WO2020252983A1 - 超重力环境固定式多场耦合作用下材料性能测试系统 - Google Patents

超重力环境固定式多场耦合作用下材料性能测试系统 Download PDF

Info

Publication number
WO2020252983A1
WO2020252983A1 PCT/CN2019/110030 CN2019110030W WO2020252983A1 WO 2020252983 A1 WO2020252983 A1 WO 2020252983A1 CN 2019110030 W CN2019110030 W CN 2019110030W WO 2020252983 A1 WO2020252983 A1 WO 2020252983A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
furnace
heat insulation
fixed
insulation layer
Prior art date
Application number
PCT/CN2019/110030
Other languages
English (en)
French (fr)
Inventor
韦华
王江伟
林伟岸
张泽
陈云敏
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Priority to US17/040,997 priority Critical patent/US11609165B2/en
Publication of WO2020252983A1 publication Critical patent/WO2020252983A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • F27B17/02Furnaces of a kind not covered by any preceding group specially designed for laboratory use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/18Performing tests at high or low temperatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0026Combination of several types of applied forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0032Generation of the force using mechanical means
    • G01N2203/0037Generation of the force using mechanical means involving a rotating movement, e.g. gearing, cam, eccentric, or centrifuge effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0075Strain-stress relations or elastic constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0222Temperature
    • G01N2203/0226High temperature; Heating means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/04Chucks, fixtures, jaws, holders or anvils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0676Force, weight, load, energy, speed or acceleration

