WO2020250329A1 - Adjustment calculation device and adjustment method for elevator device - Google Patents

Adjustment calculation device and adjustment method for elevator device Download PDF

Info

Publication number
WO2020250329A1
WO2020250329A1 PCT/JP2019/023211 JP2019023211W WO2020250329A1 WO 2020250329 A1 WO2020250329 A1 WO 2020250329A1 JP 2019023211 W JP2019023211 W JP 2019023211W WO 2020250329 A1 WO2020250329 A1 WO 2020250329A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
current value
car
adjustment amount
conversion coefficient
Prior art date
Application number
PCT/JP2019/023211
Other languages
French (fr)
Japanese (ja)
Inventor
木村 哲也
大塚 康司
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021525465A priority Critical patent/JP7088415B2/en
Priority to PCT/JP2019/023211 priority patent/WO2020250329A1/en
Priority to CN201980097179.8A priority patent/CN113905967B/en
Publication of WO2020250329A1 publication Critical patent/WO2020250329A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B3/00Applications of devices for indicating or signalling operating conditions of elevators

Definitions

  • the present application relates to an adjustment amount calculation device for a balance weight of an elevator device and an adjustment method for the elevator device.
  • the elevator device is equipped with an electric motor driven by an electric current and a sheave that rotates in conjunction with the electric motor.
  • a rope with a car on one end and a counterweight on the other end is wrapped around this sheave.
  • the elevator device supplies electric current to the electric motor to raise and lower the car.
  • the balance weight is designed with a weight that balances with the rider when the load is half the rated load weight.
  • configurations other than the balanced weight of the elevator device for example, an electric motor, a control device, and the like are also designed so that the balanced weight is a weight balanced with the rider when the load is half the rated load weight.
  • the weight of the car may change due to painting and decoration at the installation destination of the elevator device. Therefore, when installing the elevator device, the adjustment work is performed so that the weight of the balance weight becomes the weight balanced with the rider at a load of about half of the rated load weight.
  • Patent Document 1 discloses a method of adjusting the balance weight at the time of installation.
  • the average of the current values supplied to the electric motor when the car in the no-load state is raised and lowered at a constant speed is obtained.
  • the difference between the average of the obtained current values and the known current values when the balance weight is adjusted to the design weight is calculated.
  • the adjustment amount of the balanced weight is calculated by using the difference between the obtained current values and the conversion coefficient obtained in advance in order to convert the current value into the weight of the balanced weight.
  • the conversion coefficient is obtained in advance by performing a test run on the elevator device having each specification, and the conversion coefficient of the elevator device having the same or similar specifications as the elevator device to be adjusted is used.
  • the present application provides an adjustment amount calculation device and an elevator device adjustment method that can improve the adjustment accuracy of the balance weight by accurately obtaining the adjustment amount of the balance weight in order to solve the above problems.
  • the purpose is to do.
  • the adjustment amount calculation device of the present application has an operation control unit that raises and lowers the car and operates in a state where the car is unloaded and a state in which a test weight of a known weight is loaded on the car or the balance weight.
  • the current value acquisition unit that acquires the current value supplied to the electric motor when the control unit raises and lowers the car
  • the current value acquired by the current value acquisition unit and the weight of the test weight.
  • Adjustment of the balance weight using the conversion coefficient calculation unit that calculates the conversion coefficient used to calculate the adjustment amount of the balance weight, the current value acquired by the current value acquisition unit, and the conversion coefficient calculated by the conversion coefficient calculation unit. It is provided with an adjustment amount calculation unit for calculating the amount.
  • the adjustment amount calculation device and the adjustment method of the elevator device according to the present application calculate the conversion coefficient of the elevator device to be adjusted at the time of installation and accurately obtain the adjustment amount of the balance weight to obtain the adjustment accuracy of the balance weight. It makes it possible to save labor for adjustment work during installation.
  • Embodiment 1 a method for adjusting the balance weight according to the first embodiment of the present application will be described.
  • the same parts or corresponding parts are designated by the same reference numerals, and duplicate description will be omitted.
  • FIG. 1 is an overall schematic view of the elevator device 100 according to the first embodiment of the present application.
  • the car 1 of the elevator device 100 goes up and down inside the hoistway 2.
  • the electric motor 4 is connected to the movement amount detector 41.
  • the movement amount detector 41 detects the rotation angle of the electric motor 4, and gives the detected rotation angle and the movement amount of the car 1 calculated from the rotation angle to the control device 6.
  • the movement amount of the car 1 includes information on the movement direction and the movement distance of the car 1.
  • the control device 6 controls the entire operation of the elevator device 100.
  • the control device 6 controls the rotation of the electric motor 4 by controlling the current value supplied to the electric motor 4 based on the rotation angle given by the movement amount detector 41.
  • the sheave 5 is coaxially attached to the electric motor 4, and a rope 8 having a car 1 attached to one end and a balance weight 7 attached to the other end is wound around the sheave 5.
  • the sheave 5 is driven in conjunction with the rotation of the electric motor 4, the rope 8 moves and the car 1 moves up and down.
  • control device 6 not only raises and lowers the car 1 but also controls the display device of the elevator landing.
  • control device 6 includes an adjustment amount calculation device 60 described later, and also controls the car 1 in order to calculate the adjustment amount of the balance weight 7.
  • the design weight of the balance weight 7 is generally predetermined to be the sum of the weight of the car 1 and the rated load weight of the elevator device 100.
  • the design weight of the balance weight 7 of the first embodiment is the sum of the weight of the car 1 and half of the rated load weight of the elevator device 100.
  • the weight of the balance weight 7 may be set so that the design weight of the balance weight 7 is the sum of the weight of the car 1 and 40% or 45% of the rated load weight.
  • the operator adjusts the weight of the balance weight 7 by adjusting the weight for adjustment whose weight is known to the balance weight 7 so that the balance weight 7 becomes the design weight.
  • the electric motor 4, the sheave 5, and the control device 6 are installed in the machine room 3, but they may be installed on the wall surface of the hoistway 2.
  • FIG. 2 is a functional block diagram of the adjustment amount calculation device 60 according to the first embodiment of the present application.
  • a part of the configuration shown in FIG. 1 is not shown in FIG. 2, and a configuration not shown in FIG. 1 is shown in FIG. 2, but FIGS. 1 and 2 show the same structure of the elevator device 100. Is shown.
  • the adjustment amount calculation device 60 includes an operation control unit 61, an acquisition unit 62, a storage unit 63, a calculation unit 64, and a display operation unit 65.
  • the control device 6 may use these configurations other than the calculation of the adjustment amount of the balance weight 7. Further, the control device 6 may have a configuration not shown in FIG. Hereinafter, only the configuration related to the adjustment amount calculation device 60 will be described.
  • the operation control unit 61 controls operations such as the traveling direction, the stop floor, and the speed of the car 1.
  • the operation control unit 61 controls the electric motor 4 in order to guide the car 1 to a desired floor.
  • the operation control unit 61 receives the signal from the movement amount detector 41 acquired by the acquisition unit 62, controls the position and speed of the car 1 according to the command position and command speed, and the actual position and speed, and performs current. Get the command value. Then, the voltage command for the electric motor 4 is calculated from the current command value and the actual current value acquired by the current value acquisition unit 621.
  • the control device 6 includes a power converter typified by an inverter, whereby a voltage according to a command value is applied to the electric motor 4.
  • the position control, speed control, and current control performed by the control device may be performed by any method, and any configuration of the power converter does not affect the effect of the present application.
  • the acquisition unit 62 acquires a value required for calculating the adjustment amount of the balance weight 7.
  • the acquisition unit 62 includes a current value acquisition unit 621, a car position acquisition unit 622, and a current value acquisition instruction unit 623.
  • the current value acquisition unit 621 acquires the current value supplied to the electric motor 4.
  • the current value acquisition unit 621 may be configured to acquire the current command value calculated by the operation control unit 61 instead of detecting the actual current value. Since the command current and the actual current match due to the current control of the operation control unit 61, which current is used does not affect the effect of the present application.
  • the current value acquisition unit 621 may perform a filter process on the acquired current value. Since the car 1 and the counterweight 7 are connected by an elastic rope 8, the system has a resonance point. This resonance causes the sheave 5 to sway, causing the electric motor 4 to sway, which in turn causes the movement amount detector 41 to sway. Since the operation control unit 61 calculates the voltage command based on the detected value of the movement amount detector 41, it is conceivable that the calculated voltage command also includes the influence of resonance and the current value of the current value acquisition unit 621 vibrates. ..
  • the current value acquisition unit 621 acquires the oscillating current when acquiring the current value, it is conceivable that the value that deviates greatly from the average value is instantaneously acquired, which causes an error in the calculation of the adjustment amount. To do. Therefore, the current may be acquired after filtering such as a low-pass filter or a notch filter so as to exclude vibration due to resonance and vibration due to disturbance from the current value.
  • the current value acquisition unit 621 may perform an averaging process on the acquired current value. As described above, when the current value is oscillating, an error occurs in the calculated adjustment amount of the balance weight 7. Therefore, the influence of vibration may be eliminated by averaging the current values acquired in the predetermined sections before and after the intermediate position of the hoistway 2, and an error may not occur in the calculation of the adjustment amount of the balance weight 7. ..
  • the car position acquisition unit 622 acquires the movement amount of the car 1 according to the rotation speed of the electric motor 4 from the movement amount detector 41, and acquires the position information of the car 1. Further, the car position acquisition unit 622 may acquire the detection information from the sensor for detecting the car 1 installed in the hoistway 2 to acquire the absolute position of the car 1.
  • the current value acquisition instruction unit 623 instructs the current value acquisition unit 621 at the time when the current value is acquired.
  • the time point at which the current value is acquired is hereinafter referred to as the current value acquisition time point.
  • the current value acquisition time point At the time of acquiring the current value, there are four times before calculating the adjustment amount of the balance weight 7.
  • the current value acquisition time is when the distance between the electric motor 4 and the car 1 and the distance between the electric motor 4 and the balance weight 7 match. Since the weight of the balance weight 7 is calculated by using the balance of force, the weight difference due to the difference in the length of the rope 8 between the motor 4 and the car 1 and the motor 4 and the balance weight 7 is eliminated. To do.
  • the current value acquisition instruction unit 623 detects when the distance between the electric motor 4 and the car 1 and the distance between the electric motor 4 and the balance weight 7 match, and instructs the current value acquisition time point.
  • the position of the car 1 is acquired from the car position acquisition unit 622, and the current value is acquired at the timing when the car 1 is in the middle position of the hoistway 2. You may specify the time point.
  • the time when the current value is acquired is assumed to be when the car 1 is moving at a constant speed. This is because the forces acting on the car 1 and the balance weight 7 are balanced during constant speed traveling, and the adjustment amount of the balance weight 7 is calculated by using the balance of forces.
  • the current value acquisition instruction unit 623 obtains the speed of the car 1 from the time change of the position of the car 1 acquired from the car position acquisition unit 622, and instructs the timing at which the speed becomes constant as the current value acquisition time point. ..
  • the command value of the speed of the car 1 may be acquired from the operation control unit 61, and the timing at which the speed becomes constant may be detected.
  • the storage unit 63 stores a value required for calculating the adjustment amount of the balance weight.
  • the storage unit 63 includes a constant storage unit 631 and a numerical storage unit 632.
  • the constant storage unit 631 stores a constant required for adjusting the weight of the balance weight. These constants are the design value K t '[N ⁇ m / A] of the torque constant of the electric motor 4, the radius r [m] of the sheave 5, the rated load weight CP [kg] of the car 1, and the gravity acceleration g [m]. / s 2 ] ,.
  • the torque constant is a conversion coefficient that converts the current value into a torque value, and the product of the current value and the torque constant is the torque value. In the first embodiment of the present application, the torque constant of the electric motor 4 is used as a conversion coefficient.
  • the design value K t '[N ⁇ m / A] of the torque constant of the electric motor 4, the radius r [m] of the sheave 5, and the rated load weight CP [kg] of the car 1 are determined in advance by the specifications of the elevator device to be adjusted. ing.
  • the actual torque constant of the electric motor 4 and the design value K t'of the torque constant of the electric motor 4 determined by the specifications are not always the same, and an error may occur. Factors of error include, for example, individual differences in the motor constants of the motor 4, changes in characteristics due to heat, and the influence of the mechanical system.
  • the numerical value storage unit 632 stores the numerical value acquired, calculated or set at the time of weight adjustment of the balance weight 7 at least until the weight adjustment of the balance weight 7 is completed.
  • Numbers numeric storage unit 632 stores the current value I 1 ⁇ I 4 obtained [A], the torque constant of the motor 4 K t [N ⁇ m / A], the adjustment amount of the counterweight 7 W e [kg] , The weight of the test weight is W 1 [kg].
  • the design value K t'of the torque constant is stored in the constant storage unit 631, it may be stored in the numerical storage unit 632 and can be changed according to the specifications of the elevator device 100 to be adjusted.
  • the calculation unit 64 acquires the numerical value stored in the storage unit 63, and calculates or determines the numerical value necessary for calculating the adjustment amount of the balance weight 7.
  • the calculation unit 64 includes a conversion coefficient calculation unit 641, an adjustment amount calculation unit 642, and an adjustment determination unit 643.
  • the conversion coefficient calculation unit 641 calculates the conversion coefficient.
  • the adjustment amount calculation unit 642 calculates the adjustment amount of the balance weight 7.
  • the adjustment determination unit 643 determines whether or not the error of the conversion coefficient is within a predetermined reference value within an acceptable range, and determines whether or not the weight adjustment of the balance weight 7 is necessary.
  • the display operation unit 65 accepts operations necessary for adjusting the balance weight 7, and displays information on the weight adjustment of the balance weight 7.
  • the form of the display operation unit 65 may be a touch panel capable of performing both operation and display, or may be a separate body of the button portion for operation and the display portion for display. Further, although the display operation unit 65 is provided in the control device 6 in FIG. 2, it may be displayed in other places such as a landing indicator, or on a management terminal such as a personal computer connected from the outside. It may be configured to output display information.
  • the display operation unit 65 includes an operation start instruction unit 651, a set value input unit 652, and a display unit 653.
  • the operation start instruction unit 651 is an interface for instructing the start of running to acquire the current value.
  • the worker operates the operation start instruction unit 651 to instruct the start of the adjustment amount calculation operation.
  • the setting value input unit 652 is an interface for inputting information on the weight of the test weight, which will be described later.
  • the display unit 653 displays the weight of the weight obtained by the test, the amount of adjustment of the weight, and the like.
  • the display may be a display or a voice reading out a numerical value.
  • FIG. 3 is a flowchart showing the operation of the adjustment amount calculation device 60 according to the first embodiment of the present application.
  • step S100 the operation control unit 61 determines whether or not the operation start instruction unit 651 has received the instruction to start the adjustment amount calculation operation of the balance weight 7. Step S100 is repeated until the instruction to start the adjustment operation is received.
  • step S101 the process proceeds to step S101 and the first current value acquisition is started.
  • the calculation of the adjustment amount of the balance weight 7 is started in a state where the car 1 is unloaded. Therefore, the operation control unit 61 may acquire the detection information from the weight sensor provided in the car 1 to confirm whether the car 1 is in a no-load state, and then proceed to step S101.
  • step S101 the motion control unit 61 moves the car 1 to the running start position for acquiring the first current value.
  • This travel start position is any position in the hoistway as long as the car 1 can pass through the intermediate position of the hoistway 2 at a constant speed when the car 1 ascends in the subsequent step S102. It may be. Therefore, this position may be below the middle position of the hoistway from the lowest position within the movable range of the car 1.
  • step S102 the motion control unit 61 starts controlling the ascending operation of the car 1.
  • step S102 the process proceeds to step S103, and the current value acquisition instruction unit 623 determines whether the position of the car 1 is the intermediate position of the hoistway 2 and the speed of the car 1 is constant.
  • FIG. 4 is a graph showing the time change of the current value supplied to the electric motor 4 during the ascending operation.
  • FIG. 4 shows from the stopped state to the ascending movement and stopping again.
  • the vertical axis shows the current value
  • the horizontal axis shows the time. It is assumed that the current value is acquired as a negative value.
  • the intervals t 1 to t 5 indicate the time interval.
  • the section t 1 in FIG. 4 is just before the car 1 starts the ascending movement, and the car 1 is stopped. From the start of the section t 1, the current value required to keep the car 1 and the balance weight 7 in a balanced state is supplied. During the section t 1 , the brake of the electric motor 4 is released.
  • step S102 is executed, the car 1 starts to rise and accelerate.
  • the operation control unit 61 increases the current command value and decreases the acceleration.
  • step S104 when the current value acquisition instruction unit 623 determines that the car 1 is in the intermediate position and the speed of the car 1 is constant, the process proceeds to step S104.
  • step S104 the current value acquisition instruction unit 623 instructs the current value acquisition unit 621 to acquire the current value.
  • the current value acquired at this time is set to I 1 , and the numerical storage unit 632 stores the current value I 1 .
  • the current value I 1 will be described. While the car 1 in the section t 3 is running at a constant speed, the forces acting on the car 1 and the counterweight 7 are balanced, but the acquired current value I 1 is the section as shown in FIG. It is smaller than when t 1 .
  • the hoistway loss i L1 which is a braking force generated in the direction opposite to the movement of the car 1 due to the traveling of the car 1, acts on the car 1. Since the hoistway loss i L1 works, the current value required for constant speed running so that the car 1 does not accelerate is smaller than that in the stopped state.
  • the hoistway loss is the loss of frictional force generated by the movement of the car 1 and the force required to bend the rope.
  • the hoistway loss always occurs in the direction opposite to the movement of the car 1.
  • K t [N ⁇ m / A ] is the torque constant of the motor 4
  • W e [kg] is the adjustment amount of the counterweight 7
