WO2020252664A1 - 设备内共存干扰指示方法和装置 - Google Patents

设备内共存干扰指示方法和装置 Download PDF

Info

Publication number
WO2020252664A1
WO2020252664A1 PCT/CN2019/091759 CN2019091759W WO2020252664A1 WO 2020252664 A1 WO2020252664 A1 WO 2020252664A1 CN 2019091759 W CN2019091759 W CN 2019091759W WO 2020252664 A1 WO2020252664 A1 WO 2020252664A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
carrier
information
band
interference
Prior art date
Application number
PCT/CN2019/091759
Other languages
English (en)
French (fr)
Inventor
江小威
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to EP19934286.6A priority Critical patent/EP3989657A4/en
Priority to CN201980001108.3A priority patent/CN110431904B/zh
Priority to CN202311115136.2A priority patent/CN117014095A/zh
Priority to PCT/CN2019/091759 priority patent/WO2020252664A1/zh
Priority to US17/620,664 priority patent/US20220360416A1/en
Publication of WO2020252664A1 publication Critical patent/WO2020252664A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the present disclosure relates to the field of communication technology, and in particular, to a method for indicating coexistence interference in a device, a device for indicating coexistence interference in a device, an electronic device, and a computer-readable storage medium.
  • Current electronic devices can communicate based on multiple networks, and signals between different networks may cause interference, causing the electronic devices to fail to communicate normally.
  • IDC in-device coexistence
  • the embodiment of the present disclosure proposes an in-device coexistence interference indicator method, an in-device coexistence interference indicator device, an electronic device, and a computer-readable storage medium to solve the problem that it is difficult for the base station to accurately determine the carrier wave based on the frequency point in the related art.
  • the specific frequency band causing or being interfered.
  • an in-device coexistence interference indication method is proposed, which is applicable to a terminal, and the method includes:
  • the carrier frequency of the carrier that is interfered with or caused the interference Send to the base station the carrier frequency of the carrier that is interfered with or caused the interference, and the information of the sub-band that is interfered or caused by the interference in the carrier, where the carrier includes at least one sub-band.
  • the information of the sub-band includes:
  • the frequency offset of the frequency point of the sub-band relative to the carrier frequency, and the bandwidth of the sub-band is the frequency offset of the frequency point of the sub-band relative to the carrier frequency, and the bandwidth of the sub-band.
  • the method further includes:
  • the first configuration information is used to indicate at least one of the frequency offset, the number of sub-bands, and the bandwidth of the sub-bands, and other items are predetermined.
  • the information of the sub-band includes:
  • the frequency point of the sub-band, and the bandwidth of the sub-band are the frequencies point of the sub-band, and the bandwidth of the sub-band.
  • the method further includes:
  • the second configuration information is used to indicate at least one of the number of sub-bands and the bandwidth of the sub-bands, and other items are predetermined.
  • the carrier includes multiple sub-bands, and the information of the sub-bands includes:
  • the sub-band is a bandwidth part.
  • the method further includes:
  • the terminal communicates based on a combination of multiple carriers. If the combination of multiple carriers suffers or causes interference, the information of the sub-band includes:
  • the method further includes:
  • the degree information includes at least one of the following:
  • the sending to the base station the carrier frequency of the carrier subject to interference or causing interference, and the information of the sub-band subject to interference or causing interference in the carrier includes:
  • the carrier frequency of the carrier that is interfered or caused by interference and the information of the sub-frequency band of the carrier that is interfered or caused by interference are sent to the base station.
  • an in-device coexistence interference indication device which is suitable for a terminal, and the device includes:
  • An interference determination module configured to determine that the terminal has or will appear in-device coexistence interference
  • the information sending module is configured to send to the base station the carrier frequency of the carrier that is interfered or caused by interference, and the information of the sub-band that is interfered or caused by interference in the carrier, wherein the carrier includes at least one sub-band.
  • the information of the sub-band includes:
  • the frequency offset of the frequency point of the sub-band relative to the carrier frequency, and the bandwidth of the sub-band is the frequency offset of the frequency point of the sub-band relative to the carrier frequency, and the bandwidth of the sub-band.
  • the device further includes:
  • the first receiving module is configured to receive first configuration information sent by the base station
  • the first configuration information is used to indicate at least one of the frequency offset, the number of sub-bands, and the bandwidth of the sub-bands, and other items are predetermined.
  • the information of the sub-band includes:
  • the frequency point of the sub-band, and the bandwidth of the sub-band are the frequencies point of the sub-band, and the bandwidth of the sub-band.
  • the device further includes:
  • a second receiving module configured to receive second configuration information sent by the base station
  • the second configuration information is used to indicate at least one of the number of sub-bands and the bandwidth of the sub-bands, and other items are predetermined.
  • the carrier includes multiple sub-bands, and the information of the sub-bands includes:
  • the sub-band is a bandwidth part.
  • the information sending module is further configured to send information about the carrier interference direction to the base station.
  • the terminal communicates based on a combination of multiple carriers. If the combination of multiple carriers is interfered or causes interference, the sub-band information includes:
  • the information sending module is further configured to send to the base station information on the degree to which the carrier is affected or affected.
  • the degree information includes at least one of the following:
  • the information sending module includes:
  • a degree determining sub-module configured to determine whether the degree to which the carrier causes or is affected is greater than a preset threshold
  • the information sending sub-module is configured to send the carrier frequency of the interfered or interfered carrier and the information of the interfered or interfered sub-band in the carrier to the base station when the degree is greater than a preset threshold.
  • an electronic device including:
  • a memory for storing processor executable instructions
  • the processor is configured to implement the in-device coexistence interference indication method described in any of the foregoing embodiments.
  • a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, it implements the in-device coexistence interference indication method described in any of the above embodiments. step.
  • the carrier frequency of the interfered or interfered carrier can be sent to the base station, so that the base station can determine the interfered or interfered carrier based on the carrier frequency
  • the information of the sub-bands that are interfered or caused by interference in the carrier may be sent to the base station, so that the base station can determine the specific sub-bands that are interfered or caused by the interference according to the information of the sub-bands.
  • the base station can accurately determine which sub-band of the carrier used for terminal communication is interfered or caused by the carrier frequency and sub-band information reported by the terminal. Interference, so that the base station can accurately determine how to solve the in-device coexistence interference that exists or is about to occur in the terminal.
  • Fig. 1 is a schematic flowchart showing a method for indicating in-device coexistence interference according to an embodiment of the present disclosure.
  • Fig. 2 is a schematic flowchart showing another method for indicating coexistence interference in a device according to an embodiment of the present disclosure.
  • Fig. 3 is a schematic flowchart showing another method for indicating coexistence interference in a device according to an embodiment of the present disclosure.
  • Fig. 4 is a schematic flowchart showing another method for indicating coexistence interference in a device according to an embodiment of the present disclosure.
  • Fig. 5 is a schematic flowchart showing another method for indicating coexistence interference in a device according to an embodiment of the present disclosure.
  • Fig. 6 is a schematic flowchart showing another method for indicating coexistence interference in a device according to an embodiment of the present disclosure.
  • Fig. 7 is a schematic block diagram showing an in-device coexistence interference indication device according to an embodiment of the present disclosure.
  • Fig. 8 is a schematic block diagram showing another device for indicating coexistence interference in a device according to an embodiment of the present disclosure.
  • Fig. 9 is a schematic block diagram showing another device for indicating coexistence interference in a device according to an embodiment of the present disclosure.
  • Fig. 10 is a schematic block diagram showing another device for indicating coexistence interference in a device according to an embodiment of the present disclosure.
  • Fig. 11 is a schematic block diagram showing an apparatus 1100 for in-device coexistence interference according to an embodiment of the present disclosure.
  • Fig. 1 is a schematic flowchart showing a method for indicating in-device coexistence interference according to an embodiment of the present disclosure.
  • the in-device coexistence interference indication method shown in this embodiment can be applied to terminals such as mobile phones, tablet computers, and wearable devices.
  • the terminal can be used as a user equipment to communicate with a base station, where it can communicate with the base station based on 5G NR.
  • the method for indicating in-device coexistence interference may include the following steps:
  • step S1 it is determined that in-device coexistence interference exists or will occur in the terminal
  • the terminal can use an operator network, such as 5G network communication, and can also use networks in other frequency bands, such as Wi-Fi, Bluetooth, GNSS (Global Navigation Satellite System, Global Navigation Satellite System) and other network communications.