Definitions

  • the invention relates to the technical field of material performance testing, in particular to a material performance testing system under the coupling action of a fixed volume force-face force-temperature in a supergravity environment.
  • the gas inlet temperature before the turbine has developed from 1400-1500K in the 1970s to 1600-1750K at the beginning of this century. Up to 2000-2200K, which puts forward higher performance requirements for the core hot end components of the engine.
  • the high-pressure turbine blades have long been in service under coupled loading conditions such as high temperature, high pressure, high speed, and alternating load.
  • the turbine blades When in service, the turbine blades rotate at a high speed around the axis of the engine. Its function is to use gas expansion to do work and convert the potential energy and thermal energy of the gas into mechanical power of the rotor. Therefore, the turbine blades mainly bear centrifugal load, thermal load, and aerodynamic load during service. Coupling with vibration load.
  • the centrifugal stress generated by the centrifugal load belongs to the volume force.
  • the bending and torsion structure blades that make the stacking line and the radial line do not completely overlap, at the same time generate radial tensile stress, torsional stress and bending stress.
  • the thermal stress generated by thermal load is closely related to geometric constraints.
  • the aerodynamic force generated by aerodynamic load is a kind of surface distributed pressure, which belongs to area force, which acts on each surface of the blade and is unevenly distributed along the blade height and width direction. Therefore, the turbine blades undergo shear deformation, tensile deformation and torsion deformation simultaneously under the combined action of radial tensile stress, torsional stress, bending stress and thermal stress, which is obviously different from the deformation behavior under uniaxial stress in the laboratory. .
  • the solid phase diffusion of atoms is the root cause of the evolution of the microstructure during the service process of the material.
  • the dynamic coupling of volume force-face force-temperature generated by the high-speed rotation of the blade significantly increases the diffusion rate of atoms at defects such as interfaces, dislocations, and cavities.
  • the evolution of the microstructure is different from the axial force.
  • the precipitated phases with different densities under the action of supergravity, due to their elastic modulus, thermal expansion, etc. produce complex and incompatible plastic deformations between the precipitated phases, which further increases the drive for the relative movement of materials of different densities. Force, and then generate huge internal stress in the material, causing the damage mechanism of the material to be significantly different from the damage mechanism of the material under the action of surface force.
  • the present invention pioneered to provide a fixed volume force-face force-temperature coupling effect of material performance in a supergravity environment
  • the test system is simple to assemble, easy to use, and has a high safety factor. It is used for material performance testing under supergravity conditions.
  • the device is suitable for 1g-2500g supergravity environment, the temperature is from room temperature to 1600°C, and the maximum force provided is 300kN.
  • the invention solves the key problem of high-temperature mechanical performance testing of materials under high-speed rotation.
  • Using this device with the aid of a supergravity environment, it is possible to obtain real-time material mechanical property data in a volumetric force-face force-temperature coupled environment.
  • the invention includes a hoisting airtight cabin, a load-bearing frame, a high-temperature furnace, a mechanical testing device, and a buffer device; the hoisting airtight cabin is fixedly installed with a load-bearing frame and a high-temperature furnace, the load-bearing frame is covered on the high-temperature furnace, and the buffer device is installed in the high-temperature furnace At the bottom of the inner, the upper and lower ends of the mechanical testing device are connected to the top of the bearing frame and the bottom of the high temperature furnace, and the sample 6 is connected and installed at the end of the mechanical testing device.
  • the hoisting sealed cabin includes an upper sealed dome and a hoisting sealed cavity.
  • the hoisting sealed cavity is provided with a cavity inside, the upper end of the cavity is open, and both side walls of the hoisting sealed cavity are connected outwardly with cabin lifting lugs.
  • the lugs of the cabin body on the side are hingedly connected to the rotating arm of the gondola of the ultra-gravity centrifuge, and the upper sealed dome is connected to the opening end of the hoisting sealed cavity by bolts and sealed connection; the center of the upper sealed dome is installed with a cabin body Interface parts, cabin body interface parts specifically include upper glass press-fitting flange, upper flange fastening screws, quartz glass and vacuum socket, quartz glass is fixedly installed by the upper glass press-fitting flange on the top center opening of the communication upper sealing hatch
  • the upper glass press-fitting flange is fixed on the top of the upper sealing hatch by the upper flange fastening screws, the communication upper sealing hatch, the bottom of the communication compartment has a hole, and the hole is installed with a vacuum socket.
  • the outer edge of the upper sealing dome is provided with a second screw hole, and the bolt passes through the second screw hole and is connected to the lifting sealing cavity, so that the upper sealing dome is connected with the lifting sealing cavity.
  • a plurality of spaced fixing holes are provided on the surface of the lug part of the cabin body lifting lugs radially extending, and the bolts pass through the fixing holes and are connected to the rotating arm of the supergravity centrifuge, so that the cabin body lifting ears pass through the fixing holes and the bolts. Connected to the rotating arm of the ultragravity centrifuge.
  • a vacuum interface is provided on the outer side wall of the hoisting sealed chamber, and the vacuum interface is directly connected to the vacuum pipeline outside the hoisting sealed chamber; the bottom surface of the hoisting sealed chamber is fixedly installed with a wiring bracket, and the hoisting sealed chamber is on the outer side wall There are vacuum interfaces, wiring holes and mounting holes.
  • the wiring level is installed at the wiring hole. The wiring level is connected to the wiring support inside the hoisting sealed cavity through the wiring hole; the weak signal control wire is connected to the wiring support through the mounting hole.
  • the said bearing frame has a circular-arc boss structure and is installed inside the hoisting airtight cabin.
  • the inner wall of the hoisting airtight cabin is machined with a stepped surface, and the outer edge of the bearing frame is fixed on the stepped surface by bolts and covered above the high-temperature furnace .
  • the high-temperature furnace is fixed in the high-gravity test cabin, and the high-temperature furnace includes an upper furnace body, a middle furnace body, a lower furnace body, a heat insulation layer, a high-strength furnace tube, and a heating element which are arranged and connected from top to bottom.
  • the upper furnace body is mainly composed of the upper heat insulation cover, the upper cavity shell, the upper cavity middle shell, the upper cavity heat insulation layer, the upper cavity lower fixed cover, the upper cavity shell, the upper cavity
  • the middle shell and the heat insulation layer of the upper cavity are installed from the outside to the inside to form a three-layer structure of the upper furnace.
  • the upper heat insulation cover and the lower fixed cover of the upper cavity are respectively installed on the upper and lower ends of the three-layer structure of the upper furnace so that the upper furnace three
  • the layer structure is fixedly connected.
  • the middle furnace body is mainly composed of the middle heat insulation cover , Middle cavity shell, middle cavity middle shell, middle cavity heat insulation layer, middle cavity bottom fixed cover, middle cavity shell, middle cavity middle shell, middle cavity heat insulation layer are installed from outside to inside respectively A three-layer structure of the middle furnace is formed.
  • the middle heat insulation cover and the lower fixed cover of the middle cavity are respectively installed at the upper and lower ends of the three-layer structure of the middle furnace so that the three-layer structure of the middle furnace is fixedly connected.
  • the furnace body is mainly composed of a lower heat insulation cover, a lower cavity shell, a lower cavity middle shell, a lower cavity heat insulation layer, and a lower fixed cover of the lower cavity.
  • the lower cavity shell, the lower cavity middle shell, and the lower cavity partition The thermal layers are installed from the outside to the inside to form a three-layer structure of the lower furnace.
  • the lower heat insulation cover and the lower fixed cover of the lower cavity are respectively installed on the upper and lower ends of the three-layer structure of the lower furnace so that the three-layer structure of the lower furnace is fixedly connected, and the lower cavity There are gaps between the shell and the middle shell of the lower cavity and between the middle shell of the lower cavity and the heat insulation layer of the lower cavity as the air heat insulation layer; the lower fixed cover of the middle cavity of the middle furnace body and the lower partition of the lower furnace body
  • the heating covers are fixedly connected; the furnace body carrier is placed at the bottom of the lower cavity insulation layer of the lower furnace body, the high-strength furnace tube is placed on the furnace body carrier, and the outside of the high-strength furnace tube is respectively connected to the upper cavity of the upper furnace body
  • the heat insulation layer is filled between the heat insulation layer, the middle cavity heat insulation layer of the middle furnace body
  • the groove is equipped with a spiral heating element, and the spiral groove is provided with a heat dissipation channel on the side facing the inner wall of the high-strength furnace tube, and the heat generated by the heating element is uniformly radiated to the center of the high-strength furnace tube through the heat dissipation channel.
  • the mechanics test device is placed in the supergravity test cabin, and the mechanics test device includes a tie rod, a fixed wire structure, a chuck, a thermocouple, a tightening nut, and a force loading block;
  • the top of the load-bearing frame is fixedly connected at the center, and the tie rod is mainly used to withstand the tensile stress generated by the coupling of volume force and surface force during the material performance test;
  • the bottom end of the tie rod is connected to the upper end of the sample through the chuck, and the sample is the mechanical performance of the material to be tested
  • the lower end of the sample is provided with an external thread, and the external thread at the lower end of the sample is screwed into the threaded hole of the area loading block and fastened by a tightening nut;
  • the area loading block is specifically a block structure with an adjustable own weight, Different surface forces are applied to the sample through the area loading blocks of different weights combined with the centrifugal force of the centrifuge
  • the wire is led out through the fixing structure and fixed in position; the lower part of the tie rod and the sample are placed in the high-strength furnace tube of the high-temperature furnace, and the area loading block penetrates the high-strength furnace tube of the high-temperature furnace and extends into the buffer device.
  • the fixed wire structure includes a first fixed ring, a second fixed ring, a fixed porcelain base and a porcelain base protector; both the first fixed ring and the second fixed ring have semicircular gaps, and the first fixed ring and the second fixed ring are semicircular The gaps are connected to form a circular opening sleeved outside the tie rod; the porcelain seat protector is fixed on the side of the second fixing ring by bolts, a fixed porcelain seat is clamped between the porcelain seat protector and the second fixing ring, and the porcelain seat is fixed There are holes for the output wires of thermocouples and strain gauges to pass through.
  • the upper and lower end surfaces of the chuck are provided with threaded holes, the external thread of the bottom end of the tie rod is screwed into the threaded hole of the upper end of the chuck to which it is connected, the upper end of the sample also has an outer thread, and the outer thread of the upper end of the sample is screwed in to connect Into the threaded hole on the upper end of the chuck.
  • the top of the tie rod is provided with an outer flange, and the outer flange is provided with a fixing screw hole for connecting the bearing device of the material mechanical performance test chamber.
  • the bolt passes through the fixing screw hole to fix the top of the tie rod to the bearing of the material mechanical performance test chamber. ⁇ Force device.
  • volume force-surface force-temperature The coupling effect of volume force-surface force-temperature is shown in Figure 11.
  • sample 6 under the rotation of the ultragravity centrifuge, sample 6 generates centrifugal force F 1 and F shear stress through its own weight, and the surface force loading block 4-5 is in the centrifugal force Under the action, a constant radial tensile stress F 2 is applied to the sample 6, that is, the area force.
  • Change the rotation speed of the ultragravity centrifuge change the volume force F 1 and the bending stress of F; change the weight of the surface force loading block 4-5, change the area force F 2 .
  • the mechanical testing device 4 is placed in the high-temperature furnace 3, and a temperature load is applied to the sample, thus forming a volume force-face force-temperature coupling effect material performance test environment.
  • the working principle is shown in Figure 11.
  • the performance test process of the sample material under the coupling effect of the suspended volume force-face force-temperature in the super-gravity environment is completed under the requirements of high temperature resistance, special atmosphere environment, and super-gravity.
  • this The invented and designed test device solves the technical impact brought about by supergravity, conforms to the concept of high strength and light weight, has a modular structure design, a short experimental preparation period, and a safe and reliable test process.
  • the invention has the ability to simulate the service environment of high-speed rotating devices such as aeroengines, aerospace engines, gas turbines, etc., that is, in the process of simulating high-speed rotation, the sample must withstand high-speed rotation in addition to the engine start and stop cycle high-temperature gas erosion and temperature alternation.
  • the centrifugal stress and axial dynamic load are examples of high-speed rotating devices such as aeroengines, aerospace engines, gas turbines, etc.
  • the centrifugal stress generated by the weight of the sample under high-speed rotation ( ⁇ is the density, ⁇ is the speed, r is the radius of rotation, rtip is the radius of curvature of the blade tip) at the top section of the sample is zero, gradually increasing along the direction of the sample to the pumping direction, the centrifugal pull at the root section of the sample
  • the tensile stress is the largest, which creates a very high centrifugal stress gradient inside the sample. If the shape of the sample is complicated, the connecting line of the center of gravity of each section of the sample does not completely coincide with the axis of rotation. When rotating, the sample bears not only the centrifugal force, but also the huge centrifugal force and bending moment.
