WO2014107827A1 - 一种模拟热障涂层服役环境并实时检测其失效的试验装置 - Google Patents

一种模拟热障涂层服役环境并实时检测其失效的试验装置 Download PDF

Info

Publication number
WO2014107827A1
WO2014107827A1 PCT/CN2013/001357 CN2013001357W WO2014107827A1 WO 2014107827 A1 WO2014107827 A1 WO 2014107827A1 CN 2013001357 W CN2013001357 W CN 2013001357W WO 2014107827 A1 WO2014107827 A1 WO 2014107827A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
test
thermal barrier
cooling
service environment
Prior art date
Application number
PCT/CN2013/001357
Other languages
English (en)
French (fr)
Inventor
周益春
杨丽
钟志春
蔡灿英
Original Assignee
湘潭大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湘潭大学 filed Critical 湘潭大学
Priority to US14/760,444 priority Critical patent/US9939364B2/en
Publication of WO2014107827A1 publication Critical patent/WO2014107827A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/002Test chambers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/02Details or accessories of testing apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/04Corrosion probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/72Investigating presence of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/56Investigating resistance to wear or abrasion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/56Investigating resistance to wear or abrasion
    • G01N3/567Investigating resistance to wear or abrasion by submitting the specimen to the action of a fluid or of a fluidised material, e.g. cavitation, jet abrasion

