WO2020252738A1 - 一种裸眼3d显示屏3d参数手动校准方法及电子设备 - Google Patents

一种裸眼3d显示屏3d参数手动校准方法及电子设备 Download PDF

Info

Publication number
WO2020252738A1
WO2020252738A1 PCT/CN2019/092049 CN2019092049W WO2020252738A1 WO 2020252738 A1 WO2020252738 A1 WO 2020252738A1 CN 2019092049 W CN2019092049 W CN 2019092049W WO 2020252738 A1 WO2020252738 A1 WO 2020252738A1
Authority
WO
WIPO (PCT)
Prior art keywords
screen
distance
display screen
eye
test image
Prior art date
Application number
PCT/CN2019/092049
Other languages
English (en)
French (fr)
Inventor
杨亚军
Original Assignee
深圳市立体通科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市立体通科技有限公司 filed Critical 深圳市立体通科技有限公司
Priority to PCT/CN2019/092049 priority Critical patent/WO2020252738A1/zh
Publication of WO2020252738A1 publication Critical patent/WO2020252738A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays

Definitions

  • the present invention relates to the field of naked-eye 3D, and more specifically, to a manual calibration method and electronic equipment for 3D parameters of a naked-eye 3D display screen.
  • the naked-eye 3D display technology has changed from the previous all-in-one machine to the current 3D film.
  • the 3D parameters (rotation angle and left-right translation ratio) of the previous naked-eye 3D all-in-one machine only need to be calibrated at the factory. calibration.
  • the newly purchased 3D film has professional automatic calibration tools, the calibration effect is not the best for everyone, and the current 3D manual calibration method requires more than 2 steps.
  • the user has to adjust the rotation angle and then the translation, and it will take a while to close
  • the upper left eye will close the right eye for a while (many people will not close the left or right eye alone).
  • the parameters called are not optimal, which affects the user experience.
  • the technical problem to be solved by the present invention is to provide a manual calibration method and electronic device for 3D parameters of a naked-eye 3D display screen in view of the above-mentioned defects in the prior art.
  • the technical solution adopted by the present invention to solve its technical problem is to construct a manual calibration method for 3D parameters of a naked-eye 3D display screen, the display screen is covered with a 3D film, and the method includes:
  • Adjust the display rotation angle of the 3D test image according to the received image rotation instruction continue to adjust until the 3D test image is displayed without diagonal stripes, and save the current display rotation angle;
  • the continuous adjustment until the 3D test image is displayed without oblique stripes includes:
  • the 3D test image is a striped image with black and white intervals, wherein the black and white stripes are parallel to the edge of the 3D test image; the continuous adjustment Until the 3D test image is displayed without diagonal stripes, it includes:
  • the manual calibration method for 3D parameters of the naked-eye 3D display screen of the present invention when the human eye observes that the 3D test image has a screen-out effect, includes:
  • the adjusting the relative position of the human eye and the display screen includes:
  • the distance from the screen is continuously acquired, and when the distance from the screen exceeds a preset value, the pixel intercept of the 3D test image is adjusted to make the 3D test image occupy Full the entire display.
  • the obtaining the distance between the human eye and the 3D film from the screen includes:
  • the distance from the screen is obtained from the interpupillary distance and the ratio of the read distance from the screen, where the ratio of the distance from the screen is the ratio of the preset distance from the screen to the standard distance from the screen.
  • the process of obtaining the distance ratio from the screen is:
  • the ratio of the preset distance from the screen to the standard distance from the screen is calculated to obtain the ratio of the distance from the screen, and the ratio of the distance from the screen is saved.
  • the distance ratio from the screen is:
  • Q 0 is the preset standard interpupillary distance
  • W is the width of the camera picture
  • q 0 is the interpupillary distance of the user's pupil in the eye image
  • L 0 is the preset standard distance from the screen.
  • the calculation formula of the preset standard distance L 0 from the screen is:
  • d is the distance from the 3D film to the display screen
  • Q 0 is the preset standard interpupillary distance
  • W p0 is the preset standard pixel intercept.
  • the present invention also provides an electronic device that includes a display screen, and the display screen is covered with a 3D film;
  • the electronic device further includes a processor configured to implement the above-mentioned manual calibration method for 3D parameters of the naked-eye 3D display screen when executing the computer program stored in the memory.
  • a method and electronic device for manually calibrating 3D parameters of a naked-eye 3D display screen have the following beneficial effects: the method includes: obtaining the distance between the human eye and the 3D film from the screen, and displaying the 3D test image according to the distance from the screen; Adjust the display rotation angle of the 3D test image according to the received image rotation instruction, and continue to adjust until the 3D test image is displayed without oblique stripes, save the current display rotation angle; when the human eye observes that the 3D test image has a screen effect, obtain it through the camera
  • the relative position information of the human eye and the display screen is used to calculate the left and right offset of the 3D test image according to the relative position information, and save the left and right offset.
  • FIG. 1 is a flowchart of a manual calibration method for 3D parameters of a naked-eye 3D display screen provided by an embodiment
  • Fig. 2a is a schematic diagram of observing oblique stripes provided by an embodiment
  • Figure 2b is a schematic view of an observation without oblique stripes after adjustment provided by an embodiment
  • Fig. 3 is a light path diagram of a display screen covered with a 3D film provided by an embodiment
  • FIG. 4 is a flowchart of the process of obtaining the distance ratio from the screen provided by an embodiment
  • FIG. 5 is a schematic structural diagram of an electronic device provided by an embodiment.