  • the present invention can simulate the real stress state in the service process of high-speed rotating components, that is, the stress state in a dynamic coupling environment of various stresses such as centrifugal stress, thermal stress, vibration stress, and shear stress generated by the sample's own weight. , So as to have the ability to test material properties under complex stress conditions.
  • the device can work under 1g-2500g super-gravity environment.
  • the experimental temperature of the high-temperature furnace ranges from room temperature to 1600°C.
  • the centrifugal force generated by the rotating sample of the centrifugal host machine through its own weight.
  • the surface force loading block exerts a constant radial tensile stress on the sample under the action of centrifugal force, that is, the area force.
  • Changing the rotating speed of the centrifugal main unit and changing the volume force; changing the weight of the surface force loading block can change the area force exerted on the sample.
  • Fig. 1 is the overall structure diagram of the material performance testing system of the present invention.
  • Fig. 2 is an overall cross-sectional view of the hoisting sealed cabin 1 as a fixed experimental cabin of the present invention.
  • Figure 3 is a schematic diagram of hoisting the sealed cavity 11-7;
  • FIG. 4 is a schematic diagram of the cabin lifting lug 3
  • Figure 5 is a front view of the cabin interface 1;
  • Figure 6 is a front view of the high temperature heating device
  • Figure 7 is a structural cross-sectional view of the high-strength furnace tube 317 and a partial enlarged view thereof;
  • Figure 8 is a schematic diagram of the structure of the heating element
  • Figure 9 is a front view of the mechanics testing device 4.
  • Fig. 10 is a schematic diagram of a fixed line structure.
  • Fig. 11 is a schematic diagram of force application under the supergravity material performance testing system of the present invention.
  • the implemented system includes a hoisting sealed cabin 1, a bearing frame 2, a high-temperature furnace 3, a mechanical testing device 4, and a buffer device 5.
  • the hoisting sealed cabin 1 has a bearing frame 2 and a high-temperature furnace 3 fixedly installed inside ,
  • the bearing frame 2 is covered on the high temperature furnace 3
  • the buffer device 5 is installed at the bottom of the high temperature furnace 3
  • the upper and lower ends of the mechanical testing device 4 are connected to the top of the bearing frame 2 and the bottom of the high temperature furnace 3
  • the sample 6 is connected and installed At the end of the mechanical testing device 4.
  • the hoisting sealed cabin 1 provides a sealed carrier for the coupling environment of volume force-face force-temperature.
  • the hoisting airtight cabin 1 includes an upper airtight dome 11-2 and a hoisting airtight cavity 11-7.
  • the hoisting airtight chamber 11-7 is provided with a cavity inside, the upper end of the cavity is open, and the hoisting airtight cavity 11- 7 has cabin lifting lugs 11-3 outwardly connected to the side walls of both sides.
  • the cabin lifting lugs on both sides are hingedly connected to the swing arm of the ultragravity centrifuge.
  • the upper sealing dome 11-2 is connected to Hoisting the cavity opening end surface of the sealing cavity 11-7 and sealingly connect it, and the sealing of the hoisting sealing cavity 11-7 and the upper sealing dome 11-2 adopts double-layer fluorine rubber to improve the sealing performance;
  • the hoisting sealed cabin 1 provides a sealed carrier for the coupling environment of volume force-face force-temperature.
  • the hoisting airtight cabin 1 is connected to the ultra-gravity centrifuge through the cabin lifting lugs to ensure the stable operation of the internal structure during the experiment.
  • the material of the hoisting sealed cavity 11-7 is made of light and high-strength materials.
  • the light-weight and high-strength material is specifically TC4 titanium alloy.
  • the surface of the cavity is treated by electropolishing. .
  • a cabin interface 11-1 is installed in the center of the upper sealing dome 11-2.
  • the cabin interface 11-1 is used to connect with the vacuum pipeline, strong electric wire and weak signal wire introduced through the rotating wall of the centrifuge, as shown in Figure 5.
  • the cabin body interface 11-1 specifically includes an upper glass press-fit flange 12-1, an upper flange fastening screw 12-2, a quartz glass 12-3 and a vacuum socket 12-6, and the quartz glass 12-3 is
  • the upper glass press-fitting flange 12-1 is fixedly installed at the opening at the top center of the communication upper sealing compartment cover 12-4, and the upper glass press-fitting flange 12-1 is fixed to the upper sealing compartment by the upper flange fastening screws 12-2
  • the top of the cover 12-4, the sealing hatch cover 12-4 on the communication, the bottom opening of the communication compartment body 12-5, the vacuum socket 12-6 is installed at the opening; the quartz glass 12-3 is used for visual observation of the hoisting airtight compartment 1
  • the vacuum socket 12-6 is used to connect to the vacuum line
  • a second screw hole is formed on the outer edge of the upper sealing dome 11-2, and the bolt passes through the second screw hole to connect to the lifting sealing cavity 11-7, so that the upper sealing dome 11-2 is connected to the lifting sealing cavity 11-7.
  • the cabin lifting lugs 11-3 are in a T-shaped column structure, and a plurality of spaced fixing holes 14-1 are opened on the surface of the radially protruding lugs, and bolts are connected through the fixing holes 14-1.
  • the cabin lifting lug 11-3 is connected to the rotating arm of the ultra-gravity centrifuge through the fixing hole 14-1 and bolts.
  • a third screw hole 14-2 is formed on the end surface of the cabin lifting lug 11-3 and the lifting sealing cavity 11-7, and the bolt passes through the third screw hole 14-2 to connect to the lifting sealing cavity 11-7, so that the cabin The body lifting lug 11-3 is connected to the lifting sealing cavity 11-7 through the third screw hole 14-2 and bolts.
  • a vacuum interface 11-4 is provided on the outer wall of the hoisting sealed chamber 11-7, which is directly connected to the vacuum pipe outside the hoisting sealed chamber 1; the bottom surface of the hoisting sealed chamber 11-7 is fixedly installed with wiring Bracket 16, as shown in Fig. 2 and Fig. 3, a vacuum interface 11-4, a wiring hole 17-1 and a mounting hole 17-2 are opened on the outer wall of the hoisted sealed cavity 11-7, and the wiring hole 17-1 is installed
  • the wiring level 15 is connected to the strong current wire on the wiring support 16 inside the hoisting sealed cavity 11-7 through the wiring hole 17-1; the weak signal control wire is connected to the wiring support 16 through the mounting hole 17-2 The weak signal control wire is connected.
  • the vacuum interface 11-4 is used to connect the air extraction interface of the vacuum system, the pressure gauge interface for monitoring the pressure in the furnace, and the safety valve interface for controlling the pressure in the furnace.
  • Wiring electrical level 11-5 is used to connect heating system cables.
  • Wiring support 11-6 provides a wiring support for high-temperature devices in a high-gravity environment, and solves the problems of heating, heat preservation, and temperature control during the high-gravity solidification process.
  • the main function of the bearing frame 2 is to support the tensile force and withstand the centrifugal force generated by the sample itself.
  • the bearing frame 2 is a circular arc boss structure, which is installed inside the hoisting airtight cabin 1.
  • the inner wall of the hoisting airtight cabin 1 is machined with a step surface, and the outer edge of the bearing frame 2 is fixed on the step surface by bolts and covered in the high temperature furnace 3. , So as to install the bearing frame 2.
  • the bearing frame 2 is designed as an overall arc structure to increase strength, surface aging and nitriding treatment, strengthen its hardness and strength, can withstand high temperature and super gravity, and can prevent force deformation.
  • the main function of the high-temperature furnace 3 is to provide the thermal environment required for the sample test, and is installed inside the hoisting sealed cabin 1 and covered under the bearing frame 2.
  • the high-temperature furnace 3 is fixed in the high-gravity test cabin.
  • the high-temperature furnace 3 includes an upper furnace body, a middle furnace body, a lower furnace body, a thermal insulation layer 316, and a high-strength furnace which are arranged and connected from top to bottom.
  • the lower cavity heat insulation layer 314 and the lower cavity lower fixed cover 315 form the shell of a cylindrical high-temperature furnace 3 composed of three furnace bodies, which are mainly used to fix the high-temperature furnace 3 in a supergravity environment, and It protects the furnace body under the gravity environment, forming a high-temperature furnace as a whole.
  • the upper furnace body is mainly composed of upper heat insulation cover 31, upper cavity shell 32, upper cavity middle shell 33, upper cavity heat insulation layer 34, upper cavity lower fixed cover 35, upper cavity shell 32, upper cavity
  • the middle shell 33 and the upper cavity heat insulation layer 34 are installed from the outside to the inside to form a three-layer structure of the upper furnace.
  • the upper heat insulation cover 31 and the lower fixed cover 35 of the upper cavity are respectively installed on the upper and lower ends of the three-layer structure of the upper furnace.
  • the upper furnace three-layer structure is fixedly connected, and the upper heat insulation cover 31 is used to fix the upper furnace three-layer structure of the upper furnace body and has the function of heat insulation; the upper cavity shell 32 and the upper cavity middle shell 33 and the upper cavity There is a gap between the body shell 33 and the upper cavity heat insulation layer 34 as an air heat insulation layer, and the air heat insulation layer plays a role of heat insulation and heat preservation to prevent heat loss in the furnace.
  • the middle furnace body is mainly composed of middle heat insulation cover 36, middle cavity shell 37, middle cavity middle shell 38, middle cavity heat insulation layer 39, middle cavity lower fixed cover 310, middle cavity shell 37, middle cavity
  • middle shell 38 and the middle cavity heat insulation layer 39 are installed from the outside to the inside to form a middle furnace three-layer structure.
  • the middle heat insulation cover 36 and the middle cavity lower fixed cover 310 are respectively installed at the upper and lower ends of the middle furnace three-layer structure so that The three-layer structure of the middle furnace is fixedly connected.
  • the middle heat insulation cover 36 is used to fix the middle furnace three-layer structure of the middle furnace body and has the function of heat insulation; the middle heat insulation cover 36 has the function of heat insulation and heat preservation to prevent heat from acting in supergravity Downward conduction; between the middle cavity shell 37 and the middle cavity middle shell 38, and between the middle cavity middle shell 38 and the middle cavity heat insulation layer 39, there are gaps as the air heat insulation layer, and the air heat insulation layer starts To prevent heat loss in the furnace; the upper cavity lower fixed cover 35 of the upper furnace body and the middle heat insulation cover 36 of the middle furnace body are fixedly connected by bolts, and the upper cavity lower fixed cover 35 and the middle partition The hot cover 36 is connected to connect the upper furnace body and the middle furnace body.
  • the lower furnace body is mainly composed of a lower heat insulation cover 311, a lower cavity shell 312, a lower cavity middle shell 313, a lower cavity heat insulation layer 314, a lower cavity lower fixed cover 315, a lower cavity shell 312, a lower cavity
  • the middle shell 313 and the lower cavity heat insulation layer 314 are installed from the outside to the inside to form a three-layer structure of the lower furnace.
  • the lower heat insulation cover 311 and the lower fixed cover 315 of the lower cavity are respectively installed on the upper and lower ends of the lower furnace three-layer structure so that The three-layer structure of the lower furnace is fixedly connected.
  • the lower heat insulation cover 311 is used to fix the lower furnace three-layer structure of the lower furnace body and has the function of heat insulation; the lower heat insulation cover 311 has the function of heat insulation and heat preservation to prevent heat from being affected by supergravity It conducts downward downward, and the lower fixed cover 315 of the lower cavity is used to fix the high temperature furnace 3 at the bottom of the hoisting airtight cabin (1).
  • the air heat insulation layer plays a role of heat insulation Function to prevent heat loss in the furnace;
  • the middle cavity lower fixed cover 310 of the middle furnace body and the lower heat insulation cover 311 of the lower furnace body are fixedly connected by bolts, and the middle cavity lower fixed cover 310 and the lower heat insulation cover 311 are connected To connect the middle furnace body and the lower furnace body.
  • the whole furnace body passes through four places: upper heat insulation cover 31, upper cavity lower fixed cover 35, middle heat insulation cover 36, middle cavity lower fixed cover 310, lower heat insulation cover 311 and lower cavity lower fixed cover 315.
  • the body is strengthened to improve the rigidity and strength of the entire furnace body in a super-gravity environment, and to prevent deformation and damage of the furnace body during operation.
  • the upper cavity lower fixed cover 35 and the middle heat insulation cover 36, the middle cavity lower fixed cover 310 and the lower heat insulation cover 311 are connected by high-strength bolts to facilitate installation and maintenance.
  • the furnace body supporting body 319 is placed at the bottom of the lower cavity insulation layer 314 of the lower furnace body, the high-strength furnace tube 317 is placed on the furnace body supporting body 319, and the furnace body supporting body 319 is placed on the bottom surface of the high gravity test cabin.
  • the supporting body 319 is used to support the weight of the entire furnace body and the compressive stress generated under the action of supergravity, and at the same time heat insulation to prevent heat from being conducted to the bottom of the hoisting airtight cabin (1) under supergravity.
  • the high-strength furnace tube 317 is filled with heat insulation and heat insulation between the upper cavity heat insulation layer 34 of the upper furnace body, the middle cavity heat insulation layer 39 of the middle furnace body, and the lower cavity heat insulation layer 314 of the lower furnace body.
  • the high-strength furnace tube 317 has a spiral groove 318-1 processed inside, as shown in Figure 7, the spiral groove 318-1 is equipped with a spiral heating element 318, as shown in Figure 8, a spiral concave
  • the groove 318-1 is provided with a heat dissipation channel 318-2 on the side facing the inner wall of the high-strength furnace tube 317, and the heat generated by the heating element 318 is uniformly radiated to the center of the high-strength furnace tube 317 through the heat dissipation channel 318-2.
  • the heating element 318 generates heat during the working process.
  • the high-strength furnace tube 317 is heated by radiation, and a high-temperature zone is formed in the center of the high-strength furnace tube 317.
  • the pitch of the spiral groove 318-1 is changed.
  • the body 318 is spaced between the high-strength furnace tubes 317, and the heating temperature of different height positions is adjusted, so that a uniform temperature zone or a non-uniform temperature gradient zone can be formed.
  • the structure of the high-strength furnace tube 317 and the heating element 318 of the present invention is designed so that the heating element 318 can prevent the heating element from falling off in a supergravity environment, and the heating effect can be adjusted by adjusting the pitch of the spiral groove at different positions.
  • the furnace shells 32, 33, 36, 37, 312, 313 are made of aerospace lightweight and high-strength materials, with 2 layers of heat shields and a layer of insulation, and a vacuum environment is used to prevent heat radiation and effectively prevent high temperature conduction.