  • Wi-Fi, Bluetooth, GNSS and other networks belong to the ISM (Industrial Scientific Medical, industrial, scientific and medical) frequency band.
  • the terminal in the case of mutual interference between the 5G network and the network under the ISM frequency band, it can be determined that the terminal has in-device coexistence interference, and in the case of mutual interference between the 5G network and the network under the ISM frequency band, it can be determined The terminal will have in-device coexistence interference. For example, you can set a time period in advance, called the preset time period, and then determine whether the terminal has in-device coexistence interference in the preset time period after the current time. If the terminal is in the device during the preset time period after the current time Coexistence interference, it is determined that the terminal will have in-device coexistence interference.
  • step S2 the carrier frequency of the carrier that is interfered or caused by interference is sent to the base station (the carrier frequency may refer to the frequency of the center frequency of the carrier), and the information of the sub-band that is interfered or caused by interference in the carrier , Wherein the carrier includes at least one sub-band.
  • the in-device coexistence interference that will occur means that there can be in-device coexistence interference in the terminal within a preset time period after the current moment.
  • the preset time period can be configured by the base station or set by the terminal itself. If the in-device coexistence interference It is the in-device coexistence interference that is about to occur.
  • the terminal can also send to the base station the time when the in-device coexistence interference occurs in the future, so that the base station can solve the in-device coexistence interference in time. For example, it can be solved directly at the stated time or at the stated time. .
  • the terminal when the terminal exists or is about to occur in-device coexistence interference, the terminal can first determine whether the existing or about to occur in-device coexistence interference can be solved by itself, and only if it cannot be solved by itself
  • the base station sends the information of the sub-band of the carrier frequency.
  • the bandwidth of the carrier in the 4G network is relatively small, generally about 20MHz, but in general, the carrier in the 4G network is affected by the ISM frequency band.
  • the granularity of the interference caused by the carrier in the 4G network to the network in the ISM frequency band is also about 20MHz, that is, the carrier that causes interference or is interfered, and its entire bandwidth causes interference or is interfered, so the terminal only needs to
  • the base station reports the frequency point, and the base station can determine that all the carriers corresponding to the frequency point cause interference or are interfered.
  • the bandwidth of the carrier in the 5G network can reach 100MHz (for example, the FR1 frequency band) or even 400MHz (for example, the FR2 frequency band), and the carrier in the 5G network is interfered by the network under the ISM frequency band, or 5G
  • the granularity of the interference caused by the carrier in the network to the network in the ISM frequency band is not limited to 20MHz, so only reporting the frequency to the base station does not allow the base station to determine which frequency band in the carrier is interfered or caused interference.
  • the carrier frequency of the interfered or interfered carrier can be sent to the base station, so that the base station can determine the interfered or interfered carrier based on the carrier frequency
  • the information of the sub-bands that are interfered or caused by interference in the carrier may be sent to the base station, so that the base station can determine the specific sub-bands that are interfered or caused by the interference according to the information of the sub-bands.
  • the base station can accurately determine which sub-band of the carrier used for terminal communication is interfered or caused by the carrier frequency and sub-band information reported by the terminal. Interference, so that the base station can accurately determine how to solve the in-device coexistence interference that exists or is about to occur in the terminal.
  • carrier A with a carrier frequency of X in the 5G network used by the terminal is interfered by the network under the ISM band.
  • the bandwidth of carrier A is 100 MHz, and carrier A includes 5 sub-bands, each of which has a bandwidth of 20 MHz (each sub-band The bandwidth can also be unequal, and it can be set as needed.
  • the terminal can send the carrier frequency X of carrier A and the identification information of the second sub-band to the base station, This enables the base station to determine according to the carrier frequency X that carrier A in the 5G network used by the terminal is interfered, and according to the identification information of the second sub-band, it can accurately determine that the second sub-band of carrier A is interfered, so as to accurately Determine the specific frequency band of the carrier that is subject to interference, so that the base station can accurately determine how to solve the existing or upcoming in-device coexistence interference of the terminal.
  • one or more carriers may be interfered by the network under the ISM frequency band, or cause interference to the network under the ISM frequency band, so the terminal sends the interference or cause interference to the base station
  • the carrier frequency of the carrier can be the carrier frequency of one carrier or the carrier frequencies of multiple carriers.
  • the information can be information of multiple subcarriers.
  • the information of the sub-band includes:
  • the frequency offset of the frequency point of the sub-band relative to the carrier frequency, and the bandwidth of the sub-band is the frequency offset of the frequency point of the sub-band relative to the carrier frequency, and the bandwidth of the sub-band.
  • the sub-band information reported by the terminal to the base station may include the frequency offset of the frequency point of the sub-band relative to the carrier frequency, and the bandwidth of the sub-band.
  • the base station can determine the offset amount of the frequency point of the sub-band relative to the carrier frequency according to the frequency offset, and then can determine the start bandwidth and the cut-off bandwidth of the sub-band according to the bandwidth of the sub-band.
  • the carrier frequency is X
  • the frequency offset is Y
  • the bandwidth of the sub-band is 20 MHz
  • the frequency point is the starting frequency of the sub-band
  • Fig. 2 is a schematic flowchart showing another method for indicating coexistence interference in a device according to an embodiment of the present disclosure. As shown in Figure 2, the method further includes:
  • step S3 receiving first configuration information sent by the base station
  • the first configuration information is used to indicate at least one of the frequency offset, the number of sub-bands, and the bandwidth of the sub-bands, and other items are predetermined.
  • the base station may configure the frequency offset by sending first configuration information to the terminal, at least one of the number of sub-bands and the bandwidth of the sub-bands, and the other items may be preset definite.
  • the first configuration information is used to indicate the frequency offset, and the number of sub-bands and the bandwidth of the sub-bands are predetermined; for example, the first configuration information is used to indicate the frequency offset and the number of sub-bands , The bandwidth of the sub-band is predetermined; for example, the first configuration information is used to indicate the frequency offset, the number of the sub-bands, and the bandwidth of the sub-band, then there is no need to pre-determine the sub-frequency offset or the bandwidth of the sub-band. The number or bandwidth of a sub-band.
  • step S3 can be adjusted as required. For example, it can be executed before step S1 as shown in FIG. 2 or can be executed between step S1 and step S2.
  • the information of the sub-band includes:
  • the frequency point of the sub-band, and the bandwidth of the sub-band are the frequencies point of the sub-band, and the bandwidth of the sub-band.
  • the sub-band information reported by the terminal to the base station may include the frequency point of the sub-band and the bandwidth of the sub-band.
  • the base station can determine which sub-frequency band in the carrier is interfered or causing interference according to the frequency point of the sub-frequency band, and then can determine the start bandwidth and cut-off bandwidth of the sub-frequency band according to the bandwidth of the sub-frequency band.
  • the base station can determine that the sub-carrier is interfered or caused by the carrier A. It is from Z to Z+20MHz.
  • the frequency point of the sub-band in any of the above embodiments may be the center frequency point of the sub-band or the starting frequency point of the sub-band, which can be specifically set as required, or It may be pre-arranged between the terminal and the base station.
  • the terminal and the base station pre-arranged that the frequency point uploaded by the terminal to the base station is the center frequency of the sub-band, then the base station uses the frequency uploaded by the terminal as the center frequency of the sub-band to determine the sub-band .
  • Fig. 3 is a schematic flowchart showing another method for indicating coexistence interference in a device according to an embodiment of the present disclosure. As shown in Figure 3, the method further includes:
  • step S4 receiving second configuration information sent by the base station
  • the second configuration information is used to indicate at least one of the number of sub-bands and the bandwidth of the sub-bands, and other items are predetermined.
  • the base station may configure at least one of the number of sub-bands and the bandwidth of the sub-bands by sending the first configuration information to the terminal, and the other items may be predetermined.
  • the first configuration information is used to indicate the number of sub-bands, and the bandwidth of the sub-bands is predetermined; for example, the first configuration information is used to indicate the number of sub-bands and the bandwidth of the sub-bands, so there is no need Predetermine the number of sub-bands or the bandwidth of the sub-bands.
  • step S4 can be adjusted as required. For example, it can be executed before step S1 as shown in FIG. 3, or it can be executed between step S1 and step S2.
  • the carrier includes multiple sub-bands, and the information of the sub-bands includes:
  • Identification information associated with the sub-band includes but is not limited to the serial number of the sub-band and the name of the sub-band.
  • the information of the sub-bands may include identification information associated with the sub-bands
