WO2020253136A1 - 蓄能冷却系统及方法 - Google Patents

蓄能冷却系统及方法 Download PDF

Info

Publication number
WO2020253136A1
WO2020253136A1 PCT/CN2019/122858 CN2019122858W WO2020253136A1 WO 2020253136 A1 WO2020253136 A1 WO 2020253136A1 CN 2019122858 W CN2019122858 W CN 2019122858W WO 2020253136 A1 WO2020253136 A1 WO 2020253136A1
Authority
WO
WIPO (PCT)
Prior art keywords
medium
storage tank
temperature
cooling
heat
Prior art date
Application number
PCT/CN2019/122858
Other languages
English (en)
French (fr)
Inventor
王卫良
吕俊复
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2020253136A1 publication Critical patent/WO2020253136A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D2020/006Heat storage systems not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D2020/0065Details, e.g. particular heat storage tanks, auxiliary members within tanks
    • F28D2020/0069Distributing arrangements; Fluid deflecting means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the application relates to an energy storage cooling system and method, and belongs to the field of energy storage and utilization.
  • the circulating water cooling system involves the cold end system of the power plant and is a necessary condition for establishing the vacuum of the steam turbine and taking away the cold end heat source.
  • most units face insufficient output in the case of high summer temperatures, and in winter due to safety requirements such as antifreeze (surface-type circulating cooling units), they are forced to operate under high back pressure and high energy consumption. It brings great challenges to the economy, safety, stable operation and load response of the unit.
  • the purpose of this application is to provide an energy storage cooling system.
  • an energy storage (cold) device in spring, summer and autumn, it uses better cooling conditions at night to accumulate a large amount of cold sources for use in high temperature during the day; in winter; In the case of low temperature, use the accumulated large amount of circulating water heat source to increase the flow of the feed water pump to reduce the risk of local low-temperature freezing and cracking of the radiator, and make full use of the rare cooling conditions in winter to greatly reduce the back pressure of the unit and increase the unit effectiveness.
  • An energy storage cooling system including a ventilation device, a heat medium pipeline, a heat medium distribution system, a heat dissipation system, a cooling medium collection system, a refrigerant pipeline, and a medium pump, the heat medium pipeline, the heat medium distribution system, the heat dissipation system and the ventilation
  • the devices are connected in sequence; the refrigerant pipeline is connected to the heat dissipation system through a cooling medium collection system, and the medium pump is arranged on the refrigerant pipeline or the heat medium pipeline; characterized in that, the system further includes at least one medium storage tank , The medium storage tank is arranged on the heat medium pipe or the refrigerant pipe.
  • the medium distribution system includes a plurality of water distribution pipes, which are arranged in parallel and connected between the heat medium pipe and the heat dissipation system; each of the water distribution pipes is provided with a small
  • each small medium pump is provided with a bypass pipeline, and each bypass pipeline is provided with a bypass valve;
  • the system is also provided with a regulating valve; when the medium storage tank is set in the heat medium On the pipeline, the regulating valve is connected between the medium storage tank and the refrigerant pipeline to communicate it; when the medium storage tank is arranged on the refrigerant pipeline, the regulating valve is connected to the medium The storage tank is connected with the heat medium pipeline.
  • the system includes two medium storage tanks, respectively serving as a high temperature medium storage tank and a low temperature medium storage tank, the high temperature medium storage tank is arranged on the heat medium pipeline, and the low temperature medium storage tank is arranged A cooling medium pump is arranged on the refrigerant pipeline and between the outlet of the high temperature medium storage tank and the inlet of the low temperature medium storage tank.
  • An energy storage cooling method using the above energy storage cooling system comprising:
  • the high-temperature medium When the medium storage tank is set on the heat medium pipeline, the high-temperature medium first enters the medium storage tank and then is distributed by the heat medium distribution system and then enters the heat dissipation system, and is ventilated by the ventilation device 1 to enhance heat dissipation; the heat dissipation medium becomes The cryogenic medium is collected by the cooling medium collection system and sent to the user through the refrigerant pipeline;
  • the high-temperature medium enters the heat dissipation system after being distributed by the heat medium distribution system, and is ventilated through the ventilation device 1 to enhance heat dissipation;
  • the dissipated medium becomes a low-temperature medium and passes through the cooling medium collection system After collection, enter the medium storage tank 8 and then send it to the user through the refrigerant pipeline;
  • the method further includes:
  • the method further includes:
  • This application has the following advantages and beneficial effects: 1 In the three seasons of spring, summer, and autumn, better cooling conditions at night are used, and a large amount of cold sources are accumulated by using a cold storage medium storage tank device for use in high temperature days during the day, which can greatly increase the unit The average thermal efficiency of the unit can reduce the coal consumption of the unit, and improve the load capacity of the unit in high temperature weather; 2In the case of low winter temperature, use the accumulated large amount of circulating water heat source, and reduce the local radiator by increasing the flow of part of the water supply pump The danger of freezing and cracking at low temperature; 3Make full use of the rare cooling conditions in winter, further tap the space for the reduction of winter back pressure, greatly reduce the operating back pressure of the unit, and improve the average thermal efficiency of the unit.
