WO2020252699A1 - 一种基于mems技术的金刚石海水盐度传感器及其制作方法 - Google Patents

一种基于mems技术的金刚石海水盐度传感器及其制作方法 Download PDF

Info

Publication number
WO2020252699A1
WO2020252699A1 PCT/CN2019/091930 CN2019091930W WO2020252699A1 WO 2020252699 A1 WO2020252699 A1 WO 2020252699A1 CN 2019091930 W CN2019091930 W CN 2019091930W WO 2020252699 A1 WO2020252699 A1 WO 2020252699A1
Authority
WO
WIPO (PCT)
Prior art keywords
diamond
electrode
doped
doped diamond
sensor based
Prior art date
Application number
PCT/CN2019/091930
Other languages
English (en)
French (fr)
Inventor
郭风祥
盖志刚
张涛
惠超
张妹
邱慧敏
胡鼎
李恒
李正军
曹琳
Original Assignee
山东省科学院海洋仪器仪表研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东省科学院海洋仪器仪表研究所 filed Critical 山东省科学院海洋仪器仪表研究所
Priority to PCT/CN2019/091930 priority Critical patent/WO2020252699A1/zh
Publication of WO2020252699A1 publication Critical patent/WO2020252699A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells

Definitions

  • the invention relates to a diamond seawater salinity sensor, in particular to a diamond seawater salinity sensor based on MEMS technology and a manufacturing method thereof.
  • Seawater salinity is the core factor that affects ocean water vapor exchange and ocean circulation. It is also an important parameter that affects seawater hydrodynamics. It has an important impact on marine biodiversity, marine energy development, and marine chemical engineering. Therefore, achieving high-precision and long-term stable observation of seawater salinity is of great significance for marine scientific research, marine meteorological forecasting, and the development and utilization of marine resources.
  • the general ocean salinity sensor uses a conductivity cell as the sensing core structure, and uses platinum black and other materials to make sensing materials.
  • the surface is rough, and the resistance to biological adhesion is poor, it is easy to This leads to biological attachment, making it difficult to achieve long-term stable measurement of salinity.
  • the effective load and space are limited. It is necessary to optimize the structure of the existing salinity sensors, especially the miniaturized and stable performance of the diamond micromechanical system salt. Degree sensors can effectively meet the technical needs of related fields.
  • the filter hole structure of the existing salinity sensor is easily blocked, which is difficult to meet the needs of long-term observation of seawater salinity, and it is difficult to meet the needs of miniaturization.
  • the present invention provides a diamond seawater salinity sensor based on MEMS technology and a manufacturing method thereof, so as to achieve the goals of miniaturization, high chemical stability, strong resistance to biological adhesion, and stable working life.
  • a diamond seawater salinity sensor based on MEMS technology includes an intrinsic diamond insulating substrate, a doped diamond array electrode, an electrode lead, and a watertight insulating packaging structure.
  • the doped diamond array electrode is located on the intrinsic diamond insulating substrate and the seawater On the contact side, the watertight insulating package structure is located on the other side of the intrinsic diamond insulating substrate, one end of the electrode lead passes through the watertight insulating package structure and is connected to the doped diamond array electrode, and the other end is connected to the back-end measurement circuit;
  • the hybrid diamond array electrode includes four rows of detection electrodes, the inner two rows of detection electrodes are signal collection electrodes, and the outer two rows of detection electrodes are signal input electrodes.
  • the doped diamond array electrode is a diamond cylindrical array electrode formed by boron doping, nitrogen doping, phosphorous doping, or their combination.
  • the cross-sectional diameter of the doped diamond array electrode is 20-50 ⁇ m and the height is 3-100 ⁇ m.
  • the distance between the doped diamond array electrodes in the first column and the second column is 10-50 ⁇ m
  • the distance between the doped diamond array electrodes in the third column and the fourth column is 10-50 ⁇ m
  • the distance between the doped diamond array electrodes in the second column and the third column is 200-1000 ⁇ m.
  • the thickness of the intrinsic diamond insulating substrate is 10-1000 ⁇ m.
  • a method for manufacturing a diamond seawater salinity sensor based on MEMS technology includes the following steps:
  • the circular blind hole array has a depth of 3-50 ⁇ m and a diameter of 50-100 ⁇ m.
  • the diamond seawater salinity sensor based on MEMS technology has stable mechanical structure and stable chemical properties, which overcomes the insufficient mechanical strength of the MEMS sensor, allows mechanical cleaning, and avoids the error caused by the size change of the seawater salinity sensor ;
  • the electrochemical window is wide, and the electrochemical window of boron-doped diamond is as wide as 3V. Therefore, at a voltage of 2.1-2.5V, seawater can be electrolyzed to form hydroxyl radicals and sterilize. Without destroying the electrochemical decomposition of the sensor material, it is possible to prepare hydroxyl radicals by applying a bias voltage to kill the adhesion of microorganisms and soluble organic matter near the electrode and improve the resistance to biological adhesion.
  • Fig. 1 is a schematic structural diagram of a diamond seawater salinity sensor based on MEMS technology disclosed in an embodiment of the present invention
  • FIG. 2 is a top view of a diamond seawater salinity sensor based on MEMS technology disclosed in an embodiment of the present invention
  • FIG. 3 is a schematic flow chart of a method for manufacturing a diamond seawater salinity sensor based on MEMS technology disclosed in an embodiment of the present invention.
  • Intrinsic diamond insulating substrate 2. Doped diamond array electrode; 3. Electrode lead; 4. Watertight insulating package structure; 21. The first column of doped diamond array electrodes; 22. The second column of doped Diamond array electrode; 23. The third column of doped diamond array electrodes; 24. The fourth column of doped diamond array electrodes; 5. Silicon substrate; 6. Circular blind holes; 7. Silicon dioxide.
  • the invention provides a diamond seawater salinity sensor based on MEMS technology and a manufacturing method thereof, which overcomes the shortcomings of the existing seawater salinity sensor such as low measurement accuracy, low chemical stability, and poor resistance to biological adhesion, and has chemical stability High, strong resistance to biological adhesion, stable working life, small size and light weight.
  • the diamond seawater salinity sensor based on MEMS technology as shown in FIG. 1 and FIG. 2 includes an intrinsic diamond insulating substrate 1, a doped diamond array electrode 2, an electrode lead 3 and a watertight insulating packaging structure 4.
  • the thickness of the intrinsic diamond insulating substrate 1 is 10-1000 ⁇ m.
  • the doped diamond array electrode 2 is located on the side of the intrinsic diamond insulating substrate 1 that is in contact with seawater, the watertight insulating packaging structure 4 is located on the other side of the intrinsic diamond insulating substrate 1, and one end of the electrode lead 3 passes through the watertight insulating packaging structure 4 It is connected to the doped diamond array electrode 2, and the other end is connected to the back-end measurement circuit.
  • the doped diamond array electrode 2 includes four rows of detection electrodes, the inner two rows of detection electrodes are signal collection electrodes, and the outer two rows of detection electrodes are signal input electrodes.
  • the doped diamond array electrode is a diamond cylindrical array electrode composed of boron, nitrogen, phosphorus or their combination.
  • the cross-sectional diameter of the doped diamond array electrode is 20-50 ⁇ m, and the height is 3-100 ⁇ m.
  • the distance between the first column of doped diamond array electrodes 21 and the second column of doped diamond array electrodes 22 is 10-50 ⁇ m, and the distance between the third column of doped diamond array electrodes 23 and the fourth column of doped diamond array electrodes 24
  • the distance between the second row of doped diamond array electrodes 22 and the third row of doped diamond array electrodes 23 is 200-1000 ⁇ m.
  • the manufacturing method of the above-mentioned diamond seawater salinity sensor based on MEMS technology includes the following steps:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Pressure Sensors (AREA)

Abstract

基于MEMS技术的金刚石海水盐度传感器,包括本征金刚石绝缘衬底(1)、掺杂金刚石阵列电极(2)、电极引线(3)和水密绝缘封装结构(4),所述掺杂金刚石阵列电极(2)位于本征金刚石绝缘衬底(1)与海水接触的一侧,水密绝缘封装结构(4)位于本征金刚石绝缘衬底(1)的另一侧,电极引线(3)一端穿过水密绝缘封装结构(4)与掺杂金刚石阵列电极(2)相连,另一端与后端测量电路相连;所述掺杂金刚石阵列电极(2)包括四列探测电极,内部两列探测电极为信号采集电极,外部两列探测电极为信号输入电极,电导率传感器满足微型化的要求,化学稳定性高,抗生物附着能力强,稳定工作寿命长。

Description

一种基于MEMS技术的金刚石海水盐度传感器及其制作方法 技术领域
本发明涉及一种金刚石海水盐度传感器,特别涉及一种基于MEMS技术的金刚石海水盐度传感器及其制作方法。
背景技术
海水盐度是影响海洋水汽交换及海洋环流的核心因素,也是影响海水水文动力学的重要参数,对海洋生物多样性、海洋能源开发、海洋化工等领域具有重要影响。因此,实现海水盐度的高精度、长期稳定观测,对于海洋科学研究、海洋气象预报、海洋资源开发与利用,具有十分重要的意义。
现阶段,通用的海洋盐度传感器采用电导池作为传感核心结构、利用铂黑等材料制作传感材料,但由于铂黑与金属铂的结合力低、表面粗糙、抗生物附着能力差,容易导致生物附着,难以实现盐度的长期稳定测量。另一方面,在水下移动平台、载人潜器等高端设备上,有效载荷和空间有限,需要对现有的盐度传感器进行结构优化,特别是微型化、性能稳定的金刚石微机械系统盐度传感器,才能够有效满足相关领域的技术需求。现有的盐度传感器其滤孔结构容易被堵塞,难以满足海水盐度长期观测的需要,而且难以满足微型化的需要。
发明内容
为解决上述技术问题,本发明提供了一种基于MEMS技术的金刚石海水盐度传感器及其制作方法,以达到微型化、化学稳定性高,抗生物附着能力强,稳定工作寿命长的目的。
为达到上述目的,本发明的技术方案如下:
一种基于MEMS技术的金刚石海水盐度传感器,包括本征金刚石绝缘衬底、掺杂金刚石阵列电极、电极引线和水密绝缘封装结构,所述掺杂金刚石阵列电极位于本征金刚石绝缘衬底与海水接触的一侧,水密绝缘封装结构位于本征金刚石绝缘衬底的另一侧,电极引线一端穿过水密绝缘封装结构与掺杂金刚石阵列电极相连,另一端与后端测量电路相连;所述掺杂金刚石阵列电极包括四列探测电极,内部两列探测电极为信号采集电极,外部两列探测电极为信号输入电极。
上述方案中,所述掺杂金刚石阵列电极为硼掺杂、氮掺杂、磷掺杂或它们共同组成的金刚石圆柱阵列电极。
上述方案中,所述掺杂金刚石阵列电极横截面直径为20-50μm,高度为3-100μm。
上述方案中,第一列与第二列所述掺杂金刚石阵列电极之间的距离为10-50μm,第三列与第四列所述掺杂金刚石阵列电极之间的距离为10-50μm,第二列与第三列所述掺杂金刚石阵列电极之间的距离为200-1000μm。
上述方案中,所述本征金刚石绝缘衬底的厚度为10-1000μm。
一种基于MEMS技术的金刚石海水盐度传感器的制作方法,包括如下步骤:
(1)利用激光在硅基底表面,加工圆形盲孔阵列;
(2)利用掩膜版,结合化学气相沉积,在盲孔处沉积掺杂金刚石阵列电极,直至掺杂金刚石阵列电极比硅基底表面高出5~150μm,继续在掺杂金刚石阵列电极顶部表面沉积厚度为30~50μm的二氧化硅;
(3)移除掩膜板,利用化学气相沉积,在掺杂金刚石阵列电极周围的硅基底表面沉积本征金刚石绝缘衬底,直至本征金刚石绝缘衬底的表面超过掺杂金刚石阵列电极与二氧化硅层的界面;
(4)利用氢氟酸溶液清洗二氧化硅;
(5)通过半导体互联焊机,将电极引线与掺杂金刚石阵列电极相连,将电极引线的另一端与后端测量电路相连;
(6)利用水密绝缘树脂,将本征金刚石绝缘衬底、电极引线进行封装、固化;
(7)利用强碱溶液将硅基底腐蚀后,即可得到基于MEMS技术的金刚石海水盐度传感器。
进一步的技术方案中,圆形盲孔阵列深3~50μm,直径50~100μm。
通过上述技术方案,本发明提供的基于MEMS技术的金刚石海水盐度传感器的有益效果如下:
1、采用基于MEMS技术的金刚石海水盐度传感器,机械结构稳定,化学性质稳定,克服了MEMS传感器机械强度不高的不足,允许进行机械清洗,同时避免海水盐度传感器的由于尺寸改变导致的误差;
2、采用金刚石作为绝缘衬底和电极材料,性能稳定,弹性模量高,硬度大,机械强度高;
3、采用基于MEMS技术的金刚石海水盐度传感器,电化学窗口宽,硼掺杂金刚石的电化学窗口宽达3V,因而在2.1-2.5V电压时,能够电解海水形成羟基自由基,杀菌,而不破坏传感器材料的电化学分解,可以通过施加偏压的方式,制备羟基自由基,灭杀电极附近的微生物和可溶性有机物的附着,提高抗生物附着能力。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1为本发明实施例所公开的一种基于MEMS技术的金刚石海水盐度传感器结构示意图;
图2为本发明实施例所公开的基于MEMS技术的金刚石海水盐度传感器俯视图;
图3为本发明实施例所公开的基于MEMS技术的金刚石海水盐度传感器制作方法流程示意图。
图中,1、本征金刚石绝缘衬底;2、掺杂金刚石阵列电极;3、电极引线;4、水密绝缘封装结构;21、第一列掺杂金刚石阵列电极;22、第二列掺杂金刚石阵列电极;23、第三列掺杂金刚石阵列电极;24、第四列掺杂金刚石阵列电极;5、硅基底;6、圆形盲孔;7、二氧化硅。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
本发明提供了一种基于MEMS技术的金刚石海水盐度传感器及其制作方法,克服现有海水盐度传感器的测量精度低,化学稳定性不高,抗生物附着能力差等不足,具有化学稳定性高,抗生物附着能力强,稳定工作寿命长、体积小、重量轻等特点。
如图1和图2所示的基于MEMS技术的金刚石海水盐度传感器,包括本征金刚石绝缘衬底1、掺杂金刚石阵列电极2、电极引线3和水密绝缘封装结构4。本征金刚石绝缘衬底1的厚度为10-1000μm。
掺杂金刚石阵列电极2位于本征金刚石绝缘衬底1与海水接触的一侧,水密绝缘封装结构4位于本征金刚石绝缘衬底1的另一侧,电极引线3一端穿过水密绝缘封装结构4与掺杂金刚石阵列电极2相连,另一端与后端测量电路相连。
掺杂金刚石阵列电极2包括四列探测电极,内部两列探测电极为信号采集电极,外部两列探测电极为信号输入电极。掺杂金刚石阵列电极为硼掺杂、氮掺杂、磷掺杂或它们共同组成的金刚石圆柱阵列电极。掺杂金刚石阵列电极横截面直径为20-50μm,高度为3-100μm。
第一列掺杂金刚石阵列电极21与第二列掺杂金刚石阵列电极22之间的距离为10-50μ m,第三列掺杂金刚石阵列电极23与第四列掺杂金刚石阵列电极24之间的距离为10-50μm,第二列掺杂金刚石阵列电极22与第三列掺杂金刚石阵列电极23之间的距离为200-1000μm。
如图3所示,上述基于MEMS技术的金刚石海水盐度传感器的制作方法,包括如下步骤:
(1)利用激光在硅基底5表面,加工深3~50μm,直径50~100μm的圆形盲孔6阵列;
(2)利用掩膜版,结合化学气相沉积,在盲孔6处沉积掺杂金刚石阵列电极2,直至掺杂金刚石阵列电极2比硅基底5表面高出5~150μm,继续在掺杂金刚石阵列电极2顶部表面沉积厚度为30~50μm的二氧化硅7;
(3)移除掩膜板,利用化学气相沉积,在掺杂金刚石阵列电极2周围的硅基底5表面沉积本征金刚石绝缘衬底1,直至本征金刚石绝缘衬底1的表面超过掺杂金刚石阵列电极2与二氧化硅7层的界面;
(4)利用氢氟酸溶液清洗二氧化硅7;
(5)通过半导体互联焊机,将电极引线3与掺杂金刚石阵列电极2相连,将电极引线3的另一端与后端测量电路相连;
(6)利用水密绝缘树脂,将本征金刚石绝缘衬底1、电极引线3进行封装、固化;
(7)利用强碱溶液将硅基底5腐蚀后,即可得到基于MEMS技术的金刚石海水盐度传感器。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (7)