  • the thermal insulation layer 316 is composed of a material with low thermal conductivity and uses mullite to prevent heat from being transferred to the outside of the furnace through conduction.
  • the high-strength furnace tube 317 is made of ceramics with high strength and low thermal conductivity.
  • the pitch of the spiral grooves processed by the high-strength furnace tube 317 the heating element 318 is easily pulled up and deformed under high gravity conditions, or even breaks.
  • a series of changes brought about by the heating element 318 must also be considered, such as preventing the deformation and movement of the heating element 318 (fracture in severe cases) under high gravity conditions, thereby affecting the overall operation of the device.
  • heating element 318 The selection of heating element 318: The maximum temperature allowed for different heating elements 318 is different from the requirements of the use environment. It is necessary to determine the heating element 318 based on the specific use conditions of the device (maximum working temperature, vacuum environment and supergravity environment) Types of. Such as iron-chromium-aluminum heating alloy wire and platinum wire.
  • the furnace body of the high-temperature furnace 3 is designed as a three-layer split type, and each layer is individually reinforced with an insulation layer.
  • the furnace body carrying body 319 supports the weight of the entire high-strength furnace tube 317, the heat insulation layer, and the super gravity generated during the sample process.
  • the furnace body carrying body 319 is fixed to the bottom of the hoisting sealed cabin 1 by high-strength bolts.
  • the lower fixed cover 315 of the lower chamber is first fixed to the bottom of the lifting sealed cabin (1) by bolts, the furnace body carrier 319 is installed on the lower fixed cover 315 of the lower chamber, and the lower chamber shell 312,
  • the lower cavity middle shell 313 and the lower cavity heat insulation layer 314 are connected to the lower cavity lower fixed cover 315 by bolts,
  • the lower heat insulation cover 311 is connected to the middle cavity lower fixed cover 310 by bolts,
  • the middle cavity heat insulation layer 39 and the middle cavity lower fixing cover 310 are connected to the middle cavity lower fixing cover 310 by bolts, and then to the upper cavity lower fixing cover 35 and the middle heat insulation cover 36 by bolts.
  • the mullite heat insulation layer 316 is directly placed between the ceramic high-strength furnace tube 317 and the lower cavity heat insulation layer 314, the middle cavity heat insulation layer 39, and the upper cavity heat insulation layer 34.
  • the thermal insulation layer 316 of mullite can not only serve as a buffer but also insulate heat.
  • the high-temperature furnace 3 can be used repeatedly, and only needs to replace the appropriate heating element 318 and high-strength furnace tube 317 to meet different experimental requirements, and has the advantages of simple structure and high safety factor.
  • the main function of the mechanical testing device 4 is to provide a mechanical environment and a fixed sample required for sample testing.
  • the mechanics testing device 4 is placed in the supergravity test cabin.
  • the mechanics testing device 4 includes a tie rod 41, a wire fixing structure 42, a chuck 43, a thermocouple 44, a shrink nut 46 and a force loading block 47;
  • the top end of 41 is fixedly connected to the center of the top end of the bearing frame 2 in the hoisting airtight cabin 1, and the tie rod 41 is mainly used to withstand the tensile stress generated by the coupling of the volume force and the surface force during the material performance test;
  • the bottom end of the tie rod 41 is through the clamp 43 It is connected with the upper end of the sample 6 to fix the sample 6, which is the sample of the mechanical properties of the material to be tested;
  • the lower end of the sample 6 is provided with an external thread, and the external thread at the lower end of the sample 6 is screwed into the area loading block 47
  • the screw hole is fastened and connected by a shrink nut 46, and the sample 6 and the surface force loading block 47 are connected through the shrink
  • the shrink nut 46 is used to connect the sample 6 and the surface force loading block 47; the area loading block 47 is specifically a belt It has a block structure that can adjust its own weight.
  • the area loading block 47 exerts surface force on the sample 6 through the centrifugal force generated by its own weight in a supergravity environment.
  • the area loading block 47 of different weights is combined with the centrifugal force of the centrifuge at different speeds to test.
  • Sample 6 applies different surface forces; the lower end of the surface force loading block 47 is placed on the buffer device, and the buffer device is placed at the bottom of the supergravity test chamber.
  • the buffer device used in the specific implementation uses a buffer block, and the buffer device prevents the sample during the mechanical performance test.
  • thermocouples 44 Fracture causes damage to the sample chamber; the detection ends of the three thermocouples 44 are welded at different positions of the sample 6 to test the experimental temperature of the sample 6.
  • the strain gauge is installed on the sample 6 and the thermocouple 44 is welded. And strain gauges are used to test the temperature and strain of the experiment.
  • the output ends of the three thermocouples 44 and strain gauges are led out by wires and connected to the external signal collector.
  • the middle part of the tie rod 41 is equipped with a plurality of fixed wire structures 42, and the wires pass through the fixed wire structure 42.
  • the fixing structure 42 includes a first fixing ring 43-1, a second fixing ring 43-2, a fixing porcelain base 43-3 and a porcelain base protector 43-4; the first fixing ring 43-1 and The second fixing ring 43-2 has a semicircular gap, and the semicircular gaps of the first fixing ring 43-1 and the second fixing ring 43-2 are butt-connected to form a circular opening sleeved outside the tie rod 41, the tie rod 41 is a cylindrical rod;
  • the seat protector 43-4 is fixed to the side of the second fixing ring 43-2 by bolts on both sides.
  • a fixing porcelain seat 43-3 is clamped between the porcelain seat protector 43-4 and the second fixing ring 43-2.
  • the bolts It also passes through the fixed porcelain base 43-3, and the fixed porcelain base 43-3 is provided with a hole for the output wire of the thermocouple 44 and the strain gauge to penetrate.
  • the fixing wire structure 42 is used to fix the extension wires of the thermocouple and the strain gauge to prevent them from breaking during the mechanical test.
  • the upper and lower end faces of the chuck 43 are provided with threaded holes.
  • the outer thread at the bottom end of the tie rod 41 is screwed into the threaded hole on the upper end of the chuck 43 connected to it.
  • the upper end of the sample 6 also has an outer thread.
  • the upper end of the sample 6 is screwed with an outer thread.
  • the chuck 43 is used to fix the sample 6, and is mainly used to withstand the tensile stress generated by the coupling of the volume force and the surface force during the material performance test.
  • the top of the tie rod 41 is provided with an outer flange, and the outer flange is provided with a fixing screw hole for connecting the bearing device of the material mechanical properties test chamber.
  • the bolt passes through the fixing screw hole to fix the top of the tie rod 41 to the material mechanical performance test chamber. Device.
  • the buffer device 5 adopts the technical solution of the invention content in the Chinese patent with the application date of 2019.4.10, the application number of 2019102853393, and the invention title of "A buffer device for capturing high-temperature flying fracture samples in a supergravity environment".
  • the buffer device 5 is placed inside the furnace body carrier 319 of the high-temperature furnace 3 or replaces the furnace body carrier 319.
  • the upper support body 3 faces upwards/towards the mechanical testing device 4, which is used to test the fracture from the mechanical testing device 4 Samples are taken, and placing the samples will damage the bottom of the hoisting sealed cabin 1.
  • the commonly used samples for specific implementation can be standard endurance, tensile, creep and fatigue samples.
  • the first step According to the experimental conditions, determine the heating temperature of the high-temperature furnace 3, the rotating speed of the centrifugal main machine and the mass of the surface force loading block 47.
  • Step 2 Determine the size of the collet 43 and the lock nut according to the size of the sample 6.
  • the third step connect the sample 6 to the tie rod 41 through the chuck 43 first, and then connect to the face force loading block 47 through a lock nut.
  • Step 4 Weld three strain gauges on the sample 6 in sequence to test the strain of the sample 6 during the experiment; weld a thermocouple to measure and control the temperature of the high-temperature furnace 3.
  • Step 5 Install the mechanical testing device 4 on the bearing frame 2 through nuts.
  • Step 7 Hingely connect the hoisting airtight cabin 1 to the rotating arm of the ultra-gravity centrifuge through the cabin lifting lugs 11-3.
  • Step 8 The three strain gauges and a thermocouple extension wire welded on the sample 6 are connected to the cabin interface 1-1 along the tie rod 41, and then connected to the ground test system through the electric slip ring connection on the main shaft.
  • Step 9 Start the vacuum system to make the vacuum in the hoisting chamber 1 reach 10 -2 Pa.
  • Step 10 When the vacuum degree in the hoisting airtight chamber 1 reaches 10 -2 Pa, start the heating of the high temperature furnace 3.
  • Step 11 When the temperature of the high-temperature furnace 3 reaches the experimental setting temperature, start the centrifugal host.
  • the twelfth step when the rotating speed of the centrifugal main engine reaches the rotating speed set in the experiment, a mechanical performance test environment of volume force-face force-temperature coupling is formed in the high temperature furnace 3.
  • the thirteenth step During the experiment, the temperature and strain signals are transmitted to the signal collector in real time, and the signal collector converts the obtained analog signals into digital signals, which are then connected to the signal slip ring through the wiring rack, and finally connected to the ground measurement and control center, thereby Obtain the stress-strain curve of sample 6 during the experiment.
  • the working process of the mechanical performance test of the device of the present invention is as follows:
  • the first step connect the sample 6 to the lower end of the tie rod 41 with the clamp 43, and weld the thermocouple 44 and the strain gauge to the sample 6;
  • Step 2 place the high-gravity experiment cabin in the hanging basket of the centrifuge, place a high-temperature furnace in the high-gravity experiment cabin, place a buffer device 5 at the bottom of the cavity of the high-temperature furnace, and place a bearing frame on the top of the cavity of the high-temperature furnace 3. 2. Place the mechanical testing device 4 between the bearing frame and the buffer device in the inner cavity of the high temperature furnace, and install the sample 6 that needs to be heated;
  • Step 3 Connect the wire of the thermocouple welded on the surface of the sample 6 to the signal collector.
  • the signal collector will receive the temperature and strain analog signals and convert the analog signals into digital signals;
  • Step 4 The three independent circuits of strong electricity on the ground are respectively connected to the upper, middle and lower heating zones of the high-strength furnace tube 317 of the high-temperature furnace 3, so that the upper, middle, and bottom three high-strength furnace tubes 317 of the high-temperature furnace 3
  • the heating zones are heated independently, and different heating temperatures are set in different heating zones;
  • the temperature control is specifically as follows: the sample to be tested for mechanical properties is installed in the high-strength furnace tube 317 of the high-temperature furnace 3, and a temperature sensor is installed.
  • the temperature sensor is connected to the signal collector, and the output wire of the signal collector is conductive with weak signals through the wiring rack Slip ring connection, and then connected to the ground measurement and control center;
  • the high temperature furnace 3 is equipped with three independent strong current circuits, and the three independent strong current circuits control and heat the internal heating elements 318 at different heights for high temperature heating, and three independent circuits on the ground
  • the conductive slip ring of the main shaft of the centrifuge is connected to the wiring rack of the high gravity experiment cabin; the conductive slip ring of the main shaft of the centrifuge is connected with the power supply cabinet. That is, through the wiring rack, connect the first strong current independent circuit to the upper heating zone of the high temperature furnace 3, connect the second strong current independent circuit to the heating zone in the high temperature furnace, and connect the third strong current independent circuit to the high temperature furnace. Heating
  • three independent temperature control temperature extension wires for controlling the high temperature furnace 3 are connected to the signal collector, and the signal collector converts the received temperature signal from an analog signal to a digital signal; the digital signal passes through the wiring rack and the signal slip ring Connect, and then connect with the ground measurement and control center.
  • the high-strength furnace tube 317 is used as a furnace tube, and heating uses a heating wire to generate heat, and the high-strength furnace tube 317 is heated by heat conduction.
  • the temperature gradient and uniform temperature zone required for the high-strength furnace tube 317 are realized by the layout of the heating wire to form a uniform temperature field in the furnace, and at the same time bear the pressure generated by the high-strength furnace tube 317 and avoid the heat conduction to the peripheral components. Thermal influence.
  • the furnace temperature is controlled by a temperature sensor fixed or welded on the sample to be tested through a temperature controller and a measurement and control system.
  • Step 5 Install a tachometer on the centrifuge shaft, connect the tachometer signal line installed on the centrifuge shaft with the weak signal guide centrifuge main shaft guide centrifuge main shaft conductive slip ring, and use three thermocouples on the heating device to control the high temperature The real-time temperature and heating rate of the furnace, use a tachometer to control the speed of the centrifuge, and use the following formula to calculate the stress F applied to the sample 6:
  • the stress state of the sample is as follows: it is simultaneously subjected to temperature, centrifugal stress generated by its own weight and surface force generated by the surface force loading block, and then real-time drawing obtains the stress-strain of the sample under the stress state curve.
  • the present invention can independently control the temperature of three different regions of the high temperature furnace 3 through thermocouples, realize uniform temperature heating or gradient heating, and can adjust the distribution of the set temperature.
  • the centrifugal force can be dynamically changed by controlling the speed, and then the surface force that can be applied to the sample;
  • thermocouples to achieve uniform temperature heating or gradient heating, and then the temperature distribution of sample 6 can be set according to needs.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Clinical Laboratory Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种超重力环境固定式多场耦合作用下材料性能测试系统。该测试系统包括吊装密封舱(1)、承力架(2)、高温炉(3)、力学测试装置(4)、缓冲装置(5);吊装密封舱(1)内部固定安装有承力架(2)和高温炉(3),承力架(2)罩在高温炉(3)上,缓冲装置(5)安装于高温炉(3)内的底部,力学测试装置(4)上下两端连接在承力架(2)顶部和高温炉(3)底部内,试样(6)连接安装在力学测试装置(4)末端。该测试系统能够解决高速旋转状态下体积力-面力-温度耦合作用下材料动态性能测试的难题,装置结构简单,操作方便且安全可靠。