  • the base station may pre-store the association relationship between the identification information and the sub-bands, and then receive the identification After the information is obtained, the sub-frequency band indicating the association of the information can be queried based on the association relationship.
  • carrier A with carrier frequency X is interfered
  • the bandwidth of carrier A is 100MHz
  • carrier A includes 5 sub-bands
  • the bandwidth of each sub-band is 20 MHz.
  • the terminal can The carrier frequency X of carrier A is sent to the base station, and the sequence number of the second sub-band is for example 2, so that the base station can determine according to the carrier frequency X that carrier A in the 5G network used by the terminal is interfered, and can accurately determine according to the sequence number 2.
  • the second sub-frequency band in carrier A is interfered, so that the specific frequency band that is interfered in the carrier can be accurately determined, so that the base station can accurately determine how to solve the existing or upcoming in-device coexistence interference of the terminal.
  • the sub-band is a bandwidth part (Band Width Part, BWP for short).
  • the carrier in the 5G network used by the terminal can be pre-configured as multiple bandwidth parts, that is, the carrier includes multiple bandwidth parts. Then, in the case that the terminal exists or will appear in-device coexistence interference, The information of the sub-frequency band sent by the base station may specifically be the information of the sending bandwidth part.
  • the base station Since the bandwidth part is pre-configured by the base station, the base station already knows the identification information, start bandwidth, and cut-off bandwidth of each bandwidth part in advance. Therefore, with the bandwidth part as the sub-bandwidth, the terminal only needs to send the identification information of the bandwidth part to the base station, namely The base station can accurately determine the bandwidth part corresponding to the identification information without sending other information about the bandwidth part, which is beneficial to reduce the communication burden between the terminal and the base station.
  • Fig. 4 is a schematic flowchart showing another method for indicating coexistence interference in a device according to an embodiment of the present disclosure. As shown in Figure 4, the method further includes:
  • step S5 the information of the carrier interference direction is sent to the base station.
  • the terminal may also send information about the carrier interference direction to the base station, so that the base station can clearly determine that the carrier in the carrier network (including but not limited to 5G network) used by the terminal is affected by the network in other frequency bands. Interference, or cause interference to the network in other frequency bands, so that the terminal can accurately determine how to solve the existing or upcoming in-device coexistence interference of the terminal.
  • the carrier in the carrier network including but not limited to 5G network
  • the carrier A in the 5G network used by the terminal is interfered by the network under the ISM frequency band
  • the interference direction information can be the network interference carrier A under the ISM frequency band; for example, the carrier A in the 5G network used by the terminal is against the ISM frequency band
  • the network under the network causes interference
  • the information of the interference direction can be that carrier A interferes with the network under the ISM frequency band.
  • the base station can determine how to solve the existing or upcoming in-device coexistence interference of the terminal.
  • the interference direction information is that the carrier in the operator's network is interfered by networks in other frequency bands, and the priority of the operator's network is higher, then the power of the signal communicating with the terminal can be increased so that the terminal can receive the operator's network
  • the information carried by the carrier is that the carrier in the operator's network causes interference to the network in other frequency bands, and the priority of the network in other frequency bands is higher, then the communication between the carrier in the operator's network and the terminal can be suspended so that the terminal has priority Able to receive information from networks with higher priority.
  • the information on the interference direction is not limited to the carrier in the operator’s network being interfered by the network in other frequency bands and causing interference to the network in other frequency bands. It can also be the interference between operator networks, such as 4G networks. And 5G network interference.
  • the coexistence interference in the device is not limited to the interference between the two networks
  • the interference direction information is not limited to the interference direction between the two networks.
  • in-device coexistence interference includes the interference of the carrier in the 4G network to the carrier in the 5G network, and the interference of the carrier in the 5G network to the network in the ISM frequency band
  • the interference direction information can include two pieces, one indicating the carrier in the 4G network to the 5G network The medium carrier causes interference, and the other indicates that the carrier in the 5G network causes interference to the network in the ISM band.
  • the terminal communicates based on a combination of multiple carriers. If the combination of multiple carriers suffers or causes interference, the information of the sub-band includes:
  • the terminal may communicate based on a combination of multiple carriers, for example, it may communicate based on carrier aggregation (Carrier Aggregation, referred to as carrier aggregation), MRDC (Muti-RAT Dual-Connectivity, multi-standard dual connectivity), etc.
  • carrier aggregation Carrier Aggregation, referred to as carrier aggregation
  • MRDC Moti-RAT Dual-Connectivity, multi-standard dual connectivity
  • what is interfered by networks in other frequency bands, or causes interference to networks in other frequency bands can be a combination of sub-bands in the combined multiple carriers, and then it can report to the base station that the multiple carriers receive Combination information of the sub-bands that interfere or cause interference, so that the base station can determine which specific combinations of sub-bands are interfered or cause interference.
  • the terminal communicates based on the combination of carrier C and carrier D.
  • Carrier C includes sub-bands C1, C2, and C3, and carrier D includes sub-bands D1, D2, and D3.
  • the combination of sub-band C1 and sub-band D2 is useful for networks in other frequency bands.
  • the information of the sub-band reported to the base station includes the information of the sub-band C1 and the information of the sub-band D2.
  • it can be the frequency and bandwidth of the sub-band C1 and the frequency and bandwidth of the sub-band D2.
  • the base station can determine that the combination of sub-band C1 and sub-band D2 is causing interference to networks in other frequency bands.
  • the network interference in other frequency bands, or interference to the network in other frequency bands can also be independent sub-bands in the combined multiple carriers.
  • the information of the sub-band is the information of the independent sub-carrier.
  • Fig. 5 is a schematic flowchart showing another method for indicating coexistence interference in a device according to an embodiment of the present disclosure. As shown in Figure 5, the method further includes:
  • step S6 the information on the degree of influence caused or affected by the carrier is sent to the base station.
  • the terminal may also send to the base station information on the extent to which the carrier has been affected or affected, so that the base station can determine the specific conditions under which the carrier has been affected or affected, so as to accurately respond to ensure that the presence or imminent Coexistence interference within the device that occurs. For example, if the carrier is affected to a greater extent, then the transmit and receive power of the carrier is increased by a greater extent, and if the carrier is affected to a lesser extent, the transmit and receive power of the carrier is increased by a smaller extent.
  • the degree information includes at least one of the following:
  • the information on the degree of impact or impact caused by the carrier may be a specific decibel value (db value), such as 20dB interference, 50dB interference, etc., or it may be a level indicator, where the terminal and the base station may The association relationship between the level identifier and the specific decibel value is stored, and the terminal can determine the level identifier corresponding to the decibel value that caused or suffered interference according to the association relationship, and then report the level identifier to the base station, and the base station can determine the level according to the association relationship
  • the decibel value corresponding to the identifier for example, the grade identifier a corresponds to 10dB, the grade identifier b corresponds to 20dB, and the grade identifier c corresponds to 30dB. Then when the received degree information is b, it can be determined that the grade identifier b corresponds to 20dB.
  • the association between the level identifier and the decibel value may be determined by the terminal itself and then notified to the base station, or it may be configured by the base station to the terminal.
  • Fig. 6 is a schematic flowchart showing another method for indicating coexistence interference in a device according to an embodiment of the present disclosure.
  • the information of the carrier frequency of the carrier that is interfered or caused by the interference sent to the base station, and the information of the sub-band that is interfered or caused by the carrier in the carrier includes:
  • step S21 it is determined whether the degree to which the carrier causes or is affected is greater than a preset threshold
  • step S22 if the degree is greater than the preset threshold, the information of the carrier frequency of the carrier that is interfered or caused by interference and the information of the sub-band of the carrier that is interfered or caused by interference is sent to the base station.
  • the terminal does not have high requirements for communication quality, so when the carrier in the network used by the terminal is interfered or the degree of interference is low, the terminal’s communication requirements can still be met. In this case, there is no need for the base station to solve the in-device coexistence interference.
  • the degree is less than or equal to the preset threshold, since the communication requirements of the terminal can still be met, there is no need
