液/保护气进口12进入到废液/保护气通道23,废液在出口处的速度为1~100m/s。当化工装置不产生废液时,可将废液切换为保护气,保护气在出口处的速度为1~200m/s。上述各路燃料及氧化剂喷出烧嘴后,带有一定的切向速度,相互之间充分接触、掺混,并在气化室内发生气化反应,气化压力为1~10MPa,气化温度1200~1800℃。
在相同的总投料量、气化室反应空间及停留时间情况下,与仅有单路燃料、氧化剂的气化烧嘴相比,上述实施例中的组合式气化烧嘴增加了燃料通道和氧化剂通道的数量,增大了燃料及氧化剂的接触面积,保证了燃料、氧化剂快速地掺混充分、均匀,提高了燃料转化率及烧嘴性能。同时,因为各路燃料、氧化剂的流量可以单独调节,在总负荷不变的前提下,可以通过适当调整一、二次燃料或氧化剂的配比,重新组织流场,灵活调整燃烧火焰形态。通过在一、二次氧化剂通道之间通入保护气或水蒸气,有效地阻隔了一、二次氧化剂,避免因一、二次氧化剂卷吸、掺混造成一、二次氧煤比偏离设计值或头部流场紊乱进而影响烧嘴性能及寿命。同时,通入的保护气对烧嘴头部向火端面有明显的冷却保护作用,避免向火端面高温烧蚀,延长烧嘴寿命。此外,通过适当增 减保护气流量,可适当调整烧嘴头部流场,灵活调整燃烧火焰形态,保证烧嘴稳定运行。
水蒸气为气化反应的反应物之一,现有其他技术因结构限制,水蒸气一般只能与氧化剂掺混后喷入气化室,为避免水蒸气冷凝,必须通过氧气预热器,将氧化剂预热至水蒸气在对应压力的饱和温度以上。上述实施例的气化烧嘴可在废液/保护气通道单独通入水蒸气,不再与一、二次氧化剂掺混,因此可降低一、二次氧化剂的预热温度,节省能量。
当化工装置产生废液时,直接排放将严重污染环境。为避免污染环境并回收废液中蕴含的化学能,可在废液/保护气通道中通入废液,相邻一、二次氧化剂通道喷出的高速旋流氧化剂,既充当了废液燃烧反应的氧化剂,又充当了废液的雾化剂:带有一定切向速度的高速气流,。同时,废液流与一、二次燃料及氧化剂流同轴喷出,避免了废液侧喷对主烧嘴流场的干扰。
在上述实施例中,组合式气化烧嘴的燃料为粉煤或煤浆,氧化剂为氧气或空气的一种或其与水蒸气、二氧化碳等组成的混合物,保护气为氮气、二氧化碳或水蒸气中的一种或几种的混合物,废液为有机废液、无机废液或重金属废液。但本领域技术人员应当明白,这种组合式气化烧嘴也可以用其他固态、液态、气态可燃物质作为燃料,也可以用其他固态、液态、气态物质作为废液。
优选的,提供一种可供选择的实施例。如图5所示,沿所述第一部件1径向方向由内向外依次设置第一水冷夹层、一次燃料通道21、第二水冷夹层。
进一步的,如图8所示,所述第一部件环板6上表面设置为平面,下表面设置为与所述第一部件环板6同圆心的环形凸台;所述环形凸台的外缘与所述第一部件环板6的外缘留有空间,所谓环形凸台的内缘与所述第一部件环板6的 内缘留有空间;所述环形凸台内部沿所述第一部件1径向方向设置有若干贯通管道,所述贯通管道至少为三个。所述第一部件环板6上开设有垂直于所述第一部件1上表面的一次燃料进口,所述一次燃料进口不与所述贯通通道位置相重叠。
进一步地,所述第一水冷夹层由所述第一部件内管5外壁、第一水冷夹层套管壁29A、第一水冷环板32A以及第一水冷端盖31A之间的空间组成;所述第二水冷夹层由所述第一部件外管4内壁、所述第二水冷夹层套管壁29B、第一部件环板6以及第二水冷端盖31B之间的空间组成;所述第一水冷夹层套管壁29A和所述第二水冷夹层套管壁29B之间通过所述第一部件环板6上环形凸台的内外缘连接,所述第一水冷夹层套管壁29A、所述第二水冷夹层套管壁29B和所述第一部件环板6下表面之间的空间为一次燃料通道21。
进一步地,所述第一水冷夹层套管壁29A和所述第一部件内管5外壁之间还设置有第一隔板28A,所述第一隔板28A的尾部与所述第一部件环板6内缘垂直连接固定,所述第一隔板28A的头部设置有第一水冷钝体30A,所述第一水冷钝体30A与所述第一水冷夹层头部的所述第一水冷端盖31A之间留有空隙,使冷却介质能够通过。
进一步地,所述第二水冷夹层套管壁29B和所述第一部件外管4内壁之间还设置有第二隔板28B,所述第一部件环板6下表面上的环形凸台外缘和所述第一部件环板6外缘之间的空间与所述第二隔板28B的尾部相连接,所述第二隔板28B的头部设置有第二水冷钝体30B,所述第二水冷钝体30B与所述第二水冷夹层头部的所述第二水冷端盖31B之间留有空隙,使冷却介质能够通过。