Description

超重力环境固定式多场耦合作用下材料性能测试系统 技术领域
本发明涉及材料性能测试技术领域,尤其涉及一种超重力环境下固定式体积力-面力-温度耦合作用下材料性能测试系统。
背景技术
随着现代航空发动机推重比增加和涡轮级数减少,涡轮前燃气进口温度从上世纪70年代的1400-1500K发展到本世纪初的1600-1750K,推重比12-15发动机涡轮前燃气进口温度将高达2000-2200K,这对发动机核心热端部件提出了更高的性能要求。高压涡轮工作叶片作为热端部件关键组成部分之一,服役时长期工作在高温、高压、高转速、交变负载等耦合加载条件下。
服役时涡轮工作叶片绕发动机轴线高速旋转,其作用是利用燃气膨胀做功,将燃气的位能和热能转换为转子的机械功,所以服役过程中涡轮工作叶片主要承受离心载荷、热载荷、气动载荷和振动载荷的耦合作用。离心载荷产生的离心应力,属于体积力,使积叠线与径向线不完全重合的弯扭结构叶片,同时产生径向拉应力、扭转应力和弯曲应力。热载荷产生的热应力与几何约束密切相关,几何约束越多,热应力越大,尤其气膜孔处的应力集中,将显著减低叶片的疲劳寿命。气动载荷产生的气动力,是一种表面分布压力,属于面积力,作用在叶片各个表面,沿叶高和叶宽方向呈不均匀分布。因此,涡轮工作叶片在径向拉应力、扭转应力、弯曲应力和热应力的耦合作用下同时发生剪切变形、拉伸变形和扭曲变形,这显然不同于实验室单轴应力状态下的变形行为。
原子固相扩散是导致材料服役过程中微观组织演化的根本原因,叶片高速旋转产生的体积力-面力-温度动态耦合显著增加原子在界面、位错、空洞等缺陷处的扩散速率,使其显微结构演化不同于轴向面力作用。同时,密度不同的析出相在超重力作用下,由于其弹性模量、热膨胀性等不同在各析出相之间产生复杂的互不协调的塑性变形,进一步增大不同密度物质间相对运动的驱动力,进而在材料内部产生巨大的内应力,致使材料的损伤机制显著不同于面力作用下材料损伤机制。
发明内容
为了解决针对上述高速旋转状态下体积力-面力-温度耦合作用下材料动态 性能测试的难题,本发明首创提供了一种超重力环境下固定式体积力-面力-温度耦合作用下材料性能测试系统,装配简单、使用方便、安全系数高,并且是用于超重力工况的材料性能测试,该装置适合1g-2500g超重力环境下,温度从室温-1600℃,提供的最大面力为300kN。
本发明解决高速旋转状态下材料高温力学性能测试的关键难题。利用该装置,借助超重力环境下,可以实时获得体积力-面力-温度耦合环境下材料力学性能数据。
本发明采用的技术方案:
本发明包括吊装密封舱、承力架、高温炉、力学测试装置、缓冲装置;吊装密封舱内部固定安装有承力架和高温炉,承力架罩在高温炉上,缓冲装置安装于高温炉内的底部,力学测试装置上下两端连接在承力架顶部和高温炉底部内,试样6连接安装在力学测试装置末端。
所述的吊装密封舱包括上密封穹顶和吊装密封腔体,吊装密封腔体内部设有腔体,腔体上端开口,吊装密封腔体的两侧侧壁向外连接有舱体吊耳,两侧的舱体吊耳铰接连接到超重力离心机的吊篮转臂上,上密封穹顶通过螺栓安装连接到吊装密封腔体的腔体开口端面并密封连接;上密封穹顶的中央安装有舱体接口件,舱体接口件具体包括上玻璃压装法兰、上法兰紧固螺钉、石英玻璃和真空插座,石英玻璃被上玻璃压装法兰固定安装在通讯上密封舱盖顶部中心的开口处,上玻璃压装法兰通过上法兰紧固螺钉固定于上密封舱盖顶部,通讯上密封舱盖,通讯舱体底部开孔,开孔处安装真空插座。
所述的上密封穹顶外边缘开设第二螺孔,螺栓穿过第二螺孔连接到吊装密封腔体,从而使得上密封穹顶与吊装密封腔体连接。
所述的舱体吊耳径向伸出的凸耳部分的面开设多个间隔的固定孔,螺栓穿过固定孔连接到超重力离心机的转臂,使得舱体吊耳通过固定孔及螺栓与超重力离心机的转臂相连。
所述的吊装密封腔体外侧壁上开设有真空接口,真空接口直接和吊装密封舱外部的真空管道连接;吊装密封腔体的腔体内底面固定安装有布线支架,所吊装密封腔体外侧壁上开设有真空接口、接线孔和安装孔,接线孔处安装接线电级,接线电级经过接线孔与吊装密封腔体内部的布线支架相连;弱信号控制电线经过安装孔与布线支架相连。
所述的承力架为圆弧凸台结构,安装在吊装密封舱的内部,吊装密封舱的内壁加工出台阶面,承力架外边缘通过螺栓固定在台阶面上,罩在高温炉的上方。
所述的高温炉固定于超重力试验舱中,所述的高温炉包括从上到下依次布置连接的上炉体、中炉体、下炉体以及隔热保温层、高强度炉管、发热体和炉体承载体;上炉体主要由上隔热盖、上腔体外壳、上腔体中壳、上腔体隔热层、上腔体下固定盖组成,上腔体外壳、上腔体中壳、上腔体隔热层分别从外到内安装形成上炉三层结构,上隔热盖和上腔体下固定盖分别安装于上炉三层结构的上端和下端使得上炉三层结构固定连接,上腔体外壳和上腔体中壳之间以及上腔体中壳和上腔体隔热层之间均有间隙作为空气隔热层;中炉体主要由中隔热盖、中腔体外壳、中腔体中壳、中腔体隔热层、中腔体下固定盖组成,中腔体外壳、中腔体中壳、中腔体隔热层分别从外到内安装形成中炉三层结构,中隔热盖和中腔体下固定盖分别安装于中炉三层结构的上端和下端使得中炉三层结构固定连接,中腔体外壳和中腔体中壳之间以及中腔体中壳和中腔体隔热层之间均有间隙作为空气隔热层;上炉体的上腔体下固定盖和中炉体的中隔热盖之间固定连接;下炉体主要由下隔热盖、下腔体外壳、下腔体中壳、下腔体隔热层、下腔体下固定盖组成,下腔体外壳、下腔体中壳、下腔体隔热层分别从外到内安装形成下炉三层结构,下隔热盖和下腔体下固定盖分别安装于下炉三层结构的上端和下端使得下炉三层结构固定连接,下腔体外壳和下腔体中壳之间以及下腔体中壳和下腔体隔热层之间均有间隙作为空气隔热层;中炉体的中腔体下固定盖和下炉体的下隔热盖之间固定连接;炉体承载体置于下炉体的下腔体隔热层底部,高强度炉管置于炉体承载体上,高强度炉管外分别和上炉体的上腔体隔热层、中炉体的中腔体隔热层、下炉体的下腔体隔热层之间填充有隔热保温层;高强度炉管内部加工有螺旋状凹槽,螺旋状凹槽装有螺旋状的发热体,螺旋状凹槽在朝向高强度炉管内壁的一侧开设有散热通道,通过散热通道将发热体产生的热量均匀辐射到高强度炉管中央。
所述的力学测试装置置于超重力试验舱中,所述的力学测试装置包括拉杆、固线结构、夹头、热电偶、紧缩螺母和面力加载块;拉杆的顶端与吊装密封舱内的承力架顶端中央固定相连,拉杆主要用来承受材料性能测试过程中体积力和面力耦合作用产生的拉应力;拉杆底端经夹头和试样上端相连,试样为待测试材料力学性能的样品;试样下端设有外螺纹,试样下端的外螺纹旋入到面积加载块的螺纹孔中并通过紧缩螺母紧固连接;面积加载块具体为带有可调节自身重量的块结构,通过不同重量的面积加载块结合离心机不同转速的离心力对试样施加不同面力;面力加载块下端面放置在缓冲装置上,缓冲装置置于超重力试验舱的底部;三根热电偶的探测端焊接在试样的不同位置处,应变片安装在焊接在试样上,三根热电偶和应变片的输出端由导线引出连接到外部的信号 采集器,拉杆中部安装有多个固线结构,导线经固线结构引出并固定位置;拉杆的下部和试样置于高温炉的高强度炉管内,面积加载块穿过高温炉的高强度炉管伸入到缓冲装置中。
所述的固线结构包括第一固定环、第二固定环、固定瓷座和瓷座保护件;第一固定环和第二固定环均具有半圆缺口,第一固定环和第二固定环半圆缺口之间对接形成套装在拉杆外的圆形口;瓷座保护件通过螺栓固定于第二固定环侧面,瓷座保护件和第二固定环之间夹装有固定瓷座,固定瓷座上开设有用于热电偶和应变片的输出导线贯穿的孔。
所述的夹头上端面和下端面设有螺纹孔,拉杆底端的外螺纹旋入连接到的夹头上端面的螺纹孔中,试样上端也有外螺纹,试样上端的外螺纹旋入连接到的夹头上端面的螺纹孔中。
所述的拉杆顶端设有外凸缘,外凸缘上开设有用于连接材料力学性能试验舱承力装置的固定螺孔,螺栓穿过固定螺孔将拉杆顶端固定于材料力学性能试验舱的承力装置。
体积力-面力-温度耦合作用如图11所示,实验过程中,超重力离心机旋转下,试样6通过自重产生离心力F 1和F 剪切应力,面力加载块4-5在离心力作用下对试样6施加一个恒定的径向拉应力F 2,即面积力。改变超重力离心机的旋转转速,改变体积力F 1和F 弯曲应力;改变面力加载块4-5重量,改变面积力F 2
将力学测试装置4放置在高温炉3里,对试样施加温度载荷,这样就形成一个体积力-面力-温度耦合作用材料性能测试环境,工作原理如图11所示。
超重力环境下悬挂式体积力-面力-温度耦合作用下的试样材料性能测试过程是在抗高温条件、特殊气氛环境、超重力等要求下完成的,考虑到此装置的运行环境,本发明设计的测试装置解决了超重力带来的技术影响,符合高强度轻质量的理念,结构模块化设计,实验准备周期短,测试过程安全可靠。
本发明的技术特点和优势:
本发明具有模拟航空发动机、航天发动机、燃气轮机等高速旋转装置服役环境的能力,即模拟高速旋转过程中试样除了承受发动机起动、停车循环高温燃气冲刷和温度交变外,还要承受高速旋转产生的离心应力和轴向动态载荷。
其中,高速旋转下试样自重产生的离心应力
Figure PCTCN2019110030-appb-000001
(ρ为密度,ω为转速,r为旋转半径,rtip为叶片尖端曲率半径)在试样顶端截面处为零,沿试样向转抽方向逐渐增大,在试样根部截面处的离心拉伸应力最大,由此在试样 内部产生极高的离心应力梯度。如果试样形状复杂,试样各截面重心连线与旋转轴不完全重合,旋转时试样除承受离心力外,同时也承受巨大的离心力弯矩。所以,本发明能够模拟高速旋转部件服役过程中的真实受力状态,即试样自重产生的离心应力、热应力、振动应力、扭矩产生的剪切应力等多种应力动态耦合环境下的应力状态,从而具备测试复杂应力状态下材料性能的能力。
本发明的特点为:
(1)该装置能在1g-2500g超重力环境下工作。
(2)高温炉实验温度从室温-1600℃。
(3)装置提供的最大面力为300kN。
(4)在材料力学性能测试过程中,离心主机旋转试样通过自重产生离心力。面力加载块在离心力作用下对试样施加一个恒定的径向拉应力,即面积力。改变离心主机转速,改变体积力;改变面力加载块重量,可以改变施加在试样上的面积力。
(5)根据高温炉的炉丝类型,可以实现室温-1600℃的高温测试环境。
附图说明
图1是本发明材料性能测试系统的整体结构图。
图2是本发明作为固定式实验舱的吊装密封舱1的整体剖视图。
图3是吊装密封腔体11-7的示意图;
图4是舱体吊耳3的示意图,
图5是舱体接口件1的主视图;
图6是高温加热装置的主视图;
图7为高强度炉管317的结构剖视图及其局部放大图;
图8为发热体的结构示意图;
图9是力学测试装置4主视图;
图10是固线结构的示意图。
图11是本发明超重力材料性能测试系统下的施力原理图。
图中:吊装密封舱1、承力架2、高温炉3、力学测试装置4、缓冲装置5、试样6、舱体接口件11-1、上密封穹顶11-2、舱体吊耳11-3、真空接口11-4、接线电级15、布线支架16、吊装密封腔体11-7;上隔热盖31、上腔体外壳32、上腔体中壳33、上腔体隔热层34、上腔体下固定盖35、中隔热盖36、中腔体 外壳37、中腔体中壳38、中腔体隔热层39、中腔体下固定盖310、下隔热盖311、下腔体外壳312、下腔体中壳313、下腔体隔热层314、下腔体下固定盖315、隔热保温层316、高强度炉管317、发热体318、炉体承载体319;拉杆41、固线结构42、夹头43、热电偶44、紧缩螺母46、面力加载块47;42-1.固定螺孔;43-1.第一固定环;43-2第二固定环;43-3固定瓷座;43-4瓷座保护件。
具体实施方式
下面结合附图和实施例对本发明作进一步说明。
如图1所示,具体实施的系统包括吊装密封舱1、承力架2、高温炉3、力学测试装置4、缓冲装置5;吊装密封舱1内部固定安装有承力架2和高温炉3,承力架2罩在高温炉3上,缓冲装置5安装于高温炉3内的底部,力学测试装置4上下两端连接在承力架2顶部和高温炉3底部内,试样6连接安装在力学测试装置4末端。
具体实施的系统具体为:
吊装密封舱1为体积力-面力-温度耦合作用环境提供一个密封载体。如图2所示,吊装密封舱1包括上密封穹顶11-2和吊装密封腔体11-7,吊装密封腔体11-7内部设有腔体,腔体上端开口,吊装密封腔体11-7的两侧侧壁向外连接有舱体吊耳11-3,两侧的舱体吊耳铰接连接到超重力离心机的吊篮转臂上,上密封穹顶11-2通过螺栓安装连接到吊装密封腔体11-7的腔体开口端面并密封连接,吊装密封腔体11-7与上密封穹顶11-2密封采用双层氟橡胶提高密封性;
吊装密封舱1为体积力-面力-温度耦合作用环境提供一个密封载体。吊装密封舱1通过舱体吊耳与超重力离心机相联,实验过程中,保证内部结构的稳定运行。根据高G值下压力容器标准设计,为满足超重力下的强度要求,吊装密封腔体11-7材料选用轻质高强材料,轻质高强材料具体为TC4钛合金,腔体表面采用电抛光处理。
上密封穹顶11-2的中央安装有舱体接口件11-1,舱体接口件11-1用于和通过离心机转壁引进的真空管线、强电电线和弱信号电线相连,如图5所示,舱体接口件11-1具体包括上玻璃压装法兰12-1、上法兰紧固螺钉12-2、石英玻璃12-3和真空插座12-6,石英玻璃12-3被上玻璃压装法兰12-1固定安装在通讯上密封舱盖12-4顶部中心的开口处,上玻璃压装法兰12-1通过上法兰紧固螺钉12-2固定于上密封舱盖12-4顶部,通讯上密封舱盖12-4,通讯舱体12-5底部开孔,开孔处安装真空插座12-6;石英玻璃12-3用于肉眼观察吊装密封舱1内的情况,真空插座12-6用于和通过离心机转壁引进的真空管线相连。
上密封穹顶11-2外边缘开设第二螺孔,螺栓穿过第二螺孔连接到吊装密封腔体11-7,从而使得上密封穹顶11-2与吊装密封腔体11-7连接。
如图4所示,舱体吊耳11-3呈T型柱体结构,径向伸出的凸耳部分的面开设多个间隔的固定孔14-1,螺栓穿过固定孔14-1连接到超重力离心机的转臂,使得舱体吊耳11-3通过固定孔14-1及螺栓与超重力离心机的转臂相连。舱体吊耳11-3和吊装密封腔体11-7相连的端面开设有第三螺孔14-2,螺栓穿过第三螺孔14-2连接到吊装密封腔体11-7,使得舱体吊耳11-3通过第三螺孔14-2及螺栓与吊装密封腔体11-7相连。吊装密封腔体11-7外侧壁上开设有真空接口11-4,真空接口11-4直接和吊装密封舱1外部的真空管道连接;吊装密封腔体11-7的腔体内底面固定安装有布线支架16,如图2和图3所示,所吊装密封腔体11-7外侧壁上开设有真空接口11-4、接线孔17-1和安装孔17-2,接线孔17-1处安装接线电级15,接线电级15经过接线孔17-1与吊装密封腔体11-7内部的布线支架16上的强电电线相连;弱信号控制电线经过安装孔17-2与布线支架16上的弱信号控制电线相连。
真空接口11-4用于连接真空系统的抽气接口、监测炉内压力的压力表接口、控制炉内压力的安全阀接口。接线电级11-5用于连接加热系统电缆。布线支架11-6为超重力环境下的高温装置提供一种布线支架,解决超重力凝固过程中的加热、保温、温度控制等问题。