Definitions

  • Test device for simulating thermal barrier coating service environment and detecting its failure in real time
  • the invention relates to a test capital for simulating the service environment of a thermal barrier coating and detecting its failure in real time, in particular to simulate the high temperature, corrosion, erosion and dynamic rotation or static service of the turbine blade of the aeroengine thermal barrier coating.
  • the environment, and the test equipment S for the failure test of the thermal barrier coating in this service environment, is in the field of simulation equipment for special service environments. Background technique
  • Aviation engines are known as the "heart" of aircraft and play a decisive role in the development of the aerospace industry.
  • the key parameter of the engine is its thrust-to-weight ratio. Take the first-generation fighter F86 and the fourth-generation fighter F22 as an example.
  • the thrust-to-weight ratio of the engine has been developed from less than 2 to more than 10. Obviously, improving the thrust-to-HI ratio of the aeroengine is a Inevitable measures and inevitable trends in engine performance and efficiency.
  • the gas inlet temperature of the engine continues to increase.
  • the gas inlet temperature of the aircraft engine has reached about 1700 °C.
  • the significant increase in gas-to-U temperature undoubtedly places demands on the engine's hot end components, the turbine blade material.
  • the thermal barrier coating generally consists of a thermally insulating ceramic layer, a substrate subjected to mechanical loading, an intermediate wave layer that enhances the adhesion of the ceramic to the substrate, and an oxide layer formed during preparation and service.
  • the turbine blades that should be coated with thermal barriers are usually shells and shells. Cooled with coolant, the temperature of the ten-piece exterior ⁇ ' thermal barrier coating reaches 1100 Q C ⁇ 1700 while the base alloy material is inside. The temperature can also reach 700"C or jii ⁇ . In the actual service process, the thermal barrier coating usually has failures and fractures such as cracking, falling off, and separation. The impact of thermal barrier coating failure is large.
  • thermal barrier coatings are in service.
  • These complex service environments include: (1) Long-term high temperature environments. In the long-term high temperature environment, thermal coating will cause oxidation, enthalpy change, thermal fatigue and phase change; (2) high temperature chemical corrosion.
  • the fuel gas used in aviation gas turbine engines contains impurity elements such as Na, S, P, V. These impurity elements cause chemical reactions and are deposited on high temperature parts in the form of N S0 4 . Therefore, the application of thermal gap coatings often encounters various Corrosion problems of sulfate-like; (3) erosion of hard particles.
  • test devices involved in simulating and testing the thermal barrier coating service environment to verify the failure detection side are as follows: Cheng Laifei et al. disclose an aeroengine material hot end environment experimental simulation method installed 'ft (patent publication number: CN1546974A The device is a combination of atmospheric pressure sub-speed tunnel and material performance testing machine, 3 ⁇ 4 with 1 ⁇ 4 silicon-bonded silicon carbide ceramic as combustion: 3 ⁇ 4 lining to improve the high temperature level of the combustion chamber, its specimen holder + The structure of the rotating hinge + rotating handle allows thermal shock simulation.
  • Zhou Hong et al. developed a thermal barrier coating thermal resistance test device (patent CN1818612), the heating process and the cooling process were carried out on the coated surface of the sample and the gold-bending matrix, respectively. Simulating the working condition of the thermal barrier coated workpiece
  • the hollow-column thermal barrier coating can realize the simultaneous rise and fall of temperature and mechanical load, and can test the temperature distribution and boundary and crack propagation in real time.
  • we developed a test set for simulating and real-time testing of thermal fatigue failure of high-temperature components: ' ft (patent publication: 201010000151), capable of simulating the temperature alternating of static temperature components in high-performance aeroengines Cyclic thermal fatigue working environment, and can detect the damage parameters in real time by non-contact strain test system, acoustic emission non-destructive testing system, AC SI [anti-spectrum monitoring system and other non-destructive testing systems.
  • the present invention provides a test apparatus for simulating a thermal barrier coating service environment and detecting the failure thereof.
  • the test device ⁇ is used to realize the thermal barrier coating of turbine blade temperature, erosion, corrosion, and the actual service environment of the rotor blade dynamic rotation or the guide vane stationary. It has become a variety of non-destructive testing systems, which can be applied to various types of thermal barrier coatings. In the service environment, the temperature field, strain field, surface morphology, damage evolution, boundary and morphology are tested in real time, which provides the understanding, reliability evaluation and optimization design of the thermal barrier coating failure mechanism. An effective solution.
  • the H is mainly composed of 5 parts:
  • Test test bench including dynamic rotation module for correcting thermal barrier coated turbine blades, working blades, and sample clamping device for simulating thermal barrier coating turbine blade guide vanes static static service projections, inspection platform, sample Room
  • Non-destructive testing module including temperature test 3 ⁇ 4 set system, non-contact dimensional deformation test system, acoustic emission non-destructive testing system, complex impedance spectrum test system, and speed CCD imaging system;
  • cooling system including cooling of the thermal barrier coating sample;; installed cooling circulation system;
  • the main structure of the device is divided into experimental test fr'' J control _ cabinet two large blocks, test test bench, service environment module, non-destructive testing module and cooling system part constitute 3 ⁇ 4 test ⁇ , control display module of the experimental damage detection system constitutes control Display cabinet.
  • the functional structure of the 'ffi' is:
  • the 'l'1'Hj position of the test test bench is equipped with a dynamic sample holding device capable of high-speed rotation or a static static sample holding device W, a dynamic sample holder.
  • the sample clamping device includes two kinds of dynamic and static.
  • dynamic the sample is directly fixed on the rotating shaft by the fixing device, and the rotating shaft and the sample clamped on the shaft are rotated by the motor, and the rotation speed ranges from 0 to 0. -12000 r/min;
  • the static sample holding device comprises a rotating disk rotatable about a rotating shaft and a fixing device for fixing it on the rotating shaft, and the sample is fixed on the rotating plate along the radial direction of the rotating disk, and is rotated
  • the disc and the rotating shaft are respectively engraved with an angular scale, which can realize a clip of 0-360° between the sample and the vertical axis.
  • a disc-shaped, column-shaped, turbine-blade-shaped thermal barrier coating sample is processed on the disc to perform tests on various shapes of thermal barrier coating samples;
  • the high-temperature environment module of the service environment simulation module includes two special heating spray guns, which are fixed on the experimental operation platform by the fixing device, and the servo servo controls the movement of the spray gun through the moving rail, and the cooling channel is arranged in the spray gun.
  • the cooling water is circulated and cooled.
  • the temperature of the spray gun flame can reach 3000 °C.
  • the heating range of the sample is 20 -1700 by adjusting the distance between the spray gun and the sample. C;
  • the erosion particle feeding system hl l of the service environment module is respectively embedded in the particle pipes in the two heating spray guns, and the erosion particles are quickly impacted by the compressed air to the spray gun 1: 1.
  • the diameter is set under the rapid heating of the warm gas
  • the erosion particles of 10-500 ⁇ are eroded on the surface of the sample at a speed of 0-250 m/s, a temperature of 20-1700 ° C, or a 3 ⁇ 4 berth.
  • the corrosion service environment module of the service environment module There are two ways to implement the corrosion service environment module of the service environment module. One is to use the erosion particle channel to transport the corrosion particles to the high temperature gas or air at the exit of the spray gun to generate high temperature corrosion with erosion effect; The corrosive gas inside the gun transports the corrosive gas to the sample 3 ⁇ 4. The corrosion pressure of the sample 3 ⁇ 4 is l-6 atm.
  • thermocouple The temperature picking system root in the non-destructive testing module; the dynamic and static service state of the sample is divided into two types: an infrared thermometer and a thermocouple. Including thermocouple, infrared thermometer sensor, temperature indicator, temperature picking software, the thermocouple and sensor are respectively connected with the temperature indicator on the test control platform.
  • the thermal ⁇ couple adopts a B-type 1600 °C platinum-rhodium thermocouple to measure the surface of the sample, and the internal passage: the cooling gas exits at a temperature of six points; the infrared thermometer is a B-type 1600
  • the platinum-rh thermocouple of °C dynamic experiment, periodically measures the temperature of the sample table, the inner channel, and the cooling gas outlet to achieve the heat insulation effect and the temperature test at the specified position.
  • the non-contact three-dimensional deformation test system in the non-destructive testing module is an ARAMIS non-contact three-dimensional deformation online measuring system, the whole system is integrated in the H experimental test cabinet, and the CCD camera is placed on the outer side of the sample chamber, and the control system is installed.
  • ARAMIS non-contact dimensional deformation online measurement The system's measurement software is used to test and analyze the strain field, stress field and displacement field of the sample in real time.
  • the nondestructive testing acoustic emission cast block Che destructive detection system the sensitivity emission NDT system 10_ 8 cm in order acoustic PCI-2, the whole system is integrated in the cabinet experimental test apparatus W, which sensor, by means Waveguide Small sample room The hole is connected with the sample, and the H control system is connected to the control software of the Tuning and driving PCI-2 type acoustic emission non-destructive testing system to realize the detection and analysis of the internal crack initiation and expansion of the sample.
  • the AC complex impedance spectrum monitoring system in the non-destructive testing module is a 1260+1296 complex impedance spectrum measuring system, and the whole system is integrated in the experimental test cabinet, and the measuring electrode is connected to the sample through the small hole of the sample.
  • the device control system directly calls and drives the S software of the 1260+1296 complex impedance spectrometry system to perform the real-time test on the interface oxidation, damage evolution and corrosion failure of the thermal barrier coating sample (6).
  • the high-speed CCD camera system is an AVT Manta G-504 3 ⁇ 4 speed camera system with 5 megapixels and a maximum shooting rate of 9 3 ⁇ 4 s/s.
  • the whole system is integrated in the whole system, and the CCD camera is placed on the outside of the sample chamber.
  • the software system of W : I's to call and drive the measurement of AVT Mama G- 504 speed camera system. Software, used to take a real shot of the surface topography of the sample.
  • the cooling system has two cooling modes: one is air-cooling of the sample, and the cooling gas of the air compressor is passed through the inlet of the cooling passage, the bottom of the internal cooling passage of the sample, and the inside of the sample, the top of the mountain.
  • the cooling gas outlet is discharged;
  • the second is the water cooling of the gas spray gun, and the cooling water tank is controlled by the flow valve through the cooling passage, and the two spray guns and the cooling water tank are circulated.
  • test control and display platform control test platform all mechanical transmission, experimental parameter acquisition and adjustment and non-destructive testing module (3) all tests: 3 ⁇ 4 software control and experimental data mining, i have and display; t to include Temperature display, acoustic emission signal 3 ⁇ 4 indication, ARAMIS non-contact dimensional deformation measurement result display, impedance spectrum measurement ift result display, high-speed camera display, experimental parameters are not equal, line 3 ⁇ 4 control ⁇ , ⁇ — ⁇ , ⁇ Stop and turn off, Ding status display light, cooling system control ⁇ off, cooling system work indicator.
  • the high temperature, corrosion and erosion integrated warm gas spray gun loading system of the test device S of the present invention uses a propylene flame as a heat source, and has a fast heating and cooling rate, and can reach the working temperature of the inner temperature material of the engine.
  • the two-way wraparound loading method of the ⁇ . ⁇ chuan symmetrical structure makes the surface of the sample load more uniform, and then the distance between the spray gun and the sample table is controlled by the mechanical transmission device, so that the heating area and the heating temperature can be conveniently adjusted and loaded.
  • the characteristics of the system are sufficient: the temperature range of the heating is achieved from 20-1700. Heating in the C range; the width of the particle erosion is wide, and the erosion of 0-250 m/s can be achieved; the corrosion environment has a wide pressure range and can achieve corrosion of 1-6 atm.
  • the sample clamping device of the testing device of the present invention comprises: a quick-twisting motive, a rotating shaft, a turbine blade fixture fixed to the rotating shaft, and a fixed mounting, which is a dynamic sample clamping device H; A graduated mounting shaft, a rotary plate and a fixed device, which are plated, columnar, and turbine blade-shaped clamp A, are provided with a scale, and constitute a static sample holding device portion.
  • a quick-twisting motive a rotating shaft, a turbine blade fixture fixed to the rotating shaft, and a fixed mounting, which is a dynamic sample clamping device H;
  • a graduated mounting shaft, a rotary plate and a fixed device, which are plated, columnar, and turbine blade-shaped clamp A, are provided with a scale, and constitute a static sample holding device portion.
  • the sample is fixed directly on the rotating shaft through the clip slot.
  • the rotating shaft and the sample rotate at high speed by the motive.
  • the angular velocity can reach 12000 r/min, which is close to
  • the non-destructive testing system of the test equipment described in this issue includes the ARAMIS non-contact three-dimensional deformation on-line measurement produced by De GOM: System, 3 ⁇ 4
  • the main technical parameters of the three-dimensional deformation online measurement system are: the measured sample table and the temperature can reach 2000 °C; the CCD camera resolution is 2448x2050 pixels; real-time data processing, the sampling frequency is 15-29 Hz; strain measurement ffi Norm: 0.01% ⁇ 500%; The measurement of the out-of-plane displacement S is 140 mm.
  • the technical parameters of the acoustic emission detection system are: Internal '18-bit A/D converter and processor are more suitable for low amplitude, low threshold (17 dB) setting, 13 ⁇ 4 person's amplitude 100' dB, dynamic range > 85 dB, 4 high-pass and 6 low-pass; PCI-2 is equipped with an acoustic emission data flow device, which can continuously transmit the acoustic emission waveform to the hard disk at a speed of 10M / s; Two optional parameter channels, which use a 16-bit A/D converter with a speed of 10,000/sec. Parallel multiple FPGAs and ASIC IC chips.
  • Impedance measurement The main technical parameters of the system are: current state is 200 nA ⁇ 2 A; turbulence resolution is 1 pA; electrical range is ⁇ 14.5 V; ⁇ pressure resolution is 1 ⁇ ⁇ ; frequency range is 10 ⁇ ⁇ ⁇ ⁇
  • the main technical parameters of the high-speed camera system are: 3 ⁇ 4 large shooting rate of 9 fp S / s, resolution of 2452x205 4 pixels.
  • the test device of the present invention is equipped with two different types of cooling devices, a type of cooling system for the temperature fixture, Cooling is carried out by means of cooling water; - the foot is cooled by a sample of the cooling pass, and cooled by means of cooling air.
  • a thermal barrier coating for example, the core turbine blade sample is processed, the bottom end of the turbine blade is processed, the internal thread is set, the cooling passage is connected, and the cooling air is used to cool the turbine blade to ensure the temperature of the inner surface of the blade is maintained.