进一步的,所述第一部件外管4外侧尾部开设有第一水冷进口33A,所述第一水冷夹层套管壁29A外侧尾部开设有第一水冷出口34A。
进一步的,冷却剂由第一水冷进口33A进入到第一部件外管4内壁与第二隔板28B之间的空间,通过头部的第二水冷钝体30B后,再进入到第二隔板28B与第二水冷夹层套管壁29B之间的空间,再通过第一部件环板6下表面上的环形凸台内部的贯通管道,再流入第一水冷夹层套管壁29A与第一隔板28A之间的空间,通过头部的第一水冷钝体30A后,再通过第一隔板28A与第一部件内管5外壁之间的空间,最后经由第一水冷出口34A流出。
优选的,提供一种可供选择的实施例。如图6所示沿所述第二部件2径向方向由内向外设置有第三水冷夹层。所述第三水冷夹层由所述第二部件套管11外壁、第三水冷夹层套管壁29C、第二水冷环板32B以及第三水冷端盖31C之间的空间组成;所述第三水冷夹层套管壁29C尾部和所述第二部件套管11外壁尾部之间通过第二水冷环板32B连接,所述第三水冷夹层套管壁29C头部和所述第二部件套管11外壁头部之间通过第三水冷端盖31C连接。
进一步地,所述第三水冷夹层套管壁29C和所述第二部件套管11外壁之间还设置有第三隔板28C,所述第三隔板28C的尾部与所述第二水冷环板32B垂直连接固定,所述第三隔板28C的头部设置有第三水冷钝体30C,所述第三水冷钝体30C与所述第三水冷夹层头部的所述第三水冷端盖31C之间留有空隙,使冷却介质能够通过。
进一步的,所述第三水冷夹层套管壁29C外侧尾部分别开设有第二水冷进口33B和第二水冷出口34B。
进一步的,冷却剂由第二水冷进口33B进入到第三水冷夹层套管壁29C与第三隔板28C之间的空间,通过头部的第三水冷钝体30C后,再进入到第三隔板28C与第二部件套管11外壁之间的空间,最后经由第二水冷出口34B流出。
优选的,提供一种可供选择的实施例。如图7所示,沿所述第三部件3径向 方向由内向外依次设置第四水冷夹层、二次氧化剂通道24、第五水冷夹层。
进一步地,所述第四水冷夹层由所述第三部件内管16外壁、第四水冷夹层套管壁29D、第三水冷环板32C以及第四水冷端盖31D之间的空间组成;所述第五水冷夹层由所述第三部件外管15内壁、所述第五水冷夹层套管壁29E、第三部件环板17以及第五水冷端盖31E之间的空间组成;所述第三部件外管15尾部与所述第三部件环板17外缘相连接;所述第四水冷夹层套管壁29D和所述第五水冷夹层套管壁29E之间通过所述第三部件环板上环形凸台的内外缘连接,所述第四水冷夹层套管壁29D、所述第五水冷夹层套管壁29E和所述第三部件环板17下表面之间的空间为二次氧化剂通道24。
进一步地,所述第四水冷夹层套管壁29D和所述第三部件内管16外壁之间还设置有第四隔板28D,所述第四隔板28D的尾部与所述第三部件环板17内缘垂直连接固定,所述第四隔板28D的头部设置有第四水冷钝体30D,所述第四水冷钝体30D与所述第四水冷夹层头部的所述第四水冷端盖31D之间留有空隙,使冷却介质能够通过。
进一步地,所述第五水冷夹层套管壁29E和所述第三部件外管15内壁之间还设置有第五隔板28E,所述第三部件环板17下表面上的环形凸台外缘和所述第三部件环板17外缘之间的空间与所述第五隔板28E的尾部相连接,所述第五隔板28E的头部设置有第五水冷钝体30E,所述第五水冷钝体30E与所述第五水冷夹层头部的所述第五水冷端盖31E之间留有空隙,使冷却介质能够通过。
进一步的,所述第三部件外管15外侧尾部开设有第三水冷进口33C,所述第五水冷夹层套管壁29E外侧尾部开设有第三水冷出口34C。
进一步的,冷却剂由所述第三水冷进口33C进入到所述第三部件外管15内壁与所述第五隔板28E之间的空间,通过所述第五水冷钝体30E后,再进入到 所述第五隔板28E与所述第五水冷夹层套管壁29E之间的空间,再通过所述第三部件环板17下表面上环形凸台内部的贯通管道,再流入所述第四水冷夹层套管壁29D与所述第四隔板28D之间的空间,通过头部的第四水冷钝体30D后,再通过所述第四隔板28D与所述第三部件内管16外壁之间的空间,最后经由所述第三水冷出口34C流出。
进一步的,以上实施例可以自由组合。
优选的,冷却剂可以为水或其他合适的冷却介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (9)