  • the manual calibration method for 3D parameters of the naked-eye 3D display screen of this embodiment is used for electronic devices with a display screen, and the display screen is covered with a 3D film; alternatively, the 3D film is a lenticular 3D film or the 3D film is a visually impaired 3D film. Because the user sticks the film manually without professional tools, it is difficult to meet the fitting requirements, so it is necessary to adjust the display layout after sticking.
  • a preset 3D test image is used for test calibration, calibration parameters are obtained and the calibration parameters are stored.
  • the manual calibration method includes:
  • the user starts the calibration program on the electronic device after pasting the 3D film
  • the calibration program starts the front camera of the electronic device to obtain the user's eye image, and processes the eye image to obtain the distance between the human eye and the 3D film.
  • the shape of the 3D test image is consistent with the shape of the display screen.
  • a rectangular display screen is selected for the display screen; and the 3D test image is a striped image with black and white intervals, in which the black and white stripes are parallel to the edges of the 3D test image.
  • the user inputs an image rotation instruction to adjust the display parameters.
  • the user can input an image rotation instruction through physical keys, or input an image rotation instruction through a microphone, or input an image rotation instruction through a touch screen. That is, the electronic device can receive image rotation instructions through physical buttons, microphones, touch screens, etc.
  • the electronic device adjusts the display rotation angle of the 3D test image according to the received image rotation instruction.
  • the adjustment process is as follows:
  • the 3D test image is a striped image with black and white intervals, where the black and white stripes are parallel to the edges of the 3D test image, continue to adjust until the 3D test image shows no diagonal stripes, including: continue to adjust until the 3D test image shows no diagonal stripes , And the black stripes and white stripes are parallel to the edge of the display, and the edge of the display can be any side of the display.
  • the 3D test image is displayed without oblique stripes and the black and white stripes are parallel to the edge of the display, it means that the rotation angle at this time has reached the optimum. Save the current display rotation angle as a calibration parameter.
  • the relative position of the human eye and the display screen after adjusting and saving the display rotation angle, adjust the relative position of the human eye and the display screen until the human eye observes that the 3D test image has a screen effect, that is, the user can adjust the viewing position by moving the head or moving the electronic device.
  • the screen output effect here means that the human eye observes a 3D image, that is, the user sees a 3D stereo image, and the image has the feeling of floating out of the display screen.
  • adjusting the relative position of the human eye and the display screen includes: in the process of adjusting the relative position of the human eye and the display screen, continuously obtaining the distance from the screen, and adjusting the pixel intercept of the 3D test image when the distance from the screen exceeds a preset value, Make the 3D test image occupy the entire display screen.
  • the manual calibration method for 3D parameters of the naked-eye 3D display screen of this embodiment to obtain the distance between the human eye and the 3D film includes:
  • L represents the distance between the human eye and the 3D film (distance from the screen)
  • d represents the distance between the 3D film and the display screen (overhead height)
  • P represents the 3D film row span value (physical intercept)
  • Wp represents the single-eye image display width (pixel intercept)
  • Q represents the distance between human pupils. Adjusting the pixel intercept in the display according to the distance from the screen includes:
  • L is the distance from the screen
  • d is the distance from the 3D film to the display screen
  • Q is the interpupillary distance
  • the distance ratio from the screen is:
  • Q 0 is the preset standard interpupillary distance
  • W is the width of the camera screen
  • q 0 is the interpupillary distance of the user's pupil in the eye image
  • L 0 is the preset standard distance from the screen.
  • d is the distance from the 3D film to the display screen
  • Q 0 is the preset standard interpupillary distance
  • W p0 is the preset standard pixel intercept.
  • a camera is used to obtain the distance between the human eye and the 3D film from the screen, and the pixel intercept is adjusted according to the distance from the screen to ensure that the 3D test image occupies the entire display screen.
  • the electronic device includes a display screen, and the display screen is covered with a 3D film; the electronic device further includes a processor, and the processor is configured to execute the computer program stored in the memory to realize the naked eye 3D display 3D as described above. Manual parameter calibration method.
  • FIG. 5 shows a schematic structural diagram of an electronic device 400 suitable for implementing embodiments of the present invention.
  • the electronic devices in the embodiments of the present invention may include, but are not limited to, mobile phones, notebook computers, digital broadcast receivers, PDAs (personal digital assistants), PADs (tablet computers), PMPs (portable multimedia players), in-vehicle electronic devices ( For example, mobile electronic equipment such as car navigation electronic equipment) and fixed electronic equipment such as digital TV, desktop computer, etc.
  • PDAs personal digital assistants
  • PADs tablet computers
  • PMPs portable multimedia players
  • in-vehicle electronic devices For example, mobile electronic equipment such as car navigation electronic equipment
  • fixed electronic equipment such as digital TV, desktop computer, etc.
  • the electronic device shown in FIG. 5 is only an example, and should not bring any limitation to the function and scope of use of the embodiment of the present invention.
  • the electronic device 400 may include a processing device (such as a central processing unit, a graphics processor, etc.) 401, which may be loaded into a random access device according to a program stored in a read-only memory (ROM) 402 or from a storage device 408.
  • the programs in the memory (RAM) 403 execute various appropriate actions and processes.
