WO2020251054A1 - 波長変換部材、それを用いた波長変換装置およびレーザー照射装置、ならびに、波長変換部材の製造方法 - Google Patents

波長変換部材、それを用いた波長変換装置およびレーザー照射装置、ならびに、波長変換部材の製造方法 Download PDF

Info

Publication number
WO2020251054A1
WO2020251054A1 PCT/JP2020/023400 JP2020023400W WO2020251054A1 WO 2020251054 A1 WO2020251054 A1 WO 2020251054A1 JP 2020023400 W JP2020023400 W JP 2020023400W WO 2020251054 A1 WO2020251054 A1 WO 2020251054A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength conversion
laser light
wavelength
raman
substance
Prior art date
Application number
PCT/JP2020/023400
Other languages
English (en)
French (fr)
Inventor
孝蔵 玉置
京樹 中島
Original Assignee
Sdniコスモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sdniコスモ株式会社 filed Critical Sdniコスモ株式会社
Publication of WO2020251054A1 publication Critical patent/WO2020251054A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength

Definitions

  • the present invention relates to a wavelength conversion member, a wavelength conversion device and a laser irradiation device using the same, and a method for manufacturing the wavelength conversion member.
  • lasers have been used in the medical field and the like.
  • Lasers are roughly classified into solid-state lasers, gas lasers, liquid lasers, and semiconductor lasers according to their types.
  • the lasers mainly used in the field of dentistry are carbon dioxide gas laser, Nd: YAG laser, semiconductor laser, and Er: YAG laser.
  • Nd YAG laser
  • semiconductor laser YAG laser
  • Er YAG laser
  • a semiconductor laser is used in a wavelength range of 400 nm to 10600 nm, is generally a tissue-transmitting type, has high heat absorption to erythrocytes, and activates cells under low output. It is used as a laser for soft tissues that can be expected.
  • the Er: YAG laser is a laser for both soft and hard tissues that has a central wavelength of 2940 nm and uses water.
  • the Er: YAG laser has a strong power to excite water molecules and explode with steam, and is used as a laser for scraping teeth, gums, bones, etc. by using this power.
  • a dental treatment device using a semiconductor laser As a dental treatment using such a laser irradiation device, a dental treatment device using a semiconductor laser is disclosed (see Patent Document 1).
  • a first light source that outputs a first light having a central wavelength included in a wavelength range of 400 nm to 410 nm and a first light output from the first light source are input to the incident end.
  • An analysis that analyzes an optical waveguide that outputs the first light that has been waveguideed from the exit end and irradiates the area to be treated with the output first light, and the light that is received by the light receiving unit. It includes means and a display means for displaying the analysis result analyzed by the analysis means.
  • an irradiation device using an Er: YAG laser is disclosed as a solid-state laser for medical treatment and dental treatment (see Patent Document 2).
  • the irradiation device is configured such that its elongated main body includes two or more optical fibers and transmits electromagnetic energy from an output source toward a target surface.
  • the distal end of the irradiator is exemplified as a single structure and the proximal end is exemplified to include a large number of proximal end members.
  • the irradiator comprises two or more optical fibers that transfer energy toward the distal end and at least one optical fiber that transfers energy from the distal end to the proximal end of the device.
  • the dental treatment apparatus described in Patent Document 1 can only perform treatment corresponding to a wavelength having a central wavelength in a predetermined wavelength range, and the use of the treatment is limited.
  • a main object of the present invention is to provide a wavelength conversion member capable of easily converting and amplifying a wavelength different from the wavelength of the laser light output from the laser irradiation device even if the laser irradiation device has a low output. Is to provide.
  • the wavelength conversion member according to the present invention includes a laser light guide including a core portion for waveguideing laser light and a clad arranged around the core portion, and a core on one end side of the laser light guide.
  • a laser light guide including a core portion for waveguideing laser light and a clad arranged around the core portion, and a core on one end side of the laser light guide.
  • the wavelength conversion substance is diffused and arranged, and a part of the diffused arrangement of the wavelength conversion substance is contained in the liquid silica.
  • It has a Raman wavelength conversion unit arranged in combination with Si, and when laser light is incident on the Raman wavelength conversion unit from the other end side of the laser light guide through the core unit, the wavelength in the Raman wavelength conversion unit.
  • the wavelength conversion member includes a laser light guide body including a core portion for waveguideing laser light, a clad arranged around the core portion, a base material containing Si, and a base material.
  • the Raman wavelength conversion unit is provided with a Raman wavelength conversion unit composed of a wavelength conversion material doped in, and the Raman wavelength conversion unit is fused to the core portion on one end side of the laser light guide body, and the wavelength conversion material is diffused.
  • a part of the wavelength conversion material dispersed and arranged is bonded to Si and arranged, and laser light is arranged from the other end side of the laser light guide body to the Raman wavelength conversion unit via the core portion.
  • the Raman wavelength conversion unit produces a Raman effect based on a wavelength conversion substance, so that laser light generated by Raman scattered light whose wavelength is converted to a wavelength different from the wavelength of the laser light is output.
  • a wavelength conversion member. Further, this wavelength conversion member includes a base material containing Si for waveguideing laser light and a wavelength conversion material doped to be added to the base material, and a wavelength conversion material for producing a Raman effect on the base material.
  • the wavelength conversion material is diffused and arranged, and the Raman wavelength conversion unit in which a part of the diffused and arranged wavelength conversion material is arranged in combination with Si and the Raman wavelength conversion
  • the Raman wavelength conversion unit has a Raman effect based on the wavelength conversion substance.
  • the wavelength conversion member is characterized in that laser light generated by Raman scattered light whose wavelength is converted to a wavelength different from the wavelength of the laser light is output.
  • the average particle size of the wavelength conversion substance is preferably 1 nm or more and 500 nm or less.
  • the doping rate of the wavelength conversion substance is preferably 0.1% or more and 30% or less.
  • the wavelength of the laser light output by the Raman scattered light is preferably 3000 nm or more.
  • the material of the core portion of this wavelength conversion member is quartz.
  • the wavelength conversion substance to be doped is titanium oxide.
  • the titanium oxide is preferably titanium oxide (TiO 2 ). Further, in this wavelength conversion member, titanium oxide is preferably anatase type.
  • the wavelength conversion device is a laser having a wavelength different from the wavelength of the laser beam generated by the Raman effect, which is arranged on the other end side of the wavelength conversion member according to the present invention and the laser light guide body. It is a wavelength conversion device including a half mirror unit having a function of reflecting light.
  • the laser irradiation device is for controlling the temperature in the Raman wavelength conversion unit by controlling the wavelength conversion device according to the present invention, the semiconductor laser that emits laser light to the wavelength conversion member, and the semiconductor laser. It is a laser irradiation device including a control unit.
  • the method for manufacturing a wavelength conversion member according to the present invention includes a step of preparing a mixture of liquid silica and a wavelength conversion substance, and a laser guide with an exposed core portion for waveguideing laser light to the prepared mixture.
  • a method for manufacturing a wavelength conversion member which includes a step of fixing a portion coated with the mixture at a temperature lower than the temperature to fix the wavelength conversion substance in a diffused state to form a Raman wavelength conversion portion. ..
  • the method for manufacturing the wavelength conversion member according to the present invention includes a step of preparing a Raman wavelength conversion unit in which a wavelength conversion material is pre-doped into a substrate containing Si, and a laser light waveguide to the Raman wavelength conversion unit.
  • a method for manufacturing a wavelength conversion member which includes a step of diffusing a wavelength conversion substance contained in the above to a core portion of a laser light guide body.
  • the method for manufacturing the wavelength conversion member according to the present invention includes a step of preparing a string-shaped base material formed of a material having a high refractive index such as Si-containing quartz (SiO 2 ) and a step of preparing the base material.
  • This is a method for manufacturing a wavelength conversion member which includes a step of doping and adding a wavelength conversion substance to form a Raman wavelength conversion unit, and a step of forming a clad arranged around the formed Raman wavelength conversion unit.
  • a wavelength conversion member capable of easily converting and amplifying a wavelength different from the wavelength of the laser light output from the laser irradiation device even if the laser irradiation device has a low output. it can. Further, it is possible to provide a wavelength conversion device provided with this wavelength conversion member. Further, it is possible to provide a laser irradiation device provided with this wavelength conversion device. Furthermore, it is possible to provide a method for manufacturing a wavelength conversion member, which can manufacture the above-mentioned wavelength conversion member.
  • FIG. 1 is an external view of the laser irradiation device according to the first embodiment of the present invention.
  • FIG. 2 is an illustrated diagram showing the configuration of the laser irradiation device according to the first embodiment of the present invention.
  • FIG. 3 is an enlarged cross-sectional view of the wavelength conversion member according to the first embodiment of the present invention.
  • the laser irradiation device 10 includes a wavelength conversion device 20 and a main body 50 as shown in FIG. 1 or 2. Then, as shown in FIG. 1 or 2, the wavelength conversion device 20 includes a wavelength conversion member 30 and a half mirror unit 40.
  • the wavelength conversion member 30 includes a laser light guide 32.
  • the laser light guide 32 includes a core portion 36 for guiding laser light, a clad 37 arranged around the core portion 36, and a coating layer 38 arranged around the clad 37.
  • the core portion 36, the clad 37, and the coating layer 38 are arranged concentrically.
  • the core portion 36 is made of a material having a high refractive index, such as quartz containing Si (SiO 2 ).
  • the clad 37 is formed of a material such as quartz or resin, and has a refractive index lower than that of the core portion 36 by about 0.2% or more and 1% or less.
  • the coating layer 38 is formed of a resin material such as fluororesin and protects the core portion 36 and the clad 37.
  • the core portion 36 is formed of quartz (SiO 2 )
  • the clad 37 is formed of a hard resin material
  • the coating layer 38 is formed of a resin material containing fluorine.
  • the core portion 36 according to the present embodiment may be formed hollow. Details of the hollow-formed embodiment will be described later. Further, the core portion 36 of the present embodiment is formed of quartz (SiO 2 ), but the present invention is not limited to this, and for example, zirconia or sapphire may be used.
  • the core portion 36 is exposed on one end side of the laser light guide body 32, and the Raman wavelength conversion portion 34 is arranged so as to cover the core portion 36 in that portion.
  • the wavelength conversion substance is diffused and arranged in the Raman wavelength conversion unit 34 by doping and adding a mixture of liquid silica and the wavelength conversion substance. That is, the Raman wavelength conversion unit 32 is formed of silica-based glass, and the wavelength conversion substance is diffused and arranged inside the silica-based glass. In addition, some of the diffused and arranged wavelength conversion substances are bonded and arranged as the structure of Si crystals in the liquid silica.
  • the tip of the Raman wavelength conversion unit 32 is formed in a substantially hemispherical shape.
  • the tip of the Raman wavelength conversion unit 32 may be formed in a lens shape.
  • the Raman wavelength conversion unit 32 is formed of silica-based glass, and the inside thereof is formed. , Wavelength converter and carbon are diffused and arranged.
  • the Raman wavelength conversion unit 34 When laser light is incident on the Raman wavelength conversion unit 34 from the other end side of the laser light guide 32 via the core unit 36, the Raman effect based on the wavelength conversion substance is generated in the Raman wavelength conversion unit 34, so that the laser light Laser light (Stokes light) by Raman scattered light whose wavelength is converted to a wavelength different from the wavelength of is output.
  • a blue light-absorbing material may be mixed with the liquid silica side used for the mixture to attenuate and remove harmful wavelengths. As a result, the safety of the output laser beam can be ensured.
  • the stalk phenomenon of electrons is expanded to the excitation level by affecting other atoms. That is, since the stalk phenomenon is a phenomenon caused by the interaction of electrons between two atoms, Raman shift and Rayleigh shift are caused by the relationship between the electron value and the shortage until the number of electrons in the orbit is stable. It is presumed that the mutual influence of the above can be reflected in the magnitude of the stalk phenomenon from the resonance phenomenon of photons (see Non-Patent Documents 1 to 6 for more detailed theoretical contents). Further, the wavelength conversion substance is bonded as a structure of Si crystals contained in the liquid silica, so that the stalk phenomenon is expanded to the excited stalk region, which affects the expansion of the wavelength region.
  • the wavelength conversion substance for example, a titanium oxide or a rare earth laser medium such as Er, Yb, Nd, Bi, or Pr can be used.
  • the output as laser light (Stokes light) by Raman scattered light converted to a wavelength peculiar to each substance generated by the Raman effect can be selected.
  • the particle size of the wavelength-changing substance is set to the nano level in order to secure a surface area for efficiently producing the Raman effect, and the smaller the particle size, the more preferable.
  • a wavelength conversion substance is selected in consideration of the absorption wavelength of water.
  • titanium oxide titanium oxide (TiO 2 ) is preferable.
  • the average particle size of titanium oxide as a wavelength conversion substance is preferably 1 nm or more and 500 nm or less at the nanometer level. As a result, it is possible to secure a surface area for efficiently producing the Raman effect.
  • the doping rate of titanium oxide as a wavelength conversion substance is preferably 0.1% or more and 30% or less. As a result, the Raman effect can be efficiently generated.
  • the wavelength of the laser light output by the Raman scattered light can be 3000 nm or more. As described above, the theory that the wavelength is shifted to the infrared region by titanium oxide is disclosed in Non-Patent Document 7 and Non-Patent Document 8.
  • titanium oxide TiO 2
  • titanium oxide having a rutile-type or anatase-type crystal structure can be used.
  • the wavelength conversion substance it is preferable to use titanium oxide having an anatase-type crystal structure.
  • titanium oxide is of the anatase type, it has the possibility of being significant as a surrounding atom that causes a stalk phenomenon when the associated atomic structure is modified to the rutile type at 900 ° C. or higher.
  • the laser light guide 32 of the present embodiment has a core portion 36 having a diameter of about 200 ⁇ m or more and 320 ⁇ m or less, a clad 37 having an outer diameter of about 250 ⁇ m or more and 370 ⁇ m or less, and a Raman wavelength conversion unit 34 arranged on the laser light guide 32.
  • the diameter of the portion is about 220 ⁇ m or more and 340 ⁇ m or less, and the length of the laser light guide 32 along the axial direction is about 200 ⁇ m.
  • the core portion 36 is exposed on one end side of the laser light guide body 32, and the Raman wavelength conversion portion 34 is arranged so as to cover the core portion 36 in that portion.
  • the wavelength conversion substance is diffused and arranged in the Raman wavelength conversion unit 34 by doping and adding a mixture of the liquid silica and the wavelength conversion substance. That is, the Raman wavelength conversion unit 32 is formed of silica-based glass, and the wavelength conversion substance is diffused and arranged inside the silica-based glass.
  • some of the diffused and arranged wavelength conversion substances are bonded and arranged as the structure of Si crystals in the liquid silica.
  • the wavelength conversion member 30 shown in FIG. 3 is necessary for efficiently producing the Raman effect when the average particle size of titanium oxide as a wavelength conversion substance is nano-level, 1 nm or more and 500 nm or less.
  • the surface area can be secured.