  • the information of the carrier frequency of the carrier that is interfered or caused by interference and the information of the sub-band that is interfered or caused by interference in the carrier is sent to the base station, so as to reduce the communication load between the terminal and the base station.
  • the present disclosure also provides an embodiment of the in-device coexistence interference indicating device.
  • Fig. 7 is a schematic block diagram showing an in-device coexistence interference indication device according to an embodiment of the present disclosure.
  • the in-device coexistence interference indication method shown in this embodiment can be applied to terminals such as mobile phones, tablet computers, and wearable devices.
  • the terminal can be used as a user equipment to communicate with a base station, where it can communicate with the base station based on 5G NR.
  • the in-device coexistence interference indicating device may include
  • the interference determination module 1 is configured to determine that the terminal has or will have in-device coexistence interference
  • the information sending module 2 is configured to send to the base station the carrier frequency of the carrier that is interfered with or caused the interference, and the information of the interfered or interfered sub-band in the carrier, wherein the carrier includes at least one sub-band.
  • the information of the sub-band includes:
  • the frequency offset of the frequency point of the sub-band relative to the carrier frequency, and the bandwidth of the sub-band is the frequency offset of the frequency point of the sub-band relative to the carrier frequency, and the bandwidth of the sub-band.
  • Fig. 8 is a schematic block diagram showing another device for indicating coexistence interference in a device according to an embodiment of the present disclosure. As shown in Figure 8, the device further includes:
  • the first receiving module 3 is configured to receive first configuration information sent by the base station
  • the first configuration information is used to indicate at least one of the frequency offset, the number of sub-bands, and the bandwidth of the sub-bands, and other items are predetermined.
  • the information of the sub-band includes:
  • the frequency point of the sub-band, and the bandwidth of the sub-band are the frequencies point of the sub-band, and the bandwidth of the sub-band.
  • Fig. 9 is a schematic block diagram showing another device for indicating coexistence interference in a device according to an embodiment of the present disclosure. As shown in Figure 9, the device further includes:
  • the second receiving module 4 is configured to receive second configuration information sent by the base station
  • the second configuration information is used to indicate at least one of the number of sub-bands and the bandwidth of the sub-bands, and other items are predetermined.
  • the carrier includes multiple sub-bands, and the information of the sub-bands includes:
  • the sub-band is a bandwidth part.
  • the information sending module is further configured to send information about the carrier interference direction to the base station.
  • the terminal communicates based on a combination of multiple carriers. If the combination of multiple carriers suffers or causes interference, the information of the sub-band includes:
  • the information sending module is further configured to send to the base station information on the degree to which the carrier is affected or affected.
  • the degree information includes at least one of the following:
  • Fig. 10 is a schematic block diagram showing another device for indicating coexistence interference in a device according to an embodiment of the present disclosure.
  • the information sending module 2 includes:
  • the degree determining sub-module 21 is configured to determine whether the degree to which the carrier causes or is affected is greater than a preset threshold
  • the information sending submodule 22 is configured to send to the base station the carrier frequency of the interfered or interfered carrier and the information of the interfered or interfered sub-band in the carrier when the degree is greater than a preset threshold .
  • the relevant part can refer to the part of the description of the method embodiment.
  • the device embodiments described above are merely illustrative.
  • the modules described as separate components may or may not be physically separated, and the components displayed as modules may or may not be physical modules, that is, they may be located in One place, or it can be distributed to multiple network modules. Some or all of the modules may be selected according to actual needs to achieve the objectives of the solutions of the embodiments. Those of ordinary skill in the art can understand and implement it without creative work.
  • the present disclosure also proposes an electronic device, including:
  • a memory for storing processor executable instructions
  • the processor is configured to implement the in-device coexistence interference indication method described in any of the foregoing embodiments.
  • the present disclosure also proposes a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the steps in the in-device coexistence interference indication method described in any of the above embodiments are implemented.
  • Fig. 11 is a schematic block diagram showing an apparatus 1100 for in-device coexistence interference according to an embodiment of the present disclosure.
  • the apparatus 1100 may be a mobile phone, a computer, a digital broadcasting terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc.
  • the device 1100 may include one or more of the following components: a processing component 1102, a memory 1104, a power supply component 1106, a multimedia component 1108, an audio component 1110, an input/output (I/O) interface 1112, a sensor component 1114, And communication component 1116.
  • a processing component 1102 a memory 1104, a power supply component 1106, a multimedia component 1108, an audio component 1110, an input/output (I/O) interface 1112, a sensor component 1114, And communication component 1116.
  • the processing component 1102 generally controls the overall operations of the device 1100, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 1102 may include one or more processors 1120 to execute instructions to complete all or part of the steps of the foregoing method.
  • the processing component 1102 may include one or more modules to facilitate the interaction between the processing component 1102 and other components.
  • the processing component 1102 may include a multimedia module to facilitate the interaction between the multimedia component 1108 and the processing component 1102.
  • the memory 1104 is configured to store various types of data to support operations on the device 1100. Examples of such data include instructions for any application or method operating on the device 1100, contact data, phonebook data, messages, pictures, videos, and so on.
  • the memory 1104 can be implemented by any type of volatile or nonvolatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic Disk or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic Disk Magnetic Disk or Optical Disk.
  • the power supply component 1106 provides power for various components of the device 1100.
  • the power supply component 1106 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for the device 1100.
  • the multimedia component 1108 includes a screen that provides an output interface between the device 1100 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, sliding, and gestures on the touch panel. The touch sensor may not only sense the boundary of a touch or slide action, but also detect the duration and pressure related to the touch or slide operation.
  • the multimedia component 1108 includes a front camera and/or a rear camera. When the device 1100 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 1110 is configured to output and/or input audio signals.
  • the audio component 1110 includes a microphone (MIC), and when the device 1100 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode, the microphone is configured to receive external audio signals.
  • the received audio signal may be further stored in the memory 1104 or sent via the communication component 1116.
  • the audio component 1110 further includes a speaker for outputting audio signals.
  • the I/O interface 1112 provides an interface between the processing component 1102 and the peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, and the like. These buttons may include but are not limited to: home button, volume button, start button, and lock button.
  • the sensor component 1114 includes one or more sensors for providing the device 1100 with various aspects of state evaluation.
  • the sensor component 1114 can detect the open/close state of the device 1100 and the relative positioning of components.
  • the component is the display and the keypad of the device 1100.
  • the sensor component 1114 can also detect the position change of the device 1100 or a component of the device 1100. , The presence or absence of contact between the user and the device 1100, the orientation or acceleration/deceleration of the device 1100, and the temperature change of the device 1100.
  • the sensor component 1114 may include a proximity sensor configured to detect the presence of nearby objects when there is no physical contact.
  • the sensor component 1114 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 1114 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • the communication component 1116 is configured to facilitate wired or wireless communication between the device 1100 and other devices.
  • the device 1100 can access a wireless network based on a communication standard, such as WiFi, 2G or 3G, 4G LTE, 5G NR, or a combination thereof.
  • the communication component 1116 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 1116 further includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the apparatus 1100 may be implemented by one or more application specific integrated circuits (ASIC), digital signal processors (DSP), digital signal processing devices (DSPD), programmable logic devices (PLD), field programmable Implemented by a gate array (FPGA), controller, microcontroller, microprocessor, or other electronic components, and used to implement the method described in any of the foregoing embodiments.
  • ASIC application specific integrated circuits
  • DSP digital signal processors
  • DSPD digital signal processing devices
  • PLD programmable logic devices
  • FPGA field programmable Implemented by a gate array (FPGA), controller, microcontroller, microprocessor, or other electronic components, and used to implement the method described in any of the foregoing embodiments.
  • non-transitory computer-readable storage medium including instructions, such as a memory 1104 including instructions, and the foregoing instructions may be executed by the processor 1120 of the device 1100 to complete the foregoing method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.

Abstract

本公开的实施例提出一种设备内共存干扰指示方法,包括:确定终端存在或将要出现设备内共存干扰;向基站发送受到干扰或造成干扰的载波的载波频率,以及载波中受到干扰或造成干扰的子频段的信息,其中,载波包括至少一个子频段。根据本公开的实施例,在终端存在或将要出现设备内共存干扰的情况下,可以向基站发送受到干扰或造成干扰的载波的载波频率,使得基站根据载波频率可以确定受到干扰或造成干扰的载波,并且还可以向基站发送载波中受到干扰或造成干扰的子频段的信息,使得基站根据子频段的信息可以确定载波中具体受到干扰或造成干扰的子频段。

Description

设备内共存干扰指示方法和装置 技术领域
本公开涉及通信技术领域,具体而言,涉及设备内共存干扰指示方法,设备内共存干扰指示装置,电子设备和计算机可读存储介质。
背景技术
目前的电子设备可以基于多种网络进行通信,而不同网络之间的信号可能产生干扰,导致电子设备无法正常通信。
对于这种情况,相关技术中引入了设备内共存干扰(In Device Coexistence,简称IDC)解决方案,具体是当电子设备中出现设备内共存干扰时,且电子设备自身并不能解决设备内共存干扰,向基站上报造成干扰或受到干扰的载波的载波频率。
然而相关技术中仅向基站上报载波频率,这仅适用于造成干扰或受到干扰的载波带宽较小的情况,对于5G NR(New Radio,新空口)所支持的带宽较大的载波,基站仅根据频点难以准确地确定载波中造成干扰或受到干扰的具体频段。
发明内容
有鉴于此,本公开的实施例提出了设备内共存干扰指示方法,设备内共存干扰指示装置,电子设备和计算机可读存储介质,以解决相关技术中基站仅根据频点难以准确地确定载波中造成干扰或受到干扰的具体频段。
根据本公开实施例的第一方面,提出一种设备内共存干扰指示方法,适用于终端,所述方法包括:
确定所述终端存在或将要出现设备内共存干扰;
向基站发送受到干扰或造成干扰的载波的载波频率,以及所述载波中受到干扰或造成干扰的子频段的信息,其中,所述载波包括至少一个子频段。
可选地,所述子频段的信息包括:
所述子频段的频点相对所述载波频率的频偏,以及所述子频段的带宽。
可选地,所述方法还包括:
接收所述基站发送的第一配置信息;
其中,所述第一配置信息用于指示所述频偏,所述子频段的数量和所述子频段的带宽中的至少一项,其他项为预先确定的。
可选地,所述子频段的信息包括:
所述子频段的频点,以及所述子频段的带宽。
可选地,所述方法还包括:
接收所述基站发送的第二配置信息;
其中,所述的第二配置信息用于指示所述子频段的数量和所述子频段的带宽中的至少一项,其他项为预先确定的。
可选地,所述载波包括多个子频段,所述子频段的信息包括:
与所述子频段相关联的标识信息。
可选地,所述子频段为带宽部分。
可选地,所述方法还包括:
向所述基站发送所述载波干扰方向的信息。
可选地,所述终端基于多个载波组合的方式通信,若所述多个载波的组合受到干扰或造成干扰,所述子频段的信息包括:
所述多个载波中受到干扰或造成干扰的子频段的组合信息。
可选地,所述方法还包括:
向所述基站发送所述载波造成影响或受到影响的程度信息。
可选地,所述程度信息包括以下至少之一:
等级标识,分贝值。
可选地,所述向基站发送受到干扰或造成干扰的载波的载波频率,以及所述载波中受到干扰或造成干扰的子频段的信息包括:
确定所述载波造成影响或受到影响的程度是否大于预设阈值;
若所述程度大于预设阈值,向基站发送受到干扰或造成干扰的载波的载波频率,以及所述载波中受到干扰或造成干扰的子频段的信息。
根据本公开实施例的第二方面,提出一种设备内共存干扰指示装置,适用于终端,所述装置包括:
干扰确定模块,被配置为确定所述终端存在或将要出现设备内共存干扰;
信息发送模块,被配置为向基站发送受到干扰或造成干扰的载波的载波频率,以及所述载波中受到干扰或造成干扰的子频段的信息,其中,所述载波包括至少一个子频段。
可选地,所述子频段的信息包括:
所述子频段的频点相对所述载波频率的频偏,以及所述子频段的带宽。
可选地,所述装置还包括:
第一接收模块,被配置为接收所述基站发送的第一配置信息;
其中,所述第一配置信息用于指示所述频偏,所述子频段的数量和所述子频段的带宽中的至少一项,其他项为预先确定的。
可选地,所述子频段的信息包括:
所述子频段的频点,以及所述子频段的带宽。
可选地,所述装置还包括:
第二接收模块,被配置为接收所述基站发送的第二配置信息;
其中,所述的第二配置信息用于指示所述子频段的数量和所述子频段的带宽中的至少一项,其他项为预先确定的。
可选地,所述载波包括多个子频段,所述子频段的信息包括:
与所述子频段相关联的标识信息。
可选地,所述子频段为带宽部分。
可选地,所述信息发送模块还被配置为向所述基站发送所述载波干扰方向的信息。
可选地,所述终端基于多个载波组合的方式通信,若所述多个载波的组合受到 干扰或造成干扰,所述子频段的信息包括:
所述多个载波中受到干扰或造成干扰的子频段的组合信息。
可选地,所述信息发送模块还被配置为向所述基站发送所述载波造成影响或受到影响的程度信息。
可选地,所述程度信息包括以下至少之一:
等级标识,分贝值。
可选地,所述信息发送模块包括:
程度确定子模块,被配置为确定所述载波造成影响或受到影响的程度是否大于预设阈值;
信息发送子模块,被配置为在所述程度大于预设阈值的情况下,向基站发送受到干扰或造成干扰的载波的载波频率,以及所述载波中受到干扰或造成干扰的子频段的信息。
根据本公开实施例的第三方面,提出一种电子设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为实现上述任一实施例所述的设备内共存干扰指示方法。
根据本公开实施例的第四方面,提出一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述任一实施例所述的设备内共存干扰指示方法中的步骤。
根据本公开的实施例,在终端存在或将要出现设备内共存干扰的情况下,可以向基站发送受到干扰或造成干扰的载波的载波频率,使得基站根据载波频率可以确定受到干扰或造成干扰的载波,并且还可以向基站发送所述载波中受到干扰或造成干扰的子频段的信息,使得基站根据子频段的信息可以确定所述载波中具体受到干扰或造成干扰的子频段。从而在终端基于带宽较大的网络通信存在或即将出现设备内共存干扰时,基站能够根据终端上报的载波频率和子频段的信息准确地确定终端通信所使用的载波中具体哪个子频段受到干扰或造成干扰,以便基站准确地确定如何解决终端存在或即将出现的设备内共存干扰。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是根据本公开的实施例示出的一种设备内共存干扰指示方法的示意流程图。
图2是根据本公开的实施例示出的另一种设备内共存干扰指示方法的示意流程图。
图3是根据本公开的实施例示出的又一种设备内共存干扰指示方法的示意流程图。
图4是根据本公开的实施例示出的又一种设备内共存干扰指示方法的示意流程图。
图5是根据本公开的实施例示出的又一种设备内共存干扰指示方法的示意流程图。
图6是根据本公开的实施例示出的又一种设备内共存干扰指示方法的示意流程图。
图7是根据本公开的实施例示出的一种设备内共存干扰指示装置的示意框图。
图8是根据本公开的实施例示出的另一种设备内共存干扰指示装置的示意框图。
图9是根据本公开的实施例示出的又一种设备内共存干扰指示装置的示意框图。
图10是根据本公开的实施例示出的又一种设备内共存干扰指示装置的示意框图。
图11是根据本公开的实施例示出的一种用于设备内共存干扰的装置1100的示意框图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
图1是根据本公开的实施例示出的一种设备内共存干扰指示方法的示意流程图。本实施例所示的设备内共存干扰指示方法可以适用于手机,平板电脑,可穿戴设备等终端,所述终端可以作为用户设备与基站通信,其中,可以基于5G NR与基站通信。
如图1所示,所述设备内共存干扰指示方法可以包括以下步骤:
在步骤S1中,确定所述终端存在或将要出现设备内共存干扰;
在一个实施例中,终端可以使用运营商网络,例如5G网络通信,还可以使用其他频段下的网络,例如Wi-Fi,蓝牙,GNSS(Global Navigation Satellite System,全球导航卫星系统)等网络通信,Wi-Fi,蓝牙,GNSS等网络,属于ISM(Industrial Scientific Medical,工业的、科学的和医学的)频段。
其中,在5G网络和ISM频段下的网络之间存在相互干扰的情况下,可以确定终端存在设备内共存干扰,在5G网络和ISM频段下的网络之间将要出现相互干扰的情况下,可以确定终端将要出现设备内共存干扰。例如可以预先设定一个时间段,称作预设时间段,然后确定当前时刻后的预设时间段内终端是否存在设备内共存干扰,若当前时刻后的预设时间段内终端是否存在设备内共存干扰,确定终端将要出现设备内共存干扰。
在步骤S2中,向基站发送受到干扰或造成干扰的载波的载波频率(所述载波频率可以是指载波的中心频点的频率),以及所述载波中受到干扰或造成干扰的子频段的信息,其中,所述载波包括至少一个子频段。
其中,将要出现设备内共存干扰,是指可以当前时刻后的预设时间段内终端存在设备内共存干扰,预设时间段可以是基站配置的,可以是终端自行设置的,若设备内共存干扰是将要出现的设备内共存干扰,终端还可以向基站发送设备内共存干扰在 将来发生的时刻,以便基站及时解决设备内共存干扰,例如可以在所述时刻直接解决,可以在所述时刻时解决。
需要说明的是,在终端存在或将要出现设备内共存干扰的情况下,终端可以先判断存在或将要出现的设备内共存干扰是否能够由自己解决,在判断不能由自己解决的情况下,才向基站发送所述载波频率所述子频段的信息。
在相关技术中,由于终端使用4G LTE(Long Term Evolution,长期演进)网络通信,而4G网络中载波的带宽较小,一般情况约为20MHz,而通常情况下,4G网络中载波受到ISM频段下的网络的干扰,或者4G网络中载波对ISM频段下的网络造成的干扰的粒度也约为20MHz,也即造成干扰或受到干扰的载波,其整个带宽造成干扰或受到干扰,所以终端只需向基站上报频点,基站即可确定频点对应的载波全部造成干扰或受到干扰。