  • g [m / s 2 ] Is the gravitational acceleration
  • r [m] is the radius of the sheave 5
  • i L1 [A] is the hoistway loss during ascending operation.
  • the torque constant K t , the adjustment amount W e of the balance weight 7, and the hoistway loss i L 1 during ascending operation are unknown.
  • the rated load weight CP of the car 1, the gravitational acceleration g, and the radius r of the sheave 5 acquire the values stored in the constant storage unit 631.
  • the current value I 1 acquires a value stored in the numerical storage unit 632.
  • the design weight of the balance weight 7 of the first embodiment is the sum of the weight of the car 1 and half of the rated load weight of the elevator device 100. Since the weight of the car 1 of the counterweight 7 and the weight of the car 1 cancel each other out, the value of the weight of the car 1 is not required in Equation 1.
  • the adjustment amount W e of the balance weight 7 is a value obtained by subtracting the weight of the car 1 from the balance weight 7. Therefore, if the adjustment amount W e is a positive value, the balance weight 7 is heavier than the target value, and if the adjustment amount W e is a negative value, the balance weight 7 is lighter than the target value. If the adjustment amount W e is 0, the balance weight 7 is the sum of the target value of the weight of the car 1 and half the load weight.
  • step S104 the process proceeds to step S105, and the motion control unit 61 moves the car 1 to the running start position for acquiring the current value for the second time.
  • This traveling start position may be any position in the hoistway as long as it can pass through the intermediate position of the hoistway 2 at a constant speed when the car 1 descends in the subsequent step S106. Therefore, this position may be above the middle position of the hoistway from the highest position within the movable range of the car 1.
  • step S106 the operation control unit 61 starts the control of the descending operation of the car 1.
  • step S106 the process proceeds to step S107, and the current value acquisition instruction unit 623 determines whether the position of the car 1 is the intermediate position of the hoistway 2 and the speed of the car 1 is constant.
  • FIG. 5 is a graph showing the time change of the supply current value during the descending operation.
  • FIG. 5 shows from the stopped state to the downward movement and the stop again.
  • the vertical axis shows the current value
  • the horizontal axis shows the time.
  • the intervals t 6 to t 10 indicate the time intervals.
  • Section t 6 in FIG. 5 is immediately before the car 1 starts the descending movement, and the car 1 is stopped. From the start of the section t 6 , the operation control unit 61 outputs a current command value necessary for stopping the car 1 and the counterweight 7 in a balanced state. During the section t 6 , the brake of the motor 4 is released.
  • step S106 is executed and the car 1 starts descending and accelerates.
  • the operation control unit 61 increases the current command value and decreases the acceleration.
  • step S108 when the current value acquisition instruction unit 623 determines that the car 1 is in the intermediate position and the speed of the car 1 is constant, the process proceeds to step S108.
  • step S108 the current value acquisition instruction unit 623 instructs the current value acquisition unit 621 to acquire the current value.
  • the current value acquired at this time is set to I 2 , and the numerical storage unit 632 stores the current value I 2 .
  • the current value I 2 will be described. While the car 1 is traveling at a constant speed in the section t 8 , the forces acting on the car 1 and the counterweight 7 are balanced, but the acquired current value I 2 is the section as shown in FIG. It is larger than at t 8 .
  • the current value I 2 at the intermediate position of the hoistway when the car 1 is descending at a constant speed with no load is the balance of the forces with respect to the balance weight 7. It is expressed by the following formula 2.
  • i L2 [A] is the hoistway loss during descent operation.
  • the hoistway loss i L1 during ascending operation and the hoistway loss i L2 during descent operation are the same magnitude.
  • the current value I 2 acquires a value stored in the numerical storage unit 632.
  • step S108 decelerate in section t 9 . Since the ascending operation is a power running operation, the operation control unit 61 reduces the current command value to the electric motor 4 in order to decelerate the car 1.
  • the car 1 is stopped during the operation control section 61 section t 10, it supplies the current necessary to keep stopping the car 1 and the counterweight 7 in a balanced state.
  • the motor 4 is stopped by the brake.
  • step S109 it is determined whether or not the current value is acquired four times after the instruction to start the adjustment operation is given in step S100. Specifically, the calculation unit 64 determines whether or not the current value is stored in the numerical value storage unit 632 four times. At this point, the current value is acquired twice, and since it has not been acquired four times, the process proceeds to step S110.
  • Adjustment amount calculation section 642 at step S110 calculates the adjustment amount W e of the counterweight 7.
  • Adjustment amount W e of the counterweight 7 is a adjustment amount of the counterweight 7 which torque constant of the motor 4 is calculated as the design value Kt 'torque constant.
  • the adjustment amount We e of the balance weight 7 is expressed by the following formula 3 by calculating the sum of the formula 1 and the formula 2.
  • the torque constant K t of the electric motor 4 is unknown, so instead, the design value K t'of the known torque constant is used to obtain the adjustment amount W1 of the approximate balance weight 7.
  • the design value K t'of the torque constant is a constant determined by the specifications of the motor.
  • test weight having the weight closest to the approximate adjustment amount W 1 of the balance weight 7 calculated in step S110 is added to the balance weight 7. If the calculated adjustment amount W 1 is a negative value, the work is to remove the weight instead of adding the weight.
  • the adjustment amount calculation device 60 can notify the worker of the value of W 1 by displaying the calculated value of W 1 on the display unit 653.
  • the weight of the added test weight is input by the operation start instruction unit 651.
  • the worker adding the test weight it may be added by the elevator device 100.
  • a plurality of test weights and a manipulator capable of grasping the test weights and adjusting the weights to the balance weight 7 are provided in the hoistway 2, and the test weights having an appropriate weight are controlled by the elevator device 100. This is possible if the configuration can be added to the balance weight 7.
  • test weight having a similar weight may be used.
  • the weight of the test weight is W 1 calculated by the above formula 4.
  • step S111 the motion control unit 61 determines whether or not the weight of the test weight has been input. Determine if the weight of the test weight has been entered. Specifically, the calculation unit 64 confirms whether or not the weight W 1 of the test weight has been input to the numerical storage unit 632.
  • step S111 When the operation control unit 61 determines that the weight of the test weight has been input in step S111, the process returns to step S100, and the operations of steps S100 to S109 are performed again. At this time, the numerical storage unit 632 stores the current value acquired in the second step S104 as I 3 and the current value acquired in step S108 as I 4 .
  • step S109 When it is determined whether the current value of step S109 has been acquired four times after step S111, it is determined that the current value has been acquired four times, so the process proceeds to step S112.
  • step S112 the error ⁇ of the torque constant is obtained.
  • a method of calculating the error ⁇ of the torque constant will be described.
  • the current value I 4 at the intermediate position of the hoistway while the car is operating at a constant speed is calculated by the following formula 6 from the balance of the forces of the balanced weight. Will be done.
  • the current values I 3 and the current values I 4 obtained by Equations 6 and 7 can be expressed in the same manner as I 1 and I 2 as shown in FIG. In FIG. 4, the values of I 1 and I 3 are shown as the same value, but the actual values are different. The same applies to the values of I 2 and I 4 shown in FIG.
  • the error ⁇ of the torque constant obtained in step S112 is within the allowable range of the reference value
  • the error of the weight W 1 of the test weight calculated in step S110 is also within the allowable range
  • the adjustment of the balance weight 7 is completed.
  • the display unit 653 may display that the adjustment of the balance weight 7 has been completed to notify the worker.
  • the reference value of the error ⁇ of the allowable torque constant is determined based on the error allowed by the adjustment of the balance weight 7. For example, if the error allowed for adjusting the balance weight 7 is ⁇ 5%, ⁇ is set accordingly.
  • step S112 If the error ⁇ of the torque constant obtained in step S112 is not within the reference value, the actual torque constant has an error with the adjustment value of the torque constant, so the approximate adjustment of the balance weight 7 calculated in step S112. There is also an error in the quantity W 1 . In this case, if the process proceeds to step S113 and the formula 8 is used, the adjustment amount W 1 of the formula 5 becomes the following formula 9.
  • Equation 9 Using the error of the torque constant obtained in Equation 8 and recalculating the adjustment amount of the balance weight in Equation 5, the following Equation 9 is obtained.
  • the adjustment without error can be performed.
  • the weight adjustment of the balance weight 7 here is performed by the worker or the elevator device 100 in the same manner as when the approximate adjustment amount in S110 is calculated and the test weight is added.
  • the car 1 was moved up and then down, but it may be down and then up.
  • the balance weight 7 is replaced with the test weight of W 1 obtained by the formula 5.
  • the weight of the balance weight 7 may be adjusted more accurately.
  • the car 1 is increasing operation and the current value I 1, I 2 of the lowering operation without load, and decreasing operation and increased operation adjusted by the adjustment amount calculated from the current I 1, I 2 unloaded
  • the torque constant can be calculated by acquiring the currents I 3 and I 4 at the time. Therefore, it is possible to calculate an accurate adjustment amount of the balance weight 7.
  • the worker measures and records the current value supplied to the electric motor 4 when the car 1 is raised and lowered when the car 1 is unloaded. After that, the worker adjusts the balance weight 7, which is calculated by using the current value acquired when the car 1 is unloaded and the set value of the conversion coefficient used for calculating the adjustment amount of the balance weight 7. The amount is calculated as the weight of the test weight. After that, the worker measures and records the current value supplied to the electric motor 4 when raising and lowering the car 1 with the test weight loaded on the balancing weight 7. The worker calculates the conversion coefficient using the recorded current value and the weight of the test weight.
  • the worker calculates the error between the calculated conversion coefficient and the set value of the conversion coefficient. After that, the worker judges whether or not the error is within the predetermined range, and when it is judged that the error is not within the predetermined range, the worker calculates the adjustment amount of the balance weight 7 by using the calculated conversion coefficient. The worker adjusts the balance weight 7 with the calculated adjustment amount of the balance weight 7.
  • the worker can calculate the conversion coefficient of the elevator device to be adjusted at the time of installation and can accurately adjust the balance weight 7.
  • the weight adjustment of the balance weight 7 can be completed by moving the car 1 only four times.
  • the weight of the test weight is calculated from the current when there is no load, the test weight is added to the balanced weight 7, the operation is performed, and the error of the torque constant is calculated.
  • the adjustment accuracy of the weight 7 can be improved. As a result, trial and error adjustment becomes unnecessary, and the adjustment time of the balance weight 7 can be reduced.
  • Embodiment 2 a method for adjusting the balance weight according to the second embodiment of the present application will be described.
  • the first embodiment an example of calculating the adjustment amount of the balanced weight 7 in a state where the test weight is loaded on the balanced weight 7 has been described, but in the second embodiment, the test weight is loaded on the car 1. Then, an example of calculating the torque constant and calculating the adjustment amount of the balance weight 7 will be described.
  • the overall configuration of the elevator device 100 that adjusts the weight of the balanced weight using the method of adjusting the balanced weight of the second embodiment of the present application is the same as the configuration of FIG. 1 shown in the first embodiment. Further, the detailed configuration of the adjustment amount calculation device 60 of the second embodiment of the present application is also the same as the configuration of FIG. 2 shown in the first embodiment.
  • FIG. 6 is a flowchart showing the operation of the adjustment amount calculation device 60 according to the second embodiment of the present application. Since the operation from step S200 to step S209 of the second embodiment is the same as the operation from step S100 to step S109 of the first embodiment, it will be described from step S210.
  • the approximate adjustment amount We of the balance weight performed in step S110 of the first embodiment is not calculated.
  • the test weight is loaded on the balance weight 7 to adjust the weight by obtaining an approximate adjustment amount of the balance weight 7, but the second embodiment has a second embodiment. This is because the test weight is loaded in the car 1.
  • the weight of the test weight of the second embodiment is not particularly limited.
  • step S210 the operation control unit 61 determines whether or not the weight of the test weight has been input, as in step S111.
  • the test weight is loaded by the worker or the elevator device 100 as in the first embodiment.
  • the calculation unit 64 confirms whether or not the weight W 1 of the test weight has been input to the numerical storage unit 632.
  • step S210 If it is determined that the weight of the test weight has been input in step S210, the process returns to step S200, and the operations from step S200 to step S209 are performed again.
  • step S209 If it is determined whether the current value of step S209 has been acquired four times after step S210, it is determined that the current value has been acquired four times, so the process proceeds to step S211.
  • step S211 the torque constant is calculated.
  • a method of calculating the torque constant will be described.
  • the current value I 3 during ascending operation and the current value I 4 during descending operation are the values obtained by subtracting the weight of the test weight from I 1 and I 2 . Therefore, with the test weight of weight W 1 added to the car 1, the current value I 4 at the intermediate position of the hoistway while the car 1 is descending at a constant speed is expressed by the following mathematical formula 10.
  • the current value I 4 at the intermediate position of the hoistway while the car is operating at a constant speed is calculated by the following formula 11 from the balance of the forces of the balanced weight. expressed.
  • the current values I 3 and the current values I 4 obtained by the formulas 10 and 11 can be expressed in the same manner as I 1 to I 4 shown in FIG.
  • the torque constant can be calculated by the following formula 12 using I 1 , I 2 , I 3 , and I 4 calculated by the formula 1, formula 2, formula 10, and formula 11.
  • step S212 After calculating the torque constant in step S211, the process proceeds to step S212 to calculate the adjustment amount of the balance weight 7.
  • the formula 12 a torque constant and the current value calculated by I 1, I 2, I 3 , I 4, the adjustment amount W e of the counterweight 7 is calculated by the following equation 13.
  • the weight of the test weight of the second embodiment is loaded with the test weight so that the current value changes sufficiently as compared with the case where the car 1 is operated with no load. This is to prevent the denominator in the calculation formula of the adjustment amount shown in Equation 13 from becoming 0 and to calculate the adjustment amount with high accuracy.
  • the worker measures and records the current value supplied to the electric motor 4 when the car 1 is raised and lowered when the car 1 is unloaded. The worker then loads the car 1 with a test weight of known weight. After that, the worker measures and records the current value supplied to the electric motor 4 when raising and lowering the car 1 with the test weight loaded on the counterweight 7. After that, the worker calculates the conversion coefficient using the recorded current value and the weight of the test weight. After that, the worker calculates the adjustment amount of the balance weight 7 by using the calculated conversion coefficient. After that, the worker adjusts the balance weight 7 with the calculated adjustment amount of the balance weight 7.
  • the worker adjusts the weight of the equilibrium weight 7 once to calculate the conversion coefficient of the elevator device to be adjusted at the time of installation, and at the same time, the operator accurately adjusts the weight of the equilibrium weight 7. Can be adjusted. Further, when the worker loads the test weight on the balanced weight 7, he / she must enter the hoistway 2, but the work of loading the test weight on the car 1 can be performed without entering the hoistway 2.
  • the torque constant can be calculated and the accurate adjustment amount of the balance weight 7 can be calculated.
  • the adjustment time of the balance weight 7 can be reduced, and the labor saving of the adjustment of the balance weight 7 can be realized.
  • the adjustment amount of the balance weight 7 can be obtained.
  • the current value is acquired to calculate the conversion coefficient and the adjustment amount of the balance weight.
  • the value represents the output of the electric motor 4, for example, instead of the current value.
  • the torque command value may be acquired and the conversion coefficient and the adjustment amount of the balance weight may be calculated.
  • FIG. 7 is a hardware configuration diagram of the adjustment amount calculation device 60 of the first and second embodiments.
  • the adjustment amount calculation device 60 includes an input device 901, an output device 902, a storage device 903, and a processing device 904.
  • the input device 901 is an interface for inputting information provided by the acquisition unit 62 and the display operation unit 65 of the adjustment amount calculation device 60.
  • This network may be a wired communication network such as a LAN cable or a coaxial cable, or a wireless communication network using wireless communication technology.
  • the output device 902 includes an operation control unit 61 of the adjustment amount calculation device 60 and a display operation unit 65.
  • the output device 902 is a control signal or interface.
  • This network may be a wired communication network such as a LAN cable or a coaxial cable, or a wireless communication network using wireless communication technology.
  • the storage device 903 is provided in the storage unit 63 of the adjustment amount calculation device 60. It is a device that stores the floor on which the car was called, which corresponds to working memory.
  • non-volatile or volatile semiconductor memories such as RAM, ROM, and flash memory, magnetic disks, flexible disks, optical disks, compact disks, and the like are applicable.
  • the processing device 904 includes an operation control unit 61 and a calculation unit 64 of the adjustment amount calculation device 60.
  • the processing device 904 may be dedicated hardware or a CPU (Central Processing Unit) that executes a program recorded in the storage device 903.
  • CPU Central Processing Unit
  • the processing device 904 When the processing device 904 is dedicated hardware, the processing device 904 corresponds to, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof. ..
  • the processing device 904 When the processing device 904 is a CPU, the functions of the operation control unit 61 and the calculation unit 64 are realized by software, firmware, or a combination of software and firmware. Software and firmware are described as programs and recorded in the storage device 903. The processing device 904 realizes the functions of each part by reading and executing the program stored in the storage device 903.
  • each function of the operation control unit 61 and the calculation unit 64 may be partially realized by hardware and partly realized by software or firmware.
  • the operation control unit 61 may be described as dedicated hardware, and the calculation unit 64 may be described as a program recorded in the storage device 903 to realize its function.
  • the processing device 904 can realize each of the above-mentioned functions by hardware, software, firmware, or a combination thereof.
  • the adjustment method of the adjustment amount calculation device and the elevator device of the present invention by accurately obtaining the adjustment amount of the balance weight, the adjustment accuracy of the balance weight is improved and the adjustment work is saved. Can be transformed into.
  • Elevator device 1 Car 2 Hoistway 3 Machine room 4 Electric motor 5 Sheave 6 Control device 7 Balanced weight 8 Rope 41 Movement amount detector 60 Adjustment amount calculation device 61 Operation control unit 62 Acquisition unit 621 Current value acquisition unit 622 Car position Acquisition unit 623 Current value acquisition instruction unit 63 Storage unit 631 Constant storage unit 632 Numerical value storage unit 64 Calculation unit 641 Conversion coefficient calculation unit 642 Adjustment amount calculation unit 643 Adjustment judgment unit 65 Display operation unit 651 Operation start instruction unit 652 Setting value input unit 653 Display 901 Input device 902 Output device 903 Storage device 904 Processing device