  • a temperature gradient is formed from the ceramic surface to the inner surface of the blade. Cooling gas flow rate valve control and measurement.
  • the sample can be measured, the inside of the sample, the cooling airflow, etc. 6 points temperature data, effectively evaluate the thermal insulation effect of the coating.
  • the test package of the present invention integrates various non-destructive testing systems into a test test cabinet equipped with W, and is integrated with the environmental service module, the test test platform and the cooling system in hardware.
  • ⁇ Non-destructive testing system In the test and test, the mountain system's own test software is used to set the parameters and store the data. However, the hardware and software of each non-destructive testing system are controlled and controlled by the control system of the mountain device. The same operation of the service simulation test and the failure real-time detection.
  • the experimental control buttons, parameters, temperature display, and various non-destructive testing system data and graphics of the device are all performed by the display system of the device, and the experimental parameters and experimental results are shown.
  • the present invention has a prominent feature:
  • Installation H can simulate the dynamic service environment of the thermal rotation coating working blade speed rotation, and can also simulate the static service environment of the guide vane stationary, realize the integrated calibration of the thermal barrier coating turbine dynamic and static service environment.
  • the installation has a wide operating temperature range of 3000 °C. It can be used to simulate the thermal fatigue failure of high-temperature component materials in the field.
  • Figure 2 is a structural diagram of the test test cabinet of the present invention. 3 ⁇ The test test cabinet of the present invention simulates the thermal array coating ⁇ turbine blade dynamic rotation module structure diagram.
  • Figure 4 is a schematic view of a test control structure of the present invention.
  • Fig. 5 is a connection diagram of the high temperature sample to be tested and the present invention.
  • FIG. 6 is a view showing the structure of the cooling system (air compressor) of the present invention: S.
  • the present invention provides a test apparatus for investigating a thermal barrier coating service environment and detecting its fire effect in real time.
  • the wood invention will be described below with reference to the drawings and specific embodiments.
  • 1 1 is the overall logic structure of the present invention: ⁇ ⁇ .
  • the structure of the test equipment includes: test test platform, service environment module, non-destructive testing module, cooling system and 3 ⁇ 4 inspection and non-destructive testing control platform.
  • the test structure of the invention of the winter invention shows: ⁇ ;
  • the structure of the test test cabinet is as follows: Install the W sample holder '1) in the i'nj position of the S test test bench, including the ''package' (105), ⁇ rotating motor (101), rotating shaft (102) ), Dynamically rotate the specimen holder : t( 103) ;
  • the static specimen clamp ( 104), the mounting shaft (106) and the static specimen clamp (104) are made with angular scales, and the clamp can be rotated around the shaft;
  • the upper and lower positions of the sample holding device are adjustable.
  • the sample holder is equipped with quartz glass to form a sealed sample 3 ⁇ 4 (109), and the sample chamber is connected to the dust removal system (107).
  • the side of the sample 1 ⁇ 9) is provided with a moving guide rail (1 12) supported by the inner positioning plate (1 10) and the outer positioning plate (111), and an service environment module is provided on the moving rail (112) (2) Mounting position 3 ⁇ 4 and fixing device (113), one or more heat I even on the side of the clamp (104) 3 ⁇ 4 (1 15); non-destructive testing on one side of the sample chamber (109)
  • the electrode and the waveguide rod are provided; a plurality of CCD cameras (1 17) are disposed outside the sample 3 ⁇ 4 (109); and an infrared temperature measuring camera (1 16) is provided.
  • a non-destructive testing system Under the test operating platform (108), a non-destructive testing system is provided.
  • Figure 3 is a schematic view showing the structure of the dynamic rotation-blocking turbine blade dynamic rotation module of the hairpin test test cabinet, as shown in Fig. 3, simulating the thermal barrier coating turbine blade dynamic rotation correction block 111 motor (l Ol) 'rotary rotation axis (102 High speed optional, one end of the rotating shaft is fixed on the rotating shaft by the dynamic sample clamping device H (103) and rotates with the rotation speed range of 0-12000 r/min; static sample clamp
  • the holding device comprises a rotating disc (104) rotatable about a rotating shaft, and the sample is fixed on the rotating disc along the radial direction of the rotating disc, and the sample can be realized as a straight shaft.: Now 0-360° clip
  • the high-temperature gas two-way heating system includes two special heating spray guns, the heating range is 20 -1700 °C, fixed by the spray gun fixing device (113), and the rifle is controlled by the servo 3 ⁇ 4 machine; the spray gun passes the cooling cooling water ;
  • the erosion particle feeding system subcontracts the particle pipe embedded in two heated spray guns, and the velocity of the erosion particles is 0-250 m/s, and the erosion particles: ⁇ ; [path 10 -500 ⁇ ;
  • the corrosion particles are added to the erosion particles, and the oxidized particles are generated at the 1-1 of the heating spray gun.
  • High temperature corrosive gas stream with erosion particles First, in a separate etching 3 ⁇ 4 airflow through An laid beneath the lance; corrosion conveying path to the sample chamber.
  • the corrosion pressure of the sample chamber is l-6 atm.
  • FIG. 4 is a structural diagram of the test control cabinet of the present invention: ⁇ ⁇ , test control platform (5) control all mechanical transmissions on the test test cabinet 108 (108), experimental parameter setting, experimental number 3 ⁇ 4 ' The display of the 3 ⁇ 4.
  • the test control platform (5) is provided with a temperature display device (512), an acoustic emission signal display (513), an anti-if measurement data display (514), an ARAMIS non-contact three-dimensional deformation measurement result display (515), and a stroke.
  • Fig. 5 is a diagram showing the connection relationship between the measured high temperature sample and the present invention.
  • the temperature test acquisition system (340) includes a thermocouple (1 14), a temperature display (512), temperature ⁇ software, the temperature of the thermocouple (114) and the test control platform (5) Instrument (512) is connected.
  • the thermocouple (1 14) is a Chuan B type 1600.
  • the platinum-rhodium thermocouple of C is measured on the surface of the sample (6), and the internal passage and the cooling gas are discharged at a temperature of 1-6 to achieve a heat-insulating effect and a temperature test for positioning.
  • thermocouples (114) were placed on the experimental operating platform (108) through six lM multi-acting thermocouples 1 ⁇ 1, respectively, on the thermocouple (114) and the test control platform (5).
  • the temperature test acquisition system (340) includes a thermocouple (114), an infrared thermometer (116), a temperature display (512), the thermocouple ( 114) and an infrared thermometer (116) is coupled to the temperature display (512) on the experimental control platform (5).
  • the type of the thermocouple (114) is the same as the static test, and the temperature of the axial center of the hollow rotating shaft and the sample connection port is measured to measure the temperature of the cooling gas.
  • the temperature display (512) is placed outside the sample chamber, and the temperature of the sample (6) and the internal channel are periodically measured by translation and rotation.
  • the cooling air passes through the cooling passage inlet (405), passes through the cooling water enthalpy (402), passes through the hollow rotating shaft (102), enters from the sample cooling bottom inlet (603), and is discharged through the sample cooling top outlet (604), and the system passes
  • the flow raft (403) controls the cooling air flow and the test flow;
  • the CCD camera (117) is connected to the AVT Manta G-504 type, the speed squeezing system (350).
  • the cooling system (4) includes an air compressor (401), a cooling water raft (402), a flow valve (403), a cooling passage inlet (404), a hollow rotating shaft cooling passage inlet 405 (405); and a cooling gas cooled
  • the passage inlet (405) and the cooling water tank (402) enter the bottom (603) of the inner cooling passage of the sample (6), and the cooling gas at the top of the sample 111 exits the IJ (604) through the inner passage of the sample.
  • Fig. 6 is a schematic structural view of a cooling system (air compressor) of the present invention.
  • the air IK compressor (401) has a flow S valve (403).
  • the non-contact three-dimensional deformation test system (310) is an ARAMIS non-contact, dimensional deformation on-line measurement system, which performs real-time testing of the strain field distribution, stress field distribution and displacement field distribution of the sample (6) in a high temperature environment. analysis.
  • the acoustic emission non-destructive testing system (320) is a PCI-2 type acoustic emission non-destructive testing system with sensitivity at l (T 8 C m ffl level), realizing the internal dynamics of the sample under various service conditions of the thermal barrier coating sample.
  • the bit detects crack growth, cracking and crack positioning.
  • the AC complex impedance spectrum monitoring system (330) is a 1260+1296 type ⁇ impedance spectrum measuring ft system, and the thermal barrier coating internal structure, crack ⁇ / ⁇ and boundary are applied to the sample (6) with thermal barrier coating. Real-time testing.
  • the CCD camera system (350) is the AVT Manta G-504 commercial speed camera system that tests the evolution of the surface profile of thermal barrier coatings in real time.
  • the static simulation test and real-time test of the turbine blade with thermal barrier coating using the test device are as follows: First, preparing the sample: using a plasma spraying process, spraying a thermal barrier coating on a certain type of hollow turbine blade surface Layer insulation material.
  • the system red I is: the transition layer material is NiCrAIY alloy, the M degree is about ⁇ ⁇ ; the ceramic powder material is zirconia containing 8 (wt.) % Y 2 0 3 , and the ceramic exhibits a thickness of about 300 ⁇ .
  • a layer of black ultra-high temperature resistant paint is sprayed on the surface of the sample to form a speckle field with high reflective performance, which is used as a characteristic speckle field of the ARAMIS non-contact three-dimensional deformation online measurement system.
  • test electrode (602) and the waveguide rod (601) of the test tube are respectively welded to the turbine blade sample 3 ⁇ 4 surface and the gold end (605) with the thermal barrier coating completed in the first step.
  • a waveguide rod (601) is connected to a complex impedance measurement system consultation (330) and AE loss detection system (320), and then '; turbine blade samples of thermal barrier coatings (6
  • I ii set the sample and: the axis of the clamp.
  • thermocouple is attached to the cooling top outlet (604) of the blade cooling passage. Ii thermocouples are connected to the temperature test acquisition system (34), and it is judged whether each instrument is working properly.
  • the acoustic emission nondestructive testing system is activated. Open the test software, set the experimental parameters such as threshold; start the AC complex impedance spectrum monitoring system, open the test software, and set the experimental parameters such as frequency range and voltage amplitude.
  • the sample holder (104) and the cooling water switch of the gun fixing H (113) are opened.
  • the cooling gas control switch of the internal passage of the turbine blade is opened, so that the cooling gas enters the blade from the cooling channel at the bottom of the turbine blade, and the through hole at the top of the mountain is discharged, so that the ceramic coating is formed into a 3 ⁇ 4 temperature gradient.
  • the sixth ⁇ start the propane rapid two-way heating device, start the particle feeding system, start the corrosive gas loading device (depending on the experimental requirements, optional 1-3 kinds of service environment), adjust the gas flow: 3 ⁇ 4, ignite the ignition after 8 ⁇ 10 seconds
  • the temperature is stable at 1000 °C.
  • the turbine blade table is double-heated rapidly, and the heating rate is about 100 ° C / s, so that the surface temperature is stabilized at about 1000 ° C for 10 minutes.
  • a thermal cycle is ⁇ 10 s for heating, 300 s for insulation, and 200 s for cooling.
  • the number of thermal cycles is set to 500.
  • the seventh ⁇ the same open the simulation experiment and 3 ⁇ 4 ⁇ detection system, the actual test and record of the temperature field change of the turbine blade sample with thermal barrier coating, three-dimensional deformation field change, three-dimensional displacement field change, ceramic coating
  • the evolution of the morphology the number of events monitored by acoustic emission, the growth and evolution of the oxide layer, and the peeling of the coating.
  • Section VIII after the completion of the simulation experiment, analyze and refine the experimental data to determine the failure mechanism and hazardous area of the coating in the turbine blade with thermal barrier coating.
  • the procedure for dynamic simulation and real-time testing of the turbine blade with thermal barrier coating using the test device is as follows: First, preparation of the sample: spraying the heat on the 3 ⁇ 4 type 3 ⁇ 4 heart turbine blade 3 ⁇ 4 surface by plasma spraying process Barrier coating insulation.
  • the system composition is sufficient: the transition ⁇ material is NiCrAIY alloy, and its thickness is about ⁇ ⁇ ; the ceramic powder material is -3 (wt.) % ⁇ 2 0 3 -: zirconium, the ceramic layer is about 300 ⁇ .
  • a layer of black ultra-high temperature lacquer was sprayed on the surface of the sample to form a speckle field with a reflective performance, which was used as a characteristic speckle field of the ARAMIS non-contact three-dimensional deformation online measurement system.
  • the turbine blade sample with thermal barrier coating (6
  • is placed outside the sample chamber (109), and the thermocouple and the infrared camera are respectively connected to the temperature test acquisition system (340), and it is judged whether each instrument works normally.
  • the fifth step is to smash the sample holder (103) and the cooling water switch of the gun mount ⁇ (113).
  • the cooling gas control switch that blows the internal passage of the turbine blade allows the cooling gas to enter the blade from the cooling passage at the bottom of the turbine blade, and the top hole of the crucible is discharged, so that the ceramic coating surface forms a high temperature gradient on the inner surface of the gold plate base.
  • the sixth ⁇ start the rapid bidirectional heating device of the propylene sulphide, start the granule feeding system, start the corrosive gas loading device (depending on the experimental requirements, optional 1-3 kinds of service environment), adjust the gas flow, and the gas temperature is stable after 8 ⁇ 10 seconds of ignition. 1000 °C.
  • the turbine blade table is double-heated and heated at a heating rate of about 100 °C/s, so that the surface temperature is stabilized at 1000 °C for 5 minutes.
  • the high-speed machine rotation system is started, and the rotation speed is set to 10000 r/min, and the operation time is set to 5 minutes.
  • Section VIII simultaneous simulation experiments and real-time detection systems, real-time testing and recording of temperature field changes, three-dimensional deformation field changes, dimensional displacement field changes, ceramic coating surface topography of turbine blade specimens with thermal barrier coatings Evolution and so on.
  • the invention can simulate the high temperature, erosion and corrosion service environment of the turbine blade of the aeroengine thermal barrier coating, and realizes the physical deformation simulation of various fatigue processes such as thermal fatigue, high temperature corrosion and temperature erosion;
  • the dynamic service environment of the coated working blade rotating at high speed can also simulate the static service environment of the guiding blade at rest, realize the integrated simulation of the dynamic and static service environment of the thermal barrier coating turbine blade; and can test the thermal array coating temperature field and table in real time.
  • the invention realizes the integration of the high temperature, erosion and corrosion service environment of the thermal barrier coating, the integration of the static and dynamic service environment, the integration of the service environment simulation and the real-time detection, and the application is strong, in order to correctly understand the thermal barrier coating
  • the failure mechanism and optimal design of turbine blades provide an important experimental platform and reference basis.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