承力架2主要功能是起到支撑拉伸力和承受试样自身产生的离心力。承力架2为圆弧凸台结构,安装在吊装密封舱1的内部,吊装密封舱1的内壁加工出台阶面,承力架2外边缘通过螺栓固定在台阶面上,罩在高温炉3的上方,从而用于安装承力架2。考虑到其使用过程及环境,承力架2设计为整体弧形结构,增加强度,表面时效氮化处理,加强其硬度及强度,能承受高温和超重力,能防止受力变形。
高温炉3主要功能是提供试样测试所需的热环境,安装在吊装密封舱1的内部,罩在承力架2的下方。
如图6所示,高温炉3固定于超重力试验舱中,高温炉3包括从上到下依次布置连接的上炉体、中炉体、下炉体以及隔热保温层316、高强度炉管317、发热体318和炉体承载体319;上隔热盖31、上腔体外壳32、上腔体中壳33、上腔体隔热层34、上腔体下固定盖35、中隔热盖36、中腔体外壳37、中腔体中壳38、中腔体隔热层39、中腔体下固定盖310、下隔热盖311、下腔体外壳312、下腔体中壳313、下腔体隔热层314、下腔体下固定盖315组成一个三个炉体构成的圆筒状高温炉3的外壳,主要用来在超重力环境下固定高温炉3,且 在超重力环境下起到保护炉体的作用,总体形成了一个高温炉。
上炉体主要由上隔热盖31、上腔体外壳32、上腔体中壳33、上腔体隔热层34、上腔体下固定盖35组成,上腔体外壳32、上腔体中壳33、上腔体隔热层34分别从外到内安装形成上炉三层结构,上隔热盖31和上腔体下固定盖35分别安装于上炉三层结构的上端和下端使得上炉三层结构固定连接,上隔热盖31用来固定上炉体的上炉三层结构且起到隔热保温作用;上腔体外壳32和上腔体中壳33之间以及上腔体中壳33和上腔体隔热层34之间均有间隙作为空气隔热层,空气隔热层起到隔热保温的作用防止炉内热量散失。
中炉体主要由中隔热盖36、中腔体外壳37、中腔体中壳38、中腔体隔热层39、中腔体下固定盖310组成,中腔体外壳37、中腔体中壳38、中腔体隔热层39分别从外到内安装形成中炉三层结构,中隔热盖36和中腔体下固定盖310分别安装于中炉三层结构的上端和下端使得中炉三层结构固定连接,中隔热盖36用来固定中炉体的中炉三层结构且起到隔热保温作用;中隔热盖36具有隔热保温作用,防止热量在超重力作用下向下传导;中腔体外壳37和中腔体中壳38之间以及中腔体中壳38和中腔体隔热层39之间均有间隙作为空气隔热层,空气隔热层起到隔热保温的作用防止炉内热量散失;上炉体的上腔体下固定盖35和中炉体的中隔热盖36之间通过螺栓固定连接,上腔体下固定盖35和中隔热盖36连接用来连接上炉体和中炉体。
下炉体主要由下隔热盖311、下腔体外壳312、下腔体中壳313、下腔体隔热层314、下腔体下固定盖315组成,下腔体外壳312、下腔体中壳313、下腔体隔热层314分别从外到内安装形成下炉三层结构,下隔热盖311和下腔体下固定盖315分别安装于下炉三层结构的上端和下端使得下炉三层结构固定连接,下隔热盖311用来固定下炉体的下炉三层结构且起到隔热保温作用;下隔热盖311具有隔热保温作用,防止热量在超重力作用下向下传导,下腔体下固定盖315用来将高温炉3固定在吊装密封舱(1)的底部。下腔体外壳312和下腔体中壳313之间以及下腔体中壳313和下腔体隔热层314之间均有间隙作为空气隔热层,空气隔热层起到隔热保温的作用防止炉内热量散失;中炉体的中腔体下固定盖310和下炉体的下隔热盖311之间通过螺栓固定连接,中腔体下固定盖310和下隔热盖311连接用来连接中炉体和下炉体。
整个炉体通过上隔热盖31、上腔体下固定盖35、中隔热盖36、中腔体下固定盖310、下隔热盖311和下腔体下固定盖315四个地方对炉体进行加强,提高整个炉体在超重力环境下的刚度和强度,防止炉体运行过程中变形和破坏。上腔体下固定盖35和中隔热盖36、中腔体下固定盖310和下隔热盖311之间通过 高强螺栓联接,方便安装及维护。
炉体承载体319置于下炉体的下腔体隔热层314底部,高强度炉管317置于炉体承载体319上,炉体承载体319置于超重力试验舱底面上,炉体承载体319用来支撑整个炉体重量,以及超重力作用下产生的压应力,同时隔热,防止热量在超重力下通过热传导到吊装密封舱(1)的底部。高强度炉管317外分别和上炉体的上腔体隔热层34、中炉体的中腔体隔热层39、下炉体的下腔体隔热层314之间填充有隔热保温层316;高强度炉管317内部加工有螺旋状凹槽318-1,如图7所示,螺旋状凹槽318-1装有螺旋状的发热体318,如图8所示,螺旋状凹槽318-1在朝向高强度炉管317内壁的一侧开设有散热通道318-2,通过散热通道318-2将发热体318产生的热量均匀辐射到高强度炉管317中央。
工作过程中发热体318产生热量,通过辐射加热高强度炉管317,在高强度炉管317中央形成高温区,通过改变不同高度位置的螺旋状凹槽318-1螺距进而改变不同高度位置的发热体318在高强度炉管317间距,调整不同高度位置的加热温度,从而可以实现形成均匀的温度区或非均匀的温度梯度区。
本发明的高强度炉管317和发热体318的结构设计,这样能发热体318防止发热体在超重力环境下脱落,并且还能通过调整螺旋状凹槽不同位置处的螺距调整加热效果。
具体实施中,炉壳32、33、36、37、312、313采用航空航天轻质高强材料,设置2层隔热屏和一层保温层,利用真空环境防止热辐射,并有效防止高温传导。
隔热保温层316为由低热导率材料组成,采用莫来石,防止热量通过传导传递到炉外。
高强度炉管317采用高强度、低导热系数的陶瓷制作。
高强度炉管317加工的螺旋状凹槽螺距:发热体318在超重力条件下容易拉升变形,甚至断裂。需考虑发热体318布局设计外还得考虑发热体318所带来的一系列变化影响,如防止在超重力条件下发热体318变形移动(严重时断裂),从而影响设备的整体运行。
发热体318的选型:不同的发热体318允许使用的最高温度和对使用环境的要求不一样,需结合此装置的具体使用条件(最高工作温度、真空环境和超重力环境)确定发热体318类型。如铁铬铝电热合金丝和铂金丝等。
为防止超重力下高强度炉管317自重造成的变形,高温炉3炉体设计为三层分体式,每层单独加固保温层。
炉体承载体319支撑整个高强度炉管317、保温层的重量,以及试样过程中产生的超重力,炉体承载体319是通过高强螺栓固定在吊装密封舱1底部。
高温炉3安装使用时,先将下腔体下固定盖315通过螺栓固定于吊装密封舱(1)底部,炉体承载体319安装于下腔体下固定盖315上,下腔体外壳312、下腔体中壳313、下腔体隔热层314通过螺栓与下腔体下固定盖315连接,下隔热盖311通过螺栓与中腔体下固定盖310连接,中腔体中壳38、中腔体隔热层39、中腔体下固定盖310通过螺栓与中腔体下固定盖310连接,再通过螺栓与上腔体下固定盖35、中隔热盖36连接。
将莫来石的隔热保温层316直接放置在陶瓷的高强度炉管317和下腔体隔热层314、中腔体隔热层39、上腔体隔热层34之间。莫来石的隔热保温层316既可以起到缓冲作用又可以隔绝热量。
高温炉3可重复使用,仅需要通过更换合适的发热体318和高强度炉管317以满足不同的实验要求,具有结构简单且安全系数较高的优点。
力学测试装置4主要功能是提供试样测试所需的力学环境和固定试样。
如图9所示,力学测试装置4置于超重力试验舱中,力学测试装置4包括拉杆41、固线结构42、夹头43、热电偶44、紧缩螺母46和面力加载块47;拉杆41的顶端与吊装密封舱1内的承力架2顶端中央固定相连,拉杆41主要用来承受材料性能测试过程中体积力和面力耦合作用产生的拉应力;拉杆41底端经夹头43和试样6上端相连,用来固定试样6,试样6为待测试材料力学性能的样品;试样6下端设有外螺纹,试样6下端的外螺纹旋入到面积加载块47的螺纹孔中并通过紧缩螺母46紧固连接,通过紧缩螺母46连接试样6和面力加载块47,紧缩螺母46用来连接试样6和面力加载块47;面积加载块47具体为带有可调节自身重量的块结构,面积加载块47是在超重力环境下通过自身重量产生的离心力给试样6施加面力,通过不同重量的面积加载块47结合离心机不同转速的离心力对试样6施加不同面力;面力加载块47下端面放置在缓冲装置上,缓冲装置置于超重力试验舱的底部,具体实施的缓冲装置采用缓冲块,缓冲装置防止力学性能测试过程中试样6断裂对试样舱产生破坏;三根热电偶44的探测端焊接在试样6的不同位置处,用来测试试样6的实验温度,应变片安装在焊接在试样6上,热电偶44和应变片用来测试实验温度和应变,三根热电偶44和应变片的输出端由导线引出连接到外部的信号采集器,拉杆41中部安装有多个固线结构42,导线经固线结构42引出并固定位置;拉杆41的下部和试样6置于高温炉3的高强度炉管317内,面积加载块47穿过高温炉3的高强度炉管317伸入到缓冲装置5的上支撑体中。
如图10所示,固线结构42包括第一固定环43-1、第二固定环43-2、固定瓷座43-3和瓷座保护件43-4;第一固定环43-1和第二固定环43-2均具有半圆缺口,第一固定环43-1和第二固定环43-2半圆缺口之间对接形成套装在拉杆41外的圆形口,拉杆41为圆柱杆;瓷座保护件43-4通过两侧的螺栓固定于第二固定环43-2侧面,瓷座保护件43-4和第二固定环43-2之间夹装有固定瓷座43-3,螺栓也穿过固定瓷座43-3,固定瓷座43-3上开设有用于热电偶44和应变片的输出导线贯穿的孔。
固线结构42用来固定热电偶和应变片的延长导线,防止他们在力学测试过程中断裂。
夹头43上端面和下端面设有螺纹孔,拉杆41底端的外螺纹旋入连接到的夹头43上端面的螺纹孔中,试样6上端也有外螺纹,试样6上端的外螺纹旋入连接到的夹头43上端面的螺纹孔中,从而使得拉杆41底端经夹头43和试样6上端相连。夹头43用来固定试样6,主要用来承受材料性能测试过程中体积力和面力耦合作用产生的拉应力。
拉杆41顶端设有外凸缘,外凸缘上开设有用于连接材料力学性能试验舱承力装置的固定螺孔,螺栓穿过固定螺孔将拉杆41顶端固定于材料力学性能试验舱的承力装置。
具体实施中,缓冲装置5采用申请日为2019.4.10,申请号为2019102853393、发明名称为《一种超重力环境下捕获高温飞断样品的缓冲装置》的中国专利中发明内容处的技术方案。缓冲装置5置于高温炉3的炉体承载体319内部或者代替炉体承载体319,上支撑体3端口朝上/朝向力学测试装置4,用以对从力学测试装置4断裂而下来的试样进行承接,放置试样对吊装密封舱1底部造成损坏。
具体实施的试样常见的可以为标准的持久、拉伸、蠕变和疲劳试样。
本发明装置使用和运行过程:
以蠕变试样作为实验对象,实验场景为例进行说明。
实验前,根据实验温度、体积力和面力确定高温炉3的加热温度、离心主机转速和面力加载块47的质量。下面详细说明该发明的使用和运行过程:
第一步:根据实验条件,确定高温炉3的加热温度、离心主机转速和面力加载块47的质量。
第二步:根据试样6尺寸,确定夹头43和紧锁螺母的尺寸。
第三步:将试样6首先通过夹头43与拉杆41相连,然后通过紧锁螺母与面力加载块47相连。
第四步:在试样6上依次焊接三个应变片,用于测试实验过程中试样6的应变;焊接一个热电偶,用于测控高温炉3的温度。
第五步:将力学测试装置4通过螺母安装在承力架2上。
第七步:将吊装密封舱1通过舱体吊耳11-3与超重力离心机的转臂铰接相联。
第八步:在焊接在试样6上的三个应变片和一个热电偶延长导线沿拉杆41与舱体接口1-1相连,再通过主机轴上的电滑环连接与地面测试系统连接。
第九步:启动真空系统,使吊装密封舱1内的真空度达到10 -2Pa。
第十步:当吊装密封舱1内的真空度达到10 -2Pa后,启动高温炉3的加热。
第十一步:当高温炉3的温度达到实验设定温度后,启动离心主机。
第十二步:当离心主机转速达到实验设定的转速后,就在高温炉3内形成一个体积力-面力-温度耦合作用的力学性能测试环境。
第十三步:实验过程中,温度和应变信号实时传给信号采集器,信号采集器将获得模拟信号转变为数字信号,再通过布线架与信号滑环连接,最后与地面测控中心连接,从而获得实验过程中试样6的应力应变曲线。
本发明装置的力学性能测试工作过程如下:
第一步:用夹头43将试样6连接到拉杆41下端,将热电偶44和应变片焊接在试样6上;
第二步:然后将超重力实验舱置于离心机的吊篮中,在超重力实验舱内放置高温炉,高温炉内腔底部放置缓冲装置5,在高温炉3内腔顶部放置承力架2,在高温炉内腔的承力架和缓冲装置之间放置所述力学测试装置4,安装上需要加热的试样6;
第三步:将焊接在试样6表面测温的热电偶的导线和信号采集器连接,信号采集器将接收温度和应变的模拟信号,并将模拟信号转变为数字信号;
第四步:地面三个强电独立回路分别连接到高温炉3的高强度炉管317的上、中、下加热区,使得高温炉3的高强度炉管317的上、中、下三个加热区分别独立加热,在不同的加热区设置不同的加热温度;
温度控制具体如下:高温炉3的高强度炉管317内安装待力学性能测试的试样,并设置有温度传感器,温度传感器连接信号采集器,信号采集器输出的导线通过布线架与弱信号导电滑环连接,再与地面测控中心连接;高温炉3设置有三路强电独立回路,三路强电独立回路控制加热内部不同高度位置的发热体318进行高温加热,将地面三个强电独立回路通过离心离心机主轴导电滑环接入超重力实验舱的布线架;离心离心机主轴导电滑环和供电柜连接。即通过 布线架,将第一个强电独立回路和高温炉3上加热区连接,将第二个强电独立回路和高温炉中加热区连接,将第三个强电独立回路和高温炉下加热区连接。
具体实施中,将控制高温炉3的三个独立控温温度延长导线接入信号采集器,信号采集器将接受的温度信号,从模拟信号转变为数字信号;数字信号通过布线架与信号滑环连接,再与地面测控中心连接。
高强度炉管317作为炉管,加热利用加热丝产生热量,通过热传导加热高强度炉管317。高强度炉管317所需温度梯度及均温区由加热丝布局实现,在炉膛中形成均匀的温度场,同时承受超重力过程加高强度炉管317所产生的压力以及避免热传导对外围部件的热影响。炉温由固定或焊接在待测是试样上的温度传感器通过控温仪和测控系统控制。
第五步:离心机转轴上安装转速计,将安装在离心机转轴上的转速计信号线与弱信号导离心机主轴导离心机主轴导电滑环连接,利用加热装置上三个热电偶控制高温炉的实时温度和加热速率,利用转速计控制离心机转速,利用以下公式计算施加在试样6上的应力F:
F=m·a=m·R(2πN/60) 2
其中,m为试样6的质量;a为离心加速度,R为试样6到离心机转轴轴线的有效距离;N为离心机的转速。
本发明在试样测试过程中,试样受力状态为:同时受到温度,自重产生的离心应力和面力加载块产生的面力,进而实时绘制获得试样在受力状态下的应力-应变曲线。
本发明能通过热电偶能独立控制高温炉3的三个不同区域的温度,实现均温加热或梯度加热,进而能调节设置温度的分布。
通过力学测试装置4进行测试,具有以下工作方式:
(1)通过焊接在试样工作段的应变片,能实时获得试样在受力状态下的应力-应变曲线,进而能测试获得离心力-高温耦合作用下材料的动态应力-应变曲线,获得材料力学性能结果;
(2)实验过程中离心力可以通过控制转速动态变化,进而能施加在试样上的面力;
(3)通过改变面力加载块重量,改变施加在试样上的面力;
(4)通过热电偶能独立控制加热装置三区不同的温度,实现均温加热或梯度加热,进而能根据需要设置试样6的温度分布。