  • the Raman effect can be more efficiently generated. ..
  • the wavelength conversion member 30 shown in FIG. 3 can be suitably used for dental treatment because it is a water absorption wavelength when the wavelength of the laser light output by the Raman scattered light is 3000 nm or more. it can.
  • the wavelength conversion member 30 shown in FIG. 3 when the core portion 36 is made of a material having a high refractive index, for example, quartz containing Si (SiO 2 ), the wavelength conversion member 30 is efficiently used.
  • the laser beam can be guided to the light.
  • the wavelength conversion member 30 shown in FIG. 3 uses titanium oxide as the wavelength conversion substance and further uses titanium oxide (TiO 2 ), it is caused by Raman scattered light generated by the Raman effect in the wavelength range required for dental treatment. Laser light (Stokes light) can be obtained. Furthermore, if this titanium oxide is anatase type, the accompanying atomic structure is significant as a surrounding atom that causes a stalk phenomenon when it is modified to rutile type at 900 ° C. or higher, so that it can be used more preferably. it can.
  • FIG. 4 is an enlarged cross-sectional view of the wavelength conversion member according to the modified example of the first embodiment of the present invention.
  • the same parts as those of the wavelength conversion member 30 shown in FIG. 3 are designated by the same reference numerals, and the description thereof will be omitted.
  • the wavelength conversion member 130 includes a laser light guide 132 and a Raman wavelength conversion unit 134.
  • the laser light guide 132 includes a core portion 36 for guiding the laser beam and a clad 37 arranged around the core portion 36.
  • the Raman wavelength conversion unit 134 is fused and joined to the core unit 36 exposed on one end side of the laser light guide body 132.
  • the Raman wavelength conversion unit 134 includes a base material 134a and a wavelength conversion substance for doping and adding to the base material 134a.
  • the base material 134a contains Si.
  • the substrate 134a is made of quartz.
  • the wavelength conversion substance is diffused and arranged inside the base material 134a, and a part of the diffused arrangement of the wavelength conversion material is arranged on the base material 134a. It is arranged in combination with the contained Si.
  • the wavelength conversion substance used in the Raman wavelength conversion unit 134 the same substance as the Raman wavelength conversion unit 34 can be used.
  • the Raman wavelength conversion unit 134 When laser light is incident on the Raman wavelength conversion unit 134 via the core unit 36 from the other end side of the laser light guide body 132, the Raman effect based on the wavelength conversion substance is generated in the Raman wavelength conversion unit 134, so that the laser light Laser light (Stokes light) by Raman scattered light whose wavelength is converted to a wavelength different from the wavelength of is output.
  • Laser light Stokes light
  • the wavelength conversion member 130 shown in FIG. 4 has the same effect as the wavelength conversion member 30 shown in FIG. 3, and also has the following effects. That is, since the Raman wavelength conversion unit 134 is separately manufactured and then joined to the laser light guide body 132, the wavelength conversion member 130 can be easily obtained by mass-producing the Raman wavelength conversion unit 134. Therefore, the structure is suitable for mass production of the wavelength conversion member 130.
  • the wavelength conversion device 20 includes a wavelength conversion member 30 and a half mirror unit 40, as shown in FIGS. 1 and 2.
  • the half mirror portion 40 according to the first embodiment is arranged on the other end side of the wavelength conversion member 30, and reflects the laser light having a wavelength converted to a wavelength different from the wavelength of the laser light generated by the Raman effect.
  • the wavelength conversion device 20 can also be composed of a wavelength conversion member 130 and a half mirror unit 40.
  • the wavelength conversion device 20 shown in FIG. 1 or 2 includes a half mirror unit 40 having a function of reflecting a laser beam having a wavelength converted to a wavelength different from the wavelength of the laser light generated by the Raman effect, wavelength conversion is performed.
  • the Raman effect in the member 30 it is possible to more efficiently amplify the laser light (Stokes light) by the Raman scattered light whose wavelength has been converted to a wavelength different from the wavelength of the laser light.
  • the laser irradiation device 10 includes a wavelength conversion device 20 and a main body 50.
  • the main body 50 controls the laser generation unit 52 that emits laser light to the wavelength conversion member 30 and the laser generation unit 52 to control the Raman wavelength conversion unit 34 of the wavelength conversion members 30 and 130.
  • a control unit 54 for controlling the temperature in the above is provided.
  • the main body 50 of the laser irradiation device 10 displays an operation unit 56 for operating the laser irradiation device 10 via the control unit 54 and a control state of the laser irradiation device 10.
  • a display unit 58 is provided.
  • the wavelength conversion member 30 can be used.
  • the laser light generation unit 52 emits laser light under the control of the control unit 54, and outputs the laser light to the wavelength conversion device 20.
  • the laser light generating unit 52 a semiconductor laser, a solid-state laser device, a fiber laser device, or the like can be adopted.
  • the laser light generating unit 52 according to the present embodiment is composed of a semiconductor laser. This semiconductor laser outputs laser light having a predetermined wavelength according to a current input from a power supply circuit (not shown). Further, the laser light generating unit 52 has a CW mode that continuously emits laser light, and a repeat mode that intermittently repeats laser oscillation (on-time) and oscillation stop (off-time) at a constant set time and a constant output intensity. It may be provided with various laser output modes such as.
  • the repeat mode can be realized, for example, by intermittently inputting a drive current having a predetermined current value to the semiconductor laser.
  • the laser light generating unit 52 can output at a wavelength of 980 nm, an output of 4 W or more and about 30 W or less, and in CW mode and repeat mode.
  • the laser light generating unit 52 can output the laser in a repeat mode so that the on-time is 1 ms or more and 1000 ms or less and the off-time is 1 ms or more and 1000 ms or less.
  • the control unit 54 comprehensively controls each component of the laser irradiation device 10. Further, the control unit 54 realizes the function of the present embodiment in the laser irradiation device 10 by executing the program stored in the storage unit (not shown).
  • control unit 54 performs a process of controlling so as to perform a process of emitting the laser light from the laser light generating unit 52.
  • the operation unit 56 includes operation buttons and the like, and outputs a signal corresponding to the user's operation to the control unit 54.
  • the control unit 54 performs a process of controlling the magnitude, on-time, off-time, and the like of the output of the laser light emitted from the laser light generation unit 52 in response to the operation of the operation unit 56.
  • the display unit 58 displays according to the operation according to the present invention under the control of the control unit 54.
  • the storage unit (not shown) has a semiconductor storage device such as a RAM or ROM, a magnetic disk storage device such as a hard disk drive, and the like, and stores programs, data, and the like for realizing the functions according to the present invention.
  • the storage unit is also used as a work area for program execution by the control unit 54.
  • the Raman wavelength conversion unit 134 may be arranged between the half mirror unit 40 and the laser light generation unit 52. Then, before the laser light output from the laser light generation unit 52 enters the half mirror unit 40, the laser light (Stokes light) by Raman scattered light converted into a wavelength different from the wavelength of the laser light is output. Can be made to. Further, a prism structure may be arranged between the half mirror unit 40 and the laser light generating unit 52. At this time, it is preferable that the prism structure is doped with a wavelength conversion substance. The prism structure has a function of dispersing the laser light from the laser light generating unit 52 according to the wavelength.
  • the control unit 54 performs a process of emitting laser light from the laser light generation unit 52.
  • the wavelength conversion propagates through the core portion 36 of the laser light guide 32 and is diffused to the Raman wavelength conversion portion 34 of the wavelength conversion members 30 and 130.
  • laser light Stokes light generated by Raman scattered light whose wavelength is converted to a wavelength different from the wavelength of the incident laser light is output.
  • the laser light is emitted in a pulse shape, and the temperature in the Raman wavelength conversion unit 34 becomes high, but the control unit 54 controls the wavelength conversion members 30 and 130 so that they do not melt.
  • the laser irradiation device 10 shown in FIGS. 1 and 2 includes the wavelength conversion device 20 according to the present invention, even a low-power laser irradiation device can easily output the laser light from the laser generation unit 52. It is possible to provide a laser irradiation device 10 capable of converting a wavelength to a wavelength different from the wavelength of the above and amplifying the wavelength.
  • FIG. 5 is a flow chart of a method for manufacturing a wavelength conversion member according to the first embodiment.
  • the laser light guide body 32 is prepared.
  • the laser light guide 32 includes a core portion 36 for guiding laser light, a clad 37 arranged around the core portion 36, and a coating layer 38 arranged around the clad 37.
  • the clad 37 and the coating layer 38 about several centimeters from the tip of the laser light guide 32 are removed with a jig or the like, and the core portion 36 is exposed.
  • a mixture of the liquid glass and the wavelength conversion substance is prepared, and the mixture is doped and added to the exposed core portion 36.
  • a mixture in which carbon (or a carbon compound) is further added may be prepared with respect to the mixture of the liquid glass and the wavelength conversion substance.
  • the carbon added here is preferably carbon nanoparticles formed as particles (nanoparticles, nanoparticles) having a nano-level particle size. This makes it possible to accelerate the doping in the next step S104. Further, the smaller the average particle size of the carbon particles, the more effective it is, and it is preferable that the average particle size is 1 nm or more and 50 nm or less.
  • the mixing ratio of the liquid glass and the wavelength conversion substance is, for example, 50% by mass in mass%.
  • the wavelength conversion substance for example, a titanium oxide or a rare earth laser medium such as Er, Yb, Nd, Bi, or Pr can be used. That is, the wavelength conversion substance can select the output as laser light (Stokes light) by Raman scattered light converted to a wavelength peculiar to the substance generated by the Raman effect.
  • the particle size of the wavelength-changing substance is set to the nano level in order to secure a surface area for efficiently producing the Raman effect, and the smaller the particle size, the more preferable. In particular, when this wavelength conversion member is used for dental treatment, a wavelength conversion substance is selected in consideration of the absorption wavelength of water.
  • titanium oxide titanium oxide (TiO 2 ) is preferable.
  • the average particle size of titanium oxide is preferably 1 nm or more and 500 nm or less at the nano level. As a result, it is possible to secure a surface area for efficiently producing the Raman effect.
  • step S104 one end side of the laser light guide 32 to which the core portion 36 for guiding the laser light is exposed was immersed in the prepared mixture to expose the laser light guide 32.
  • the mixture is applied to the core portion 36.
  • step S106 the portion coated with the mixture is irradiated with laser light to melt the mixture coated on the surface of the core portion 36 exposed on one end side of the laser light guide 32, and then the mixture is mixed.
  • the wavelength converter is diffused within.
  • the output emitted from the laser generating unit 52 is adjusted according to the diameter of the core unit 36 and the quality of the liquid silica (presence or absence of impurities and the like). For example, when a semiconductor laser is used as the laser generating unit 52 and the laser light has a wavelength of 980 nm and an output of 25 W, the core unit 36 is irradiated at 250 ms for a diameter of 200 ⁇ m, and the diameter of the core unit 36 becomes 320 ⁇ m. On the other hand, it is irradiated at 450 ms, and when the diameter of the core portion 36 is 400 ⁇ m, it is irradiated at 600 ms or more and 950 ms or less.
  • the limiter is set by the melting temperature of the wavelength conversion substance.
  • the wavelength conversion substance is titanium oxide
  • the temperature is limited to 1700 ° C. before the melting temperature.
  • the laser light guide 32 is a quartz fiber or a glass fiber, it melts at around 1440 ° C. The larger the diameter of the core portion 36, the longer it takes to melt, so that the adjustment is made longer.
  • the adjustment of time changes depending on the doping rate of the wavelength conversion substance.
  • the doping rate of titanium oxide as a wavelength conversion substance is preferably 0.1% or more and 30% or less.
  • the temperature required for diffusion of the wavelength-converting substance in this step is a temperature substantially lower than the melting temperature of the wavelength-converting substance, the viscosity of the core portion 36 is lowered in a short time, and the surface tension makes it lenticular or substantially hemispherical.
  • the wavelength converting material is diffused in the portion where the mixture is applied. As a result, it is affected by the diffusion of excited photons and is amplified. This amplification is a phenomenon in which the total amount of photons exceeds the amount of incident laser photons.
  • the output laser light (Stokes light) can control the direction and diffusion of the laser output by making the processing form of the tip portion where the laser light is output into a lens shape or a substantially hemisphere. it can.
  • titanium oxide titanium oxide
  • it may be significant as a surrounding atom that causes a stalk phenomenon when the associated atomic structure is modified to rutile type at 900 ° C. or higher.
  • anatase type Homo and Rumo, but the Rumo type is preferable in order to efficiently cause the stalk phenomenon.
  • step S108 the portion coated with the mixture was further irradiated with a laser beam to heat the portion coated with the mixture at a temperature smaller than the melting temperature of the wavelength converting substance, whereby the wavelength converting substance was diffused.
  • the Raman wavelength conversion unit 34 is formed.
  • the output emitted from the laser generating unit 52 is adjusted according to the diameter of the core unit 36 and the quality of the liquid silica (presence or absence of impurities and the like). Then, for example, when a semiconductor laser is used as the laser generating unit 52 and the wavelength of the laser light is 980 nm and the output is 25 W, the laser light is irradiated in 1 s or more and 3 s or less.
  • step S110 the wavelength conversion member 30 shown in FIG. 3 is manufactured.
  • a step of preparing a mixture of liquid silica and a wavelength conversion substance, and a core portion 36 for waveguideing a laser beam to the prepared mixture The step of immersing one end side of the exposed laser light guide body 32 and applying the mixture to the exposed core portion 36 of the laser light guide body 32 and irradiating the portion to which the mixture is applied with laser light. , A step of melting the mixture applied to the surface of the core portion 36 exposed on one end side of the laser light guide 32 and then diffusing the wavelength conversion substance in the mixture, and further to the portion to which the mixture is applied.
  • FIG. 6 is a flow chart of a method for manufacturing the wavelength conversion member 130 according to the modified example of the first embodiment.
  • a laser light guide body 132 having a predetermined length is prepared.
  • the length of the laser light guide 132 is prepared to be 10 cm or more and 20 cm or less, or 1 m or more and 2 m or less.
  • the laser light guide body 132 includes a core portion 36 for guiding laser light, a clad 37 arranged around the core portion 36, and a coating layer 38 arranged around the clad 37.
  • the clad 37 and the coating layer 38 about several centimeters from the tip are removed by a jig or the like, and the core portion 36 is exposed.
  • the Raman wavelength conversion unit 134 to which the wavelength conversion substance is doped in advance is prepared.
  • the Raman wavelength conversion unit 134 prepared here is prepared as a small piece having a diameter of 200 ⁇ m or more and 400 ⁇ m or less and a length of 1 mm or more and 30 mm or less, or 10 cm or more and 20 cm or less.
  • Such a small piece of the Raman wavelength conversion unit 134 can be mass-produced by doping the base material 134a with a wavelength conversion substance by a known method.
  • a VAD (Vapor Phase Axial Deposition) method or a MCVD (Modified Chemical Vapor Deposition) method can be used as a method for doping the wavelength conversion substance with respect to the base material 134a.
  • step S204 the prepared Raman wavelength conversion unit 134 is joined to one end side of the laser light guide body 132 including the core unit 36 for guiding the laser light.
