WO2020250876A1 - Temperature prediction device and temperature prediction method - Google Patents

Temperature prediction device and temperature prediction method Download PDF

Info

Publication number
WO2020250876A1
WO2020250876A1 PCT/JP2020/022642 JP2020022642W WO2020250876A1 WO 2020250876 A1 WO2020250876 A1 WO 2020250876A1 JP 2020022642 W JP2020022642 W JP 2020022642W WO 2020250876 A1 WO2020250876 A1 WO 2020250876A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
measurement
air
heated
measurement site
Prior art date
Application number
PCT/JP2020/022642
Other languages
French (fr)
Japanese (ja)
Inventor
真次 朝山
信二 福
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN202080041536.1A priority Critical patent/CN113906835A/en
Publication of WO2020250876A1 publication Critical patent/WO2020250876A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K3/00Thermometers giving results other than momentary value of temperature
    • G01K3/08Thermometers giving results other than momentary value of temperature giving differences of values; giving differentiated values
    • G01K3/14Thermometers giving results other than momentary value of temperature giving differences of values; giving differentiated values in respect of space
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3494Heating methods for reflowing of solder

Definitions

  • the present disclosure relates to a temperature prediction device and a temperature prediction method for predicting the temperature of a part to be heated moving in the heating device.
  • Patent Document 1 Japanese Patent No. 4226855 (Patent Document 1) describes the heating temperature and the measurement temperature of the object to be heated at the measurement position where the object to be heated passes in the transport direction of the substrate (object to be heated) moving in the heating device.
  • a temperature prediction method for calculating a heating characteristic value for each measurement position is disclosed using and.
  • the temperature prediction method the temperature profile of the object to be heated is predicted when the heating conditions of the heating device are changed by using the heating characteristic value for each measurement position. According to the temperature prediction method, it is possible to efficiently find the heating conditions of the heating device for heating the object to be heated according to the temperature profile suitable for the predetermined required conditions.
  • thermodynamic phenomena such as radiant heat from the inner wall of the heating device and heat conduction in the object to be heated are superimposed. Is occurring. Since it is difficult to accurately model the inside of the heating device, it is necessary to simplify the modeling of the inside of the heating device to some extent in the temperature prediction inside the heating device. However, according to the simplified model, the accuracy of temperature prediction in the heating device can be reduced.
  • the present disclosure has been made to solve the above-mentioned problems, and an object thereof is to suppress a decrease in accuracy of temperature prediction in a heating device while simplifying modeling of the inside of the heating device. Is.
  • the temperature predictor predicts the temperature inside the heating device that heats the object to be heated.
  • the heating device transfers air having a set temperature corresponding to the position according to the first set temperature distribution showing the relationship between each of the plurality of positions in the transfer process in which the object to be heated moves and the temperature of the air at the position. Blow towards.
  • the temperature prediction device includes a control unit and a storage unit. In the storage unit, a first measurement temperature profile showing the relationship between the measurement temperature and the measurement time of the measurement site of the object to be heated moving in the heating device is stored.
  • the control unit uses the heat transfer coefficient to define the relationship between the temperature of the object to be heated at the measurement site and the temperature of the air around the measurement site, and the temperature difference of the object to be heated at the measurement site over time.
  • the heat transfer coefficient is set so that there is no difference between the temperature of the air at the position of the measurement site at the specific time and the temperature of the air corresponding to the position of the measurement site at the specific time in the first set temperature distribution. decide.
  • the control unit predicts the temperature distribution of air in the transport process using the first measurement temperature profile and the relational expression.
  • the temperature prediction method predicts the temperature inside the heating device that heats the object to be heated.
  • the heating device transfers air having a set temperature corresponding to the position according to the first set temperature distribution showing the relationship between each of the plurality of positions in the transfer process in which the object to be heated moves and the temperature of the air at the position. Blow towards.
  • the temperature prediction method includes a step of generating a first measurement temperature profile showing the relationship between the measurement temperature and the measurement time of the measurement site of the object to be heated moving in the heating device.
  • the temperature prediction method uses the heat transfer coefficient to determine the relationship between the temperature of the object to be heated at the measurement site and the temperature of the air around the measurement site, and the temperature difference of the object to be heated at the measurement site over time.
  • the heat transfer coefficient so that there is no difference between the temperature of the air at the position of the measurement site at the specific time and the temperature of the air corresponding to the position of the measurement site at the specific time in the first set temperature distribution.
  • the temperature prediction method includes a step of predicting the temperature distribution of air in the transport process using the first measurement temperature profile and the relational expression.
  • the temperature prediction device and the temperature prediction method according to the present disclosure relate the difference between the temperature of the object to be heated at the measurement site and the temperature of the air around the measurement site, and the temperature difference of the object to be heated at the measurement site over time.
  • the relational expression defined using the heat transfer coefficient the temperature of the air at the position of the measurement site at a specific time and the temperature of the air corresponding to the position of the measurement site at the specific time in the first set temperature distribution.
  • FIG. 7 It is a figure which also shows the set temperature distribution of FIG. 7, the temperature distribution in a furnace, and the corrected set temperature distribution. It is a figure which shows the simulation result of temperature prediction. It is a flowchart which shows an example of the process of temperature prediction performed by the temperature prediction apparatus which concerns on Embodiment 2. FIG. It is a flowchart which shows another example of the process of temperature prediction performed by the temperature prediction apparatus which concerns on Embodiment 2. FIG.
  • FIG. 1 is an external perspective view of a reflow furnace 100 which is an example of a heating device according to the first embodiment and a control device 30 of a reflow furnace 100 which is an example of a temperature prediction device.
  • the X-axis, Y-axis, and Z-axis are orthogonal to each other. The same applies to FIGS. 3 and 5 described later.
  • the reflow furnace 100 is provided with an inlet portion 110 and an outlet portion 120.
  • the reflow furnace 100 is a heating device having a tunnel-type transfer process.
  • the object to be heated is charged into the conveyor inside the reflow furnace 100 from the inlet 110. Inside the reflow furnace 100, the object to be heated moving on the conveyor is heated.
  • the control device 30 controls, for example, the temperature inside the reflow furnace 100, the amount of air blown by the heating mechanism, and the transfer speed of the transfer conveyor.
  • the object to be heated is, for example, a printed circuit board in which a plurality of mounting components are arranged by solder paste.
  • the solder paste is a paste obtained by adding flux to solder powder to have an appropriate viscosity, and is also called cream solder.
  • Examples of the mounting components soldered on the printed circuit board include passive element components such as ceramic capacitors, semiconductor chips on which active elements such as transistors are formed, and integrated circuits in which these are integrated. it can.
  • FIG. 2 is a functional block diagram showing the configuration of the control device 30 of FIG.
  • the control device 30 includes a processing circuit 31 (control unit), a memory 32 (storage unit), an input / output unit 33, and a display unit 34.
  • the processing circuit 31 includes a low-pass filter 310.
  • the processing circuit 31 may include dedicated hardware, or may include a CPU (Central Processing Unit) that executes a program stored in the memory 32.
  • the processing circuit 31 includes dedicated hardware, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Applicatomy Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), Alternatively, a combination of these corresponds to the processing circuit 31.
  • the processing circuit 31 includes a CPU
  • the function of the control device 30 is realized by software, firmware, or a combination of software and firmware.
  • the CPU is also called a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a processor, or a DSP (Digital Signal Processor).
  • the memory 32 stores a program of control software and a program of temperature prediction software for controlling the temperature in the reflow furnace 100, the blower control, and the drive speed control of the conveyor.
  • the processing circuit 31 executes the program stored in the memory 32.
  • the memory 32 includes a non-volatile or volatile semiconductor memory (for example, RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), or EEPROM (Electrically Erasable Programmable Read Only Memory). )), And magnetic discs, flexible discs, optical discs, compact discs, mini discs, or DVDs (Digital Versatile Disc) are included.
  • FIG. 3 is a diagram showing the internal configuration of the reflow furnace 100 of FIG.
  • the reflow furnace 100 includes a transfer conveyor 2, heating mechanisms 41 to 47, 51 to 57, temperature sensors Sa1 to Sa7, Sb1 to Sb7, and cooling mechanisms 61 and 62.
  • the heating mechanisms 41 to 47 and the cooling mechanism 61 are arranged at intervals in this order from the inlet portion 110 to the outlet portion 120.
  • the heating mechanisms 51 to 57 and the cooling mechanism 62 are arranged at intervals in this order from the inlet portion 110 to the outlet portion 120.
  • the heating mechanisms 41 to 47 face the heating mechanisms 51 to 57 in the Z-axis direction, respectively.
  • the cooling mechanisms 61 and 62 face each other in the Z-axis direction.
  • the transfer conveyor 2 is arranged between the heating mechanisms 41 to 47 and the heating mechanisms 51 to 57 along a transfer process extending from the inlet portion 110 to the outlet portion 120.
  • the transfer direction of the transfer conveyor 2 is the direction indicated by the arrow 3.
  • Each of the heating mechanisms 41 to 47 and 51 to 57 heats the air to the temperature set by the control device 30 and blows the air toward the conveyor 2.
  • Each of the cooling mechanisms 61 and 62 cools the air to the temperature set by the control device 30 and blows the air toward the conveyor 2.
  • the temperatures of the air blown from the heating mechanisms 41 to 47 and 51 to 57 are measured by the temperature sensors Sa1 to Sa7 and Sb1 to Sb7, respectively, and output to the control device 30.
  • the control device 30 controls the temperature (set temperature) of the air blown by the heating mechanisms 41 to 47, 51 to 57 and the amount of air blown per unit time.
  • the control device 30 controls the transfer speed of the transfer conveyor 2.
  • the control device 30 sets the set temperatures of the two heating mechanisms facing each other in the Z-axis direction to the same temperature.
  • the control device 30 sets the set temperatures of the cooling mechanisms 61 and 62 to the same temperature.
  • the inside of the reflow furnace 100 is divided into a plurality of sections Sc1 to Sc9 along the conveyor 2.
  • the section Sc1 is a section through which the printed circuit board 1 (first object to be heated) inserted into the inlet 110 first passes.
  • heating mechanisms 41 to 47 are arranged and heating mechanisms 51 to 57 are arranged, respectively.
  • Cooling mechanisms 61 and 62 are arranged in the section Sc9.
  • the printed circuit board 1 moves from the inlet portion 110 to the outlet portion 120 at the transfer speed of the transfer conveyor 2.
  • the printed circuit board 1 is soldered by being heated in the transport process. At the point to be soldered, it is necessary to raise the temperature above the melting temperature of the solder.
  • the mounting components that make up the circuit have an allowable heat resistant temperature. Therefore, if the temperature rises beyond the heat-resistant temperature of the mounted component, there is a risk that the mounted component may malfunction. That is, the temperature inside the reflow furnace 100 must satisfy the condition that the temperature is equal to or higher than the melting temperature of the solder and lower than the heat resistant temperature.
  • the condition is satisfied if the entire printed circuit board 1 is uniformly heated to 230 ° C.
  • the rate of temperature increase differs between the portion where the temperature rises easily and the portion where the temperature rise is difficult. It is required to predict the temperature of the printed circuit board 1 in the transfer process in the reflow furnace 100 with high accuracy in advance so that the condition is satisfied in the actual manufacturing process.
  • thermodynamic phenomena such as radiant heat from the inner wall of the reflow furnace 100 and heat conduction in the object to be heated are present. Are superimposed. Since it is difficult to accurately model the inside of the reflow furnace 100, it is necessary to simplify the modeling of the inside of the reflow furnace 100 to some extent in the temperature prediction inside the reflow furnace 100. However, according to the simplified model, the accuracy of temperature prediction in the reflow furnace 100 can be reduced.
  • the control device 30 calculates the temperature distribution of the air in the reflow furnace 100 from the temperature profile using a relatively simple physical law such as Newton's law of cooling, and the printed circuit board 1 at a certain sampling time.
  • the heat transfer coefficient of the measurement site is determined so that the temperature of the air at the position of the measurement site approaches the set temperature of the heating mechanisms 41 to 47, 51 to 57 corresponding to the position.
  • the control device 30 predicts the temperature of the printed circuit board 1 using the heat transfer coefficient. According to the control device 30, it is possible to suppress a decrease in the accuracy of temperature prediction in the reflow furnace 100 while simplifying the modeling of the inside of the reflow furnace 100.
  • FIG. 4 is a flowchart showing an example of the temperature prediction process performed by the control device 30 of FIG.
  • the temperature prediction process proceeds in the order of S101 to S107.
  • the temperature of the object to be heated is measured in S101.
  • the temperature profile (measurement data) measured in S101 is stored in the memory 32 of the control device 30.
  • the measurement data is read into the temperature prediction software.
  • S103 the set temperature distribution of the heating mechanisms 41 to 47, 51 to 57 when the temperature profile was measured in S101 (relationship between each of the plurality of positions in the transfer process and the temperature of the air at that position) and the transfer conveyor 2
  • the transport speed of is input to the control device 30.
  • the set temperature distribution and the transfer speed input to the operation unit of the reflow furnace 100 may be referred to when performing S101.
  • the temperature distribution in the reflow furnace 100 (temperature distribution in the furnace) is predicted.
  • the heat transfer coefficient for each measurement site of the object to be heated is calculated.
  • the set temperature distribution is corrected in S106.
  • the temperature profile of the measurement site of the object to be heated is predicted (simulated) when the set temperature distribution corrected in S106 is changed.
  • the reflow furnace 100 how the temperature of the object to be heated changes in the transport process in a state where the heating mechanisms 41 to 47, 51 to 57 blow air according to a certain set temperature distribution (first set temperature distribution). Measured in advance.
  • the set temperature distribution in the reflow furnace 100 indicates the correspondence between the plurality of heating mechanisms and the plurality of set temperatures. For example, in a certain set temperature distribution, the set temperatures of the heating mechanisms 41 to 47 are set to T1 to T7, respectively, and the set temperatures of the heating mechanisms 51 to 57 are set to T1 to T7, respectively.
  • the set temperature distribution used in the temperature measurement of the object to be heated the set temperature distribution used when another object to be heated having a shape similar to the shape of the object to be heated is heated in the past should be used. Can be done. In the temperature measurement of the object to be heated, it is not necessary to use the optimum set temperature distribution for the object to be heated.
  • FIG. 5 is a diagram showing how the data logger 8 is connected to the printed circuit board 1 of FIG. 3 via thermocouples 71 and 72.
  • the printed circuit board 1 and the data logger 8 move in the transfer process of the reflow furnace 100 in the state shown in FIG.
  • mounting components 81 to 83 are arranged on the printed circuit board 1.
  • One end of each of the thermocouples 71 and 72 is connected to the data logger 8.
  • the other end of the thermocouple 71 is connected to the measurement site P1 of the mounting component 81.
  • the other end of the thermocouple 72 is connected to the measurement site P2 of the printed circuit board 1.
  • the sampling time (measurement time) and the measurement temperature of each of the measurement sites P1 and P2 are stored in association with each other for each sampling time.
  • the data logger 8 creates a measurement temperature profile of the measurement site P1 (first measurement temperature profile) and a measurement temperature profile of the measurement site P2 (first measurement temperature profile).
  • the portion includes a part having the lowest heat resistant temperature and easy to heat, or a soldered portion having the least heat resistance.
  • An appropriate location as a measurement site can be selected from the material of the mounting component or the arrangement of the wiring pattern of the printed circuit board 1.
  • it is desirable to select a plurality of measurement sites for example, 5 to 6 points.
  • the body heat temperature of a resin connector or the heat-resistant temperature of an aluminum electrolytic capacitor is often relatively low, so a thermocouple is attached to the body of these parts, and the temperature reached by heating is below the heat-resistant temperature. It is desirable to confirm.
  • the soldered portion of the component relatively close to the conveyor 2 may receive insufficient heat from the heating mechanism, and a thermocouple is attached to the soldered portion to obtain the melting temperature required for soldering and the melting temperature. It is desirable to confirm that the melting time has been reached.
  • the measurement site is not limited to the above-mentioned location, and any site of the printed circuit board 1 can be used as the measurement site. Further, it is not necessary to have a plurality of measurement sites, and one of the most characteristic points of the object to be heated may be selected as the measurement site.
  • the measured temperature profile measured by the data logger 8 is stored in the memory 32 of the control device 30 of FIG. Further, the set temperature distribution when the measurement temperature profile is created and the transfer speed of the transfer conveyor 2 are input to the control device 30.
  • the processing circuit 31 smoothes the measurement temperature profile.
  • the measured temperature is converted into a discrete value for each sampling time according to the resolution of the temperature measurement and recorded in the measured temperature profile (discrete temperature profile).
  • the sampling time interval is preferably a value of 0.1 s to 1 s.
  • the resolution of the measurement temperature is preferably a value of 0.1 ° C. to 1 ° C.
  • the outlets of the heating mechanism are provided at equal intervals, and the air volume to the printed circuit board changes intermittently. Therefore, the temperature deviation for each unit time is large, and the temperature change rate of the adjacent measurement temperatures fluctuates greatly for each hour.
  • the processing circuit 31 uses a low-pass filter 310 to smooth the temperature change rates of two measurement temperatures having adjacent sampling times in the measurement temperature profile.
  • FIG. 6 is a time chart for explaining the smoothing process of the measurement temperature profile.
  • graph 9 represents the actual temperature profile of the measurement site.
  • Graph 10 represents the measured discrete temperature profile.
  • Graph 11 represents a smoothed measurement temperature profile.
  • Times st1 to st14 represent sampling times.
  • the resolution of the temperature measurement in FIG. 6 is set to 10 ° C. That is, in FIG. 6, the measured temperature is a multiple of 10.
  • the temperature of the actual temperature profile 9 for each sampling time is measured as a multiple of 10 closest to the temperature.
  • the actual temperature of the measurement site at the sampling time st3 is around 22 ° C., but the measurement temperature is measured as 20 ° C.
  • the processing circuit 31 generates the measured temperature profile 11 by smoothing the discrete temperature profile 10 with a low-pass filter.
  • the temperature difference ⁇ T between two consecutive sampling times is the temperature difference between the temperature Ta (temperature in the reflow furnace 100) of the air around the measurement site and the temperature Tb of the measurement site, and the heat transfer of the measurement site.
  • the coefficient ⁇
  • C is a constant.
  • the measurement site contains a plurality of materials, it is considered that the measurement site is composed of a virtual substance having a homogenized density of the plurality of materials.
  • the heat transfer coefficient of the virtual substance is also referred to as a virtual heat transfer coefficient.
  • the temperature Ta in the reflow furnace 100 is expressed as the following formula (2).
  • the position of the measurement site in the transfer process at the sampling time can be obtained. Therefore, by using the measurement temperature profile 11 and the formula (2), the temperature distribution in the furnace showing the relationship between the position of the measurement site in the transport process and the temperature of the air at the position can be obtained.
  • FIG. 7 is a diagram showing the set temperature distribution 12, the smoothed measurement temperature profile 13, and the temperature distribution in the furnace 14. Since the transport speed of the printed circuit board 1 is known, the time corresponds to the position in the transport process of the measurement site at that time. With reference to FIG. 3, the time zone up to the time tm1 corresponds to the section Sc1 in FIG. The time zone from time tm1 to tm2 corresponds to the section Sc2. The time zone from time tm2 to tm3 corresponds to the section Sc3. The time zone from time tm3 to tm4 corresponds to the section Sc4. The time zone from time tm4 to tm5 corresponds to the section Sc5.
  • the time zone from time tm5 to tm6 corresponds to the section Sc6.
  • the time zone from time tm6 to tm7 corresponds to the section Sc7.
  • the time zone from time tm7 to tm8 corresponds to the section Sc8.
  • the time zone after the time tm8 corresponds to the section Sc9. That is, the dotted lines corresponding to each of the times tm1 to tm8 represent the time when the object to be heated passes through the boundary of the adjacent section.
  • the time ts (specific time) is a time when the temperature of the set temperature distribution 12 becomes maximum and a time when the temperature distribution 14 in the furnace becomes maximum, and is included in the time zone of times tm6 to tm7.
  • the heat transfer coefficient ⁇ is determined so that the difference between the temperature corresponding to the time ts in the furnace temperature distribution 14 and the temperature corresponding to the time ts in the set temperature distribution 12 disappears (or falls within an allowable range).
  • the temperature of the temperature distribution 14 in the furnace and the temperature of the set temperature distribution 12 are substantially the same.
  • it is desirable that the time is included in the time zone (interval) in which the solder is melted and the temperature of the temperature distribution 14 in the furnace becomes maximum, such as time ts.
  • the temperature of the section closest to the outlet portion 120 is easily affected by the section on the outlet portion 120 side, and there is a possibility that the temperature in the width direction of the transfer process in the reflow furnace 100 varies greatly in the section.
  • the specific time is not limited to the time when the temperature of the temperature distribution 14 in the furnace becomes maximum.
  • the temperature distribution in the furnace is generated for the measurement temperature profile of each measurement site, and the temperature of the temperature distribution in the furnace at a specific time almost matches the temperature of the set temperature distribution at the specific time.
  • the virtual heat transfer coefficient is determined.
  • the set temperature distribution 12 can be expressed as a profile in which the temperature is constant in the time zone corresponding to each section. It is desirable that the temperature distribution 14 in the furnace changes according to the set temperature distribution 12. That is, it is desirable that the temperature is maintained at the temperature set in each section (time zone) of the set temperature distribution 12 in each section of the furnace temperature distribution 14.
  • the temperature of each section is not constant, and the temperature varies due to the influence of the sections adjacent to each section.
  • the larger the difference between the set temperatures in the adjacent sections the larger the difference between the set temperature and the actual temperature in the reflow furnace 100 can be.
  • the warm air in the reflow furnace 100 flows out along the transfer process, so that the difference between the set temperature and the actual temperature in the reflow furnace 100 can be significantly large.
  • the difference is due to the basic structure of the reflow furnace 100 or the temperature control method of the heating mechanism. be able to. If there is a difference in the temperature distribution 14 in the furnace calculated for each measurement site, the difference due to the temperature variation in the reflow furnace 100 depending on the position of the measurement site in the direction perpendicular to the transport direction and the object to be heated It can be inferred that the difference due to the difference in thermal characteristics such as thermal conductivity for each measurement site is combined.
  • thermodynamic phenomenon in the reflow furnace 100 including the thermal effect of the reflow furnace 100 on the object to be heated and the temperature variation in the reflow furnace 100 is simplified by using Newton's law of cooling.
  • the temperature distribution in the furnace 14 can be calculated by modeling in.
  • the physical law used to simply model the thermodynamic phenomenon inside the reflow furnace 100 is not limited to Newton's law of cooling.
  • the physical law describes the relationship between the temperature at the measurement site of the object to be heated and the temperature of the air around the measurement site, and the temperature difference of the object to be heated at the measurement site over time. Any physical law may be used as long as it is a physical law that derives the relational expression defined by using it.
  • FIG. 8 is a diagram showing the set temperature distribution 12 of FIG. 7, the temperature distribution in the furnace 14, and the corrected set temperature distribution 15.
  • the set temperature distribution 12 is regarded as the furnace temperature distribution, and the following equation ( 3) can be used to predict the temperature profile of the measurement site.
  • the temperature Ta at a certain position in the reflow furnace 100 the temperature corresponding to the position in the set temperature distribution 12 is used.
  • the set temperature distribution 12 and the temperature distribution in the furnace 14 may deviate from each other depending on the section, for example, in the sections Sc1 to Sc3, if the set temperature distribution 12 is used as it is for the temperature prediction, the accuracy of the temperature prediction is lowered. obtain. Therefore, the set temperature distribution 12 is corrected for each section so that the set temperature distribution 12 approaches the temperature distribution 14 in the furnace.
  • the correction value may be set as a constant for each section, or may be set to a value proportional to the set temperature for each section.
  • the set temperature distribution 12 actually used in the temperature measurement of the object to be heated is corrected, and the set temperature distribution 15 (second set temperature distribution) is obtained.
  • the set temperature distribution 15 is a temperature distribution closer to the furnace temperature distribution 14 than the set temperature distribution 12.
  • the set temperature distribution 15 is a set temperature distribution that approximates the temperature distribution 14 in the furnace, and is used in the simulation of temperature prediction.
  • the actual set temperature distribution 12 deviates from the set temperature distribution 15 used in the temperature prediction simulation by the amount of the correction value.
  • the result of the temperature prediction simulation is reproduced in the actual reflow furnace 100 by actually using the set temperature distribution obtained by adding the correction value obtained by reversing the sign to the set temperature distribution used in the temperature prediction simulation. can do.
  • FIG. 9 is a diagram showing the simulation result of temperature prediction.
  • the set temperature distribution 15 is the same as the corrected set temperature distribution 15 in FIG.
  • the set temperature distribution 16 is a set temperature distribution in which the set temperature distribution 15 is changed.
  • the temperature profiles 17 and 18 of the measurement site are simulation results based on the set temperature distributions 15 and 16, respectively.
  • the temperature profile 18 changes with respect to the temperature profile 17 in response to the change of the set temperature distribution 16 with respect to the set temperature distribution 15.
  • the temperature profile 18 can be reproduced in the actual reflow furnace 100 by actually using the set temperature distribution obtained by adding the value obtained by reversing the sign of the correction value of the set temperature distribution 15 to the set temperature distribution 16. it can.
  • the first section includes the first temperature region set to the first temperature
  • the second section is set to the second temperature.
  • a temperature transition region in which the temperature of the air changes from the first temperature to the second temperature may be set between the first section and the second section.
  • the set temperature distribution 12 can be made into a shape closer to the temperature distribution 14 in the furnace.
  • the set temperature distribution 12 can be expressed by a combination of straight lines on a graph having a time axis and a temperature axis. Further, the set temperature distribution 12 can be brought closer to the furnace temperature distribution 14 by the smoothing process.
  • the correction value for each section is set so that the absolute value of the difference between the set temperature distribution 12 and the furnace temperature distribution 14 is equal to or less than the reference value (for example, 5 ° C.), and the corrected setting By using the temperature distribution 15, the accuracy of temperature prediction can be improved.
  • Individual correction values may be set for each measurement site of the object to be heated. For simple use, or when the difference in the temperature distribution 14 in the furnace calculated at each measurement site is relatively small, the same correction value may be used for each measurement site.
  • the set temperature distribution can be expressed as the time for passing through each section becomes shorter when the transfer speed of the transfer conveyor 2 is changed to a higher speed. When the transport speed is changed to a slower speed, it can be expressed as a longer time to pass through each section. Even when the transport speed is changed, the temperature can be predicted by using the corrected set temperature distribution and the virtual heat transfer coefficient without measuring the temperature of the object to be heated again.
  • a reflow furnace having a tunnel-type transfer process has been described.
  • the heating device according to the embodiment may be a programmed heating furnace capable of changing the set temperature stepwise.
  • a case where both the temperature measurement of the object to be heated and the temperature prediction of the object to be heated are performed in the control device of the heating device has been described.
  • the temperature measurement of the object to be heated and the temperature prediction of the object to be heated need not be performed in the same device.
  • the temperature of the object to be heated may be predicted by a device separate from the device that measures the temperature of the object to be heated, such as a general-purpose PC (Personal Computer).
  • the temperature prediction device According to the temperature prediction device according to the first embodiment, it is possible to suppress a decrease in the accuracy of the temperature prediction in the heating device while simplifying the modeling inside the heating device.
  • Embodiment 2 by registering the correction value for the set temperature distribution in the database, it is possible to predict the temperature of the object to be heated without calculating the correction value by comparing the temperature distribution in the furnace and the set temperature distribution. The configuration will be described.
  • the information of the object to be heated such as the material of the measurement site and the setting corrected based on the temperature measurement of the object to be heated performed in the past.
  • Information such as the temperature distribution, the length of each section based on the arrangement of the heating mechanism, the length of the temperature transition region, and the correction value corresponding to each section is registered in association with the identification information of the heating device.
  • the information associated with the identification information of the heating device in the database is simply referred to as the information of the heating device.
  • Information on the heating device can be searched using the identification information of the heating device as a search key in the database.
  • the database may be formed in the memory 32 of FIG. 2 or may be formed in an external server.
  • FIG. 10 is a flowchart showing an example of the temperature prediction process performed by the temperature prediction device according to the second embodiment.
  • the flowchart shown in FIG. 10 is a flowchart in which S104 to S106 of the flowchart shown in FIG. 4 is replaced with S204 to S206.
  • the temperature prediction process proceeds in the order of S101 to S103, S204 to S206, and S107.
  • S101 to S103 are performed in the same manner as in the first embodiment
  • the information of the heating device is searched in the database using the identification information of the heating device used in S101.
  • the set temperature distribution in S101 is corrected using the information searched in S204, and the temperature profile is predicted based on the corrected set temperature distribution.
  • the heat transfer coefficient used in S205 is modified so that the temperature profile generated in S205 approaches the measured temperature profile measured in S101.
  • the temperature of the measurement site is predicted using the changed set temperature distribution and the modified heat transfer coefficient.
  • the corrected set temperature distribution is generated from the information registered in the database.
  • the temperature is predicted for the object to be heated (second object to be heated) for which the temperature has been measured.
  • the virtual heat transfer coefficient of the measurement site used in the temperature prediction is modified so that the predicted temperature profile approaches the measured temperature profile.
  • the measurement site used in the temperature prediction so that the difference between the maximum temperature of the measurement temperature profile and the maximum temperature of the predicted temperature profile disappears (or falls within the allowable range).
  • a method of modifying the heat transfer coefficient of By focusing on the maximum temperature of the temperature profile, it is not necessary to input all the measurement data of the object to be heated into the temperature prediction software because the measurement data other than the maximum temperature is unnecessary. For example, by transmitting the maximum temperature of the temperature profile measured at one location to another location and inputting the maximum temperature into the temperature prediction software, the maximum temperature of the predicted temperature profile was transmitted from a remote location. The heat transfer coefficient can be calculated to match the maximum temperature. According to this method, it is possible to predict the temperature of the object to be heated by transmitting the maximum temperature of the measured temperature profile between remote locations, for example, by telephone communication.
  • FIG. 11 is a flowchart showing another example of the temperature prediction process performed by the temperature prediction device according to the second embodiment.
  • the flowchart shown in FIG. 11 is a flowchart in which S102 is removed from the flowchart shown in FIG. 10, S215 is added after S205, and S206 is replaced with S216.
  • the temperature prediction process shown in FIG. 11 proceeds in the order of S101, S103, S204, S205, S215, S216, S107.
  • S101, S103, S204, and S205 are performed, in S215, the maximum temperature of the measurement temperature profile generated in S101 is input to the temperature prediction software.
  • the heat transfer coefficient used in S205 is modified so that there is no difference between the maximum temperature input in S215 and the maximum temperature in the temperature profile predicted in S205.
  • the temperature of the measurement site is predicted based on the changed set temperature distribution.
  • the database referred to in the second embodiment can often be shared between heating devices having the same structure. Even if data such as correction values based on the measurement data of the object to be heated by a certain heating device is not registered in the database, if the data of the heating device having the same structure as the heating device is registered in the database, By using the data, it is possible to predict the temperature. Further, by aggregating the information of the heating devices arranged in a plurality of locations in one database, it is possible to centrally manage the conditions such as the set temperature distribution and the transfer speed of the plurality of heating devices.
  • the temperature profile in the furnace may be registered in the database. By comparing the furnace temperature profiles created for each different heating device, the characteristics of each heating device can be easily confirmed from the shape of the furnace temperature profile. In addition, by generating a furnace temperature profile in a certain heating device on a regular basis (for example, every month) and comparing the current furnace temperature profile with the previously generated furnace temperature profile, the said The health of the heating device can be checked. Similarly, by comparing the temperature profiles in the furnace calculated from the measurement data of multiple measurement sites of the object to be heated, the temperature variation in the heating device or a part of the air passage in the heating device is blocked. It is possible to detect such local defects.
  • the temperature prediction device According to the temperature prediction device according to the second embodiment, it is possible to suppress a decrease in the accuracy of the temperature prediction in the heating device while simplifying the modeling inside the heating device.

Abstract

In the present invention, any decrease in the accuracy of temperature prediction in a heating device is minimized while the interior of the heating device can be modeled in a simpler manner. A relational expression is used that defines, using a heat transfer coefficient, the relationship between: the difference between the temperature of an article being heated at a measurement site and the temperature of the air surrounding the measurement site; and the temperature difference of the article being heated at the measurement site over time. The relational expression is used to determine the heat transfer coefficient so that there is no difference between the temperature of air at the position of the measurement site at a specific time (ts), and the temperature of air corresponding to the position of the measurement site at the specific time (ts) in a set temperature distribution (12) of the heating device. Using a measurement temperature profile (13) and the relational expression, a temperature distribution (14) of air in the transport process is predicted.

Description

温度予測装置および温度予測方法Temperature prediction device and temperature prediction method
 本開示は、加熱装置内を移動する被加熱部物の温度を予測する温度予測装置および温度予測方法に関する。 The present disclosure relates to a temperature prediction device and a temperature prediction method for predicting the temperature of a part to be heated moving in the heating device.
 従来、加熱装置内を移動する被加熱部物の温度を予測する温度予測装置および温度予測方法が知られている。たとえば、特許第4226855号公報(特許文献1)には、加熱装置内を移動する基板(被加熱物)の搬送方向において、被加熱物が通過する測定位置における加熱温度と被加熱物の測定温度とを用いて、測定位置毎の加熱特性値を算出する温度予測方法が開示されている。当該温度予測方法においては、測定位置毎の加熱特性値を用いて、加熱装置の加熱条件が変更された場合における被加熱物の温度プロファイルを予測する。当該温度予測方法によれば、予め定められた要求条件に適合した温度プロファイルに従って被加熱物を加熱するための加熱装置の加熱条件を効率的に見出すことができる。 Conventionally, a temperature prediction device and a temperature prediction method for predicting the temperature of a part to be heated moving in the heating device are known. For example, Japanese Patent No. 4226855 (Patent Document 1) describes the heating temperature and the measurement temperature of the object to be heated at the measurement position where the object to be heated passes in the transport direction of the substrate (object to be heated) moving in the heating device. A temperature prediction method for calculating a heating characteristic value for each measurement position is disclosed using and. In the temperature prediction method, the temperature profile of the object to be heated is predicted when the heating conditions of the heating device are changed by using the heating characteristic value for each measurement position. According to the temperature prediction method, it is possible to efficiently find the heating conditions of the heating device for heating the object to be heated according to the temperature profile suitable for the predetermined required conditions.
特許第4226855号公報Japanese Patent No. 4226855
 加熱装置の内部においては、熱風循環による被加熱物と空気との間の熱伝達に加えて、たとえば加熱装置の内壁からの輻射熱、被加熱物内の熱伝導など、複数の熱力学現象が重畳的に発生している。加熱装置の内部を厳密にモデル化することは困難であるため、加熱装置内の温度予測においては加熱装置の内部のモデル化をある程度簡略化する必要がある。しかし、簡略化されたモデルによると、加熱装置内の温度予測の精度が低下し得る。 Inside the heating device, in addition to heat transfer between the object to be heated and air due to hot air circulation, multiple thermodynamic phenomena such as radiant heat from the inner wall of the heating device and heat conduction in the object to be heated are superimposed. Is occurring. Since it is difficult to accurately model the inside of the heating device, it is necessary to simplify the modeling of the inside of the heating device to some extent in the temperature prediction inside the heating device. However, according to the simplified model, the accuracy of temperature prediction in the heating device can be reduced.
 本開示は、上述のような課題を解決するためになされたものであり、その目的は、加熱装置の内部のモデル化を簡略化しながら、加熱装置内の温度予測の精度の低下を抑制することである。 The present disclosure has been made to solve the above-mentioned problems, and an object thereof is to suppress a decrease in accuracy of temperature prediction in a heating device while simplifying modeling of the inside of the heating device. Is.
 本開示の一局面に係る温度予測装置は、被加熱物を加熱する加熱装置内の温度を予測する。加熱装置は、被加熱物が移動する搬送過程の複数の位置の各々と当該位置における空気の温度との関係を示す第1設定温度分布に従って、当該位置に対応する設定温度の空気を搬送過程に向かって送風する。温度予測装置は、制御部と、記憶部とを備える。記憶部には、加熱装置内を移動する被加熱物の測定部位の測定温度と測定時刻との関係を示す第1測定温度プロファイルが保存される。制御部は、測定部位における被加熱物の温度と測定部位の周囲の空気の温度との差、および時間経過に伴う測定部位における被加熱物の温度差の関係を、熱伝達係数を用いて定義する関係式を用いて、特定時刻における測定部位の位置の空気の温度と、第1設定温度分布において特定時刻における測定部位の位置に対応する空気の温度との差がなくなるように熱伝達係数を決定する。制御部は、第1測定温度プロファイルおよび関係式を用いて、搬送過程における空気の温度分布を予測する。 The temperature predictor according to one aspect of the present disclosure predicts the temperature inside the heating device that heats the object to be heated. The heating device transfers air having a set temperature corresponding to the position according to the first set temperature distribution showing the relationship between each of the plurality of positions in the transfer process in which the object to be heated moves and the temperature of the air at the position. Blow towards. The temperature prediction device includes a control unit and a storage unit. In the storage unit, a first measurement temperature profile showing the relationship between the measurement temperature and the measurement time of the measurement site of the object to be heated moving in the heating device is stored. The control unit uses the heat transfer coefficient to define the relationship between the temperature of the object to be heated at the measurement site and the temperature of the air around the measurement site, and the temperature difference of the object to be heated at the measurement site over time. The heat transfer coefficient is set so that there is no difference between the temperature of the air at the position of the measurement site at the specific time and the temperature of the air corresponding to the position of the measurement site at the specific time in the first set temperature distribution. decide. The control unit predicts the temperature distribution of air in the transport process using the first measurement temperature profile and the relational expression.
 本開示の他の局面に係る温度予測方法は、被加熱物を加熱する加熱装置内の温度を予測する。加熱装置は、被加熱物が移動する搬送過程の複数の位置の各々と当該位置における空気の温度との関係を示す第1設定温度分布に従って、当該位置に対応する設定温度の空気を搬送過程に向かって送風する。温度予測方法は、加熱装置内を移動する被加熱物の測定部位の測定温度と測定時刻との関係を示す第1測定温度プロファイルを生成するステップを含む。温度予測方法は、測定部位における被加熱物の温度と測定部位の周囲の空気の温度との差、および時間経過に伴う測定部位における被加熱物の温度差の関係を、熱伝達係数を用いて定義する関係式を用いて、特定時刻における測定部位の位置の空気の温度と、第1設定温度分布において特定時刻における測定部位の位置に対応する空気の温度との差がなくなるように熱伝達係数を決定するステップを含む。温度予測方法は、第1測定温度プロファイルおよび関係式を用いて、搬送過程における空気の温度分布を予測するステップを含む。 The temperature prediction method according to another aspect of the present disclosure predicts the temperature inside the heating device that heats the object to be heated. The heating device transfers air having a set temperature corresponding to the position according to the first set temperature distribution showing the relationship between each of the plurality of positions in the transfer process in which the object to be heated moves and the temperature of the air at the position. Blow towards. The temperature prediction method includes a step of generating a first measurement temperature profile showing the relationship between the measurement temperature and the measurement time of the measurement site of the object to be heated moving in the heating device. The temperature prediction method uses the heat transfer coefficient to determine the relationship between the temperature of the object to be heated at the measurement site and the temperature of the air around the measurement site, and the temperature difference of the object to be heated at the measurement site over time. Using the defined relational expression, the heat transfer coefficient so that there is no difference between the temperature of the air at the position of the measurement site at the specific time and the temperature of the air corresponding to the position of the measurement site at the specific time in the first set temperature distribution. Includes steps to determine. The temperature prediction method includes a step of predicting the temperature distribution of air in the transport process using the first measurement temperature profile and the relational expression.
 本開示に係る温度予測装置および温度予測方法は、測定部位における被加熱物の温度と測定部位の周囲の空気の温度との差、および時間経過に伴う測定部位における被加熱物の温度差の関係を、熱伝達係数を用いて定義する関係式を用いて、特定時刻における測定部位の位置の空気の温度と、第1設定温度分布において特定時刻における測定部位の位置に対応する空気の温度との差がなくなるように熱伝達係数を決定するにより、加熱装置の内部のモデル化を簡略化しながら、加熱装置内の温度予測の精度の低下を抑制することができる。 The temperature prediction device and the temperature prediction method according to the present disclosure relate the difference between the temperature of the object to be heated at the measurement site and the temperature of the air around the measurement site, and the temperature difference of the object to be heated at the measurement site over time. With the relational expression defined using the heat transfer coefficient, the temperature of the air at the position of the measurement site at a specific time and the temperature of the air corresponding to the position of the measurement site at the specific time in the first set temperature distribution. By determining the heat transfer coefficient so that there is no difference, it is possible to suppress a decrease in the accuracy of temperature prediction in the heating device while simplifying the modeling inside the heating device.
実施の形態1に係る加熱装置の一例であるリフロー炉および温度予測装置の一例であるリフロー炉の制御装置の外観斜視図である。It is external perspective view of the control device of the reflow furnace which is an example of the heating device which concerns on Embodiment 1, and the reflow furnace which is an example of a temperature prediction device. 図1の制御装置の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the control device of FIG. 図1のリフロー炉の内部構成を示す図である。It is a figure which shows the internal structure of the reflow furnace of FIG. 図1の制御装置によって行われる温度予測の過程の一例を示すフローチャートである。It is a flowchart which shows an example of the process of temperature prediction performed by the control device of FIG. データロガーが熱電対を介して図3のプリント回路板に接続されている様子を示す図である。It is a figure which shows the state that the data logger is connected to the printed circuit board of FIG. 3 via a thermocouple. 測定温度プロファイルの平滑化処理を説明するためタイムチャートである。It is a time chart for explaining the smoothing process of a measurement temperature profile. 設定温度分布、平滑化された測定温度プロファイル、および炉内温度分布を併せて示す図である。It is a figure which shows the set temperature distribution, the smoothed measurement temperature profile, and the temperature distribution in a furnace together. 図7の設定温度分布、炉内温度分布、および補正された設定温度分布を併せて示す図である。It is a figure which also shows the set temperature distribution of FIG. 7, the temperature distribution in a furnace, and the corrected set temperature distribution. 温度予測のシミュ―レーション結果を示す図である。It is a figure which shows the simulation result of temperature prediction. 実施の形態2に係る温度予測装置によって行われる温度予測の過程の一例を示すフローチャートである。It is a flowchart which shows an example of the process of temperature prediction performed by the temperature prediction apparatus which concerns on Embodiment 2. FIG. 実施の形態2に係る温度予測装置によって行われる温度予測の過程の他の例を示すフローチャートである。It is a flowchart which shows another example of the process of temperature prediction performed by the temperature prediction apparatus which concerns on Embodiment 2. FIG.
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は原則として繰り返さない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. In principle, the same or corresponding parts in the drawings are designated by the same reference numerals and the description is not repeated.
 実施の形態1.
 図1は、実施の形態1に係る加熱装置の一例であるリフロー炉100および温度予測装置の一例であるリフロー炉100の制御装置30の外観斜視図である。図1において、X軸、Y軸、およびZ軸互いに直交している。後に説明する図3および図5においても同様である。
Embodiment 1.
FIG. 1 is an external perspective view of a reflow furnace 100 which is an example of a heating device according to the first embodiment and a control device 30 of a reflow furnace 100 which is an example of a temperature prediction device. In FIG. 1, the X-axis, Y-axis, and Z-axis are orthogonal to each other. The same applies to FIGS. 3 and 5 described later.
 図1に示されるように、リフロー炉100には、入口部110および出口部120が設けられている。リフロー炉100は、トンネル型の搬送過程を有する加熱装置である。入口部110から被加熱物がリフロー炉100内部の搬送コンベアに投入される。リフロー炉100の内部では、搬送コンベアを移動する被加熱物が加熱される。 As shown in FIG. 1, the reflow furnace 100 is provided with an inlet portion 110 and an outlet portion 120. The reflow furnace 100 is a heating device having a tunnel-type transfer process. The object to be heated is charged into the conveyor inside the reflow furnace 100 from the inlet 110. Inside the reflow furnace 100, the object to be heated moving on the conveyor is heated.
 制御装置30は、たとえば、リフロー炉100内の温度、加熱機構の送風量、および搬送コンベアの搬送速度を制御する。被加熱物は、たとえば、ソルダーペーストによって複数の実装部品が配置されたプリント回路板である。ソルダーペーストとは、はんだの粉末にフラックスを加えて、適当な粘度にしたペーストであり、クリームはんだとも呼ばれる。プリント回路板上にはんだ付けされる実装部品としては、たとえば、セラミックコンデンサ等の受動素子部品や、トランジスタ等の能動素子が形成された半導体チップ、あるいはこれらが集積された集積回路などを挙げることができる。 The control device 30 controls, for example, the temperature inside the reflow furnace 100, the amount of air blown by the heating mechanism, and the transfer speed of the transfer conveyor. The object to be heated is, for example, a printed circuit board in which a plurality of mounting components are arranged by solder paste. The solder paste is a paste obtained by adding flux to solder powder to have an appropriate viscosity, and is also called cream solder. Examples of the mounting components soldered on the printed circuit board include passive element components such as ceramic capacitors, semiconductor chips on which active elements such as transistors are formed, and integrated circuits in which these are integrated. it can.
 図2は、図1の制御装置30の構成を示す機能ブロック図である。図2に示されるように、制御装置30は、処理回路31(制御部)と、メモリ32(記憶部)と、入出力部33と、表示部34とを含む。処理回路31は、ローパスフィルタ310を含む。処理回路31は、専用のハードウェアを含んでもよいし、メモリ32に格納されるプログラムを実行するCPU(Central Processing Unit)を含んでもよい。処理回路31が専用のハードウェアを含む場合、たとえば、単一回路、複合回路、プログラム化されたプロセッサ、並列プログラム化されたプロセッサ、ASIC(Applicatmion Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、あるいはこれらを組み合わせたものが処理回路31に該当する。処理回路31がCPUを含む場合、制御装置30の機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。なお、CPUは、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、あるいはDSP(Digital Signal Processor)とも呼ばれる。 FIG. 2 is a functional block diagram showing the configuration of the control device 30 of FIG. As shown in FIG. 2, the control device 30 includes a processing circuit 31 (control unit), a memory 32 (storage unit), an input / output unit 33, and a display unit 34. The processing circuit 31 includes a low-pass filter 310. The processing circuit 31 may include dedicated hardware, or may include a CPU (Central Processing Unit) that executes a program stored in the memory 32. When the processing circuit 31 includes dedicated hardware, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Applicatomy Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), Alternatively, a combination of these corresponds to the processing circuit 31. When the processing circuit 31 includes a CPU, the function of the control device 30 is realized by software, firmware, or a combination of software and firmware. The CPU is also called a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a processor, or a DSP (Digital Signal Processor).
 ソフトウェアあるいはファームウェアはプログラムとして記述され、メモリ32に格納される。メモリ32には、リフロー炉100内の温度制御、送風制御、および搬送コンベアの駆動速度制御を行うための制御ソフトウェアのプログラムおよび温度予測ソフトウェアのプログラムが記憶されている。処理回路31は、メモリ32に記憶されたプログラムを実行する。メモリ32には、不揮発性または揮発性の半導体メモリ(たとえばRAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、あるいはEEPROM(Electrically Erasable Programmable Read Only Memory))、および磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、あるいはDVD(Digital Versatile Disc)が含まれる。 Software or firmware is described as a program and stored in the memory 32. The memory 32 stores a program of control software and a program of temperature prediction software for controlling the temperature in the reflow furnace 100, the blower control, and the drive speed control of the conveyor. The processing circuit 31 executes the program stored in the memory 32. The memory 32 includes a non-volatile or volatile semiconductor memory (for example, RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), or EEPROM (Electrically Erasable Programmable Read Only Memory). )), And magnetic discs, flexible discs, optical discs, compact discs, mini discs, or DVDs (Digital Versatile Disc) are included.
 図3は、図1のリフロー炉100の内部構成を示す図である。図3に示されるように、リフロー炉100は、搬送コンベア2と、加熱機構41~47,51~57と、温度センサSa1~Sa7,Sb1~Sb7と、冷却機構61,62とを含む。 FIG. 3 is a diagram showing the internal configuration of the reflow furnace 100 of FIG. As shown in FIG. 3, the reflow furnace 100 includes a transfer conveyor 2, heating mechanisms 41 to 47, 51 to 57, temperature sensors Sa1 to Sa7, Sb1 to Sb7, and cooling mechanisms 61 and 62.
 加熱機構41~47および冷却機構61は、入口部110から出口部120に向かってこの順に間隔を開けて並べられている。加熱機構51~57および冷却機構62は、入口部110から出口部120に向かってこの順に間隔を開けて並べられている。加熱機構41~47は、加熱機構51~57とZ軸方向においてそれぞれ対向している。冷却機構61および62は、Z軸方向において対向している。 The heating mechanisms 41 to 47 and the cooling mechanism 61 are arranged at intervals in this order from the inlet portion 110 to the outlet portion 120. The heating mechanisms 51 to 57 and the cooling mechanism 62 are arranged at intervals in this order from the inlet portion 110 to the outlet portion 120. The heating mechanisms 41 to 47 face the heating mechanisms 51 to 57 in the Z-axis direction, respectively. The cooling mechanisms 61 and 62 face each other in the Z-axis direction.
 搬送コンベア2は、加熱機構41~47と加熱機構51~57との間において、入口部110から出口部120に延在する搬送過程に沿って配置されている。搬送コンベア2の搬送方向は、矢印3によって示される方向である。加熱機構41~47,51~57の各々は、制御装置30によって設定された温度まで空気を加熱し、搬送コンベア2に向かって当該空気を送風する。冷却機構61,62の各々は、制御装置30によって設定された温度まで空気を冷却し、搬送コンベア2に向かって当該空気を送風する。加熱機構41~47,51~57から送風される空気の温度は、温度センサSa1~Sa7,Sb1~Sb7によってそれぞれ測定され、制御装置30に出力される。 The transfer conveyor 2 is arranged between the heating mechanisms 41 to 47 and the heating mechanisms 51 to 57 along a transfer process extending from the inlet portion 110 to the outlet portion 120. The transfer direction of the transfer conveyor 2 is the direction indicated by the arrow 3. Each of the heating mechanisms 41 to 47 and 51 to 57 heats the air to the temperature set by the control device 30 and blows the air toward the conveyor 2. Each of the cooling mechanisms 61 and 62 cools the air to the temperature set by the control device 30 and blows the air toward the conveyor 2. The temperatures of the air blown from the heating mechanisms 41 to 47 and 51 to 57 are measured by the temperature sensors Sa1 to Sa7 and Sb1 to Sb7, respectively, and output to the control device 30.
 制御装置30は、加熱機構41~47,51~57が送風する空気の温度(設定温度)および単位時間当たりの送風量を制御する。制御装置30は、搬送コンベア2の搬送速度を制御する。制御装置30は、Z軸方向に対向する2つの加熱機構の設定温度を同じ温度に設定する。制御装置30は、冷却機構61,62の設定温度を同じ温度に設定する。 The control device 30 controls the temperature (set temperature) of the air blown by the heating mechanisms 41 to 47, 51 to 57 and the amount of air blown per unit time. The control device 30 controls the transfer speed of the transfer conveyor 2. The control device 30 sets the set temperatures of the two heating mechanisms facing each other in the Z-axis direction to the same temperature. The control device 30 sets the set temperatures of the cooling mechanisms 61 and 62 to the same temperature.
 リフロー炉100の内部は、搬送コンベア2に沿って複数の区間Sc1~Sc9に分けられる。区間Sc1は、入口部110に投入されたプリント回路板1(第1被加熱物)が最初に通過する区間である。区間Sc1~Sc8(複数の加熱区間)には、加熱機構41~47がそれぞれ配置されているとともに加熱機構51~57がそれぞれ配置されている。区間Sc9には、冷却機構61,62が配置されている。 The inside of the reflow furnace 100 is divided into a plurality of sections Sc1 to Sc9 along the conveyor 2. The section Sc1 is a section through which the printed circuit board 1 (first object to be heated) inserted into the inlet 110 first passes. In the sections Sc1 to Sc8 (plurality of heating sections), heating mechanisms 41 to 47 are arranged and heating mechanisms 51 to 57 are arranged, respectively. Cooling mechanisms 61 and 62 are arranged in the section Sc9.
 プリント回路板1は、搬送コンベア2の搬送速度で入口部110から出口部120まで移動する。プリント回路板1は、搬送過程において加熱されることによってはんだ付けされる。はんだ付けの対象箇所においては、はんだの溶融温度以上に昇温される必要がある。また、回路を構成する実装部品には許容される耐熱温度がある。そのため、実装部品の耐熱温度を超えて昇温された場合には、実装部品に不具合が生じる恐れがある。すなわち、リフロー炉100内の温度は、はんだの融解温度以上かつ耐熱温度以下という条件を満たす必要がある。 The printed circuit board 1 moves from the inlet portion 110 to the outlet portion 120 at the transfer speed of the transfer conveyor 2. The printed circuit board 1 is soldered by being heated in the transport process. At the point to be soldered, it is necessary to raise the temperature above the melting temperature of the solder. In addition, the mounting components that make up the circuit have an allowable heat resistant temperature. Therefore, if the temperature rises beyond the heat-resistant temperature of the mounted component, there is a risk that the mounted component may malfunction. That is, the temperature inside the reflow furnace 100 must satisfy the condition that the temperature is equal to or higher than the melting temperature of the solder and lower than the heat resistant temperature.
 たとえば、はんだの溶融温度が217℃であり、実装部品の耐熱温度が240℃である場合、プリント回路板1の全体が230℃に均一に昇温されれば、当該条件は満たされる。しかし、プリント回路板1上には様々な材料で構成された実装部品が不均一に配置されているため、昇温し易い箇所と昇温し難い箇所とで温度の上昇率が異なる。実際の製造工程において当該条件が満たされるように、リフロー炉100内の搬送過程におけるプリント回路板1の温度を予め高精度に予測することが求められる。 For example, when the melting temperature of the solder is 217 ° C and the heat resistant temperature of the mounted component is 240 ° C, the condition is satisfied if the entire printed circuit board 1 is uniformly heated to 230 ° C. However, since the mounting components made of various materials are unevenly arranged on the printed circuit board 1, the rate of temperature increase differs between the portion where the temperature rises easily and the portion where the temperature rise is difficult. It is required to predict the temperature of the printed circuit board 1 in the transfer process in the reflow furnace 100 with high accuracy in advance so that the condition is satisfied in the actual manufacturing process.
 リフロー炉100の内部においては、熱風循環による被加熱物と空気との間の熱伝達に加えて、たとえばリフロー炉100の内壁からの輻射熱および被加熱物内の熱伝導など、複数の熱力学現象が重畳的に発生している。リフロー炉100の内部を厳密にモデル化することは困難であるため、リフロー炉100内の温度予測においてはリフロー炉100の内部のモデル化をある程度簡略化する必要がある。しかし、簡略化されたモデルによると、リフロー炉100内の温度予測の精度が低下し得る。 Inside the reflow furnace 100, in addition to heat transfer between the object to be heated and air by hot air circulation, a plurality of thermodynamic phenomena such as radiant heat from the inner wall of the reflow furnace 100 and heat conduction in the object to be heated are present. Are superimposed. Since it is difficult to accurately model the inside of the reflow furnace 100, it is necessary to simplify the modeling of the inside of the reflow furnace 100 to some extent in the temperature prediction inside the reflow furnace 100. However, according to the simplified model, the accuracy of temperature prediction in the reflow furnace 100 can be reduced.
 そこで、リフロー炉100においては、搬送過程を移動するプリント回路板1の温度プロファイルを予め測定する。制御装置30は、たとえばニュートンの冷却法則のような比較的単純な物理法則を用いて、当該温度プロファイルからリフロー炉100内の空気の温度分布を算出し、或るサンプリングタイムにおけるプリント回路板1の測定部位の位置の空気の温度が当該位置に対応する加熱機構41~47,51~57の設定温度に近づくように当該測定部位の熱伝達係数を決定する。制御装置30は、当該熱伝達係数を用いてプリント回路板1の温度予測を行う。制御装置30によれば、リフロー炉100の内部のモデル化を簡略化しながら、リフロー炉100内の温度予測の精度の低下を抑制することができる。 Therefore, in the reflow furnace 100, the temperature profile of the printed circuit board 1 moving in the transfer process is measured in advance. The control device 30 calculates the temperature distribution of the air in the reflow furnace 100 from the temperature profile using a relatively simple physical law such as Newton's law of cooling, and the printed circuit board 1 at a certain sampling time. The heat transfer coefficient of the measurement site is determined so that the temperature of the air at the position of the measurement site approaches the set temperature of the heating mechanisms 41 to 47, 51 to 57 corresponding to the position. The control device 30 predicts the temperature of the printed circuit board 1 using the heat transfer coefficient. According to the control device 30, it is possible to suppress a decrease in the accuracy of temperature prediction in the reflow furnace 100 while simplifying the modeling of the inside of the reflow furnace 100.
 図4は、図1の制御装置30によって行われる温度予測の過程の一例を示すフローチャートである。図4に示されるように、温度予測の過程は、S101~S107の順に進む。S101において被加熱物の温度測定が行われる。S101において測定された温度プロファイル(測定データ)は、制御装置30のメモリ32に保存される。S102において、温度予測ソフトウェアに測定データが読み込まれる。S103において、S101で温度プロファイルが測定された際の加熱機構41~47,51~57の設定温度分布(搬送過程の複数の位置の各々と当該位置における空気の温度との関係)および搬送コンベア2の搬送速度が制御装置30に入力される。S103においては、S101を行うに際してリフロー炉100の操作部に入力された設定温度分布および搬送速度が参照されてもよい。S104においてリフロー炉100内の温度分布(炉内温度分布)が予測される。S105において、被加熱物の測定部位毎の熱伝達係数が算出される。S106において設定温度分布が補正される。S107において、S106で補正された設定温度分布が変更された場合の被加熱物の測定部位の温度プロファイルを予測(シミュレート)する。以下では、S101~S107の処理内容について詳細に説明する。 FIG. 4 is a flowchart showing an example of the temperature prediction process performed by the control device 30 of FIG. As shown in FIG. 4, the temperature prediction process proceeds in the order of S101 to S107. The temperature of the object to be heated is measured in S101. The temperature profile (measurement data) measured in S101 is stored in the memory 32 of the control device 30. In S102, the measurement data is read into the temperature prediction software. In S103, the set temperature distribution of the heating mechanisms 41 to 47, 51 to 57 when the temperature profile was measured in S101 (relationship between each of the plurality of positions in the transfer process and the temperature of the air at that position) and the transfer conveyor 2 The transport speed of is input to the control device 30. In S103, the set temperature distribution and the transfer speed input to the operation unit of the reflow furnace 100 may be referred to when performing S101. In S104, the temperature distribution in the reflow furnace 100 (temperature distribution in the furnace) is predicted. In S105, the heat transfer coefficient for each measurement site of the object to be heated is calculated. The set temperature distribution is corrected in S106. In S107, the temperature profile of the measurement site of the object to be heated is predicted (simulated) when the set temperature distribution corrected in S106 is changed. Hereinafter, the processing contents of S101 to S107 will be described in detail.
 リフロー炉100においては、加熱機構41~47,51~57が或る設定温度分布(第1設定温度分布)に従って送風する状態で、被加熱物の温度が搬送過程においてどのように変化するかが予め測定される。なお、リフロー炉100における設定温度分布とは、複数の加熱機構と複数の設定温度との対応関係を示す。たとえば、或る設定温度分布において、加熱機構41~47の設定温度がそれぞれT1~T7に設定され、加熱機構51~57の設定温度がそれぞれT1~T7に設定される。なお、被加熱物の温度測定において使用される設定温度分布としては、当該被加熱物の形状に類似する形状を有する他の被加熱物を過去に加熱した際に使用した設定温度分布を用いることができる。被加熱物の温度測定においては、被加熱物に対して最適な設定温度分布を用いる必要はない。 In the reflow furnace 100, how the temperature of the object to be heated changes in the transport process in a state where the heating mechanisms 41 to 47, 51 to 57 blow air according to a certain set temperature distribution (first set temperature distribution). Measured in advance. The set temperature distribution in the reflow furnace 100 indicates the correspondence between the plurality of heating mechanisms and the plurality of set temperatures. For example, in a certain set temperature distribution, the set temperatures of the heating mechanisms 41 to 47 are set to T1 to T7, respectively, and the set temperatures of the heating mechanisms 51 to 57 are set to T1 to T7, respectively. As the set temperature distribution used in the temperature measurement of the object to be heated, the set temperature distribution used when another object to be heated having a shape similar to the shape of the object to be heated is heated in the past should be used. Can be done. In the temperature measurement of the object to be heated, it is not necessary to use the optimum set temperature distribution for the object to be heated.
 図5は、データロガー8が熱電対71,72を介して図3のプリント回路板1に接続されている様子を示す図である。図4のS101においては、図5に示された状態でプリント回路板1およびデータロガー8がリフロー炉100の搬送過程を移動する。図5に示されるように、プリント回路板1には、実装部品81~83が配置されている。熱電対71,72各々の一方端は、データロガー8に接続されている。熱電対71の他方端は、実装部品81の測定部位P1に接続されている。熱電対72の他方端は、プリント回路板1の測定部位P2に接続されている。データロガー8には、サンプリングタイム毎にサンプリング時刻(測定時刻)と測定部位P1,P2各々の測定温度とが関連付けられて保存される。データロガー8は、測定部位P1の測定温度プロファイル(第1測定温度プロファイル)および測定部位P2の測定温度プロファイル(第1測定温度プロファイル)を作成する。 FIG. 5 is a diagram showing how the data logger 8 is connected to the printed circuit board 1 of FIG. 3 via thermocouples 71 and 72. In S101 of FIG. 4, the printed circuit board 1 and the data logger 8 move in the transfer process of the reflow furnace 100 in the state shown in FIG. As shown in FIG. 5, mounting components 81 to 83 are arranged on the printed circuit board 1. One end of each of the thermocouples 71 and 72 is connected to the data logger 8. The other end of the thermocouple 71 is connected to the measurement site P1 of the mounting component 81. The other end of the thermocouple 72 is connected to the measurement site P2 of the printed circuit board 1. In the data logger 8, the sampling time (measurement time) and the measurement temperature of each of the measurement sites P1 and P2 are stored in association with each other for each sampling time. The data logger 8 creates a measurement temperature profile of the measurement site P1 (first measurement temperature profile) and a measurement temperature profile of the measurement site P2 (first measurement temperature profile).
 測定部位として、プリント回路板1において温度を精密に制御することが必要な部位が選定されることが望ましい。当該部位としては、たとえば、最も耐熱温度が低く加熱し易い部品、あるいは、最も加熱し難いはんだ付け部を挙げることができる。測定部位として適当な箇所は、実装部品の材料、あるいはプリント回路板1の配線パターンの配置から、選定可能である。測定部位を1つに限定することが困難である場合には、複数の測定部位(たとえば5~6カ所)が選定されることが望ましい。たとえば、樹脂製のコネクタの体熱温度、あるいはアルミ電解コンデンサの耐熱温度は比較的低いことが多いため、これらの部品のボディ部に熱電対を取り付けて、加熱による到達温度が耐熱温度以下であるかを確認することが望ましい。あるいは、搬送コンベア2に比較的近い部品のはんだ付け部は、加熱機構からの受熱が不十分となることがあり、当該はんだ付け部に熱電対を取り付けて、はんだ付けに必要な溶融温度、および溶融時間に達しているかを確認することが望ましい。なお、測定部位は上述の箇所に限定されるものではなく、プリント回路板1の任意の部位を測定部位とすることができる。また、測定部位は複数である必要はなく、被加熱物の最も特徴的な1箇所が測定部位として選定されていてもよい。 It is desirable to select a part of the printed circuit board 1 that requires precise temperature control as the measurement part. Examples of the portion include a part having the lowest heat resistant temperature and easy to heat, or a soldered portion having the least heat resistance. An appropriate location as a measurement site can be selected from the material of the mounting component or the arrangement of the wiring pattern of the printed circuit board 1. When it is difficult to limit the number of measurement sites to one, it is desirable to select a plurality of measurement sites (for example, 5 to 6 points). For example, the body heat temperature of a resin connector or the heat-resistant temperature of an aluminum electrolytic capacitor is often relatively low, so a thermocouple is attached to the body of these parts, and the temperature reached by heating is below the heat-resistant temperature. It is desirable to confirm. Alternatively, the soldered portion of the component relatively close to the conveyor 2 may receive insufficient heat from the heating mechanism, and a thermocouple is attached to the soldered portion to obtain the melting temperature required for soldering and the melting temperature. It is desirable to confirm that the melting time has been reached. The measurement site is not limited to the above-mentioned location, and any site of the printed circuit board 1 can be used as the measurement site. Further, it is not necessary to have a plurality of measurement sites, and one of the most characteristic points of the object to be heated may be selected as the measurement site.
 データロガー8によって測定された測定温度プロファイルは、図1の制御装置30のメモリ32に保存される。また、制御装置30には、測定温度プロファイルが作成されたときの設定温度分布および搬送コンベア2の搬送速度が入力される。処理回路31は、測定温度プロファイルを平滑処理する。 The measured temperature profile measured by the data logger 8 is stored in the memory 32 of the control device 30 of FIG. Further, the set temperature distribution when the measurement temperature profile is created and the transfer speed of the transfer conveyor 2 are input to the control device 30. The processing circuit 31 smoothes the measurement temperature profile.
 一般的に、データロガー8において測定温度は、温度測定の分解能に従って、サンプリングタイム毎に離散的な値に変換されて測定温度プロファイル(離散温度プロファイル)に記録される。サンプリングタイムの間隔としては、0.1s~1sの値が好ましい。また、測定温度の分解能としては、0.1℃~1℃の値が好ましい。また、一般的なリフロー炉の本体内では加熱機構の吹き出し口が等間隔に設けられて断続的にプリント回路板への風量が変化する。このため、単位時間毎の温度偏差が大きく、隣り合う測定温度の温度変化率が時間毎に大きく変動する。測定温度が離散的な値である場合、および加熱機構の加熱能力に変動がある場合には、測定温度プロファイルから算出されるリフロー炉の本体内の温度の偏差が増幅される傾向がある。そこで、リフロー炉100においては、リフロー炉100の温度の算出に先だって、測定温度プロファイルに対して平滑処理が行われる。具体的には、処理回路31は、ローパスフィルタ310を用いて測定温度プロファイルにおいてサンプリングタイムが隣接する2つの測定温度の温度変化率を平滑化する。 Generally, in the data logger 8, the measured temperature is converted into a discrete value for each sampling time according to the resolution of the temperature measurement and recorded in the measured temperature profile (discrete temperature profile). The sampling time interval is preferably a value of 0.1 s to 1 s. Further, the resolution of the measurement temperature is preferably a value of 0.1 ° C. to 1 ° C. Further, in the main body of a general reflow furnace, the outlets of the heating mechanism are provided at equal intervals, and the air volume to the printed circuit board changes intermittently. Therefore, the temperature deviation for each unit time is large, and the temperature change rate of the adjacent measurement temperatures fluctuates greatly for each hour. When the measured temperature is a discrete value and the heating capacity of the heating mechanism fluctuates, the deviation of the temperature inside the main body of the reflow furnace calculated from the measured temperature profile tends to be amplified. Therefore, in the reflow furnace 100, smoothing is performed on the measured temperature profile prior to the calculation of the temperature of the reflow furnace 100. Specifically, the processing circuit 31 uses a low-pass filter 310 to smooth the temperature change rates of two measurement temperatures having adjacent sampling times in the measurement temperature profile.
 図6は、測定温度プロファイルの平滑化処理を説明するためタイムチャートである。図6において、グラフ9は、測定部位の実際の温度プロファイルを表す。グラフ10は、測定された離散温度プロファイルを表す。グラフ11は、平滑化された測定温度プロファイルを表す。時刻st1~st14は、サンプリングタイムを表す。また、図6においては、サンプリングタイム毎のサンプリング値およびローパスフィルタ310によるフィルタ処理値の対応が示されている。なお、説明の便宜のため、図6における温度測定の分解能は10℃としている。すなわち、図6において測定温度は、10の倍数の温度である。 FIG. 6 is a time chart for explaining the smoothing process of the measurement temperature profile. In FIG. 6, graph 9 represents the actual temperature profile of the measurement site. Graph 10 represents the measured discrete temperature profile. Graph 11 represents a smoothed measurement temperature profile. Times st1 to st14 represent sampling times. Further, in FIG. 6, the correspondence between the sampling value for each sampling time and the filter processing value by the low-pass filter 310 is shown. For convenience of explanation, the resolution of the temperature measurement in FIG. 6 is set to 10 ° C. That is, in FIG. 6, the measured temperature is a multiple of 10.
 図6に示されるように、サンプリングタイム毎の実際の温度プロファイル9の温度が、当該温度に最も近い10の倍数の温度として測定される。たとえば、サンプリングタイムst3における測定部位の実際の温度は22℃付近であるが、測定温度は20℃として測定される。処理回路31は、離散温度プロファイル10をローパスフィルタによって平滑化することにより測定温度プロファイル11を生成する。 As shown in FIG. 6, the temperature of the actual temperature profile 9 for each sampling time is measured as a multiple of 10 closest to the temperature. For example, the actual temperature of the measurement site at the sampling time st3 is around 22 ° C., but the measurement temperature is measured as 20 ° C. The processing circuit 31 generates the measured temperature profile 11 by smoothing the discrete temperature profile 10 with a low-pass filter.
 測定温度プロファイルにおいて連続する2つのサンプリングタイム間の温度差ΔTは、測定部位周辺の空気の温度Ta(リフロー炉100内の温度)と測定部位の温度Tbとの温度差、および測定部位の熱伝達係数αを用いて、以下の関係式(1)(ニュートンの冷却法則の式)のように表される。式(1)においてCは定数である。なお、測定部位が複数の材料を含む場合、当該複数の材料が均質化された密度を有する仮想的な物質から当該測定部位が構成されていると見なす。以下では、当該仮想的な物質の熱伝達係数を、仮想的な熱伝達係数とも呼ぶ。 In the measurement temperature profile, the temperature difference ΔT between two consecutive sampling times is the temperature difference between the temperature Ta (temperature in the reflow furnace 100) of the air around the measurement site and the temperature Tb of the measurement site, and the heat transfer of the measurement site. Using the coefficient α, it is expressed as the following relational expression (1) (Newton's law of cooling). In equation (1), C is a constant. When the measurement site contains a plurality of materials, it is considered that the measurement site is composed of a virtual substance having a homogenized density of the plurality of materials. Hereinafter, the heat transfer coefficient of the virtual substance is also referred to as a virtual heat transfer coefficient.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(1)からリフロー炉100内の温度Taは、以下の式(2)のように表される。 From the formula (1), the temperature Ta in the reflow furnace 100 is expressed as the following formula (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 プリント回路板1の搬送速度(搬送コンベア2の速度)から、サンプリングタイムにおける測定部位の搬送過程における位置が求められる。したがって、測定温度プロファイル11および式(2)を用いることにより、測定部位の搬送過程における位置と当該位置における空気の温度との関係を示す炉内温度分布が求められる。 From the transfer speed of the printed circuit board 1 (the speed of the transfer conveyor 2), the position of the measurement site in the transfer process at the sampling time can be obtained. Therefore, by using the measurement temperature profile 11 and the formula (2), the temperature distribution in the furnace showing the relationship between the position of the measurement site in the transport process and the temperature of the air at the position can be obtained.
 図7は、設定温度分布12、平滑化された測定温度プロファイル13、および炉内温度分布14を併せて示す図である。プリント回路板1の搬送速度は既知であるため、時刻は当該時刻における測定部位の搬送過程における位置に対応する。図3も併せて参照しながら、時刻tm1までの時間帯は図3の区間Sc1に対応する。時刻tm1~tm2の時間帯は、区間Sc2に対応する。時刻tm2~tm3の時間帯は、区間Sc3に対応する。時刻tm3~tm4の時間帯は、区間Sc4に対応する。時刻tm4~tm5の時間帯は、区間Sc5に対応する。時刻tm5~tm6の時間帯は、区間Sc6に対応する。時刻tm6~tm7の時間帯は、区間Sc7に対応する。時刻tm7~tm8の時間帯は、区間Sc8に対応する。時刻tm8以降の時間帯は、区間Sc9に対応する。すなわち、時刻tm1~tm8の各々に対応する点線は、隣接する区間の境界を被加熱物が通過する時刻を表す。時刻ts(特定時刻)は、設定温度分布12の温度が最大となる時刻および炉内温度分布14が最大となる時刻であり、時刻tm6~tm7の時間帯に含まれる。 FIG. 7 is a diagram showing the set temperature distribution 12, the smoothed measurement temperature profile 13, and the temperature distribution in the furnace 14. Since the transport speed of the printed circuit board 1 is known, the time corresponds to the position in the transport process of the measurement site at that time. With reference to FIG. 3, the time zone up to the time tm1 corresponds to the section Sc1 in FIG. The time zone from time tm1 to tm2 corresponds to the section Sc2. The time zone from time tm2 to tm3 corresponds to the section Sc3. The time zone from time tm3 to tm4 corresponds to the section Sc4. The time zone from time tm4 to tm5 corresponds to the section Sc5. The time zone from time tm5 to tm6 corresponds to the section Sc6. The time zone from time tm6 to tm7 corresponds to the section Sc7. The time zone from time tm7 to tm8 corresponds to the section Sc8. The time zone after the time tm8 corresponds to the section Sc9. That is, the dotted lines corresponding to each of the times tm1 to tm8 represent the time when the object to be heated passes through the boundary of the adjacent section. The time ts (specific time) is a time when the temperature of the set temperature distribution 12 becomes maximum and a time when the temperature distribution 14 in the furnace becomes maximum, and is included in the time zone of times tm6 to tm7.
 実際のリフロー炉100内においては、空気と測定部位との間の熱伝達に加えて、リフロー炉100の内壁からの熱輻射、プリント回路板1内の熱伝導といった物理現象も発生している。しかし、空気と測定部位との間の熱伝達に比べると、他の物理現象が温度Taに与える影響は小さい。そのため、式(2)において熱伝達係数αを適切に設定することにより、温度Taの予測に充分な精度を得ることができる。 In the actual reflow furnace 100, in addition to heat transfer between the air and the measurement site, physical phenomena such as heat radiation from the inner wall of the reflow furnace 100 and heat conduction in the printed circuit board 1 also occur. However, the effect of other physical phenomena on the temperature Ta is smaller than that of heat transfer between the air and the measurement site. Therefore, by appropriately setting the heat transfer coefficient α in the equation (2), sufficient accuracy can be obtained for the prediction of the temperature Ta.
 熱伝達係数αは、炉内温度分布14において時刻tsに対応する温度と、設定温度分布12において時刻tsに対応する温度との差がなくなる(あるいは許容範囲内に収まる)ように決定される。図7においては、時刻tsにおいて炉内温度分布14の温度と設定温度分布12の温度がほぼ一致している。特定時刻としては、時刻tsのように、はんだを溶融させる時間帯(区間)に含まれ、炉内温度分布14の温度が最大となる時刻が望ましい。ただし、最も出口部120に近い区間の温度は出口部120側の区間の影響を受け易く、当該区間においてはリフロー炉100内の搬送過程の幅方向の温度のばらつきが大きい恐れがある。このような区間に最大温度が含まれる場合、当該区間に対応する時間帯の時刻を避けることが望ましい。そのため、特定時刻は、炉内温度分布14の温度が最大となる時刻に限定されない。各測定部位の測定温度プロファイルに対して、炉内温度分布が生成されるとともに、当該炉内温度分布の特定時刻における温度が当該特定時刻における設定温度分布の温度とほぼ一致するように測定部位毎に仮想的な熱伝達係数が決定される。 The heat transfer coefficient α is determined so that the difference between the temperature corresponding to the time ts in the furnace temperature distribution 14 and the temperature corresponding to the time ts in the set temperature distribution 12 disappears (or falls within an allowable range). In FIG. 7, at time ts, the temperature of the temperature distribution 14 in the furnace and the temperature of the set temperature distribution 12 are substantially the same. As the specific time, it is desirable that the time is included in the time zone (interval) in which the solder is melted and the temperature of the temperature distribution 14 in the furnace becomes maximum, such as time ts. However, the temperature of the section closest to the outlet portion 120 is easily affected by the section on the outlet portion 120 side, and there is a possibility that the temperature in the width direction of the transfer process in the reflow furnace 100 varies greatly in the section. When such an interval includes the maximum temperature, it is desirable to avoid the time in the time zone corresponding to the interval. Therefore, the specific time is not limited to the time when the temperature of the temperature distribution 14 in the furnace becomes maximum. For each measurement site, the temperature distribution in the furnace is generated for the measurement temperature profile of each measurement site, and the temperature of the temperature distribution in the furnace at a specific time almost matches the temperature of the set temperature distribution at the specific time. The virtual heat transfer coefficient is determined.
 設定温度分布12は、各区間に対応する時間帯において温度が一定のプロファイルとして表現され得る。炉内温度分布14は、設定温度分布12に従って変化していることが望ましい。すなわち、炉内温度分布14の各区間において、設定温度分布12の各区間(時間帯)に設定された温度に保たれているのが望ましい。しかし、実際のリフロー炉100内において、各区間の温度は一定ではなく、各区間に隣接する区間の影響を受けて温度のばらつきが生じる。隣接する区間の設定温度の差が大きいほど、設定温度と実際のリフロー炉100内の温度の差は大きくなり得る。特に入口部110および出口部120ではリフロー炉100内の温風が搬送過程に沿って外部に流出するため、設定温度と実際のリフロー炉100内の温度の差は顕著に大きくなり得る。 The set temperature distribution 12 can be expressed as a profile in which the temperature is constant in the time zone corresponding to each section. It is desirable that the temperature distribution 14 in the furnace changes according to the set temperature distribution 12. That is, it is desirable that the temperature is maintained at the temperature set in each section (time zone) of the set temperature distribution 12 in each section of the furnace temperature distribution 14. However, in the actual reflow furnace 100, the temperature of each section is not constant, and the temperature varies due to the influence of the sections adjacent to each section. The larger the difference between the set temperatures in the adjacent sections, the larger the difference between the set temperature and the actual temperature in the reflow furnace 100 can be. In particular, at the inlet 110 and the outlet 120, the warm air in the reflow furnace 100 flows out along the transfer process, so that the difference between the set temperature and the actual temperature in the reflow furnace 100 can be significantly large.
 測定部位の違いによらず、設定温度分布12と炉内温度分布14とに差異がある場合には、当該差はリフロー炉100の基本的な構造、あるいは加熱機構の温度制御方法によるものと考えることができる。測定部位毎に算出した炉内温度分布14に差異がある場合には、搬送方向に垂直な方向の測定部位の位置に依存したリフロー炉100内の温度のばらつきなどによる差異と、被加熱物の測定部位毎の熱伝導率などの熱特性の違いによる差異が組み合わされたものであると推測することができる。 If there is a difference between the set temperature distribution 12 and the temperature distribution 14 in the furnace regardless of the difference in the measurement site, it is considered that the difference is due to the basic structure of the reflow furnace 100 or the temperature control method of the heating mechanism. be able to. If there is a difference in the temperature distribution 14 in the furnace calculated for each measurement site, the difference due to the temperature variation in the reflow furnace 100 depending on the position of the measurement site in the direction perpendicular to the transport direction and the object to be heated It can be inferred that the difference due to the difference in thermal characteristics such as thermal conductivity for each measurement site is combined.
 リフロー炉100においては、リフロー炉100が被加熱物に与える熱影響、およびリフロー炉100内の温度のばらつき等を含むリフロー炉100内の複雑な熱力学現象をニュートンの冷却法則を用いて簡易的にモデル化することにより、炉内温度分布14を算出することができる。なお、リフロー炉100内部の熱力学現象を簡易的にモデル化するために用いられる物理法則は、ニュートンの冷却法則に限定されない。当該物理法則は、被加熱物の測定部位における温度と当該測定部位の周囲の空気の温度との差、および時間経過に伴う当該測定部位における被加熱物の温度差の関係を、熱伝達係数を用いて定義する関係式を導く物理法則であれば、どのような物理法則であってもよい。 In the reflow furnace 100, a complicated thermodynamic phenomenon in the reflow furnace 100 including the thermal effect of the reflow furnace 100 on the object to be heated and the temperature variation in the reflow furnace 100 is simplified by using Newton's law of cooling. The temperature distribution in the furnace 14 can be calculated by modeling in. The physical law used to simply model the thermodynamic phenomenon inside the reflow furnace 100 is not limited to Newton's law of cooling. The physical law describes the relationship between the temperature at the measurement site of the object to be heated and the temperature of the air around the measurement site, and the temperature difference of the object to be heated at the measurement site over time. Any physical law may be used as long as it is a physical law that derives the relational expression defined by using it.
 図8は、図7の設定温度分布12、炉内温度分布14、および補正された設定温度分布15を併せて示す図である。図8に示されるように、設定温度分布12と炉内温度分布14との差異が比較的少ない区間Sc4~Sc8においては、設定温度分布12を炉内温度分布と見做し、以下の式(3)を用いて当該測定部位の温度プロファイルを予測することができる。リフロー炉100内の或る位置の温度Taとして、設定温度分布12における当該位置に対応する温度を用いる。 FIG. 8 is a diagram showing the set temperature distribution 12 of FIG. 7, the temperature distribution in the furnace 14, and the corrected set temperature distribution 15. As shown in FIG. 8, in the sections Sc4 to Sc8 where the difference between the set temperature distribution 12 and the furnace temperature distribution 14 is relatively small, the set temperature distribution 12 is regarded as the furnace temperature distribution, and the following equation ( 3) can be used to predict the temperature profile of the measurement site. As the temperature Ta at a certain position in the reflow furnace 100, the temperature corresponding to the position in the set temperature distribution 12 is used.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 しかし、たとえば区間Sc1~Sc3のように、区間によっては設定温度分布12と炉内温度分布14とが乖離し得るため、設定温度分布12をそのまま温度予測に用いると、温度予測の精度が低下し得る。そこで、設定温度分布12が炉内温度分布14に近づくように設定温度分布12を区間毎に補正する。補正値は、区間毎に定数として設定されてもよいし、区間毎の設定温度に比例した値に設定されてもよい。図8においては、被加熱物の温度測定において実際に用いられた設定温度分布12が補正され、設定温度分布15(第2設定温度分布)が得られている。設定温度分布15は、設定温度分布12よりも炉内温度分布14に近い温度分布である。設定温度分布15は、炉内温度分布14を近似する設定温度分布であり、温度予測のシミュレーションにおいて用いられる。 However, since the set temperature distribution 12 and the temperature distribution in the furnace 14 may deviate from each other depending on the section, for example, in the sections Sc1 to Sc3, if the set temperature distribution 12 is used as it is for the temperature prediction, the accuracy of the temperature prediction is lowered. obtain. Therefore, the set temperature distribution 12 is corrected for each section so that the set temperature distribution 12 approaches the temperature distribution 14 in the furnace. The correction value may be set as a constant for each section, or may be set to a value proportional to the set temperature for each section. In FIG. 8, the set temperature distribution 12 actually used in the temperature measurement of the object to be heated is corrected, and the set temperature distribution 15 (second set temperature distribution) is obtained. The set temperature distribution 15 is a temperature distribution closer to the furnace temperature distribution 14 than the set temperature distribution 12. The set temperature distribution 15 is a set temperature distribution that approximates the temperature distribution 14 in the furnace, and is used in the simulation of temperature prediction.
 実際の設定温度分布12は、温度予測のシミュレーションにおいて用いられる設定温度分布15よりも補正値の分だけずれている。温度予測のシミュレーションにおいて用いられた設定温度分布に符号を逆転させた補正値を足すことによって得られる設定温度分布を実際に用いることにより、温度予測のシミュレーションの結果を実際のリフロー炉100内において再現することができる。 The actual set temperature distribution 12 deviates from the set temperature distribution 15 used in the temperature prediction simulation by the amount of the correction value. The result of the temperature prediction simulation is reproduced in the actual reflow furnace 100 by actually using the set temperature distribution obtained by adding the correction value obtained by reversing the sign to the set temperature distribution used in the temperature prediction simulation. can do.
 図9は、温度予測のシミュ―レーション結果を示す図である。図9において、設定温度分布15は、図8の補正された設定温度分布15と同一である。設定温度分布16は、設定温度分布15が変更された設定温度分布である。測定部位の温度プロファイル17,18は、設定温度分布15,16にそれぞれ基づくシミュレーション結果である。図9に示されるように、設定温度分布15に対する設定温度分布16の変化に応じて、温度プロファイル18は温度プロファイル17に対して変化している。設定温度分布15の補正値の符号を逆転させた値を設定温度分布16に足すことによって得られる設定温度分布を実際に用いることにより、温度プロファイル18を実際のリフロー炉100内において再現することができる。 FIG. 9 is a diagram showing the simulation result of temperature prediction. In FIG. 9, the set temperature distribution 15 is the same as the corrected set temperature distribution 15 in FIG. The set temperature distribution 16 is a set temperature distribution in which the set temperature distribution 15 is changed. The temperature profiles 17 and 18 of the measurement site are simulation results based on the set temperature distributions 15 and 16, respectively. As shown in FIG. 9, the temperature profile 18 changes with respect to the temperature profile 17 in response to the change of the set temperature distribution 16 with respect to the set temperature distribution 15. The temperature profile 18 can be reproduced in the actual reflow furnace 100 by actually using the set temperature distribution obtained by adding the value obtained by reversing the sign of the correction value of the set temperature distribution 15 to the set temperature distribution 16. it can.
 入口部110および出口部120の各々に仮想的な区間を設定して当該区間を設定温度分布に加えることにより、入口部110および出口部120の設定温度を補正することが可能である。また、隣接する2つの区間(第1区間および第2区間)について、第1区間が第1温度に設定される第1温度領域を含み、第2区間が第2温度に設定される第2温度領域を含む場合、第1区間と第2区間との間に空気の温度が第1温度から第2温度に変化する温度遷移領域が設定されてもよい。温度遷移領域が設定されることにより、設定温度分布12を炉内温度分布14により近い形状とすることができる。設定温度分布12は、時間軸と温度軸とを備えたグラフ上では、直線の組み合わせによって表現することができる。さらに平滑処理によって設定温度分布12を炉内温度分布14に近づけることもできる。 By setting a virtual section for each of the inlet portion 110 and the outlet portion 120 and adding the section to the set temperature distribution, it is possible to correct the set temperature of the inlet portion 110 and the outlet portion 120. Further, for two adjacent sections (first section and second section), the first section includes the first temperature region set to the first temperature, and the second section is set to the second temperature. When a region is included, a temperature transition region in which the temperature of the air changes from the first temperature to the second temperature may be set between the first section and the second section. By setting the temperature transition region, the set temperature distribution 12 can be made into a shape closer to the temperature distribution 14 in the furnace. The set temperature distribution 12 can be expressed by a combination of straight lines on a graph having a time axis and a temperature axis. Further, the set temperature distribution 12 can be brought closer to the furnace temperature distribution 14 by the smoothing process.
 再び図8を参照して、設定温度分布12と炉内温度分布14との差の絶対値が基準値(たとえば5℃)以下となるように各区間の補正値を設定し、補正された設定温度分布15を用いることにより、温度予測の精度を向上させることができる。被加熱物の各測定部位に対して個別の補正値が設定されてもよい。簡便的用途あるいは、各測定部位にて算出された炉内温度分布14の差異が比較的小さい場合には、各測定部位に対して同一の補正値を用いてもよい。また、設定温度分布は、搬送コンベア2の搬送速度をより早い速度に変更する場合、各区間を通過する時間がより短くなるものとして表すことができる。搬送速度をより遅い速度に変更する場合には、各区間を通過する時間が長くなるものとして表すことができる。搬送速度が変更された場合においても、被加熱物の温度測定を再度行うことなく、補正後の設定温度分布および仮想的な熱伝達係数を用いることにより、温度予測をすることができる。 With reference to FIG. 8 again, the correction value for each section is set so that the absolute value of the difference between the set temperature distribution 12 and the furnace temperature distribution 14 is equal to or less than the reference value (for example, 5 ° C.), and the corrected setting By using the temperature distribution 15, the accuracy of temperature prediction can be improved. Individual correction values may be set for each measurement site of the object to be heated. For simple use, or when the difference in the temperature distribution 14 in the furnace calculated at each measurement site is relatively small, the same correction value may be used for each measurement site. Further, the set temperature distribution can be expressed as the time for passing through each section becomes shorter when the transfer speed of the transfer conveyor 2 is changed to a higher speed. When the transport speed is changed to a slower speed, it can be expressed as a longer time to pass through each section. Even when the transport speed is changed, the temperature can be predicted by using the corrected set temperature distribution and the virtual heat transfer coefficient without measuring the temperature of the object to be heated again.
 なお、実施の形態1においては、トンネル型の搬送過程を有するリフロー炉について説明した。実施の形態に係る加熱装置は、設定温度を段階的に変化させることができるプログラム式加熱炉であってもよい。また、実施の形態1においては、加熱装置の制御装置において被加熱物の温度測定および被加熱物の温度予測の双方が行われる場合について説明した。被加熱物の温度測定および被加熱物の温度予測は同一の装置において行われる必要はない。たとえば汎用PC(Personal Computer)のような、被加熱物の温度測定を行った装置とは別個の装置によって、被加熱物の温度予測が行われてもよい。 In the first embodiment, a reflow furnace having a tunnel-type transfer process has been described. The heating device according to the embodiment may be a programmed heating furnace capable of changing the set temperature stepwise. Further, in the first embodiment, a case where both the temperature measurement of the object to be heated and the temperature prediction of the object to be heated are performed in the control device of the heating device has been described. The temperature measurement of the object to be heated and the temperature prediction of the object to be heated need not be performed in the same device. For example, the temperature of the object to be heated may be predicted by a device separate from the device that measures the temperature of the object to be heated, such as a general-purpose PC (Personal Computer).
 以上、実施の形態1に係る温度予測装置によれば、加熱装置の内部のモデル化を簡略化しながら、加熱装置内の温度予測の精度の低下を抑制することができる。 As described above, according to the temperature prediction device according to the first embodiment, it is possible to suppress a decrease in the accuracy of the temperature prediction in the heating device while simplifying the modeling inside the heating device.
 実施の形態2.
 実施の形態2においては、設定温度分布に対する補正値をデータベースに登録することにより、炉内温度分布および設定温度分布の比較による補正値の算出を行うことなく被加熱物の温度予測を可能とする構成について説明する。
Embodiment 2.
In the second embodiment, by registering the correction value for the set temperature distribution in the database, it is possible to predict the temperature of the object to be heated without calculating the correction value by comparing the temperature distribution in the furnace and the set temperature distribution. The configuration will be described.
 実施の形態2において参照されるデータベースには、測定部位の材質等の被加熱物(第1被加熱物)の情報、過去に実施された当該被加熱物の温度測定に基づいて補正された設定温度分布、加熱機構の配置に基づく各区間の長さ、温度遷移領域の長さ、および各区間に対応する補正値等の情報が加熱装置の識別情報に関連付けられて登録されている。以下では、データベースにおいて加熱装置の識別情報に関連付けられた情報を単に加熱装置の情報と呼ぶ。データベースにおいて加熱装置の識別情報を検索キーとして、加熱装置の情報が検索可能である。当該データベースは、図2のメモリ32に形成されていてもよいし、外部のサーバに形成されていてもよい。当該データベースを参照することにより、今回使用する被加熱物の構造(たとえばプリント回路板上の測定部位の材質)に基づいて、当該構造に対応した補正値を特定することができる。 In the database referred to in the second embodiment, the information of the object to be heated (first object to be heated) such as the material of the measurement site and the setting corrected based on the temperature measurement of the object to be heated performed in the past. Information such as the temperature distribution, the length of each section based on the arrangement of the heating mechanism, the length of the temperature transition region, and the correction value corresponding to each section is registered in association with the identification information of the heating device. In the following, the information associated with the identification information of the heating device in the database is simply referred to as the information of the heating device. Information on the heating device can be searched using the identification information of the heating device as a search key in the database. The database may be formed in the memory 32 of FIG. 2 or may be formed in an external server. By referring to the database, it is possible to specify the correction value corresponding to the structure based on the structure of the object to be heated (for example, the material of the measurement site on the printed circuit board) used this time.
 図10は、実施の形態2に係る温度予測装置によって行われる温度予測の過程の一例を示すフローチャートである。図10に示されるフローチャートは、図4に示されるフローチャートのS104~S106がS204~S206に置き換えられたフローチャートである。図10に示されるように、実施の形態2において温度予測の過程は、S101~S103,S204~S206,S107の順に進む。実施の形態1と同様にS101~S103が行われた後、S204において、S101で使用された加熱装置の識別情報を用いて当該加熱装置の情報がデータベースにおいて検索される。S205において、S204で検索された情報を用いてS101における設定温度分布を補正し、補正された設定温度分布に基づいて温度プロファイルを予測する。S206において、S205で生成された温度プロファイルがS101で測定された測定温度プロファイルに近づくように、S205において用いられた熱伝達係数が修正される。S107において、変更された設定温度分布および修正された熱伝達係数を用いて測定部位の温度予測が行われる。 FIG. 10 is a flowchart showing an example of the temperature prediction process performed by the temperature prediction device according to the second embodiment. The flowchart shown in FIG. 10 is a flowchart in which S104 to S106 of the flowchart shown in FIG. 4 is replaced with S204 to S206. As shown in FIG. 10, in the second embodiment, the temperature prediction process proceeds in the order of S101 to S103, S204 to S206, and S107. After S101 to S103 are performed in the same manner as in the first embodiment, in S204, the information of the heating device is searched in the database using the identification information of the heating device used in S101. In S205, the set temperature distribution in S101 is corrected using the information searched in S204, and the temperature profile is predicted based on the corrected set temperature distribution. In S206, the heat transfer coefficient used in S205 is modified so that the temperature profile generated in S205 approaches the measured temperature profile measured in S101. In S107, the temperature of the measurement site is predicted using the changed set temperature distribution and the modified heat transfer coefficient.
 実施の形態2においては、データベースに登録されている情報から、補正された設定温度分布が生成される。当該設定温度分布を用いて、温度測定を行った被加熱物(第2被加熱物)に対する温度予測が行われる。予測した温度プロファイルが測定された温度プロファイルに近づくように温度予測において用いられた測定部位の仮想の熱伝達係数が修正される。 In the second embodiment, the corrected set temperature distribution is generated from the information registered in the database. Using the set temperature distribution, the temperature is predicted for the object to be heated (second object to be heated) for which the temperature has been measured. The virtual heat transfer coefficient of the measurement site used in the temperature prediction is modified so that the predicted temperature profile approaches the measured temperature profile.
 熱伝達係数を修正する方法としては、たとえば、測定温度プロファイルの最高温度と予測した温度プロファイルの最高温度との差がなくなる(あるいは許容範囲内に収まる)ように、温度予測において用いられた測定部位の熱伝達係数を修正する方法を挙げることができる。温度プロファイルの最高温度に着目することにより、最高温度以外の測定データが不要となるため被加熱物の測定データの全てを温度予測ソフトウェアに入力する必要がない。たとえば或るロケーションにおいて測定された温度プロファイルの最高温度を他のロケーションに伝達し、当該最高温度を温度予測ソフトウェアに入力することにより、当予測された温度プロファイルの最高温度が遠隔地から伝達された最高温度に一致するように熱伝達係数を算出することができる。当該方法によれば、遠隔地の間で、たとえば電話連絡によって測定温度プロファイルの最高温度を伝えることによって、被加熱物の温度予測をすることが可能となる。 As a method of modifying the heat transfer coefficient, for example, the measurement site used in the temperature prediction so that the difference between the maximum temperature of the measurement temperature profile and the maximum temperature of the predicted temperature profile disappears (or falls within the allowable range). A method of modifying the heat transfer coefficient of By focusing on the maximum temperature of the temperature profile, it is not necessary to input all the measurement data of the object to be heated into the temperature prediction software because the measurement data other than the maximum temperature is unnecessary. For example, by transmitting the maximum temperature of the temperature profile measured at one location to another location and inputting the maximum temperature into the temperature prediction software, the maximum temperature of the predicted temperature profile was transmitted from a remote location. The heat transfer coefficient can be calculated to match the maximum temperature. According to this method, it is possible to predict the temperature of the object to be heated by transmitting the maximum temperature of the measured temperature profile between remote locations, for example, by telephone communication.
 図11は、実施の形態2に係る温度予測装置によって行われる温度予測の過程の他の例を示すフローチャートである。図11に示されるフローチャートは、図10に示されるフローチャートからS102が除かれているとともに、S205の後にS215が追加され、S206がS216に置き換えられたフローチャートである。図11に示される温度予測の過程は、S101,S103,S204,S205,S215,S216,S107の順に進む。S101,S103,S204,S205が行われた後、S215において、S101で生成された測定温度プロファイルの最高温度が温度予測ソフトウェアに入力される。S216において、S215で入力された最高温度とS205において予測された温度プロファイルの最高温度との差がなくなるようにS205において用いられた熱伝達係数が修正される。S107において、変更された設定温度分布に基づく測定部位の温度予測が行われる。 FIG. 11 is a flowchart showing another example of the temperature prediction process performed by the temperature prediction device according to the second embodiment. The flowchart shown in FIG. 11 is a flowchart in which S102 is removed from the flowchart shown in FIG. 10, S215 is added after S205, and S206 is replaced with S216. The temperature prediction process shown in FIG. 11 proceeds in the order of S101, S103, S204, S205, S215, S216, S107. After S101, S103, S204, and S205 are performed, in S215, the maximum temperature of the measurement temperature profile generated in S101 is input to the temperature prediction software. In S216, the heat transfer coefficient used in S205 is modified so that there is no difference between the maximum temperature input in S215 and the maximum temperature in the temperature profile predicted in S205. In S107, the temperature of the measurement site is predicted based on the changed set temperature distribution.
 実施の形態2において参照されるデータベースは、構造が同じ加熱装置間で共用可能である場合が多い。或る加熱装置による被加熱物の測定データに基づく補正値等のデータがデータベースに登録されていない場合でも、当該加熱装置と同様の構造を有する加熱装置のデータがデータベースに登録されていれば、当該データを利用することで、温度予測をすることが可能である。また、複数のロケーションに配置された加熱装置の情報を1つのデータベースに集約することで、複数の加熱装置の設定温度分布および搬送速度等の条件を一元的に管理することができる。 The database referred to in the second embodiment can often be shared between heating devices having the same structure. Even if data such as correction values based on the measurement data of the object to be heated by a certain heating device is not registered in the database, if the data of the heating device having the same structure as the heating device is registered in the database, By using the data, it is possible to predict the temperature. Further, by aggregating the information of the heating devices arranged in a plurality of locations in one database, it is possible to centrally manage the conditions such as the set temperature distribution and the transfer speed of the plurality of heating devices.
 データベースには、炉内温度プロファイルが登録されてもよい。互いに異なる加熱装置毎に作成された炉内温度プロファイルを比較することにより、加熱装置毎の特徴を、炉内温度プロファイルの形状から容易に確認することができる。また、定期的に(たとえば1ヶ月毎に)、或る加熱装置において炉内温度プロファイルを生成し、今回の炉内温度プロファイルと過去に生成された炉内温度プロファイルとを比較することにより、当該加熱装置の健全性を点検することができる。同様に、被加熱物の複数の測定部位の測定データから算出された炉内温度プロファイルを比較することにより、加熱装置内の温度のばらつき、あるいは加熱装置内の風路の一部が塞がっているというような局所的な不具合を検出することが可能となる。 The temperature profile in the furnace may be registered in the database. By comparing the furnace temperature profiles created for each different heating device, the characteristics of each heating device can be easily confirmed from the shape of the furnace temperature profile. In addition, by generating a furnace temperature profile in a certain heating device on a regular basis (for example, every month) and comparing the current furnace temperature profile with the previously generated furnace temperature profile, the said The health of the heating device can be checked. Similarly, by comparing the temperature profiles in the furnace calculated from the measurement data of multiple measurement sites of the object to be heated, the temperature variation in the heating device or a part of the air passage in the heating device is blocked. It is possible to detect such local defects.
 以上、実施の形態2に係る温度予測装置によれば、加熱装置の内部のモデル化を簡略化しながら、加熱装置内の温度予測の精度の低下を抑制することができる。 As described above, according to the temperature prediction device according to the second embodiment, it is possible to suppress a decrease in the accuracy of the temperature prediction in the heating device while simplifying the modeling inside the heating device.
 今回開示された各実施の形態は、矛盾しない範囲で適宜組み合わせて実施することも予定されている。今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It is also planned that the embodiments disclosed this time will be appropriately combined and implemented within a consistent range. It should be considered that the embodiments disclosed this time are exemplary in all respects and not restrictive. The scope of the present disclosure is indicated by the scope of claims rather than the above description, and is intended to include all modifications within the meaning and scope of the claims.
 1 プリント回路板、2 搬送コンベア、8 データロガー、30 制御装置、31 処理回路、32 メモリ、33 入出力部、34 表示部、41~47,51~57 加熱機構、61,62 冷却機構、71,72 熱電対、81~83 実装部品、100 リフロー炉、110 入口部、120 出口部、310 ローパスフィルタ、Sa1~Sa7,Sb1~Sb7 温度センサ。 1 Printed circuit board, 2 Conveyance conveyor, 8 Data logger, 30 Control device, 31 Processing circuit, 32 Memory, 33 Input / output section, 34 Display section, 41-47, 51-57 Heating mechanism, 61, 62 Cooling mechanism, 71 , 72 Thermocouples, 81-83 mounting parts, 100 reflow furnaces, 110 inlets, 120 outlets, 310 low-pass filters, Sa1-Sa7, Sb1-Sb7 temperature sensors.

Claims (9)

  1.  第1被加熱物を加熱する加熱装置内の温度を予測する温度予測装置であって、
     前記加熱装置は、前記第1被加熱物が移動する搬送過程の複数の位置の各々と当該位置における空気の温度との関係を示す第1設定温度分布に従って、当該位置に対応する設定温度の空気を前記搬送過程に向かって送風し、
     前記温度予測装置は、
     制御部と、
     前記加熱装置内を移動する前記第1被加熱物の測定部位の測定温度と測定時刻との関係を示す第1測定温度プロファイルが保存される記憶部とを備え、
     前記制御部は、
     前記測定部位における前記第1被加熱物の温度と前記測定部位の周囲の空気の温度との差、および時間経過に伴う前記測定部位における前記第1被加熱物の温度差の関係を、熱伝達係数を用いて定義する関係式を用いて、特定時刻における前記測定部位の位置の空気の温度と、前記第1設定温度分布において前記特定時刻における前記測定部位の位置に対応する空気の温度との差がなくなるように前記熱伝達係数を決定し、
     前記第1測定温度プロファイルおよび前記関係式を用いて、前記搬送過程における空気の温度分布を予測する、温度予測装置。
    A temperature predictor that predicts the temperature inside a heating device that heats the first object to be heated.
    The heating device has a set temperature of air corresponding to the position according to a first set temperature distribution indicating the relationship between each of a plurality of positions in the transport process in which the first object to be heated moves and the temperature of the air at the position. Is blown toward the transport process,
    The temperature predictor is
    Control unit and
    It is provided with a storage unit for storing a first measurement temperature profile showing the relationship between the measurement temperature and the measurement time of the measurement site of the first object to be heated moving in the heating device.
    The control unit
    Heat transfer of the relationship between the temperature of the first object to be heated at the measurement site and the temperature of the air around the measurement site, and the temperature difference of the first object to be heated at the measurement site over time. Using a relational expression defined using a coefficient, the temperature of the air at the position of the measurement site at a specific time and the temperature of the air corresponding to the position of the measurement site at the specific time in the first set temperature distribution. Determine the heat transfer coefficient so that there is no difference,
    A temperature prediction device that predicts the temperature distribution of air in the transfer process using the first measurement temperature profile and the relational expression.
  2.  前記搬送過程における空気の温度分布において、前記特定時刻における前記測定部位の位置の空気の温度は、最大である、請求項1に記載の温度予測装置。 The temperature prediction device according to claim 1, wherein the temperature of the air at the position of the measurement site at the specific time is the maximum in the temperature distribution of the air in the transport process.
  3.  前記制御部は、
     前記搬送過程における空気の温度分布に近づくように前記第1設定温度分布を補正して第2設定温度分布を生成し、
     前記第2設定温度分布において前記複数の位置の各々に対応する温度を変化させることによって第3設定温度分布を生成し、
     前記第3設定温度分布および前記関係式を用いて、前記測定部位の温度プロファイルを予測する、請求項1または2に記載の温度予測装置。
    The control unit
    The first set temperature distribution is corrected so as to approach the temperature distribution of air in the transport process, and the second set temperature distribution is generated.
    A third set temperature distribution is generated by changing the temperature corresponding to each of the plurality of positions in the second set temperature distribution.
    The temperature prediction device according to claim 1 or 2, wherein the temperature profile of the measurement site is predicted by using the third set temperature distribution and the relational expression.
  4.  前記第2設定温度分布において前記複数の位置の各々に対応する温度と、前記搬送過程における空気の温度分布において当該位置に対応する温度との差の絶対値は、基準値よりも小さい、請求項3に記載の温度予測装置。 Claim that the absolute value of the difference between the temperature corresponding to each of the plurality of positions in the second set temperature distribution and the temperature corresponding to the position in the temperature distribution of air in the transport process is smaller than the reference value. 3. The temperature predictor according to 3.
  5.  前記加熱装置は、前記第1設定温度分布を実現する複数の加熱機構を備え、
     前記複数の加熱機構は、前記搬送過程に沿って配置され、
     前記加熱機構は、前記第1被加熱物の搬送方向に沿って複数の加熱区間に分けられ、
     前記複数の加熱区間には、前記複数の加熱機構がそれぞれ配置され、
     前記温度予測装置は、表示部をさらに備え、
     前記制御部は、前記複数の加熱区間において隣接する区間の境界を前記第1被加熱物が通過する時刻を示す直線を、前記測定部位の温度プロファイルに重ねて前記表示部に表示する、請求項1~4のいずれか1項に記載の温度予測装置。
    The heating device includes a plurality of heating mechanisms that realize the first set temperature distribution.
    The plurality of heating mechanisms are arranged along the transfer process.
    The heating mechanism is divided into a plurality of heating sections along the transport direction of the first object to be heated.
    The plurality of heating mechanisms are respectively arranged in the plurality of heating sections.
    The temperature prediction device further includes a display unit.
    The control unit claims that a straight line indicating the time when the first object to be heated passes through the boundary between adjacent sections in the plurality of heating sections is superimposed on the temperature profile of the measurement site and displayed on the display unit. The temperature prediction device according to any one of 1 to 4.
  6.  前記制御部は、前記第1設定温度分布および前記第1設定温度分布の補正に用いられた補正値が登録されたデータベースを参照して前記第2設定温度分布を生成し、
     前記記憶部には、前記加熱装置内を移動する第2被加熱物の測定部位の測定温度と測定時刻との関係を示す第2測定温度プロファイルがさらに保存され、
     前記制御部は、前記第2設定温度分布および前記関係式を用いて前記第2被加熱物の測定部位の第2温度プロファイルを予測し、前記第2温度プロファイルの最高温度と前記第2測定温度プロファイルの最高温度との差がなくなるように前記熱伝達係数を修正する、請求項3または4に記載の温度予測装置。
    The control unit generates the second set temperature distribution by referring to the database in which the correction values used for the correction of the first set temperature distribution and the first set temperature distribution are registered.
    In the storage unit, a second measurement temperature profile showing the relationship between the measurement temperature and the measurement time of the measurement site of the second object to be heated moving in the heating device is further stored.
    The control unit predicts the second temperature profile of the measurement site of the second object to be heated by using the second set temperature distribution and the relational expression, and the maximum temperature of the second temperature profile and the second measurement temperature. The temperature predictor according to claim 3 or 4, wherein the heat transfer coefficient is modified so that there is no difference from the maximum temperature of the profile.
  7.  前記第1設定温度分布においては、空気の温度が第1温度に設定される第1温度領域、空気の温度が前記第1温度から第2温度に変化する温度遷移領域、空気の温度が前記第2温度に設定される第2温度領域の順に温度領域が設定されている、請求項1~6のいずれか1項に記載の温度予測装置。 In the first set temperature distribution, the first temperature region in which the air temperature is set to the first temperature, the temperature transition region in which the air temperature changes from the first temperature to the second temperature, and the air temperature are the first. The temperature prediction device according to any one of claims 1 to 6, wherein temperature regions are set in the order of a second temperature region set to two temperatures.
  8.  前記制御部は、サンプリングタイム毎に測定された前記測定部位の温度と当該サンプリングタイムとの関係を示す離散温度プロファイルに対して、ローパスフィルタによる平滑化処理を行うことによって前記第1測定温度プロファイルを生成する、請求項1~7のいずれか1項に記載の温度予測装置。 The control unit performs the first measurement temperature profile by smoothing the discrete temperature profile indicating the relationship between the temperature of the measurement site measured at each sampling time and the sampling time with a low-pass filter. The temperature predictor according to any one of claims 1 to 7, which is generated.
  9.  被加熱物を加熱する加熱装置内の温度を予測する温度予測方法であって、
     前記加熱装置は、前記被加熱物が移動する搬送過程の複数の位置の各々と当該位置における空気の温度との関係を示す第1設定温度分布に従って、当該位置に対応する設定温度の空気を前記搬送過程に向かって送風し、
     前記温度予測方法は、
     前記加熱装置内を移動する前記被加熱物の測定部位の測定温度と測定時刻との関係を示す第1測定温度プロファイルを生成するステップと、
     前記測定部位における前記被加熱物の温度と前記測定部位の周囲の空気の温度との差、および時間経過に伴う前記測定部位における前記被加熱物の温度差の関係を、熱伝達係数を用いて定義する関係式を用いて、特定時刻における前記測定部位の位置の空気の温度と、前記第1設定温度分布において前記特定時刻における前記測定部位の位置に対応する空気の温度との差がなくなるように前記熱伝達係数を決定するステップと、
     前記第1測定温度プロファイルおよび前記関係式を用いて、前記搬送過程における空気の温度分布を予測するステップとを含む、温度予測方法。
    It is a temperature prediction method that predicts the temperature inside the heating device that heats the object to be heated.
    The heating device uses the air having a set temperature corresponding to the position according to the first set temperature distribution showing the relationship between each of the plurality of positions in the transport process in which the object to be heated moves and the temperature of the air at the position. Blow toward the transport process,
    The temperature prediction method is
    A step of generating a first measurement temperature profile showing the relationship between the measurement temperature and the measurement time of the measurement site of the object to be heated moving in the heating device, and
    The relationship between the temperature of the object to be heated at the measurement site and the temperature of the air around the measurement site and the temperature difference of the object to be heated at the measurement site with the passage of time is determined by using the heat transfer coefficient. Using the defined relational expression, the difference between the temperature of the air at the position of the measurement site at the specific time and the temperature of the air corresponding to the position of the measurement site at the specific time in the first set temperature distribution is eliminated. In the step of determining the heat transfer coefficient,
    A temperature prediction method including a step of predicting the temperature distribution of air in the transport process using the first measurement temperature profile and the relational expression.
PCT/JP2020/022642 2019-06-13 2020-06-09 Temperature prediction device and temperature prediction method WO2020250876A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080041536.1A CN113906835A (en) 2019-06-13 2020-06-09 Temperature prediction device and temperature prediction method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019110033A JP7329973B2 (en) 2019-06-13 2019-06-13 Temperature prediction device and temperature prediction method
JP2019-110033 2019-06-13

Publications (1)

Publication Number Publication Date
WO2020250876A1 true WO2020250876A1 (en) 2020-12-17

Family

ID=73743304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022642 WO2020250876A1 (en) 2019-06-13 2020-06-09 Temperature prediction device and temperature prediction method

Country Status (3)

Country Link
JP (1) JP7329973B2 (en)
CN (1) CN113906835A (en)
WO (1) WO2020250876A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004064002A (en) * 2002-07-31 2004-02-26 Matsushita Electric Ind Co Ltd Thermal analysis method and device, and program and heating control device for carrying out the method thereof
JP2004235196A (en) * 2003-01-28 2004-08-19 Mitsubishi Electric Corp Method for setting heating condition of heating furnace and reflow soldering device using it
JP2006013418A (en) * 2004-05-25 2006-01-12 Sony Corp Reflow temperature control method and reflow temperature control device, reflow temperature control program and computer-readable recording medium recorded with the program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004064002A (en) * 2002-07-31 2004-02-26 Matsushita Electric Ind Co Ltd Thermal analysis method and device, and program and heating control device for carrying out the method thereof
JP2004235196A (en) * 2003-01-28 2004-08-19 Mitsubishi Electric Corp Method for setting heating condition of heating furnace and reflow soldering device using it
JP2006013418A (en) * 2004-05-25 2006-01-12 Sony Corp Reflow temperature control method and reflow temperature control device, reflow temperature control program and computer-readable recording medium recorded with the program

Also Published As

Publication number Publication date
JP7329973B2 (en) 2023-08-21
CN113906835A (en) 2022-01-07
JP2020201204A (en) 2020-12-17

Similar Documents

Publication Publication Date Title
JP3274095B2 (en) Thermal analysis device for object to be heated in heating furnace, control device for reflow furnace using the same, and computer-readable recording medium recording program thereof
JP4226855B2 (en) Thermal analysis method, thermal analysis apparatus, and program for executing the thermal analysis method
JP4978001B2 (en) Temperature control method, temperature control apparatus, and heat treatment apparatus
TW201818053A (en) Temperature-measuring apparatus, inspection apparatus, and control method
WO2020250876A1 (en) Temperature prediction device and temperature prediction method
JP4724224B2 (en) Method for manufacturing solder bonded product, solder bonding apparatus, reflow apparatus, and solder bonding method
US11740140B2 (en) Velocity regulation of the calibrator block in a dry block calibrator
WO2021219024A1 (en) Apparatus and method for measuring temperature of object in space
Whalley A simplified model of the reflow soldering process
JP4110845B2 (en) Printed circuit board temperature setting method
KR20220164592A (en) Resistance calibration and monitoring of thermal systems
JP4360867B2 (en) Thermal analysis method
JP3236132B2 (en) Radiation thermometry for tunnel furnaces
Statum Experimental Determination Of Uniform Heating In The Selective Laser Sintering Part Bed
JP2676927B2 (en) Reflow equipment
JP2006013418A (en) Reflow temperature control method and reflow temperature control device, reflow temperature control program and computer-readable recording medium recorded with the program
JP5152299B2 (en) Method for discriminating solder conditions and method for manufacturing products to be soldered
Vode et al. Mathematical model for an Al-coil temperature calculation during heat treatment
JP2004235196A (en) Method for setting heating condition of heating furnace and reflow soldering device using it
JP5279750B2 (en) Temperature profile estimation method, temperature profile estimation device, and reflow device
JP2004069409A (en) Method for obtaining specific heat and laminar film heat transfer coefficient of powder granular material
JPH0481272A (en) Method for setting heater temperature of reflow furnace
JPH04165694A (en) Method of setting reflow condition of reflow furnace
JP2015155810A (en) Adjustment method of physical quantity detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20822674

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20822674

Country of ref document: EP

Kind code of ref document: A1