  • the RAM 403 also stores various programs and data required for the operation of the electronic device 400.
  • the processing device 401, ROM 402, and RAM 403 are connected to each other through a bus 404.
  • An input/output (I/O) interface 405 is also connected to the bus 404.
  • the following devices can be connected to the I/O interface 405: including input devices 406 such as touch screens, touch pads, keyboards, mice, cameras, microphones, accelerometers, gyroscopes, etc.; including, for example, liquid crystal displays (LCD), speakers, vibration An output device 407 such as a device; a storage device 408 such as a magnetic tape and a hard disk; and a communication device 409.
  • the communication device 409 may allow the electronic device 400 to perform wireless or wired communication with other devices to exchange data.
  • FIG. 5 shows an electronic device 400 having various devices, it should be understood that it is not required to implement or have all the illustrated devices. It may alternatively be implemented or provided with more or fewer devices.
  • an embodiment of the present invention includes a computer program product, which includes a computer program carried on a computer-readable medium, and the computer program contains program code for executing the method shown in the flowchart.
  • the computer program may be downloaded and installed from the network through the communication device 409, or installed from the storage device 408, or installed from the ROM 402.
  • the processing device 401 When the computer program is executed by the processing device 401, the above-mentioned functions defined in the method of the embodiment of the present invention are executed.
  • the above-mentioned computer-readable medium of the present invention may be a computer-readable signal medium or a computer storage medium, or any combination of the two.
  • the computer storage medium may be, for example, but not limited to, an electric, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any combination of the above. More specific examples of computer storage media may include, but are not limited to: electrical connections with one or more wires, portable computer disks, hard disks, random access memory (RAM), read-only memory (ROM), erasable programmable only Read memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • the computer storage medium may be any tangible medium that contains or stores a program, and the program may be used by or in combination with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a data signal propagated in a baseband or as a part of a carrier wave, and a computer-readable program code is carried therein. This propagated data signal can take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • the computer-readable signal medium may also be any computer-readable medium other than a computer storage medium, and the computer-readable signal medium may send, propagate, or transmit a program for use by or in combination with the instruction execution system, apparatus, or device.
  • the program code contained on the computer-readable medium can be transmitted by any suitable medium, including but not limited to: wire, optical cable, RF (Radio Frequency), etc., or any suitable combination of the above.
  • the above-mentioned computer-readable medium may be included in the above-mentioned electronic device; or it may exist alone without being assembled into the electronic device.
  • the above-mentioned computer-readable medium carries one or more programs.
  • the electronic device obtains at least two Internet protocol addresses; sends to the node evaluation device including at least two Internet protocols; The node evaluation request of the protocol address, wherein the node evaluation device selects an Internet Protocol address from at least two Internet Protocol addresses and returns it; receives the Internet Protocol address returned by the node evaluation device; wherein the obtained Internet Protocol address indicates the content distribution network Edge node in the.
  • the aforementioned computer-readable medium carries one or more programs.
  • the electronic device receives a node evaluation request including at least two Internet Protocol addresses; Among the Internet Protocol addresses, select the Internet Protocol address; return the selected Internet Protocol address; where the received Internet Protocol address indicates the edge node in the content distribution network.
  • the computer program codes used to perform the operations of the present invention can be written in one or more programming languages or a combination thereof.
  • the above-mentioned programming languages include object-oriented programming languages-such as Java, Smalltalk, C++, and also conventional Procedural programming language-such as "C" language or similar programming language.
  • the program code can be executed entirely on the user's computer, partly on the user's computer, executed as an independent software package, partly on the user's computer and partly executed on a remote computer, or entirely executed on the remote computer or server.
  • the remote computer can be connected to the user's computer through any kind of network including a local area network (LAN) or a wide area network (WAN), or it can be connected to an external computer (for example, using an Internet service provider to pass Internet connection).
  • LAN local area network
  • WAN wide area network
  • each block in the flowchart or block diagram can represent a module, program segment, or part of code, and the module, program segment, or part of code contains one or more for realizing the specified logical function Executable instructions.
  • the functions marked in the block may also occur in a different order from the order marked in the drawings. For example, two blocks shown in succession can actually be executed substantially in parallel, or they can sometimes be executed in the reverse order, depending on the functions involved.
  • each block in the block diagram and/or flowchart, and the combination of the blocks in the block diagram and/or flowchart can be implemented by a dedicated hardware-based system that performs the specified functions or operations Or it can be realized by a combination of dedicated hardware and computer instructions.
  • the units involved in the embodiments described in the present invention can be implemented in software or hardware. Wherein, the name of the unit does not constitute a limitation on the unit itself under certain circumstances.
  • the first obtaining unit can also be described as "a unit for obtaining at least two Internet Protocol addresses.”