  • This joining is performed, for example, by heating the joining surface and then welding.
  • step S206 laser light is incident on the Raman wavelength conversion unit 134 from the other end side of the laser light guide 132 to which the Raman wavelength conversion unit 134 is welded via the core 36, and the laser light guide 132 The junction between the light and the Raman wavelength conversion unit 134 is melted. Then, the wavelength conversion substance contained in the Raman wavelength conversion unit 134 is diffused to the core portion 36 of the laser light guide body 132, so that the laser light guide body 132 and the Raman wavelength conversion unit 134 are more firmly bonded to each other. ..
  • step S208 the wavelength conversion member 130 shown in FIG. 4 is manufactured.
  • a step of preparing a Raman wavelength conversion unit 134 in which a wavelength conversion substance is pre-doped into a base material 134a containing Si, and a Raman wavelength The step of joining the conversion unit 134 to one end side of the laser light guide body 32 including the core unit 36 for waveguideing the laser light, and the Raman wavelength conversion unit 134 and the laser light guide body by irradiating the laser light. Since the step of melting the joint portion with 32 and diffusing the wavelength conversion substance contained in the Raman wavelength conversion unit 134 into the core portion 36 of the laser light guide 32 is included, the wavelength conversion member 130 shown in FIG. A manufacturing method can be provided.
  • FIG. 7 is an illustrated diagram showing the configuration of the laser irradiation device according to the second embodiment of the present invention.
  • the laser irradiation device 510 includes a wavelength conversion device 520 and a main body 550. Then, as shown in FIG. 7, the wavelength changing device 520 includes a wavelength conversion member 530 and a half mirror unit 540. It also includes a handpiece 560 held by the operator to irradiate the treatment site with laser light guided by the wavelength conversion member 530.
  • the wavelength conversion member 530 according to the second embodiment is arranged around the Raman wavelength conversion unit 534 and the Raman wavelength conversion unit 534 to which a wavelength conversion substance for producing a Raman effect is previously doped.
  • a clad 537 and a coating layer 538 arranged around the clad 537 are provided.
  • the Raman wavelength conversion unit 534, the clad 537, and the coating layer 538 are arranged concentrically.
  • the Raman wavelength conversion unit 534 has a string-shaped base material 534a formed of a material having a high refractive index such as silica containing Si (SiO 2 ) and a wavelength for producing a Raman effect to be doped into the base material 534a. Includes transformants. Therefore, the wavelength conversion substance is diffused and arranged on the base material 534a of the Raman wavelength conversion unit 534, and a part of the diffused and arranged wavelength conversion substance is arranged in combination with Si.
  • the doping rate of the wavelength conversion substance with respect to the base material 534a is 0.1% or more and 3% or less.
  • the clad 537 is formed of a material such as quartz or resin, and has a refractive index lower than that of the base material 534a by about 0.2% or more and 1% or less.
  • the coating layer 538 is formed of a resin material such as fluororesin and protects the Raman wavelength conversion unit 534 and the clad 537.
  • the Raman wavelength conversion unit 534 is formed of quartz (SiO 2 ) to which a wavelength conversion substance is doped
  • the clad 537 is formed of a hard resin material
  • the coating layer 538 is formed. It is made of a resin material containing fluorine.
  • the base material 534a is made of quartz (SiO 2 ), but is not limited to this, and for example, zirconia or sapphire may be used. Further, a wavelength conversion substance for producing a Raman effect may be doped in advance to the clad 537.
  • a relatively long wavelength conversion member 534 used in the laser irradiation device 510 is used.
  • the length of the wavelength conversion member 534 is secured so as not to interfere with the treatment by the handpiece 560, for example, and is 1 m or more.
  • the Raman wavelength conversion unit 534 When the laser light is incident from the other end side of the Raman wavelength conversion unit 534, the Raman wavelength conversion unit 534 produces a Raman effect based on the wavelength conversion substance, so that the Raman wavelength is converted to a wavelength different from the wavelength of the laser light.
  • Laser light (Stokes light) generated by scattered light is output.
  • the wavelength conversion substance for example, a titanium oxide or a rare earth laser medium such as Er, Yb, Nd, Bi, or Pr can be used. That is, the wavelength conversion substance can select the output as laser light (Stokes light) by Raman scattered light converted to a wavelength peculiar to each substance generated by the Raman effect.
  • the particle size of the wavelength-changing substance is set to the nano level in order to secure a surface area for efficiently producing the Raman effect, and the smaller the particle size, the more preferable. In particular, when this wavelength conversion member is used for dental treatment, a wavelength conversion substance is selected in consideration of the absorption wavelength of water.
  • titanium oxide titanium oxide (TiO 2 ) is preferable.
  • the average particle size of titanium oxide as a wavelength conversion substance is preferably 1 nm or more and 500 nm or less at the nanometer level. As a result, it is possible to secure a surface area for efficiently producing the Raman effect.
  • the doping rate of titanium oxide as a wavelength conversion substance is preferably 0.1% or more and 3% or less. As a result, the Raman effect can be efficiently generated.
  • titanium oxide (TiO 2 ) is used as the wavelength conversion substance, the wavelength of the laser light output by the Raman scattered light is 3000 nm or more, as shown in FIG.
  • titanium oxide TiO 2
  • titanium oxide having a rutile-type or anatase-type crystal structure can be used.
  • the wavelength conversion substance it is preferable to use titanium oxide having an anatase-type crystal structure. If titanium oxide is of the anatase type, it may be significant as a surrounding atom that causes a stalk phenomenon when the associated atomic structure is modified to the rutile type at 900 ° C. or higher. Further, there are two types of anatase type, Homo and Rumo, and the Rumo type is preferable in order to efficiently cause the stalk phenomenon.
  • the Raman wavelength conversion unit 534 is doped with a string-shaped base material 534a formed of a material having a high refractive index such as quartz containing Si (SiO 2 ) and a base material 534a. Includes wavelength converting material to produce the added Raman effect. Therefore, the wavelength conversion substance is diffused and arranged on the base material 534a of the Raman wavelength conversion unit 534, and a part of the diffused and arranged wavelength conversion substance is arranged in combination with Si. As a result, even with a low-power laser irradiation device, it is possible to easily provide a wavelength conversion member capable of wavelength-converting and amplifying a wavelength different from the wavelength of the laser light output from the laser irradiation device.
  • the wavelength conversion member 530 shown in FIG. 7 has the same effect as the wavelength conversion member 30 shown in FIG.
  • the wavelength conversion device 520 includes a wavelength conversion member 530 and a half mirror unit 540.
  • a wavelength different from the wavelength of the laser light generated by the Raman effect which is located on the other end side of the half mirror portion 540 according to the second embodiment, for example, the wavelength conversion member 530 and is arranged inside the main body portion 550. It has a function of reflecting laser light with a wavelength converted to. That is, for example, when the wavelength conversion substance is titanium oxide, the wavelength generated by the Raman effect is 3000 nm, so a half mirror portion 540 for reflecting a wavelength of 3000 nm is arranged.
  • the laser irradiation device 510 includes a wavelength conversion device 520 and a main body 550.
  • the main body unit 550 controls the laser light generation unit 552 that emits laser light to the wavelength conversion member 530 and the laser generation unit 552 to control the temperature in the Raman wavelength conversion unit 534 of the wavelength conversion member 530. It is provided with a control unit 554 for controlling the above. Further, if necessary, the main body unit 550 of the laser irradiation device 510 displays an operation unit 556 for operating the laser irradiation device 510 via the control unit 554 and a control state of the laser irradiation device 510. A display unit 558 is provided.
  • the laser light generation unit 552 emits laser light under the control of the control unit 554, and outputs the laser light to the wavelength conversion device 520.
  • the laser light generating unit 552 a semiconductor laser, a solid-state laser device, a fiber laser device, or the like can be adopted.
  • the laser light generating unit 552 according to the present embodiment is composed of a semiconductor laser. This semiconductor laser outputs laser light having a predetermined wavelength according to a current input from a power supply circuit (not shown).
  • the laser light generator 552 has a CW mode that continuously emits laser light, and a repeat mode that intermittently repeats laser oscillation (on-time) and oscillation stop (off-time) at a constant set time and constant output intensity. It may be provided with various laser output modes such as.
  • the repeat mode can be realized, for example, by intermittently inputting a drive current having a predetermined current value to the semiconductor laser.
  • the laser light generating unit 552 can output at a wavelength of 980 nm, an output of 4 W or more and about 30 W or less, and in a CW mode and a repeat mode.
  • the laser light generation unit 552 can output the laser in a repeat mode so that the on-time is 1 ms or more and 1000 ms or less and the off time is 1 ms or more and 1000 ms or less.
  • the control unit 554 comprehensively controls each component of the laser irradiation device 510. Further, the control unit 554 realizes the function according to the present embodiment in the laser irradiation device 510 by executing the program stored in the storage unit (not shown).
  • control unit 554 performs a process of controlling so as to perform a process of emitting the laser light from the laser light generation unit 552.
  • the operation unit 556 is provided with a foot switch, an operation button, and the like, and outputs a signal corresponding to the user's operation to the control unit 554.
  • the control unit 554 performs a process of controlling the magnitude, on-time, off-time, and the like of the output of the laser light emitted from the laser light generation unit 552 in response to the operation of the operation unit 556.
  • the display unit 558 displays according to the operation according to the present invention under the control of the control unit 54.
  • the storage unit (not shown) has a semiconductor storage device such as a RAM or ROM, a magnetic disk storage device such as a hard disk drive, and the like, and stores programs, data, and the like for realizing the functions according to the present invention.
  • the storage unit is also used as a work area for program execution by the control unit 554.
  • the Raman wavelength conversion unit 134 may be arranged between the half mirror unit 540 and the laser light generation unit 552. Then, before the laser light output from the laser light generation unit 552 enters the half mirror unit 540, the laser light (Stokes light) by Raman scattered light converted into a wavelength different from the wavelength of the laser light is output. Can be made to. Further, a prism structure may be arranged between the half mirror portion 540 and the laser light generating portion 552. At this time, it is preferable that the prism structure is doped with a wavelength conversion substance. The prism structure has a function of dispersing the laser light from the laser light generating unit 552 according to the wavelength.
  • FIG. 8 is a flow chart for explaining a method for manufacturing a wavelength conversion member according to a second embodiment of the present invention.
  • a string-shaped base material 534a formed of a material having a high refractive index such as quartz containing Si (SiO 2 ) is prepared.
  • a wavelength conversion substance is doped and added to the base material 534a to form a string-shaped Raman wavelength conversion unit 534.
  • a method for doping the wavelength conversion substance with respect to the base material 534a a rod-in-tube method or the like can be used.
  • step S304 a clad 537 arranged around the formed Raman wavelength conversion unit 534 is formed, and subsequently, in step 306, a coating layer 538 is formed around the clad 537.
  • step S308 the wavelength conversion member 530 shown in FIG. 7 is manufactured.
  • a step of forming a Raman wavelength conversion unit 534 by doping and adding a wavelength conversion substance to the above, and a step of forming a clad 537 arranged around the formed Raman wavelength conversion unit 534 are included.
  • a method for manufacturing the wavelength conversion member 530 shown in the above can be provided.
  • FIG. 9 is an enlarged cross-sectional view of the wavelength conversion member according to the third embodiment of the present invention.
  • the wavelength conversion member 630 includes a hollow light guide body 632 having a cylindrical hollow core 630a.
  • the hollow light guide 632 was formed on the outer peripheral side of the Raman wavelength conversion unit 634 formed in the shape of a hollow pipe, the metal layer 637 formed on the outer peripheral side of the Raman wavelength conversion unit 634, and the outer peripheral side of the metal layer 637. It is composed of a coating layer 638.
  • the Raman wavelength conversion unit 634 is formed in the shape of a hollow pipe, and a cylindrical hollow core 630a is formed inside the hollow pipe.
  • the Raman wavelength conversion unit 634 includes a base material 634a and a wavelength conversion substance for doping and adding to the base material 634a.
  • the base material 634a contains Si.
  • the substrate 634a is made of quartz.
  • the wavelength conversion substance is diffused and arranged inside the base material 634a, and a part of the diffused arrangement of the wavelength conversion substance is arranged on the base material 634a. It is arranged in combination with the contained Si.
  • the wavelength conversion substance used in the Raman wavelength conversion unit 634 the same substance as the Raman wavelength conversion unit 34 can be used.
  • Ag or Al can be used as the material of the metal layer 637.
  • the selection of the material can be appropriately performed according to the wavelength of the light to be transmitted.
  • a coating layer for covering the metal layer 637 a glass layer or the like can be appropriately used.
  • the wavelength conversion member 630 according to the third embodiment can be used in place of the wavelength conversion member 530 in the laser irradiation device 510 shown in FIG. 7.
  • the laser irradiation device reflects the excitation light output from the laser light generating unit included in the laser irradiation device, and the signal light emitted from the wavelength conversion member 630 based on the irradiation of the wavelength conversion member 630 with the excitation light.
  • An optical filter that transmits light may be provided.
  • the wavelength conversion member 630 shown in FIG. 9 has the same effect as the wavelength conversion member 30 shown in FIG.
  • FIG. 10 is an enlarged cross-sectional view of the wavelength conversion member according to the modified example of the third embodiment of the present invention.
  • the same parts as those of the wavelength conversion member 630 shown in FIG. 9 are designated by the same reference numerals, and the description thereof will be omitted.
  • the wavelength conversion member 730 includes a hollow light guide body 732 having a cylindrical hollow core 730a. It includes a metal layer 637 formed in a hollow pipe shape inside, a coating layer 638 formed on the outer peripheral side of the metal layer 637, and a Raman wavelength conversion unit 734 arranged on one end side of the hollow light guide 732. ..
  • the Raman wavelength conversion unit 634 may be formed on the inner surface of the metal layer 637.
  • the Raman wavelength conversion unit 734 is formed in a lens shape.
  • the Raman wavelength conversion unit 734 is arranged so as to be fused and joined to a portion on one end side of the hollow light guide body 732.
  • the Raman wavelength conversion unit 734 includes a base material 734a and a wavelength conversion substance for doping addition to the base material 734a.
  • the base material 734a contains Si.
  • the substrate 734a is made of quartz.
  • the wavelength conversion substance is diffused and arranged inside the base material 734a, and a part of the diffused arrangement of the wavelength conversion material is arranged on the base material 734a. It is arranged in combination with the contained Si.
  • the wavelength conversion substance used in the Raman wavelength conversion unit 734 the same substance as the Raman wavelength conversion unit 34 can be used.
  • the wavelength conversion member 630 shown in FIG. 10 has the same effect as the wavelength conversion member 630 shown in FIG.
  • the wavelength conversion member according to the present invention, the wavelength conversion device and the laser irradiation device using the same, and the method for manufacturing the wavelength conversion member can be suitably used as, for example, a laser irradiation device used for dental treatment.