但是在终端基于5G网络通信的情况下,由于5G网络中载波的带宽可以达到100MHz(例如FR1频段)甚至400MHz(例如FR2频段),并且5G网络中载波受到ISM频段下的网络的干扰,或者5G网络中载波对ISM频段下的网络造成的干扰的粒度并不限于20MHz,那么仅向基站上报频点,并不能使得基站确定载波中具体哪个频段受到干扰或造成干扰。
根据本公开的实施例,在终端存在或将要出现设备内共存干扰的情况下,可以向基站发送受到干扰或造成干扰的载波的载波频率,使得基站根据载波频率可以确定受到干扰或造成干扰的载波,并且还可以向基站发送所述载波中受到干扰或造成干扰的子频段的信息,使得基站根据子频段的信息可以确定所述载波中具体受到干扰或造成干扰的子频段。从而在终端基于带宽较大的网络通信存在或即将出现设备内共存干扰时,基站能够根据终端上报的载波频率和子频段的信息准确地确定终端通信所使用的载波中具体哪个子频段受到干扰或造成干扰,以便基站准确地确定如何解决终端存在或即将出现的设备内共存干扰。
例如终端所使用的5G网络中载波频率为X的载波A受到ISM频段下的网络的干扰,载波A的带宽为100MHz,并且载波A包括5个子频段,每个子频段的带宽为20MHz(每个子频段的带宽也可以不相等,具体可以根据需要进行设置),具体是5个子频段中第2个频段受到干扰,那么终端可以向基站发送载波A的载波频率X,以及第2子频段的标识信息,从而使得基站能够根据载波频率X确定终端所使用的5G网络中载波A受到干扰,并且根据第2个子频段的标识信息可以准确地确定具体是载 波A中的第2个子频段受到干扰,从而准确地确定载波中受到干扰的具体频段,以便基站准确地确定如何解决终端存在或即将出现的设备内共存干扰。
需要说明的是,终端所使用的5G网络中可以有一个或多个载波受到ISM频段下的网络的干扰,或对ISM频段下的网络的造成干扰,所以终端向基站发送受到干扰或造成干扰的载波的载波频率,可以是一个载波的载波频率,也可以是多个载波的载波频率。并且对于一个载波而言,其中受到干扰或造成干扰的子频段可以是一个也可以是多个,所以终端向基站发送所述载波中受到干扰或造成干扰的子频段的信息,可以是一个子载波的信息,可以是多个子载波的信息。
可选地,所述子频段的信息包括:
所述子频段的频点相对所述载波频率的频偏,以及所述子频段的带宽。
在一个实施例中,终端向基站上报的子频段信息可以包括子频段的频点相对载波频率的频偏,以及子频段的带宽。基站根据频偏可以确定子频段的频点相对载波频率偏移的量,进而根据子频段的带宽可以确定子频段的起始带宽和截止带宽。
例如载波频率为X,频偏为Y,子频段的带宽为20MHz,所述频点为子频段的起始频点,那么基站可以确定子载波具体是从X+Y至X+Y+20MHz。
图2是根据本公开的实施例示出的另一种设备内共存干扰指示方法的示意流程图。如图2所示,所述方法还包括:
在步骤S3中,接收所述基站发送的第一配置信息;
其中,所述第一配置信息用于指示所述频偏,所述子频段的数量和所述子频段的带宽中的至少一项,其他项为预先确定的。
在一个实施例中,基站可以通过向终端发送第一配置信息,来配置所述频偏,所述子频段的数量和所述子频段的带宽中的至少一项,而其他项则可以是预先确定的。
例如第一配置信息用于指示所述频偏,所述子频段的数量和所述子频段的带宽为预先确定的;例如第一配置信息用于指示所述频偏和所述子频段的数量,所述子频段的带宽为预先确定的;例如第一配置信息用于指示所述频偏,所述子频段的数量和所述子频段的带宽,那么无需预先确定子频偏或子频段的数量或子频段的带宽。
需要说明的是,步骤S3可以根据需要调整执行顺序,例如可以如图2所示在步骤S1之前执行,也可以在步骤S1和步骤S2之间执行。
可选地,所述子频段的信息包括:
所述子频段的频点,以及所述子频段的带宽。
在一个实施例中,终端向基站上报的子频段信息可以包括子频段的频点,以及子频段的带宽。基站根据子频段的频点可以确定载波中具体哪个子频段受到干扰或造成干扰,进而根据子频段的带宽可以确定子频段的起始带宽和截止带宽。
例如载波频率为X,对应载波A,所述子频段的频点Z为子频段的起始频点,子频段的带宽为20MHz,那么基站可以确定受到干扰或造成干扰子载波具体是载波A中是从Z至Z+20MHz。
需要说明的是,以上任一实施例中所述子频段的频点,可以是所述子频段的中心频点,也可以是所述子频段的起始频点,具体可以根据需要设置,也可以是终端与基站预先约定的,例如终端与基站预先约定终端向基站上传的频点为子频段的中心频点,那么基站就将终端上传的频点作为子频段的中心频点来确定子频段。
图3是根据本公开的实施例示出的又一种设备内共存干扰指示方法的示意流程图。如图3所示,所述方法还包括:
在步骤S4中,接收所述基站发送的第二配置信息;
其中,所述的第二配置信息用于指示所述子频段的数量和所述子频段的带宽中的至少一项,其他项为预先确定的。
在一个实施例中,基站可以通过向终端发送第一配置信息,来配置所述子频段的数量和所述子频段的带宽中的至少一项,而其他项则可以是预先确定的。
例如第一配置信息用于指示所述子频段的数量,所述子频段的带宽为预先确定的;例如第一配置信息用于指示所述子频段的数量和所述子频段的带宽,那么无需预先确定子频段的数量或子频段的带宽。
需要说明的是,步骤S4可以根据需要调整执行顺序,例如可以如图3所示在步骤S1之前执行,也可以在步骤S1和步骤S2之间执行。
可选地,所述载波包括多个子频段,所述子频段的信息包括:
与所述子频段相关联的标识信息。其中,所述标识信息包括但不限于子频段的序号,子频段的名称。
在一个实施例中,在载波包括多个子频段的情况下,子频段的信息可以包括与 所述子频段相关联的标识信息,基站可以预先存储标识信息与子频段的关联关系,进而接收到标识信息后,可以基于关联关系查询到表示信息关联的子频段。
例如载波频率为X的载波A受到干扰,载波A的带宽为100MHz,并且载波A包括5个子频段,每个子频段的带宽为20MHz,具体是5个子频段中第2个频段受到干扰,那么终端可以向基站发送载波A的载波频率X,以及第2子频段的序号例如为2,从而使得基站能够根据载波频率X确定终端所使用的5G网络中载波A受到干扰,并且根据序号2可以准确地确定具体是载波A中的第2个子频段受到干扰,从而准确地确定载波中受到干扰的具体频段,以便基站准确地确定如何解决终端存在或即将出现的设备内共存干扰。
可选地,所述子频段为带宽部分(Band Width Part,简称BWP)。
在一个实施例中,终端所使用的5G网络中的载波可以被预先配置为多个带宽部分,也即载波包括多个带宽部分,那么在终端存在或将要出现设备内共存干扰的情况下,向基站发送子频段的信息,具体可以是发送带宽部分的信息。
由于带宽部分是基站预先配置的,所以基站预先已经知道每个带宽部分的标识信息和起始带宽以及截止带宽,因此以带宽部分作为子带宽,终端只需向基站发送带宽部分的标识信息,即可使得基站准确地确定标识信息对应的带宽部分,而无需发送其他有关带宽部分的信息,有利于减少终端与基站之间的通信负担。
图4是根据本公开的实施例示出的又一种设备内共存干扰指示方法的示意流程图。如图4所示,所述方法还包括:
在步骤S5中,向所述基站发送所述载波干扰方向的信息。
在一个实施例中,终端还可以向基站发送所述载波干扰方向的信息,以使基站明确是终端所使用的运营商网络(包括但不限于5G网络)中的载波受到了其他频段下网络的干扰,还是对其他频段下网络造成了干扰,以便终端能够准确地确定如何解决终端存在或即将出现的设备内共存干扰。
例如终端所使用的5G网络中的载波A受到ISM频段下的网络的干扰,那么干扰方向的信息可以是ISM频段下的网络干扰载波A;例如终端所使用的5G网络中的载波A对ISM频段下的网络造成干扰,那么干扰方向的信息可以是载波A干扰ISM频段下的网络。
在一个实施例中,根据所述载波干扰方向的信息,以及终端所使用的运营商网 络和其他频段下网络的优先级,基站可以确定如何解决终端存在或即将出现的设备内共存干扰。
例如干扰方向的信息为运营商网络中的载波受到其他频段下的网络干扰,且运营商网络的优先级较高,那么可以提高与终端通信的信号的功率,以便终端能够接收到运营商网络中的载波所携带的信息。例如干扰方向的信息为运营商网络中的载波对其他频段下的网络造成干扰,且其他频段下的网络的优先级较高,那么可以暂停在运营商网络中的载波与终端通信,以便终端优先能够接收优先级较高的网络中的信息。
需要说明的是,干扰方向的信息并不限于运营商网络中的载波受到了其他频段下网络的干扰和对其他频段下网络造成了干扰,也可以是运营商网络之间的干扰,例如4G网络和5G网络之间的干扰。
并且设备内共存干扰不限于两种网络之间的干扰,干扰方向的信息也不限于两种网络之间的干扰方向。例如设备内共存干扰包括4G网络中载波对5G网络中载波的干扰,以及5G网络中载波对ISM频段下网络的干扰,那么干扰方向的信息可以包括两条,一条指示4G网络中载波对5G网络中载波造成干扰,另一条指示5G网络中载波对ISM频段下网络造成干扰。
可选地,所述终端基于多个载波组合的方式通信,若所述多个载波的组合受到干扰或造成干扰,所述子频段的信息包括:
所述多个载波中受到干扰或造成干扰的子频段的组合信息。
在一个实施例中,终端可以基于多个载波组合的方式通信,例如可以基于载波聚合(Carrier Aggregation,简称载波聚合),MRDC(Muti-RAT Dual-Connectivity,多制式双连接)等方式通信。
在这种情况下,受到其他频段下网络干扰的,或对其他频段下的网络造成干扰的,可以是组合的多个载波中子频段的组合,那么可以向基站上报所述多个载波中受到干扰或造成干扰的子频段的组合信息,以便基站明确具体是哪几个子频段的组合受到干扰或造成干扰。
例如终端基于载波C和载波D组合的方式通信,载波C包括子频段C1,C2和C3,载波D包括子频段D1,D2和D3,其中子频段C1和子频段D2的组合对其他频段下的网络造成干扰,那么向基站上报的子频段的信息包括子频段C1的信息和子频段D2的信息,例如具体可以是子频段C1的频点和带宽,以及子频段D2的频点和 带宽,据此,基站可以确定是子频段C1和子频段D2的组合对其他频段下的网络造成干扰。
需要说明的是,在终端基于多个载波组合的方式通信时,受到其他频段下网络干扰的,或对其他频段下的网络造成干扰的,也可以是组合的多个载波中独立的子频段,在这种情况下,子频段的信息的就是该独立的子载波的信息。
图5是根据本公开的实施例示出的又一种设备内共存干扰指示方法的示意流程图。如图5所示,所述方法还包括:
在步骤S6中,向所述基站发送所述载波造成影响或受到影响的程度信息。