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

一种裸眼3D显示屏3D参数手动校准方法及电子设备。该方法包括:获取人眼与3D膜之间的离屏距离,根据离屏距离显示3D测试图像(S1);根据接收的图像旋转指令调节3D测试图像的显示旋转角度,持续调节直至3D测试图像无斜条纹显示,保存当前的显示旋转角度(S2);在人眼观测到3D测试图像具有出屏效果时,通过摄像头获取人眼与显示屏的相对位置信息,根据相对位置信息计算3D测试图像的左右偏移量,保存左右偏移量(S3)。用户在粘贴3D膜后,仅需要根据自己的观测图像调节3D测试图像的显示旋转角度即可完成参数校准,操作简单,提高用户体验。

Description

一种裸眼3D显示屏3D参数手动校准方法及电子设备 技术领域
本发明涉及裸眼3D领域,更具体地说,涉及一种裸眼3D显示屏3D参数手动校准方法及电子设备。
背景技术
裸眼3D显示技术从先前的一体机变成现在的3D膜,之前裸眼3D一体机的3D参数(旋转角度和左右平移比例)只需在工厂校准完成,现在是用户自己粘贴,所以需要用户自己进行校准。虽然新买3D膜有专业自动校准工具,但校准的效果不是每个人最佳的,并且现在的3D手动校准方法都需要2步以上,用户得先调旋转角度再调平移,还得一会闭上左眼一会闭上右眼(有很多人都不会单独闭上左眼或右眼),由于用户在不同的距离调整造成调出的参数都不是最佳的,影响用户体验。
发明概述
技术问题
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种裸眼3D显示屏3D参数手动校准方法及电子设备。
问题的解决方案
技术解决方案
本发明解决其技术问题所采用的技术方案是:构造一种裸眼3D显示屏3D参数手动校准方法,所述显示屏上覆盖有3D膜,所述方法包括:
获取人眼与所述3D膜之间的离屏距离,根据所述离屏距离显示3D测试图像;
根据接收的图像旋转指令调节所述3D测试图像的显示旋转角度,持续调节直至所述3D测试图像无斜条纹显示,保存当前的显示旋转角度;
在人眼观测到所述3D测试图像具有出屏效果时,通过摄像头获取人眼与显示屏的相对位置信息,根据所述相对位置信息计算所述3D测试图像的左右偏移量,保存所述左右偏移量。
进一步,本发明所述的裸眼3D显示屏3D参数手动校准方法,所述持续调节直至所述3D测试图像无斜条纹显示包括:
判断调节后斜条纹是否变大;
若是,则继续接收与当前图像旋转指令调节方向一致的图像旋转指令,直至所述3D测试图像无斜条纹显示;
若否,则接收与当前图像旋转指令调节方向相反的图像旋转指令,直至所述3D测试图像无斜条纹显示。
进一步,本发明所述的裸眼3D显示屏3D参数手动校准方法,所述3D测试图像为黑白间隔的条文图像,其中所述黑条纹和白条纹平行于所述3D测试图像边缘;所述持续调节直至所述3D测试图像无斜条纹显示包括:
持续调节直至所述3D测试图像无斜条纹显示,且所述黑条纹和白条纹平行于所述显示屏的边缘。
进一步,本发明所述的裸眼3D显示屏3D参数手动校准方法,所述在人眼观测到所述3D测试图像具有出屏效果时包括:
调整人眼与显示屏的相对位置,直至人眼观测到所述3D测试图像具有出屏效果,所述出屏效果指人眼观测到3D图像。
进一步,本发明所述的裸眼3D显示屏3D参数手动校准方法,所述调整人眼与显示屏的相对位置包括:
调整人眼与显示屏的相对位置的过程中,持续获取所述离屏距离,在所述离屏距离超出预设值时调节所述3D测试图像的像素截距,使所述3D测试图像占满整个显示屏。
进一步,本发明所述的裸眼3D显示屏3D参数手动校准方法,所述获取人眼与所述3D膜之间的离屏距离包括:
通过摄像头获取用户的眼部图像;
获取用户瞳孔在所述眼部图像中的瞳孔间距;
由所述瞳孔间距和读取的离屏距离比得到所述离屏距离,其中所述离屏距离比为预设离屏距离和标准离屏距离的比值。
进一步,本发明所述的裸眼3D显示屏3D参数手动校准方法,所述离屏距离比 的获取过程为:
设置所述显示屏的像素截距为预设标准像素截距;
待用户处于最佳观看距离时通过摄像头获取用户的眼部图像,并获取用户瞳孔在所述眼部图像中的瞳孔间距;
根据所述瞳孔间距计算人眼与所述3D膜之间的标准离屏距离;
计算预设离屏距离和所述标准离屏距离的比值得到所述离屏距离比,并保存所述离屏距离比。
进一步,本发明所述的裸眼3D显示屏3D参数手动校准方法,所述离屏距离比为:
Q 0*(W/q 0)/L 0
其中Q 0为预设标准瞳孔间距,W为摄像头画面宽度,q 0为用户瞳孔在所述眼部图像中的瞳孔间距,L 0为预设标准离屏距离。
进一步,本发明所述的裸眼3D显示屏3D参数手动校准方法,所述预设标准离屏距离L 0的计算公式为:
L 0=d*(Q 0+W p0)/W p0
其中d为所述3D膜到所述显示屏的距离,Q 0为预设标准瞳孔间距,W p0为预设标准像素截距。
另,本发明还提供一种电子设备,所述电子设备包括显示屏,所述显示屏上覆盖有3D膜;
所述电子设备还包括处理器,所述处理器用于执行存储器中存储的计算机程序时实现如上述的裸眼3D显示屏3D参数手动校准方法。
发明的有益效果
有益效果
实施本发明的一种裸眼3D显示屏3D参数手动校准方法及电子设备,具有以下有益效果:该方法包括:获取人眼与3D膜之间的离屏距离,根据离屏距离显示3D测试图像;根据接收的图像旋转指令调节3D测试图像的显示旋转角度,持续调节直至3D测试图像无斜条纹显示,保存当前的显示旋转角度;在人眼观测到3D测试图像具有出屏效果时,通过摄像头获取人眼与显示屏的相对位置信息,根 据相对位置信息计算3D测试图像的左右偏移量,保存左右偏移量。通过实施本发明,用户在粘贴3D膜后,仅需要根据自己的观测图像调节3D测试图像的显示旋转角度即可完成参数校准,操作简单,提高用户体验。
对附图的简要说明
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是一实施例提供的裸眼3D显示屏3D参数手动校准方法流程图;