Abstract

低出力のレーザー照射装置であっても、容易に、そのレーザー照射装置から出力されるレーザー光の波長とは異なる波長に波長変換し増幅うる波長変換部材を提供する。 本発明の波長変換部材(30)は、レーザー光を導波するためのコア部(36)と、コア部の周囲に配置されるクラッド(37)とを含むレーザー導光体(32)を備える。レーザー導光体(32)の一方端側におけるコア部(36)に対して、液体シリカと波長変換物質との混合物がドープ添加されることで、波長変換物質が拡散して配置されるとともに、拡散して配置された波長変換物質の一部が液体シリカ中のSiと結合して配置されたラマン波長変換部(34)を有する。レーザー光がラマン波長変換部(34)に入射したとき、ラマン波長変換部(34)において、波長変換物質に基づくラマン効果が生ずることで、レーザー光の波長とは異なる波長に波長変換されたラマン散乱光によるレーザー光が出力される。

Description

波長変換部材、それを用いた波長変換装置およびレーザー照射装置、ならびに、波長変換部材の製造方法
 本発明は、波長変換部材、それを用いた波長変換装置およびレーザー照射装置、ならびに、波長変換部材の製造方法に関する。
 従来より、医療分野等において、レーザーが利用されている。レーザーは、その種類によって固体レーザー、気体レーザー、液体レーザー、半導体レーザーに大別される。そのうち、特に、歯科医療用分野で主に用いられているレーザーは、炭酸ガスレーザー、Nd:YAGレーザー、半導体レーザー、Er:YAGレーザーである。これらのレーザー光は、射出されると各種光ファイバーを用いて口腔内に伝送され、口腔内の狭い局所にファイバー先端を挿入し、先端から射出されるレーザー光を患部に照射して治療が行われる。
 ここで、医療用レーザーとして、半導体レーザーは、その波長は400nm~10600nmの波長範囲で用いられ、概ね組織透過型であり、赤血球への熱吸収性が高く、低出力下では、細胞の活性化が期待できる軟組織用のレーザーとして利用される。
 Er:YAGレーザーは、中心波長が2940nmであり、水を使用する軟組織硬組織両用のレーザーである。また、Er:YAGレーザーは、水分子を励起して水蒸気爆発させる力が強く、その能力を用いて、歯や歯肉、骨などを削るレーザーとして利用される。
 このようなレーザー照射装置を用いた歯科治療として、半導体レーザーを用いた歯科用治療装置が開示されている(特許文献1を参照)。この歯科用治療装置は、波長範囲400nm~410nmに含まれる中心波長を有する第1の光を出力する第1の光源と、第1の光源から出力された第1の光を入射端に入力して導波し、導波された第1の光を出射端から出力し、出力された第1の光を被治療領域に照射する光導波体と、受光部により受光された光を解析する解析手段と、解析手段により解析された解析結果を表示する表示手段と、を備えている。
 また、医療処置用および歯科処置用として、固体レーザーとして、Er:YAGレーザーによる照射装置を開示している(特許文献2を参照)。この照射装置は、その細長い本体部が2本以上の光ファイバーを包含して出力源から標的表面に向けて電磁エネルギーを伝達するように構成される。照射装置の遠位端は単体構造体として例示され、近位端は多数の近位端部材を備えるように例示される。照射装置は、エネルギーを遠位端に向けて伝達する2本以上の光ファイバーと、装置の遠位端から近位端に向けてエネルギーを伝達する少なくとも1本の光ファイバーとを備えている。
特開2009-172051号公報 特表2007-537776号公報
Gispert, J.R. (2008). Coordination Chemistry. Wiley-VCH. p. 483. ISBN 3-527-3-527-31802-X31802-X Albani, J.R. (2004). Structure and Dynamics of Macromolecules: Absorption and Fluorescence Studies. Elsevier. p. 58. ISBN 0-444-51449-X Lakowicz, J.R. 1983. Principles of Fluorescence Spectroscopy, Plenum Press, New York. ISBN 0-387-31278-1 Guilbault, G.G. 1990. Practical Fluorescence, Second Edition, Marcel Dekker, Inc., New York. ISBN 0-8247-8350-6 Kitai, A. (2008). Luminescent Materials and Applications. John Wiley and Sons. p. 32. ISBN 0-470-05818-8 Rost, F.W.D. (1992). Fluorescence Microscopy. Cambridge University Press. p. 22. ISBN 0-521-23641-X 天野和男、浅井徹、山田義和、「高効率赤外放射体の発現に及ぼす酸化物セラミックスの酸素欠陥の影響」、愛知県産業技術研究所研究報告書、1号、pp.95-101、2002年12月 Miki Kanna,Sumpun Wongnawa,"Mixed amorphous and nanocrystalline TiO2 powders prepared by sol-gel method: Characterization and photocatalytic study" Materials Chemistry and Physics, volume 110, Issue 1, Pages 166-175, 15 July,2008
 しかしながら、特許文献1に記載の歯科用治療装置では、所定の波長範囲に中心波長を有する波長に対応した治療しか行うことができず、その治療の用途が限られていた。
 また、2940nmの波長域のEr:YAGレーザーや、高出力の半導体レーザーを用いようとすれば、装置の構成が大型化するため、在宅治療を望むような高齢者や肢体不自由の人たちに対して、レーザー照射装置による治療は困難であった。また、Er:YAGレーザーは、そのレーザーの性質上、水分が必ず必要であった。
 それゆえに、この発明の主たる目的は、低出力のレーザー照射装置であっても、容易に、そのレーザー照射装置から出力されるレーザー光の波長とは異なる波長に波長変換し増幅うる波長変換部材を提供することである。
 この発明にかかる波長変換部材は、レーザー光を導波するためのコア部と、コア部の周囲に配置されるクラッドとを含むレーザー導光体を備え、レーザー導光体の一方端側におけるコア部に対して、液体シリカと波長変換物質との混合物がドープ添加されることで、波長変換物質が拡散して配置されるとともに、拡散して配置された波長変換物質の一部が液体シリカ中のSiと結合して配置されたラマン波長変換部を有し、レーザー導光体の他方端側からレーザー光がコア部を介してラマン波長変換部に入射したとき、ラマン波長変換部において、波長変換物質に基づくラマン効果が生ずることで、レーザー光の波長とは異なる波長に波長変換されたラマン散乱光によるレーザー光が出力されることを特徴とする、波長変換部材である。
 また、この発明にかかる波長変換部材は、レーザー光を導波するためのコア部と、コア部の周囲に配置されるクラッドとを含むレーザー導光体と、Siを含む基材と、基材にドープ添加される波長変換物質とにより構成されるラマン波長変換部と、を備え、ラマン波長変換部は、レーザー導光体の一方端側におけるコア部に融合され、かつ、波長変換物質が拡散して配置されるとともに、拡散して配置された波長変換物質の一部がSiと結合して配置され、レーザー導光体の他方端側からレーザー光がコア部を介してラマン波長変換部に入射したとき、ラマン波長変換部において、波長変換物質に基づくラマン効果が生ずることで、レーザー光の波長とは異なる波長に波長変換されたラマン散乱光によるレーザー光が出力されることを特徴とする、波長変換部材である。
 さらに、この波長変換部材は、レーザー光が導波するためのSiを含む基材と、基材にドープ添加される波長変換物質とを含み、基材にラマン効果を生ずるための波長変換物質が予めドープ添加されることで、波長変換物質が拡散して配置されるとともに、拡散して配置された波長変換物質の一部がSiと結合して配置されたラマン波長変換部と、ラマン波長変換部の周囲に配置されるクラッドと、を備え、ラマン波長変換部の他方端側からレーザー光がラマン波長変換部に入射したとき、ラマン波長変換部において、波長変換物質に基づくラマン効果が生ずることで、レーザー光の波長とは異なる波長に波長変換されたラマン散乱光によるレーザー光が出力されることを特徴とする、波長変換部材である。
 この波長変換部材は、波長変換物質の平均粒径が、1nm以上500nm以下であることが好ましい。
 また、この波長変換部材は、波長変換物質のドープ率が、0.1%以上30%以下であることが好ましい。
 さらに、この波長変換部材は、ラマン散乱光により出力されたレーザー光の波長が、3000nm以上であることが好ましい。
 また、この波長変換部材は、コア部の材料は石英であることが好ましい。
 さらに、この波長変換部材は、ドープ添加される波長変換物質が、チタン酸化物であることが好ましい。
 さらにまた、この波長変換部材は、チタン酸化物は、酸化チタン(TiO2)であることが好ましい。
 また、この波長変換部材は、酸化チタンは、アナターゼ型であることが好ましい。
 この発明にかかる波長変換装置は、本発明にかかる波長変換部材と、レーザー導光体の他方端側に配置され、ラマン効果により生ずるレーザー光の波長とは異なる波長に波長変換された波長のレーザー光を反射する機能を有するハーフミラー部と、を備える波長変換装置である。
 この発明にかかるレーザー照射装置は、本発明にかかる波長変換装置と、波長変換部材にレーザー光を射出する半導体レーザーと、半導体レーザーを制御することにより、ラマン波長変換部における温度を制御するための制御部と、を備える、レーザー照射装置である。
 この発明にかかる波長変換部材の製造方法は、液体シリカと波長変換物質との混合物を準備する工程と、準備された混合物に、レーザー光を導波するためのコア部が露出されたレーザー導光体の一方端側を浸漬して、レーザー導光体の露出されたコア部に混合物を塗布する工程と、混合物を塗布した部分にレーザー光を照射して、レーザー導光体の一方端側において露出されたコア部の表面に塗布された混合物を溶融したうえで、混合物内で波長変換物質を拡散させる工程と、さらに、混合物を塗布した部分にレーザー光を照射して、波長変換物質の溶融温度より小さい温度により混合物を塗布した部分を加熱することで、波長変換物質が拡散された状態で固定して、ラマン波長変換部を形成する工程と、を含む、波長変換部材の製造方法である。
 このとき、液体シリカと波長変換物質との混合物を準備する工程において、この混合物に対して、さらに、炭素が添加されることが好ましい。
 また、この発明にかかる波長変換部材の製造方法は、波長変換物質がSiを含む基材に予めドープ添加されたラマン波長変換部を準備する工程と、ラマン波長変換部を、レーザー光を導波するためのコア部を含むレーザー導光体の一方端側に接合する工程と、レーザー光を照射して、ラマン波長変換部とレーザー導光体との接合部を溶融して、ラマン波長変換部に含まれる波長変換物質をレーザー導光体のコア部に拡散させる工程と、を含む、波長変換部材の製造方法である。
 さらに、この発明にかかる波長変換部材の製造方法は、Siを含む石英(SiO2)などの高い屈折率を有する材料により形成された紐状の基材を準備する工程と、基材に対して波長変換物質をドープ添加してラマン波長変換部を形成する工程と、形成されたラマン波長変換部の周囲に配置されるクラッドを形成する工程と、を含む、波長変換部材の製造方法である。
 この発明によれば、低出力のレーザー照射装置であっても、容易に、そのレーザー照射装置から出力されるレーザー光の波長とは異なる波長に波長変換し増幅うる波長変換部材を提供することができる。また、この波長変換部材を備えた波長変換装置を提供することができる。さらに、この波長変換装置を備えたレーザー照射装置を提供することができる。さらにまた、上記の波長変換部材を製造することができる、波長変換部材の製造方法を提供することができる。
 この発明の上述の目的、その他の目的、特徴及び利点は、図面を参照して行う以下の発明を実施するための形態の説明から一層明らかとなろう。
この発明の第1の実施の形態にかかるレーザー照射装置の外観図である。 この発明の第1の実施の形態にかかるレーザー照射装置の構成を示した図解図である。 この発明の第1の実施の形態にかかる波長変換部材の拡大断面図である。 この発明の第1の実施の形態の変形例にかかる波長変換部材の拡大断面図である。 この発明の第1の実施の形態にかかる波長変換部材の製造方法を説明するためのフロー図である。 この発明の第1の実施の形態の変形例にかかる波長変換部材の製造方法を説明するためのフロー図である。 この発明の第2の実施の形態にかかるレーザー照射装置の構成を示した図解図である。 この発明の第2の実施の形態にかかる波長変換部材の製造方法を説明するためのフロー図である。 この発明の第3の実施の形態にかかる波長変換部材の拡大断面図である。 この発明の第3の実施の形態の変形例にかかる波長変換部材の拡大断面図である。
A.第1の実施の形態
 本発明の第1の実施の形態に係る波長変換部材30を用いた波長変換装置20を有するレーザー照射装置10を、図面を参照しながら説明する。
 図1は、この発明の第1の実施の形態にかかるレーザー照射装置の外観図である。図2は、この発明の第1の実施の形態にかかるレーザー照射装置の構成を示した図解図である。図3は、この発明の第1の実施の形態にかかる波長変換部材の拡大断面図である。