一种模拟热障涂层服役环境并实时检测其失效的试验装置,属于特殊服役环境模拟装置领域。装置包括安装有静态或是动态旋转试样加持装置(1)的试验测试平台、服役环境模拟模块(2)、无损检测模块(3)、控制与显示模块(5)等。安装轴(106)和静态试样夹具(104)上制作有角刻度,夹具(104)能围绕轴心转动,动态试样夹持装置包括高速旋转电机(101),旋转轴(102),动态试样夹具(103)。服役环境模拟模块(2)包括冲蚀颗粒加料系统(202)等。无损检测模块(3)包括非接触式三位变形测试系统(310),声发射无损检测系统(320),复阻抗谱测试系统(330),高速CCD摄像系统(350)等。试验装置能模拟航空发动机热障涂层涡轮叶片高温,冲蚀,腐蚀服役环境;能模拟热障涂层工作叶片高速旋转动态服役环境,能模拟导向叶片静止静态服役环境;能实时测试热障涂层温度场、三维位移场、裂纹萌生与扩展、界面氧化等。

Description

一种模拟热障涂层服役环境并实时检测其失效的试验装置 技术领域
本发明涉及一种模拟热障涂层服役环境并实时检测其失效的试验装資, 特别涉及的是一 种模拟航空发动机热障涂层涡轮叶片高温、 腐蚀、 冲蚀以及动态旋转或静止的服役环境, 并 对这一服役环境下热障涂层的失效参数进行同歩实吋检测的试验装 S, 屈于特殊服役环境的 模拟装置领域。 背景技术
航空发动机被誉为飞机的"心脏", 对航空航天工业的发展起着决定性的作用。 发动机的 关键参数是其推重比, 以第一代战斗机 F86和第四代战机 F22为例, 其发动机的推重比已从 小于 2发展到大于 10, 显然, 提高航空发动机的推 HI比是提髙发动机性能和效率的必然措施 和必然趋势。 随着推重比的提高, 发动机的燃气进口温度不断提高, 到第四代战斗机时, 航 空发动机的燃气进口温度已经达到了 1700 °C左右。 燃气进 U温度的大幅提升无疑对发动机 热端部件即涡轮叶片材料提出了 的要求。 为了满足涡轮叶片的使用要求, 各国先后研制 出一系列用于涡轮叶片的超级高温合金材料, 1 '先进镍基高温.! 品的使用极限温度为 1150 °C,显然单独使用高温金 j 合金材料技术已不能满足先进航空发动机迅速发展的迫切要 求。 早在 1953年美国的 NASA屮心提出了热障涂层的概念, 即将耐高温、 高隔热的陶瓷材 料涂覆在基体合金表而, 以降低合金表而工作温度从而提高发动机的热效率。 这一概念提出 以后, 立即引起了世界各 M 防部门、 ,¾校和研究机构的 , 度关注, 在美国、 欧洲以及我国 的航空发动机推进计划中, 均把热障涂层技术列为^性能航空发动机的关键技术之一。 而且 认为, 采用热障涂层技术是目前火幅度提高航空发动机工作温度最切实可行的方法。
热障涂层一般由隔热防护的陶瓷层, 承受机械载荷的基底^、 增强陶瓷与基底粘结力的 中间过波层以及在制备和服役过程屮形成的氧化层组成。 应 ffl热障涂层的涡轮叶片通常是壳 体, 壳体. 而用冷却剂冷却, Π十片外表 ιίυ'热障涂层的温度 '达到 1100 QC〜 1700 而基底合 金材料内表而的温度也可以达到 700 "C或者 jii髙。 在实际服役过程屮, 热障涂层通常出现开 裂、 脱落、 界而分离等失效和断裂。 影响热障涂层失效 断裂的 |大|素很多, 除了自身复杂的 几何形状、 微观结构及各 之 的性能差异等 I'l J^ 外, ¾关键的是热障涂层服役在极其 恶劣而又复 的热、 力、 化学耦合的环境。 这些复杂的服役环境包括: (1)长时间的高温环境。 在长时间的高温环境下, 热 涂g会发^界而氧化、 蜢变、 热疲劳和相变; (2)高温化学腐蚀。 航空燃气涡轮发动机使用的燃料屮含 Na, S , P, V等杂质元素, 这些杂质元素会引起化学反 应,以 N S04形式沉积在高温部件上,因此热隙涂层的应用经常遇到各类硫酸盐的腐蚀问题; (3)硬质颗粒的冲蚀。 在航空发动机在服役过程中, 将不 W避免的遇到夹杂硬质颗粒的撞击, 形成冲蚀。 形成冲蚀的粒子一般在发动机内产生, 或者 111于在燃烧过程屮形成的碳颗粒, 或 者是 ώ于发动机磨损形成的粒子。 耍综合考虑热障涂 复杂的儿何结构, 复杂的热、 力、 化 学等多种载荷的耦合作用, 依靠 '规的如拉仲、 弯曲、 热力疲劳、 热冲击等力学实验方法来 研究其失效行为是不现实的。 早在 20世纪 70年代, ¾国的 NASA屮心就将热障涂层在相当 高热流密度的 J-75涡轮发动机上进行了试车, 验证了热障涂层的隔热效果, 并以此为依据调 整了陶瓷层各成分的配方。 但是, 在实际的航 ¾发动机上试 需耗费巨大的人力和物力。 因 此, 如果我们能发展热障涂层服役环境的试验模拟技术, 对其复杂的服役环境进行模拟, 对 其失效过程中的温度场、 应变场、 变形、 ¾而形貌、 裂纹的萌生与扩展、 界面形貌的演变等 损伤参量进行实时或原位的无损检测, 即直接的"卷"损伤在制备或服役过程中形成、 演化的 过程, 则能为正确的理解其失效行为、 预测其服役寿命、 指导其优化设计与安全应用提供直 接的依据和指导。
目前涉及到模拟和测试热障涂^服役环境校拟 失效检测方而的试验装置有: 成来飞等 人公开了一种航空发动机材料热端环境实验模拟方法 装 'ft (专利公开号: CN1546974A), 其 装置是将常压亚咅速风洞和材料性能试验机相结合, ¾用¼化硅结合碳化硅陶瓷作为燃烧: ¾ 内衬来提高燃烧室的耐高温水平, 其试件架 +转动铰链 +转动手柄的结构可进行热震模拟。 周 洪等人研制了一种热障涂层抗热 性能测试装 ¾ (专利公丌 CN1818612), 加热过程和冷却 过程分别在试样的涂层面和金屈基体表而进行, 能较真 ¾的模拟稷盖热障涂层工件的工作情
CN 1699994) , 对空心 ^柱形热障涂 ^试样能够实现温度和机械载荷同歩上升、 保持和下降, 能够实时测试温度分布、 界而裂纹扩展情况。 在我们 ιϊίί期的工作中, 研制了一种用于模拟和 实时测试高温部件热疲^失效的试验装:' ft (专利公开 : 201010000151 ) , 能够模拟高性能航 空发动机内静态 温部件温度交变循环的热疲劳工作环境,并能利用非接触式应变测试系统、 声发射无损检测系统、交流 S I [抗频谱监测系统等无损检测系统对其损伤参量进行实时检测。 但这些装 在服役环境的校拟方而, 大多只能投拟热 涂 的热疲劳、 热震等单一载荷或是 热、 力简单耦合的服役环境, 没有实现热障涂 ! 温腐蚀尤其是冲蚀环境的模拟, 更没有实 现热障涂层涡轮工作叶片 ή 速旋转服役环境的校拟。 在失效过 的实时检测方面, 只有宫声 凯和我们前期设计的装¾屮涉及裂纹形成吋的声发射检测、 界而氧化的复阻抗谱检测等相关 工作, 但这些无损检测系统并没冇与装 W形成 -个完整的粮体, 也没有一个系统的操作软件 对各种无损检测系统进行^歩的控制, 更没有将各种无损检测的数据整体的显示、 记录与分 析。 发明内容
为了解决上述问题, 本发明提供 种模拟热障涂 服役环境并实吋检测其失效的试验装 置。 该试验装置 πί以实现热障涂 涡轮叶片 温、 冲蚀、 腐蚀以及工作叶片动态旋转或导向 叶片静止的实际服役环境, 装' 成了多种无损检测系统, 能对热障涂层在各种服役环境下 实验时的温度场、 应变场、 表而形貌、 损伤演化、 界而形貌等多个损伤参量进行实时检测, 为热障涂层破坏机制的理解、 可靠性评估以及优化设计提供有效的解决办法。
本发明采用的技术方案为:
一种模拟热障涂层服役环境并实吋检测其火效的试验装 'ft, 该装 H主要由 5部分组成:
(1 )试验测试台, 包括校拟热障涂 涡轮叶片屮工作叶片的动态旋转模块和模拟热障涂层 涡轮叶片导向叶片静止静态服役投块的试样夹持装 ¾、 验操作平台、 样 室;
(2)服役环境模块, 能税拟热障涂 涡轮叶片 温热疲 ;、 温度梯度、 冲蚀、 腐蚀的高温 燃气喷枪、 冲蚀或 /和腐蚀颗粒加料系统、 腐蚀 z〔体输入通逍:
(3)无损检测模块, 包括温度测试 ¾集系统、 非接触式 维变形测试系统、 声发射无损检 测系统、 复阻抗谱测试系统、 ^速 CCD扱像系统;
(4)冷却系统, 包括热障涂 样品的冷却 ';;装 的冷却循环系统;
(5)实验与无损检测系统的控制与! ώ示校块。
装置的主体结构分为实验测试 fr' ' J控制_ 柜两大块, 试验测试台、 服役环境模块、 无 损检测模块和冷却系统部分构成 ¾验测试^, 实验 损检测系统的控制 显示模块构成控 制显示柜。 装' ffi的功能结构为: 在装 试验测试台的 ' l ' 1'Hj位 ^安装有能高速旋转的动态试样 夹持装置或是静止的静态试样夹持装 W, 动态试样夹持装 W il l ,ϊ'速旋转电动机、旋转轴 (轴的 一端与电动机冋定)、 试样夹具 (安装在轴的 ·端)及^定装置组成; 静态试样夹持装置山带 有角度盘的安装轴和旋转 1 1盘试样火 及固定装 成, 将轴、 试样、 试样夹具及固定装^ 山石英玻璃封闭, 形成密封的样品 ¾。 样 ¾的两侧安装 W内定位板和外定位板支撑的移动 导轨,在移动导轨上设¾投拟热障徐¾服役环境的喷枪的 |Vi|定装 W。在样品室内夹具的一侧, 设 S多个热电偶固定装 ¾。 在样品 ί的一侧 ¾上, :冇小孔安装无损检测系统的电极、 波 导杆。 在样品室的外侧, 设 S多个 CCD 摄像机。 样品室的上方, 接除尘除湿系统, 实验操 作平台上设置有颗粒回收系统。 在试验操作平台的下方设 K各种无损检测系统的放置位置。
所述试样夹持装覽包括动态和静态两种, 动态时, 试样通过^定装置直接固定在旋转轴 上, 由电动机带动旋转轴以及夹持在轴的试样旋转, 转速范围为 0-12000 r/min; 静态试样夹 持装置包括一个可绕旋转轴转动的旋转盘及将其固定在旋转轴上的 定装置, 试样沿着旋转 盘的半径方向固定在旋转盘上, 旋转盘及旋转轴上分别刻有角刻度, 能实现试样与竖直轴呈 现 0-360°的夹 ^。 圆盘上加工有平板状、 ^柱状、 涡轮叶片状热障涂层试样的夹具, 能完成 各种形状热障涂层试样的试验;
所述服役环境模拟模块的高温环境模块包括 2个特制的加热喷枪, 通过固定装置固定在 实验操作平台上, 11 1伺服屯机通过移动导轨控制喷枪的移动, 且喷枪内设置有冷却通道, 由 冷却水循环冷却。 喷枪喷射火焰的温度可达 3000 °C, 通过调节喷枪与试样的距离样品的加 热范围为 20 -1700。C;
所述服役环境模块的冲蚀颗粒加料系统 hl l分别镶嵌在 2个加热喷枪内的颗粒管道, 通过 压缩空气将冲蚀颗粒快速冲击至喷枪 1: 1, 在 温燃气的快速加热下将直径为 10-500 μηι的冲 蚀颗粒以 0-250 m/s的速度、 20-1700°C的温度、 任: ¾伯度冲蚀在试样的表面。
所述服役环境模块的腐蚀服役环境模块的实现方式有两种, 一是利用冲蚀颗粒通道传输 腐蚀颗粒至喷枪出口处与高温燃气或空气发生反应生成带冲蚀效应的高温腐蚀; 二是通过内 置在喷枪内的腐蚀气体 逬将腐蚀气体输送 样品 ¾。 样品¾的腐蚀气压为 l-6 atm。
所述无损检测模块中的温度采柒系统根 ';试样的动、 静服役状态, 分为红外测温仪和热 电偶两种。 包括热电偶、 红外测温仪传感器、 温度— 示仪、 温度采柒软件, 所述热电偶、 传 感器分别与试验控制平台上的温度 示仪连接。 静态实验吋, 所述热屯偶采用 B型 1600 °C 的铂铑热电偶, 测定试样的表而、 内通 :、 冷却气体出 Π六点温度; 所述红外测温仪为 B型 1600 °C 的铂铑热电偶, 动态实验吋定期测定试样表而、 内通道、 冷却气体出口的温度, 实 现隔热效果及指定位置的温度测试。
所述无损检测模块中的非接触式三维变形测试系统为 ARAMIS 非接触式三维变形在线 测量系统, 整个系统集成在装 H实验测试柜内, CCD 摄像头放 H在样品室的外侧, 装 ¾ 控制系统直接调用和驱动 ARAMIS非接触式 维变形在线测: 系统的测 fi软件,用以对试样 的应变场、 应力场和位移场进行实时测试和分析。
所述无损检测投块屮的声发射无损检测系统为灵敏度在 10_8cm 量级的 PCI-2型声发射 无损检测系统, 整个系统集成在装 W实验测试柜内, 其传感器、 波导杆装置通过样品室的小 孔与试样相连, 装 H控制系统 接调川和驱动 PCI-2型声发射无损检测系统的测量软件, 实 现试样内部裂纹的萌生、 扩展的实 I n检测与分析。
所述无损检测模块中的交流复阻抗频谱监测系统为 1260+1296型复阻抗谱测量系统, 整 个系统集成在装 实验测试柜内, 其测 ^:电极迎过样 ¾的小孔与试样相连, 装置控制系统 直接调用和驱动 1260+1296型复阻抗谱测 系统的测 S软件, 对热障涂层试样 (6)进行界面氧 化、 损伤演化与腐蚀失效的实吋测试。
所述高速 CCD摄像系统为 AVT Manta G-504型 ¾速摄像系统, 500万像素, 最大拍摄速 率为 9 ¾ s/s。整个系统集成在整个系统 1¾成在装 验测试柜内, 其 CCD摄像头放 R在样品 室的外侧, 装: W:的软件系统: I'接调用和驱动 AVT Mama G- 504 速摄像系统的测量软件, 用 以对试样的表面形貌进行实吋拍摄。
所述冷却系统有两种冷却方式: 一 ^对试样的气冷, 空气压缩机屮的冷却气体经冷却通 道入口 ώ试样内部冷却通道的底部入 ΓΊ进入, 经试样内通道, 山顶部的冷却气体出口排出; 二是对气体喷枪的水冷, 冷却水箱屮水流通过流 阀的控制经冷却通道入 Π在两个喷枪与冷 却水箱问循环流动。
所述试验控制与显示平台控制试验测试平台上的所有机械传动、 实验参数采集与调节以 及无损检测模块 (3)所有测: ¾软件的控制与实验数据的采 、 i己 与显示; t要包括温度显示、 声发射信号 ¾示、 ARAMIS非接触式 维变形测 结果 示、 阻抗谱测 ift结果显示、 高速 摄像显示、 实验参数显不等, 行¾控制卄关、 屯源指小—灯、 急停丌关、 丁作状态显示灯、 冷 却系统控制 ^关、 冷却系统工作指示灯。
本发明的冇益效果为:
(1)本发明所述试验装 S的高温、腐蚀与冲蚀一体化的 温燃气喷枪加载系统以丙垸火焰 作热源, 升温和降温速率快, 可达到航 发动机内 温材料的工作温皮。 采用空气)玉缩机将 铝、 硫、 磷等 ¾质与腐蚀颗粒通过冲蚀颗加料系统快速的挤 喷枪端口处, 被高温燃气加 热、 反应, 生成带硬质颗粒的强腐蚀 流, 或^ μί 1;/腐蚀符道的腐蚀气体交汇, 模拟热障涂 层涡轮叶片高温、 腐蚀与冲蚀的服役环境。 而. Η.釆川对称结构的双向环绕加载方式, 使试样 表面受载较均匀, 再通过机械传动装¾控制喷枪到试样表而的距离, 可以方便地调节加热区 域和加热温度, 加载系统的特点足: 加热的温度范 宽, 实现从 20-1700。C范围的加热; 颗粒冲蚀的逨度范 宽, 可实现 0-250 m/s范^的冲蚀; 腐蚀环境的压力范围宽, 可实现 1-6 atm 的腐蚀。 ϋί:ϊ1 :要的 i, 加载系统屮冲蚀、 ή' 1; /'腐蚀校块 πί以冋时加载, 模拟热障涂层 复杂的热、 力、 化学耦合环境; ^个投块也可以独立 1 :作或两两组合工作, 分别模拟热障涂 层单一的冲蚀、 热疲劳或热冲击或^温载化、 腐蚀; 乂或是高温冲蚀、 高温腐蚀、 冲蚀腐蚀 的服役环境。 功能强大, 操作简 - ·, 试验设各容易实现, 试验成本低, 并且便于实现与其它 测试仪器一起协调测试。
(2) 本发明所述试验装置的试样夹持装 ¾包括: 速屯动机、 旋转轴、 固定在旋转轴上 涡轮叶片夹具以及固定装覽, 构成即动态试样夹持装 H部分; 标有刻度的安装轴、 标有刻度 的加工有平板状、 柱状、 涡轮叶片状夹 A的旋转盘以及 定装置, 构成静态试样夹持装置部 分。 动态实验时, 试样直接通过夹』 槽固定在旋转轴上, 由屯动机带动旋转轴及试样高速旋 转, 角速度最高可以达到 12000 r/min, 接近实际热障涂层涡轮叶片的工作转速; 静态实验时, 在旋转盘的圆周平而上刻有平板状、 柱状、 实际涡轮叶片底座形状的试样槽, 可以装载各 种不同形状、大小的热障涂 试样或叶片。通过调整旋转盘刻度 4旋转轴上指示刻度的夹角, 可实现热障涂层试样与竖直轴之 W的火角, 角度范 Ι Ι 0-360°可调。 不仅可以实现工作叶片和 导向叶片旋转与静止的服役状态, 而. II.可以完成各种简 - -形状热障涂层试样、 各种不同测试 条件如冲蚀 Λ]度的实验, 分析温度、 粒子角度、 速度、 几何形状等各种因素对热障涂层破坏 机理的影响。
(3)本发叨所述试验装' ¾中¾成的无损检测系统包括德 GOM公司生产的 ARAMIS非接 触式三维变形在线测: 系统, ¾ | 物理声学公司生产的 PCI-2 型声发射检测系统, 英国 Solartron公司生产的 1260+1296型 阻抗谘测试系统,德国 AVT公司 产的 AVT Manta G-504 型高速摄像系统, 分别用来测: fi热障涂层试样的 维变形, 裂纹的荫生与扩展, 界面形貌演 化、 微观结构与化学成分变化, ¾而形貌摄像。 其中三维变形在线测量系统主要的技术参数 有: 被测量试样表而温度可髙达 2000 °C; CCD摄像机分辨率是 2448x2050 像素; 实时数据 处理, 其采样频率是 15-29 Hz; 应变测 ffi范 : 0.01 % 〜 500 %; 离面位移的测量 S大值是 140 mm。 声发射检测系统的 ΐ耍技术参数是: 内' 的 18位 A/D转换器和处理器更适一种用 于低振幅、 低门槛值 (17 dB)的设置、 1¾人信'' 幅度 100 dB、 动态范 > 85 dB、 4个高通和 6 个低通; PCI-2上装有声发射数据流量器, 可将声发射波形不断的转向硬盘, 速度可达 10M / 秒; PCI-2板上装有 2个可选参数通道, 该通道打 16位的 A/D转换器, 速度为 10000个 /秒, 并行多个 FPGA处现器和 ASIC IC芯片。 阻抗诺测: 系统的主耍技术参数是: 电流范國是 200 nA ~ 2 A; 屯流分辨率是 1 pA; 电 范 足±14.5 V; ι乜压分辨率是 1 μν; 频率范围是 10 μ ~ Ι Ηζο 高速摄像系统的主要技术参数是: ¾大拍摄速率为 9 fpS/s, 分辨率是 2452x205 4 像素。