图2a是一实施例提供的出现斜条纹的观测示意图;
图2b是一实施例提供的调整后无斜条纹的观测示意图;
图3是一实施例提供的覆盖3D膜的显示屏光路图;
图4是一实施例提供的离屏距离比获取过程流程图;
图5是一实施例提供的电子设备的结构示意图。
实施该发明的最佳实施例
本发明的最佳实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
发明实施例
实施例
本实施例的裸眼3D显示屏3D参数手动校准方法用于带有显示屏的电子设备,显示屏上覆盖有3D膜;作为选择,3D膜为柱状透镜式3D膜,或3D膜为视障式3D膜。因用户是手工贴膜且无专业工具配合,很难达到贴合要求,所以需要在贴后对显示屏排图的进行调整。本实施例使用预设的3D测试图像进行测试校准,获得校准参数并将校准参数进行存储。参考图1,该手动校准方法包括:
S1、获取人眼与3D膜之间的离屏距离,根据离屏距离显示3D测试图像。
具体的,用户在粘贴3D膜后启动电子设备上的校准程序,校准程序启动电子设备的前置摄像头获取用户的眼部图像,处理眼部图像得到人眼与3D膜之间的离屏距离。将该离屏距离作为渲染参数渲染3D测试图像,渲染后在显示屏上进行 显示,用户可观察到3D测试图像。作为选择,3D测试图像与显示屏的形状一致,本实施例中显示屏选用矩形显示屏;并且3D测试图像为黑白间隔的条文图像,其中黑条纹和白条纹平行于3D测试图像边缘。
S2、根据接收的图像旋转指令调节3D测试图像的显示旋转角度,持续调节直至3D测试图像无斜条纹显示,保存当前的显示旋转角度。
具体的,因用户手工粘贴的3D膜和显示屏有一定的不匹配,会导致显示屏上3D测试图像出现条纹状的显示区域,且该条纹为斜条纹,称之为斜条纹。参考图2a,图中3D膜和显示屏不匹配,导致3D图像的左眼图像和右眼图像出现斜条纹。用户在看到斜条纹后,输入图像旋转指令对显示参数进行调节。作为选择,用户可通过实体按键输入图像旋转指令,或通过麦克风输入图像旋转指令,或通过触摸屏输入图像旋转指令。即电子设备可通过实体按键、麦克风、触摸屏等方式接收图像旋转指令。电子设备根据接收的图像旋转指令调节3D测试图像的显示旋转角度,调节过程如下:
S21、用户观看调节后显示屏上的3D测试图像,注意观测斜条纹的变化趋势,判断调节后斜条纹是否变大;
S22、若调节后斜条纹变大,说明调节方向是正确的,则继续接收与当前图像旋转指令调节方向一致的图像旋转指令,直至3D测试图像无斜条纹显示,在无斜条纹显示时停止调节。
S23、若调节后斜条纹未变大或者缩小,说明调节方向是错误的,则接收与当前图像旋转指令调节方向相反的图像旋转指令,直至3D测试图像无斜条纹显示,在无斜条纹显示时停止调节。当3D测试图像无斜条纹显示时,说明此时的旋转角度已达到最优,保存当前的显示旋转角度,作为校准参数。
作为选择,若3D测试图像为黑白间隔的条文图像,其中黑条纹和白条纹平行于3D测试图像边缘,则持续调节直至3D测试图像无斜条纹显示包括:持续调节直至3D测试图像无斜条纹显示,且黑条纹和白条纹平行于显示屏的边缘,显示屏的边缘可以是显示屏任意一条边。当3D测试图像无斜条纹显示时且黑条纹和白条纹平行于显示屏的边缘,说明此时的旋转角度已达到最优,保存当前的显示旋转角度,作为校准参数。
S3、在人眼观测到3D测试图像具有出屏效果时,通过摄像头获取人眼与显示屏的相对位置信息,根据相对位置信息计算3D测试图像的左右偏移量,保存左右偏移量。参考图2b,经过调整,在人眼观测到3D测试图像具有出屏效果(图中未示出,用户可通过眼睛看到)时,显示屏不再出现斜条纹,出现均匀分布的黑条纹和白条纹,黑条纹和白条纹的间隔分布,且宽度相等。作为选择,黑条纹和白条纹平行于显示屏的边缘,显示屏的边缘可以是显示屏任意一条边。
具体的,在调整并保存显示旋转角度后,调整人眼与显示屏的相对位置,直至人眼观测到3D测试图像具有出屏效果,即用户可通过移动头部或者移动电子设备调整观看位置,在看到3D测试图像没有重影且具有出屏效果时,停止移动。作为选择,当用户看到显示屏的中部的3D测试图像没有重影且具有出屏效果时,停止移动。此处的出屏效果指人眼观测到3D图像,即用户看到3D立体图像,图像有浮出显示屏的感觉。通过摄像头获取人眼与显示屏的相对位置信息,根据相对位置信息计算3D测试图像的左右偏移量,保存左右偏移量。
进一步,调整人眼与显示屏的相对位置包括:调整人眼与显示屏的相对位置的过程中,持续获取离屏距离,在离屏距离超出预设值时调节3D测试图像的像素截距,使3D测试图像占满整个显示屏。
本实施例在用户在粘贴3D膜后,仅需要根据自己的观测图像调节3D测试图像的显示旋转角度即可完成参数校准,操作简单,提高用户体验。
实施例
参考图3和图4,在上述实施例的基础上,本实施例的裸眼3D显示屏3D参数手动校准方法,获取人眼与3D膜之间的离屏距离包括:
S11、通过摄像头获取用户的眼部图像;
S12、获取用户瞳孔在眼部图像中的瞳孔间距;
S13、由瞳孔间距和读取的离屏距离比得到离屏距离,其中离屏距离比为预设离屏距离和标准离屏距离的比值。进一步,离屏距离比的获取过程为:
设置显示屏的像素截距为预设标准像素截距;
待用户处于最佳观看距离时通过摄像头获取用户的眼部图像,并获取用户瞳孔在眼部图像中的瞳孔间距;
根据瞳孔间距计算人眼与3D膜之间的标准离屏距离;
计算预设离屏距离和标准离屏距离的比值得到离屏距离比,并保存离屏距离比。
参考图3,L表示人眼到3D膜之间的距离(离屏距离),d表示3D膜到显示屏之间的距离(架空高度),P表示3D膜行跨度值(物理截距),Wp表示单眼图像一次显示宽度(像素截距),Q表示人瞳孔间距。根据离屏距离调节显示屏中的像素截距包括:
根据下述公式计算显示屏中的像素截距W p
L=d*(Q+W p)/W p
其中L为离屏距离,d为3D膜到显示屏的距离,Q为瞳孔间距。
进一步,离屏距离比为:
Q 0*(W/q 0)/L 0
其中Q 0为预设标准瞳孔间距,W为摄像头画面宽度,q 0为用户瞳孔在眼部图像中的瞳孔间距,L 0为预设标准离屏距离。