  • Fig. 1 is a schematic diagram of an energy storage cooling system of one of the embodiments involved in this application.
  • FIG. 2 is a schematic diagram of an energy storage cooling system according to another embodiment involved in this application.
  • Fig. 3 is a schematic diagram of an energy storage cooling system according to another embodiment involved in this application.
  • FIG. 4 is a schematic diagram of an energy storage cooling system including two medium storage tanks involved in this application.
  • 1-ventilation device 2-heat medium pipeline; 3-heat medium distribution system; 4-heat dissipation system; 5-cooling medium collection system; 6-refrigerant pipeline; 7-medium pump; 8-medium storage tank; 9—Regulating valve; 10—Water distribution pipeline; 11—Small medium pump; 12—Cooling medium pump; 13—Low temperature measuring point.
  • An energy storage cooling system including a ventilation device 1, a heat medium pipe 2, a heat medium distribution system 3, a heat dissipation system 4, a cooling medium collection system 5, a refrigerant pipe 6 and a medium pump 7, a heat medium pipe 2, a heat medium distribution
  • the system 3, the heat dissipation system 4 and the ventilation device 1 are connected in sequence; the refrigerant pipe 6 is connected to the heat dissipation system 4 through the cooling medium collection system 5, and the medium pump 7 is arranged on the refrigerant pipe 6 or the heat medium pipe 2.
  • the system also includes at least one medium storage tank 8, which is arranged on the heat medium pipe 2 (as shown in Fig. 1) or the refrigerant pipe 6 (as shown in Fig. 2).
  • t max , t min and t e all refer to the wet bulb temperature.
  • e max , t min and t e all refer to the wet bulb temperature.
  • a low temperature measuring point 13 is arranged at a lower temperature of the radiator of the heat dissipation system 4 to obtain the low temperature end temperature t x (°C) of the medium side at the low temperature measuring point 13.
  • the energy storage cooling system is a cooling system with energy storage.
  • the high temperature medium from the user enters the system from the heat medium pipe under the suction force of the medium pump 7.
  • the high temperature medium first Enter the medium storage tank 8, and then enter the heat medium distribution system, so that the high temperature medium enters the heat dissipation system 4 uniformly, and is ventilated through the ventilation device 1 to enhance heat dissipation.
  • the dissipated medium becomes a low-temperature medium, which is collected by the cooling medium collection system 5 and returned to the user via the cooling medium pipe 6.
  • the high-temperature medium enters the heat dissipation system 4 and is ventilated by the ventilation device 1 to enhance heat dissipation.
  • the dissipated medium becomes a low-temperature medium.
  • the medium pump 7 adjusts the flow rate according to the cooling demand of the user.
  • the medium storage tank 8 has the function of storing medium, and its volume directly affects the temperature difference between the high and low temperature medium entering and leaving the system.
  • the medium storage tank 8 since the medium storage tank 8 is often relatively large, the medium that enters the medium storage tank 8 first will usually flow out first, so that the temperature of the medium entering and leaving the medium storage tank 8 is also different. Therefore, the power and flow rate of the medium pump 7 can be increased at night, and the refrigerant can be stored in advance; it is also possible to provide a defrosting heat source to the system through the normal temperature medium stored in the medium storage tank 8 under the requirement of antifreeze.
  • the maximum temperature and minimum temperature of the environment differ greatly.
  • the ventilation capacity of the ventilation device 1 can be fully utilized to heat The medium is cooled, so that the temperature of the low-temperature medium and the high-temperature medium gradually decrease, thereby further reducing the temperature of the medium in the medium storage tank 8 to realize the low-temperature storage of the energy storage cooling system.
  • the temperature of the medium at a local location in the heat dissipation system 4 is too low, which may cause the danger of freezing and cracking.
  • the medium storage tank 8 stores a large amount of medium under normal working conditions, the temperature is relatively high.
  • a large amount of relatively high temperature medium stored in the medium storage tank 8 is used to heat the heat dissipation system 4 until t x >e 0 , so that the heat dissipation system 4 avoids the danger of freezing and cracking.
  • the medium distribution system 3 includes several water distribution pipes 10, which are arranged in parallel and connected between the heat medium pipe 2 and the heat dissipation system 4; each water distribution pipe 10 is provided with For the small medium pump 11, each small medium pump 11 is provided with a bypass; the system is also provided with a regulating valve 9.
  • the regulating valve 9 is connected between the medium storage tank 8 and the refrigerant pipeline 6 to communicate with it; when the medium storage tank 8 is set on the refrigerant pipeline 6, the adjustment The valve 9 is connected between the medium storage tank 8 and the heat medium pipe 2 to communicate it.
  • the flow rate of the medium pump 7 is normally adjusted according to the change in the flow rate required by the user.
  • the system includes two medium storage tanks 7, which serve as high-temperature medium storage tanks and low-temperature medium storage tanks.
  • the high temperature medium storage tank is arranged on the heat medium pipeline 2
  • the low temperature medium storage tank is arranged on the refrigerant pipeline 6, and a cooling medium pump 12 is arranged between the outlet of the high temperature medium storage tank and the inlet of the low temperature medium storage tank.
  • the flow rate of the cooling medium pump 12 can be kept synchronized with the flow rate of the medium pump 7; the flow rate of the medium pump 7 is adjusted and operated according to the user's flow demand.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本申请公开了一种带蓄能的冷却系统及其调节方法。冷却系统包括通风装置、热媒质分配系统、散热系统、冷却媒质收集系统和至少一个媒质储罐等。媒质分配系统包括若干个配水支管道,并联与散热系统连接。在春、夏、秋三季,利用夜晚较好的冷却条件,尽量增加媒质泵的流量,充分利用环境条件下系统冷却能力余量对热媒质进行冷却,使得系统的媒质温度整体逐渐下降,从而使得媒质储罐内的媒质温度逐渐下降,达到储冷的效果。散热系统低温端温度过低时,逐渐增加媒质泵的流量,以利用媒质储罐中储存的媒质对散热系统进行加温。本申请具有调节方便、系统安全可靠、平均热效率高等优点。

Description

蓄能冷却系统及方法 技术领域
本申请涉及蓄能冷却系统及方法,属于能量存储及利用领域。
背景技术
循环水冷却系统涉及发电厂的冷端系统,是建立汽轮机真空,并将冷端热源带走的必要条件。然而受环境温度变化影响,大部分机组在夏季温度较高的情况下面临出力不足,而在冬季因防冻等安全需求(表面式循环冷却机组),被迫运行在高背压、高能耗状态,对机组的经济、安全、稳定运行、负荷响应等都带来了很大的挑战。
发明内容
本申请的目的在于提供蓄能冷却系统,通过采用蓄能(冷)装置,在春、夏、秋三季,利用夜晚较好的冷却条件,大量蓄积冷源,供白天高温天气时使用;在冬季温度较低的情况下,利用蓄积的大量循环水热源,通过增加支给水泵的流量,降低散热器局部低温冻裂的危险,并充分利用冬季难得的冷却条件,大幅降低机组背压,提高机组效率。
本申请是通过以下技术方案来实现的:
一种蓄能冷却系统,包括通风装置、热媒质管道、热媒质分配系统、散热系统、冷却媒质收集系统、冷媒质管道和媒质泵,所述热媒质管道、热媒质分配系统、散热系统与通风装置依次相连;所述冷媒质管道通过冷却媒质收集系统与散热系统相连,所述媒质泵设置在所述冷媒质管道或热媒质管道上;其特征在于,所述系统还包括至少一个媒质储罐,所述媒质储罐设置在所述热媒质管道或所述冷媒质管道上。
上述技术方案中,所述媒质分配系统包括若干个配水支管道,所述若干个配水支管道按照并联布置,连接在热媒质管道与散热系统之间;所述每个配水支管道上设置有小媒质泵,每个小媒质泵均设置有旁通管路,每个旁通管路均设置有旁通阀;所述系统还设置有调节阀门;当所述媒质储罐设置在所述热媒质管道上,所述调节阀门连接在所述媒质储罐与所述冷媒质管道之间将其连通;当所述媒质储罐设置在所述冷媒质管道上,所述调节阀门连接在所述媒质储罐与所述热媒质管道之间将其连通。
上述技术方案中,所述系统包括两个媒质储罐,分别作为高温媒质储罐和低温媒质储罐,所述高温媒质储罐设置在所述热媒质管道上,且所述低温媒质储罐设置在冷媒质管道上,并在所述高温媒质储罐出口和所述低温媒质储罐进口之间设置冷却媒质泵。
一种蓄能冷却方法,其使用上述蓄能冷却系统,所述方法包括:
使来自用户的高温媒质在媒质泵的抽力作用下,从热媒质管道进入所述系统;媒质泵(7)的流量根据用户的冷却需求进行调节;
当所述媒质储罐设置在所述热媒质管道上,高温媒质先进入所述媒质储罐再经热媒质分配系统分配后进入散热系统,并通过通风装置1通风强化散热;散热后的媒质成为低温媒质,通过冷却媒质收集系统收集后经冷媒质管道送往用户;
当所述媒质储罐设置在所述冷媒质管道上,高温媒质经热媒质分配系统分配后进入散热系统,并通过通风装置1通风强化散热;散热后的媒质成为低温媒质,通过冷却媒质收集系统收集后,先进入媒质储罐8,再经冷媒质管道送往用户;
获得环境最高温度t max、最低温度t min和实时温度t e
设定调节参数e 0、e max、Δe,0<e 0<40℃、20℃<e max<50℃、0<Δe<30℃,且e max>t min+Δe、Δe<t max-t min
选定散热系统的典型低温测点,并测得其实时低温温度t x
当t max>e max,且t e<t min+Δe时,尽量增加媒质泵的流量,以充分利用该环境条件下该蓄能冷却系统的冷却能力余量对高温媒质进行冷却,使得系统的媒质温度整体逐渐下降,从而使得媒质储罐内的媒质温度逐渐下降,达到储冷的效果;
当t x<e 0时,逐渐增加媒质泵的流量,以利用媒质储罐中储存的媒质对散热系统进行加温,直至t x>e 0
上述技术方案中,当所述媒质分配系统包括若干个配水支管道时,所述方法还包括:
设定调节参数f 1、f 2,0<f 1<30℃、-50<f 2<0℃,且f 2<f 1<e max
当t max>e max且t e<t min+Δe时,逐步开启所有小媒质泵,并逐步关闭所有小媒质泵的旁通阀;逐步开启可调阀门,以控制媒质泵的流量,并逐步将小媒质泵的流量增加至较高水平,以实现蓄能冷却系统的低温蓄冷;
当t max>e max且t e>t min+Δe时,逐步开启小媒质泵对应的旁通阀,并逐步关闭小媒质泵和 可调阀门;
当t max<f 1且t min<f 2时,逐步开启所有小媒质泵,并逐步关闭小媒质泵的旁通阀;
当t x<e 0时,若散热系统低温测点对应的配水支管道上的小媒质泵未开启,逐步开启散热系统低温端的配水支管道上的小媒质泵,并逐步关闭相应小媒质泵的旁通阀;逐步增大相应支管小媒质泵的流量,直至t x>e 0
上述技术方案中,当所述系统包括两个媒质储罐,分别作为高温媒质储罐和低温媒质储罐时,所述方法还包括:
设定调节参数f 1、f 2,且0<f 1<30℃、-50<f 2<0℃,f 2<f 1<e max
当t max>e max且t e<t min+Δe时,增加冷却媒质泵的流量,使其大于媒质泵的流量,以实现蓄能冷却系统的低温蓄冷;
当t e>t min+Δe时,逐步降低冷却媒质泵的流量,使其小于媒质泵的流量,以实现蓄能冷却系统的高温节能,并恢复高温媒质储罐的媒质储量;
当t max<f 1且t min<f 2时,尽量提高冷却媒质泵的流量,使冷却媒质泵的流量大于媒质泵的流量,以利用高温媒质储罐的蓄能进行低温防冻;
当t x<e 0时,逐步增加冷却媒质泵的流量,使其大于媒质泵的流量,直至t x>e 0,以利于媒质储罐蓄能进行低温防冻。
本申请具有以下优点及有益效果:①在春、夏、秋三季,利用夜晚较好的冷却条件,通过采用蓄冷媒质储罐装置,大量蓄积冷源,供白天高温天气时使用,可大幅提高机组的平均热效率,降低机组煤耗,并提高高温天气机组的带负荷能力;②在冬季温度较低的情况下,利用蓄积的大量循环水热源,并通过增加部分支给水泵的流量,降低散热器局部低温冻裂的危险;③充分利用冬季难得的冷却条件,进一步挖掘冬季背压下降的空间,大幅降低机组的运行背压,提高机组平均热效率。
附图说明
图1为本申请所涉及其中一种实施方式的蓄能冷却系统示意图。
图2为本申请所涉及另一种实施方式的蓄能冷却系统示意图。
图3为本申请所涉及再一种实施方式的蓄能冷却系统示意图。
图4为本申请所涉及包括两个媒质储罐的蓄能冷却系统示意图。
图中:1-通风装置;2-热媒质管道;3-热媒质分配系统;4-散热系统;5-冷却媒质收集系统;6-冷媒质管道;7-媒质泵;8-媒质储罐;9-调节阀门;10-配水支管道;11-小媒质泵;12-冷却媒质泵;13-低温测点。
具体实施方式
下面结合附图对本申请的具体实施方式及工作过程作进一步的说明。
本申请文件中的上、下、左、右、前和后等方位用语是基于附图所示的位置关系而建立的。附图不同,则相应的位置关系也有可能随之发生变化,故不能以此理解为对保护范围的限定。
一种蓄能冷却系统,包括通风装置1、热媒质管道2、热媒质分配系统3、散热系统4、冷却媒质收集系统5、冷媒质管道6和媒质泵7,热媒质管道2、热媒质分配系统3、散热系统4与通风装置1依次相连;冷媒质管道6通过冷却媒质收集系统5与散热系统4相连,媒质泵7设置在冷媒质管道6或热媒质管道2上。系统还包括至少一个媒质储罐8,媒质储罐8设置在热媒质管道2(如图1所示)或冷媒质管道6上(如图2所示)。
获得环境最高温度t max、最低温度t min和实时温度t e。当散热系统4为接触式散热方式时,t max、t min和t e均指湿球温度。同时,根据当地气候、散热器、系统运行状况等条件,设定调节参数e 0、e max、Δe,有0<e 0<40℃、20℃<e max<50℃、0<Δe<20℃,且e max>t min+Δe、Δe<t max-t min,。并在散热系统4的散热器温度较低位置布置低温测点13,获得低温测点13处媒质侧低温端温度t x(℃)。
本蓄能冷却系统作为一种带蓄能作用的冷却系统,来自用户的高温媒质在媒质泵7的抽力作用下,从热媒质管道进入系统,在图1所示的系统里,高温媒质首先进入媒质储罐8,然后进入通过热媒质分配系统,使高温媒质均布式进入散热系统4,并通过通风装置1通风强化散热。散热后的媒质成为低温媒质,通过冷却媒质收集系统5收集后经冷媒质管道6回到用户。而在图2所示的系统里,高温媒质直接进入热媒质分配系统分配后,使高温媒质进入散热系统4,并通过通风装置1通风强化散热。散热后的媒质成为低温媒质,通过冷却媒质收集系统5收集后,先行进入媒质储罐8,再经冷媒质管道6回到用户。媒质泵7根据用户的冷却需求进行流量调节。媒质储罐8具有储存媒质的功能,其容积大小直接影响到进出系统的高低温媒质温差程度。而且由于媒质储罐8往往比较大,先进入媒质储罐8的媒质往 往会先流出,使得进出媒质储罐8的媒质温度也存在差异。从而可以在夜间加大媒质泵7的功率和流量,提前储存冷媒质;也可以在防冻需求下,通过媒质储罐8中储存的常温媒质,向系统提供化冻热源。
当t max>e max,且t e<t min+Δe时,环境最高温度和最低温度差异较大,通过增加媒质泵7的流量至较高水平,以充分利用通风装置1的通风能力对热媒质进行冷却,使得低温媒质、高温媒质的温度都逐渐下降,从而进一步使得媒质储罐8内的媒质温度也逐渐下降,以实现蓄能冷却系统的低温蓄冷。
当t x<e 0时,由于环境温度较低,使得散热系统4内的局部位置媒质温度过低,可能引起冻裂的危险。此时,由于媒质储罐8内储存大量正常工况下的媒质,温度相对较高。通过增加媒质泵7的流量,以利用媒质储罐8中储存的大量温度相对较高的媒质,对散热系统4进行加温,直至t x>e 0,使得散热系统4避免冻裂的危险。
如图3所示,媒质分配系统3包括若干个配水支管道10,若干个配水支管道10按照并联布置,连接在热媒质管道2与散热系统4之间;每个配水支管道10上设置有小媒质泵11,每个小媒质泵11设置一个旁路;系统还设置有调节阀门9。此时,当媒质储罐8设置在热媒质管道2上,调节阀门9连接在媒质储罐8与冷媒质管道6之间将其连通;当媒质储罐8设置在冷媒质管道6上,调节阀门9连接在媒质储罐8与热媒质管道2之间将其连通。
此时,设定调节参数f 1、f 2,且0<f 1<30℃、-50<f 2<0℃,f 2<f 1<e max
当t max>e max且t e<t min+Δe时,逐步开启所有小媒质泵11,并逐步关闭所有小媒质泵11的旁通阀;逐步开启可调阀门9,以控制媒质泵7的流量,并逐步将小媒质泵的流量增加至较高水平,以实现蓄能冷却系统的低温蓄冷;
当t max>e max且t e>t min+Δe时,逐步开启小媒质泵对应的旁通阀,并逐步关闭小媒质泵11和可调阀门9;
当t max<f 1且t min<f 2时,逐步开启所有小媒质泵11,并逐步关闭小媒质泵11的旁通阀;
当t x<e 0时,逐步开启散热系统4低温端的配水支管道上的小媒质泵,并逐步关闭相应小媒质泵的旁通阀;逐步增大相应支管小媒质泵的流量,直至t x>e 0
若不符合上述条件时,根据用户需求流量变化正常调节媒质泵7的流量。
如图4所示,系统包括两个媒质储罐7,分别作为高温媒质储罐和低温媒质储罐。高温 媒质储罐设置在热媒质管道2上,且低温媒质储罐设置在冷媒质管道6上,并在高温媒质储罐出口和低温媒质储罐进口之间设置冷却媒质泵12。
此时,设定调节参数f 1、f 2,且<f 1<30℃、-50<f 2<0℃,f 2<f 1<e max
当t max>e max且t e<t min+Δe时,增加冷却媒质泵12的流量,使其大于媒质泵7的流量,以实现蓄能冷却系统的低温蓄冷;
当t e>t min+Δe时,逐步降低冷却媒质泵12的流量,使其小于媒质泵7的流量,以实现蓄能冷却系统的高温节能,并恢复高温媒质储罐的媒质储量;
当t max<f 1且t min<f 2时,尽量提高冷却媒质泵12的流量大于媒质泵7的流量,以利用高温媒质储罐的蓄能进行低温防冻;
当t x<e 0时,逐步增加冷却媒质泵12的流量,使其大于媒质泵7的流量,直至t x>e 0,以利用高温媒质储罐的蓄能进行低温防冻;
若不符合上述条件时,可保持冷却媒质泵12的流量与媒质泵7的流量同步;媒质泵7的流量按用户流量需求调节运行。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (6)

  1. 一种蓄能冷却系统,所述系统包括通风装置(1)、热媒质管道(2)、热媒质分配系统(3)、散热系统(4)、冷却媒质收集系统(5)、冷媒质管道(6)和媒质泵(7),所述热媒质管道(2)、热媒质分配系统(3)、散热系统(4)与通风装置(1)依次相连;所述冷媒质管道(6)通过冷却媒质收集系统(5)与散热系统(4)相连,所述媒质泵(7)设置在所述冷媒质管道(6)或热媒质管道(2)上;其特征在于,所述系统还包括至少一个媒质储罐(8),所述媒质储罐(8)设置在所述热媒质管道(2)或所述冷媒质管道(6)上。
  2. 根据权利要求1所述的蓄能冷却系统,其特征在于,所述媒质分配系统(3)包括若干个配水支管道(10),所述若干个配水支管道(10)按照并联布置,连接在热媒质管道(2)与散热系统(4)之间;所述每个配水支管道(10)上设置有小媒质泵(11),每个小媒质泵(11)均设置有旁通管路,每个旁通管路均设置有旁通阀;所述系统还设置有调节阀门(9);当所述媒质储罐(8)设置在所述热媒质管道(2)上,所述调节阀门(9)连接在所述媒质储罐(8)与所述冷媒质管道(6)之间将其连通;当所述媒质储罐(8)设置在所述冷媒质管道(6)上,所述调节阀门(9)连接在所述媒质储罐(8)与所述热媒质管道(2)之间将其连通。
  3. 根据权利要求1所述的蓄能冷却系统,其特征在于,所述系统包括两个媒质储罐(7),分别作为高温媒质储罐和低温媒质储罐,所述高温媒质储罐设置在所述热媒质管道(2)上,且所述低温媒质储罐设置在冷媒质管道(6)上,并在所述高温媒质储罐出口和所述低温媒质储罐进口之间设置冷却媒质泵(12)。
  4. 一种蓄能冷却方法,其使用如权利要求1所述的蓄能冷却系统,其特征在于,所述方法包括:
    使来自用户的高温媒质在媒质泵(7)的输送作用下,从热媒质管道进入所述系统;
    当所述媒质储罐(8)设置在所述热媒质管道(2)上,高温媒质先进入所述媒质储罐(8)再经热媒质分配系统(3)分配后进入散热系统(4),并通过通风装置(1)通风强化散热;散热后的媒质成为低温媒质,通过冷却媒质收集系统(5)收集后经冷媒质管道(6)送往用户;
    当所述媒质储罐(8)设置在所述冷媒质管道(6)上,高温媒质经热媒质分配系统(3)分配后进入散热系统(4),并通过通风装置(1)通风强化散热;散热后的媒质成为低温媒质,通过冷却媒质收集系统(5)收集后,先进入媒质储罐(8),再经冷媒质管道(6)送往用户;
    获得当天最高环境温度t max、最低环境温度t min和实时温度t e
    设定调节参数e 0、e max、△e,0<e 0<55℃、15℃<e max<50℃、0<△e<50℃,且e max>t min+△e、△e<t max-t min
    获得散热系统(4)媒质侧低温端温度t x
    当t max>e max,且t e<t min+△e时,使媒质泵(7)的流量增加,利用所述系统的冷却能力余量对所述高温媒质进行冷却,使得媒质储罐(8)内的媒质温度逐渐下降,达到储冷的效果;
    当t x<e 0时,逐渐增加媒质泵(7)的流量,使媒质储罐(8)中储存的媒质对散热系统(4)进行加温,直至t x>e 0
  5. 根据权利要求4所述的蓄能冷却方法,其特征在于,所述媒质分配系统(3)包括若干个配水支管道(10),所述若干个配水支管道(10)按照并联布置,连接在热媒质管道(2)与散热系统(4)之间;所述每个配水支管道(10)上设置有小媒质泵(11),每个小媒质泵(11)均设置有旁通管路,每个旁通管路均设置有旁通阀;所述系统还设置有调节阀门(9);当所述媒质储罐(8)设置在所述热媒质管道(2)上,所述调节阀门(9)连接在所述媒质储罐(8)与所述冷媒质管道(6)之间将其连通;当所述媒质储罐(8)设置在所述冷媒质管道(6)上,所述调节阀门(9)连接在所述媒质储罐(8)与所述热媒质管道(2)之间将其连通;所述方法还包括:
    设定调节参数f 1、f 2,0<f 1<30℃、-50<f 2<0℃,且f 2<f 1<e max
    当t max>e max且t e<t min+△e时,逐步开启所有小媒质泵(11),并逐步关闭所有小媒质泵(11)的旁通阀;逐步开启可调阀门(9),以控制媒质泵(7)的流量;并逐步增加小媒质泵的流量,以实现蓄能冷却系统的低温蓄冷;
    当t max>e max且t e>t min+△e时,逐步开启小媒质泵(11)对应的旁通阀,并逐步关闭小媒质泵(11)和可调阀门(9);
    当t max<f 1,且t min<f 2时,逐步开启所有小媒质泵(11),并逐步关闭小媒质泵(11)的旁 通阀;
    当t x<e 0时,逐步开启散热系统低温端的配水支管道上的小媒质泵,并逐步关闭相应小媒质泵的旁通阀;逐步增大该支管小媒质泵(11)的流量,直至t x>e 0
  6. 根据权利要求4所述的蓄能冷却方法,其特征在于,所述系统包括两个媒质储罐(7),分别作为高温媒质储罐和低温媒质储罐,所述高温媒质储罐设置在所述热媒质管道(2)上,且所述低温媒质储罐设置在冷媒质管道(6)上,并在所述高温媒质储罐出口和所述低温媒质储罐进口之间设置冷却媒质泵(12);所述方法还包括:
    设定调节参数f 1、f 2,且0<f 1<30℃、-50<f 2<0℃,f 2<f 1<e max
    当t max>e max且t e<t min+△e时,增加冷却媒质泵(12)的流量,使其大于媒质泵(7)的流量,以实现蓄能冷却系统的低温蓄冷;
    当t e>t min+△e时,逐步降低冷却媒质泵(12)的流量,使其小于媒质泵(7)的流量,以实现蓄能冷却系统的高温节能,并恢复高温媒质储罐的媒质储量;
    当t max<f 1,且t min<f 2时,快速提高冷却媒质泵(12)的流量,以利用高温媒质储罐的蓄能进行低温防冻;
    当t x<e 0时,逐步增加冷却媒质泵(12)的流量,直至t x>e 0,以利用高温媒质储罐的蓄能进行低温防冻。
PCT/CN2019/122858 2019-06-17 2019-12-04 蓄能冷却系统及方法 WO2020253136A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910523582.4 2019-06-17
CN201910523582.4A CN110375569B (zh) 2019-06-17 2019-06-17 一种蓄能冷却系统及其调节方法

Publications (1)

Publication Number Publication Date
WO2020253136A1 true WO2020253136A1 (zh) 2020-12-24

Family

ID=68248986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122858 WO2020253136A1 (zh) 2019-06-17 2019-12-04 蓄能冷却系统及方法

Country Status (2)

Country Link
CN (1) CN110375569B (zh)
WO (1) WO2020253136A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110375569B (zh) * 2019-06-17 2020-12-15 清华大学 一种蓄能冷却系统及其调节方法
CN111366006B (zh) * 2020-02-18 2021-03-30 暨南大学 一种冷热媒质协同存储的蓄能冷却系统
CN114046682A (zh) * 2021-11-16 2022-02-15 中国科学院理化技术研究所 一种蓄能装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03170735A (ja) * 1989-11-30 1991-07-24 Taisei Corp 氷蓄熱空調システムの制御方式
GB2247072A (en) * 1990-06-13 1992-02-19 Solmate Inc Heating or cooling system
CN103575006A (zh) * 2013-11-25 2014-02-12 广东申菱空调设备有限公司 一种低温制冷型风冷冷水机组及其控制方法
CN105135577A (zh) * 2015-09-25 2015-12-09 大连国霖技术有限公司 风冷自然冷却与冷水机组相结合的冷却系统
CN205909620U (zh) * 2016-08-17 2017-01-25 中国电力工程顾问集团华北电力设计院有限公司 空冷循环冷却水干式蓄冷掺混再降温系统
CN106705697A (zh) * 2017-02-15 2017-05-24 北京中电云汇技术有限公司 一种冷却补偿式空冷岛系统
CN110375569A (zh) * 2019-06-17 2019-10-25 清华大学 一种蓄能冷却系统及其调节方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03170735A (ja) * 1989-11-30 1991-07-24 Taisei Corp 氷蓄熱空調システムの制御方式
GB2247072A (en) * 1990-06-13 1992-02-19 Solmate Inc Heating or cooling system
CN103575006A (zh) * 2013-11-25 2014-02-12 广东申菱空调设备有限公司 一种低温制冷型风冷冷水机组及其控制方法
CN105135577A (zh) * 2015-09-25 2015-12-09 大连国霖技术有限公司 风冷自然冷却与冷水机组相结合的冷却系统
CN205909620U (zh) * 2016-08-17 2017-01-25 中国电力工程顾问集团华北电力设计院有限公司 空冷循环冷却水干式蓄冷掺混再降温系统
CN106705697A (zh) * 2017-02-15 2017-05-24 北京中电云汇技术有限公司 一种冷却补偿式空冷岛系统
CN110375569A (zh) * 2019-06-17 2019-10-25 清华大学 一种蓄能冷却系统及其调节方法

Also Published As

Publication number Publication date
CN110375569A (zh) 2019-10-25
CN110375569B (zh) 2020-12-15

Similar Documents

Publication Publication Date Title
WO2020253136A1 (zh) 蓄能冷却系统及方法
CN103344023B (zh) 一种电子信息机房耦合式冷却系统
CN107014016B (zh) 一种氟泵自然冷却蒸发式冷凝冷水机及其控制方法
US10260763B2 (en) Method and apparatus for retrofitting an air conditioning system using all-weather solar heating
CN210197600U (zh) 带储能装置的二次泵变流量冷冻水系统
CN205383712U (zh) 一种建筑物的冷冻水节能系统
CN206250358U (zh) 电池温度控制系统
CN203642546U (zh) 一种工业用温度精准的冷水机组
KR20220082838A (ko) Lng 공조 냉각 시스템
CN104791925A (zh) 一种节能型开式冷却塔供冷系统
CN204555111U (zh) 节能型开式冷却塔供冷系统
CN203586628U (zh) 用于冷冻水系统的冷却塔自然冷却系统
CN205383711U (zh) 一种与消防系统结合的建筑物的冷冻水节能系统
CN204404419U (zh) 实现温湿度独立控制的组合空调系统
CN108444309B (zh) 一种用于间接空冷系统的储热式防冻装置
CN208462262U (zh) 一种液冷系统
CN204130664U (zh) 电动汽车液冷电池包热管理装置
CN104065338B (zh) 一种太阳能电池冷却液防冻与热利用装置及方法
CN204460843U (zh) 一种基于电厂循环水余热利用的冷热多联供系统
CN107191359B (zh) 一种空气压缩机冷却方法及系统
CN214757525U (zh) 一种可全年利用自然冷源的数据中心空调系统
CN215373661U (zh) 适用于寒冷地区的冷水系统及乏燃料后处理系统
CN205172659U (zh) 一种综合冷却的二次再热机组热力系统
CN203891948U (zh) 热电联产机组循环水供热凝汽器实现高背压可调运行装置
CN209197509U (zh) 一种避免冷却塔盘管冻裂的余热再利用系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19933548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19933548

Country of ref document: EP

Kind code of ref document: A1