Abstract

This adjustment calculation device for a counterweight of an elevator device comprises an operation control unit that lifts and lowers a car in a state in which the car is unloaded and in a state in which the car or the counterweight is loaded with a test weight of a known weight. The adjustment calculation device acquires the current supplied to an electric motor when the operation control unit lifts and lowers the car, calculates a conversion factor for the elevator device to be adjusted during installation, and accurately finds the adjustment for the counterweight, thereby improving adjustment precision for the counterweight and reducing the adjustment work during the installation.

Description

調整量算出装置およびエレベータ装置の調整方法Adjustment amount calculation device and elevator device adjustment method
 本願はエレベータ装置の釣合おもりの調整量算出装置およびエレベータ装置の調整方法に関するものである。 The present application relates to an adjustment amount calculation device for a balance weight of an elevator device and an adjustment method for the elevator device.
 エレベータ装置は、電流で駆動する電動機と、電動機に連動して回転するシーブを備える。このシーブには一端に乗りかご、他端に釣合おもりが取り付けられたロープが巻き掛けられている。エレベータ装置は電動機に電流を供給して乗りかごを昇降させる。 The elevator device is equipped with an electric motor driven by an electric current and a sheave that rotates in conjunction with the electric motor. A rope with a car on one end and a counterweight on the other end is wrapped around this sheave. The elevator device supplies electric current to the electric motor to raise and lower the car.
 釣合おもりは、定格積載重量の半分の荷重時の乗りかごとつり合う重量で設計される。また、エレベータ装置の釣合おもり以外の構成、例えば電動機や制御装置等も釣合おもりが定格積載重量の半分の荷重時の乗りかごとつり合う重量であるとして設計される。しかし、エレベータ装置の据付先で、乗りかごの重量が塗装および装飾などにより変化することがある。したがって、エレベータ装置の据付時には釣合おもりの重量が定格積載重量のおよそ半分の荷重時の乗りかごとつり合う重量となるように調整作業を行う。 The balance weight is designed with a weight that balances with the rider when the load is half the rated load weight. Further, configurations other than the balanced weight of the elevator device, for example, an electric motor, a control device, and the like are also designed so that the balanced weight is a weight balanced with the rider when the load is half the rated load weight. However, the weight of the car may change due to painting and decoration at the installation destination of the elevator device. Therefore, when installing the elevator device, the adjustment work is performed so that the weight of the balance weight becomes the weight balanced with the rider at a load of about half of the rated load weight.
 特許文献1には、この据付時の釣合おもりの調整方法が開示されている。特許文献1では、無負荷状態の乗りかごを、定速で上昇および下降させたときに、電動機へ供給される電流値の平均を求める。求めた電流値の平均と、釣合おもりが設計重量に調整された状態での既知の電流値との差を求める。求めた電流値の差と、電流値を釣合おもりの重量に換算するために、予め求めた換算係数とを用いて、釣合おもりの調整量を算出する。なお、換算係数は、それぞれの仕様のエレベータ装置について試験走行を行うことで予め求め、調整対象のエレベータ装置と同じ仕様または類似する仕様のエレベータ装置の換算係数を用いる。 Patent Document 1 discloses a method of adjusting the balance weight at the time of installation. In Patent Document 1, the average of the current values supplied to the electric motor when the car in the no-load state is raised and lowered at a constant speed is obtained. The difference between the average of the obtained current values and the known current values when the balance weight is adjusted to the design weight is calculated. The adjustment amount of the balanced weight is calculated by using the difference between the obtained current values and the conversion coefficient obtained in advance in order to convert the current value into the weight of the balanced weight. The conversion coefficient is obtained in advance by performing a test run on the elevator device having each specification, and the conversion coefficient of the elevator device having the same or similar specifications as the elevator device to be adjusted is used.
特開2005-306557JP-A-2005-306557
 特許文献1に開示される調整方法では、調整対象のエレベータ装置と、予め換算係数を求めたエレベータ装置とで、用いられる部品に個体差がある場合、または設置される環境が異なる場合、換算係数に誤差が生じる。また、調整対象のエレベータ装置と類似する仕様のエレベータ装置の換算係数を用いるときも、調整対象のエレベータ装置の換算係数に誤差が生じる。 In the adjustment method disclosed in Patent Document 1, if there are individual differences in the parts used between the elevator device to be adjusted and the elevator device for which the conversion coefficient has been obtained in advance, or if the installation environment is different, the conversion coefficient There is an error in. Further, when the conversion coefficient of the elevator device having specifications similar to those of the elevator device to be adjusted is used, an error occurs in the conversion coefficient of the elevator device to be adjusted.
 換算係数に誤差がある場合、算出される釣合おもりの調整量にも誤差が生じる。釣合おもりの重量の調整が不十分で、釣合おもりが設計重量と誤差があるままエレベータ装置を運行させると、例えば、必要以上に電動機に電流値を供給し、乗りかごが昇降を開始するときの衝撃が大きくなり、乗客に不快感を与える。もしくは、電動機に供給する電流値が不足する場合、乗りかごが動かないという課題がある。 If there is an error in the conversion coefficient, an error will also occur in the calculated balance weight adjustment amount. If the weight of the balance weight is not adjusted sufficiently and the elevator device is operated with the balance weight inconsistent with the design weight, for example, the current value is supplied to the electric motor more than necessary and the car starts to move up and down. The impact of the time becomes large, causing discomfort to the passengers. Alternatively, if the current value supplied to the electric motor is insufficient, there is a problem that the car does not move.
 本願は、上記のような課題を解決するために、釣合おもりの調整量を正確に求めることで、釣合おもりの調整精度を向上可能とする調整量算出装置およびエレベータ装置の調整方法を提供することを目的とする。 The present application provides an adjustment amount calculation device and an elevator device adjustment method that can improve the adjustment accuracy of the balance weight by accurately obtaining the adjustment amount of the balance weight in order to solve the above problems. The purpose is to do.
 本願の調整量算出装置は、乗りかごが無負荷の状態と、乗りかごまたは釣合おもりに既知の重量の試験おもりを積載した状態とで、乗りかごを上昇および下降させる動作制御部と、動作制御部が乗りかごを上昇させるときと下降させるときに、電動機に供給される電流値を取得する電流値取得部と、電流値取得部が取得した電流値と、試験おもりの重量とを用いて釣合おもりの調整量の算出に用いる換算係数を算出する換算係数算出部と、電流値取得部が取得した電流値と、換算係数算出部が算出した換算係数を用いて、釣合おもりの調整量を算出する調整量算出部と、を備える。 The adjustment amount calculation device of the present application has an operation control unit that raises and lowers the car and operates in a state where the car is unloaded and a state in which a test weight of a known weight is loaded on the car or the balance weight. Using the current value acquisition unit that acquires the current value supplied to the electric motor when the control unit raises and lowers the car, the current value acquired by the current value acquisition unit, and the weight of the test weight. Adjustment of the balance weight using the conversion coefficient calculation unit that calculates the conversion coefficient used to calculate the adjustment amount of the balance weight, the current value acquired by the current value acquisition unit, and the conversion coefficient calculated by the conversion coefficient calculation unit. It is provided with an adjustment amount calculation unit for calculating the amount.
 本願に係る調整量算出装置およびエレベータ装置の調整方法は、据付時の調整対象のエレベータ装置の換算係数を算出するとともに、釣合おもりの調整量を正確に求めることで、釣合おもりの調整精度を向上させ、据付時の調整作業の省力化を可能とする。 The adjustment amount calculation device and the adjustment method of the elevator device according to the present application calculate the conversion coefficient of the elevator device to be adjusted at the time of installation and accurately obtain the adjustment amount of the balance weight to obtain the adjustment accuracy of the balance weight. It makes it possible to save labor for adjustment work during installation.
実施の形態1のエレベータ装置の全体概略図Overall schematic view of the elevator apparatus of Embodiment 1. 実施の形態1の調整量算出装置の機能ブロック図Functional block diagram of the adjustment amount calculation device of the first embodiment 実施の形態1の調整量算出装置の動作を示すフローチャートA flowchart showing the operation of the adjustment amount calculation device according to the first embodiment. 実施の形態1の上昇運転時の供給電流値の時間変化を示すグラフA graph showing the time change of the supply current value during the ascending operation of the first embodiment. 実施の形態1の下降運転時の供給電流値の時間変化を示すグラフA graph showing the time change of the supply current value during the descending operation of the first embodiment. 実施の形態2の調整量算出装置の動作を示すフローチャートA flowchart showing the operation of the adjustment amount calculation device according to the second embodiment. 実施の形態1、2の制御装置のハードウェア構成図Hardware configuration diagram of the control device of the first and second embodiments
実施の形態1.
 以下、本願の実施の形態1の釣合おもりの調整方法について説明する。なお、図面の説明においては、同一部分または相当部分には同一符号を付し、重複する説明を省略する。
Embodiment 1.
Hereinafter, a method for adjusting the balance weight according to the first embodiment of the present application will be described. In the description of the drawings, the same parts or corresponding parts are designated by the same reference numerals, and duplicate description will be omitted.
 まず、本願の実施の形態1の釣合おもりの調整方法を用いて釣合おもりの重量調整を行うエレベータ装置100の全体構成を説明する。図1は本願の実施の形態1のエレベータ装置100の全体概略図である。 First, the overall configuration of the elevator device 100 that adjusts the weight of the balanced weight by using the method of adjusting the balanced weight according to the first embodiment of the present application will be described. FIG. 1 is an overall schematic view of the elevator device 100 according to the first embodiment of the present application.
 エレベータ装置100の乗りかご1は昇降路2の内部を昇降する。昇降路2の上部には機械室3があり、機械室3は電動機4とシーブ5と制御装置6を備える。 The car 1 of the elevator device 100 goes up and down inside the hoistway 2. There is a machine room 3 in the upper part of the hoistway 2, and the machine room 3 includes an electric motor 4, a sheave 5, and a control device 6.
 電動機4は移動量検出器41と接続されている。移動量検出器41は電動機4の回転角度を検出しており、この検出された回転角度と回転角度から計算した乗りかご1の移動量とを制御装置6に与える。なお、乗りかご1の移動量には乗りかご1の移動方向及び移動距離の情報が含まれる。 The electric motor 4 is connected to the movement amount detector 41. The movement amount detector 41 detects the rotation angle of the electric motor 4, and gives the detected rotation angle and the movement amount of the car 1 calculated from the rotation angle to the control device 6. The movement amount of the car 1 includes information on the movement direction and the movement distance of the car 1.
 制御装置6は、エレベータ装置100の全体の運行を制御する。制御装置6は、乗りかご1を昇降させるとき、移動量検出器41から与えられる回転角度に基づき電動機4に供給する電流値を制御することにより電動機4の回転を制御する。シーブ5は電動機4と同軸に取り付けられており、このシーブ5には一端に乗りかご1、他端に釣合おもり7が取り付けられたロープ8が巻き掛けられている。電動機4の回転に連動してシーブ5が駆動すると、ロープ8が動き、乗りかご1が昇降する。 The control device 6 controls the entire operation of the elevator device 100. When the car 1 is moved up and down, the control device 6 controls the rotation of the electric motor 4 by controlling the current value supplied to the electric motor 4 based on the rotation angle given by the movement amount detector 41. The sheave 5 is coaxially attached to the electric motor 4, and a rope 8 having a car 1 attached to one end and a balance weight 7 attached to the other end is wound around the sheave 5. When the sheave 5 is driven in conjunction with the rotation of the electric motor 4, the rope 8 moves and the car 1 moves up and down.
 また、制御装置6は乗りかご1の昇降だけでなく、エレベータ乗場の表示装置の制御なども行う。実施の形態1では制御装置6は後述する調整量算出装置60を備え、釣合おもり7の調整量の算出するために乗りかご1の制御も行う。 In addition, the control device 6 not only raises and lowers the car 1 but also controls the display device of the elevator landing. In the first embodiment, the control device 6 includes an adjustment amount calculation device 60 described later, and also controls the car 1 in order to calculate the adjustment amount of the balance weight 7.
 釣合おもり7の設計重量は、一般的に乗りかご1の重量とエレベータ装置100の定格積載重量のおよそ半分との和となるように予め決められている。実施の形態1の釣合おもり7の設計重量は、乗りかご1の重量とエレベータ装置100の定格積載重量の半分との和とする。ただし、釣合おもり7の設計重量は乗りかご1の重量と定格積載重量の40%または45%との和となるように釣合おもり7の重量を設定してもよい。据付時に作業者は、釣合おもり7が設計重量となるよう、重量が既知の調整用のおもりを釣合おもり7に加減することにより、釣合おもり7の重量を調整する。 The design weight of the balance weight 7 is generally predetermined to be the sum of the weight of the car 1 and the rated load weight of the elevator device 100. The design weight of the balance weight 7 of the first embodiment is the sum of the weight of the car 1 and half of the rated load weight of the elevator device 100. However, the weight of the balance weight 7 may be set so that the design weight of the balance weight 7 is the sum of the weight of the car 1 and 40% or 45% of the rated load weight. At the time of installation, the operator adjusts the weight of the balance weight 7 by adjusting the weight for adjustment whose weight is known to the balance weight 7 so that the balance weight 7 becomes the design weight.
 図1では、電動機4とシーブ5と制御装置6は、機械室3に設置されているが、昇降路2の壁面に設置してもよい。 In FIG. 1, the electric motor 4, the sheave 5, and the control device 6 are installed in the machine room 3, but they may be installed on the wall surface of the hoistway 2.
 続いて、図2を用いて本願の実施の形態1の調整量算出装置60の詳細な構成を説明する。図2は本願の実施の形態1の調整量算出装置60の機能ブロック図である。図1で示した一部の構成は図2では図示を省略しており、図1にて図示しなかった構成を図2で示しているが、図1と図2は同じエレベータ装置100の構成を示す。 Subsequently, the detailed configuration of the adjustment amount calculation device 60 according to the first embodiment of the present application will be described with reference to FIG. FIG. 2 is a functional block diagram of the adjustment amount calculation device 60 according to the first embodiment of the present application. A part of the configuration shown in FIG. 1 is not shown in FIG. 2, and a configuration not shown in FIG. 1 is shown in FIG. 2, but FIGS. 1 and 2 show the same structure of the elevator device 100. Is shown.
 調整量算出装置60は、動作制御部61と、取得部62と、記憶部63と、演算部64と、表示操作部65とを備える。制御装置6はこれらの構成を釣合おもり7の調整量の算出以外に用いてもよい。また、制御装置6は図2には記載されていない構成を備えていてもよい。以下では調整量算出装置60に関係する構成についてのみ説明する。 The adjustment amount calculation device 60 includes an operation control unit 61, an acquisition unit 62, a storage unit 63, a calculation unit 64, and a display operation unit 65. The control device 6 may use these configurations other than the calculation of the adjustment amount of the balance weight 7. Further, the control device 6 may have a configuration not shown in FIG. Hereinafter, only the configuration related to the adjustment amount calculation device 60 will be described.
 動作制御部61は、乗りかご1の進行方向と停止階と速度等の動作を制御する。動作制御部61は、乗りかご1を所望の階床へ案内するために電動機4を制御する。動作制御部61は、取得部62が取得した移動量検出器41からの信号を受け取り、指令位置や指令速度と、実際の位置や速度により、乗りかご1の位置制御や速度制御を行い、電流指令値を得る。そして、電流指令値と電流値取得部621で取得した実電流値により電動機4に対する電圧指令を計算する。制御装置6は、インバータに代表される電力変換器を含んでおり、これにより電動機4に指令値通りの電圧を印加する。なお、制御装置で実施される位置制御、速度制御、電流制御は、どのような方法であっても良いし、電力変換器がどのような構成でも本願の効果に何等影響を与えない。 The operation control unit 61 controls operations such as the traveling direction, the stop floor, and the speed of the car 1. The operation control unit 61 controls the electric motor 4 in order to guide the car 1 to a desired floor. The operation control unit 61 receives the signal from the movement amount detector 41 acquired by the acquisition unit 62, controls the position and speed of the car 1 according to the command position and command speed, and the actual position and speed, and performs current. Get the command value. Then, the voltage command for the electric motor 4 is calculated from the current command value and the actual current value acquired by the current value acquisition unit 621. The control device 6 includes a power converter typified by an inverter, whereby a voltage according to a command value is applied to the electric motor 4. The position control, speed control, and current control performed by the control device may be performed by any method, and any configuration of the power converter does not affect the effect of the present application.
 取得部62は、釣合おもり7の調整量の算出で必要な値を取得する。取得部62は、電流値取得部621と、かご位置取得部622と、電流値取得指示部623とを備える。 The acquisition unit 62 acquires a value required for calculating the adjustment amount of the balance weight 7. The acquisition unit 62 includes a current value acquisition unit 621, a car position acquisition unit 622, and a current value acquisition instruction unit 623.
 電流値取得部621は、電動機4へ供給される電流値を取得する。電流値取得部621は、実電流値を検出する代わりに、動作制御部61で計算される電流指令値を取得する構成でも良い。動作制御部61の電流制御により指令電流と実電流は一致しているため、どちらの電流を用いても本願の効果に影響を与えない。 The current value acquisition unit 621 acquires the current value supplied to the electric motor 4. The current value acquisition unit 621 may be configured to acquire the current command value calculated by the operation control unit 61 instead of detecting the actual current value. Since the command current and the actual current match due to the current control of the operation control unit 61, which current is used does not affect the effect of the present application.
 なお、電流値取得部621は、取得した電流値に対しフィルタ処理を実施してもよい。乗りかご1と釣合おもり7は弾性体のロープ8により繋がれているため、共振点を持つ系となる。この共振によりシーブ5が揺れることで電動機4が揺れ、それにより移動量検出器41も揺れる。動作制御部61は、移動量検出器41の検出値により電圧指令を演算するため、計算した電圧指令にも共振の影響が含まれ、電流値取得部621の電流値が振動することが考えられる。 Note that the current value acquisition unit 621 may perform a filter process on the acquired current value. Since the car 1 and the counterweight 7 are connected by an elastic rope 8, the system has a resonance point. This resonance causes the sheave 5 to sway, causing the electric motor 4 to sway, which in turn causes the movement amount detector 41 to sway. Since the operation control unit 61 calculates the voltage command based on the detected value of the movement amount detector 41, it is conceivable that the calculated voltage command also includes the influence of resonance and the current value of the current value acquisition unit 621 vibrates. ..
 また、昇降路内のレール段差などにより外乱が作用することで共振と同様の事象が起こり、電流値が揺れることも考えられる。電流値取得部621が電流値を取得するときに振動している電流を取得すると、瞬時的に平均値から大きく外れた値を取得することが考えられ、これにより調整量の計算に誤差が発生する。よって、共振による振動や外乱による振動を電流値から除くように、ローパスフィルタやノッチフィルタなどのフィルタ処理を実施した後の電流を取得するような構成でも良い。 In addition, it is possible that a phenomenon similar to resonance occurs due to the action of disturbance due to a rail step in the hoistway, and the current value fluctuates. When the current value acquisition unit 621 acquires the oscillating current when acquiring the current value, it is conceivable that the value that deviates greatly from the average value is instantaneously acquired, which causes an error in the calculation of the adjustment amount. To do. Therefore, the current may be acquired after filtering such as a low-pass filter or a notch filter so as to exclude vibration due to resonance and vibration due to disturbance from the current value.
 また、電流値取得部621は、取得した電流値に対し平均化処理を実施してもよい。上記のように、電流値が振動していると、算出される釣合おもり7の調整量に誤差が発生する。したがって、昇降路2の中間位置の前後の所定区間で取得した電流値を平均化することで振動の影響を排除し、釣合おもり7の調整量の計算で誤差が発生しないようにしてもよい。 Further, the current value acquisition unit 621 may perform an averaging process on the acquired current value. As described above, when the current value is oscillating, an error occurs in the calculated adjustment amount of the balance weight 7. Therefore, the influence of vibration may be eliminated by averaging the current values acquired in the predetermined sections before and after the intermediate position of the hoistway 2, and an error may not occur in the calculation of the adjustment amount of the balance weight 7. ..
 かご位置取得部622は、移動量検出器41から電動機4の回転数による乗りかご1の移動量を取得し、乗りかご1の位置情報を取得する。更に、かご位置取得部622は、昇降路2内に取り付けた乗りかご1を検出するセンサから検出情報を取得して乗りかご1の絶対位置を取得してもよい。 The car position acquisition unit 622 acquires the movement amount of the car 1 according to the rotation speed of the electric motor 4 from the movement amount detector 41, and acquires the position information of the car 1. Further, the car position acquisition unit 622 may acquire the detection information from the sensor for detecting the car 1 installed in the hoistway 2 to acquire the absolute position of the car 1.
 電流値取得指示部623は、電流値取得部621に、電流値を取得する時点を指示する。電流値を取得する時点を以下では電流値取得時点と呼ぶ。電流値取得時点は、釣合おもり7の調整量を算出するまでに4度ある。 The current value acquisition instruction unit 623 instructs the current value acquisition unit 621 at the time when the current value is acquired. The time point at which the current value is acquired is hereinafter referred to as the current value acquisition time point. At the time of acquiring the current value, there are four times before calculating the adjustment amount of the balance weight 7.
 電流値取得時点は、電動機4と乗りかご1の距離および電動機4と釣合おもり7の距離が一致するときとする。これは、釣合おもり7の重量を力のつり合いを用いて算出するので、電動機4と乗りかご1までと電動機4と釣合おもり7までの、ロープ8の長さの差分による重量差を排除するためである。電流値取得指示部623は、電動機4と乗りかご1の距離および電動機4と釣合おもり7の距離が一致するときを検知して電流値取得時点を指示する。このとき乗りかご1は昇降路2のおよそ中間位置にあることから、かご位置取得部622から乗りかご1の位置を取得し、乗りかご1が昇降路2の中間位置にあるタイミングで電流値取得時点を指示してもよい。 The current value acquisition time is when the distance between the electric motor 4 and the car 1 and the distance between the electric motor 4 and the balance weight 7 match. Since the weight of the balance weight 7 is calculated by using the balance of force, the weight difference due to the difference in the length of the rope 8 between the motor 4 and the car 1 and the motor 4 and the balance weight 7 is eliminated. To do. The current value acquisition instruction unit 623 detects when the distance between the electric motor 4 and the car 1 and the distance between the electric motor 4 and the balance weight 7 match, and instructs the current value acquisition time point. At this time, since the car 1 is approximately in the middle position of the hoistway 2, the position of the car 1 is acquired from the car position acquisition unit 622, and the current value is acquired at the timing when the car 1 is in the middle position of the hoistway 2. You may specify the time point.
 更に、電流値取得時点は乗りかご1が一定速度で移動しているときとする。これは、定速走行中は、乗りかご1と釣合おもり7に働く力はつり合うことを用いて、釣合おもり7の調整量を力のつり合いを用いて算出するためである。電流値取得指示部623は、例えば、かご位置取得部622から取得する乗りかご1の位置の時間変化から乗りかご1の速度を求め、速度が一定となったタイミングを電流値取得時点として指示する。もしくは、動作制御部61から乗りかご1の速度の指令値を取得し、速度が一定となったタイミングを検知してもよい。 Furthermore, the time when the current value is acquired is assumed to be when the car 1 is moving at a constant speed. This is because the forces acting on the car 1 and the balance weight 7 are balanced during constant speed traveling, and the adjustment amount of the balance weight 7 is calculated by using the balance of forces. For example, the current value acquisition instruction unit 623 obtains the speed of the car 1 from the time change of the position of the car 1 acquired from the car position acquisition unit 622, and instructs the timing at which the speed becomes constant as the current value acquisition time point. .. Alternatively, the command value of the speed of the car 1 may be acquired from the operation control unit 61, and the timing at which the speed becomes constant may be detected.
 記憶部63は、釣合おもりの調整量の算出に必要な値を記憶する。記憶部63は、定数記憶部631と、数値記憶部632とを備える。 The storage unit 63 stores a value required for calculating the adjustment amount of the balance weight. The storage unit 63 includes a constant storage unit 631 and a numerical storage unit 632.
 定数記憶部631は、釣合おもりの重量を調整する際に必要な定数を記憶する。この定数とは、電動機4のトルク定数の設計値Kt’[N・m/A]、シーブ5の半径r[m]、乗りかご1の定格積載重量CP[kg]、重力加速度g[m/s2]、である。トルク定数とは、電流値をトルク値に換算する換算係数であり、電流値とトルク定数との積がトルク値となる。本願の実施の形態1では、電動機4のトルク定数を換算係数とする。電動機4のトルク定数の設計値Kt’[N・m/A]、シーブ5の半径r[m]、乗りかご1の定格積載重量CP[kg]は調整対象のエレベータ装置の仕様で予め決まっている。なお、電動機4の実際のトルク定数と、仕様で決まる電動機4のトルク定数の設計値Kt’は同一とは限らず、誤差が生じることがある。誤差の要因は、例えば、電動機4のモータ定数の個体差、または熱による特性変化、または機械系の影響等がある。 The constant storage unit 631 stores a constant required for adjusting the weight of the balance weight. These constants are the design value K t '[N ・ m / A] of the torque constant of the electric motor 4, the radius r [m] of the sheave 5, the rated load weight CP [kg] of the car 1, and the gravity acceleration g [m]. / s 2 ] ,. The torque constant is a conversion coefficient that converts the current value into a torque value, and the product of the current value and the torque constant is the torque value. In the first embodiment of the present application, the torque constant of the electric motor 4 is used as a conversion coefficient. The design value K t '[N ・ m / A] of the torque constant of the electric motor 4, the radius r [m] of the sheave 5, and the rated load weight CP [kg] of the car 1 are determined in advance by the specifications of the elevator device to be adjusted. ing. The actual torque constant of the electric motor 4 and the design value K t'of the torque constant of the electric motor 4 determined by the specifications are not always the same, and an error may occur. Factors of error include, for example, individual differences in the motor constants of the motor 4, changes in characteristics due to heat, and the influence of the mechanical system.
 数値記憶部632は、釣合おもり7の重量調整に際して取得、算出または設定した数値を、少なくとも釣合おもり7の重量調整が完了するまでの間記憶する。数値記憶部632が記憶する数値は、取得した電流値I1~I4[A]、電動機4のトルク定数Kt[N・m/A]、釣合おもり7の調整量We[kg]、試験おもりの重量W1[kg]である。なお、トルク定数の設計値Kt’は定数記憶部631が記憶するとしたが、数値記憶部632に記憶させ、調整対象のエレベータ装置100の仕様により変更可能としてもよい。 The numerical value storage unit 632 stores the numerical value acquired, calculated or set at the time of weight adjustment of the balance weight 7 at least until the weight adjustment of the balance weight 7 is completed. Numbers numeric storage unit 632 stores the current value I 1 ~ I 4 obtained [A], the torque constant of the motor 4 K t [N · m / A], the adjustment amount of the counterweight 7 W e [kg] , The weight of the test weight is W 1 [kg]. Although the design value K t'of the torque constant is stored in the constant storage unit 631, it may be stored in the numerical storage unit 632 and can be changed according to the specifications of the elevator device 100 to be adjusted.
 演算部64は、記憶部63が記憶した数値を取得し、釣合おもり7の調整量の算出に必要な数値の算出または判断を行う。演算部64は、換算係数算出部641と、調整量算出部642と、調整判断部643とを備える。 The calculation unit 64 acquires the numerical value stored in the storage unit 63, and calculates or determines the numerical value necessary for calculating the adjustment amount of the balance weight 7. The calculation unit 64 includes a conversion coefficient calculation unit 641, an adjustment amount calculation unit 642, and an adjustment determination unit 643.
 換算係数算出部641は、換算係数を算出する。調整量算出部642は、釣合おもり7の調整量を計算する。調整判断部643は、換算係数の誤差が許容できる範囲である所定の基準値以内か否かを判断し、釣合おもり7の重量調整が必要か否かを判断する。 The conversion coefficient calculation unit 641 calculates the conversion coefficient. The adjustment amount calculation unit 642 calculates the adjustment amount of the balance weight 7. The adjustment determination unit 643 determines whether or not the error of the conversion coefficient is within a predetermined reference value within an acceptable range, and determines whether or not the weight adjustment of the balance weight 7 is necessary.
 表示操作部65は、釣合おもり7の調整のために必要な操作を受け付けるとともに、釣合おもり7の重量調整に関する情報を表示する。表示操作部65の形態は、操作と表示の両方を行うことができるタッチパネルとしても、操作をするボタン部分と、表示をする表示部分とで別体としてもよい。また、図2では表示操作部65を制御装置6に設けているが、それ以外の場所、例えば乗場インジケータなどに表示するようにしてもよいし、外部から接続されたパソコンなどの管理用端末に表示情報を出力する構成としてもよい。 The display operation unit 65 accepts operations necessary for adjusting the balance weight 7, and displays information on the weight adjustment of the balance weight 7. The form of the display operation unit 65 may be a touch panel capable of performing both operation and display, or may be a separate body of the button portion for operation and the display portion for display. Further, although the display operation unit 65 is provided in the control device 6 in FIG. 2, it may be displayed in other places such as a landing indicator, or on a management terminal such as a personal computer connected from the outside. It may be configured to output display information.
 表示操作部65は、動作開始指示部651と、設定値入力部652と、表示部653とを備える。 The display operation unit 65 includes an operation start instruction unit 651, a set value input unit 652, and a display unit 653.
 動作開始指示部651は、電流値を取得するための走行の開始を指示するためのインターフェースである。作業員は乗りかご1の走行を開始させる際に、動作開始指示部651を操作して、調整量算出動作の開始を指示する。 The operation start instruction unit 651 is an interface for instructing the start of running to acquire the current value. When starting the running of the car 1, the worker operates the operation start instruction unit 651 to instruct the start of the adjustment amount calculation operation.
 設定値入力部652は、後述する試験おもりの重量の情報を入力するためのインターフェースである。 The setting value input unit 652 is an interface for inputting information on the weight of the test weight, which will be described later.
 表示部653は、試験によって得られたおもりの重量とおもりの調整量等を表示する。表示はディスプレイによる表示でも、数値を読み上げる音声としてもよい。 The display unit 653 displays the weight of the weight obtained by the test, the amount of adjustment of the weight, and the like. The display may be a display or a voice reading out a numerical value.
 次に、本願の実施の形態1の調整量算出装置60の動作について図3を用いて説明する。図3は本願の実施の形態1の調整量算出装置60の動作を示すフローチャートである。 Next, the operation of the adjustment amount calculation device 60 according to the first embodiment of the present application will be described with reference to FIG. FIG. 3 is a flowchart showing the operation of the adjustment amount calculation device 60 according to the first embodiment of the present application.
 エレベータ装置100が運転を開始すると、図3のフローが開始される。まず、ステップS100にて動作制御部61が、動作開始指示部651から釣合おもり7の調整量算出動作開始の指示を受信したかを判断する。調整動作の開始の指示を受信するまで、ステップS100を繰り返す。 When the elevator device 100 starts operation, the flow shown in FIG. 3 starts. First, in step S100, the operation control unit 61 determines whether or not the operation start instruction unit 651 has received the instruction to start the adjustment amount calculation operation of the balance weight 7. Step S100 is repeated until the instruction to start the adjustment operation is received.
 動作制御部61が釣合おもり7の調整量算出の開始の指示を受信すると、ステップS101に進み、1回目の電流値取得を開始する。なお、釣合おもり7の調整量の算出は、乗りかご1が無負荷の状態で開始する。したがって、動作制御部61が乗りかご1に設ける重量センサからの検知情報を取得して乗りかご1が無負荷の状態か確認した後にステップS101に進むこととしてもよい。 When the operation control unit 61 receives the instruction to start the adjustment amount calculation of the balance weight 7, the process proceeds to step S101 and the first current value acquisition is started. The calculation of the adjustment amount of the balance weight 7 is started in a state where the car 1 is unloaded. Therefore, the operation control unit 61 may acquire the detection information from the weight sensor provided in the car 1 to confirm whether the car 1 is in a no-load state, and then proceed to step S101.
 ステップS101では、動作制御部61が乗りかご1を1回目の電流値取得のための走行開始位置に移動させる。この走行開始位置は、この後のステップS102で乗りかご1が上昇運転をする際に、乗りかご1が昇降路2の中間位置を一定速度で通過できる位置であれば、昇降路内のどの位置でもよい。したがって、この位置は乗りかご1が移動可能な範囲内で、最も低い位置から昇降路の中間位置より下であればよい。 In step S101, the motion control unit 61 moves the car 1 to the running start position for acquiring the first current value. This travel start position is any position in the hoistway as long as the car 1 can pass through the intermediate position of the hoistway 2 at a constant speed when the car 1 ascends in the subsequent step S102. It may be. Therefore, this position may be below the middle position of the hoistway from the lowest position within the movable range of the car 1.
 乗りかご1の移動が完了した後、ステップS102に進み、動作制御部61は乗りかご1の上昇運転の制御を開始する。 After the movement of the car 1 is completed, the process proceeds to step S102, and the motion control unit 61 starts controlling the ascending operation of the car 1.
 ステップS102のあと、ステップS103に進み、電流値取得指示部623が乗りかご1の位置が昇降路2の中間位置且つ乗りかご1の速度が一定になったかを判断する。 After step S102, the process proceeds to step S103, and the current value acquisition instruction unit 623 determines whether the position of the car 1 is the intermediate position of the hoistway 2 and the speed of the car 1 is constant.
 ここで、図4を用いて、乗りかご1の上昇運転時の電動機4へ供給される電流値の時間変化を説明する。図4は、上昇運転時の電動機4へ供給される電流値の時間変化を示すグラフである。図4は停止状態から上昇移動して再度停止するまでを示す。縦軸が電流値を示し、横軸が時間を示す。電流値は負の値で取得されるとする。区間t1~t5は時間の区間を示す。 Here, with reference to FIG. 4, the time change of the current value supplied to the electric motor 4 during the ascending operation of the car 1 will be described. FIG. 4 is a graph showing the time change of the current value supplied to the electric motor 4 during the ascending operation. FIG. 4 shows from the stopped state to the ascending movement and stopping again. The vertical axis shows the current value, and the horizontal axis shows the time. It is assumed that the current value is acquired as a negative value. The intervals t 1 to t 5 indicate the time interval.
 図4の区間t1は、乗りかご1が上昇移動を開始する直前であり、乗りかご1は停止している。区間t1の開始時から、乗りかご1と釣合おもり7をつり合い状態で停止させておくために必要な電流値が供給される。区間t1の間に、電動機4のブレーキが開放される。 The section t 1 in FIG. 4 is just before the car 1 starts the ascending movement, and the car 1 is stopped. From the start of the section t 1, the current value required to keep the car 1 and the balance weight 7 in a balanced state is supplied. During the section t 1 , the brake of the electric motor 4 is released.
 乗りかご1よりも釣合おもり7が重いとき、上昇運転は回生運転となる。したがって、電動機4のブレーキが開放されたあと、区間t2では動作制御部61は電流指令値を減少させる。区間t2で、ステップS102が実行され、乗りかご1が上昇を開始し、加速する。 When the balance weight 7 is heavier than the car 1, the ascending operation is a regenerative operation. Therefore, after the brake of the electric motor 4 is released, the operation control unit 61 reduces the current command value in the section t 2 . In section t 2, step S102 is executed, the car 1 starts to rise and accelerate.
 乗りかご1が目標とする速度に到達しそうなとき、動作制御部61は電流指令値を増加させ、加速度を減少させる。 When the car 1 is about to reach the target speed, the operation control unit 61 increases the current command value and decreases the acceleration.
 区間t3で、乗りかご1に働く力がつり合い、乗りかご1は一定速度で走行する。一定速度で走行中の供給電流値は一定である。 In the section t 3 , the forces acting on the car 1 are balanced, and the car 1 runs at a constant speed. The supply current value while traveling at a constant speed is constant.
 区間t3において、電流値取得指示部623が乗りかご1が中間位置にあり、乗りかご1の速度が一定であると判断すると、ステップS104に進む。 In the section t 3 , when the current value acquisition instruction unit 623 determines that the car 1 is in the intermediate position and the speed of the car 1 is constant, the process proceeds to step S104.
 ステップS104では電流値取得指示部623が、電流値取得部621に電流値を取得するよう指示する。このとき取得される電流値をI1とし、数値記憶部632が電流値I1を記憶する。 In step S104, the current value acquisition instruction unit 623 instructs the current value acquisition unit 621 to acquire the current value. The current value acquired at this time is set to I 1 , and the numerical storage unit 632 stores the current value I 1 .
 ここで、電流値I1について説明する。区間t3での乗りかご1が定速走行している間は、乗りかご1および、釣合おもり7に働く力はつり合うが、取得される電流値I1は図4に示すように、区間t1のときよりも小さくなる。
Here, the current value I 1 will be described. While the car 1 in the section t 3 is running at a constant speed, the forces acting on the car 1 and the counterweight 7 are balanced, but the acquired current value I 1 is the section as shown in FIG. It is smaller than when t 1 .
 これは、乗りかご1の走行に起因して、乗りかご1の移動と反対方向に発生する制動力である昇降路ロスiL1が乗りかご1に働くためである。昇降路ロスiL1が働くため、乗りかご1が加速しないよう定速走行させるために必要な電流値は停止状態のときよりも小さくなる。 This is because the hoistway loss i L1, which is a braking force generated in the direction opposite to the movement of the car 1 due to the traveling of the car 1, acts on the car 1. Since the hoistway loss i L1 works, the current value required for constant speed running so that the car 1 does not accelerate is smaller than that in the stopped state.
 昇降路ロスとは、乗りかご1の移動で発生する摩擦力とロープを曲げるために要される力などのロスである。昇降路ロスは常に乗りかご1の移動と反対方向に発生する。 The hoistway loss is the loss of frictional force generated by the movement of the car 1 and the force required to bend the rope. The hoistway loss always occurs in the direction opposite to the movement of the car 1.
 乗りかご1が無負荷状態で定速上昇しているときの昇降路中間位置での電流値I1は、釣合おもり7についての力のつり合いより、下方向を負とすると、下記数式1で表される。 If the current value I 1 at the intermediate position of the hoistway when the car 1 is rising at a constant speed with no load is negative in the downward direction from the balance of the forces of the balance weight 7, the following formula 1 is used. expressed.
Figure JPOXMLDOC01-appb-M000001
 Kt[N・m/A]は電動機4のトルク定数、CP[kg]は乗りかご1の定格積載重量、We[kg]は釣合おもり7の調整量、g[m/s2]は重力加速度、r[m]はシーブ5の半径、iL1[A]は上昇運転中の昇降路ロスである。
Figure JPOXMLDOC01-appb-M000001
K t [N · m / A ] is the torque constant of the motor 4, CP [kg] rated load weight of the car 1, W e [kg] is the adjustment amount of the counterweight 7, g [m / s 2 ] Is the gravitational acceleration, r [m] is the radius of the sheave 5, and i L1 [A] is the hoistway loss during ascending operation.
 トルク定数Ktと、釣合おもり7の調整量Weと、上昇運転中の昇降路ロスiL1は未知数である。乗りかご1の定格積載重量CP、重力加速度g、シーブ5の半径rは定数記憶部631に記憶されている値を取得する。電流値I1は数値記憶部632が記憶する値を取得する。 The torque constant K t , the adjustment amount W e of the balance weight 7, and the hoistway loss i L 1 during ascending operation are unknown. The rated load weight CP of the car 1, the gravitational acceleration g, and the radius r of the sheave 5 acquire the values stored in the constant storage unit 631. The current value I 1 acquires a value stored in the numerical storage unit 632.
 実施の形態1の釣合おもり7の設計重量は、乗りかご1の重量とエレベータ装置100の定格積載重量の半分との和とする。釣合おもり7の乗りかご1の重量と、乗りかご1の重量は相殺されるので、数式1には乗りかご1の重量の値は不要である。 The design weight of the balance weight 7 of the first embodiment is the sum of the weight of the car 1 and half of the rated load weight of the elevator device 100. Since the weight of the car 1 of the counterweight 7 and the weight of the car 1 cancel each other out, the value of the weight of the car 1 is not required in Equation 1.
 釣合おもり7の調整量Weは釣合おもり7から乗りかご1の重量を引いた値である。したがって、調整量Weが正の値であれば釣合おもり7は目標値よりも重く、調整量Weが負の値であれば釣合おもり7は目標値よりも軽い。調整量Weが0であれば、釣合おもり7は目標値である乗りかご1の重量と積載重量の半分の和である。 The adjustment amount W e of the balance weight 7 is a value obtained by subtracting the weight of the car 1 from the balance weight 7. Therefore, if the adjustment amount W e is a positive value, the balance weight 7 is heavier than the target value, and if the adjustment amount W e is a negative value, the balance weight 7 is lighter than the target value. If the adjustment amount W e is 0, the balance weight 7 is the sum of the target value of the weight of the car 1 and half the load weight.
 ステップS104のあとステップS105に進み、動作制御部61が乗りかご1を2回目の電流値取得のための走行開始位置に移動させる。この走行開始位置は、この後のステップS106で乗りかご1が下降運転をする際に、昇降路2の中間位置を一定速度で通過できれば、昇降路内のどの位置でもよい。したがって、この位置は乗りかご1を移動可能な範囲で最も高い位置から昇降路の中間位置より上であればよい。 After step S104, the process proceeds to step S105, and the motion control unit 61 moves the car 1 to the running start position for acquiring the current value for the second time. This traveling start position may be any position in the hoistway as long as it can pass through the intermediate position of the hoistway 2 at a constant speed when the car 1 descends in the subsequent step S106. Therefore, this position may be above the middle position of the hoistway from the highest position within the movable range of the car 1.
 乗りかご1の移動が完了した後、ステップS106に進み、動作制御部61が乗りかご1の下降運転の制御を開始する。 After the movement of the car 1 is completed, the process proceeds to step S106, and the operation control unit 61 starts the control of the descending operation of the car 1.
 ステップS106のあと、ステップS107に進み、電流値取得指示部623が乗りかご1の位置が昇降路2の中間位置且つ乗りかご1の速度が一定になったかを判断する。 After step S106, the process proceeds to step S107, and the current value acquisition instruction unit 623 determines whether the position of the car 1 is the intermediate position of the hoistway 2 and the speed of the car 1 is constant.
 ここで、図5を用いて、乗りかご1を下降運転させるときに、動作制御部61から電動機4へ出力する電流指令値の時間変化を説明する。図5は、下降運転時の供給電流値の時間変化を示すグラフである。図5は停止状態から下降移動して再度停止するまでを示す。縦軸が電流値を示し、横軸が時間を示す。区間t6~t10は時間の区間を示す。 Here, with reference to FIG. 5, the time change of the current command value output from the operation control unit 61 to the electric motor 4 when the car 1 is lowered is described. FIG. 5 is a graph showing the time change of the supply current value during the descending operation. FIG. 5 shows from the stopped state to the downward movement and the stop again. The vertical axis shows the current value, and the horizontal axis shows the time. The intervals t 6 to t 10 indicate the time intervals.
 図5の区間t6は、乗りかご1が下降移動を開始する直前であり、乗りかご1は停止している。区間t6の開始時から、動作制御部61は、乗りかご1と釣合おもり7をつり合い状態で停止させておくために必要な電流指令値を出力する。区間t6の間に、電動機4のブレーキが開放される。 Section t 6 in FIG. 5 is immediately before the car 1 starts the descending movement, and the car 1 is stopped. From the start of the section t 6 , the operation control unit 61 outputs a current command value necessary for stopping the car 1 and the counterweight 7 in a balanced state. During the section t 6 , the brake of the motor 4 is released.
 下降運転時は力行運転となるため、電動機4のブレーキが開放されたあと、区間t7で、動作制御部61は電流指令値を増加させる。区間t7で、ステップS106が実行され、乗りかご1が下降を開始し、加速する。 Since the power running operation is performed during the descent operation, the operation control unit 61 increases the current command value in the section t 7 after the brake of the electric motor 4 is released. In section t 7 , step S106 is executed and the car 1 starts descending and accelerates.
 乗りかご1が目標とする速度に到達しそうなとき、動作制御部61は電流指令値を増加させ、加速度を減少させる。 When the car 1 is about to reach the target speed, the operation control unit 61 increases the current command value and decreases the acceleration.
 区間t8で、トルクと昇降路ロスと重力がつり合い、乗りかご1は一定速度で走行する。一定速度で走行中の供給電流値は一定である。 In interval t 8, torque and shaft Ross and gravity are balanced, the car 1 travels at a constant speed. The supply current value while traveling at a constant speed is constant.
 区間t8において、電流値取得指示部623が乗りかご1が中間位置にあり、乗りかご1の速度が一定であると判断すると、ステップS108に進む。 In the section t 8 , when the current value acquisition instruction unit 623 determines that the car 1 is in the intermediate position and the speed of the car 1 is constant, the process proceeds to step S108.
 ステップS108では電流値取得指示部623が、電流値取得部621に電流値を取得するよう指示する。このとき取得される電流値をI2とし、数値記憶部632が電流値I2を記憶する。 In step S108, the current value acquisition instruction unit 623 instructs the current value acquisition unit 621 to acquire the current value. The current value acquired at this time is set to I 2 , and the numerical storage unit 632 stores the current value I 2 .
 ここで、電流値I2について説明する。区間t8で、乗りかご1が定速走行している間は、乗りかご1および、釣合おもり7に働く力はつり合うが、取得される電流値I2は図5に示すように、区間t8のときよりも大きくなる。 Here, the current value I 2 will be described. While the car 1 is traveling at a constant speed in the section t 8 , the forces acting on the car 1 and the counterweight 7 are balanced, but the acquired current value I 2 is the section as shown in FIG. It is larger than at t 8 .
 これは、乗りかご1の走行に起因して、乗りかご1の移動と反対方向に発生する昇降路ロスiL2が乗りかご1に働くためである。昇降路ロスiL2が働くため、乗りかご1が減速しないよう定速走行させるために必要な電流値は停止状態のときよりも大きくなる。 This is because the hoistway loss i L2 generated in the direction opposite to the movement of the car 1 due to the traveling of the car 1 acts on the car 1. Since the hoistway loss i L2 works, the current value required to drive the car 1 at a constant speed so as not to decelerate becomes larger than that in the stopped state.
 電流値が負の値で検出されるとすると、乗りかご1が無負荷状態で定速下降しているときの昇降路中間位置での電流値I2は、釣合おもり7についての力のつり合いより下記数式2で表される。 Assuming that the current value is detected as a negative value, the current value I 2 at the intermediate position of the hoistway when the car 1 is descending at a constant speed with no load is the balance of the forces with respect to the balance weight 7. It is expressed by the following formula 2.
Figure JPOXMLDOC01-appb-M000002
 数式1と同じ文字は同じ意味を示す。iL2[A]は下降運転中の昇降路ロスである。上昇運転中の昇降路ロスiL1と下降運転中の昇降路ロスiL2は同じ大きさである。電流値I2は数値記憶部632が記憶する値を取得する。
Figure JPOXMLDOC01-appb-M000002
The same characters as in Equation 1 have the same meaning. i L2 [A] is the hoistway loss during descent operation. The hoistway loss i L1 during ascending operation and the hoistway loss i L2 during descent operation are the same magnitude. The current value I 2 acquires a value stored in the numerical storage unit 632.
 ステップS108のあと、区間t9で減速する。上昇運転は力行運転であるから、乗りかご1を減速させるために、動作制御部61は電動機4への電流指令値を減少させる。乗りかご1が停止すると、動作制御部61は区間t10の間、乗りかご1と釣合おもり7をつり合い状態で停止させておくために必要な電流を供給する。区間t10の間に、電動機4はブレーキにより停止される。 After step S108, decelerate in section t 9 . Since the ascending operation is a power running operation, the operation control unit 61 reduces the current command value to the electric motor 4 in order to decelerate the car 1. When the car 1 is stopped during the operation control section 61 section t 10, it supplies the current necessary to keep stopping the car 1 and the counterweight 7 in a balanced state. During the period t 10, the motor 4 is stopped by the brake.
 ステップS108のあとステップS109に進む。ステップS109ではステップS100にて調整動作の開始の指示がなされてから電流値を4回取得したか否かを判断する。具体的には演算部64が数値記憶部632に電流値が4回記憶されているか否かを判断する。この時点では電流値の取得回数は2回であり、4回取得していないのでステップS110に進む。 After step S108, proceed to step S109. In step S109, it is determined whether or not the current value is acquired four times after the instruction to start the adjustment operation is given in step S100. Specifically, the calculation unit 64 determines whether or not the current value is stored in the numerical value storage unit 632 four times. At this point, the current value is acquired twice, and since it has not been acquired four times, the process proceeds to step S110.
 ステップS110では調整量算出部642が、釣合おもり7の調整量Weを算出する。釣合おもり7の調整量Weは、電動機4のトルク定数がトルク定数の設計値Kt’であるとして算出する釣合おもり7の調整量である。 Adjustment amount calculation section 642 at step S110 calculates the adjustment amount W e of the counterweight 7. Adjustment amount W e of the counterweight 7 is a adjustment amount of the counterweight 7 which torque constant of the motor 4 is calculated as the design value Kt 'torque constant.
 釣合おもり7の調整量Weは数式1と数式2の和を計算することにより、下記数式3で表される。 The adjustment amount We e of the balance weight 7 is expressed by the following formula 3 by calculating the sum of the formula 1 and the formula 2.
Figure JPOXMLDOC01-appb-M000003
 現時点では電動機4のトルク定数Ktは不明であるので、代わりに既知のトルク定数の設計値Kt’を用いて、およその釣合おもり7の調整量W1を求める。トルク定数の設計値Kt’は電動機の仕様で決められる定数である。
Figure JPOXMLDOC01-appb-M000003
At present, the torque constant K t of the electric motor 4 is unknown, so instead, the design value K t'of the known torque constant is used to obtain the adjustment amount W1 of the approximate balance weight 7. The design value K t'of the torque constant is a constant determined by the specifications of the motor.
 トルク定数の設計値Kt’と実際のトルク定数Ktの関係はトルク定数の実際の値と設計値との誤差をαとして、下記数式4で表されるとする。 The relationship between the design value Kt'of the torque constant and the actual torque constant Kt is expressed by the following formula 4 with the error between the actual value of the torque constant and the design value as α.
Figure JPOXMLDOC01-appb-M000004
 Weが正の値であれば釣合おもり7は目標値よりも重く、Weが負の値であれば釣合おもり7は目標値よりも軽いので、釣合おもり7の重量を調整するためには、Weの値を打ち消すように釣合おもり7の重量を調整する必要がある。したがって、およその釣合おもり7の調整量をW1とすると、数式3の符号を反転させ、トルク定数の設計値Kt’を用いることにより、およその釣合おもり7の調整量W1は下記数式5で表される。
Figure JPOXMLDOC01-appb-M000004
If W e is a positive value, the balance weight 7 is heavier than the target value, and if W e is a negative value, the balance weight 7 is lighter than the target value, so adjust the weight of the balance weight 7. Therefore, it is necessary to adjust the weight of the balance weight 7 so as to cancel the value of W e . Therefore, when the adjustment amount of the counterweight 7 of approximately the W 1, by reversing the sign of Equation 3, by using a design value K t 'of torque constant, the adjustment amount W 1 of approximately counterweight 7 It is expressed by the following formula 5.
Figure JPOXMLDOC01-appb-M000005
 ステップS110にて算出された釣合おもり7のおよその調整量W1に一番近い重量の試験おもりを釣合おもり7に追加する。なお、算出された調整量W1が負の値の場合は、おもりを追加するのではなく、おもりを抜く作業となる。
Figure JPOXMLDOC01-appb-M000005
The test weight having the weight closest to the approximate adjustment amount W 1 of the balance weight 7 calculated in step S110 is added to the balance weight 7. If the calculated adjustment amount W 1 is a negative value, the work is to remove the weight instead of adding the weight.
 試験おもりの追加を作業員が行う場合、調整量算出装置60は算出したW1の値を、表示部653に表示することで作業員にW1の値を知らせることができる。追加した試験おもりの重量は動作開始指示部651により入力する。 When the worker adds the test weight, the adjustment amount calculation device 60 can notify the worker of the value of W 1 by displaying the calculated value of W 1 on the display unit 653. The weight of the added test weight is input by the operation start instruction unit 651.
 作業員が試験おもりの追加を行う代わりに、エレベータ装置100によって追加してもよい。例えば、昇降路2内に複数の試験おもりと試験おもりを掴んで釣合おもり7に加減することができるマニピュレータとを設け、適切な重量の試験おもりを、エレベータ装置100がマニピュレータを制御することで釣合おもり7に追加することができる構成とすれば可能である。 Instead of the worker adding the test weight, it may be added by the elevator device 100. For example, a plurality of test weights and a manipulator capable of grasping the test weights and adjusting the weights to the balance weight 7 are provided in the hoistway 2, and the test weights having an appropriate weight are controlled by the elevator device 100. This is possible if the configuration can be added to the balance weight 7.
 なお、算出されたおよその釣合おもり7の調整量W1と全く同じ重量の試験おもりが用意できない場合は、重量が近い試験おもりを用いればよい。実施の形態1では同じ重量の試験おもりが用意されているとし、試験おもりの重量は上記数式4で算出されるW1とする。 If it is not possible to prepare a test weight having exactly the same weight as the calculated adjustment amount W 1 of the equilibrium weight 7, a test weight having a similar weight may be used. In the first embodiment, it is assumed that a test weight having the same weight is prepared, and the weight of the test weight is W 1 calculated by the above formula 4.
 ステップS110のあと、ステップS111に進む。ステップS111では試験おもりの重量が入力されたかを動作制御部61が判断する。試験おもりの重量が入力されたかを判断する。具体的には、演算部64が数値記憶部632に試験おもりの重量W1が入力されたか否かを確認する。 After step S110, the process proceeds to step S111. In step S111, the motion control unit 61 determines whether or not the weight of the test weight has been input. Determine if the weight of the test weight has been entered. Specifically, the calculation unit 64 confirms whether or not the weight W 1 of the test weight has been input to the numerical storage unit 632.
 ステップS111にて動作制御部61が試験おもりの重量が入力されたと判断すると、ステップS100に戻り、ステップS100からステップS109の動作が再度行われる。このとき、2回目のステップS104にて取得される電流値をI3とし、ステップS108にて取得される電流値をI4として数値記憶部632が記憶する。 When the operation control unit 61 determines that the weight of the test weight has been input in step S111, the process returns to step S100, and the operations of steps S100 to S109 are performed again. At this time, the numerical storage unit 632 stores the current value acquired in the second step S104 as I 3 and the current value acquired in step S108 as I 4 .
 ステップS111の後に、ステップS109の電流値を4回取得し終えたかの判断を実施すると、電流値を4回取得したと判断されるので、ステップS112に進む。 When it is determined whether the current value of step S109 has been acquired four times after step S111, it is determined that the current value has been acquired four times, so the process proceeds to step S112.
 ステップS112ではトルク定数の誤差αを求める。ここで、トルク定数の誤差αの算出方法について説明する。 In step S112, the error α of the torque constant is obtained. Here, a method of calculating the error α of the torque constant will be described.
 まず、数式5で計算した重量W1の試験おもりを釣合おもり7に追加した状態で、乗りかご1が定速で下降運転中の昇降路中間位置での電流値I3は下記数式6で表される。 First, with the test weight of the weight W 1 calculated by the formula 5 added to the balanced weight 7, the current value I 3 at the intermediate position of the hoistway while the car 1 is descending at a constant speed is calculated by the following formula 6. expressed.
Figure JPOXMLDOC01-appb-M000006
 試験おもりを釣合おもり7に追加した状態で、乗りかごが定速で上昇運転中の昇降路中間位置での電流値I4は、釣合おもりについての力のつり合いより下記の数式6で表される。
Figure JPOXMLDOC01-appb-M000006
With the test weight added to the balanced weight 7, the current value I 4 at the intermediate position of the hoistway while the car is operating at a constant speed is calculated by the following formula 6 from the balance of the forces of the balanced weight. Will be done.
Figure JPOXMLDOC01-appb-M000007
 数式6、数式7で求められる電流値I3と電流値I4は、図4に示すように、I1、I2と同様に表すことができる。なお、図4ではI1とI3の値を同じ値として示されているが、実際の値は異なる。図5に示すI2とI4の値についても同様である。
Figure JPOXMLDOC01-appb-M000007
The current values I 3 and the current values I 4 obtained by Equations 6 and 7 can be expressed in the same manner as I 1 and I 2 as shown in FIG. In FIG. 4, the values of I 1 and I 3 are shown as the same value, but the actual values are different. The same applies to the values of I 2 and I 4 shown in FIG.
 I1、I2、I3、I4を用い、トルク定数の誤差αは下記数式8により算出できる。 Using I 1 , I 2 , I 3 , and I 4 , the error α of the torque constant can be calculated by the following equation 8.
Figure JPOXMLDOC01-appb-M000008
 ステップS112で求めたトルク定数の誤差αの許容範囲である基準値以内の場合、ステップS110で計算した試験おもりの重量W1の誤差も許容範囲内とし、釣合おもり7の調整を終了する。このとき、釣合おもり7の調整が完了した旨を表示部653に表示して、作業員に知らせてもよい。許容できるトルク定数の誤差αの基準値は、釣合おもり7の調整で許容される誤差を基に決定する。たとえば、釣合おもり7の調整に許容される誤差が±5%の場合、それに応じたαを設定する。
Figure JPOXMLDOC01-appb-M000008
If the error α of the torque constant obtained in step S112 is within the allowable range of the reference value, the error of the weight W 1 of the test weight calculated in step S110 is also within the allowable range, and the adjustment of the balance weight 7 is completed. At this time, the display unit 653 may display that the adjustment of the balance weight 7 has been completed to notify the worker. The reference value of the error α of the allowable torque constant is determined based on the error allowed by the adjustment of the balance weight 7. For example, if the error allowed for adjusting the balance weight 7 is ± 5%, α is set accordingly.
 ステップS112で求めたトルク定数の誤差αが基準値以内ではない場合、実際のトルク定数が、トルク定数の調整値と誤差が生じているので、ステップS112で計算した釣合おもり7のおよその調整量W1にも誤差がある。この場合、ステップS113に進み、数式8を用いると、数式5の調整量W1は下記数式9となる。 If the error α of the torque constant obtained in step S112 is not within the reference value, the actual torque constant has an error with the adjustment value of the torque constant, so the approximate adjustment of the balance weight 7 calculated in step S112. There is also an error in the quantity W 1 . In this case, if the process proceeds to step S113 and the formula 8 is used, the adjustment amount W 1 of the formula 5 becomes the following formula 9.
 数式8で求めたトルク定数の誤差を用い、数式5の釣合おもりの調整量を再度計算すると、下記数式9となる。 Using the error of the torque constant obtained in Equation 8 and recalculating the adjustment amount of the balance weight in Equation 5, the following Equation 9 is obtained.
Figure JPOXMLDOC01-appb-M000009
 釣合おもり7に数式5で求めたW1の試験おもりの代わりに数式9で求めた調整量Wの調整用のおもりを追加することで、誤差のない調整を実施できる。ここでの釣合おもり7の重量の調整はS110でのおよその調整量を算出して試験おもりを追加したときと同様に、作業員またはエレベータ装置100によって行う。
Figure JPOXMLDOC01-appb-M000009
By adding the adjustment weight of the adjustment amount W 1 obtained by the formula 9 to the balance weight 7 instead of the test weight of W 1 obtained by the formula 5, the adjustment without error can be performed. The weight adjustment of the balance weight 7 here is performed by the worker or the elevator device 100 in the same manner as when the approximate adjustment amount in S110 is calculated and the test weight is added.
 なお、上記の説明では乗りかご1を上昇運転させたのちに下降運転させたが、下降運転させたのちに上昇運転させてもよい。 In the above explanation, the car 1 was moved up and then down, but it may be down and then up.
 また、ステップS112で求めたトルク定数の誤差αの許容範囲である基準値(所定範囲)以内の場合であっても、釣合おもり7に数式5で求めたW1の試験おもりの代わりに数式9で求めた調整量W1の調整用のおもりを追加することで、より精度よく釣合おもり7の重量を調整してもよい。 Further, even if the error α of the torque constant obtained in step S112 is within the permissible range of the reference value (predetermined range), the balance weight 7 is replaced with the test weight of W 1 obtained by the formula 5. By adding a weight for adjusting the adjustment amount W 1 obtained in 9, the weight of the balance weight 7 may be adjusted more accurately.
 以上より、乗りかご1が無負荷状態での上昇運転と下降運転の電流値I1、I2と、無負荷の電流I1、I2から計算した調整量で調整し上昇運転と下降運転したときの電流I3、I4を取得することにより、トルク定数を算出することができる。したがって、正確な釣合おもり7の調整量を計算することができる。 From the above, the car 1 is increasing operation and the current value I 1, I 2 of the lowering operation without load, and decreasing operation and increased operation adjusted by the adjustment amount calculated from the current I 1, I 2 unloaded The torque constant can be calculated by acquiring the currents I 3 and I 4 at the time. Therefore, it is possible to calculate an accurate adjustment amount of the balance weight 7.
 なお、釣合おもり7の重量の調整を作業員が行う場合、調整量算出装置60を用いなくてもよい。まず、作業員は乗りかご1が無負荷の状態で、乗りかご1を上昇させるときと下降させるときに、電動機4に供給される電流値を計測し、記録する。その後、作業員は乗りかご1が無負荷の状態で取得した電流値と、釣合おもり7の調整量の算出に用いる換算係数の設定値とを用いて算出される、釣合おもり7の調整量を、試験おもりの重量として算出する。その後、作業員は試験おもりを釣合おもり7に積載した状態で、乗りかご1を上昇させるときと下降させるときに、電動機4に供給される電流値を計測し、記録する。作業員は記録した電流値と、試験おもりの重量とを用いて換算係数を算出する。その後、作業員は算出した換算係数と、換算係数の設定値との誤差を算出する。その後、作業員は、誤差が所定範囲以内であるか否かを判断し、所定範囲以内ではないと判断した場合に、算出した換算係数を用いて、釣合おもり7の調整量を算出し、算出した釣合おもり7の調整量で作業員が釣合おもり7を調整する。 When the worker adjusts the weight of the balance weight 7, it is not necessary to use the adjustment amount calculation device 60. First, the worker measures and records the current value supplied to the electric motor 4 when the car 1 is raised and lowered when the car 1 is unloaded. After that, the worker adjusts the balance weight 7, which is calculated by using the current value acquired when the car 1 is unloaded and the set value of the conversion coefficient used for calculating the adjustment amount of the balance weight 7. The amount is calculated as the weight of the test weight. After that, the worker measures and records the current value supplied to the electric motor 4 when raising and lowering the car 1 with the test weight loaded on the balancing weight 7. The worker calculates the conversion coefficient using the recorded current value and the weight of the test weight. After that, the worker calculates the error between the calculated conversion coefficient and the set value of the conversion coefficient. After that, the worker judges whether or not the error is within the predetermined range, and when it is judged that the error is not within the predetermined range, the worker calculates the adjustment amount of the balance weight 7 by using the calculated conversion coefficient. The worker adjusts the balance weight 7 with the calculated adjustment amount of the balance weight 7.
 したがって、作業員は釣合おもり7の重量を1回または2回調整することで、据付時の調整対象のエレベータ装置の換算係数を算出するとともに、正確な釣合おもり7の調整ができる。乗りかご1を動かす回数が4回のみで釣合おもり7の重量の調整を終わらせることができる。 Therefore, by adjusting the weight of the balance weight 7 once or twice, the worker can calculate the conversion coefficient of the elevator device to be adjusted at the time of installation and can accurately adjust the balance weight 7. The weight adjustment of the balance weight 7 can be completed by moving the car 1 only four times.
 以上のように、実施の形態1では、無負荷時の電流から試験おもりの重量を計算し、試験おもりを釣合おもり7に追加して運転を行いトルク定数の誤差を計算することで、釣合おもり7の調整精度を向上させることができる。これにより、試行錯誤的な調整が不要となり、釣合おもり7の調整時間を削減することができる。 As described above, in the first embodiment, the weight of the test weight is calculated from the current when there is no load, the test weight is added to the balanced weight 7, the operation is performed, and the error of the torque constant is calculated. The adjustment accuracy of the weight 7 can be improved. As a result, trial and error adjustment becomes unnecessary, and the adjustment time of the balance weight 7 can be reduced.
実施の形態2.
 以下、本願の実施の形態2の釣合おもりの調整方法について説明する。実施の形態1では、試験おもりを釣合おもり7に積んだ状態で釣合おもり7の調整量を計算する例を説明したが、実施の形態2では、乗りかご1に試験おもりを積んだ状態で、トルク定数を算出し、釣合おもり7の調整量を計算する例を説明する。
Embodiment 2.
Hereinafter, a method for adjusting the balance weight according to the second embodiment of the present application will be described. In the first embodiment, an example of calculating the adjustment amount of the balanced weight 7 in a state where the test weight is loaded on the balanced weight 7 has been described, but in the second embodiment, the test weight is loaded on the car 1. Then, an example of calculating the torque constant and calculating the adjustment amount of the balance weight 7 will be described.
 本願の実施の形態2の釣合おもりの調整方法を用いて釣合おもりの重量調整を行うエレベータ装置100の全体構成は実施の形態1で示した図1の構成と同様である。また、本願の実施の形態2の調整量算出装置60の詳細な構成も、実施の形態1で示した図2の構成と同様である。 The overall configuration of the elevator device 100 that adjusts the weight of the balanced weight using the method of adjusting the balanced weight of the second embodiment of the present application is the same as the configuration of FIG. 1 shown in the first embodiment. Further, the detailed configuration of the adjustment amount calculation device 60 of the second embodiment of the present application is also the same as the configuration of FIG. 2 shown in the first embodiment.
 本願の実施の形態2の調整量算出装置60の動作について図6を用いて説明する。図6は本願の実施の形態2の調整量算出装置60の動作を示すフローチャートである。実施の形態2のステップS200からステップS209までの動作は、実施の形態1のステップS100からステップS109までの動作と同様なので、ステップS210から説明する。 The operation of the adjustment amount calculation device 60 according to the second embodiment of the present application will be described with reference to FIG. FIG. 6 is a flowchart showing the operation of the adjustment amount calculation device 60 according to the second embodiment of the present application. Since the operation from step S200 to step S209 of the second embodiment is the same as the operation from step S100 to step S109 of the first embodiment, it will be described from step S210.
 なお、実施の形態2では、実施の形態1のステップS110にて行った釣合おもりのおよその調整量Weは算出しない。実施の形態1ではトルク定数がトルク定数の設定値であるとして、釣合おもり7のおよその調整量を求めて試験おもりを釣合おもり7に積載して重量を調整したが、実施の形態2では乗りかご1に試験おもりを積むからである。実施の形態2の試験おもりの重量には、特に制約はない。 In the second embodiment, the approximate adjustment amount We of the balance weight performed in step S110 of the first embodiment is not calculated. In the first embodiment, assuming that the torque constant is a set value of the torque constant, the test weight is loaded on the balance weight 7 to adjust the weight by obtaining an approximate adjustment amount of the balance weight 7, but the second embodiment has a second embodiment. This is because the test weight is loaded in the car 1. The weight of the test weight of the second embodiment is not particularly limited.
 ステップS210では、ステップS111と同様に、試験おもりの重量が入力されたかを動作制御部61が判断する。なお、試験おもりの積載は、実施の形態1と同様、作業員またはエレベータ装置100が行う。具体的には、演算部64が数値記憶部632に試験おもりの重量W1が入力されたか否かを確認する。 In step S210, the operation control unit 61 determines whether or not the weight of the test weight has been input, as in step S111. The test weight is loaded by the worker or the elevator device 100 as in the first embodiment. Specifically, the calculation unit 64 confirms whether or not the weight W 1 of the test weight has been input to the numerical storage unit 632.
 ステップS210にて試験おもりの重量が入力されたと判断すると、ステップS200に戻り、ステップS200からステップS209の動作を再度行う。 If it is determined that the weight of the test weight has been input in step S210, the process returns to step S200, and the operations from step S200 to step S209 are performed again.
 ステップS210の後に、ステップS209の電流値を4回取得し終えたかの判断を実施すると、電流値を4回取得したと判断されるので、ステップS211に進む。 If it is determined whether the current value of step S209 has been acquired four times after step S210, it is determined that the current value has been acquired four times, so the process proceeds to step S211.
 ステップS211ではトルク定数を求める。ここで、トルク定数の算出方法について説明する。 In step S211, the torque constant is calculated. Here, a method of calculating the torque constant will be described.
 乗りかごに重量W1の試験おもりを積んだとき、上昇運転中の電流値I3と下降運転中の電流値I4は、I1とI2に試験おもりの重量を差し引いた値となる。したがって、重量W1の試験おもりを乗りかご1に追加した状態で、乗りかご1が定速で下降運転中の昇降路中間位置での電流値I4は下記の数式10で表される。 When a test weight with a weight of W1 is loaded on the car, the current value I 3 during ascending operation and the current value I 4 during descending operation are the values obtained by subtracting the weight of the test weight from I 1 and I 2 . Therefore, with the test weight of weight W 1 added to the car 1, the current value I 4 at the intermediate position of the hoistway while the car 1 is descending at a constant speed is expressed by the following mathematical formula 10.
Figure JPOXMLDOC01-appb-M000010
 また、試験おもりを乗りかご1に追加した状態で、乗りかごが定速で上昇運転中の昇降路中間位置での電流値I4は、釣合おもりについての力のつり合いより下記の数式11で表される。
Figure JPOXMLDOC01-appb-M000010
In addition, with the test weight added to the car 1, the current value I 4 at the intermediate position of the hoistway while the car is operating at a constant speed is calculated by the following formula 11 from the balance of the forces of the balanced weight. expressed.
Figure JPOXMLDOC01-appb-M000011
 数式10、数式11で求められる電流値I3と電流値I4は、図4に示す、I1~I4と同様に表すことができる。数式1、数式2、数式10、数式11により算出されるI1、I2、I3、I4を用い、トルク定数は下記数式12により算出できる。
Figure JPOXMLDOC01-appb-M000011
The current values I 3 and the current values I 4 obtained by the formulas 10 and 11 can be expressed in the same manner as I 1 to I 4 shown in FIG. The torque constant can be calculated by the following formula 12 using I 1 , I 2 , I 3 , and I 4 calculated by the formula 1, formula 2, formula 10, and formula 11.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 ステップS211にてトルク定数を算出した後、ステップS212に進み、釣合おもり7の調整量を算出する。数式12で算出されるトルク定数と電流値I1、I2、I3、I4により、釣合おもり7の調整量Weは下記数式13により算出される。 After calculating the torque constant in step S211, the process proceeds to step S212 to calculate the adjustment amount of the balance weight 7. The formula 12 a torque constant and the current value calculated by I 1, I 2, I 3 , I 4, the adjustment amount W e of the counterweight 7 is calculated by the following equation 13.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 なお、実施の形態2の試験おもりの重量は、乗りかご1を無負荷で運転したときに比べて十分に電流値が変化するように試験おもりを積載する。これは数式13に示した調整量の計算式中の分母が0になることを防ぎ、精度良く調整量を計算するためである。 Note that the weight of the test weight of the second embodiment is loaded with the test weight so that the current value changes sufficiently as compared with the case where the car 1 is operated with no load. This is to prevent the denominator in the calculation formula of the adjustment amount shown in Equation 13 from becoming 0 and to calculate the adjustment amount with high accuracy.
 なお、釣合おもり7の重量の調整を作業員が行う場合、調整量算出装置60を用いなくてもよい。まず、作業員は乗りかご1が無負荷の状態で、乗りかご1を上昇させるときと下降させるときに、電動機4に供給される電流値を計測し、記録する。その後、作業員は乗りかご1に重量が既知の試験おもりを積載する。その後、作業員は、試験おもりを釣合おもり7に積載した状態で、乗りかご1を上昇させるときと下降させるときに、電動機4に供給される電流値を計測し、記録する。その後、作業員は記録した電流値と、試験おもりの重量とを用いて換算係数を算出する。その後作業員は、算出した換算係数を用いて、釣合おもり7の調整量を算出する。その後作業員は、算出した釣合おもり7の調整量で釣合おもり7を調整する。 When the worker adjusts the weight of the balance weight 7, it is not necessary to use the adjustment amount calculation device 60. First, the worker measures and records the current value supplied to the electric motor 4 when the car 1 is raised and lowered when the car 1 is unloaded. The worker then loads the car 1 with a test weight of known weight. After that, the worker measures and records the current value supplied to the electric motor 4 when raising and lowering the car 1 with the test weight loaded on the counterweight 7. After that, the worker calculates the conversion coefficient using the recorded current value and the weight of the test weight. After that, the worker calculates the adjustment amount of the balance weight 7 by using the calculated conversion coefficient. After that, the worker adjusts the balance weight 7 with the calculated adjustment amount of the balance weight 7.
 したがって、実施の形態2によれば、作業員は釣合おもり7の重量を1回調整することで、据付時の調整対象のエレベータ装置の換算係数を算出するとともに、正確な釣合おもり7の調整ができる。さらに、作業員が試験おもりを釣合おもり7に積載する場合、昇降路2内に立ち入らなければならないが、乗りかご1に試験おもりを積載する作業は昇降路2内に立ち入らずに実施できるという利点がある。 Therefore, according to the second embodiment, the worker adjusts the weight of the equilibrium weight 7 once to calculate the conversion coefficient of the elevator device to be adjusted at the time of installation, and at the same time, the operator accurately adjusts the weight of the equilibrium weight 7. Can be adjusted. Further, when the worker loads the test weight on the balanced weight 7, he / she must enter the hoistway 2, but the work of loading the test weight on the car 1 can be performed without entering the hoistway 2. There are advantages.
 以上より、実施の形態2によれば、乗りかご1が無負荷状態での上昇運転と下降運転の電流値I1、I2と、乗りかご1に試験おもりを積載した状態での上昇運転と下降運転の電流値I3、I4を取得することにより、トルク定数を算出し、正確な釣合おもり7の調整量を計算することができる。これにより、釣合おもり7の調整時間を削減することができ、釣合おもり7の調整の省力化が実現できる。 From the above, according to the second embodiment, the current values I 1 and I 2 of the ascending operation and the descending operation when the car 1 is in the no-load state, and the ascending operation in the state where the test weight is loaded on the car 1. By acquiring the current values I 3 and I 4 of the descent operation, the torque constant can be calculated and the accurate adjustment amount of the balance weight 7 can be calculated. As a result, the adjustment time of the balance weight 7 can be reduced, and the labor saving of the adjustment of the balance weight 7 can be realized.
 また、実施の形態2では、トルク定数の設定値の情報が未知でも、釣合おもり7の調整量を求めることができる。 Further, in the second embodiment, even if the information on the set value of the torque constant is unknown, the adjustment amount of the balance weight 7 can be obtained.
 なお、実施の形態1および実施の形態2では、電流値を取得して換算係数と、釣合おもりの調整量を算出したが、電動機4の出力を表す値であれば、例えば電流値の代わりにトルク指令値を取得して、換算係数と釣合おもりの調整量を算出してもよい。 In the first and second embodiments, the current value is acquired to calculate the conversion coefficient and the adjustment amount of the balance weight. However, if the value represents the output of the electric motor 4, for example, instead of the current value. The torque command value may be acquired and the conversion coefficient and the adjustment amount of the balance weight may be calculated.
 以下、図7を用いて実施の形態1、2に係る調整量算出装置60のハードウェア構成について説明する。図7は、実施の形態1、2の調整量算出装置60のハードウェア構成図である。調整量算出装置60は入力装置901、出力装置902、記憶装置903、及び処理装置904を備える。 Hereinafter, the hardware configuration of the adjustment amount calculation device 60 according to the first and second embodiments will be described with reference to FIG. 7. FIG. 7 is a hardware configuration diagram of the adjustment amount calculation device 60 of the first and second embodiments. The adjustment amount calculation device 60 includes an input device 901, an output device 902, a storage device 903, and a processing device 904.
 入力装置901は、調整量算出装置60の取得部62と表示操作部65が備える、情報が入力されるインターフェースである。このネットワークはLANケーブルまたは同軸ケーブル等の有線通信ネットワークでも、無線通信技術を用いた無線通信ネットワークでもよい。 The input device 901 is an interface for inputting information provided by the acquisition unit 62 and the display operation unit 65 of the adjustment amount calculation device 60. This network may be a wired communication network such as a LAN cable or a coaxial cable, or a wireless communication network using wireless communication technology.
 出力装置902は、調整量算出装置60の動作制御部61と、表示操作部65が備える。出力装置902は制御の信号またはインターフェースである。このネットワークはLANケーブルまたは同軸ケーブル等の有線通信ネットワークでも、無線通信技術を用いた無線通信ネットワークでもよい。 The output device 902 includes an operation control unit 61 of the adjustment amount calculation device 60 and a display operation unit 65. The output device 902 is a control signal or interface. This network may be a wired communication network such as a LAN cable or a coaxial cable, or a wireless communication network using wireless communication technology.
 記憶装置903は、調整量算出装置60の記憶部63が備える。ワーキングメモリなどに該当し、かご呼びがなされた階床を記憶する装置である。例えば、RAM、ROM、フラッシュメモリー等の不揮発性または揮発性の半導体メモリや、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク等が該当する。 The storage device 903 is provided in the storage unit 63 of the adjustment amount calculation device 60. It is a device that stores the floor on which the car was called, which corresponds to working memory. For example, non-volatile or volatile semiconductor memories such as RAM, ROM, and flash memory, magnetic disks, flexible disks, optical disks, compact disks, and the like are applicable.
処理装置904は、調整量算出装置60の動作制御部61と、演算部64が備える。処理装置904は専用のハードウェアであっても、記憶装置903に記録されるプログラムを実行するCPU(CentralProcessingUnit)であってもよい。 The processing device 904 includes an operation control unit 61 and a calculation unit 64 of the adjustment amount calculation device 60. The processing device 904 may be dedicated hardware or a CPU (Central Processing Unit) that executes a program recorded in the storage device 903.
 処理装置904が専用のハードウェアである場合、処理装置904は、例えば、単一回路、複合回路、プログラム化したプロセッサー、並列プログラム化したプロセッサー、ASIC、FPGA、またはこれらを組み合わせたものが該当する。 When the processing device 904 is dedicated hardware, the processing device 904 corresponds to, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof. ..
 処理装置904がCPUの場合、動作制御部61と、演算部64の機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアの組み合わせにより実現される。ソフトウェアやファームウェアはプログラムとして記述され、記憶装置903に記録される。処理装置904は記憶装置903に記憶されたプログラムを読み出して実行することにより、各部の機能を実現する。 When the processing device 904 is a CPU, the functions of the operation control unit 61 and the calculation unit 64 are realized by software, firmware, or a combination of software and firmware. Software and firmware are described as programs and recorded in the storage device 903. The processing device 904 realizes the functions of each part by reading and executing the program stored in the storage device 903.
 なお、動作制御部61と、演算部64の各機能は、一部をハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現するようにしてもよい。 Note that each function of the operation control unit 61 and the calculation unit 64 may be partially realized by hardware and partly realized by software or firmware.
 例えば、動作制御部61については専用のハードウェアとし、演算部64については記憶装置903に記録されたプログラムとして記述してその機能を実現してもよい。 For example, the operation control unit 61 may be described as dedicated hardware, and the calculation unit 64 may be described as a program recorded in the storage device 903 to realize its function.
 このように、処理装置904はハードウェア、ソフトウェア、ファームウェア、またはこれらの組み合わせによって、上述の各機能を実現することができる。 As described above, the processing device 904 can realize each of the above-mentioned functions by hardware, software, firmware, or a combination thereof.
 以上のようにして、本発明の調整量算出装置およびエレベータ装置の調整方法によれば、釣合おもりの調整量を正確に求めることで、釣合おもりの調整精度を向上させ、調整作業を省力化することができる。
As described above, according to the adjustment method of the adjustment amount calculation device and the elevator device of the present invention, by accurately obtaining the adjustment amount of the balance weight, the adjustment accuracy of the balance weight is improved and the adjustment work is saved. Can be transformed into.
 100 エレベータ装置
   1 乗りかご
   2 昇降路
   3 機械室
   4 電動機
   5 シーブ
   6 制御装置
   7 釣合おもり
   8 ロープ
  41 移動量検出器
  60 調整量算出装置
  61 動作制御部
  62 取得部
 621 電流値取得部
 622 かご位置取得部
 623 電流値取得指示部
  63 記憶部
 631 定数記憶部
 632 数値記憶部
  64 演算部
 641 換算係数算出部
 642 調整量算出部
 643 調整判断部
  65 表示操作部
 651 動作開始指示部
 652 設定値入力部
 653 表示部
 901 入力装置
 902 出力装置
 903 記憶装置
 904 処理装置
100 Elevator device 1 Car 2 Hoistway 3 Machine room 4 Electric motor 5 Sheave 6 Control device 7 Balanced weight 8 Rope 41 Movement amount detector 60 Adjustment amount calculation device 61 Operation control unit 62 Acquisition unit 621 Current value acquisition unit 622 Car position Acquisition unit 623 Current value acquisition instruction unit 63 Storage unit 631 Constant storage unit 632 Numerical value storage unit 64 Calculation unit 641 Conversion coefficient calculation unit 642 Adjustment amount calculation unit 643 Adjustment judgment unit 65 Display operation unit 651 Operation start instruction unit 652 Setting value input unit 653 Display 901 Input device 902 Output device 903 Storage device 904 Processing device

Claims (13)

  1.  乗りかごと釣合おもりとが取り付けられたロープが巻き掛けられたシーブと、前記シーブを回転させる電動機と、を備えるエレベータ装置の調整量算出装置において、
     前記乗りかごが無負荷の状態と、前記乗りかごまたは前記釣合おもりに既知の重量の試験おもりを積載した状態とで、前記乗りかごを上昇および下降させる動作制御部と、
     前記動作制御部が前記乗りかごを上昇させるときと下降させるときに、前記電動機に供給される電流値を取得する電流値取得部と、
     前記電流値取得部が取得した電流値と、前記試験おもりの重量とを用いて前記釣合おもりの調整量の算出に用いる換算係数を算出する換算係数算出部と、
     前記電流値取得部が取得した電流値と、前記換算係数算出部が算出した前記換算係数を用いて、前記釣合おもりの調整量を算出する調整量算出部と、
     を備えることを特徴とする調整量算出装置。
    In the adjustment amount calculation device of an elevator device including a sheave around which a rope around which a riding car and a balance weight are attached and an electric motor for rotating the sheave are provided.
    An operation control unit for raising and lowering the car in a state where the car is unloaded and a state in which a test weight of a known weight is loaded on the car or the balance weight.
    A current value acquisition unit that acquires a current value supplied to the electric motor when the operation control unit raises and lowers the car.
    A conversion coefficient calculation unit that calculates a conversion coefficient used to calculate the adjustment amount of the balance weight using the current value acquired by the current value acquisition unit and the weight of the test weight.
    An adjustment amount calculation unit that calculates an adjustment amount of the balance weight by using the current value acquired by the current value acquisition unit and the conversion coefficient calculated by the conversion coefficient calculation unit.
    An adjustment amount calculation device, which comprises.
  2.  前記調整量算出部が算出した前記釣合おもりの調整量を表示する表示部を備え、
     前記動作制御部は、前記釣合おもりに前記試験おもりを積載した状態で、前記乗りかごを上昇および下降させ、
     前記調整量算出部は、
     前記乗りかごが無負荷の状態で前記電流値取得部が取得した電流値と、換算係数の設定値とを用い、前記試験おもりの重量として前記釣合おもりの調整量を算出し、
     前記換算係数算出部が算出した前記換算係数と、前記換算係数の設定値との誤差が、所定範囲以内であるか否かを判断し、前記所定範囲以内でないと判断した場合、前記換算係数算出部が算出した前記換算係数とを用いて、前記釣合おもりの調整量を再度算出し、前記所定範囲以内であると判断した場合、前記釣合おもりの調整が完了した旨を前記表示部に表示させる
     ことを特徴とする請求項1に記載の調整量算出装置。
    A display unit for displaying the adjustment amount of the balance weight calculated by the adjustment amount calculation unit is provided.
    The motion control unit raises and lowers the car in a state where the test weight is loaded on the balance weight.
    The adjustment amount calculation unit
    Using the current value acquired by the current value acquisition unit with no load on the car and the set value of the conversion coefficient, the adjustment amount of the balance weight is calculated as the weight of the test weight.
    It is determined whether or not the error between the conversion coefficient calculated by the conversion coefficient calculation unit and the set value of the conversion coefficient is within a predetermined range, and if it is determined that the error is not within the predetermined range, the conversion coefficient is calculated. When the adjustment amount of the balance weight is calculated again using the conversion coefficient calculated by the unit and it is determined that the adjustment amount is within the predetermined range, the display unit indicates that the adjustment of the balance weight is completed. The adjustment amount calculation device according to claim 1, wherein the adjustment amount is displayed.
  3.  前記調整量算出部は、前記試験おもりの重量を、前記乗りかごが無負荷の状態で上昇させるときに前記電流値取得部が取得した電流値と下降させるときに前記電流値取得部が取得した電流値との和と、前記換算係数の設定値とを用いて算出する、
     ことを特徴とする請求項2に記載の調整量算出装置。
    The adjustment amount calculation unit was acquired by the current value acquisition unit when the weight of the test weight was increased with the current value acquired by the current value acquisition unit when the car was unloaded and decreased. Calculated using the sum of the current value and the set value of the conversion coefficient.
    The adjustment amount calculation device according to claim 2, wherein the adjustment amount is calculated.
  4.  前記動作制御部は、前記乗りかごに前記試験おもりを積載した状態で、前記乗りかごを上昇および下降させる
     ことを特徴とする請求項1に記載の調整量算出装置。
    The adjustment amount calculation device according to claim 1, wherein the motion control unit raises and lowers the car in a state where the test weight is loaded on the car.
  5.  前記調整量算出部は、前記乗りかごが無負荷の状態で上昇させるときに前記電流値取得部が取得した電流値と下降させるときに前記電流値取得部が取得した電流値との和と、前記乗りかごまたは前記釣合おもりに前記試験おもりを積載した状態で上昇させるときに前記電流値取得部が取得した電流値と下降させるときに前記電流値取得部が取得した電流値との和と、前記換算係数算出部が算出した前記換算係数を用いて、前記釣合おもりの調整量を算出する
     ことを特徴とする請求項1から4のいずれか1項に記載の調整量算出装置。
    The adjustment amount calculation unit determines the sum of the current value acquired by the current value acquisition unit when the vehicle is raised in a no-load state and the current value acquired by the current value acquisition unit when the vehicle is lowered. The sum of the current value acquired by the current value acquisition unit when raising the test weight while the test weight is loaded on the car or the balance weight and the current value acquired by the current value acquisition unit when lowering the test weight. The adjustment amount calculation device according to any one of claims 1 to 4, wherein the adjustment amount of the balance weight is calculated by using the conversion coefficient calculated by the conversion coefficient calculation unit.
  6.  前記換算係数算出部が算出する前記換算係数は、前記電動機に供給される電流値を前記電動機のトルク値に換算するトルク定数である
     ことを特徴とする請求項1から5のいずれか1項に記載の調整量算出装置。
    The conversion coefficient calculated by the conversion coefficient calculation unit is any one of claims 1 to 5, characterized in that the conversion coefficient is a torque constant that converts the current value supplied to the electric motor into the torque value of the electric motor. The described adjustment amount calculation device.
  7.  前記電流値取得部は、前記乗りかごが定速で走行し、前記乗りかごと前記シーブとの距離、および前記釣合おもりと前記シーブとの距離が同じときに電流値を取得する
     ことを特徴とする請求項1から6のいずれか1項に記載の調整量算出装置。
    The current value acquisition unit is characterized in that the car travels at a constant speed and acquires a current value when the distance between the car and the sheave and the distance between the balance weight and the sheave are the same. The adjustment amount calculation device according to any one of claims 1 to 6.
  8.  前記電流値取得部は、取得した電流値に対して、平均化処理を実施する
     ことを特徴とする請求項1から7のいずれか1項に記載の調整量算出装置。
    The adjustment amount calculation device according to any one of claims 1 to 7, wherein the current value acquisition unit performs an averaging process on the acquired current value.
  9.  前記電流値取得部は、取得した電流値に対して、共振周波数を除去するフィルタ処理を実施する
     ことを特徴とする請求項1から8のいずれか1項に記載の調整量算出装置。
    The adjustment amount calculation device according to any one of claims 1 to 8, wherein the current value acquisition unit performs a filter process for removing the resonance frequency on the acquired current value.
  10.  乗りかごと釣合おもりとが取り付けられたロープが巻き掛けられたシーブと、前記シーブを回転させる電動機と、を備えるエレベータ装置の調整方法であって、
     前記乗りかごが無負荷の状態で、前記乗りかごを上昇させるときと下降させるときに、前記電動機に供給される電流値を取得するステップと、
     前記乗りかごが無負荷の状態で取得した電流値と、前記釣合おもりの調整量の算出に用いる換算係数の設定値とを用い、試験おもりの重量として前記釣合おもりの調整量を算出するステップと、
     前記試験おもりを前記釣合おもりに積載した状態で、前記乗りかごを上昇させるときと下降させるときに、前記電動機に供給される電流値を取得するステップと、
     取得した電流値と、前記試験おもりの重量とを用いて換算係数を算出するステップと、
     算出した換算係数と、前記換算係数の設定値との誤差を算出するステップと、
     前記誤差が、所定範囲以内であるか否かを判断し、前記所定範囲以内ではないと判断した場合に、算出した前記換算係数を用いて、前記釣合おもりの調整量を再度算出し、算出した前記釣合おもりの調整量で前記釣合おもりを調整するステップ
     を備えるエレベータ装置の調整方法。
    It is a method of adjusting an elevator device including a sheave around which a rope around which a riding basket and a balancing weight are attached and an electric motor for rotating the sheave are provided.
    A step of acquiring the current value supplied to the electric motor when the car is raised and lowered when the car is unloaded.
    The adjustment amount of the balance weight is calculated as the weight of the test weight by using the current value acquired when the car is unloaded and the set value of the conversion coefficient used for calculating the adjustment amount of the balance weight. Steps and
    With the test weight loaded on the balance weight, a step of acquiring the current value supplied to the electric motor when raising and lowering the car, and
    A step of calculating a conversion coefficient using the acquired current value and the weight of the test weight, and
    Steps to calculate the error between the calculated conversion coefficient and the set value of the conversion coefficient,
    It is determined whether or not the error is within the predetermined range, and when it is determined that the error is not within the predetermined range, the adjusted amount of the balance weight is recalculated and calculated using the calculated conversion coefficient. A method of adjusting an elevator device including a step of adjusting the balanced weight with the adjusted amount of the balanced weight.
  11.  乗りかごと釣合おもりとが取り付けられたロープが巻き掛けられたシーブと、前記シーブを回転させる電動機と、を備えるエレベータ装置の調整方法であって、
     前記乗りかごが無負荷の状態で、前記乗りかごを上昇させるときと下降させるときに、前記電動機に供給される電流値を取得するステップと、
     前記乗りかごに重量が既知の試験おもりを積載するステップと、
     前記試験おもりを前記釣合おもりに積載した状態で、前記乗りかごを上昇させるときと下降させるときに、前記電動機に供給される電流値を取得するステップと、
     取得した電流値と、前記試験おもりの重量とを用いて換算係数を算出するステップと、
     算出した前記換算係数を用いて、前記釣合おもりの調整量を算出するステップと、
     算出した前記釣合おもりの調整量で前記釣合おもりを調整するステップ
     を備えるエレベータ装置の調整方法。
    It is a method of adjusting an elevator device including a sheave around which a rope around which a riding basket and a balancing weight are attached and an electric motor for rotating the sheave are provided.
    A step of acquiring the current value supplied to the electric motor when the car is raised and lowered when the car is unloaded.
    A step of loading a test weight of known weight into the car,
    With the test weight loaded on the balance weight, a step of acquiring the current value supplied to the electric motor when raising and lowering the car, and
    A step of calculating a conversion coefficient using the acquired current value and the weight of the test weight, and
    Using the calculated conversion coefficient, the step of calculating the adjustment amount of the balance weight and
    An adjustment method of an elevator device including a step of adjusting the balance weight with the calculated adjustment amount of the balance weight.
  12.  前記換算係数は、前記電動機に供給される電流値を、前記電動機のトルク値に換算するトルク定数である
     ことを特徴とする請求項10または11に記載のエレベータ装置の調整方法。
    The method for adjusting an elevator device according to claim 10 or 11, wherein the conversion coefficient is a torque constant that converts a current value supplied to the electric motor into a torque value of the electric motor.
  13.  電流値を取得する前記ステップは、前記乗りかごが定速で走行し、前記乗りかごと前記シーブとの距離、および前記釣合おもりと前記シーブとの距離が同じときに電流値を取得する
     ことを特徴とする請求項10から12のいずれか1項に記載のエレベータ装置の調整方法。
    In the step of acquiring the current value, the current value is acquired when the car travels at a constant speed and the distance between the car and the sheave and the distance between the balance weight and the sheave are the same. The method for adjusting an elevator device according to any one of claims 10 to 12, wherein the elevator device is adjusted.
PCT/JP2019/023211 2019-06-12 2019-06-12 Adjustment calculation device and adjustment method for elevator device WO2020250329A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021525465A JP7088415B2 (en) 2019-06-12 2019-06-12 Adjustment amount calculation device and elevator device adjustment method
PCT/JP2019/023211 WO2020250329A1 (en) 2019-06-12 2019-06-12 Adjustment calculation device and adjustment method for elevator device
CN201980097179.8A CN113905967B (en) 2019-06-12 2019-06-12 Adjustment amount calculation device and adjustment method for elevator device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/023211 WO2020250329A1 (en) 2019-06-12 2019-06-12 Adjustment calculation device and adjustment method for elevator device

Publications (1)

Publication Number Publication Date
WO2020250329A1 true WO2020250329A1 (en) 2020-12-17

Family

ID=73781353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023211 WO2020250329A1 (en) 2019-06-12 2019-06-12 Adjustment calculation device and adjustment method for elevator device

Country Status (3)

Country Link
JP (1) JP7088415B2 (en)
CN (1) CN113905967B (en)
WO (1) WO2020250329A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022269018A1 (en) * 2021-06-25 2022-12-29 Inventio Ag Method for adapting a counterweight of an elevator system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000128445A (en) * 1998-10-27 2000-05-09 Hitachi Ltd Controller for geared elevator
JP2010208772A (en) * 2009-03-09 2010-09-24 Toshiba Elevator Co Ltd Elevator
WO2014051517A1 (en) * 2012-09-28 2014-04-03 Arbeit Sicher Pte Ltd Active compensation in an elevator system
WO2018100632A1 (en) * 2016-11-29 2018-06-07 三菱電機株式会社 Elevator control device and elevator control method
WO2019008650A1 (en) * 2017-07-03 2019-01-10 三菱電機株式会社 Elevator control device and elevator control method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005306557A (en) * 2004-04-22 2005-11-04 Fujitec Co Ltd Adjustment device of elevator
CN201545578U (en) * 2009-11-17 2010-08-11 赵瑞文 Elevator automatically balancing self-counterweight
CN104909243A (en) * 2014-03-11 2015-09-16 深圳市特种设备安全检验研究院 Automatic adjusting device for load weight of traction type elevator
CN103991765B (en) * 2014-06-06 2016-03-23 重庆市特种设备检测研究院 Balance coefficient of elevator test macro and method
CN104118781B (en) * 2014-07-08 2017-01-11 上海新时达电气股份有限公司 Method for determining balance coefficient

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000128445A (en) * 1998-10-27 2000-05-09 Hitachi Ltd Controller for geared elevator
JP2010208772A (en) * 2009-03-09 2010-09-24 Toshiba Elevator Co Ltd Elevator
WO2014051517A1 (en) * 2012-09-28 2014-04-03 Arbeit Sicher Pte Ltd Active compensation in an elevator system
WO2018100632A1 (en) * 2016-11-29 2018-06-07 三菱電機株式会社 Elevator control device and elevator control method
WO2019008650A1 (en) * 2017-07-03 2019-01-10 三菱電機株式会社 Elevator control device and elevator control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022269018A1 (en) * 2021-06-25 2022-12-29 Inventio Ag Method for adapting a counterweight of an elevator system

Also Published As

Publication number Publication date
CN113905967A (en) 2022-01-07
CN113905967B (en) 2022-12-13
JP7088415B2 (en) 2022-06-21
JPWO2020250329A1 (en) 2021-11-25

Similar Documents

Publication Publication Date Title
JP3936578B2 (en) Elevator hoisting machine and control system
JP5036147B2 (en) Elevator speed control device, speed control method, and speed control program
JP5322102B2 (en) elevator
CN112384462B (en) Elevator diagnosis system
JP7088415B2 (en) Adjustment amount calculation device and elevator device adjustment method
JP6599025B2 (en) Elevator control device and elevator control method
JP2007039240A (en) Counter clearance measuring device of elevator and its measuring method
EP2033925A1 (en) Elevator car, elevator comprising such an elevator car and method for controlling an elevator car
JP4230139B2 (en) Elevator control device
JP4727234B2 (en) Elevator equipment
JP6419638B2 (en) Car elevator
JP3188743B2 (en) Elevator control device
JP2005289627A (en) Elevator
JP4419517B2 (en) Control method of motor for driving lifting machine
JP2001328778A (en) Elevator counterweight lowering buffer distance measurement device
JP2502189B2 (en) Elevator adjustment device
JP4216671B2 (en) Elevator scale device calibration apparatus and elevator scale apparatus calibration method
WO2016189632A1 (en) Elevator device
US20230150794A1 (en) Drive system and method for controlling a drive system
JP7154438B2 (en) Elevator tension measuring device
KR101913592B1 (en) Method for anti-rollback driving of elevator
JPH04308176A (en) Unbalanced load correction value adjusting device for elevator
JP2004051311A (en) Elevator control device
JP2000238969A (en) Balance point adjusting method for elevator car
JP2007246262A (en) Control device for elevator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19932289

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021525465

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19932289

Country of ref document: EP

Kind code of ref document: A1