 第1の実施の形態にかかるレーザー照射装置10は、図1または図2に示すように、波長変換装置20と本体部50とを含む。そして、波長変換装置20は、図1または図2に示すように、波長変換部材30とハーフミラー部40と、を含む。
1.波長変換部材
 第1の実施の形態にかかる波長変換部材30は、レーザー導光体32を含む。レーザー導光体32は、レーザー光を導波するためのコア部36と、コア部36の周囲に配置されるクラッド37と、クラッド37の周囲に配置される被覆層38とを備える。コア部36、クラッド37、および、被覆層38は、同心状に配置される。
 コア部36は、たとえば、Siを含む石英(SiO2)などの高い屈折率を有する材料で形成されている。クラッド37は、石英または樹脂などの材料により形成され、コア部36よりも0.2%以上1%以下程度低い屈折率を有する。被覆層38は、フッ素樹脂などの樹脂材料により形成され、コア部36およびクラッド37を保護する。本実施の形態では、コア部36が石英(SiO2)から形成されており、クラッド37が硬質の樹脂材で形成され、被覆層38がフッ素を含む樹脂材料により形成されている。なお、本実施の形態にかかるコア部36は、中空に形成されていてもよい。中空に形成される実施の形態の詳細は、後述される。また、本実施の形態のコア部36は、石英(SiO2)により形成されているが、これに限ることはなく、たとえば、ジルコニアあるいはサファイアが用いられてもよい。
 また、図3に示すように、レーザー導光体32の一方端側においてコア部36は露出しており、その部分には、ラマン波長変換部34がコア部36を覆うように配置される。ラマン波長変換部34には、液体シリカと波長変換物質との混合物がドープ添加されることで、波長変換物質が拡散して配置されている。すなわち、ラマン波長変換部32は、シリカ系ガラスにより形成され、その内部に、波長変換物質が拡散されて配置されている。また、拡散して配置された波長変換物質の一部が、液体シリカ中のSi結晶の構造として結合して配置される。そして、ラマン波長変換部32は、その先端部分が略半球状に形成される。なお、ラマン波長変換部32は、その先端部分がレンズ状に形成されてもよい。
 なお、液体シリカと波長変換物質との混合物に炭素(あるいは、炭素化合物)が添加された混合物がドープされた場合には、ラマン波長変換部32には、シリカ系ガラスにより形成され、その内部に、波長変換物質および炭素が拡散されて配置される。
 レーザー導光体32の他方端側からレーザー光がコア部36を介してラマン波長変換部34に入射したとき、ラマン波長変換部34において、波長変換物質に基づくラマン効果が生ずることで、レーザー光の波長とは異なる波長に波長変換されたラマン散乱光によるレーザー光(ストークス光)が出力される。なお、レイリー散乱により、より短周波数の紫外線域に生じる範囲は、混合物に用いられる液体シリカ側に青色の光吸収性の材料を混合して、有害波長を減衰除去するようにしてもよい。これにより、出力されるレーザー光の安全性を確保することができる。
 ここで、たとえば、近赤外線域に波長を広げるためには、エレクトロンのストーク現象を他の原子と影響することで励起レベルまで拡大することが理論として知られている。すなわち、ストーク現象は、2原子間の電子の相互作用により起こる現象であることから、関連原子間において、電子価と軌道上の電子数の安定までの不足数の関連により、ラマンシフトやレイリーシフトの相互影響がフォトンの共鳴現象から、ストーク現象の大きさに反映できると推定される(なお、より詳細な理論的な内容は、非特許文献1ないし非特許文献6を参照のこと。)。
 また、波長変換物質は、液体シリカ中に含まれるSi結晶の構造として結合することで、ストーク現象が励起ストーク域まで拡大されるかが、波長域の拡大に影響を与える。
 波長変換物質は、たとえば、チタン酸化物やEr、Yb、Nd、Bi、Pr等の希土類レーザー媒質などを使用することができる。使用される波長変換物質によって、ラマン効果により生ずる各物質特有の波長に変換されたラマン散乱光によるレーザー光(ストークス光)としての出力を選択することができる。波長変化物質の粒径は、ラマン効果を効率的に生じさせるための表面積を確保するためにナノレベルとし、小さければ小さいほど好ましい。特に、この波長変換部材30を歯科治療に使用する場合は、水の吸収波長を考慮して、波長変換物質が選択される。
 なお、チタン酸化物としては、酸化チタン(TiO2)が好ましい。波長変換物質としての酸化チタンの平均粒径は、ナノレベルとした、1nm以上500nm以下であることが好ましい。これにより、ラマン効果を効率的に生じさせるための表面積を確保することができる。波長変換物質としてのチタン酸化物のドープ率は、0.1%以上30%以下であることが好ましい。これにより、さらに、ラマン効果を効率的に生じさせることができる。たとえば、波長変換物質として酸化チタン(TiO2)を用いた場合、ラマン散乱光により出力されたレーザー光の波長は、3000nm以上とすることができる。このように、特に、酸化チタンにより赤外域へ波長がシフトすることは、非特許文献7や非特許文献8において、その理論が開示されている。
 また、酸化チタン(TiO2)としては、ルチル型やアナターゼ型の結晶構造の酸化チタンを用いることができる。なお、波長変換物質としては、アナターゼ型の結晶構造の酸化チタンを用いることが好ましい。酸化チタンがアナターゼ型であると、付随する原子構造が900℃以上でルチル型に修飾される際にストーク現象を起す周囲の原子として有意である可能性を有する。また、アナターゼ型にはさらに、Homo、Rumoの2種類あるが、効率的にストーク現象を起すには、Rumo型が好ましい。
 本実施の形態のレーザー導光体32は、コア部36の直径が約200μm以上320μm以下、クラッド37の外径が約250μm以上370μm以下、レーザー導光体32に配置されるラマン波長変換部34の部分の直径は、約220μm以上340μm以下、レーザー導光体32の軸方向に沿った長さは約200μm程度である。
 図3に示す波長変換部材30は、レーザー導光体32の一方端側においてコア部36は露出しており、その部分には、ラマン波長変換部34がコア部36を覆うように配置され、ラマン波長変換部34には、液体シリカと波長変換物質との混合物がドープ添加されることで、波長変換物質が拡散して配置されている。すなわち、ラマン波長変換部32は、シリカ系ガラスにより形成され、その内部に、波長変換物質が拡散されて配置されている。また、拡散して配置された波長変換物質の一部が、液体シリカ中のSi結晶の構造として結合して配置される。これにより、低出力のレーザー照射装置であっても、容易に、そのレーザー照射装置から出力されるレーザー光の波長とは異なる波長に波長変換し増幅うる波長変換部材を提供することができる。
 また、図3に示す波長変換部材30は、波長変換物質としての酸化チタンの平均粒径が、ナノレベルとした、1nm以上500nm以下であると、ラマン効果を効率的に生じさせるために必要な表面積を確保することができる。
 さらに、図3に示す波長変換部材30は、波長変換物質としてのチタン酸化物のドープ率が、0.1%以上30%以下であると、さらに、ラマン効果を効率的に生じさせることができる。
 また、図3に示す波長変換部材30は、ラマン散乱光により出力されたレーザー光の波長が3000nm以上であると、水の吸収波長であることから、歯科治療に対して好適に使用することができる。
 さらにまた、図3に示す波長変換部材30は、コア部36は、たとえば、Siを含む石英(SiO2)などの高い屈折率を有する材料で形成されていると、効率よく、波長変換部材30に対してレーザー光を導波させることができる。
 また、図3に示す波長変換部材30は、波長変換物質としてチタン酸化物を使用し、さらに酸化チタン(TiO2)を使用すると、歯科治療に必要な波長域のラマン効果により生ずるラマン散乱光によるレーザー光(ストークス光)を得ることができる。
 さらに、この酸化チタンがアナターゼ型であると、付随する原子構造が、900℃以上でルチル型に修飾される際にストーク現象を起す周囲の原子として有意であるので、より好適に使用することができる。
 次に、第1の本実施の形態の変形例にかかる波長変換部材130について説明する。
 図4は、この発明の第1の実施の形態の変形例にかかる波長変換部材の拡大断面図である。なお、図4に示す波長変換部材130において、図3に示した波長変換部材30と同一の部分には、同一の符号を付し、その説明を省略する。
 変形例にかかる波長変換部材130は、レーザー導光体132と、ラマン波長変換部134とを含む。レーザー導光体132は、レーザー光を導波するためのコア部36と、そのコア部36の周囲に配置されるクラッド37とを含む。
 ラマン波長変換部134は、レーザー導光体132の一方端側において露出されるコア部36に融合されて接合される。ラマン波長変換部134は、基材134aと、その基材134aにドープ添加するための波長変換物質とを含む。基材134aには、Siが含まれる。好ましくは、基材134aは石英により形成される。基材134aに波長変換物質がドープ添加されることで、基材134aの内部に波長変換物質が拡散して配置されるとともに、拡散して配置された波長変換物質の一部が基材134aに含まれるSiと結合して配置される。
 ここで、ラマン波長変換部134で使用される波長変換物質は、ラマン波長変換部34と同様の物質を使用することができる。
 レーザー導光体132の他方端側からレーザー光がコア部36を介してラマン波長変換部134に入射したとき、ラマン波長変換部134において、波長変換物質に基づくラマン効果が生ずることで、レーザー光の波長とは異なる波長に波長変換されたラマン散乱光によるレーザー光(ストークス光)が出力される。
 図4に示す波長変換部材130は、図3に示す波長変換部材30と同様の効果を奏するとともに、次の効果も奏する。
 すなわち、別途、ラマン波長変換部134を製造したうえで、レーザー導光体132に接合する構造であるので、ラマン波長変換部134を量産することで、容易に波長変換部材130を得ることができることから、波長変換部材130の量産に好適な構造である。
2.波長変換装置
 波長変換装置20は、図1および図2に示すように、波長変換部材30と、ハーフミラー部40とを備える。
 第1の実施の形態にかかるハーフミラー部40は、波長変換部材30の他方端側に配置され、ラマン効果により生ずるレーザー光の波長とは異なる波長に波長変換された波長のレーザー光を反射する機能を有する。すなわち、たとえば、波長変換物質が酸化チタンである場合、ラマン効果により生ずる波長を3000nmとしたとき、3000nmの波長を反射するためのハーフミラー部40が配置される。
 なお、波長変換装置20は、波長変換部材130と、ハーフミラー部40とにより構成することもできる。
 図1または図2に示す波長変換装置20では、ラマン効果により生ずるレーザー光の波長とは異なる波長に波長変換された波長のレーザー光を反射する機能を有するハーフミラー部40を備えるので、波長変換部材30において、ラマン効果が生ずることで、レーザー光の波長とは異なる波長に波長変換さえたラマン散乱光によるレーザー光(ストークス光)をより効率的に増幅させることができる。
3.レーザー照射装置
 第1の実施の形態にかかるレーザー照射装置10は、波長変換装置20と、本体部50とを含む。
 本体部50は、図2に示すように、波長変換部材30にレーザー光を射出するレーザー発生部52と、レーザー発生部52を制御することにより、波長変換部材30、130のラマン波長変換部34における温度を制御するための制御部54とを備える。また、必要に応じて、レーザー照射装置10の本体部50は、制御部54を介してレーザー照射装置10を操作するための操作部56と、レーザー照射装置10の制御の状態を表示するための表示部58を備える。なお、波長変換部材30としては、波長変換部材130を使用することができる。
 レーザー光発生部52は、制御部54の制御によりレーザー光を射出し、そのレーザー光を波長変換装置20に出力する。
 レーザー光発生部52としては、半導体レーザー、固体レーザー装置、ファイバーレーザー装置などを採用することができる。本実施の形態にかかるレーザー光発生部52は、半導体レーザーにより構成される。この半導体レーザーは、電源回路(図示せず)から入力された電流に応じて所定の波長のレーザー光を出力する。また、レーザー光発生部52は、連続的にレーザー光を出すCWモードや、一定の設定時間、一定の出力強度でレーザー発振(オンタイム)と発振停止(オフタイム)を間欠的に繰り返すリピートモードなど、各種レーザー出力モードを備えていてもよい。上記リピートモードは、例えば半導体レーザーへ所定電流値の駆動電流を間欠的に入力することで、実現することができる。
 本実施の形態では、レーザー光発生部52は、波長980nm、出力4W以上30W以下程度、CWモード、リピートモードでの出力が可能である。レーザー光発生部52は、リピートモードで、オンタイム1ms以上1000ms以下、オフタイム1ms以上1000ms以下の間で調整可能にレーザーを出力することができる。
 制御部54は、レーザー照射装置10の各構成要素を統括的に制御する。また、制御部54は、記憶部(図示せず)に記憶したプログラムを実行することにより、レーザー照射装置10に本実施の形態にかかる機能を実現する。
 また、制御部54は、レーザー光発生部52からレーザー光を射出させる処理を行うように制御する処理を行う。
 操作部56は、操作ボタンなどを備え、ユーザの操作に応じた信号を制御部54に出力する。制御部54は、操作部56の操作に応じて、レーザー光発生部52から射出するレーザー光の出力の大きさ、オンタイム、オフタイムなどを制御する処理を行う。