  1. 一种基于MEMS技术的金刚石海水盐度传感器,其特征在于,包括本征金刚石绝缘衬底、掺杂金刚石阵列电极、电极引线和水密绝缘封装结构,所述掺杂金刚石阵列电极位于本征金刚石绝缘衬底与海水接触的一侧,水密绝缘封装结构位于本征金刚石绝缘衬底的另一侧,电极引线一端穿过水密绝缘封装结构与掺杂金刚石阵列电极相连,另一端与后端测量电路相连;所述掺杂金刚石阵列电极包括四列探测电极,内部两列探测电极为信号采集电极,外部两列探测电极为信号输入电极。
  2. 根据权利要求1所述的一种基于MEMS技术的金刚石海水盐度传感器,其特征在于,所述掺杂金刚石阵列电极为硼掺杂、氮掺杂、磷掺杂或它们共同组成的金刚石圆柱阵列电极。
  3. 根据权利要求1所述的一种基于MEMS技术的金刚石海水盐度传感器,其特征在于,所述掺杂金刚石阵列电极横截面直径为20-50μm,高度为3-100μm。
  4. 根据权利要求1所述的一种基于MEMS技术的金刚石海水盐度传感器,其特征在于,第一列与第二列所述掺杂金刚石阵列电极之间的距离为10-50μm,第三列与第四列所述掺杂金刚石阵列电极之间的距离为10-50μm,第二列与第三列所述掺杂金刚石阵列电极之间的距离为200-1000μm。
  5. 根据权利要求1所述的一种基于MEMS技术的金刚石海水盐度传感器,其特征在于,所述本征金刚石绝缘衬底的厚度为10-1000μm。
  6. 一种如权利要求1所述的基于MEMS技术的金刚石海水盐度传感器的制作方法,其特征在于,包括如下步骤:
    (1)利用激光在硅基底表面,加工圆形盲孔阵列;
    (2)利用掩膜版,结合化学气相沉积,在盲孔处沉积掺杂金刚石阵列电极,直至掺杂金刚石阵列电极比硅基底表面高出5~150μm,继续在掺杂金刚石阵列电极顶部表面沉积厚度为30~50μm的二氧化硅;
    (3)移除掩膜板,利用化学气相沉积,在掺杂金刚石阵列电极周围的硅基底表面沉积本征金刚石绝缘衬底,直至本征金刚石绝缘衬底的表面超过掺杂金刚石阵列电极与二氧化硅层的界面;
    (4)利用氢氟酸溶液清洗二氧化硅;
    (5)通过半导体互联焊机,将电极引线与掺杂金刚石阵列电极相连,将电极引线的另一端与后端测量电路相连;
    (6)利用水密绝缘树脂,将本征金刚石绝缘衬底、电极引线进行封装、固化;
    (7)利用强碱溶液将硅基底腐蚀后,即可得到基于MEMS技术的金刚石海水盐度传感器。
  7. 根据权利要求6所述的基于MEMS技术的金刚石海水盐度传感器的制作方法,其特征在于,圆形盲孔阵列深3~50μm,直径50~100μm。
PCT/CN2019/091930 2019-06-19 2019-06-19 一种基于mems技术的金刚石海水盐度传感器及其制作方法 WO2020252699A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/091930 WO2020252699A1 (zh) 2019-06-19 2019-06-19 一种基于mems技术的金刚石海水盐度传感器及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/091930 WO2020252699A1 (zh) 2019-06-19 2019-06-19 一种基于mems技术的金刚石海水盐度传感器及其制作方法

Publications (1)

Publication Number Publication Date
WO2020252699A1 true WO2020252699A1 (zh) 2020-12-24

Family

ID=74040612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091930 WO2020252699A1 (zh) 2019-06-19 2019-06-19 一种基于mems技术的金刚石海水盐度传感器及其制作方法

Country Status (1)