  1. 一种组合式气化烧嘴,其特征在于,包括由外到内依次同轴套装的第一部件(1)、第二部件(2)和第三部件(3),所述的第一部件(1)、第二部件(2)和第三部件(3)各部件相互独立,通过紧固件连接为整体;所述的第一部件(1)和第三部件(3)分别具有独立的燃料通道和氧化剂通道。
  2. 如权利要求1所述的组合式气化烧嘴,其特征在于,所述第一部件(1)包括由外到内同轴布置的第一部件外管(4)和第一部件内管(5),所述第一部件外管(4)长度小于所述第一部件内管(5)长度,所述第一部件外管(4)尾部和所述第一部件内管(5)身部通过第一部件环板(6)连接,形成第一环形空间;所述第一部件环板(6)上设置有一次燃料进口(7);所述第一部件内管(5)侧壁未被所述第一部件外管覆盖的身部的设置有一次氧化剂进口(8);所述第一部件外管(4)身部设置有第一部件身部法兰(9);所述第一部件内管(5)尾部设置有第一部件尾部法兰(10)。
  3. 如权利要求1所述的组合式气化烧嘴,其特征在于,所述第二部件(2)包括第二部件套管(11);所述第二部件套管(11)的未被所述第一部件覆盖的身部侧壁设置有废液/保护气进口(12);所述第二部件套管(11)身部略低于所述废液/保护气进口(12)的位置设置有第二部件身部法兰(13),用于与所述第一部件尾部法兰(10)紧固连接;所述第二部件套管(11)尾部设置有第二部件尾部法兰(14)。
  4. 如权利要求1所述的组合式气化烧嘴,其特征在于,所述第三部件(3)包括由外到内同轴布置的第三部件外管(15)和第三部件内管(16),所述的第三部件外管(15)长度小于所述第三部件内管(16)长度,所述第三部件外管(15)尾部和所述第三部件内管(16)身部通过第三部件环板(17)连接,使所述第三部件外管(15)和所述第三部件内管(16)之间形成第二环形空腔;所述第三部件外管(15)侧壁设置有二次氧化剂进口(18);所述第三部件内管(16)尾部设置有二次燃料进口(19);所述第三部件外管(15)身部设置有第三部件身部法兰(20),用于与所述第二部件尾部法兰(14)紧固连接。
  5. 如权利要求1‐4中任一项所述的组合式气化烧嘴,其特征在于,所述第一部件身部法兰(9)与汽化炉炉盖通过紧固件连接;所述第一部件尾部法兰(10)与第二部件身部法兰(13)通过紧固件连接;所述第二部件尾部法兰(14)与第三部件身部法兰(20)通过紧固件连接。
  6. 如权利要求1‐4中任一项所述的组合式气化烧嘴,其特征在于,所述第一环形空腔构成一次燃料通道(21);所述第一部件内管(5)的内壁和第二部件套管(11)的外壁之间的环隙构成一次氧化剂通道(22);所述第二部件套管(11)内壁和第三部件外管外壁(15)之间的环隙构成废液/保护气通道(23);所述第二环形空间构成二次氧化剂通道(24); 所述第三部件内管(16)内侧构成二次燃料通道(25)。
  7. 如权利要求6所述的组合式气化烧嘴,其特征在于,所述一次燃料通道(21)内有N根燃料输送管(26),N为大于等于1的整数;所述燃料输送管(26)入口端连接一次燃料进口(7),并且所述燃料输送管(26)为螺旋盘管;优选地,所述燃料输送管(26)沿圆周方向均布,单根燃料输送管为螺旋管或出口端有旋流的直管。
  8. 如权利要求6所述的组合式气化烧嘴,其特征在于,所述一次氧化剂通道(22)和二次氧化剂通道(24)出口处均设置有氧化剂旋流装置(27)。
  9. 一种权利要求1‐8任一项所述的气化烧嘴的使用方法,其特征在于,所述气化烧嘴具有两组流量能够独立调节的燃料和氧化剂给料通道,以及一路流量能够独立调节的废液或保护气通道;所述一次燃料通过所述第一燃料进口(7)输入到所述燃料输送管(26)内,从所述燃料输送管(26)出口端进入所述一次燃料通道(21),并喷入气化室;所述二次燃料通过所述二次燃料进口(19)进入到所述二次燃料通道(25),并喷入气化室;燃料在进入气化室时在喷口入的速度范围为1‐50m/s;相应的,所述一次氧化剂通过所述一次氧化剂进口(8)进入到所述一次氧化剂通道(22),所述二次氧化剂通过所述二次氧化剂进口(18)进入到所述二次氧化剂通道(24),所述一次氧化剂通过所述一次氧化剂通道(22)喷入气化室,所述二次氧化剂通过所述二次氧化剂通道(24)喷入气化室;所述一次氧化剂和所述二次氧化剂在烧嘴喷口处的速度范围为1‐200m/s;
    当化工装置产生废液时,所述废液通过废液/保护气进口(12)进入到所述废液/保护气通道(23),其中,所述废液在气化室出口处的速度为1‐100m/s;
    当化工装置不产生废液时,向所述废液/保护气进口(12)通入保护气,所述保护气在气化室出口处的速度为1‐200m/s。
PCT/CN2019/123456 2019-06-17 2019-12-06 一种组合式气化烧嘴及其使用方法 WO2020253145A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910520919.6 2019-06-17
CN201910520919.6A CN110093190A (zh) 2019-06-17 2019-06-17 一种组合式气化烧嘴及其使用方法

Publications (1)

Publication Number Publication Date
WO2020253145A1 true WO2020253145A1 (zh) 2020-12-24

Family

ID=67451039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123456 WO2020253145A1 (zh) 2019-06-17 2019-12-06 一种组合式气化烧嘴及其使用方法

Country Status (2)

Country Link
CN (1) CN110093190A (zh)
WO (1) WO2020253145A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110093190A (zh) * 2019-06-17 2019-08-06 北京迈未科技有限公司 一种组合式气化烧嘴及其使用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5772708A (en) * 1995-03-17 1998-06-30 Foster Wheeler Development Corp. Coaxial coal water paste feed system for gasification reactor
CN103822207A (zh) * 2012-11-16 2014-05-28 航天长征化学工程股份有限公司 一种变压、变工况油烧嘴
CN106939175A (zh) * 2017-04-19 2017-07-11 神华集团有限责任公司 气化烧嘴及气化装置
CN108728168A (zh) * 2017-04-14 2018-11-02 航天长征化学工程股份有限公司 一种气化烧嘴
CN110093190A (zh) * 2019-06-17 2019-08-06 北京迈未科技有限公司 一种组合式气化烧嘴及其使用方法
CN210085386U (zh) * 2019-06-17 2020-02-18 北京航天迈未科技有限公司 一种组合式气化烧嘴