(4)本发明所述试验装 2种不同类型的冷却装 , -种 对 温夹具的冷却系统, 通 以冷却水的方式进行冷却; —种足对带冷却通逍的试样进行冷却, 通以冷却空气的方式进 行冷却。 例如以带热障涂层 ( 心涡轮叶片试样为例, 对涡轮叶片底端做加工处理, 设置内 螺纹, 接冷却通道, 通冷却空气对涡轮叶片进行内流冷却, 保证叶片内表面温度保持在设定 的温度, 进而实现从陶瓷表面至叶片内表而形成 个温度梯度。 冷却气流量 流量阀控制和 测量。 通过外接热电偶, 可以测量记录试样表而、 试样内部、 冷却气流等 6点温度数据, 有 效评价涂层的隔热效果。
(5)本发明所述试验装 将各种无损检测系统 ¾成在装 W的试验测试柜内, 与环境服役模 块、 试验测试平台以及冷却系统在硬件上构成一个整体。 ^种无损检测系统在试验测试时, 山系统自身的测试软件来进行参数的设定、 数掂的存储, 但各个无损检测系统硬件与软件的 开启与执行状态山装置的控制系统统一控制,实现服役模拟试验与失效实时检测的同歩运行。 装置的实验控制按钮、 参数 . 示、 温度 示以及各种无损检测系统的数据、 图形均由装置的 显示系统来完成, ¾现实验参数与实验结 的 体化 ¥示。
综上所述, 本发明 t以― 突出的特点:
a.能模拟航空发动机热障涂层涡轮叶片高温, 冲蚀, 腐蚀的服役环境, 实现了热疲劳、 高温腐蚀、 高温冲蚀等多种破坏过程的 ·体化模拟。 )ij 0未有专利报道这一一体化功能的 试验装置。
b.装 H既能模拟热障涂层工作叶片 速旋转的动态服役环境, 也能模拟导向叶片静止的 静态服役环境, 实现热障涂层涡轮叶 ^动、 静态服役环境的一体化校拟。 目前尚未有专利报 道热障涂层动态模拟系统的试验装 w, ¾i没有动、 静态服役环境一体化的试验装置。
c.装 S能够实时测试热障涂 j i温度场、 而形貌^像演变、 三维变形场、 三维位移场、 界面氧化层及其增厚规律、 热疲劳裂纹萌^与扩展情况、 冷却气流 itt, 实现服役环境模拟与 失效过程实时检测的一休化。 隱, 本装' 大的特色 ¾现了热 涂^高温、 冲蚀、 腐 蚀服役环境的一体化, 静态、 动态服役环境的 ·体化, 服役环境模拟与实时检测的一体化, 为正确理解热障涂层涡轮叶片的破坏机玴、 优化其设计提供了: ill要的实验平台和参考依据。
d.该装覽的工作温度范围宽 能达到 3000 °C), 能 成模拟不冋领域内高温部件材料 热疲劳失效的测试, 应用性强。 附图说明
图 1是本发明整体逻^结构 ^意 1 。
图 2是本发明试验测试柜结构示 阁。 3 ^本发明试验测试柜模拟热陣涂^涡轮叶片动态旋转模块结构示意图。 图 4是本发明试验控制祀结构示 l l。
图 5是被测高温试样与本发明连接关系阁。
图 6是本发明冷却系统 (空气压缩机) 结构示: S阁。
图中标号: 101— 速旋转屯动机; 102—旋转轴; 103—动态旋转试样夹具; 104—静态 试样夹具; 105—固定装 ; 106—安装轴; 107—除尘系统; 108—实验操作平台; 109—样品 室; 110—内定位板; 11 1一外定位板; 1 12—移动 轨; 1 13—^温火焰喷枪的安装装置; 114— 热电偶; 1 15—热电偶 iA|定装 ; 1 16—红外测温仪; 1 17— CCD摄像机; 118—颗粒回收通道; 201—高温火焰喷枪; 202—冲蚀颗粒输入系统; 203—腐蚀气体输入系统; 204—燃气输入系 统; 205—氧气输入系统; 6—样品; 3— 损检测装 ¾放¾区; 3 10—非接触式三维变形测试 系统; 320—声发射无损检测系统; 330— 阻抗谱测试系统; 401—空气压缩机; 402—冷却 水箱; 403—流量阀; 404—冷却通逍入 1Ί ; 405—¾心旋转轴冷却通道入口; 501—显示器放 置区; 502—电源指示灯; 503—工作状态指小灯; 504—冷却系统指 灯: 505—数据采集指 示灯; 506—动态装¾控制开关; 507—喷漆移动控制卄关; 508—数据同歩采集开关; 509— 冷却系统开; 510— -急停丌关; 511--屯源开关; 512—温度显示仪; 513—声发射信号显示器; 514—复阻抗谱测 i¾数据显示器; 515—非接触式 维变形测 ¾结¾显示器; 601-波导杆; 602- 电极; 603-冷却通道的底部; 604-冷却气体出 ΓΊ ; 605-金 M¾底。
具体实施方式
本发明提供了一种投拟热障涂^服役环境并实时检测其火效的试验装置, 下面通过附图 说明和具体实施方式对木发明做进 歩说明。
如图 1所示, 1 1足本发明整体逻^结构示 :ΐί Ι。 本试验装 的结构包括: 试验测试平 台, 服役环境模块、 无损检测模块、 冷却系统和 ¾验与无损检测控制平台。
如图 2所示, 1冬 本发明试验测试 结构示: ΰ;阁。 试验测试柜的结构为: 在装 S试验 测试台的中 i'nj位置安装 W试样加持装' 1 ), 包括卜 'Ί 装 (105), ^逨旋转电动机 (101), 旋转 轴 (102), 动态旋转试样夹』 :t( 103) ; 静态试样夹 ( 104), 安装轴 (106)和静态试样夹具 (104)上 制作有角刻度, 夹具能削绕轴心转动; 整个试样加持装置的上下位 W可调; 除了高速旋转的 电动机外, 试样加持装 装有石英玻璃, 形成密封的样品 ¾(109), 样品室上方接除尘系统 (107), 下方接实验操作 Y †(108) ; 样 1 ϋ9)的 侧分别设 山内定位板 ( 1 10)和外定位板 (111)支撑的移动导轨 ( 1 12), 在移动 轨 ( 112)上设 服役环境模块 (2)的安装位 ¾和固定装置 (113), 在夹具 (104)的一侧设 —个或多个热 I 偶 i 装 ¾(1 15); 在样品室 (109)的一侧开有 无损检测电极、 波导杆的^; 在样^ ¾(109)的外侧设 多个 CCD摄像机 (1 17); 设置有红外 测温摄像头 (1 16)。 在试验操作平台 (108)的下方设 W. 种无损检测系统, 包拈溢 测试 系 统 (340)、 非接触式三维变形测试系统 (310)、 声发射无损检测系统 (320)、 复阻抗谱测试系统 (330)、 高速 CCD摄像系统 (350)。
图 3是本发叽试验测试柜模拟热障涂 涡轮叶片动态旋转模块结构示意图,如图 3所示, 模拟热障涂层涡轮叶片动态旋转校块 111电动机 (l Ol)' 动旋转轴 (102)高速选装,旋转轴的一端 通过动态试样夹持装 H(103)将试样 (6)固定在旋转轴上并随旋转之, 转速范围为 0-12000 r/min; 静态试样夹持装置包括一个可绕旋转轴转动的旋转盘 (104), 试样沿卷旋转盘的半径方 向固定在旋转盘上, 能实现试样' ¾直轴.: 现 0-360°的夹
高温燃气双向加热系统包括 2个特制的加热喷枪, 加热范 ΙΐΙ为 20 -1700 °C, 用喷枪固定 装置 (113)固定, 由伺服 ¾机控制唢枪移动; 所述喷枪内逝^冷却循环水;
模拟热障涂层涡轮叶片所述冲蚀颗粒加料系统 分包镶嵌在 2 个加热喷枪内的颗粒管 道, 冲蚀颗粒的速度为 0-250 m/s, 冲蚀颗粒的: Γ;[径 10-500 μηι;
模拟热障涂层涡轮叶片所述腐蚀服役环境投块的 ¾现方式有两种, 是将腐蚀颗粒加在 冲蚀颗粒屮在加热喷枪的出 1—1处与^温燃气或空气发生反 生成带冲蚀颗粒的高温腐蚀气 流。 一是通过安覽在喷枪下方的独立腐蚀气流 ¾;道将腐蚀 体输送至样品室。 样品室的腐蚀 气压为 l-6 atm。
如图 4所示, 图 4是本发明试验控制柜结构示: δ阁, 试验控制平台 (5)控制试验测试柜屮 (108)上的所有机械传动、 实验参数的设定、 实验数 ¾ ';的采¾的显示。 试验控制平台 (5)上设有 温度显示仪 (512)、 声发射信 显示器 (513)、 抗 i f测』 it数据显示器 (514)、 ARAMIS 非接 触式三维变形测遗结果显示器 (515)、 行程控制开关 (506、 507)、 源指示灯 (502)、 急停开关 (510)、 工作状态显示灯 (503)、 冷却系统控制〕1:关 (509)、 冷却系统工作指示灯 (504)。
如图 5所示, 图 5足被测高温试样与本发明连接关系图。 静态实验时, 温度测试采集系 统 (340)包括热电偶 (1 14)、 温度显示仪 (512)、 温度釆 ¾软件, 所述热电偶 (114)与试验控制平 台 (5)上的温度 ®示仪 (512)连接。所述热电偶 (1 14)采川 B型 1600。C的铂铑热电偶, 测定试样 (6)的表而、 内通道、 冷却气体出 1-1六点温度, 实现隔热效果及招定位¾的温度测试。 6只热 电偶 (114)分别通过 6个 lM多动的热 偶 1≤1定装 1 15)摆放于实验操作平台 (108)上,热电偶 (114)与试验控制平台 (5)上的温度^ [示仪 (512)及计算机相连接; 冷却空气通过冷却通道入口 (405), 经冷却水箱 (402), 111试样冷却底部入 Π (603)进入, 经试样冷却顶部出口 (604)排出, 系统通过流量阀 (403)控制冷却空气流 及测试流 CCD 摄像头 ( 1 17)与非接触式三维变形 测试系统 (310)、 AVT Manta G-504 速摄像系统 (350)连接; 试样 (6)表面安装有两个电极 (602), 分别与交流复阻抗频谱监测系统 (330)连接; 试样 (6)两端^接两个波导杆 (601), 波导 杆 (601 ) 与声发射无损检测系统 (320)连接。 热障涂层涡轮叶片或试样动态旋转实验吋, 所述温度测试采集系统 (340)包括热电偶 (114)、 红外测温仪 (116)、 温度显示仪 (512), 所述热电偶 (114)以及红外测温仪 (116)与实验控 制平台 (5)上的温度显示仪 (512)连接。所述热电偶 (114)的类型与静态试验相同,此吋只测量空 心旋转轴与试样连接端口处的轴心位' 的温度, 实现冷却气体温度的测量。 温度显示仪 (512) 放置在样品室外, 通过平移和转动实现试样 (6)的表而、 内通道等温度的定期测量。 冷却空气 通过冷却通道入口 (405), 经冷却水筘 (402), 经过空心旋转轴 (102), 由试样冷却底部入口 (603) 进入, 经试样冷却顶部出口 (604)排出, 系统通过流 闺(403)控制冷却空气流量及测试流量; CCD摄像机 (117)与 AVT Manta G-504型, 速扱像系统 (350)连接。
所述冷却系统 (4)包括空气压缩机 (401)、冷却水筘 (402)、流量阀 (403)、冷却通道入口 (404)、 空心旋转轴冷却通道入 Π (405); 冷却气体经冷却通道入口 (405)和冷却水箱 (402)进入试样 (6) 内部冷却通道的底部 (603), 经试样内通道, 111顶部的冷却气体出 IJ (604)排出。 图 6是本发明 冷却系统 (空气压缩机) 结构示意阁。 空气 IK缩机 (401)上有流 S阀 (403)。
非接触式三维变形测试系统 (310)为 ARAMIS 非接触式. 维变形在线测量系统, 完成在 高温环境下对试样 (6)的应变场分布、 应力场分布和位移场分布情况进行实时测试和分析。
声发射无损检测系统 (320)为灵敏度在 l(T8 Cm ffl级的 PCI-2型声发射无损检测系统, 实 现在热障涂层试样各种服役条件下, 对试样内部动态原位检测裂纹的 ^生、 扩展以及裂纹定 位。
交流复阻抗频谱监测系统 (330)为 1260+1296型 ϋ阻抗谱测 ft系统, 对带热障涂层的试样 (6)进行热障涂层内部结构、 裂纹 ιί/ί生以及界而轼化的实时测试。
CCD摄像系统 (350)为 AVT Manta G-504商速摄像系统, 对热障涂层表面形貌的演变进 行实时测试。
使用所述试验装置对带热障涂层涡轮叶片进行静态模拟试验及实时测试的歩骤为: 第一歩, 制备试样: 采用等离子喷涂工艺, 在某型 空心涡轮叶片表而喷涂热障涂层隔 热材料。 其系统红 I成是: 过渡层材料为 NiCrAIY合金, M 度约为 ΙΟΟ μη ; 陶瓷粉末材料 为含 8 (wt.) % Y203的二氧化锆, 陶瓷展厚度约为 300 μηι。 最后在试样表面喷洒一层黑色耐 超高温漆, 使试样表而形成有较高反光性能的散斑场, 以作为 ARAMIS非接触式三维变形在 线测量系统的特征散斑场。
第二歩, 用 焯设备把测试川的电极 (602)、 波导杆 (601)分别焊在第一步所完成的带热障 涂层的涡轮叶片试样¾面和两端金 底 ( 605 ) 上, 把 极 (602)和波导杆 (601)另一端连接 到复阻抗谘测量系统 (330)和声发射 损检测系统 (320),然后把' ;热障涂层的涡轮叶片试样 (6) 固定夹具 (104)上, 调节旋转圆盘, I ii定试样与 : 轴之问的夹 Λ。 然后将 4 支热电偶 (114) 固定在涡轮叶片陶瓷涂层表面、 1支热电偶^定在涡轮叶片冷却通道的冷却底部入口 (603)处、
1支热电偶固定在叶片冷却通道的冷却顶部出口 (604)处。 ii支热电偶分别连接到温度测试采 集系统 (34), 并判断各仪器足否」 K常工作。
第三歩, 启动 ARAMIS非接触式. 维变形测试系统。 调节好 CCD摄像头 (117), 确定所 关注待测试样的区域, 并做好前期标¾工作。 打开应变测试软件, 设定 ARAMIS测试软件拍 摄频率为 1张 /5秒, 在线测试自动保存数椐校式; 动 AVT Manta G- 504高速摄像系统。 调 节好 CCD摄像头 (117), 确定所关注待测试样的 域。 打 测试软件, 设定 AVT Manta G-504 测试软件拍摄频率为 1张 /5秒, 在线测试 动保存数据模式。
第四歩, 启动声发射无损检测系统。 打开测试软件, 设置好阈值等实验参数; 启动交流 复阻抗频谱监测系统, 打开测试软件, 设資好频率范围、 电压幅值等实验参数。
第五步, 打开试样夹具 (104)和喷枪固定装 H(113)的冷却水开关。 打开涡轮叶片内部通道 的冷却气体控制开关, 使冷却气体从涡轮叶^底部冷却通道进入叶片内, 山顶部通孔排出, 使陶瓷涂层表而至金 4¾底内表 lilf形成 ¾温度梯度。
第六歩, 启动丙烷快速双向加热装置、 启动颗粒加料系统、 启动腐蚀气体加载装置 (视实 验要求可选 1-3种服役环境),调节燃气气流 :¾, Π动点火 8〜10秒后燃气温度稳定在 1000 °C。 通过控制机械传动 1:关, 对涡轮叶片表而进行双而快速加热, 升温速率约 100 °C/s, 使表面 温度稳定在 1000 °C左右, 并保持 10分钟。 在该具体实施例屮, —个热循环方式是加热时 Μ 10 s, 保温吋间为 300 s, 冷却吋间 200 s。 设定热循环次数是 500次。
第七歩, 同吋开启模拟实验和¾吋检测系统, 实吋测试和记录带热障涂层的涡轮叶片试 样的温度场变化、 三维变形场变化、 三维位移场变化、 陶瓷涂层农而形貌的演变、 声发射监 测的事件数量、 界而氧化层的生长演变规徘和涂层脱落怙况等。
第八歩, 待模拟实验完成后, 分析和整现实验数据, 判断带热障涂 的涡轮叶片中涂层 的失效机理和危险区域。 使用所述试验装置对带热障涂 ^涡轮叶片进行动态敉拟试验及实时测试的歩骤为: 第一歩, 制备试样: 采用等离子喷涂工艺, 在¾型¾ 心涡轮叶片¾面喷涂热障涂层隔 热材料。 其系统组成足: 过渡 β材料为 NiCrAIY合金, 其厚度约为 ΙΟΟ μηι ; 陶瓷粉末材料 为含 8 (wt.) % Υ203的-: 化锆, 陶瓷层 度约为 300 μπι 。 1ά后在试样农面喷洒一层黑色耐 超高温漆, 使试样表而形成冇较 反光性能的散斑场, 以作为 ARAMIS非接触式三维变形在 线测量系统的特征散斑场。 第二歩,将带热障涂层的涡轮叶片试样 (6 |定夹 (103)上。将 1支热电偶 (114)固定在空 心旋转轴冷却通道入口 (405)处,将红外测温仪 (116)|ΐ|定在样品室 (109)的外侧,将热电偶与红 外热像仪分别连接到温度测试采集系统 (340), 并判断各仪器是否正常工作。
第三歩, 启动 ARAMIS非接触式三维变形测试系统。 调节好 CCD摄像头 (117), 确定所 关注待测试样的区域, 并做好前期标定工作。 运行应变测试软件, 设定 ARAMIS测试软件拍 摄频率为 1张 /5秒, 在线测试自动保存数据稅式。
第四歩, 启动 AVT Manta G-504高速摄像系统。 调节好 CCD摄像头 (117), 确定所关注 待测试样的区域。 打幵测试软件, 设 AVT Manta G-504测试软件拍摄频率为 1张 /5秒, 在 线测试自动保存数据模式。
第五歩, 打丌试样夹 (103)和喷枪固定装 ^(113)的冷却水开关。 打幵涡轮叶片内部通道 的冷却气体控制开关, 使冷却气体从涡轮叶片底部冷却通道进入叶片内, ώ顶部通孔排出, 使陶瓷涂层表而至金屈基底内表面形成高温度梯度。
第六歩, 启动丙垸快速双向加热装置、 启动颗粒加料系统、 启动腐蚀气体加载装置 (视实 验要求可选 1-3种服役环境), 调节燃气气流 , 点火 8〜10秒后燃气温度稳定在 1000 °C。 通 过控制机械传动开关, 对涡轮叶片表而进行双而快速加热, 升温速率约 100 °C/s, 使表面温 度稳定在 1000 °C右, 并保持 5分钟。
第七步, 启动高速屯机旋转系统, 设定旋转转速为 10000 r/min, 设定运行吋间为 5分钊,。 第八歩, 同吋开 模拟实验和实时检测系统, 实时测试和记 ¾带热障涂层的涡轮叶片试 样的温度场变化、 三维变形场变化、 维位移场变化、 陶瓷涂层表面形貌的演变等。
第九歩, 待极拟实验完成后, 分析和整理实验数据, 判断带热障涂层的涡轮叶片屮涂层 的失效机理和危险区域。
本发明能模拟航空发动机热障涂层涡轮叶片高温, 冲蚀, 腐蚀的服役环境, 实现了热疲 劳、 高温腐蚀、 髙温冲蚀等多种破坏过程的 -体化模拟; 既能模拟热障涂层工作叶片高速旋 转的动态服役环境, 也能模拟导向叶片静止的静态服役环境, 实现热障涂层涡轮叶片动、 静 态服役环境的一体化模拟; 能够实时测试热陣涂层温度场、 表而形貌阁像演变、三维变形场、 三维位移场、 界而氧化^及其增厚规律、 热疲 裂纹萌生与扩展情况、 冷却气流量, 实现服 役环境模拟与失效过程实吋检测的一体化。 本发明实现了热障涂层高温、 冲蚀、 腐蚀服役环 境的一体化, 静态、 动态服役环境的一体化, 服役环境模拟与实时检测的一体化, 应用性强, 为正确理解热障涂层涡轮叶片的破坏机理、 优化 设计提供了重要的实验平台和参考依据。