进一步,预设标准离屏距离L 0的计算公式为:
L 0=d*(Q 0+W p0)/W p0
其中d为3D膜到显示屏的距离,Q 0为预设标准瞳孔间距,W p0为预设标准像素截距。
本实施例通过摄像头获取人眼与3D膜之间的离屏距离,根据离屏距离调节像素截距,保证3D测试图像占满整个显示屏。
实施例
本实施例提供一种电子设备,电子设备包括显示屏,显示屏上覆盖有3D膜;电子设备还包括处理器,处理器用于执行存储器中存储的计算机程序时实现如上述的裸眼3D显示屏3D参数手动校准方法。
下面参考图5,其示出了适于用来实现本发明实施例的电子设备400的结构示意图。本发明实施例中的电子设备可以包括但不限于诸如移动电话、笔记本电脑、数字广播接收器、PDA(个人数字助理)、PAD(平板电脑)、PMP(便携式多媒体播放器)、车载电子设备(例如车载导航电子设备)等等的移动电子 设备以及诸如数字TV、台式计算机等等的固定电子设备。图5示出的电子设备仅仅是一个示例,不应对本发明实施例的功能和使用范围带来任何限制。
如图5所示,电子设备400可以包括处理装置(例如中央处理器、图形处理器等)401,其可以根据存储在只读存储器(ROM)402中的程序或者从存储装置408加载到随机访问存储器(RAM)403中的程序而执行各种适当的动作和处理。在RAM 403中,还存储有电子设备400操作所需的各种程序和数据。处理装置401、ROM 402以及RAM 403通过总线404彼此相连。输入/输出(I/O)接口405也连接至总线404。
通常,以下装置可以连接至I/O接口405:包括例如触摸屏、触摸板、键盘、鼠标、摄像头、麦克风、加速度计、陀螺仪等的输入装置406;包括例如液晶显示器(LCD)、扬声器、振动器等的输出装置407;包括例如磁带、硬盘等的存储装置408;以及通信装置409。通信装置409可以允许电子设备400与其他设备进行无线或有线通信以交换数据。虽然图5示出了具有各种装置的电子设备400,但是应理解的是,并不要求实施或具备所有示出的装置。可以替代地实施或具备更多或更少的装置。
特别地,根据本发明的实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本发明的实施例包括一种计算机程序产品,其包括承载在计算机可读介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信装置409从网络上被下载和安装,或者从存储装置408被安装,或者从ROM 402被安装。在该计算机程序被处理装置401执行时,执行本发明实施例的方法中限定的上述功能。
需要说明的是,本发明上述的计算机可读介质可以是计算机可读信号介质或者计算机存储介质或者是上述两者的任意组合。计算机存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者 上述的任意合适的组合。在本发明中,计算机存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本发明中,计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读信号介质还可以是计算机存储介质以外的任何计算机可读介质,该计算机可读信号介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:电线、光缆、RF(射频)等等,或者上述的任意合适的组合。
上述计算机可读介质可以是上述电子设备中所包含的;也可以是单独存在,而未装配入该电子设备中。
上述计算机可读介质承载有一个或者多个程序,当上述一个或者多个程序被该电子设备执行时,使得该电子设备:获取至少两个网际协议地址;向节点评价设备发送包括至少两个网际协议地址的节点评价请求,其中,节点评价设备从至少两个网际协议地址中,选取网际协议地址并返回;接收节点评价设备返回的网际协议地址;其中,所获取的网际协议地址指示内容分发网络中的边缘节点。
或者,上述计算机可读介质承载有一个或者多个程序,当上述一个或者多个程序被该电子设备执行时,使得该电子设备:接收包括至少两个网际协议地址的节点评价请求;从至少两个网际协议地址中,选取网际协议地址;返回选取出的网际协议地址;其中,接收到的网际协议地址指示内容分发网络中的边缘节点。
可以以一种或多种程序设计语言或其组合来编写用于执行本发明的操作的计算机程序代码,上述程序设计语言包括面向对象的程序设计语言-诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言-诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执 行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)-连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
附图中的流程图和框图,图示了按照本发明各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,该模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
描述于本发明实施例中所涉及到的单元可以通过软件的方式实现,也可以通过硬件的方式来实现。其中,单元的名称在某种情况下并不构成对该单元本身的限定,例如,第一获取单元还可以被描述为“获取至少两个网际协议地址的单元”。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
以上实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据此实施,并不能限制本发明的保护范围。凡跟本发明权利要求范围所做的均等变化与修饰,均应属于本发明权利要求的涵盖范围。