在一个实施例中,终端还可以向基站发送载波造成影响或受到影响的程度信息,以便基站确定载波造成影响或受到影响的具体情况,从而准确地做出响应,以确保解决终端中存在或即将出现的设备内共存干扰。例如载波受到影响的程度较大,那么提高载波的收发功率的幅度较大,载波受到影响的程度较小,那么提高载波的收发功率的幅度较小。
可选地,所述程度信息包括以下至少之一:
等级标识,分贝值。
在一个实施例中,载波造成影响或受到影响的程度信息,可以是具体的分贝值(db值),例如造成20dB干扰,受到50dB干扰等,也可以是等级标识,其中,终端和基站可以预先存储等级标识和具体的分贝值之间的关联关系,终端可以根据该关联关系确定造成干扰或受到干扰的分贝值对应的等级标识,然后将等级标识上报给基站,基站可以根据该关联关系确定等级标识对应的分贝值,例如等级标识a对应10dB,等级标识b对应20dB,等级标识c对应30dB,那么当接收到的程度信息为b,则可以确定等级标识b对应20dB。
需要说明的是,等级标识和分贝值之间的关联关系可以有终端自行确定,然后告知基站,也可以由基站配置给终端。
图6是根据本公开的实施例示出的又一种设备内共存干扰指示方法的示意流程图。如图6所示,所述向基站发送受到干扰或造成干扰的载波的载波频率的信息,以及所述载波中受到干扰或造成干扰的子频段的信息包括:
在步骤S21中,确定所述载波造成影响或受到影响的程度是否大于预设阈值;
在步骤S22中,若所述程度大于预设阈值,向基站发送受到干扰或造成干扰的载波的载波频率的信息,以及所述载波中受到干扰或造成干扰的子频段的信息。
在一个实施例中,在某些情况下,终端对于通信质量的要求不高,那么当终端所使用的网络中载波受到干扰或造成干扰的程度较低,仍能满足终端的通信要求,在这种情况下就无需基站解决设备内共存干扰。本实施例可以确定载波造成影响或受到影响的程度是否大于预设阈值,并在所述程度大于预设阈值时,也即设备内共存干扰不能满足终端的通信要求,才向基站发送受到干扰或造成干扰的载波的载波频率的信息,以及所述载波中受到干扰或造成干扰的子频段的信息,而在所述程度小于或等于预设阈值时,由于仍能满足终端的通信要求,则无需向基站发送受到干扰或造成干扰的载波的载波频率的信息,以及所述载波中受到干扰或造成干扰的子频段的信息,以减少终端与基站之间的通信负荷。
与前述的设备内共存干扰指示方法的实施例相对应,本公开还提供了设备内共存干扰指示装置的实施例。
图7是根据本公开的实施例示出的一种设备内共存干扰指示装置的示意框图。本实施例所示的设备内共存干扰指示方法可以适用于手机,平板电脑,可穿戴设备等终端,所述终端可以作为用户设备与基站通信,其中,可以基于5G NR与基站通信。
如图7所示,所述设备内共存干扰指示装置可以包括
干扰确定模块1,被配置为确定所述终端存在或将要出现设备内共存干扰;
信息发送模块2,被配置为向基站发送受到干扰或造成干扰的载波的载波频率,以及所述载波中受到干扰或造成干扰的子频段的信息,其中,所述载波包括至少一个子频段。
可选地,所述子频段的信息包括:
所述子频段的频点相对所述载波频率的频偏,以及所述子频段的带宽。
图8是根据本公开的实施例示出的另一种设备内共存干扰指示装置的示意框图。如图8所示,所述装置还包括:
第一接收模块3,被配置为接收所述基站发送的第一配置信息;
其中,所述第一配置信息用于指示所述频偏,所述子频段的数量和所述子频段的带宽中的至少一项,其他项为预先确定的。
可选地,所述子频段的信息包括:
所述子频段的频点,以及所述子频段的带宽。
图9是根据本公开的实施例示出的又一种设备内共存干扰指示装置的示意框图。如图9所示,所述装置还包括:
第二接收模块4,被配置为接收所述基站发送的第二配置信息;
其中,所述的第二配置信息用于指示所述子频段的数量和所述子频段的带宽中的至少一项,其他项为预先确定的。
可选地,所述载波包括多个子频段,所述子频段的信息包括:
与所述子频段相关联的标识信息。
可选地,所述子频段为带宽部分。
可选地,所述信息发送模块还被配置为向所述基站发送所述载波干扰方向的信息。
可选地,所述终端基于多个载波组合的方式通信,若所述多个载波的组合受到干扰或造成干扰,所述子频段的信息包括:
所述多个载波中受到干扰或造成干扰的子频段的组合信息。
可选地,所述信息发送模块还被配置为向所述基站发送所述载波造成影响或受到影响的程度信息。
可选地,所述程度信息包括以下至少之一:
等级标识,分贝值。
图10是根据本公开的实施例示出的又一种设备内共存干扰指示装置的示意框图。如图10所示,所述信息发送模块2包括:
程度确定子模块21,被配置为确定所述载波造成影响或受到影响的程度是否大于预设阈值;
信息发送子模块22,被配置为在所述程度大于预设阈值的情况下,向基站发送受到干扰或造成干扰的载波的载波频率,以及所述载波中受到干扰或造成干扰的子频段的信息。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在相关方法 的实施例中进行了详细描述,此处将不做详细阐述说明。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
本公开还提出一种电子设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为实现上述任一实施例所述的设备内共存干扰指示方法。
本公开还提出一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述任一实施例所述的设备内共存干扰指示方法中的步骤。
图11是根据本公开的实施例示出的一种用于设备内共存干扰的装置1100的示意框图。例如,装置1100可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图11,装置1100可以包括以下一个或多个组件:处理组件1102,存储器1104,电源组件1106,多媒体组件1108,音频组件1110,输入/输出(I/O)的接口1112,传感器组件1114,以及通信组件1116。
处理组件1102通常控制装置1100的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1102可以包括一个或多个处理器1120来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件1102可以包括一个或多个模块,便于处理组件1102和其他组件之间的交互。例如,处理组件1102可以包括多媒体模块,以方便多媒体组件1108和处理组件1102之间的交互。
存储器1104被配置为存储各种类型的数据以支持在装置1100的操作。这些数据的示例包括用于在装置1100上操作的任何应用程序或方法的指令,联系人数据,电 话簿数据,消息,图片,视频等。存储器1104可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1106为装置1100的各种组件提供电力。电源组件1106可以包括电源管理系统,一个或多个电源,及其他与为装置1100生成、管理和分配电力相关联的组件。
多媒体组件1108包括在所述装置1100和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件1108包括一个前置摄像头和/或后置摄像头。当装置1100处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1110被配置为输出和/或输入音频信号。例如,音频组件1110包括一个麦克风(MIC),当装置1100处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1104或经由通信组件1116发送。在一些实施例中,音频组件1110还包括一个扬声器,用于输出音频信号。
I/O接口1112为处理组件1102和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1114包括一个或多个传感器,用于为装置1100提供各个方面的状态评估。例如,传感器组件1114可以检测到装置1100的打开/关闭状态,组件的相对定位,例如所述组件为装置1100的显示器和小键盘,传感器组件1114还可以检测装置1100或装置1100一个组件的位置改变,用户与装置1100接触的存在或不存在,装置1100方位或加速/减速和装置1100的温度变化。传感器组件1114可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1114 还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1114还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1116被配置为便于装置1100和其他设备之间有线或无线方式的通信。装置1100可以接入基于通信标准的无线网络,如WiFi,2G或3G,4G LTE、5G NR或它们的组合。在一个示例性实施例中,通信组件1116经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件1116还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置1100可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述任一实施例所述的方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器1104,上述指令可由装置1100的处理器1120执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意 在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本公开实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本公开的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本公开的方法及其核心思想;同时,对于本领域的一般技术人员,依据本公开的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本公开的限制。

Claims (26)

  1. 一种设备内共存干扰指示方法,其特征在于,适用于终端,所述方法包括:
    确定所述终端存在或将要出现设备内共存干扰;
    向基站发送受到干扰或造成干扰的载波的载波频率,以及所述载波中受到干扰或造成干扰的子频段的信息,其中,所述载波包括至少一个子频段。
  2. 根据权利要求1所述的方法,其特征在于,所述子频段的信息包括:
    所述子频段的频点相对所述载波频率的频偏,以及所述子频段的带宽。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    接收所述基站发送的第一配置信息;
    其中,所述第一配置信息用于指示所述频偏,所述子频段的数量和所述子频段的带宽中的至少一项,其他项为预先确定的。
  4. 根据权利要求1所述的方法,其特征在于,所述子频段的信息包括:
    所述子频段的频点,以及所述子频段的带宽。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    接收所述基站发送的第二配置信息;
    其中,所述的第二配置信息用于指示所述子频段的数量和所述子频段的带宽中的至少一项,其他项为预先确定的。
  6. 根据权利要求1所述的方法,其特征在于,所述载波包括多个子频段,所述子频段的信息包括:
    与所述子频段相关联的标识信息。
  7. 根据权利要求1所述的方法,其特征在于,所述子频段为带宽部分。
  8. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    向所述基站发送所述载波干扰方向的信息。
  9. 根据权利要求1所述的方法,其特征在于,所述终端基于多个载波组合的方式通信,若所述多个载波的组合受到干扰或造成干扰,所述子频段的信息包括:
    所述多个载波中受到干扰或造成干扰的子频段的组合信息。
  10. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    向所述基站发送所述载波造成影响或受到影响的程度信息。
  11. 根据权利要求10所述的方法,其特征在于,所述程度信息包括以下至少之一:
    等级标识,分贝值。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,所述向基站发送受 到干扰或造成干扰的载波的载波频率,以及所述载波中受到干扰或造成干扰的子频段的信息包括:
    确定所述载波造成影响或受到影响的程度是否大于预设阈值;
    若所述程度大于预设阈值,向基站发送受到干扰或造成干扰的载波的载波频率,以及所述载波中受到干扰或造成干扰的子频段的信息。
  13. 一种设备内共存干扰指示装置,其特征在于,适用于终端,所述装置包括:
    干扰确定模块,被配置为确定所述终端存在或将要出现设备内共存干扰;
    信息发送模块,被配置为向基站发送受到干扰或造成干扰的载波的载波频率,以及所述载波中受到干扰或造成干扰的子频段的信息,其中,所述载波包括至少一个子频段。
  14. 根据权利要求13所述的装置,其特征在于,所述子频段的信息包括:
    所述子频段的频点相对所述载波频率的频偏,以及所述子频段的带宽。
  15. 根据权利要求14所述的装置,其特征在于,所述装置还包括:
    第一接收模块,被配置为接收所述基站发送的第一配置信息;
    其中,所述第一配置信息用于指示所述频偏,所述子频段的数量和所述子频段的带宽中的至少一项,其他项为预先确定的。
  16. 根据权利要求13所述的装置,其特征在于,所述子频段的信息包括:
    所述子频段的频点,以及所述子频段的带宽。
  17. 根据权利要求16所述的装置,其特征在于,所述装置还包括:
    第二接收模块,被配置为接收所述基站发送的第二配置信息;
    其中,所述的第二配置信息用于指示所述子频段的数量和所述子频段的带宽中的至少一项,其他项为预先确定的。
  18. 根据权利要求13所述的装置,其特征在于,所述载波包括多个子频段,所述子频段的信息包括:
    与所述子频段相关联的标识信息。
  19. 根据权利要求13所述的装置,其特征在于,所述子频段为带宽部分。
  20. 根据权利要求13所述的装置,其特征在于,所述信息发送模块还被配置为向所述基站发送所述载波干扰方向的信息。
  21. 根据权利要求13所述的装置,其特征在于,所述终端基于多个载波组合的方式通信,若所述多个载波的组合受到干扰或造成干扰,所述子频段的信息包括:
    所述多个载波中受到干扰或造成干扰的子频段的组合信息。
  22. 根据权利要求13所述的装置,其特征在于,所述信息发送模块还被配置为向所述基站发送所述载波造成影响或受到影响的程度信息。
  23. 根据权利要求22所述的装置,其特征在于,所述程度信息包括以下至少之一:
    等级标识,分贝值。
  24. 根据权利要求13至23中任一项所述的装置,其特征在于,所述信息发送模块包括:
    程度确定子模块,被配置为确定所述载波造成影响或受到影响的程度是否大于预设阈值;
    信息发送子模块,被配置为在所述程度大于预设阈值的情况下,向基站发送受到干扰或造成干扰的载波的载波频率,以及所述载波中受到干扰或造成干扰的子频段的信息。
  25. 一种电子设备,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为实现权利要求1至12中任一项所述的设备内共存干扰指示方法。
  26. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现权利要求1至12中任一项所述的设备内共存干扰指示方法中的步骤。
PCT/CN2019/091759 2019-06-18 2019-06-18 设备内共存干扰指示方法和装置 WO2020252664A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19934286.6A EP3989657A4 (en) 2019-06-18 2019-06-18 METHOD AND DEVICE FOR INDICATION OF COEXISTENCE INTERFERENCE IN A DEVICE
CN201980001108.3A CN110431904B (zh) 2019-06-18 2019-06-18 设备内共存干扰指示方法和装置
CN202311115136.2A CN117014095A (zh) 2019-06-18 2019-06-18 设备内共存干扰指示方法和装置
PCT/CN2019/091759 WO2020252664A1 (zh) 2019-06-18 2019-06-18 设备内共存干扰指示方法和装置
US17/620,664 US20220360416A1 (en) 2019-06-18 2019-06-18 Method and device for indication of in-device coexistence interference

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/091759 WO2020252664A1 (zh) 2019-06-18 2019-06-18 设备内共存干扰指示方法和装置

Publications (1)

Publication Number Publication Date
WO2020252664A1 true WO2020252664A1 (zh) 2020-12-24

Family

ID=68419113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091759 WO2020252664A1 (zh) 2019-06-18 2019-06-18 设备内共存干扰指示方法和装置

Country Status (4)

Country Link
US (1) US20220360416A1 (zh)
EP (1) EP3989657A4 (zh)
CN (2) CN117014095A (zh)
WO (1) WO2020252664A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117063573A (zh) * 2022-03-11 2023-11-14 北京小米移动软件有限公司 干扰信息上报、频率范围确定方法和装置
WO2024011516A1 (en) * 2022-07-14 2024-01-18 Zte Corporation Methods and devices for reporting in-device coexistence interference
WO2024065228A1 (zh) * 2022-09-27 2024-04-04 北京小米移动软件有限公司 干扰频率信息上报方法及其装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102457885A (zh) * 2010-10-29 2012-05-16 中兴通讯股份有限公司 一种测量处理方法及系统
CN102595543A (zh) * 2011-01-10 2012-07-18 中兴通讯股份有限公司 一种终端内多种无线技术共存的通信方法和系统
CN103391180A (zh) * 2012-05-10 2013-11-13 中国移动通信集团公司 一种终端内不同通信模块间共存的方法和装置
WO2015013924A1 (zh) * 2013-07-31 2015-02-05 华为技术有限公司 切换方法、基站和用户设备
CN108401537A (zh) * 2018-02-11 2018-08-14 北京小米移动软件有限公司 设备内共存干扰协调方法、装置、用户设备及通信设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120092072A (ko) * 2011-02-10 2012-08-20 주식회사 팬택 무선통신 시스템에서 기기내 공존 간섭을 조정하는 장치 및 방법
KR102052436B1 (ko) * 2011-12-05 2019-12-05 삼성전자주식회사 기기-내 공존 간섭을 처리하는 방법 및 장치
KR20130126382A (ko) * 2012-05-11 2013-11-20 주식회사 팬택 다수 요소 반송파 시스템에서 기기 내 공존 간섭을 제어하는 장치 및 방법
GB2512877A (en) * 2013-04-09 2014-10-15 Nec Corp Communication system
US10624108B2 (en) * 2017-04-05 2020-04-14 Qualcomm Incorporated Coexistence interference mitigation in wireless systems
CN114884642A (zh) * 2017-11-17 2022-08-09 苹果公司 对无线通信设备能力的临时处理
KR102547937B1 (ko) * 2018-08-08 2023-06-26 삼성전자주식회사 무선 통신 시스템에서 데이터를 송수신하는 방법 및 장치
CN111526586B (zh) * 2019-02-01 2024-04-12 华为技术有限公司 一种通信的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102457885A (zh) * 2010-10-29 2012-05-16 中兴通讯股份有限公司 一种测量处理方法及系统
CN102595543A (zh) * 2011-01-10 2012-07-18 中兴通讯股份有限公司 一种终端内多种无线技术共存的通信方法和系统
CN103391180A (zh) * 2012-05-10 2013-11-13 中国移动通信集团公司 一种终端内不同通信模块间共存的方法和装置
WO2015013924A1 (zh) * 2013-07-31 2015-02-05 华为技术有限公司 切换方法、基站和用户设备
CN108401537A (zh) * 2018-02-11 2018-08-14 北京小米移动软件有限公司 设备内共存干扰协调方法、装置、用户设备及通信设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Correction concerning IDC reporting", 3GPP DRAFT; R2-1819174, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Spokane, USA; 20181112 - 20181116, 30 November 2018 (2018-11-30), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051495398 *

Also Published As

Publication number Publication date
CN110431904A (zh) 2019-11-08
EP3989657A1 (en) 2022-04-27
CN117014095A (zh) 2023-11-07
US20220360416A1 (en) 2022-11-10
CN110431904B (zh) 2023-10-10
EP3989657A4 (en) 2023-01-25

Similar Documents

Publication Publication Date Title
US11191085B2 (en) Method and apparatus for coordinating in-device coexistence interference, user equipment and communication device
CN107466486B (zh) 干扰协调方法及装置、基站和用户设备
RU2732620C1 (ru) Способ и устройство согласования помех, базовая станция и пользовательское оборудование
US11350394B2 (en) Resource configuration method, apparatus, user equipment, and base station
EP3716665A1 (en) Transmission configuration method and apparatus
WO2020252664A1 (zh) 设备内共存干扰指示方法和装置
CN110521230B (zh) 设备内共存干扰指示方法、接收方法和装置
CN108401532B (zh) 通信链路的配置方法及装置
WO2021012114A1 (zh) 设备内共存干扰指示方法、接收方法和装置
US11503642B2 (en) Method and device for determining an uplink-downlink switching point
US11937296B2 (en) Monitoring method and apparatus, device, and storage medium
US20210314996A1 (en) Method and apparatus for configuring and determining transmission block scheduling interval, and base station
WO2021000314A1 (zh) 小区重选方法和装置、优先级指示方法和装置
US11540294B2 (en) Method and apparatus for eliminating intermodulation interference, user equipment and base station
CN110603847B (zh) 小区重选方法和装置、电子设备以及计算机可读存储介质
US11799705B2 (en) Message transmission method and device
WO2023168689A1 (zh) 干扰信息上报、频率范围确定方法和装置
US11871381B2 (en) Data transmission method and apparatus
US20240121061A1 (en) Information transmission method, terminal device, base station, and storage medium
WO2021042272A1 (zh) Idc检测方法和装置、idc检测指示方法和装置
US20220346096A1 (en) Identifier transmitting, identifier receiving, and information transmitting methods and devices
CN115336364A (zh) 一种配置、确定下行调度信息的方法、装置、设备及介质
CN115699852A (zh) 干扰测量方法、干扰处理方法及其装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19934286

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019934286

Country of ref document: EP

Effective date: 20220118