Claims (9)

  1. 一种超重力环境固定式多场耦合作用下材料性能测试系统,其特征在于:包括吊装密封舱(1)、承力架(2)、高温炉(3)、力学测试装置(4)、缓冲装置(5);吊装密封舱(1)内部固定安装有承力架(2)和高温炉(3),承力架(2)罩在高温炉(3)上,缓冲装置(5)安装于高温炉(3)内的底部,力学测试装置(4)上下两端连接在承力架(2)顶部和高温炉(3)底部内,试样6连接安装在力学测试装置(4)末端;
    所述的高温炉(3)固定于超重力试验舱中,所述的高温炉(3)包括从上到下依次布置连接的上炉体、中炉体、下炉体以及隔热保温层(316)、高强度炉管(317)、发热体(318)和炉体承载体(319);上炉体主要由上隔热盖(31)、上腔体外壳(32)、上腔体中壳(33)、上腔体隔热层(34)、上腔体下固定盖(35)组成,上腔体外壳(32)、上腔体中壳(33)、上腔体隔热层(34)分别从外到内安装形成上炉三层结构,上隔热盖(31)和上腔体下固定盖(35)分别安装于上炉三层结构的上端和下端使得上炉三层结构固定连接,上腔体外壳(32)和上腔体中壳(33)之间以及上腔体中壳(33)和上腔体隔热层(34)之间均有间隙作为空气隔热层;中炉体主要由中隔热盖(36)、中腔体外壳(37)、中腔体中壳(38)、中腔体隔热层(39)、中腔体下固定盖(310)组成,中腔体外壳(37)、中腔体中壳(38)、中腔体隔热层(39)分别从外到内安装形成中炉三层结构,中隔热盖(36)和中腔体下固定盖(310)分别安装于中炉三层结构的上端和下端使得中炉三层结构固定连接,中腔体外壳(37)和中腔体中壳(38)之间以及中腔体中壳(38)和中腔体隔热层(39)之间均有间隙作为空气隔热层;上炉体的上腔体下固定盖(35)和中炉体的中隔热盖(36)之间固定连接;下炉体主要由下隔热盖(311)、下腔体外壳(312)、下腔体中壳(313)、下腔体隔热层(314)、下腔体下固定盖(315)组成,下腔体外壳(312)、下腔体中壳(313)、下腔体隔热层(314)分别从外到内安装形成下炉三层结构,下隔热盖(311)和下腔体下固定盖(315)分别安装于下炉三层结构的上端和下端使得下炉三层结构固定连接,下腔体外壳(312)和下腔体中壳(313)之间以及下腔体中壳(313)和下腔体隔热层(314)之间均有间隙作为空气隔热层;中炉体的中腔体下固定盖(310)和下炉体的下隔热盖(311)之间固定连接;炉体承载体(319)置于下炉体的下腔体隔热层(314)底部,高强度炉管(317)置于炉体承载体(319)上,高强度炉管(317)外分别和上炉体的上腔体隔热层(34)、中炉体的中腔体隔热层(39)、下炉体的下腔体 隔热层(314)之间填充有隔热保温层(316);高强度炉管(317)内部加工有螺旋状凹槽(318-1),螺旋状凹槽(318-1)装有螺旋状的发热体(318),螺旋状凹槽(318-1)在朝向高强度炉管(317)内壁的一侧开设有散热通道(318-2),通过散热通道(318-2)将发热体(318)产生的热量均匀辐射到高强度炉管(317)中央;
    所述的力学测试装置(4)置于超重力试验舱中,所述的力学测试装置(4)包括拉杆(41)、固线结构(42)、夹头(43)、热电偶(44)、紧缩螺母(46)和面力加载块(47);拉杆(41)的顶端与吊装密封舱(1)内的承力架(2)顶端中央固定相连,拉杆(41)主要用来承受材料性能测试过程中体积力和面力耦合作用产生的拉应力;拉杆(41)底端经夹头(43)和试样(6)上端相连,试样(6)为待测试材料力学性能的样品;试样(6)下端设有外螺纹,试样(6)下端的外螺纹旋入到面积加载块(47)的螺纹孔中并通过紧缩螺母(46)紧固连接;面积加载块(47)具体为带有可调节自身重量的块结构,通过不同重量的面积加载块(47)结合离心机不同转速的离心力对试样(6)施加不同面力;面力加载块(47)下端面放置在缓冲装置上,缓冲装置置于超重力试验舱的底部;三根热电偶(44)的探测端焊接在试样(6)的不同位置处,应变片安装在焊接在试样(6)上,三根热电偶(44)和应变片的输出端由导线引出连接到外部的信号采集器,拉杆(41)中部安装有多个固线结构(42),导线经固线结构(42)引出并固定位置;拉杆(41)的下部和试样(6)置于高温炉(3)的高强度炉管(317)内,面积加载块(47)穿过高温炉(3)的高强度炉管(317)伸入到缓冲装置(5)中。
  2. 根据权利要求1所述的一种超重力环境固定式多场耦合作用下材料性能测试系统,其特征在于:所述的吊装密封舱(1)包括上密封穹顶(11-2)和吊装密封腔体(11-7),吊装密封腔体(11-7)内部设有腔体,腔体上端开口,吊装密封腔体(11-7)的两侧侧壁向外连接有舱体吊耳(11-3),两侧的舱体吊耳铰接连接到超重力离心机的吊篮转臂上,上密封穹顶(11-2)通过螺栓安装连接到吊装密封腔体(11-7)的腔体开口端面并密封连接;上密封穹顶(11-2)的中央安装有舱体接口件(11-1),舱体接口件(11-1)具体包括上玻璃压装法兰(12-1)、上法兰紧固螺钉(12-2)、石英玻璃(12-3)和真空插座(12-6),石英玻璃(12-3)被上玻璃压装法兰(12-1)固定安装在通讯上密封舱盖(12-4)顶部中心的开口处,上玻璃压装法兰(12-1)通过上法兰紧固螺钉(12-2)固定于上密封舱盖(12-4)顶部,通讯上密封舱盖(12-4),通讯舱体(12-5)底部开孔,开孔处安装真空插座(12-6)。
  3. 根据权利要求2所述的一种超重力环境固定式多场耦合作用下材料性能测试系统,其特征在于:所述的上密封穹顶(11-2)外边缘开设第二螺孔,螺栓穿过第二螺孔连接到吊装密封腔体(11-7),从而使得上密封穹顶(11-2)与吊装密封腔体(11-7)连接。
  4. 根据权利要求2所述的一种超重力环境固定式多场耦合作用下材料性能测试系统,其特征在于:所述的舱体吊耳(11-3)径向伸出的凸耳部分的面开设多个间隔的固定孔(14-1),螺栓穿过固定孔(14-1)连接到超重力离心机的转臂,使得舱体吊耳(11-3)通过固定孔(14-1)及螺栓与超重力离心机的转臂相连。
  5. 根据权利要求2所述的一种超重力环境固定式多场耦合作用下材料性能测试系统,其特征在于:所述的吊装密封腔体(11-7)外侧壁上开设有真空接口(11-4),真空接口(11-4)直接和吊装密封舱(1)外部的真空管道连接;吊装密封腔体(11-7)的腔体内底面固定安装有布线支架(16),所吊装密封腔体(11-7)外侧壁上开设有真空接口(11-4)、接线孔(17-1)和安装孔(17-2),接线孔(17-1)处安装接线电级(15),接线电级(15)经过接线孔(17-1)与吊装密封腔体(11-7)内部的布线支架(16)相连;弱信号控制电线经过安装孔(17-2)与布线支架(16)相连。
  6. 根据权利要求1所述的一种超重力环境固定式多场耦合作用下材料性能测试系统,其特征在于:所述的承力架(2)为圆弧凸台结构,安装在吊装密封舱(1)的内部,吊装密封舱(1)的内壁加工出台阶面,承力架(2)外边缘通过螺栓固定在台阶面上,罩在高温炉(3)的上方。
  7. 根据权利要求1所述的一种超重力环境固定式多场耦合作用下材料性能测试系统,其特征在于:所述的固线结构(42)包括第一固定环(43-1)、第二固定环(43-2)、固定瓷座(43-3)和瓷座保护件(43-4);第一固定环(43-1)和第二固定环(43-2)均具有半圆缺口,第一固定环(43-1)和第二固定环(43-2)半圆缺口之间对接形成套装在拉杆(41)外的圆形口;瓷座保护件(43-4)通过螺栓固定于第二固定环(43-2)侧面,瓷座保护件(43-4)和第二固定环(43-2)之间夹装有固定瓷座(43-3),固定瓷座(43-3)上开设有用于热电偶(44)和应变片的输出导线贯穿的孔。
  8. 根据权利要求7所述的一种超重力环境固定式多场耦合作用下材料性能测试系统,其特征在于:所述的夹头(43)上端面和下端面设有螺纹孔,拉杆(41)底端的外螺纹旋入连接到的夹头(43)上端面的螺纹孔中,试样(6)上端也有外螺纹,试样(6)上端的外螺纹旋入连接到的夹头(43)上端面的螺纹 孔中。
  9. 根据权利要求7所述的一种超重力环境固定式多场耦合作用下材料性能测试系统,其特征在于:所述的拉杆(41)顶端设有外凸缘,外凸缘上开设有用于连接材料力学性能试验舱承力装置的固定螺孔,螺栓穿过固定螺孔将拉杆(41)顶端固定于材料力学性能试验舱的承力装置。
PCT/CN2019/110030 2019-06-20 2019-10-09 超重力环境固定式多场耦合作用下材料性能测试系统 WO2020252983A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/040,997 US11609165B2 (en) 2019-06-20 2019-10-09 Material performance testing system under fixed multi-field coupling effect in hypergravity environment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910538193.9 2019-06-20
CN201910538193.9A CN110261238B (zh) 2019-06-20 2019-06-20 超重力环境固定式多场耦合作用下材料性能测试系统