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2026454A1 (de) * 1969-05-30 1971-08-05 Koho es Gepipan Mmiszterium Tuzelestechmkai Kutatointezet, Miskolc (Ungarn) Verfahren und Einrichtung zur Herstellung von Schutzgasen
CN101050386B (zh) * 2007-02-14 2011-04-13 兖矿集团有限公司 气化烧嘴在线投料方法
US20090004611A1 (en) * 2007-06-29 2009-01-01 Hisashi Kobayashi Low velocity staged combustion for furnace atmosphere control
CN102942964B (zh) * 2012-10-29 2015-01-07 哈尔滨工业大学 一种煤粉旋风气流床气化装置及方法
US20170082286A1 (en) * 2015-09-18 2017-03-23 Robert R. Trimble High efficiency burner
CN106085509A (zh) * 2016-06-12 2016-11-09 新奥科技发展有限公司 煤粉和水煤浆共气化方法及气化炉
CN108690662A (zh) * 2018-06-25 2018-10-23 新奥科技发展有限公司 浆粉耦合气化炉烧嘴及浆粉耦合气化方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5772708A (en) * 1995-03-17 1998-06-30 Foster Wheeler Development Corp. Coaxial coal water paste feed system for gasification reactor
CN103822207A (zh) * 2012-11-16 2014-05-28 航天长征化学工程股份有限公司 一种变压、变工况油烧嘴
CN108728168A (zh) * 2017-04-14 2018-11-02 航天长征化学工程股份有限公司 一种气化烧嘴
CN106939175A (zh) * 2017-04-19 2017-07-11 神华集团有限责任公司 气化烧嘴及气化装置
CN110093190A (zh) * 2019-06-17 2019-08-06 北京迈未科技有限公司 一种组合式气化烧嘴及其使用方法
CN210085386U (zh) * 2019-06-17 2020-02-18 北京航天迈未科技有限公司 一种组合式气化烧嘴

Also Published As

Publication number Publication date
CN110093190A (zh) 2019-08-06

Similar Documents

Publication Publication Date Title
CN102031152B (zh) 一种用于水煤浆气化的工艺烧嘴及系统及其应用
CN101446413B (zh) 一种组合式多喷嘴燃烧器
JP7273025B2 (ja) ガス化バーナ
CN106524152B (zh) 一种分级燃气低氮燃烧器
CN109882841B (zh) 一种解耦燃气燃烧器
CN105985808B (zh) 一种气化烧嘴和气化炉
CN201327020Y (zh) 一种组合式多喷嘴燃烧器
CN108485710A (zh) 一种可协同气化处理废液、浆料和煤粉的气化炉和方法
US9095829B2 (en) Plasma fired feed nozzle
CN113587087A (zh) 一种预混型富氢废气掺烧燃烧器
CN202392795U (zh) 一种用于沥青气化的气化炉燃烧器
WO2020253145A1 (zh) 一种组合式气化烧嘴及其使用方法
EP2518403B1 (en) Fuel distribution device and burner
CN111780106B (zh) 轧钢加热炉无焰燃烧器及其应用
CN107022379B (zh) 一种带有水冷盘管保护的干煤粉气流床气化炉烧嘴
CN210085386U (zh) 一种组合式气化烧嘴
CN208964866U (zh) 一种可协同气化处理废液、浆料和煤粉的气化系统
CN210601615U (zh) 一种低NOx排放焦炉煤气燃烧器
CN111349462B (zh) 水煤浆的气流床气化系统及方法
CN209722061U (zh) 一体化开工烧嘴
CN210004388U (zh) 一种低氮燃烧器
CN215637150U (zh) 一种富氢废气掺烧燃烧器
CN202032581U (zh) 高强力混合低氧化氮排放的节能型气体燃烧器
CN110003957B (zh) 一种用于气流床气化炉的工艺烧嘴
CN211620428U (zh) 多烧嘴顶置式的气流床气化炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19933263

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19933263

Country of ref document: EP

Kind code of ref document: A1