Claims (10)

  1. 一种裸眼3D显示屏3D参数手动校准方法,其特征在于,所述显示屏上覆盖有3D膜,所述方法包括:
    获取人眼与所述3D膜之间的离屏距离,根据所述离屏距离显示3D测试图像;
    根据接收的图像旋转指令调节所述3D测试图像的显示旋转角度,持续调节直至所述3D测试图像无斜条纹显示,保存当前的显示旋转角度;
    在人眼观测到所述3D测试图像具有出屏效果时,通过摄像头获取人眼与显示屏的相对位置信息,根据所述相对位置信息计算所述3D测试图像的左右偏移量,保存所述左右偏移量。
  2. 根据权利要求1所述的裸眼3D显示屏3D参数手动校准方法,其特征在于,所述持续调节直至所述3D测试图像无斜条纹显示包括:
    判断调节后斜条纹是否变大;
    若是,则继续接收与当前图像旋转指令调节方向一致的图像旋转指令,直至所述3D测试图像无斜条纹显示;
    若否,则接收与当前图像旋转指令调节方向相反的图像旋转指令,直至所述3D测试图像无斜条纹显示。
  3. 根据权利要求1所述的裸眼3D显示屏3D参数手动校准方法,其特征在于,所述3D测试图像为黑白间隔的条文图像,其中所述黑条纹和白条纹平行于所述3D测试图像边缘;所述持续调节直至所述3D测试图像无斜条纹显示包括:
    持续调节直至所述3D测试图像无斜条纹显示,且所述黑条纹和白条纹平行于所述显示屏的边缘。
  4. 根据权利要求1所述的裸眼3D显示屏3D参数手动校准方法,其特征在于,所述在人眼观测到所述3D测试图像具有出屏效果时包括:
    调整人眼与显示屏的相对位置,直至人眼观测到所述3D测试图像 具有出屏效果,所述出屏效果指人眼观测到3D图像。
  5. 根据权利要求4所述的裸眼3D显示屏3D参数手动校准方法,其特征在于,所述调整人眼与显示屏的相对位置包括:
    调整人眼与显示屏的相对位置的过程中,持续获取所述离屏距离,在所述离屏距离超出预设值时调节所述3D测试图像的像素截距,使所述3D测试图像占满整个显示屏。
  6. 根据权利要求1所述的裸眼3D显示屏3D参数手动校准方法,其特征在于,所述获取人眼与所述3D膜之间的离屏距离包括:
    通过摄像头获取用户的眼部图像;
    获取用户瞳孔在所述眼部图像中的瞳孔间距;
    由所述瞳孔间距和读取的离屏距离比得到所述离屏距离,其中所述离屏距离比为预设离屏距离和标准离屏距离的比值。
  7. 根据权利要求6所述的裸眼3D显示屏3D参数手动校准方法,其特征在于,所述离屏距离比的获取过程为:
    设置所述显示屏的像素截距为预设标准像素截距;
    待用户处于最佳观看距离时通过摄像头获取用户的眼部图像,并获取用户瞳孔在所述眼部图像中的瞳孔间距;
    根据所述瞳孔间距计算人眼与所述3D膜之间的标准离屏距离;
    计算预设离屏距离和所述标准离屏距离的比值得到所述离屏距离比,并保存所述离屏距离比。
  8. 根据权利要求6所述的裸眼3D显示屏3D参数手动校准方法,其特征在于,所述离屏距离比为:
    Q 0*(W/q 0)/L 0
    其中Q 0为预设标准瞳孔间距,W为摄像头画面宽度,q 0为用户瞳孔在所述眼部图像中的瞳孔间距,L 0为预设标准离屏距离。
  9. 根据权利要求8所述的裸眼3D显示屏3D参数手动校准方法,其特征在于,所述预设标准离屏距离L 0的计算公式为:
    L 0=d*(Q 0+W p0)/W p0
    其中d为所述3D膜到所述显示屏的距离,Q 0为预设标准瞳孔间距,W p0为预设标准像素截距。
  10. 一种电子设备,所述电子设备包括显示屏,其特征在于,所述显示屏上覆盖有3D膜;
    所述电子设备还包括处理器,所述处理器用于执行存储器中存储的计算机程序时实现如权利要求1-9中任意一项所述的裸眼3D显示屏3D参数手动校准方法。
PCT/CN2019/092049 2019-06-20 2019-06-20 一种裸眼3d显示屏3d参数手动校准方法及电子设备 WO2020252738A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/092049 WO2020252738A1 (zh) 2019-06-20 2019-06-20 一种裸眼3d显示屏3d参数手动校准方法及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/092049 WO2020252738A1 (zh) 2019-06-20 2019-06-20 一种裸眼3d显示屏3d参数手动校准方法及电子设备

Publications (1)

Publication Number Publication Date
WO2020252738A1 true WO2020252738A1 (zh) 2020-12-24

Family

ID=74037606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092049 WO2020252738A1 (zh) 2019-06-20 2019-06-20 一种裸眼3d显示屏3d参数手动校准方法及电子设备

Country Status (1)

Country Link
WO (1) WO2020252738A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120092335A1 (en) * 2010-10-13 2012-04-19 3D Nuri Co., Ltd. 3d image processing method and portable 3d display apparatus implementing the same
CN108683906A (zh) * 2018-05-29 2018-10-19 张家港康得新光电材料有限公司 一种裸眼3d显示器参数测试方法、装置、设备和介质
CN108881893A (zh) * 2018-07-23 2018-11-23 上海玮舟微电子科技有限公司 基于人眼跟踪的裸眼3d显示方法、装置、设备和介质
CN109429056A (zh) * 2017-07-05 2019-03-05 张艳红 一种3d光栅膜贴合校正的方法、装置及移动端
CN109743564A (zh) * 2019-01-31 2019-05-10 深圳市维尚境界显示技术有限公司 一种裸眼3d动态调节显示屏排图方法及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120092335A1 (en) * 2010-10-13 2012-04-19 3D Nuri Co., Ltd. 3d image processing method and portable 3d display apparatus implementing the same
CN109429056A (zh) * 2017-07-05 2019-03-05 张艳红 一种3d光栅膜贴合校正的方法、装置及移动端
CN108683906A (zh) * 2018-05-29 2018-10-19 张家港康得新光电材料有限公司 一种裸眼3d显示器参数测试方法、装置、设备和介质
CN108881893A (zh) * 2018-07-23 2018-11-23 上海玮舟微电子科技有限公司 基于人眼跟踪的裸眼3d显示方法、装置、设备和介质
CN109743564A (zh) * 2019-01-31 2019-05-10 深圳市维尚境界显示技术有限公司 一种裸眼3d动态调节显示屏排图方法及电子设备

Similar Documents

Publication Publication Date Title
US10694291B2 (en) Directional propagation method and apparatus for audio signal, a terminal device and a storage medium
US20190311696A1 (en) Multi-picture display method, and display device
WO2021139382A1 (zh) 人脸图像的处理方法、装置、可读介质和电子设备
CN110278432B (zh) 一种裸眼3d显示屏3d参数手动校准方法及电子设备
US20170010849A1 (en) Control method and apparatus thereof
CA3168391A1 (en) Interaction method and apparatus, and electronic device and computer-readable storage medium
US20240089551A1 (en) Interaction method and apparatus, and electronic device
US11849211B2 (en) Video processing method, terminal device and storage medium
WO2023221409A1 (zh) 虚拟现实空间的字幕渲染方法、装置、设备及介质
CN108111897A (zh) 一种在视频中显示展示信息的方法及装置
WO2020177132A1 (zh) 一种裸眼3d显示屏排图自动校准方法及电子设备
CN111352560A (zh) 分屏方法、装置、电子设备和计算机可读存储介质
WO2021114981A1 (zh) 视频播放页面显示方法、装置、电子设备和介质
CN109963139B (zh) 一种裸眼3d显示屏排图自动校准方法及电子设备
WO2023246302A1 (zh) 字幕的显示方法、装置、设备及介质
WO2020252738A1 (zh) 一种裸眼3d显示屏3d参数手动校准方法及电子设备
TW201518994A (zh) 液晶顯示器顯示視角的調整方法、裝置和系統
CN111415393B (zh) 一种调节多媒体黑板显示的方法、装置、介质和电子设备
US10628113B2 (en) Information processing apparatus
WO2021004171A1 (zh) 水波纹图像实现方法及装置
US11880919B2 (en) Sticker processing method and apparatus
CN110766129A (zh) 一种神经网络训练系统及显示数据的方法
CN112308980B (zh) 增强现实交互显示方法及设备
US11651529B2 (en) Image processing method, apparatus, electronic device and computer readable storage medium
CN113126836B (zh) 一种画面显示方法、存储介质及终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19934297

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19934297

Country of ref document: EP

Kind code of ref document: A1