 表示部58は、制御部54の制御により、本発明に係る動作に応じた表示を行う。
 記憶部(図示せず)は、RAMやROMなどの半導体記憶装置、ハードディスクドライブなどの磁気ディスク記憶装置等を有し、本発明に係る機能を実現させるためのプログラム、データなどを記憶する。また、記憶部は、制御部54によるプログラム実行の作業エリアとしても用いられる。
 なお、ラマン波長変換部134が、ハーフミラー部40とレーザー光発生部52との間に配置されてもよい。そうすると、レーザー光発生部52より出力されたレーザー光が、ハーフミラー部40に入る前に、予め、レーザー光の波長とは異なる波長に変換されたラマン散乱光によるレーザー光(ストークス光)を出力させることができる。
 また、ハーフミラー部40とレーザー光発生部52との間には、プリズム構造体を配置してもよい。このとき、このプリズム構造体は、波長変換物質がドープ添加されていることが好ましい。プリズム構造体は、レーザー光発生部52からのレーザー光を波長に応じて分散する機能を有する。
 次に、本発明の実施の形態にかかるレーザー照射装置10の動作を説明する。
 操作部56が操作された場合、制御部54は、レーザー光発生部52からレーザー光を射出する処理を行う。レーザー光が波長変換部材30、130の他方端部側に入射すると、そのレーザー導光体32におけるコア部36を伝搬し、波長変換部材30、130のラマン波長変換部34に拡散された波長変換物質に作用することによりラマン効果が生ずることで、入射されたレーザー光の波長とは異なる波長に波長変換されたラマン散乱光によるレーザー光(ストークス光)が出力される。
 このとき、レーザー光はパルス状に射出され、ラマン波長変換部34における温度が高温となるが、波長変換部材30、130が融解しないように、制御部54により制御される。
 図1および図2に示すレーザー照射装置10では、本発明にかかる波長変換装置20を備えるので、低出力のレーザー照射装置であっても、容易に、そのレーザー発生部52から出力されるレーザー光の波長とは異なる波長に波長変換し増幅うるレーザー照射装置10を提供することができる。
4.波長変換部材の製造方法
 次に、第1の実施の形態にかかる波長変換部材30の製造方法について説明する。
 図5は、第1の実施の形態にかかる波長変換部材の製造方法のフロー図である。
 まず、ステップS100において、レーザー導光体32が準備される。レーザー導光体32は、レーザー光を導波するためのコア部36と、コア部36の周囲に配置されるクラッド37と、クラッド37の周囲に配置される被覆層38とを備える。
 次に、レーザー導光体32の先端から数センチ程度のクラッド37および被覆層38が、治具などで除去され、コア部36が露出される。
 続いて、ステップS102において、液体ガラスと波長変換物質との混合物が準備され、混合物がその露出されたコア部36にドープ添加される。なお、ここで、液体ガラスと波長変換物質との混合物に対して、さらに、炭素(あるいは、炭素化合物)を添加した混合物を準備してもよい。ここで添加される炭素は、ナノレベルの粒径を備える粒子(ナノ粒子、ナノパーティクル)とした炭素ナノ粒子であることが好ましい。これにより、次のステップS104におけるドープ添加を促進させることができる。また、炭素粒子の平均粒径は、小さければ小さいほど効果があり、1nm以上50nm以下であることが好ましい。
 液体ガラスと波長変換物質との混合割合は、たとえば、質量%でそれぞれ50質量%とされる。波長変換物質は、たとえば、チタン酸化物やEr、Yb、Nd、Bi、Pr等の希土類レーザー媒質などを使用することができる。すなわち、波長変換物質は、ラマン効果により生ずる物質特有の波長に変換されたラマン散乱光によるレーザー光(ストークス光)としての出力を選択することができる。波長変化物質の粒径は、ラマン効果を効率的に生じさせるための表面積を確保するためにナノレベルとし、小さければ小さいほど好ましい。特に、この波長変換部材を歯科治療に使用する場合は、水の吸収波長を考慮して、波長変換物質が選択される。
 なお、チタン酸化物としては、酸化チタン(TiO2)が好ましい。酸化チタンの平均粒径は、ナノレベルとした、1nm以上500nm以下であることが好ましい。これにより、ラマン効果を効率的に生じさせるための表面積を確保することができる。
 そして、ステップS104において、準備された混合物に、レーザー光を導波するためのコア部36が露出されたレーザー導光体32の一方端側を浸漬して、レーザー導光体32の露出されたコア部36に混合物が塗布される。
 次に、ステップS106において、混合物を塗布した部分にレーザー光を照射して、レーザー導光体32の一方端側において露出されたコア部36の表面に塗布された混合物を溶融したうえで、混合物内で波長変換物質が拡散される。このとき、レーザー発生部52より照射される出力は、コア部36の直径や液体シリカの品質(不純物等の有無)に応じて調整される。たとえば、レーザー発生部52として半導体レーザーを使用し、レーザー光の波長980nm、25Wの出力とした場合、コア部36の直径が200μmに対しては250msで照射され、コア部36の直径が320μmに対しては450msで照射され、コア部36の直径が400μmに対しては600ms以上950ms以下で照射される。
 たとえば、波長変換物質の溶融温度によりリミッターが設定される。波長変換物質が酸化チタンの場合、溶融温度手前の1700℃に制限される。レーザー導光体32が、クオーツファイバーあるいはガラスファイバーの場合は、1440℃前後で溶融する。
 コア部36の直径が大きいほど、溶融するのに時間がかかるため長く調整される。また、時間の調整は、波長変換物質のドープ率により変化する。波長変換物質としてのチタン酸化物のドープ率は、0.1%以上30%以下であることが好ましい。
 よって、この工程における波長変換物質の拡散に要する温度は、波長変換物質の溶融温度よりも略低い温度で、短時間にコア部36の粘度を下げ、表面張力にてレンズ状あるいは略半球体に近い状態に形成されることで、波長変換物質は、混合物を塗布した部分において拡散される。そして、これにより、励起フォトンの拡散に影響され、増幅される。この増幅は、総合フォトン量が、入射されるレーザーフォトン量を上回る現象である。また、出力されるレーザー光(ストークス光)は、そのレーザー光の出力される先端部分の加工形態がレンズ状あるいは略半球体とすることで、レーザー出力の方向性と拡散とをコントロールすることができる。
 一方、溶融時間が長いと、波長変換物質、たとえば、酸化チタンにルチル結晶が集積し、ストーク現象を起す条件を下げてしまう。
 酸化チタン(TiO2)がアナターゼ型であると、付随する原子構造が900℃以上でルチル型に修飾される際にストーク現象を起す周囲の原子として有意である可能性を有する。なお、アナターゼ型にはさらにHomo、Rumoの2種類あるが、効率的にストーク現象を起すには、Rumo型が好ましい。
 そして、ステップS108において、さらに、混合物を塗布した部分にレーザー光を照射して、波長変換物質の溶融温度により小さい温度で、混合物を塗布した部分を加熱することで、波長変換物質が拡散された状態で固定することにより、ラマン波長変換部34が形成される。このときも、レーザー発生部52より照射される出力は、コア部36の直径や液体シリカの品質(不純物等の有無)に応じて調整される。そして、たとえば、レーザー発生部52として半導体レーザーを使用し、レーザー光の波長980nm、25Wの出力とした場合、1s以上3s以下で照射される。
 このようにして、ステップS110において、図3に示す波長変換部材30が製造される。
 第1の実施の形態にかかる波長変換部材の製造方法によれば、液体シリカと波長変換物質との混合物を準備する工程と、準備された混合物に、レーザー光を導波するためのコア部36が露出されたレーザー導光体32の一方端側を浸漬して、レーザー導光体32の露出されたコア部36に混合物を塗布する工程と、混合物を塗布した部分にレーザー光を照射して、レーザー導光体32の一方端側において露出されたコア部36の表面に塗布された混合物を溶融したうえで、混合物内で波長変換物質を拡散させる工程と、さらに、混合物を塗布した部分にレーザー光を照射して、波長変換物質の溶融温度より小さい温度により混合物を塗布した部分を加熱することで、波長変換物質が拡散された状態で固定して、ラマン波長変換部34を形成する工程と、を含むことにより、図3に示す波長変換部材30の製造方法を提供することができる。
 続いて、第1の実施の形態の変形例にかかる波長変換部材130の製造方法について、説明する。
 図6は、第1の実施の形態の変形例にかかる波長変換部材130の製造方法のフロー図である。
 まず、ステップS200において、所定の長さのレーザー導光体132が準備される。たとえば、レーザー導光体132の長さは、10cm以上20cm以下、あるいは1m以上2m以下程度の長さで準備される。レーザー導光体132は、レーザー光を導波するためのコア部36と、コア部36の周囲に配置されるクラッド37と、クラッド37の周囲に配置される被覆層38とを備える。レーザー導光体132の一方端側において、先端から数センチ程度のクラッド37および被覆層38が、治具などで除去され、コア部36が露出される。
 そして、ステップS202において、波長変換物質が予めドープ添加されたラマン波長変換部134が準備される。ここで準備されるラマン波長変換部134は、直径が200μm以上400μm以下であり、長さが1mm以上30mm以下、あるいは、10cm以上20cm以下程度の小片として準備される。このようなラマン波長変換部134の小片は、既知の方法により基材134aに対して波長変換物質をドープ添加することにより、量産することができる。ここで、たとえば、基材134aに対する波長変換物質のドープ方法としては、VAD(Vapor Phase Axial Deposition)法やMCVD(Modified Chemical Vapor Deposition)法を用いることができる。
 次に、ステップS204において、準備されたラマン波長変換部134を、レーザー光を導波するためのコア部36を含むレーザー導光体132の一方端側に接合される。この接合は、たとえば、接合面を加熱したうえで、溶着することにより行われる。
 続いて、ステップS206において、ラマン波長変換部134が溶着されたレーザー導光体132の他方端側からレーザー光がコア部36を介してラマン波長変換部134に入射されて、レーザー導光体132とラマン波長変換部134との接合部が溶融される。そうすると、ラマン波長変換部134に含まれる波長変換物質が、レーザー導光体132のコア部36に拡散されることで、レーザー導光体132とラマン波長変換部134とがより強固に接合される。
 このようにして、ステップS208において、図4に示す波長変換部材130が製造される。
 第1の実施の形態の変形例にかかる波長変換部材の製造方法によれば、波長変換物質がSiを含む基材134aに予めドープ添加されたラマン波長変換部134を準備する工程と、ラマン波長変換部134を、レーザー光を導波するためのコア部36を含むレーザー導光体32の一方端側に接合する工程と、レーザー光を照射して、ラマン波長変換部134とレーザー導光体32との接合部を溶融して、ラマン波長変換部134に含まれる波長変換物質をレーザー導光体32のコア部36に拡散させる工程と、を含むので、図4に示す波長変換部材130の製造方法を提供することができる。
B.第2の実施の形態
 続いて、本発明の第2の実施の形態に係る波長変換部材を用いた波長変換装置520を有するレーザー照射装置510を、図面を参照しながら説明する。
 図7は、この発明の第2の実施の形態にかかるレーザー照射装置の構成を示した図解図である。
 第2の実施の形態にかかるレーザー照射装置510は、図7に示すように、波長変換装置520と本体部550とを含む。そして、波長変化装置520は、図7に示すように、波長変換部材530とハーフミラー部540と、を含む。また、波長変換部材530により導光されたレーザー光を治療部位に照射するために術者が保持するハンドピース560を含む。
1.波長変換部材
 第2の実施の形態にかかる波長変換部材530は、ラマン効果を生ずるための波長変換物質が予めドープ添加されたラマン波長変換部534と、ラマン波長変換部534の周囲に配置されるクラッド537と、クラッド537の周囲に配置される被覆層538とを備える。ラマン波長変換部534、クラッド537、および、被覆層538は、同心状に配置される。
 ラマン波長変換部534は、Siを含む石英(SiO2)などの高い屈折率を有する材料により形成された紐状の基材534aと、基材534aにドープ添加されるラマン効果を生ずるための波長変換物質とを含む。したがって、ラマン波長変換部534の基材534aには、波長変換物質が拡散して配置されるとともに、拡散して配置された波長変換物質の一部がSiと結合して配置される。基材534aに対する波長変換物質のドープ率は、0.1%以上3%以下である。クラッド537は、石英または樹脂などの材料により形成され、基材534aよりも0.2%以上1%以下程度低い屈折率を有する。被覆層538は、フッ素樹脂などの樹脂材料により形成され、ラマン波長変換部534およびクラッド537を保護する。本実施の形態では、ラマン波長変換部534が石英(SiO2)に対して波長変換物質がドープ添加されたものから形成されており、クラッド537が硬質の樹脂材で形成され、被覆層538がフッ素を含む樹脂材料により形成されている。なお、基材534aは、石英(SiO2)により形成されているが、これに限ることはなく、たとえば、ジルコニアあるいはサファイアが用いられてもよい。また、クラッド537に対して、ラマン効果を生ずるための波長変換物質が予めドープ添加されていてもよい。