Country Link
WO (1) WO2020252699A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105606901A (zh) * 2015-12-24 2016-05-25 河海大学 一种带有过滤装置的mems海水电导率传感器
CN205982439U (zh) * 2015-11-20 2017-02-22 科电睿信(北京)科技发展有限公司 一种海洋电场传感器探头结构
CN107631809A (zh) * 2017-10-16 2018-01-26 山东省科学院海洋仪器仪表研究所 一种基于金刚石薄膜的全海深温度传感器及其制备方法
CN108169299A (zh) * 2018-01-12 2018-06-15 山东省科学院海洋仪器仪表研究所 一种基于mems技术的金刚石海水盐度传感器及其制作方法
US20180372563A1 (en) * 2017-06-21 2018-12-27 University Of Florida Research Foundation, Incorporated Passive wireless pressure sensor for harsh environments
CN208568661U (zh) * 2018-01-12 2019-03-01 山东省科学院海洋仪器仪表研究所 一种基于mems技术的金刚石海水盐度传感器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205982439U (zh) * 2015-11-20 2017-02-22 科电睿信(北京)科技发展有限公司 一种海洋电场传感器探头结构
CN105606901A (zh) * 2015-12-24 2016-05-25 河海大学 一种带有过滤装置的mems海水电导率传感器
US20180372563A1 (en) * 2017-06-21 2018-12-27 University Of Florida Research Foundation, Incorporated Passive wireless pressure sensor for harsh environments
CN107631809A (zh) * 2017-10-16 2018-01-26 山东省科学院海洋仪器仪表研究所 一种基于金刚石薄膜的全海深温度传感器及其制备方法
CN108169299A (zh) * 2018-01-12 2018-06-15 山东省科学院海洋仪器仪表研究所 一种基于mems技术的金刚石海水盐度传感器及其制作方法
CN208568661U (zh) * 2018-01-12 2019-03-01 山东省科学院海洋仪器仪表研究所 一种基于mems技术的金刚石海水盐度传感器

Similar Documents

Publication Publication Date Title
CN102447011B (zh) 用于制造太阳能电池光阳极的方法及其产品
CN108169299B (zh) 一种基于mems技术的金刚石海水盐度传感器及其制作方法
CN103196971A (zh) 一种基于铝,磷酸铝的固体磷酸根电极的制备方法
CN103344374B (zh) 隐藏式mems压力传感器敏感芯片及其制作方法
CN101793855A (zh) 硅微纳米结构气体传感器及其制作方法
CN105388192B (zh) 一种基于mems硅‑玻璃键合工艺的海水电导率传感器
CN102395879A (zh) 电流型电化学传感器及其制造方法
CN104062059A (zh) 一种mems压阻式压力传感器及其制造方法
CN102226715A (zh) 一种基于一维硅纳米结构阵列的可见光电化学探测器
CN104155472A (zh) 一种热膜风速风向传感器及其制备方法
CN105004764B (zh) 一种检测海水盐度传感器的盐度检测方法
CN208568661U (zh) 一种基于mems技术的金刚石海水盐度传感器
CN110568518B (zh) 单片集成敏感电极、制备方法及其应用
CN105606901B (zh) 一种带有过滤装置的mems海水电导率传感器
CN104950177B (zh) 流通式工业在线七电极电导率传感器
WO2020252699A1 (zh) 一种基于mems技术的金刚石海水盐度传感器及其制作方法
CN104198756A (zh) 一种压电与光电复合的流体流速流向测量装置及其方法
CN114184654B (zh) 微型全固态pH传感器及其制备方法
CN105021328A (zh) Cmos工艺兼容的压阻式压力传感器及其制备方法
CN105668509A (zh) 一种刻蚀微米硅通孔的方法
CN206096028U (zh) 微流控可置换腔体结构的自校准海洋多参数化学传感器
CN105628746A (zh) 一种基于mems硅工艺的七电极电导率传感器的制造方法
CN105025423A (zh) 一种驻极体电容式超声传感器及其制作方法
CN108680628A (zh) 用于检测水中营养盐含量的微纳传感器及其制作方法
CN107316822A (zh) 硅晶体缺陷检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19933741

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06.05.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19933741

Country of ref document: EP

Kind code of ref document: A1