WO2020252985A1 - 超重力环境下材料力学性能测试的高温加热装置 - Google Patents

超重力环境下材料力学性能测试的高温加热装置 Download PDF

Info

Publication number
WO2020252985A1
WO2020252985A1 PCT/CN2019/110034 CN2019110034W WO2020252985A1 WO 2020252985 A1 WO2020252985 A1 WO 2020252985A1 CN 2019110034 W CN2019110034 W CN 2019110034W WO 2020252985 A1 WO2020252985 A1 WO 2020252985A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
heat insulation
furnace
insulation layer
shell
Prior art date
Application number
PCT/CN2019/110034
Other languages
English (en)
French (fr)
Inventor
韦华
王江伟
林伟岸
张泽
陈云敏
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Publication of WO2020252985A1 publication Critical patent/WO2020252985A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/18Performing tests at high or low temperatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0026Combination of several types of applied forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0075Strain-stress relations or elastic constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0222Temperature
    • G01N2203/0226High temperature; Heating means

Definitions

  • the invention relates to the field of high-temperature heating, in particular to a high-temperature heating of a material mechanical property test sample in a supergravity environment.
  • high-pressure turbine blades are the most severe rotating parts in the engine when they work under coupled loading conditions such as high temperature, high pressure, high speed, and alternating load for a long time. Its reliability directly affects the performance of the whole machine.
  • the turbine blades rotate at a high speed around the axis of the engine. Its function is to use gas expansion to do work and convert the potential energy and thermal energy of the gas into mechanical power of the rotor. Therefore, the turbine blades mainly bear centrifugal load, thermal load, and aerodynamic load during service. Coupling with vibration load. The centrifugal stress generated by the centrifugal load belongs to the volume force.
  • the bending and torsion structure blades that make the stacking line and the radial line do not completely overlap, at the same time generate radial tensile stress, torsional stress and bending stress.
  • the thermal stress generated by thermal load is closely related to geometric constraints. The more geometric constraints, the greater the thermal stress.
  • the aerodynamic force generated by aerodynamic load is a kind of surface distributed pressure, which belongs to area force, which acts on each surface of the blade and is unevenly distributed along the blade height and width direction. Therefore, the turbine blades undergo shear deformation, tensile deformation and torsion deformation simultaneously under the combined action of radial tensile stress, torsional stress, bending stress and thermal stress, which is obviously different from the deformation behavior under uniaxial stress in the laboratory. .
  • the current performance data of aero-engine turbine blade materials mainly come from the mechanical performance data of laboratory standard samples.
  • the mechanical performance data of standard specimens can provide experimental basis for blade strength design to a certain extent, compared with actual blades, the standard specimens cannot comprehensively reflect the effects of centrifugal load-thermal load coupling conditions on the microstructure and microstructure of blades during performance testing. The influence of crack propagation path. Therefore, the prior art lacks devices and methods that can test the mechanical properties of materials according to the working environment of the engine blades.
  • What the present invention needs to solve is to solve the problem of difficulty in heating samples during the high temperature performance test of materials under the above-mentioned supergravity and high temperature test conditions, and provide a simple assembly, convenient use, high safety factor, and high temperature heating in supergravity conditions. Device.
  • the invention will provide a high-temperature heating device for material performance testing in a high-speed-high-temperature coupling environment for material mechanical performance testing in a supergravity environment, solve the key problem of heating for high-temperature performance testing of materials under high-speed rotation, and be applied to high-gravity tests
  • the high temperature heating device in the device must have the characteristics of simple structure, safety and reliability, and the design must conform to the concept of high strength and light weight.
  • the high-temperature heating device is fixed in the high-gravity test cabin, and the high-temperature heating device includes an upper furnace body, a middle furnace body, a lower furnace body, a heat insulation layer, and a high-strength furnace tube which are arranged and connected from top to bottom.
  • the upper furnace body is mainly composed of upper heat insulation cover, upper cavity shell, upper cavity middle shell, upper cavity heat insulation layer, upper cavity and lower fixed cover, upper cavity shell,
  • the middle shell of the upper cavity and the heat insulation layer of the upper cavity are installed from the outside to the inside to form a three-layer structure of the upper furnace.
  • the upper heat insulation cover and the lower fixed cover of the upper cavity are respectively installed on the upper and lower ends of the three-layer structure of the upper furnace.
  • the three-layer structure of the furnace is fixedly connected. There are gaps between the upper cavity shell and the upper cavity middle shell and between the upper cavity middle shell and the upper cavity heat insulation layer as the air insulation layer; the middle furnace body is mainly divided by the middle shell. Heat cover, middle cavity shell, middle cavity middle shell, middle cavity heat insulation layer, middle cavity bottom fixed cover, middle cavity shell, middle cavity middle shell, middle cavity heat insulation layer from outside to The inner installation forms a three-layer structure of the middle furnace.
  • the middle heat insulation cover and the lower fixed cover of the middle cavity are respectively installed on the upper and lower ends of the three-layer structure of the middle furnace to make the three-layer structure of the middle furnace fixedly connected.
  • the lower furnace body is mainly composed of the lower heat insulation cover, the lower cavity shell, the lower cavity middle shell, the lower cavity heat insulation layer, the lower cavity lower fixed cover, the lower cavity shell, the lower cavity middle shell and the lower cavity
  • the body heat insulation layer is installed from the outside to the inside to form a three-layer structure of the lower furnace.
  • the lower heat insulation cover and the lower fixed cover of the lower cavity are respectively installed on the upper and lower ends of the three-layer structure of the lower furnace so that the three-layer structure of the lower furnace is fixedly connected.
  • the lower fixed cover of the middle cavity of the middle furnace body and the lower furnace body The lower heat insulation cover is fixedly connected; the furnace body carrier is placed at the bottom of the lower cavity heat insulation layer of the lower furnace body, the high-strength furnace tube is placed on the furnace body carrier, and the outside of the high-strength furnace tube is respectively connected to the upper furnace body
  • the heat insulation layer is filled between the upper cavity heat insulation layer, the middle cavity heat insulation layer of the middle furnace body, and the lower cavity heat insulation layer of the lower furnace body; the high-strength furnace tube is processed with spiral grooves and spirals.
  • the spiral groove is equipped with a spiral heating element, and the spiral groove is provided with a heat dissipation channel on the side facing the inner wall of the high-strength furnace tube, and the heat generated by the heating element is uniformly radiated to the center of the high-strength furnace tube through the heat dissipation channel.
  • the heating element During the working process, the heating element generates heat.
  • the high-strength furnace tube is heated by radiation to form a high-temperature zone in the center of the high-strength furnace tube.
  • the heating element at different heights is changed in the high-strength furnace tube. Spacing, adjust the heating temperature at different height positions.
  • the thermal insulation layer is composed of low thermal conductivity materials and mullite is used.
  • the high-strength furnace tube is made of ceramics with high strength and low thermal conductivity.
  • the high temperature heating device is placed in the supergravity environment of the centrifuge.
  • the said high-gravity experiment cabin is also equipped with a load-bearing frame, a signal collector and a wiring frame.
  • the sample to be tested for mechanical properties is installed in the high-strength furnace tube of the high-temperature heating device, and a temperature sensor is provided, which is connected to the signal collection
  • the output wire of the signal collector is connected to the weak signal conductive slip ring through the wiring rack, and then connected to the ground measurement and control center;
  • the high-temperature heating device is equipped with three strong current independent loops, and three strong current independent loops control heating at different heights inside
  • the heating element is heated at high temperature, and three independent circuits of strong electricity on the ground are connected to the wiring rack of the supergravity experiment cabin through the conductive slip ring of the main shaft of the centrifuge.
  • the invention can heat the material mechanical properties test sample at high temperature under the supergravity environment, can test the mechanical properties of the material under the centrifugal load-thermal load coupling condition, and can effectively solve the dynamic test of the material mechanical properties under the supergravity and high temperature test conditions
  • the problem has the advantages of simple structure, operation scheme and high safety factor.
  • the invention cooperates with the super-gravity environment, can heat the material performance test sample under the condition of high rotation speed, solves the key problem of heating the material performance test under the high-speed rotation state, and has simple equipment and convenient operation.
  • the invention is suitable for a 1g-2000g supergravity environment, and the heating temperature is from normal temperature to -1250°C.
  • Figure 1 is a front view of a high-temperature heating device
  • Figure 2 is a structural cross-sectional view of the high-strength furnace tube 17;
  • Figure 3 is a partial enlarged view of the structure of the high-strength furnace tube 17;
  • Figure 4 is a schematic diagram of the structure of the heating element
  • Fig. 5 is a schematic diagram of the structure of the mechanical performance testing system of the supergravity environment of the present invention.
  • upper heat insulation cover 1 upper cavity shell 2, upper cavity middle shell 3, upper cavity heat insulation layer 4, upper cavity lower fixed cover 5, middle heat insulation cover 6, middle cavity shell 7, Middle cavity middle shell 8, middle cavity heat insulation layer 9, middle cavity lower fixed cover 10, lower heat insulation cover 11, lower cavity shell 12, lower cavity middle shell 13, lower cavity heat insulation layer 14,
  • the high-temperature heating device is fixed in the supergravity test cabin.
  • the high-temperature heating device includes an upper furnace body, a middle furnace body, a lower furnace body, and a heat insulation layer 16, a high-strength furnace, which are arranged and connected from top to bottom.
  • the lower cavity heat insulation layer 14 and the lower cavity lower fixed cover 15 form the shell of a cylindrical high-temperature heating device composed of three furnace bodies, which is mainly used to fix the high-temperature heating device in a super-gravity environment. It protects the furnace body under the gravity environment, forming a high-temperature furnace as a whole.
  • the upper furnace body is mainly composed of upper heat insulation cover 1, upper cavity shell 2, upper cavity middle shell 3, upper cavity heat insulation layer 4, upper cavity lower fixed cover 5, upper cavity shell 2, upper cavity
  • the middle shell 3 and the upper cavity heat insulation layer 4 are installed from the outside to the inside to form a three-layer structure of the upper furnace.
  • the upper heat insulation cover 1 and the lower fixed cover 5 of the upper cavity are respectively installed on the upper and lower ends of the three-layer structure of the upper furnace.
  • the upper furnace three-layer structure is fixedly connected, and the upper heat insulation cover 1 is used to fix the upper furnace three-layer structure of the upper furnace body and has the function of heat insulation; the upper cavity shell 2 and the upper cavity middle shell 3 and the upper cavity There is a gap between the body shell 3 and the upper cavity heat insulation layer 4 as an air heat insulation layer, and the air heat insulation layer plays a role of heat insulation and heat preservation to prevent heat loss in the furnace.
  • the middle furnace body is mainly composed of the middle heat insulation cover 6, the middle cavity shell 7, the middle cavity middle shell 8, the middle cavity heat insulation layer 9, and the middle cavity lower fixed cover 10.
  • the middle shell 8 and the middle cavity heat insulation layer 9 are installed from the outside to the inside to form a middle furnace three-layer structure.
  • the middle heat insulation cover 6 and the middle cavity lower fixed cover 10 are respectively installed at the upper and lower ends of the middle furnace three-layer structure so that The three-layer structure of the middle furnace is fixedly connected.
  • the middle heat insulation cover 6 is used to fix the middle furnace three-layer structure of the middle furnace body and has the function of heat insulation; the middle heat insulation cover 6 has the function of heat insulation and heat preservation to prevent heat from acting in supergravity Downward conduction; between the middle cavity shell 7 and the middle cavity middle shell 8 and between the middle cavity middle shell 8 and the middle cavity heat insulation layer 9 there are gaps as the air insulation layer, and the air insulation layer starts To prevent heat loss in the furnace; the upper cavity lower fixed cover 5 of the upper furnace body and the middle heat insulation cover 6 of the middle furnace body are fixedly connected by bolts, and the upper cavity lower fixed cover 5 and the middle partition The hot cover 6 is used to connect the upper furnace body and the middle furnace body.
  • the lower furnace body is mainly composed of a lower heat insulation cover 11, a lower cavity shell 12, a lower cavity middle shell 13, a lower cavity heat insulation layer 14, a lower cavity lower fixed cover 15, a lower cavity shell 12, a lower cavity
  • the middle shell 13 and the lower cavity heat insulation layer 14 are installed from the outside to the inside to form a three-layer structure of the lower furnace.
  • the lower heat insulation cover 11 and the lower fixed cover 15 of the lower cavity are respectively installed at the upper and lower ends of the three-layer structure of the lower furnace so that The three-layer structure of the lower furnace is fixedly connected, and the lower heat insulation cover 11 is used to fix the lower furnace three-layer structure of the lower furnace body and has the function of heat insulation; the lower heat insulation cover 11 has the function of heat insulation and heat preservation to prevent heat from being affected by supergravity Conduction downwards, the lower fixed cover 15 of the lower cavity is used to fix the high temperature heating device on the bottom of the high gravity test device. There are gaps between the lower cavity shell 12 and the lower cavity middle shell 13 and between the lower cavity middle shell 13 and the lower cavity heat insulation layer 14 as an air insulation layer.
  • the air insulation layer plays a role in heat insulation Function to prevent heat loss in the furnace; the middle cavity lower fixed cover 10 of the middle furnace body and the lower heat insulation cover 11 of the lower furnace body are fixedly connected by bolts, and the lower fixed cover 10 of the middle cavity body is connected with the lower heat insulation cover 11 To connect the middle furnace body and the lower furnace body.
  • the entire furnace body passes through four places: upper heat insulation cover 1, upper cavity lower fixed cover 5, middle heat insulation cover 6, middle cavity lower fixed cover 10, lower heat insulation cover 11 and lower cavity lower fixed cover 15
  • the body is strengthened to improve the rigidity and strength of the entire furnace body in a supergravity environment, and to prevent deformation and damage of the furnace body during operation.
  • the upper cavity lower fixed cover 5 and the middle heat insulation cover 6, the middle cavity lower fixed cover 10 and the lower heat insulation cover 11 are connected by high-strength bolts, which is convenient for installation and maintenance.
  • the furnace body carrier 19 is placed on the bottom of the lower cavity heat insulation layer 14 of the lower furnace body, the high-strength furnace tube 17 is placed on the furnace body carrier 19, and the furnace body carrier 19 is placed on the bottom surface of the supergravity test cabin.
  • the supporting body 19 is used to support the weight of the entire furnace body and the compressive stress generated under the action of supergravity, and at the same time heat insulation to prevent heat from being conducted to the bottom of the supergravity test device under supergravity.
  • the outer part of the high-strength furnace tube 17 is respectively insulated from the upper cavity heat insulation layer 4 of the upper furnace body, the middle cavity heat insulation layer 9 of the middle furnace body, and the lower cavity heat insulation of the lower furnace body.
  • a heat insulation layer 16 is filled between the layers 14; a spiral groove 18-1 is processed inside the high-strength furnace tube 17, and the spiral groove 18-1 is equipped with a spiral heating element 18, as shown in Fig. 4,
  • the spiral groove 18-1 is provided with a heat dissipation channel 18-2 on the side facing the inner wall of the high-strength furnace tube 17, and the heat generated by the heating element 18 is uniformly radiated to the center of the high-strength furnace tube 17 through the heat dissipation channel 18-2.
  • the heating element 18 During the working process, the heating element 18 generates heat.
  • the high-strength furnace tube 17 is heated by radiation, and a high-temperature zone is formed in the center of the high-strength furnace tube 17.
  • the pitch of the spiral groove 18-1 at different heights is changed to change the heating at different heights.
  • the distance between the body 18 and the high-strength furnace tube 17 is adjusted to adjust the heating temperature at different height positions, so that a uniform temperature zone or a non-uniform temperature gradient zone can be formed.
  • the structure design of the high-strength furnace tube 17 and the heating element 18 of the present invention can prevent the heating element 18 from falling off in a supergravity environment, and the heating effect can be adjusted by adjusting the pitch of the spiral groove at different positions.
  • the thermal insulation layer 16 is composed of a material with low thermal conductivity and uses mullite to prevent heat from being transferred to the outside of the furnace through conduction.
  • the high-strength furnace tube 17 is made of ceramics with high strength and low thermal conductivity.
  • the specific implementation of the present invention also requires the selection of the heating element 18, the pitch of the spiral grooves processed by the high-strength furnace tube 17, and the material type of the high-strength furnace tube 17.
  • heating element 18 The maximum temperature allowed for different heating elements 18 and the requirements for the use environment are different, and the specific use conditions of the device need to be combined with the maximum working temperature, vacuum environment and supergravity environment) to determine the type of heating element 18 .
  • the pitch of the spiral grooves processed by the high-strength furnace tube 17 the heating element 18 is easily pulled up and deformed or even broken under the condition of high gravity.
  • a series of changes brought by the heating element 18 must also be considered, such as preventing the heating element 18 from breaking when the heating element 18 is severely deformed and moved under high gravity, thereby affecting the overall operation of the device.
  • Material type of the high-strength furnace tube 17 The material type of the high-strength furnace tube 17 is determined according to the type of the heating element 18 and the use temperature requirements. In order to prevent deformation caused by the weight of the high-strength furnace tube 17 under high gravity, the furnace body of the high-temperature heating device is designed as a three-layer split type, and each layer is individually reinforced with an insulation layer.
  • the high temperature heating device is placed in the supergravity environment of the centrifuge.
  • the supergravity test cabin is a material mechanics performance test cabin in a supergravity environment, which is placed in the hanging basket of the centrifuge.
  • the supergravity experiment cabin is also equipped with a bearing frame, a signal collector and a wiring frame, and the high-strength furnace tube 17 of the high-temperature heating device is installed to be mechanical
  • the sample for performance test is equipped with a temperature sensor. The temperature sensor is connected to the signal collector.
  • the output wire of the signal collector is connected to the weak signal conductive slip ring through the wiring frame, and then connected to the ground measurement and control center;
  • the high temperature heating device is equipped with three strong Electric independent circuit, three independent circuits of strong electricity control and heat the heating elements 18 at different heights inside for high temperature heating, and three independent circuits of strong electricity on the ground are connected to the wiring rack of the high gravity experiment cabin through the conductive slip ring of the centrifuge spindle;
  • the conductive slip ring of the main shaft of the centrifuge is connected with the power supply cabinet. That is, through the wiring rack, connect the first strong current independent circuit to the upper heating zone of the high temperature heating device, connect the second strong current independent circuit to the heating zone in the high temperature furnace, and connect the third strong current independent circuit to the high temperature furnace. Heating zone connection.
  • three independent temperature control temperature extension wires that control the high temperature heating device are connected to the signal collector, and the signal collector converts the received temperature signal from an analog signal to a digital signal; the digital signal passes through the wiring rack and the signal slip ring Connect, and then connect with the ground measurement and control center.
  • the furnace temperature is controlled by a temperature sensor fixed or welded on the sample to be tested through a temperature controller and a measurement and control system.
  • the lower fixed cover 15 of the lower cavity is first fixed to the bottom of the high gravity test device by bolts, the furnace body support 19 is installed on the lower fixed cover 15 of the lower cavity, the lower cavity shell 12, the lower cavity The middle shell 13 and the lower cavity heat insulation layer 14 are connected with the lower fixed cover 15 of the lower cavity by bolts, the lower heat insulation cover 11 is connected with the lower fixed cover 10 of the middle cavity by bolts, the middle shell 8, the middle cavity The body heat insulation layer 9 and the lower fixed cover 10 of the middle cavity are connected with the lower fixed cover 10 of the middle cavity by bolts, and are connected with the lower fixed cover 5 and the middle heat insulation cover 6 of the upper cavity by bolts.
  • the mullite heat insulation layer 16 is directly placed between the ceramic high-strength furnace tube 17 and the lower cavity heat insulation layer 14, the middle cavity heat insulation layer 9, and the upper cavity heat insulation layer 4.
  • the thermal insulation layer 16 of mullite can not only play a buffer function but also insulate heat.
  • the high-temperature heating device can be used repeatedly, and only needs to replace the appropriate heating element 18 and high-strength furnace tube 17 to meet different experimental requirements, and has the advantages of simple structure and high safety factor.
  • the working process of the mechanical performance test of the device of the present invention is as follows:
  • Step 1 Place the high-gravity experiment cabin in the hanging basket of the centrifuge, place a high-temperature heating device in the high-gravity experiment cabin, and install the test piece that needs to be heated through the force applying device;
  • Step 3 Connect the wire of the thermocouple welded on the surface of the test piece to the signal collector, and install the strain gauge to connect with the signal collector.
  • the signal collector will receive the analog signal of temperature and strain and convert the analog signal Is a digital signal;
  • Step 4 Three independent circuits of strong electricity are respectively connected to the upper, middle and lower heating zones of the high-strength furnace tube 17, so that the upper, middle, and lower heating zones of the high-strength furnace tube 17 are heated independently. Set different heating temperatures in the heating zone;
  • Step 5 Install a tachometer on the centrifuge shaft, connect the tachometer signal line installed on the centrifuge shaft with the weak signal conductive slip ring, and use three thermocouples on the heating device to control the real-time temperature and heating rate of the high-temperature furnace , Use the tachometer to control the speed of the centrifuge, and use the following formula to calculate the stress F applied to the specimen 5:
  • the invention can independently control the temperature of three different regions of the high-temperature heating device through the thermocouple, realize uniform temperature heating or gradient heating, and can adjust the distribution of the set temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明公开了一种超重力环境下材料力学性能测试的高温加热装置。高温加热装置固定于超重力试验舱中,所述的高温加热装置包括从上到下依次布置连接的上炉体、中炉体、下炉体以及隔热保温层、高强度炉管、发热体和炉体承载体;炉体承载体置于下炉体的下腔体隔热层底部,高强度炉管置于炉体承载体上,高强度炉管外分别和上炉体的上腔体隔热层、中炉体的中腔体隔热层、下炉体的下腔体隔热层之间填充有隔热保温层;高强度炉管内部加工有螺旋状凹槽并装有发热体。本发明配合超重力环境,可加热高转速条件下材料性能测试样品,解决了高速旋转状态下材料高温性能测试加热的关键难题,且装备简单、操作方便。

Description

超重力环境下材料力学性能测试的高温加热装置 技术领域
本发明涉及高温加热领域,尤其涉及一种适用于在超重力环境下给材料力学性能测试样品高温加热。
背景技术
高压涡轮工作叶片作为航空发动机和燃气轮机热端部件关键组成部分之一,服役时长期工作在高温、高压、高转速、交变负载等耦合加载条件下,是发动机中工作条件最恶劣的转动部件,其使用可靠性直接影响整机性能。服役时涡轮工作叶片绕发动机轴线高速旋转,其作用是利用燃气膨胀做功,将燃气的位能和热能转换为转子的机械功,所以服役过程中涡轮工作叶片主要承受离心载荷、热载荷、气动载荷和振动载荷的耦合作用。离心载荷产生的离心应力,属于体积力,使积叠线与径向线不完全重合的弯扭结构叶片,同时产生径向拉应力、扭转应力和弯曲应力。热载荷产生的热应力与几何约束密切相关,几何约束越多,热应力越大。气动载荷产生的气动力,是一种表面分布压力,属于面积力,作用在叶片各个表面,沿叶高和叶宽方向呈不均匀分布。因此,涡轮工作叶片在径向拉应力、扭转应力、弯曲应力和热应力的耦合作用下同时发生剪切变形、拉伸变形和扭曲变形,这显然不同于实验室单轴应力状态下的变形行为。
但目前航空发动机涡轮叶片用材的性能数据主要来自实验室标准试样的力学性能数据。虽然标准试样力学性能数据在一定程度上能为叶片强度设计提供实验依据,但与实际叶片相比,标准试样在性能测试过程中无法综合反映离心载荷-热载荷耦合条件对叶片微观组织和裂纹扩展路径的影响。所以,现有技术中缺少了能根据发动机叶片工况环境测试材料的力学性能的装置和方式。
发明内容
本发明需要解决的是针对上述超重力、高温试验条件下材料高温性能测试过程中样品加热难的问题,提供一种装配简单、使用方便、安全系数高,且可用于超重力工况的高温加热装置。
本发明将为高转速-高温耦合环境下材料性能测试提供一种超重力环境下材料力学性能测试的高温加热装置,解决高速旋转状态下材料高温性能测试加热 的关键难题,且应用于超重力试验装置内的高温加热装置必须具有结构简单、安全可靠的特点,设计要符合高强度轻质量的理念。
本发明采用的技术方案是:
所述的高温加热装置固定于超重力试验舱中,所述的高温加热装置包括从上到下依次布置连接的上炉体、中炉体、下炉体以及隔热保温层、高强度炉管、发热体和炉体承载体;上炉体主要由上隔热盖、上腔体外壳、上腔体中壳、上腔体隔热层、上腔体下固定盖组成,上腔体外壳、上腔体中壳、上腔体隔热层分别从外到内安装形成上炉三层结构,上隔热盖和上腔体下固定盖分别安装于上炉三层结构的上端和下端使得上炉三层结构固定连接,上腔体外壳和上腔体中壳之间以及上腔体中壳和上腔体隔热层之间均有间隙作为空气隔热层;中炉体主要由中隔热盖、中腔体外壳、中腔体中壳、中腔体隔热层、中腔体下固定盖组成,中腔体外壳、中腔体中壳、中腔体隔热层分别从外到内安装形成中炉三层结构,中隔热盖和中腔体下固定盖分别安装于中炉三层结构的上端和下端使得中炉三层结构固定连接,中腔体外壳和中腔体中壳之间以及中腔体中壳和中腔体隔热层之间均有间隙作为空气隔热层;上炉体的上腔体下固定盖和中炉体的中隔热盖之间固定连接;下炉体主要由下隔热盖、下腔体外壳、下腔体中壳、下腔体隔热层、下腔体下固定盖组成,下腔体外壳、下腔体中壳、下腔体隔热层分别从外到内安装形成下炉三层结构,下隔热盖和下腔体下固定盖分别安装于下炉三层结构的上端和下端使得下炉三层结构固定连接,下腔体外壳和下腔体中壳之间以及下腔体中壳和下腔体隔热层之间均有间隙作为空气隔热层;中炉体的中腔体下固定盖和下炉体的下隔热盖之间固定连接;炉体承载体置于下炉体的下腔体隔热层底部,高强度炉管置于炉体承载体上,高强度炉管外分别和上炉体的上腔体隔热层、中炉体的中腔体隔热层、下炉体的下腔体隔热层之间填充有隔热保温层;高强度炉管内部加工有螺旋状凹槽,螺旋状凹槽装有螺旋状的发热体,螺旋状凹槽在朝向高强度炉管内壁的一侧开设有散热通道,通过散热通道将发热体产生的热量均匀辐射到高强度炉管中央。
工作过程中发热体产生热量,通过辐射加热高强度炉管,在高强度炉管中央形成高温区,通过改变不同高度位置的螺旋状凹槽螺距进而改变不同高度位置的发热体在高强度炉管间距,调整不同高度位置的加热温度。
所述的隔热保温层为由低热导率材料组成,采用莫来石。
所述的高强度炉管采用高强度、低导热系数的陶瓷制作。
所述的高温加热装置置于离心机的超重力环境中。
所述的超重力实验舱内还安装有承力架、信号采集器和布线架,高温加热 装置的高强度炉管内安装待力学性能测试的试样,并设置有温度传感器,温度传感器连接信号采集器,信号采集器输出的导线通过布线架与弱信号导电滑环连接,再与地面测控中心连接;高温加热装置设置有三路强电独立回路,三路强电独立回路控制加热内部不同高度位置的发热体进行高温加热,将地面三个强电独立回路通过离心离心机主轴导电滑环接入超重力实验舱的布线架。
本发明的有益效果是:
本发明可在超重力环境下对材料力学性能测试样品进行高温加热,可实现在离心载荷-热载荷耦合条件下测试材料的力学性能,可有效解决超重力、高温试验条件下动态测试材料力学性能的问题,具有结构简单,操作方案且安全系数较高的优点。
本发明配合超重力环境,可加热高转速条件下材料性能测试样品,解决了高速旋转状态下材料高温性能测试加热的关键难题,且装备简单、操作方便。本发明适合1g-2000g超重力环境下,加热温度从常温-1250℃。
附图说明
图1是高温加热装置的主视图;
图2为高强度炉管17的结构剖视图;
图3为高强度炉管17的结构局部放大图;
图4为发热体的结构示意图;
图5为本发明超重力环境力学性能测试系统的结构示意图。
图中:上隔热盖1、上腔体外壳2、上腔体中壳3、上腔体隔热层4、上腔体下固定盖5、中隔热盖6、中腔体外壳7、中腔体中壳8、中腔体隔热层9、中腔体下固定盖10、下隔热盖11、下腔体外壳12、下腔体中壳13、下腔体隔热层14、下腔体下固定盖15、隔热保温层16、高强度炉管17、发热体18、炉体承载体19、螺旋状凹槽18-1、散热通道18-2。
具体实施方式
现结合附图对本发明作进一步详细的说明。这些附图均为简化的示意图,仅以示意方式说明本发明的基本结构,因此仅显示与本发明有关的构成。
如图1所示,高温加热装置固定于超重力试验舱中,高温加热装置包括从上到下依次布置连接的上炉体、中炉体、下炉体以及隔热保温层16、高强度炉管17、发热体18和炉体承载体19;上隔热盖1、上腔体外壳2、上腔体中壳3、上腔体隔热层4、上腔体下固定盖5、中隔热盖6、中腔体外壳7、中腔体中壳8、中腔体隔热层9、中腔体下固定盖10、下隔热盖11、下腔体外壳12、下腔体中 壳13、下腔体隔热层14、下腔体下固定盖15组成一个三个炉体构成的圆筒状高温加热装置的外壳,主要用来在超重力环境下固定高温加热装置,且在超重力环境下起到保护炉体的作用,总体形成了一个高温炉。
上炉体主要由上隔热盖1、上腔体外壳2、上腔体中壳3、上腔体隔热层4、上腔体下固定盖5组成,上腔体外壳2、上腔体中壳3、上腔体隔热层4分别从外到内安装形成上炉三层结构,上隔热盖1和上腔体下固定盖5分别安装于上炉三层结构的上端和下端使得上炉三层结构固定连接,上隔热盖1用来固定上炉体的上炉三层结构且起到隔热保温作用;上腔体外壳2和上腔体中壳3之间以及上腔体中壳3和上腔体隔热层4之间均有间隙作为空气隔热层,空气隔热层起到隔热保温的作用防止炉内热量散失。
中炉体主要由中隔热盖6、中腔体外壳7、中腔体中壳8、中腔体隔热层9、中腔体下固定盖10组成,中腔体外壳7、中腔体中壳8、中腔体隔热层9分别从外到内安装形成中炉三层结构,中隔热盖6和中腔体下固定盖10分别安装于中炉三层结构的上端和下端使得中炉三层结构固定连接,中隔热盖6用来固定中炉体的中炉三层结构且起到隔热保温作用;中隔热盖6具有隔热保温作用,防止热量在超重力作用下向下传导;中腔体外壳7和中腔体中壳8之间以及中腔体中壳8和中腔体隔热层9之间均有间隙作为空气隔热层,空气隔热层起到隔热保温的作用防止炉内热量散失;上炉体的上腔体下固定盖5和中炉体的中隔热盖6之间通过螺栓固定连接,上腔体下固定盖5和中隔热盖6连接用来连接上炉体和中炉体。
下炉体主要由下隔热盖11、下腔体外壳12、下腔体中壳13、下腔体隔热层14、下腔体下固定盖15组成,下腔体外壳12、下腔体中壳13、下腔体隔热层14分别从外到内安装形成下炉三层结构,下隔热盖11和下腔体下固定盖15分别安装于下炉三层结构的上端和下端使得下炉三层结构固定连接,下隔热盖11用来固定下炉体的下炉三层结构且起到隔热保温作用;下隔热盖11具有隔热保温作用,防止热量在超重力作用下向下传导,下腔体下固定盖15用来将高温加热装置固定在超重力试验装置的底部。下腔体外壳12和下腔体中壳13之间以及下腔体中壳13和下腔体隔热层14之间均有间隙作为空气隔热层,空气隔热层起到隔热保温的作用防止炉内热量散失;中炉体的中腔体下固定盖10和下炉体的下隔热盖11之间通过螺栓固定连接,中腔体下固定盖10和下隔热盖11连接用来连接中炉体和下炉体。
整个炉体通过上隔热盖1、上腔体下固定盖5、中隔热盖6、中腔体下固定盖10、下隔热盖11和下腔体下固定盖15四个地方对炉体进行加强,提高整个 炉体在超重力环境下的刚度和强度,防止炉体运行过程中变形和破坏。上腔体下固定盖5和中隔热盖6、中腔体下固定盖10和下隔热盖11之间通过高强螺栓联接,方便安装及维护。
炉体承载体19置于下炉体的下腔体隔热层14底部,高强度炉管17置于炉体承载体19上,炉体承载体19置于超重力试验舱底面上,炉体承载体19用来支撑整个炉体重量,以及超重力作用下产生的压应力,同时隔热,防止热量在超重力下通过热传导到超重力试验装置的底部。如图2和图3所示,高强度炉管17外分别和上炉体的上腔体隔热层4、中炉体的中腔体隔热层9、下炉体的下腔体隔热层14之间填充有隔热保温层16;高强度炉管17内部加工有螺旋状凹槽18-1,螺旋状凹槽18-1装有螺旋状的发热体18,如图4所示,螺旋状凹槽18-1在朝向高强度炉管17内壁的一侧开设有散热通道18-2,通过散热通道18-2将发热体18产生的热量均匀辐射到高强度炉管17中央。
工作过程中发热体18产生热量,通过辐射加热高强度炉管17,在高强度炉管17中央形成高温区,通过改变不同高度位置的螺旋状凹槽18-1螺距进而改变不同高度位置的发热体18在高强度炉管17间距,调整不同高度位置的加热温度,从而可以实现形成均匀的温度区或非均匀的温度梯度区。
本发明的高强度炉管17和发热体18的结构设计,这样能发热体18防止发热体在超重力环境下脱落,并且还能通过调整螺旋状凹槽不同位置处的螺距调整加热效果。
隔热保温层16为由低热导率材料组成,采用莫来石,防止热量通过传导传递到炉外。
高强度炉管17采用高强度、低导热系数的陶瓷制作。
本发明具体实施中还要求包括发热体18的选型、高强度炉管17加工的螺旋状凹槽螺距、高强度炉管17的材料类型。
发热体18的选型:不同的发热体18允许使用的最高温度和对使用环境的要求不一样,需结合此装置的具体使用条件最高工作温度、真空环境和超重力环境)确定发热体18类型。如铁铬铝电热合金丝和铂金丝等。
高强度炉管17加工的螺旋状凹槽螺距:发热体18在超重力条件下容易拉升变形,甚至断裂。需考虑发热体18布局设计外还得考虑发热体18所带来的一系列变化影响,如防止在超重力条件下发热体18变形移动严重时断裂),从而影响设备的整体运行。
高强度炉管17的材料类型:根据发热体18类型和使用温度要求,确定高强度炉管17的材料类型。为防止超重力下高强度炉管17自重造成的变形,高 温加热装置炉体设计为三层分体式,每层单独加固保温层。
高温加热装置置于离心机的超重力环境中。超重力试验舱为超重力环境下材料力学性能试验舱,置于离心机的吊篮中。
如图5所示,具体实施的超重力环境力学性能测试系统如下,超重力实验舱内还安装有承力架、信号采集器和布线架,高温加热装置的高强度炉管17内安装待力学性能测试的试样,并设置有温度传感器,温度传感器连接信号采集器,信号采集器输出的导线通过布线架与弱信号导电滑环连接,再与地面测控中心连接;高温加热装置设置有三路强电独立回路,三路强电独立回路控制加热内部不同高度位置的发热体18进行高温加热,将地面三个强电独立回路通过离心离心机主轴导电滑环接入超重力实验舱的布线架;离心离心机主轴导电滑环和供电柜连接。即通过布线架,将第一个强电独立回路和高温加热装置上加热区连接,将第二个强电独立回路和高温炉中加热区连接,将第三个强电独立回路和高温炉下加热区连接。
具体实施中,将控制高温加热装置的三个独立控温温度延长导线接入信号采集器,信号采集器将接受的温度信号,从模拟信号转变为数字信号;数字信号通过布线架与信号滑环连接,再与地面测控中心连接。
炉温由固定或焊接在待测是试样上的温度传感器通过控温仪和测控系统控制。
本发明装置安装使用时,先将下腔体下固定盖15通过螺栓固定于超重力试验装置底部,炉体支撑体19安装于下腔体下固定盖15上,下腔体外壳12、下腔体中壳13、下腔体隔热层14通过螺栓与下腔体下固定盖15连接,下隔热盖11通过螺栓与中腔体下固定盖10连接,中腔体中壳8、中腔体隔热层9、中腔体下固定盖10通过螺栓与中腔体下固定盖10连接,再通过螺栓与上腔体下固定盖5、中隔热盖6连接。
将莫来石的隔热保温层16直接放置在陶瓷的高强度炉管17和下腔体隔热层14、中腔体隔热层9、上腔体隔热层4之间。莫来石的隔热保温层16既可以起到缓冲作用又可以隔绝热量。
高温加热装置可重复使用,仅需要通过更换合适的发热体18和高强度炉管17以满足不同的实验要求,具有结构简单且安全系数较高的优点。
本发明装置的力学性能测试工作过程如下:
第一步:将超重力实验舱置于离心机的吊篮中,在超重力实验舱内放置高温加热装置,并通过施力装置安装上需要加热的试件;
第三步:将焊接在试件表面测温的热电偶的导线和信号采集器连接,并安 装应变片和信号采集器连接,信号采集器将接收温度和应变的模拟信号,并将模拟信号转变为数字信号;
第四步:三个强电独立回路分别连接到高强度炉管17的上、中、下加热区,使得高强度炉管17的的上、中、下三个加热区分别独立加热,在不同的加热区设置不同的加热温度;
第五步:离心机的转轴上安装转速计,将安装在离心机转轴上的转速计信号线与弱信号导电滑环连接,利用加热装置上三个热电偶控制高温炉的实时温度和加热速率,利用转速计控制离心机转速,利用以下公式计算施加在试件5上的应力F:
F=m·a=m·R(2πN/60) 2
其中,m为试件5的质量;a为离心加速度,计算公式为a=R(2πN/60) 2,R为试件5到离心机转轴轴线的有效距离;N为离心机的转速。
进而实时绘制获得试件在受力状态下的应力-应变曲线。
本发明能通过热电偶能独立控制高温加热装置的三个不同区域的温度,实现均温加热或梯度加热,进而能调节设置温度的分布。

Claims (6)

  1. 一种超重力环境下材料力学性能测试的高温加热装置,其特征在于:
    所述的高温加热装置固定于超重力试验舱中,所述的高温加热装置包括从上到下依次布置连接的上炉体、中炉体、下炉体以及隔热保温层(16)、高强度炉管(17)、发热体(18)和炉体承载体(19);
    上炉体主要由上隔热盖(1)、上腔体外壳(2)、上腔体中壳(3)、上腔体隔热层(4)、上腔体下固定盖(5)组成,上腔体外壳(2)、上腔体中壳(3)、上腔体隔热层(4)分别从外到内安装形成上炉三层结构,上隔热盖(1)和上腔体下固定盖(5)分别安装于上炉三层结构的上端和下端使得上炉三层结构固定连接,上腔体外壳(2)和上腔体中壳(3)之间以及上腔体中壳(3)和上腔体隔热层(4)之间均有间隙作为空气隔热层;
    中炉体主要由中隔热盖(6)、中腔体外壳(7)、中腔体中壳(8)、中腔体隔热层(9)、中腔体下固定盖(10)组成,中腔体外壳(7)、中腔体中壳(8)、中腔体隔热层(9)分别从外到内安装形成中炉三层结构,中隔热盖(6)和中腔体下固定盖(10)分别安装于中炉三层结构的上端和下端使得中炉三层结构固定连接,中腔体外壳(7)和中腔体中壳(8)之间以及中腔体中壳(8)和中腔体隔热层(9)之间均有间隙作为空气隔热层;上炉体的上腔体下固定盖(5)和中炉体的中隔热盖(6)之间固定连接;
    下炉体主要由下隔热盖(11)、下腔体外壳(12)、下腔体中壳(13)、下腔体隔热层(14)、下腔体下固定盖(15)组成,下腔体外壳(12)、下腔体中壳(13)、下腔体隔热层(14)分别从外到内安装形成下炉三层结构,下隔热盖(11)和下腔体下固定盖(15)分别安装于下炉三层结构的上端和下端使得下炉三层结构固定连接,下腔体外壳(12)和下腔体中壳(13)之间以及下腔体中壳(13)和下腔体隔热层(14)之间均有间隙作为空气隔热层;中炉体的中腔体下固定盖(10)和下炉体的下隔热盖(11)之间固定连接;
    炉体承载体(19)置于下炉体的下腔体隔热层(14)底部,高强度炉管(17)置于炉体承载体(19)上,高强度炉管(17)外分别和上炉体的上腔体隔热层(4)、中炉体的中腔体隔热层(9)、下炉体的下腔体隔热层(14)之间填充有隔热保温层(16);高强度炉管(17)内部加工有螺旋状凹槽(18-1),螺旋状凹槽(18-1)装有螺旋状的发热体(18),螺旋状凹槽(18-1)在朝向高强度炉管(17)内壁的一侧开设有散热通道(18-2),通过散热通道(18-2)将发热体(18)产生的热量均匀辐射到高强度炉管(17)中央。
  2. 根据权利要求1所述的一种超重力环境下材料力学性能测试的高温加热装置,其特征在于:工作过程中发热体(18)产生热量,通过辐射加热高强度炉管(17),在高强度炉管(17)中央形成高温区,通过改变不同高度位置的螺旋状凹槽(18-1)螺距进而改变不同高度位置的发热体(18)在高强度炉管(17)间距,调整不同高度位置的加热温度。
  3. 根据权利要求1所述的一种超重力环境下材料力学性能测试的高温加热装置,其特征在于:所述的隔热保温层(16)为由低热导率材料组成,采用莫来石。
  4. 根据权利要求1所述的一种超重力环境下材料力学性能测试的高温加热装置,其特征在于:所述的高强度炉管(17)采用高强度、低导热系数的陶瓷制作。
  5. 根据权利要求1所述的一种超重力环境下材料力学性能测试的高温加热装置,其特征在于:所述的高温加热装置置于离心机的超重力环境中。
  6. 根据权利要求1所述的一种超重力环境下材料力学性能测试的高温加热装置,其特征在于:所述的超重力实验舱内还安装有承力架、信号采集器和布线架,高温加热装置的高强度炉管(17)内安装待力学性能测试的试样,并设置有温度传感器,温度传感器连接信号采集器,信号采集器输出的导线通过布线架与弱信号导电滑环连接,再与地面测控中心连接;高温加热装置设置有三路强电独立回路,三路强电独立回路控制加热内部不同高度位置的发热体(18)进行高温加热,将地面三个强电独立回路通过离心离心机主轴导电滑环接入超重力实验舱的布线架。
PCT/CN2019/110034 2019-06-20 2019-10-09 超重力环境下材料力学性能测试的高温加热装置 WO2020252985A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910538194.3 2019-06-20
CN201910538194.3A CN110243181B (zh) 2019-06-20 2019-06-20 超重力环境下材料力学性能测试的高温加热装置

Publications (1)

Publication Number Publication Date
WO2020252985A1 true WO2020252985A1 (zh) 2020-12-24

Family

ID=67888388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/110034 WO2020252985A1 (zh) 2019-06-20 2019-10-09 超重力环境下材料力学性能测试的高温加热装置

Country Status (2)

Country Link
CN (1) CN110243181B (zh)
WO (1) WO2020252985A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110243181B (zh) * 2019-06-20 2024-05-28 浙江大学 超重力环境下材料力学性能测试的高温加热装置
CN110261238B (zh) * 2019-06-20 2024-04-05 浙江大学 超重力环境固定式多场耦合作用下材料性能测试系统
CN111487139A (zh) * 2020-04-03 2020-08-04 浙江大学 离心力-高温耦合环境下的材料性能测试系统
CN111441081B (zh) * 2020-04-03 2023-10-27 浙江大学 离心超重力熔铸与定向凝固系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5848618A (ja) * 1981-09-16 1983-03-22 Sumitomo Metal Ind Ltd 炉体
CN101571476A (zh) * 2009-06-09 2009-11-04 西北工业大学 一种用于测试高温材料阻尼性能的测试系统
CN205679047U (zh) * 2016-06-19 2016-11-09 山东仁川炉业科技有限公司 井式炉
CN106338197A (zh) * 2016-10-26 2017-01-18 西峡龙成特种材料有限公司 一种立式真空炉
CN206891174U (zh) * 2017-06-13 2018-01-16 孙东锦 一种烧结电阻炉
CN110243181A (zh) * 2019-06-20 2019-09-17 浙江大学 超重力环境下材料力学性能测试的高温加热装置
CN110261216A (zh) * 2019-06-20 2019-09-20 浙江大学 超重力环境悬挂式多场耦合作用下材料性能测试系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100432335B1 (ko) * 2002-05-28 2004-05-20 한국건설기술연구원 콘크리트 고온특성 실험용 이동식 가열로
CN101706213B (zh) * 2009-12-11 2011-11-30 中国航空工业集团公司北京航空材料研究院 一种蠕变、持久强度试验机加热炉
CN108254278A (zh) * 2018-01-23 2018-07-06 重庆大学 一种超高温材料连续热冲击试验装置
CN108760360A (zh) * 2018-04-10 2018-11-06 北京强度环境研究所 一种过载环境热离心试验装置
CN208995631U (zh) * 2018-07-18 2019-06-18 东莞市财源五金机械制造有限公司 一种网带式光亮退火炉
CN210922175U (zh) * 2019-06-20 2020-07-03 浙江大学 一种超重力环境下材料力学性能测试的高温加热装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5848618A (ja) * 1981-09-16 1983-03-22 Sumitomo Metal Ind Ltd 炉体
CN101571476A (zh) * 2009-06-09 2009-11-04 西北工业大学 一种用于测试高温材料阻尼性能的测试系统
CN205679047U (zh) * 2016-06-19 2016-11-09 山东仁川炉业科技有限公司 井式炉
CN106338197A (zh) * 2016-10-26 2017-01-18 西峡龙成特种材料有限公司 一种立式真空炉
CN206891174U (zh) * 2017-06-13 2018-01-16 孙东锦 一种烧结电阻炉
CN110243181A (zh) * 2019-06-20 2019-09-17 浙江大学 超重力环境下材料力学性能测试的高温加热装置
CN110261216A (zh) * 2019-06-20 2019-09-20 浙江大学 超重力环境悬挂式多场耦合作用下材料性能测试系统

Also Published As

Publication number Publication date
CN110243181B (zh) 2024-05-28
CN110243181A (zh) 2019-09-17

Similar Documents

Publication Publication Date Title
WO2020252985A1 (zh) 超重力环境下材料力学性能测试的高温加热装置
WO2020252984A1 (zh) 超重力环境悬挂式多场耦合作用下材料性能测试系统
US11609165B2 (en) Material performance testing system under fixed multi-field coupling effect in hypergravity environment
CN109520857B (zh) 高通量小试样蠕变及蠕变裂纹扩展试验装置及其使用方法
CN110987390A (zh) 一种实现涡轮叶片梯度温度场的旋转疲劳试验装置及方法
CN110614355B (zh) 超重力环境下材料定向凝固熔铸的高温加热系统
WO2014107827A1 (zh) 一种模拟热障涂层服役环境并实时检测其失效的试验装置
CN106289734A (zh) 一种航空发动机机匣高温包容试验技术
CN109798771A (zh) 一种用于航空发动机涡轮盘低循环疲劳寿命试验加热装置
CN110842168B (zh) 搭载于超重力离心机的定向凝固熔铸系统
CN115165337B (zh) 一种涡轮叶片旋转热-机械疲劳试验装置及方法
CN202256075U (zh) 用于霍普金森压杆试验的恒温装置
CN210922175U (zh) 一种超重力环境下材料力学性能测试的高温加热装置
CN112014110A (zh) 一种立式轮盘低循环疲劳试验器的温度场控制装置
CN103267636B (zh) 用于航空发动机主轴热态强度试验的加热装置
CN108132198B (zh) 一种不同环境模块间的超高温陶瓷往复热冲击试验装置
CN211291960U (zh) 一种实现涡轮叶片梯度温度场的旋转疲劳试验装置
Yan et al. Real-time detection of damage evolution and failure of EB-PVD thermal barrier coatings using an environmental simulator with high-temperature and high-speed rotation
CN210427195U (zh) 一种超重力环境悬挂式多场耦合作用下材料性能测试系统
CN110261239B (zh) 体积力-面力-温度耦合下材料力学性能测试的施力装置
CN210923331U (zh) 体积力-面力-温度耦合下材料力学性能测试的施力装置
CN111650054A (zh) 离心力-高温耦合环境下材料性能测试试验机系统
CN116078560A (zh) 高转速-高温作用下离心机原位加热的校温装置
CN213337142U (zh) 一种离心力-高温耦合环境下的材料性能测试系统
CN205982147U (zh) 一种立式多个大试样高温热膨胀仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19933608

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19933608

Country of ref document: EP

Kind code of ref document: A1