 レーザー照射装置510は、本体部550とハンドピース560とが遠隔に配置されているため、レーザー照射装置510に使用される波長変換部材534は比較的、長いものが使用される。この波長変換部材の534の長さは、たとえば、ハンドピース560による治療に支障をきたさない長さが確保されており、たとえば、1m以上である。
 レーザー光がラマン波長変換部534の他方端側から入射したとき、ラマン波長変換部534において、波長変換物質に基づくラマン効果が生ずることで、レーザー光の波長とは異なる波長に波長変換されたラマン散乱光によるレーザー光(ストークス光)が出力される。
 波長変換物質は、たとえば、チタン酸化物やEr、Yb、Nd、Bi、Pr等の希土類レーザー媒質などを使用することができる。すなわち、波長変換物質は、ラマン効果により生ずる各物質特有の波長に変換されたラマン散乱光によるレーザー光(ストークス光)としての出力を選択することができる。波長変化物質の粒径は、ラマン効果を効率的に生じさせるための表面積を確保するためにナノレベルとし、小さければ小さいほど好ましい。特に、この波長変換部材を歯科治療に使用する場合は、水の吸収波長を考慮して、波長変換物質が選択される。
 なお、チタン酸化物としては、酸化チタン(TiO2)が好ましい。波長変換物質としての酸化チタンの平均粒径は、ナノレベルとした、1nm以上500nm以下であることが好ましい。これにより、ラマン効果を効率的に生じさせるための表面積を確保することができる。波長変換物質としてのチタン酸化物のドープ率は、0.1%以上3%以下であることが好ましい。これにより、さらに、ラマン効果を効率的に生じさせることができる。波長変換物質として酸化チタン(TiO2)を用いた場合、図4に示すように、ラマン散乱光により出力されたレーザー光の波長は、3000nm以上である。
 また、酸化チタン(TiO2)としては、ルチル型やアナターゼ型の結晶構造の酸化チタンを用いることができる。なお、波長変換物質としては、アナターゼ型の結晶構造の酸化チタンを用いることが好ましい。酸化チタンがアナターゼ型であると、付随する原子構造が900℃以上でルチル型に修飾される際にストーク現象を起す周囲の原子として有意である可能性を有する。また、アナターゼ型にはさらに、Homo、Rumoの2種類あるが、効率的にストーク現象を起すには、Rumo型が好ましい。
 図7に示す波長変換部材530は、ラマン波長変換部534は、Siを含む石英(SiO2)などの高い屈折率を有する材料により形成された紐状の基材534aと、基材534aにドープ添加されるラマン効果を生ずるための波長変換物質とを含む。したがって、ラマン波長変換部534の基材534aには、波長変換物質が拡散して配置されるとともに、拡散して配置された波長変換物質の一部がSiと結合して配置される。これにより、低出力のレーザー照射装置であっても、容易に、そのレーザー照射装置から出力されるレーザー光の波長とは異なる波長に波長変換し増幅うる波長変換部材を提供することができる。
 図7に示す波長変換部材530は、図3に示す波長変換部材30と同様の効果を奏する。
2.波長変換装置
 波長変換装置520は、図7に示すように、波長変換部材530と、ハーフミラー部540とを備える。
 第2の実施の形態にかかるハーフミラー部540、たとえば、波長変換部材530の他方端側であって、かつ、本体部550の内部に配置され、ラマン効果により生ずるレーザー光の波長とは異なる波長に波長変換された波長のレーザー光を反射する機能を有する。すなわち、たとえば、波長変換物質が酸化チタンである場合、ラマン効果により生ずる波長は、3000nmであるので、3000nmの波長を反射するためのハーフミラー部540が配置される。
3.レーザー照射装置
 第2の実施の形態にかかるレーザー照射装置510は、波長変換装置520と、本体部550とを含む。
 本体部550は、図7に示すように、波長変換部材530にレーザー光を射出するレーザー発生部552と、レーザー発生部552を制御することにより、波長変換部材530のラマン波長変換部534における温度を制御するための制御部554とを備える。また、必要に応じて、レーザー照射装置510の本体部550は、制御部554を介してレーザー照射装置510を操作するための操作部556と、レーザー照射装置510の制御の状態を表示するための表示部558を備える。
 レーザー光発生部552は、制御部554の制御によりレーザー光を射出し、そのレーザー光を波長変換装置520に出力する。
 レーザー光発生部552としては、半導体レーザー、固体レーザー装置、ファイバーレーザー装置などを採用することができる。本実施の形態にかかるレーザー光発生部552は、半導体レーザーにより構成される。この半導体レーザーは、電源回路(図示せず)から入力された電流に応じて所定の波長のレーザー光を出力する。また、レーザー光発生部552は、連続的にレーザー光を出すCWモードや、一定の設定時間、一定の出力強度でレーザー発振(オンタイム)と発振停止(オフタイム)を間欠的に繰り返すリピートモードなど、各種レーザー出力モードを備えていてもよい。上記リピートモードは、例えば半導体レーザーへ所定電流値の駆動電流を間欠的に入力することで、実現することができる。
 本実施の形態では、レーザー光発生部552は、波長980nm、出力4W以上30W以下程度、CWモード、リピートモードでの出力が可能である。レーザー光発生部552は、リピートモードで、オンタイム1ms以上1000ms以下、オフタイム1ms以上1000ms以下の間で調整可能にレーザーを出力することができる。
 制御部554は、レーザー照射装置510の各構成要素を統括的に制御する。また、制御部554は、記憶部(図示せず)に記憶したプログラムを実行することにより、レーザー照射装置510に本実施の形態にかかる機能を実現する。
 また、制御部554は、レーザー光発生部552からレーザー光を射出させる処理を行うように制御する処理を行う。
 操作部556は、フットスイッチ、操作ボタンなどを備え、ユーザの操作に応じた信号を制御部554に出力する。制御部554は、操作部556の操作に応じて、レーザー光発生部552から射出するレーザー光の出力の大きさ、オンタイム、オフタイムなどを制御する処理を行う。
 表示部558は、制御部54の制御により、本発明に係る動作に応じた表示を行う。
 記憶部(図示せず)は、RAMやROMなどの半導体記憶装置、ハードディスクドライブなどの磁気ディスク記憶装置等を有し、本発明に係る機能を実現させるためのプログラム、データなどを記憶する。また、記憶部は、制御部554によるプログラム実行の作業エリアとしても用いられる。
 なお、ラマン波長変換部134が、ハーフミラー部540とレーザー光発生部552との間に配置されてもよい。そうすると、レーザー光発生部552より出力されたレーザー光が、ハーフミラー部540に入る前に、予め、レーザー光の波長とは異なる波長に変換されたラマン散乱光によるレーザー光(ストークス光)を出力させることができる。
 また、ハーフミラー部540とレーザー光発生部552との間には、プリズム構造体を配置してもよい。このとき、このプリズム構造体は、波長変換物質がドープ添加されていることが好ましい。プリズム構造体は、レーザー光発生部552からのレーザー光を波長に応じて分散する機能を有する。
4.波長変換部材の製造方法
 次に、第2の実施の形態にかかる波長変換部材の製造方法について、説明する。
 図8は、この発明の第2の実施の形態にかかる波長変換部材の製造方法を説明するためのフロー図である。
 まず、ステップS300において、Siを含む石英(SiO2)などの高い屈折率を有する材料により形成された紐状の基材534aが準備される。
 次に、ステップS302において、基材534aに対して波長変換物質をドープ添加して、紐状のラマン波長変換部534が形成される。ここで、基材534aに対する波長変換物質のドープ方法としては、ロッドインチューブ法等を用いることができる。
 続いて、ステップS304において、形成されたラマン波長変換部534の周囲に配置されるクラッド537が形成され、続いて、ステップ306において、クラッド537の周囲に被覆層538が形成される。
 このようにして、ステップS308において、図7に示す波長変換部材530が製造される。
 本実施の形態にかかる波長変換部材の製造方法によれば、Siを含む石英(SiO2)などの高い屈折率を有する材料により形成された紐状の基材534aを準備する工程と、基材に対して波長変換物質をドープ添加してラマン波長変換部534を形成する工程と、形成されたラマン波長変換部534の周囲に配置されるクラッド537を形成する工程と、を含むので、図7に示す波長変換部材530の製造方法を提供することができる。
C.第3の実施の形態
 続いて、本発明の第3の実施の形態に係る波長変換部材630について説明する。
 図9は、この発明の第3の実施の形態にかかる波長変換部材の拡大断面図である。
 第3の実施の形態にかかる波長変換部材630は、円筒状の中空なコア630aを備えた中空導光体632を備える。中空導光体632は、内部が中空のパイプ状に形成したラマン波長変換部634と、ラマン波長変換部634の外周側に形成された金属層637と、金属層637の外周側に形成された被覆層638とにより構成されている。
 ラマン波長変換部634は中空のパイプ状に形成され、その内部に円筒状の中空なコア630aを形成する。ラマン波長変換部634は、基材634aと、その基材634aにドープ添加するための波長変換物質とを含む。基材634aには、Siが含まれる。好ましくは、基材634aは石英により形成される。基材634aに波長変換物質がドープ添加されることで、基材634aの内部に波長変換物質が拡散して配置されるとともに、拡散して配置された波長変換物質の一部が基材634aに含まれるSiと結合して配置される。
 ここで、ラマン波長変換部634で使用される波長変換物質は、ラマン波長変換部34と同様の物質を使用することができる。
 また、金属層637の材料はAgやAlを用いることができる。材料の選択は、伝送する光の波長に応じて、適宜行うことができる。
 さらに、金属層637を被覆する被覆層は、ガラス層などを適宜に用いることができる。
 なお、第3の実施の形態にかかる波長変換部材630は、図7に示すレーザー照射装置510における波長変換部材530に代替して使用することができる。
 この場合、レーザー照射装置は、レーザー照射装置が備えるレーザー光発生部から出力された励起光を反射するとともに波長変換部材630への励起光の照射に基づいて波長変換部材630から放射される信号光を透過する光学フィルターを備えていてもよい。
 図9に示す波長変換部材630は、図3に示す波長変換部材30と同様の効果を奏する。
 次に、第3の本実施の形態の変形例にかかる波長変換部材730について説明する。
 図10は、この発明の第3の実施の形態の変形例にかかる波長変換部材の拡大断面図である。なお、図10に示す波長変換部材730において、図9に示した波長変換部材630と同一の部分には、同一の符号を付し、その説明を省略する。
 変形例にかかる波長変換部材730は、円筒状の中空なコア730aを備えた中空導光体732を備える。内部が中空のパイプ状に形成した金属層637と、金属層637の外周側に形成された被覆層638と、中空導光体732の一方端側に配置されるラマン波長変換部734とを含む。なお、金属層637の内面にラマン波長変換部634が形成されていてもよい。
 ラマン波長変換部734はレンズ状に形成される。ラマン波長変換部734は、中空導光体732の一方端側における部分に融合されて接合されるように配置される。ラマン波長変換部734は、基材734aと、その基材734aにドープ添加するための波長変換物質とを含む。基材734aには、Siが含まれる。好ましくは、基材734aは石英により形成される。基材734aに波長変換物質がドープ添加されることで、基材734aの内部に波長変換物質が拡散して配置されるとともに、拡散して配置された波長変換物質の一部が基材734aに含まれるSiと結合して配置される。
 ここで、ラマン波長変換部734で使用される波長変換物質は、ラマン波長変換部34と同様の物質を使用することができる。
 図10に示す波長変換部材630は、図9に示す波長変換部材630と同様の効果を奏する。
 以上のように、本発明の実施の形態は、前記記載で開示されているが、本発明は、これに限定されるものではない。
 すなわち、本発明の技術的思想及び目的の範囲から逸脱することなく、以上説明した実施の形態に対し、機序、形状、材質、数量、位置又は配置等に関して、様々の変更を加えることができるものであり、それらは、本発明に含まれるものである。
 この発明に係る波長変換部材、それを用いた波長変換装置およびレーザー照射装置、ならびに、波長変換部材の製造方法は、たとえば、歯科治療に用いられるレーザー照射装置として好適に使用することができる。
 10、510 レーザー照射装置
 20、520 波長変換装置
 30、130、530、630、730 波長変換部材
 630a、730a 中空なコア
 32、132 レーザー導光体
 632、732 中空導光体
 34、134、534、634、734 ラマン波長変換部
 134a、534a、634a、734a 基材
 36 コア部
 37、537 クラッド
 637 金属層
 38、538、638 被覆層
 40、540 ハーフミラー部
 50、550 本体部
 52、552 レーザー発生部(半導体レーザー)
 54、554 制御部
 56、556 操作部
 58、558 表示部