Claims

权 利 要 求 书
1、 一种模拟热障涂层服役环境并实时检测其失效的试验装 ¾, 其特征在于, 该试验装置 包括:
1)试验测试台 (1 ): 包括模拟热障涂尼涡轮叶片屮丁作叶片的动态旋转模块和模拟热障涂 层涡轮叶片导向叶片静止静态服役模块的试样夹持装 (101-105)、 实验操作平台 (108)、 样品 室 (109);
2)服役环境模块 (2): 能模拟热障涂 涡轮叶 j '/j温热疲 ¾、 温度梯度、 冲蚀、 腐蚀的^ 温燃气喷枪 (201)、冲蚀颗粒加料系统 (202)、腐蚀服役环境模块 (203)、燃气输送系统 (204, 205);
3)无损检测模块 (3), 包括非接触式三维变形测试系统 (310)、 声发射无损检测系统 (320)、 复阻抗谱测试系统 (330)、 温度测试采 ¾系统 (340)、 ! 速 CCD扱像系统 (350);
4)冷却系统 (4), 包括热障涂 样品的冷却 装: ΐ的冷却循环系统;
5)实验与无损检测系统的控制 ! ui^投块 (5);
在装背试验测试台上安装有静态或^动态旋转的试样加持装 , 静止吋安装有试样 (6)的 静态试样夹 J (104)通过安装轴 (106)和 | 定装 (105)|】'ί|定在实验操作平台 (108)上, 此时安装 轴 (106)和静态试样夹具 (104)上制作 —角刻度,夹 (104)能 绕轴心转动: 试样动态旋转的试 样夹持装 Η包括试样? ¾速旋转屯动机 ( 101 ), 旋转轴 ( 102), 动态试样夹 ¾(103); 动态和静态试 样加持装 Η的上下位 Η可调; 除了 速旋转的屯动机外, 试样加持装置的各个面上装有石英 玻璃, 形成可开关的密封样品¾(109), 样品: ¾上方接除尘系统 (107), 下方通过颗粒回收管道 (118)实验操作平台(108)相接; 样,1 π', (109)的两侧分别设 S山内定位板 (110)和外定位板 (11 1 ) 支撑的移动导轨 (1 12), 在移动导轨 ( 1 12)上设 ¾服役环境投块 (2)的安装装¾( 1 13), 在静态试 样夹具 (104)的一侧设 :一个或多个热屯偶 IA1定装 (1 15) ;在样品 ¾(109)的一侧幵有无损检测 电极、 波导杆的槽; 在样品室 (109)的外侧设 ¾多个 CCD扱像机 ( 1 17) ; 设 S有红外测温摄像 头 (116); 在实验操作平台 (108)的下方安放冇 损检测系统, 包括非接触式三维变形测试系统 (310)、 声发射无损检测系统 (320)、 ¾1 抗¾测试系统(330)、 温度测试采集系统 (34)。
2、根据权利耍求 1所述的一种投拟热障涂 服役环境并实时检测其失效的试验装 S,其 特征在于, 所述试验测试 f
la) 模拟热障涂层涡轮叶片动态旋转的模块屮, 111电动机带动旋转轴以及夹持在轴的试 样旋转, 转速范園为 0- 12000 r/min;
l b) 静态试样夹 :U ^ -个标^刻度角的可绕安装轴转动的旋转盘, 旋转盘上加工有平板 状、圆柱状、 ¾际涡轮叶片试件的火: U, 旋转盘可绕刻 角度的安装轴旋转, 实现试样 0-360。 的冲蚀;
lc) 试验测试台上有封闭的样品室, 防止冲蚀、 腐蚀颗粒的溅射、 腐蚀气流的外漏; id) 试验测试台的下方有无损检测装 H的放 S区, 并在样品室内开有小孔连接无损检测 系统的测试电极、 波导杆。
3、根据权利耍求 1所述的一种投拟热 涂层服役环境并实吋检测其失效的试验装置,其 特征在于, 所述服役环境模拟模块:
2a) 模拟热障涂层涡轮叶片所述商温燃 ^双 l(d加热系统包括 2个特制的加热喷枪 (201), 通过固定装置 (113)固定在实验操作平台 (108)上,山伺服 Hi机通过移动导轨 (112)控制喷枪的移 动, 且喷枪内设置冇冷却通道, 喷枪喷射火焰的温度可达 3000 。C , 通过调节喷枪与试样的 距离样品的加热范削为 20 -1700。C;
2b) 模拟热障涂层涡轮叶片所述冲蚀颗粒加料系统山分包镶嵌在 2个加热喷枪内的颗粒 管道, 冲蚀颗粒的速度为 0-250 m/s, 冲蚀颗粒的 1Ϊ径 10- 500 μηι;
2c) 模拟热障涂层涡轮叶片所述腐蚀服役环境模块的实现方式有两种, 一是利用冲蚀颗 粒通道传输腐蚀颗粒 ¾喷枪出口处与商温燃气或空气发生反应生成带冲蚀效应的高温腐蚀; 二是通过内資在喷枪内的腐蚀气体 ;逍将腐蚀气体输送 ¾样品 ¾; 所述样品室的腐蚀气压为
4、 根据权利要求 1 所述的一种模拟热障涂 服役环境并实吋检测其失效的试验装覽, 其特征在于, 所述无损检测模块:
3a) 所述温度测试釆集系统 (340)有两种测温方式: 足用热 偶 (114)采集; 二是红外测 温仪 (116); 热 偶与红外测温仪均与试验控制平台 (5)上的温度! π!^仪 (512)连接;
3b) 所述热 偶 (114)采用 B型 1600。C的铂铑热电偶, 静态实验吋测定试样 (6)的表面、 内通道、 冷却气休出口六点温度, 实现隔热效 及指定位置的温度测试; 动态实验时, 采用 红外测温仪对试样 (6)的表面、 内通道、 冷却气体出口的温度进行依次测 S;
3c) 所述非接触式三维变形测试系统 (310)为 ARAMIS非接触式 .维变形在线测量系统, 整个系统集成在装 实验操作平台(108)下方的无损检测装 :放¾ (3), 其 CCD摄像头 (117) 放 K在样品室 (109)的外侧。
3d) 所述声发射无损检测系统 (320)为 敏度在 10-8cm 级的 PCI-2 型声发射无损检测 系统, 整个系统柒成在装 H实验操作平台 (108)下方的无损检测装 放置 (3), 其传感器、 波 导杆装置 (601)通过样品¾的小孔与试样 (6)相连;
3e) 所述交流 ¾阻抗频 ^监测系统 (330)为 1260+12%型复阻抗谱测量系统, 整个系统¾ ι'ι 成在装 ffi实验操作平 †(108)下方的无损检测装 放 :区(3),其测 it电极 (602)通过样品室的小 孔与试样 (6)相连;
3f) 所述高速 CCD摄像系统 (350)为 AVT Manta G-504高速摄像系统,整个系统集成在装 置实验操作平台 (108)下方的无损检测装 放' ft区 (3), _其 CCD摄像头 (117)放 S在样品室 (109) 的外侧。
5、 根据权利要求 1 所述的一种校拟热障涂 服役环境并实吋检测其失效的试验装置, 其特征在于, 所述冷却系统:
4a)所述冷却系统包括对试样 (6)的气冷以及装置 (¾温部件的水冷两部分;
4b) 所述冷却系统 (4)包括空气压缩机 (401)、 冷却水箱 (402)、 流 ¾阀 (403)、 喷枪冷却通 道入口 (404)和试样安装空心轴冷却通道入 (405);冷 £ί (体经冷却通道入口 (405)和冷却水箱 (402)进入试样 (6)内部冷却通道的底部, 流经试样内通 iilltl顶部的冷却气体出口排出。
6、 根据权利耍求 1 所述的一种投拟热障涂层服役环境并实吋检测其失效的试验装置, 其特征在于, 所述实验与无损检测系统的控制与显示投块:
5a) 所述控制模块控制试验测试平台 (1)上所有的机械传动、 实验参数采集与调节以及无 损检测模块 (3)所有测 ift软件的控制与实验数 的采^, 并能实现试验控制与无损检测装置的 同歩运行;
5b) 所述显示模块同 显示试验测试平台(1)上所^的实验参数以及无损检测模块 (3)上 所有的实验数据和图形, 并能实现实验参数与无损检测装 i¾的问歩 。
PCT/CN2013/001357 2013-01-10 2013-11-08 一种模拟热障涂层服役环境并实时检测其失效的试验装置 WO2014107827A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/760,444 US9939364B2 (en) 2013-01-10 2013-11-08 Type of testing equipment for detecting the failure process of thermal barrier coating in a simulted working environment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310009293.5A CN103091189B (zh) 2013-01-10 2013-01-10 一种模拟热障涂层服役环境并实时检测其失效的试验装置
CN201310009293.5 2013-01-10

Publications (1)

Publication Number Publication Date
WO2014107827A1 true WO2014107827A1 (zh) 2014-07-17

Family

ID=48204031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/001357 WO2014107827A1 (zh) 2013-01-10 2013-11-08 一种模拟热障涂层服役环境并实时检测其失效的试验装置

Country Status (3)

Country Link
US (1) US9939364B2 (zh)
CN (1) CN103091189B (zh)
WO (1) WO2014107827A1 (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106370543A (zh) * 2016-11-04 2017-02-01 维新制漆(深圳)有限公司 可以模拟环境对机车外表性能影响的测试装置
CN109813651A (zh) * 2019-03-21 2019-05-28 无锡市福莱达石油机械有限公司 一种用于测试涂层冲击疲劳性能的实验机
CN110646309A (zh) * 2019-09-27 2020-01-03 国家电网有限公司 一种水下材料冲刷平面效果实验装置及方法
CN111879687A (zh) * 2020-06-05 2020-11-03 中国民航大学 一种适用于光测力学的半开放式原位盐雾腐蚀装置
CN112083039A (zh) * 2020-09-29 2020-12-15 西安航天动力研究所 一种材料着火点试验考核装置及考核方法
CN112098312A (zh) * 2020-09-16 2020-12-18 湖州长湖水泥有限公司 一种耐磨耐腐蚀砂浆地坪的配方和检测装置及其检测方法
CN112903276A (zh) * 2021-02-02 2021-06-04 沈阳航空航天大学 一种开放式涡轮叶片试验设备
CN112903274A (zh) * 2021-02-02 2021-06-04 沈阳航空航天大学 一种涡轮叶片温度循环载荷试验设备
CN113702276A (zh) * 2021-07-28 2021-11-26 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) 一种腐蚀环境与腐蚀特征动态采集装置
CN114136761A (zh) * 2021-11-19 2022-03-04 中国航发北京航空材料研究院 一种陶瓷基复合材料导向叶片热冲击试验装置及考核方法
CN114295679A (zh) * 2022-01-07 2022-04-08 北京航空航天大学 一种热障涂层内部裂纹检测方法及系统
CN117129511A (zh) * 2023-09-18 2023-11-28 安徽工程大学 热障涂层热疲劳行为的太赫兹在线监测装置及检测方法
CN117233196A (zh) * 2023-11-16 2023-12-15 山东恒川越新材料科技有限公司 一种保温隔热挤塑板性能测试装置
CN117367810A (zh) * 2023-12-07 2024-01-09 保定市玄云涡喷动力设备研发有限公司 一种航空发动机集成式试机台

Families Citing this family (122)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103091189B (zh) * 2013-01-10 2014-09-24 湘潭大学 一种模拟热障涂层服役环境并实时检测其失效的试验装置
CN103411877B (zh) * 2013-07-13 2015-07-01 北京工业大学 一种应力与杂散电流耦合作用下埋地钢质管道涂层剥离与腐蚀试验系统
CN103760048B (zh) * 2014-01-15 2017-02-22 山东大学 一种气流喷砂式冲蚀磨损试验机
CN104792689B (zh) * 2014-01-21 2018-02-23 中国科学院金属研究所 一种湿硫化氢环境中的环境腐蚀开裂试验用装置
US20160018315A1 (en) * 2014-07-21 2016-01-21 GM Global Technology Operations LLC Non-destructive adhesion testing of coating to engine cylinder bore
CN104236879A (zh) * 2014-08-25 2014-12-24 合肥工业大学 基于机器视觉的发动机叶片动静态检测方法
CN104407004B (zh) * 2014-10-29 2017-01-18 东北电力大学 加热式红外测温的蚕茧性别识别方法及其装置
CN105301051B (zh) * 2015-11-18 2018-01-12 北京理工大学 适用于tbc脱粘缺陷快速检测线激光扫描热波成像方法
CN105372290B (zh) * 2015-11-23 2017-09-12 西安交通大学 一种可快速降温的飞行器地面热模拟试验装置
CN105334103B (zh) * 2015-11-25 2017-11-24 华能国际电力股份有限公司 一种热障涂层梯度热震试验试样夹具装置
CN105510213A (zh) * 2015-12-09 2016-04-20 中国科学院上海硅酸盐研究所 一种热障涂层失效的测试系统及方法
CN105403588A (zh) * 2015-12-28 2016-03-16 国电联合动力技术有限公司 一种评估风电叶片涂料抗冰冻性能的测试系统及方法
CN105466498B (zh) * 2016-01-12 2017-12-15 清华大学 一种高温环境下材料三维形变和温度同步测控装置及方法
WO2017141174A1 (en) * 2016-02-16 2017-08-24 Weiss Technik North America, Inc. Environmental test chamber
US10139325B2 (en) 2016-04-21 2018-11-27 The Boeing Company System and method for evaluating bubble formation potential in a structure
KR102636272B1 (ko) 2016-07-26 2024-02-14 삼성전자주식회사 영상 촬상 장치 및 이를 포함하는 전자 시스템
CN106153723A (zh) * 2016-07-28 2016-11-23 耐世特凌云驱动系统(芜湖)有限公司 轴杆的超声波检测装置
CN106383143B (zh) * 2016-10-20 2019-08-27 北京航空航天大学 一种转盘式热障涂层热疲劳试验装置
CN106442194B (zh) * 2016-11-02 2023-06-30 湘潭大学 一种考虑机械—热冲击循环载荷作用的涂层失效试验装置
CN106525632A (zh) * 2016-11-03 2017-03-22 兰州大学 热冲击‑力‑电耦合加载与测试系统
US10119863B2 (en) * 2016-11-07 2018-11-06 Siemens Energy, Inc. Flash thermography photobox
CN106404552A (zh) * 2016-11-18 2017-02-15 盐城工学院 监测装置及原位拉伸装置
CN106762762B (zh) * 2016-12-08 2018-05-08 沈阳黎明航空发动机(集团)有限责任公司 航空发动机导向叶片模拟工作状况的检查系统及方法
CN106706323A (zh) * 2016-12-12 2017-05-24 北京航空航天大学 一种用于发动机材料极高温疲劳性能测试的环境模拟装置
CN106546630A (zh) * 2016-12-12 2017-03-29 北京航空航天大学 一种用于极高温裂纹扩展性能测试的环境模拟装置
CN106769597B (zh) * 2017-01-16 2023-05-30 西南交通大学 一种制动盘材料热疲劳试验机及试验方法
CN106872637A (zh) * 2017-01-16 2017-06-20 清华大学 模拟发动机叶片服役环境的动态氧化烧蚀测试装置及方法
CN108663198B (zh) * 2017-03-27 2020-02-04 清华大学 涡轮叶片的测试系统
US10428727B2 (en) * 2017-04-14 2019-10-01 Ford Motor Company Bonding strength enhancement for ceramic coating on high temperature alloy
CN106840868B (zh) * 2017-04-14 2023-03-24 西安热工研究院有限公司 一种用于热障涂层高温冲蚀试验的试样夹具
CN107202740B (zh) * 2017-07-18 2023-02-10 西北工业大学 一种模拟冲刷疲劳的试验装置
CN107655932B (zh) * 2017-09-07 2021-05-11 中国石油大学(华东) 一种研究低温诱导热应力致裂的实验方法
CN107843395A (zh) * 2017-09-07 2018-03-27 国网浙江省电力公司宁波供电公司 电缆隧道水泥管片缺陷多姿态渗水特征红外热像实验装置
CN107525762B (zh) * 2017-10-17 2023-06-13 华能国际电力股份有限公司 一种测试金属表面热生长氧化膜的粘附性的试验装置及方法
CN109357956B (zh) * 2017-11-13 2021-02-02 北京航空航天大学 一种高温燃气腐蚀疲劳试验系统
CN108254275A (zh) * 2018-01-04 2018-07-06 湘潭大学 热障涂层工况模拟与实时监测装置
CN108333181B (zh) * 2018-01-08 2023-10-10 苏州中汽检测技术服务有限公司 一种用于疲劳测试样品的全自动质量检测系统
CN108020474B (zh) * 2018-01-08 2024-01-26 苏州中汽检测技术服务有限公司 一种用于疲劳测试样品的质量检测系统
JP6907951B2 (ja) * 2018-01-11 2021-07-21 トヨタ自動車株式会社 ヒートシンクの検査方法、検査装置及び生産方法、生産システム
CN108469393B (zh) * 2018-02-02 2021-04-06 中山市积目科技有限公司 一种冷热冲击试验设备
CN108318412A (zh) * 2018-03-04 2018-07-24 芬泰克新材料南通有限公司 一种汽车催化转化器衬垫产品风蚀测试设备装置
CN109445486B (zh) * 2018-10-18 2023-10-20 深圳市光彩凯宜电子开发有限公司 模拟真实环境的内存条性能测试系统
CN109540962B (zh) * 2018-11-30 2021-07-09 中国航空工业集团公司沈阳飞机设计研究所 一种隔热结构的隔热效能表征方法
CN109507102A (zh) * 2018-12-03 2019-03-22 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) 涡轮叶片用合金材料耐高湿热海洋大气性能的试验方法
CN109373146A (zh) * 2018-12-08 2019-02-22 华北理工大学 微型生态检测装置
CN109580410B (zh) * 2018-12-10 2020-02-07 湘潭大学 一种工作叶片热障涂层服役载荷的等效加载装置及方法
CN109682702B (zh) * 2018-12-10 2020-03-20 湘潭大学 一种涡轮叶片热障涂层工况模拟实验测试系统
CN109459286B (zh) * 2018-12-10 2020-07-31 湘潭大学 一种涡轮叶片热障涂层模拟试验过程中损伤实时检测方法
CN109443773B (zh) * 2018-12-10 2020-02-07 湘潭大学 一种热障涂层服役工况模拟试验用涡轮模型
CN109632551B (zh) * 2018-12-24 2022-03-11 长安大学 一种磨耗性能平行试验装置及试验方法
CN109765119B (zh) * 2019-01-14 2021-11-26 北京工业大学 一种用于测量热障涂层系统表面热应力的原位装置
CN109828035A (zh) * 2019-02-27 2019-05-31 中国科学院上海硅酸盐研究所 一种表征自修复热障涂层高温服役过程中自修复效果的无损测试方法
CN109870406B (zh) * 2019-03-12 2021-08-31 西北核技术研究所 一种材料表面涂层附着力测试方法及系统
CN109827895A (zh) * 2019-03-14 2019-05-31 贵州大学 一种用于材料金属实验的盐雾腐蚀实验装置及其操作方法
CN109900577B (zh) * 2019-03-21 2020-03-20 湘潭大学 一种热障涂层高温冲蚀的检测方法
CN109883871A (zh) * 2019-03-21 2019-06-14 湘潭大学 一种热障涂层高温腐蚀的检测方法
CN110455807A (zh) * 2019-04-02 2019-11-15 洛阳理工学院 针对防腐管道外防腐层的dsc气泡无损检测方法以及装置
CN110333052B (zh) * 2019-04-10 2021-10-08 武汉理工大学 高温旋转部件测试平台
CN110108222A (zh) * 2019-04-16 2019-08-09 中国人民解放军陆军装甲兵学院 一种预测脆性涂层开裂的方法及系统
CN109975178B (zh) * 2019-04-22 2021-12-17 江西辰鑫科技有限公司 一种胶黏剂流动测试装置
CN110044948A (zh) * 2019-04-29 2019-07-23 北京工业大学 一种用于测量热障涂层系统表面裂纹扩展速率的原位装置
CN110244200B (zh) * 2019-05-22 2024-08-02 国家电网有限公司 一种通电旋转结构件熔断过程的模拟系统及其方法
CN110346400A (zh) * 2019-06-18 2019-10-18 北京科技大学 一种模拟火炮烧蚀的试验装置及方法
US20220283105A1 (en) * 2019-06-24 2022-09-08 Technion Research & Development Foundation Limited Measurement of coating thermal properties by induction radiometry
CN110261433B (zh) * 2019-07-05 2020-06-05 西安交通大学 一种航空燃气涡轮动叶内部传热的模化实验装置
CN110261434A (zh) * 2019-07-29 2019-09-20 长沙理工大学 一种快速抗热震性考核测试装置
CN110487651A (zh) * 2019-08-14 2019-11-22 温州大学 可模拟自然环境的电子式疲劳试验机及其疲劳试验方法
CN110579419B (zh) * 2019-08-28 2021-07-13 安徽江淮汽车集团股份有限公司 低周疲劳可靠性试验方法和装置
CN110487485A (zh) * 2019-09-23 2019-11-22 贵州龙飞航空附件有限公司 一种检测产品镀铬层质量的工装及检测方法
CN110658083A (zh) * 2019-11-12 2020-01-07 河北工业大学 混凝土瞬态高温变形与破坏的同步测试系统及测试方法
CN110721756B (zh) * 2019-11-20 2023-04-25 吉林大学 具备温度梯度场的高速旋转实验台及其控制方法
CN110823715A (zh) * 2019-11-22 2020-02-21 湘潭大学 一种测试热障涂层断裂韧性的系统及方法
CN110988402B (zh) * 2019-12-03 2022-12-16 湘潭大学 一种多重服役条件下柔性铁电薄膜的pfm检测方法
CN113049256A (zh) * 2019-12-27 2021-06-29 北航(四川)西部国际创新港科技有限公司 一种模拟航空发动机服役环境的高温高速焰流发生装置
CN111121658B (zh) * 2019-12-31 2021-04-20 沈阳航空航天大学 一种风力机气动性能实验下叶片变形测量方法
CN111257149A (zh) * 2020-03-25 2020-06-09 齐鲁工业大学 一种冲蚀环境下材料疲劳性能试验装置及测试方法
CN111443031A (zh) * 2020-04-28 2020-07-24 北京卫星环境工程研究所 用于研究土卫六甲烷雨的地面模拟试验装置
CN111898788B (zh) * 2020-05-28 2024-07-19 大唐锅炉压力容器检验中心有限公司 一种涂层使用寿命预测方法及装置
CN111678948B (zh) * 2020-06-02 2022-07-19 四川大学 钢轨表面缺陷高速无损检测方法及其实施装置
CN111798418B (zh) * 2020-06-22 2022-04-19 电子科技大学 基于hog、lbp和glcm特征融合的吸波涂层散斑缺陷检测方法
CN113916936A (zh) * 2020-07-08 2022-01-11 核工业西南物理研究院 用于高热负荷部件缺陷检测的红外无损检测装置及方法
CN112224452B (zh) * 2020-10-20 2022-02-01 北京卫星环境工程研究所 复用式毫秒级快速泄压真空机构及快速减压试验系统
CN112729978A (zh) * 2020-11-24 2021-04-30 河钢股份有限公司 用于Gleeble热模拟试验机压缩实验快速冷却方法
CN112557292A (zh) * 2020-11-30 2021-03-26 西北有色金属研究院 一种评价锆合金涂层的超高温水蒸汽氧化腐蚀装置及方法
CN112730021B (zh) * 2020-11-30 2023-04-07 湘潭大学 一种振动热冲击耦合的服役工况加载系统和方法
CN112362697B (zh) * 2020-11-30 2024-03-08 西南石油大学 一种内管旋转的同心套管强迫对流换热实验装置和方法
CN112729147A (zh) * 2020-12-28 2021-04-30 南京航空航天大学 一种复杂环境下桨叶应变测量试验系统及试验方法
CN112748007B (zh) * 2020-12-29 2022-06-07 长沙理工大学 一种基于声发射的抗腐蚀疲劳性能测试装置
CN112758349A (zh) * 2020-12-29 2021-05-07 成都成发泰达航空科技有限公司 用于超高温环境模拟及考核试验的测试装置与测试方法
CN112945766B (zh) * 2021-01-28 2022-12-09 西安交通大学 高温高压高频工况下热防护涂层可靠性等效验证试验方法
CN112903273B (zh) * 2021-02-02 2022-07-15 沈阳航空航天大学 一种用于叶片热机耦合疲劳试验的拉杆密封系统
CN113094888B (zh) * 2021-03-31 2024-01-30 西安电子科技大学 一种高速旋转涡轮叶片热障涂层的寿命预测方法及装置
CN113340934A (zh) * 2021-03-31 2021-09-03 西安电子科技大学 一种导向叶片热斑温度场的模拟装置及方法
CN113176297A (zh) * 2021-04-26 2021-07-27 北京航空航天大学 一种模拟航空发动机起落、巡航服役过程的热循环装置
RU2767888C1 (ru) * 2021-05-14 2022-03-22 Акционерное общество "Объединенная двигателестроительная корпорация" (АО "ОДК") Способ контроля дефекта теплозащитного покрытия образца при испытаниях на термоциклическую стойкость
CN113376311B (zh) * 2021-06-03 2023-10-13 北京航空航天大学 一种钛火碰撞摩擦试验装置及方法
CN113405443B (zh) * 2021-06-15 2022-07-01 南京航空航天大学 一种应用于航空发动机的软体智能孔探装置与方法
CN113484020B (zh) * 2021-07-07 2022-06-14 北京航空航天大学 一种模拟航空发动机高温服役环境的热力化耦合试验装置
CN113457754A (zh) * 2021-07-07 2021-10-01 交通运输部公路科学研究所 一种步入式高原环境模拟实验舱
CN113533110B (zh) * 2021-07-16 2022-11-25 中国兵器工业第五九研究所 钛铝基合金抗高温燃气冲刷性能评价方法
CN113567492A (zh) * 2021-07-26 2021-10-29 北京航空航天大学 一种基于红外热耗散的涡轮叶片热障涂层无损检测方法和检测装置
CN113640164B (zh) * 2021-08-05 2022-09-20 华东理工大学 一种超高温风洞冲蚀试验系统
CN113654976A (zh) * 2021-08-13 2021-11-16 北京航空航天大学 一种航空发动机高压转子叶片服役环境模拟装置
CN113704915B (zh) * 2021-08-26 2023-09-19 华能国际电力股份有限公司 一种重型燃气轮机透平叶片热障涂层热疲劳寿命预测方法
CN113720760B (zh) * 2021-09-02 2023-05-12 中铁二十局集团有限公司 一种隧道围岩混凝土喷层腐蚀模拟试验方法
CN113640203B (zh) * 2021-09-17 2023-11-24 中北大学 一种多参数复杂极端环境模拟装置
CN114136594A (zh) * 2021-10-20 2022-03-04 中国航发四川燃气涡轮研究院 一种涡轮叶片热震试验装置
CN114088551B (zh) * 2021-11-24 2024-01-09 西北工业大学 一种考虑环境温度的涂层材料抗冲击试验装置
CN114088869B (zh) * 2021-11-26 2024-06-18 中国航发北京航空材料研究院 一种航空发动机钛合金机匣结构防钛火验证试验方法
CN114120840B (zh) * 2021-12-11 2023-05-09 武汉华星光电半导体显示技术有限公司 柔性显示面板的形变控制方法及形变控制装置
CN114441359B (zh) * 2022-01-28 2023-06-20 郑州轻工业大学 一种涂层加速寿命激光热冲击试验原位测试设备
CN114705469B (zh) * 2022-06-06 2022-08-26 中国飞机强度研究所 用于飞机强度测试的飞机毁伤试验模拟系统及方法
CN115096692B (zh) * 2022-06-14 2023-05-05 北京理工大学 一种用于模拟高温高速两相流冲刷烧蚀的实验系统
US11933204B2 (en) 2022-06-23 2024-03-19 Caterpillar Inc. Systems and methods for thermal barrier coatings to modify engine component thermal characteristics
CN115014696B (zh) * 2022-08-08 2022-10-25 中国空气动力研究与发展中心高速空气动力研究所 一种风洞多信号源数据同步采集与集成处理的方法
CN115236119B (zh) * 2022-09-21 2022-12-20 成都理工大学 一种模拟地热井碳酸盐结垢的系统及其模拟方法
CN115575801B (zh) * 2022-12-07 2023-03-31 无锡昌鼎电子有限公司 一种基于温度变化的芯片检测装置
CN116698650A (zh) * 2023-06-14 2023-09-05 山东奥翔电力工程设计咨询有限公司 一种风电叶片表面涂层抗摩擦性能检测装置
CN116990157B (zh) * 2023-09-26 2023-12-01 深圳市长龙铁路电子工程有限公司 一种机车车灯强度检测设备
CN117929100B (zh) * 2024-03-20 2024-06-25 幸立高车辆配件(常州)有限公司 一种汽车配件耐磨检测装置及方法
CN117991836A (zh) * 2024-04-02 2024-05-07 浙江大学 一种涡轮叶片旋转试验感应加热温度场测控装置及方法
CN118070407B (zh) * 2024-04-22 2024-07-02 江苏省建筑工程质量检测中心有限公司 基于图像处理的防火风管耐火极限模拟和优化设计方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040216535A1 (en) * 2002-10-15 2004-11-04 Joseph Brostmeyer High temperature and pressure testing facility
CN1546974A (zh) * 2003-12-09 2004-11-17 西北工业大学 航空发动机材料热端环境实验模拟方法与装置
US20050063450A1 (en) * 2003-09-24 2005-03-24 Siemens Aktiengesellschaft Optical monitoring of thermal barrier coatings
CN100489524C (zh) * 2005-07-21 2009-05-20 北京航空航天大学 热障涂层服役环境模拟装置及模拟环境控制方法
CN101477011A (zh) * 2009-01-16 2009-07-08 北京工业大学 一种高温冲蚀磨损测试装置及方法
CN101762452A (zh) * 2010-01-06 2010-06-30 湘潭大学 一种用于模拟和实时测试高温部件热疲劳失效的试验装置
CN202057564U (zh) * 2011-05-13 2011-11-30 重庆理工大学 腐蚀环境多相流作用下冲蚀与空蚀联合作用试验机
CN102621057A (zh) * 2012-03-30 2012-08-01 上海交通大学 材料抗水蚀性能测试方法及装置
CN103091189A (zh) * 2013-01-10 2013-05-08 湘潭大学 一种模拟热障涂层服役环境并实时检测其失效的试验装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7690840B2 (en) * 1999-12-22 2010-04-06 Siemens Energy, Inc. Method and apparatus for measuring on-line failure of turbine thermal barrier coatings
US20030128736A1 (en) * 2001-11-01 2003-07-10 Dalio Brian A. Turbine component inspection system
WO2006049625A1 (en) * 2004-11-02 2006-05-11 Waste Reduction By Waste Reduction, Inc. Apparatus and method for sterilizing waste effluent
CN101776645B (zh) * 2010-01-06 2012-05-02 湘潭大学 一种带热障涂层的叶片热疲劳失效的模拟测试方法
EP2428795A1 (en) * 2010-09-14 2012-03-14 Siemens Aktiengesellschaft Apparatus and method for automatic inspection of through-holes of a component
US8713998B2 (en) * 2011-06-14 2014-05-06 The Boeing Company Autonomous non-destructive evaluation system for aircraft structures

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040216535A1 (en) * 2002-10-15 2004-11-04 Joseph Brostmeyer High temperature and pressure testing facility
US20050063450A1 (en) * 2003-09-24 2005-03-24 Siemens Aktiengesellschaft Optical monitoring of thermal barrier coatings
CN1546974A (zh) * 2003-12-09 2004-11-17 西北工业大学 航空发动机材料热端环境实验模拟方法与装置
CN100489524C (zh) * 2005-07-21 2009-05-20 北京航空航天大学 热障涂层服役环境模拟装置及模拟环境控制方法
CN101477011A (zh) * 2009-01-16 2009-07-08 北京工业大学 一种高温冲蚀磨损测试装置及方法
CN101762452A (zh) * 2010-01-06 2010-06-30 湘潭大学 一种用于模拟和实时测试高温部件热疲劳失效的试验装置
CN202057564U (zh) * 2011-05-13 2011-11-30 重庆理工大学 腐蚀环境多相流作用下冲蚀与空蚀联合作用试验机
CN102621057A (zh) * 2012-03-30 2012-08-01 上海交通大学 材料抗水蚀性能测试方法及装置
CN103091189A (zh) * 2013-01-10 2013-05-08 湘潭大学 一种模拟热障涂层服役环境并实时检测其失效的试验装置

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106370543A (zh) * 2016-11-04 2017-02-01 维新制漆(深圳)有限公司 可以模拟环境对机车外表性能影响的测试装置
CN106370543B (zh) * 2016-11-04 2023-09-08 维新制漆(江西)有限公司 可以模拟环境对机车外表性能影响的测试装置
CN109813651A (zh) * 2019-03-21 2019-05-28 无锡市福莱达石油机械有限公司 一种用于测试涂层冲击疲劳性能的实验机
CN109813651B (zh) * 2019-03-21 2023-09-26 无锡市福莱达石油机械有限公司 一种用于测试涂层冲击疲劳性能的实验机
CN110646309B (zh) * 2019-09-27 2022-07-15 国家电网有限公司 一种水下材料冲刷平面效果实验装置及方法
CN110646309A (zh) * 2019-09-27 2020-01-03 国家电网有限公司 一种水下材料冲刷平面效果实验装置及方法
CN111879687A (zh) * 2020-06-05 2020-11-03 中国民航大学 一种适用于光测力学的半开放式原位盐雾腐蚀装置
CN111879687B (zh) * 2020-06-05 2023-02-28 中国民航大学 一种适用于光测力学的半开放式原位盐雾腐蚀装置
CN112098312A (zh) * 2020-09-16 2020-12-18 湖州长湖水泥有限公司 一种耐磨耐腐蚀砂浆地坪的配方和检测装置及其检测方法
CN112083039A (zh) * 2020-09-29 2020-12-15 西安航天动力研究所 一种材料着火点试验考核装置及考核方法
CN112083039B (zh) * 2020-09-29 2023-08-08 西安航天动力研究所 一种材料着火点试验考核装置及考核方法
CN112903276A (zh) * 2021-02-02 2021-06-04 沈阳航空航天大学 一种开放式涡轮叶片试验设备
CN112903274A (zh) * 2021-02-02 2021-06-04 沈阳航空航天大学 一种涡轮叶片温度循环载荷试验设备
CN113702276B (zh) * 2021-07-28 2023-12-05 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) 一种腐蚀环境与腐蚀特征动态采集装置
CN113702276A (zh) * 2021-07-28 2021-11-26 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) 一种腐蚀环境与腐蚀特征动态采集装置
CN114136761A (zh) * 2021-11-19 2022-03-04 中国航发北京航空材料研究院 一种陶瓷基复合材料导向叶片热冲击试验装置及考核方法
CN114136761B (zh) * 2021-11-19 2024-05-24 中国航发北京航空材料研究院 一种陶瓷基复合材料导向叶片热冲击试验装置及考核方法
CN114295679B (zh) * 2022-01-07 2024-04-02 北京航空航天大学 一种热障涂层内部裂纹检测方法及系统
CN114295679A (zh) * 2022-01-07 2022-04-08 北京航空航天大学 一种热障涂层内部裂纹检测方法及系统
CN117129511B (zh) * 2023-09-18 2024-04-12 安徽工程大学 热障涂层热疲劳行为的太赫兹在线监测装置及检测方法
CN117129511A (zh) * 2023-09-18 2023-11-28 安徽工程大学 热障涂层热疲劳行为的太赫兹在线监测装置及检测方法
CN117233196A (zh) * 2023-11-16 2023-12-15 山东恒川越新材料科技有限公司 一种保温隔热挤塑板性能测试装置
CN117233196B (zh) * 2023-11-16 2024-04-16 山东恒川越新材料科技有限公司 一种保温隔热挤塑板性能测试装置
CN117367810A (zh) * 2023-12-07 2024-01-09 保定市玄云涡喷动力设备研发有限公司 一种航空发动机集成式试机台
CN117367810B (zh) * 2023-12-07 2024-03-08 保定市玄云涡喷动力设备研发有限公司 一种航空发动机集成式试机台

Also Published As

Publication number Publication date
US9939364B2 (en) 2018-04-10
US20150355074A1 (en) 2015-12-10
CN103091189A (zh) 2013-05-08
CN103091189B (zh) 2014-09-24

Similar Documents

Publication Publication Date Title
WO2014107827A1 (zh) 一种模拟热障涂层服役环境并实时检测其失效的试验装置
RU2761778C1 (ru) Испытательная система для имитационных испытаний теплозащитного покрытия турбинной лопатки в режиме эксплуатации
CN103063534B (zh) 一种模拟和实时测试涡轮叶片热障涂层冲蚀的试验装置
CN101762452B (zh) 一种用于模拟和实时测试高温部件热疲劳失效的试验装置
CN201681029U (zh) 一种用于模拟和实时测试高温部件热疲劳失效的试验装置
CN103063563B (zh) 一种模拟和实时测试热障涂层高温沉积物腐蚀的试验装置
CN105448177B (zh) 用于研究火箭发动机内绝热层烧蚀现象的双喷管模拟装置
Bhatt et al. Impact resistance of environmental barrier coated SiC/SiC composites
CN112067240B (zh) 一种电弧风洞条件下平板模型表面恢复焓确定方法
CN106768441A (zh) 一种基于等离子喷涂的涡轮叶片温度测量方法
CN111792061A (zh) 一种利用激波边界层干扰的气动热试验装置及方法
Chang et al. Hypersonic shock impingement on a heated flat plate at Mach 7 flight enthalpy
Wang et al. Cracking behavior of ZrB2-SiC-Graphite sharp leading edges during thermal shock
CN212501120U (zh) 一种利用激波边界层干扰的气动热试验装置
GB2524036A (en) Erosive wear testing apparatus and method
WO2023011565A1 (zh) 一种超高温风洞冲蚀试验系统
Suzuki et al. Development of high-temperature high-velocity sand erosion apparatus
Holden et al. Measurements of heating in regions of shock/shock interaction in hypersonic flow
Wagner et al. Experimental investigation of hypersonic boundary-layer stabilization on a cone by means of ultrasonically absorptive carbon-carbon material
Zhou et al. Infrared thermal wave nondestructive testing technology and its application
Zhou et al. Experimental Simulators for the Service Environments of TBCs
Polanka et al. Determination of cooling parameters for a high speed, true scale, metallic turbine vane ring
Vicenzi et al. Development of an apparatus to determine high-temperature erosive wear up to 800 c
Sadowski et al. Numerical and experimental analysis of foreign objects impact into the surface with TBC coating
RU2801200C1 (ru) Способ определения термостойкости теплозащитных композиционных материалов

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13871158

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14760444

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13871158

Country of ref document: EP

Kind code of ref document: A1