Publications (1)

Publication Number Publication Date
WO2020252983A1 true WO2020252983A1 (zh) 2020-12-24

Family

ID=67920010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/110030 WO2020252983A1 (zh) 2019-06-20 2019-10-09 超重力环境固定式多场耦合作用下材料性能测试系统

Country Status (3)

Country Link
US (1) US11609165B2 (zh)
CN (1) CN110261238B (zh)
WO (1) WO2020252983A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110261238B (zh) * 2019-06-20 2024-04-05 浙江大学 超重力环境固定式多场耦合作用下材料性能测试系统
CN110793866B (zh) * 2019-11-30 2024-06-18 天津大学 一种用于力学试验的易燃气体密封环境的高温加热装置
CN111650054A (zh) * 2020-04-03 2020-09-11 浙江大学 离心力-高温耦合环境下材料性能测试试验机系统
CN111487139A (zh) * 2020-04-03 2020-08-04 浙江大学 离心力-高温耦合环境下的材料性能测试系统
CN111504798A (zh) * 2020-04-03 2020-08-07 浙江大学 用于材料制备与性能测试的离心超重力实验装置
CN111929156B (zh) * 2020-07-15 2022-05-20 中国核动力研究设计院 一种核能设备安全性能的测试方法及系统
CN116858750B (zh) * 2023-09-05 2024-01-23 无锡双龙艺术装潢有限公司 一种用于室内装潢材料的抗水性能检测装置
CN117168704B (zh) * 2023-11-02 2024-01-12 固仕(辽阳)材料科技有限公司 一种用于盾构机的密封油脂抗水压密封性测试装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060120431A1 (en) * 2003-01-23 2006-06-08 Daniel Monceau Device and method for thermogravimetrically testing the behavior of a solid material
CN101571476A (zh) * 2009-06-09 2009-11-04 西北工业大学 一种用于测试高温材料阻尼性能的测试系统
CN104897476A (zh) * 2015-06-10 2015-09-09 合肥通用机械研究院 一种高温氢气环境材料性能试验装置
CN206095591U (zh) * 2016-07-21 2017-04-12 浙江大学 一种基于接触式加热方法的机匣高温包容试验装置
CN207423697U (zh) * 2017-11-10 2018-05-29 吉林大学 超高温原位双轴拉伸压缩疲劳测试平台
CN109798771A (zh) * 2019-01-31 2019-05-24 中国航发动力股份有限公司 一种用于航空发动机涡轮盘低循环疲劳寿命试验加热装置
CN110243181A (zh) * 2019-06-20 2019-09-17 浙江大学 超重力环境下材料力学性能测试的高温加热装置
CN110261238A (zh) * 2019-06-20 2019-09-20 浙江大学 超重力环境固定式多场耦合作用下材料性能测试系统
CN110261216A (zh) * 2019-06-20 2019-09-20 浙江大学 超重力环境悬挂式多场耦合作用下材料性能测试系统
CN110252431A (zh) * 2019-06-20 2019-09-20 浙江大学 超重力环境下使用的固定式实验舱

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101672749B (zh) * 2009-09-28 2011-02-02 北京航空航天大学 材料表面变形测试装置及测试方法
CN101788425A (zh) * 2010-02-09 2010-07-28 浙江工业大学 一种结构件复合型裂纹前缘应力强度因子分离和分布的确定方法
CN105259038B (zh) * 2015-11-10 2018-02-06 浙江大学 超重力条件下管道抗隆起性能测试装置
CN106525564A (zh) * 2016-11-03 2017-03-22 兰州大学 热冲击‑力耦合加载与测试系统
CN106525632A (zh) * 2016-11-03 2017-03-22 兰州大学 热冲击‑力‑电耦合加载与测试系统
CN107727487A (zh) * 2017-11-20 2018-02-23 北京科技大学 一种气动热‑力耦合环境下材料高温力学性能测试设备
CN109696362B (zh) * 2018-12-20 2020-12-29 航天特种材料及工艺技术研究所 一种用于高温环境下的力学拉伸性能测试装置及测试方法
CN109632509B (zh) * 2019-01-14 2019-10-22 浙江大学 超重力真三轴岩石加载实验装置及方法
CN109682688B (zh) * 2019-01-14 2019-10-22 浙江大学 超重力二维岩体模型实验装置及方法
CN110006741B (zh) 2019-04-10 2020-07-03 浙江大学 一种超重力环境下捕获高温飞断样品的缓冲装置
CN210923332U (zh) * 2019-06-20 2020-07-03 浙江大学 一种超重力环境固定式多场耦合作用下材料性能测试系统
CN111487139A (zh) * 2020-04-03 2020-08-04 浙江大学 离心力-高温耦合环境下的材料性能测试系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060120431A1 (en) * 2003-01-23 2006-06-08 Daniel Monceau Device and method for thermogravimetrically testing the behavior of a solid material
CN101571476A (zh) * 2009-06-09 2009-11-04 西北工业大学 一种用于测试高温材料阻尼性能的测试系统
CN104897476A (zh) * 2015-06-10 2015-09-09 合肥通用机械研究院 一种高温氢气环境材料性能试验装置
CN206095591U (zh) * 2016-07-21 2017-04-12 浙江大学 一种基于接触式加热方法的机匣高温包容试验装置
CN207423697U (zh) * 2017-11-10 2018-05-29 吉林大学 超高温原位双轴拉伸压缩疲劳测试平台
CN109798771A (zh) * 2019-01-31 2019-05-24 中国航发动力股份有限公司 一种用于航空发动机涡轮盘低循环疲劳寿命试验加热装置
CN110243181A (zh) * 2019-06-20 2019-09-17 浙江大学 超重力环境下材料力学性能测试的高温加热装置
CN110261238A (zh) * 2019-06-20 2019-09-20 浙江大学 超重力环境固定式多场耦合作用下材料性能测试系统
CN110261216A (zh) * 2019-06-20 2019-09-20 浙江大学 超重力环境悬挂式多场耦合作用下材料性能测试系统
CN110252431A (zh) * 2019-06-20 2019-09-20 浙江大学 超重力环境下使用的固定式实验舱

Also Published As

Publication number Publication date
US20220268676A1 (en) 2022-08-25
CN110261238B (zh) 2024-04-05
CN110261238A (zh) 2019-09-20
US11609165B2 (en) 2023-03-21

Similar Documents

Publication Publication Date Title
WO2020252983A1 (zh) 超重力环境固定式多场耦合作用下材料性能测试系统
WO2020252984A1 (zh) 超重力环境悬挂式多场耦合作用下材料性能测试系统
WO2020252985A1 (zh) 超重力环境下材料力学性能测试的高温加热装置
CN110614355B (zh) 超重力环境下材料定向凝固熔铸的高温加热系统
WO2014107827A1 (zh) 一种模拟热障涂层服役环境并实时检测其失效的试验装置
CN110842168B (zh) 搭载于超重力离心机的定向凝固熔铸系统
RU110483U1 (ru) Устройство для исследования демпфирующей способности турбинных лопаток с фрикционными демпферами
CN115165337B (zh) 一种涡轮叶片旋转热-机械疲劳试验装置及方法
CN210923332U (zh) 一种超重力环境固定式多场耦合作用下材料性能测试系统
Landry et al. Development of an inside-out ceramic turbine
CN210427195U (zh) 一种超重力环境悬挂式多场耦合作用下材料性能测试系统
CN107702854B (zh) 一种满足火箭发动机涡轮泵装配及使用的高速动平衡方法
Yan et al. Real-time detection of damage evolution and failure of EB-PVD thermal barrier coatings using an environmental simulator with high-temperature and high-speed rotation
CN211291960U (zh) 一种实现涡轮叶片梯度温度场的旋转疲劳试验装置
Nozhnitsky The problem of ensuring reliability of gas turbine engines
CN206161298U (zh) 一种用于悬臂涡轮盘的高温超速试验转接装置
CN111504798A (zh) 用于材料制备与性能测试的离心超重力实验装置
CN111650054A (zh) 离心力-高温耦合环境下材料性能测试试验机系统
CN210908060U (zh) 一种超重力环境下材料定向凝固熔铸的高温加热系统
CN110261239B (zh) 体积力-面力-温度耦合下材料力学性能测试的施力装置
CN213337142U (zh) 一种离心力-高温耦合环境下的材料性能测试系统
CN115372013B (zh) 一种发动机及引气系统的综合试验平台及测试方法
CN111551445A (zh) 悬臂式离心超重力环境下的材料性能测试试验机系统
CN210908022U (zh) 一种搭载于超重力离心机的定向凝固熔铸系统
CN213856978U (zh) 一种悬臂式离心超重力熔铸装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19933532

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19933532

Country of ref document: EP

Kind code of ref document: A1