Claims (16)

  1.  レーザー光を導波するためのコア部と、
     前記コア部の周囲に配置されるクラッドとを含むレーザー導光体を備え、
     前記レーザー導光体の一方端側における前記コア部に対して、液体シリカと波長変換物質との混合物がドープ添加されることで、前記波長変換物質が拡散して配置されるとともに、前記拡散して配置された前記波長変換物質の一部が前記液体シリカ中のSiと結合して配置されたラマン波長変換部を有し、
     前記レーザー導光体の他方端側から前記レーザー光が前記コア部を介して前記ラマン波長変換部に入射したとき、前記ラマン波長変換部において、前記波長変換物質に基づくラマン効果が生ずることで、前記レーザー光の波長とは異なる波長に波長変換されたラマン散乱光によるレーザー光が出力されることを特徴とする、波長変換部材。
  2.  レーザー光を導波するためのコア部と、前記コア部の周囲に配置されるクラッドとを含むレーザー導光体と、
     Siを含む基材と、前記基材にドープ添加される波長変換物質とにより構成されるラマン波長変換部と、
    を備え、
     前記ラマン波長変換部は、前記レーザー導光体の一方端側における前記コア部に融合され、かつ、前記波長変換物質が拡散して配置されるとともに、前記拡散して配置された前記波長変換物質の一部が前記Siと結合して配置され、
     前記レーザー導光体の他方端側から前記レーザー光が前記コア部を介して前記ラマン波長変換部に入射したとき、前記ラマン波長変換部において、前記波長変換物質に基づくラマン効果が生ずることで、前記レーザー光の波長とは異なる波長に波長変換されたラマン散乱光によるレーザー光が出力されることを特徴とする、波長変換部材。
  3.  レーザー光が導波するためのSiを含む基材と、前記基材にドープ添加される波長変換物質とを含み、前記基材にラマン効果を生ずるための波長変換物質が予めドープ添加されることで、前記波長変換物質が拡散して配置されるとともに、前記拡散して配置された前記波長変換物質の一部が前記Siと結合して配置されたラマン波長変換部と、
     前記ラマン波長変換部の周囲に配置されるクラッドと、
    を備え、
     前記ラマン波長変換部の他方端側から前記レーザー光が前記ラマン波長変換部に入射したとき、前記ラマン波長変換部において、前記波長変換物質に基づくラマン効果が生ずることで、前記レーザー光の波長とは異なる波長に波長変換されたラマン散乱光によるレーザー光が出力されることを特徴とする、波長変換部材。
  4.  前記波長変換物質の平均粒径は、1nm以上500nm以下であることを特徴とする、請求項1ないし請求項3のいずれかに記載の波長変換部材。
  5.  前記波長変換物質のドープ率は、0.1%以上30%以下であることを特徴とする、請求項1ないし請求項4のいずれかに記載の波長変換部材。
  6.  前記ラマン散乱光により出力されたレーザー光の波長は、3000nm以上であることを特徴とする、請求項1ないし請求項5のいずれかに記載の波長変換部材。
  7.  前記コア部の材料は石英を含む、請求項1ないし請求項6のいずれかに記載の波長変換部材。
  8.  前記ドープ添加される波長変換物質は、チタン酸化物であることを特徴とする、請求項1ないし請求項7のいずれかに記載の波長変換部材。
  9.  チタン酸化物は、酸化チタン(TiO2)であることを特徴とする、請求項8のいずれかに記載の波長変換部材。
  10.  前記酸化チタンは、アナターゼ型であることを特徴とする、請求項9に記載の波長変換部材。
  11.  請求項1ないし請求項10のいずれかに記載の波長変換部材と、
     前記レーザー導光体の他方端側に配置され、ラマン効果により生ずる前記レーザー光の波長とは異なる波長に波長変換された波長のレーザー光を反射する機能を有するハーフミラー部と、
    を備える波長変換装置。
  12.  請求項11に記載の波長変換装置と、
     前記波長変換部材にレーザー光を射出する半導体レーザーと、
     前記半導体レーザーを制御することにより、前記ラマン波長変換部における温度を制御するための制御部と、
    を備える、レーザー照射装置。
  13.  液体シリカと波長変換物質との混合物を準備する工程と、
     前記準備された混合物に、レーザー光を導波するためのコア部が露出されたレーザー導光体の一方端側を浸漬して、前記レーザー導光体の露出された前記コア部に前記混合物を塗布する工程と、
     前記混合物を塗布した部分にレーザー光を照射して、前記レーザー導光体の一方端側において露出された前記コア部の表面に塗布された前記混合物を溶融したうえで、前記混合物内で前記波長変換物質を拡散させる工程と、
     さらに、前記混合物を塗布した部分にレーザー光を照射して、前記波長変換物質の溶融温度より小さい温度により前記混合物を塗布した部分を加熱することで、前記波長変換物質が拡散された状態で固定して、ラマン波長変換部を形成する工程と、
    を含む、波長変換部材の製造方法。
  14.  前記液体シリカと波長変換物質との混合物を準備する工程において、
     前記混合物に対して、さらに、炭素が添加されることを特徴とする、請求項13に記載の波長変換部材の製造方法。
  15.  波長変換物質がSiを含む基材に予めドープ添加されたラマン波長変換部を準備する工程と、
     前記ラマン波長変換部を、レーザー光を導波するためのコア部を含むレーザー導光体の一方端側に接合する工程と、
     レーザー光を照射して、前記ラマン波長変換部と前記レーザー導光体との接合部を溶融して、前記ラマン波長変換部に含まれる前記波長変換物質を前記レーザー導光体の前記コア部に拡散させる工程と、
    を含む、波長変換部材の製造方法。
  16.  Siを含む石英(SiO2)などの高い屈折率を有する材料により形成された紐状の基材を準備する工程と、
     前記基材に対して波長変換物質をドープ添加してラマン波長変換部を形成する工程と、
     前記形成されたラマン波長変換部の周囲に配置されるクラッドを形成する工程と、
    を含む、波長変換部材の製造方法。
PCT/JP2020/023400 2019-06-14 2020-06-15 波長変換部材、それを用いた波長変換装置およびレーザー照射装置、ならびに、波長変換部材の製造方法 WO2020251054A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019111387A JP2022153671A (ja) 2019-06-14 2019-06-14 波長変換部材、それを用いた波長変換装置およびレーザー照射装置、ならびに、波長変換部材の製造方法
JP2019-111387 2019-06-14

Publications (1)

Publication Number Publication Date
WO2020251054A1 true WO2020251054A1 (ja) 2020-12-17

Family

ID=73782037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023400 WO2020251054A1 (ja) 2019-06-14 2020-06-15 波長変換部材、それを用いた波長変換装置およびレーザー照射装置、ならびに、波長変換部材の製造方法

Country Status (2)

Country Link
JP (1) JP2022153671A (ja)
WO (1) WO2020251054A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023176961A1 (ja) * 2022-03-17 2023-09-21 株式会社アパタイト レーザーハンドピース

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003515957A (ja) * 1999-12-03 2003-05-07 キネティック リミテッド レーザー効果及びレーザー装置
US20030087742A1 (en) * 2001-10-02 2003-05-08 Elizabeth Taylor Low phonon energy gain medium and related active devices
US20050047702A1 (en) * 2003-08-27 2005-03-03 Mesophotonics Limited Nonlinear optical device
JP2005309295A (ja) * 2004-04-26 2005-11-04 Nec Corp 光増幅素子、光増幅装置および光増幅システム
JP2006189587A (ja) * 2005-01-05 2006-07-20 Nidek Co Ltd 医療用レーザ装置
US20070133626A1 (en) * 2005-12-12 2007-06-14 Electronics And Telecommunications Research Institute Mid-infrared raman fiber laser system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003515957A (ja) * 1999-12-03 2003-05-07 キネティック リミテッド レーザー効果及びレーザー装置
US20030087742A1 (en) * 2001-10-02 2003-05-08 Elizabeth Taylor Low phonon energy gain medium and related active devices
US20050047702A1 (en) * 2003-08-27 2005-03-03 Mesophotonics Limited Nonlinear optical device
JP2005309295A (ja) * 2004-04-26 2005-11-04 Nec Corp 光増幅素子、光増幅装置および光増幅システム
JP2006189587A (ja) * 2005-01-05 2006-07-20 Nidek Co Ltd 医療用レーザ装置
US20070133626A1 (en) * 2005-12-12 2007-06-14 Electronics And Telecommunications Research Institute Mid-infrared raman fiber laser system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023176961A1 (ja) * 2022-03-17 2023-09-21 株式会社アパタイト レーザーハンドピース

Also Published As

Publication number Publication date
JP2022153671A (ja) 2022-10-13

Similar Documents

Publication Publication Date Title
TWI757486B (zh) 空芯光子晶體光纖及其製造方法
CN101384952B (zh) 光学部件及其制造方法
US9561077B2 (en) Method of using supercontinuum light for medical and biological applications
Courrol et al. Color center production by femtosecond pulse laser irradiation in LiF crystals
CN104087296B (zh) 一种激光辐照制备荧光碳量子点的方法
JP2010532587A (ja) 誘導ビリルアン散乱を使用しないファイバmopaシステム
WO2020251054A1 (ja) 波長変換部材、それを用いた波長変換装置およびレーザー照射装置、ならびに、波長変換部材の製造方法
CN1419432A (zh) 激光治疗设备
JP4982751B2 (ja) 赤外ガラス蛍光体及び半導体発光素子で構成した光干渉断層撮影装置用光源。
JP2000511360A (ja) レーザー輻射線を用いて材料を切除するための装置
WO2011111560A1 (ja) ファイバレーザ装置
JP5819266B2 (ja) 単一モードファイバの製造方法
JP2002273581A (ja) 短パルス波長可変ラマンレーザーによる物質の加工方法
Orlovskii et al. Laser heating of the Y 1-x Dy x PO 4 nanocrystals
WO2023176961A1 (ja) レーザーハンドピース
Eliel et al. Spectroscopic investigation and heat generation of Yb 3+/Ho 3+ codoped aluminosilicate glasses looking for the emission at 2 μm
Jiang et al. Laser excitation‐activated self‐propagating sintering of NaYbF4: Pr3+/Gd3+ white light microcrystal phosphors
WO2010050341A1 (ja) 紫外光源装置
JP2013141581A (ja) ファイバーを用いたレーザー光熱変換装置、加熱装置、および、レーザー光熱変換装置の製造方法
US20220239051A1 (en) Selectable wavelength cascading coherent optical pump sources
Chattopadhyay et al. Fluorescence enhancement in Tm-Yb-Ag codoped fiber by super-radiance
Li et al. 5-D spectroscopic microscopy for intelligent femtosecond laser writing of optical waveguides
Pal Thulium-doped fibre laser in the 2 μm wavelength region for gas sensing
Benabid Photonic microcell: A revival tool for gas lasers
Huy et al. Efficient Raman converter at 583 nm using a photonic bandgap fiber filled with a mixture of liquids

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20822848

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06.04.2022)

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 20822848

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP