WO2020248931A1 - 万瓦级别的超高功率全光纤连续光纤激光器系统 - Google Patents

万瓦级别的超高功率全光纤连续光纤激光器系统 Download PDF

Info

Publication number
WO2020248931A1
WO2020248931A1 PCT/CN2020/094881 CN2020094881W WO2020248931A1 WO 2020248931 A1 WO2020248931 A1 WO 2020248931A1 CN 2020094881 W CN2020094881 W CN 2020094881W WO 2020248931 A1 WO2020248931 A1 WO 2020248931A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
module
power
output
electronic control
Prior art date
Application number
PCT/CN2020/094881
Other languages
English (en)
French (fr)
Inventor
杨德权
吕张勇
李辉辉
师腾飞
王英
蒋峰
Original Assignee
苏州创鑫激光科技有限公司
深圳市创鑫激光股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州创鑫激光科技有限公司, 深圳市创鑫激光股份有限公司 filed Critical 苏州创鑫激光科技有限公司
Publication of WO2020248931A1 publication Critical patent/WO2020248931A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0407Liquid cooling, e.g. by water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/0912Electronics or drivers for the pump source, i.e. details of drivers or circuitry specific for laser pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor

Definitions

  • the embodiments of the present application relate to the field of laser technology, and in particular to a 10,000-watt ultra-high power all-fiber continuous fiber laser system.
  • Fiber laser refers to a laser that uses rare-earth-doped fiber as the laser working material.
  • Rare earth-doped fiber as a gain medium has good winding flexibility, larger volume/surface area ratio, unique waveguide characteristics and other characteristics, which makes fiber lasers more efficient, good heat dissipation, and high beam quality compared to other types of lasers. Good compatibility, simple and compact structure, convenient and reliable use, long working life, easy maintenance, etc.
  • Medium and high power fiber lasers are mainly used in metal cutting, welding and cladding processes.
  • the embodiments of the present application are proposed to provide a 10,000-watt ultra-high power all-fiber continuous fiber laser system that overcomes the foregoing problems or at least partially solves the foregoing problems.
  • the embodiment of the present application discloses a 10,000-watt ultra-high power all-fiber continuous fiber laser system, including:
  • the overall electronic control module is used to control the opening or closing of each of the laser modules, and to monitor the operating status of each of the laser modules and the laser synthesis module;
  • the laser module is used to independently generate laser light with a preset first power
  • the laser synthesis module is used to couple the laser output from the turned-on laser module and output the coupled laser with the preset second power.
  • the at least two laser modules are independent of each other, and each of the laser modules includes:
  • a sub electronic control module connected to the main electronic control module, a sub power module connected to the sub electronic control module, an output terminal of the sub power module and a laser module connected to the sub electronic control module;
  • the output end of the laser module is connected with the input end of the laser synthesis module;
  • the sub-electronic control module is used to monitor the operating status of the laser module and the corresponding sub-power module, and feed back the monitoring result to the main electronic control module;
  • the master electronic control module is configured to adjust the output current of the corresponding sub power module according to the monitoring result
  • the sub-power module is used to provide power to the laser module
  • it also includes:
  • the at least two laser modules are respectively detachably connected to the master electronic control module;
  • the laser synthesis module is detachably connected to the at least two laser modules;
  • the sub electronic control module is detachably connected to the main electronic control module.
  • the laser module includes:
  • An oscillating module an amplifying module with one end connected to the oscillation module and the other end connected to the laser synthesis module;
  • the oscillating module is used to generate oscillating laser light with a preset third power
  • the amplifying module is configured to receive the oscillating laser and amplify the oscillating laser to generate the laser with the preset first power.
  • the laser module further includes:
  • the optical power feedback detector connected to the output terminal of the amplifying module is used to detect the output power of the amplifying module and send the detection result to the main electronic control module through the sub-electronic control module.
  • the control module is configured to adjust the output current of the corresponding sub-power module according to the detection result.
  • a laser beam combiner, and a mode matching device respectively connected to the output fiber of the laser module and the input fiber of the laser beam combiner;
  • the laser beam combiner is used to couple the laser light output by the turned-on laser module and output the coupled laser light.
  • the laser synthesis module further includes:
  • At least one laser module output power detector arranged on the input end of the laser beam combiner, and a beam combiner output power detector arranged inside the laser beam combiner;
  • the at least one laser module output power detector is used to detect the output power of the at least one laser module, and send the laser module power output feedback signal generated by the at least one laser module output power detector to the total power supply
  • a control module, the overall electronic control module is used to adjust the output current of the corresponding sub-power module according to the power output feedback signal of the laser module;
  • the beam combiner output power detector is used to detect the output power of the laser beam combiner, and send the beam combiner power output feedback signal generated by the beam combiner output power detector to the total electric control Module, the overall electronic control module is used to adjust the output current of the sub power supply module according to the power output feedback signal of the combiner.
  • it also includes:
  • One end is connected with the output end of the laser synthesis module, and the other end is a melting point box that outputs laser light through a transmission optical cable.
  • the melting point box includes:
  • a welding point placement slot a return light monitoring detector arranged above the welding point placement slot, and a melting point box signal transfer interface
  • the welding point between the output end of the laser synthesis module and the input end of the laser transmission optical cable is arranged in the welding point placement slot;
  • the return light monitoring detector is used to monitor the return light power of the return light returning to the melting point box, and generate a return light feedback signal
  • the melting point box signal transfer interface is used to send the return light feedback signal to the master electronic control module, and the master electronic control module is used to monitor the operating state of the melting point box according to the return light feedback signal.
  • the number of the laser modules is 2-7.
  • it also includes:
  • a laser output head connected to the output end of the laser synthesis module through an optical fiber, a switching power supply connected to the main electronic control module and the sub electronic control module, a dehumidifier and an air conditioner;
  • the switching power supply is used to provide electrical energy for the main electronic control module and the sub electronic control modules.
  • the water path of the water chiller includes a water-cooled main path and a water-cooled auxiliary path;
  • the water-cooled main circuit is used to cool the laser module, the laser synthesis module, and the dehumidifier;
  • the water-cooled auxiliary circuit is used for cooling the sub-power module and the laser output head.
  • it also includes a water cooling plate
  • the water cooling plate is used to reduce the heat generated by the operation of the at least one laser module, the at least one sub-power module, the laser synthesis module, and the melting point box.
  • it also includes:
  • At least one temperature feedback detector arranged on the water cooling plate
  • the at least one temperature feedback detector is used to detect the water cooling temperature of the laser module, the laser synthesis module, and the melting point box, and send the detected water cooling temperature to the master electronic control module,
  • the total electronic control module is used to adjust the running state of the water chiller according to the water cooling temperature.
  • An external voltage stabilizer a main switch connected to the output end of the external voltage stabilizer, one end connected to the main switch, and the other end connected to the input end of the sub-power module, and one end connected to the The main switch is connected, and the other end is connected to the pressure reducer of the air conditioner;
  • the external voltage regulator is used to output a stable voltage
  • the main switch is used to control the voltage output of the external regulator
  • the at least one power module strong current switch is used to control the voltage input of the sub power module
  • the step-down device is used to provide a stable input voltage for the air conditioner.
  • the laser combining module further includes: a laser beam combiner temperature feedback detector located inside the laser beam combiner;
  • the beam combiner temperature feedback detector is used to detect the internal temperature of the laser beam combiner, and send the generated beam combiner temperature feedback signal to the overall electronic control module, which is used for Adjusting the operating state of the water chiller according to the temperature feedback signal of the combiner.
  • it also includes:
  • a laser synthesis module signal transfer interface connected to the at least one laser module output power detector, the laser beam combiner temperature feedback detector, and the laser module output power detector;
  • the laser synthesis module signal transfer interface is used to send the beam combiner power output feedback signal, the beam combiner temperature feedback signal, and the laser module power output feedback signal to the total electronic control module, and
  • the total electronic control module is used to adjust the output current of the sub-power module according to the power output feedback signal of the beam combiner and the power output feedback signal of the laser module; the total electronic control module is used to adjust the output current of the sub power supply module according to the temperature of the beam combiner
  • the feedback signal regulates the running state of the water chiller.
  • it also includes:
  • the laser module, the laser synthesis module, the sub-power supply module and the melting point box are detachably arranged in the laser system; the laser module and the laser synthesis module are located above the sub-power supply module, The melting point box is located above the laser module and the laser synthesis module.
  • the main electronic control module controls the opening or closing of the laser module; and the main electronic control module monitors the operation status of the laser module and the laser synthesis module; thereby achieving closed-loop control of the laser system.
  • the total electronic control module of the embodiment of the present application controls multiple laser modules to output lasers, and couples the output lasers through the laser synthesis module, thereby realizing high-power laser output.
  • the modular design of the sub-electronic control module, sub-power module, and laser module into a laser module the structure and function design of the ultra-high-power all-fiber continuous fiber laser system at the 10,000 watt level is simple and easy to commercialize Mass production.
  • FIG. 1 is a structural block diagram of a 10,000-watt ultra-high power all-fiber continuous fiber laser system according to an embodiment of the present application
  • FIG. 2 is a structural block diagram of a 10,000-watt ultra-high power all-fiber continuous fiber laser system according to an embodiment of the present application
  • FIG. 3 is a block diagram of the optical system structure of a 10,000-watt ultra-high power all-fiber continuous fiber laser system according to an embodiment of the present application;
  • FIG. 4 is a block diagram of a water cooling system structure of a 10,000-watt ultra-high power all-fiber continuous fiber laser system according to an embodiment of the present application;
  • FIG. 5 is a block diagram of the power system structure of a 10,000-watt ultra-high power all-fiber continuous fiber laser system according to an embodiment of the present application
  • FIG. 6 is a block diagram of the electronic control system structure of a 10,000-watt ultra-high power all-fiber continuous fiber laser system according to an embodiment of the present application;
  • Fig. 7 is a structural block diagram of an implementation case of a 10,000-watt ultra-high power all-fiber continuous fiber laser system according to an embodiment of the present application.
  • the overall electronic control module 101 is used to control the opening or closing of each of the laser modules 102, and to separately monitor the operating status of each of the laser modules 102 and the laser synthesis module 103;
  • the laser module 102 is used to independently generate laser light with a preset first power
  • the laser synthesis module 103 is configured to couple the laser light output by the laser module 102 that is turned on, and output the coupled laser light of the preset second power.
  • the main electronic control module 101 is connected to the laser module 102 and the laser synthesis module 103, and receives feedback signals from the laser module 102 and the laser synthesis module 103 to monitor the laser module 102 and the laser synthesis module 103 running status. At the same time, the number of activated or deactivated laser modules 102 is controlled according to the feedback signal.
  • the laser module 102 is used to output laser with a certain power, and the upper limit of the laser power is limited by the specifications of the laser module 102.
  • the laser synthesis module 103 is used to couple the laser output from at least one laser module 102 to the same optical path output to achieve high-power laser output.
  • the number of the laser modules is 2-7.
  • 3-7 laser modules 102 such as 4000W can be used to supply lasers to the system.
  • the total electronic control module 101 determines the number of activated laser modules 102 according to the total laser power that needs to be output. For example, when it is necessary to output a laser power of 20000W, 5 laser modules 102 can be turned on, and the laser light output by the 5 laser modules 102 can be coupled by the laser synthesis module 103 to output 20000W laser light.
  • FIG. 2 there is shown a structural block diagram of a 10,000-watt ultra-high power all-fiber continuous fiber laser system according to an embodiment of the present application.
  • each of the laser modules 102 may include: a sub-electronic control module 1021 connected to the main electronic control module 101 and the sub-electronic control module 101
  • the sub-power module 1022 connected to the control module 1021 and the output terminal of the sub-power module 1022 and the laser module 1023 connected to the sub-electronic control module 1021; the output terminal of the laser module 1023 and the input of the laser synthesis module 103 End connection
  • the sub electronic control module 1021 is used to monitor the operating status of the laser module 1023 and the corresponding sub power module 1022, and feed back the monitoring result to the general electronic control module 101; the general electronic control module 101 Used to adjust the output current of the corresponding sub-power module 1022 according to the monitoring result;
  • the sub-power module 1022 is used to provide power to the laser module 1023;
  • the laser module 1023 is used to generate laser light with a preset first power.
  • the at least two laser modules 102 are detachably connected to the overall electronic control module 101; the laser synthesis module 103 and the at least two laser modules 102 are detachably connected;
  • the sub electronic control module 1031 is detachably connected to the main electronic control module 101.
  • each laser module 102 can operate independently, and can also cooperate with other laser modules 102.
  • Each laser module 102 is composed of a sub-electronic control module 1021, a sub-power module 1022, and a laser module 1023.
  • the sub electronic control module 1021 is used to monitor the operating status of the laser module 1023 and the sub power module 1022, and feed back the monitoring results to the main electronic control module 101, so that the main electronic control module 101 can control according to the feedback information of the sub electronic control module 1021 Operation of the sub power module 1022 and the laser module 1023.
  • the sub power module 1022 is used to provide power to the laser module 1023.
  • the laser module 1023 is used to generate laser light with a preset first power.
  • the sub-electronic control module 1021, the sub-power module 1022 and the laser module 1023 are integrated into the laser module 102, so that the entire 10,000-watt ultra-high power all-fiber continuous fiber laser system has a very simple structure and function design. , It is easy to realize commercial mass production.
  • the laser module 1023 includes:
  • An oscillating module an amplifying module with one end connected to the oscillation module and the other end connected to the laser synthesis module;
  • the oscillating module is used to generate oscillating laser light with a preset third power
  • the amplifying module is configured to receive the oscillating laser and amplify the oscillating laser to generate the laser with the preset first power.
  • the 4000W laser module 1023 is composed of a 1000W-level oscillation module and a 4000W-level amplifying module.
  • the 1000W laser oscillation module absorbs the input pump light and converts it into the initial 1000W laser.
  • the initial 1000W laser enters the 4000W amplifier module to amplify the laser output to 4000W.
  • the sub-power module 1022 provides energy for the pump source and excites to generate pump light.
  • the laser module 102 further includes:
  • the optical power feedback detector connected to the output end of the amplifying module is used to detect the output power of the amplifying module, and send the detection result to the main electronic control module 101 through the sub-electronic control module 1021.
  • the total electronic control module 101 is configured to adjust the output current of the corresponding sub power module 1022 according to the detection result.
  • the output power of the amplifying module needs to be stable to ensure the stable output of the laser.
  • an optical power feedback detector can be set at the output end of the amplifying module to detect the output power of the amplifying module, and feedback the detected result to the general electronic control module 101, so that the general electronic control module 101 can follow the amplifying module
  • the output power of the sub-power module 1022 is adjusted to the current input to the laser module 1023.
  • the laser synthesis module 103 includes:
  • the laser beam combiner 1031 is a mode matching device 1032 connected to the output fiber of the laser module 1023 and the input fiber of the laser beam combiner respectively;
  • the laser beam combiner 1031 is used to couple the laser light output by the turned-on laser module and output the coupled laser light.
  • the mode matcher 1032 is composed of two different specifications of optical fibers.
  • the input fiber is consistent with the output fiber of the laser module 102, and the output fiber is consistent with the input fiber of the laser combiner 1031.
  • the laser beam combiner 1031 can have 7 input fibers and 1 output fiber in total, and each input fiber can receive the laser light output by the laser module 102; the output fiber of the laser beam combiner 1031 is used to receive the laser light from the laser module
  • the laser light of 102 is coupled to the same optical path and output.
  • the laser synthesis module 103 further includes:
  • At least one laser module output power detector arranged on the input end of the laser beam combiner 1031, and a beam combiner output power detector arranged inside the laser beam combiner 1031;
  • the at least one laser module output power detector is used to detect the output power of the at least one laser module 1023 and send the laser module power output feedback signal generated by the at least one laser module output power detector to the total An electronic control module 101, the overall electronic control module 101 is configured to adjust the output current of the corresponding sub-power module 1022 according to the power output feedback signal of the laser module;
  • the beam combiner output power detector is used to detect the output power of the laser beam combiner 1031, and send the beam combiner power output feedback signal generated by the beam combiner output power detector to the total power supply
  • the control module 101 is configured to adjust the output current of the sub-power module 1022 according to the power output feedback signal of the combiner.
  • the power monitoring detector in the laser combining module 103 may include a beam combiner output power detector and a laser module output power detector, where the beam combiner output power detector is located inside the laser beam combiner 1031, It is used to monitor the power after laser synthesis; the output power detector of the laser module is located on the input fiber of the laser beam combiner 1031 to monitor the power of each input fiber separately.
  • the generated feedback signal is sent to the main electronic control module 101, so that the main electronic control module 101 can adjust the output current of the sub-power module 1022 according to the feedback signal, thereby adjusting the output power of the laser synthesis module 103.
  • the optical path system specifically includes: a laser module 1023, a laser synthesis module 103,
  • the laser module 1023 is used to provide initial laser light
  • the laser synthesis module 103 is used to couple the initial laser light provided by 1023 to the same optical path for output.
  • a laser output head 105 connected to the output end of the laser synthesis module 103 through an optical fiber; a switching power supply, a dehumidifier and an air conditioner connected to the main electronic control module and the sub electronic control module.
  • the laser light from the laser synthesis module 103 can be output by the laser output head 105 and act on the material to be processed.
  • One end is connected to the output end of the laser synthesis module 103, and the other end is connected to the input end of the laser output head 105 melting point box 106; the melting point box 106 and the laser output head 105 are connected through a laser transmission optical cable 107.
  • the melting point box 106 is used to complete the transfer connection between the laser synthesis module 103 and the transmission optical cable 107, which facilitates the maintenance and replacement of the laser output head 105 when a problem occurs.
  • the output fiber of the laser synthesis module 103 and the transmission optical cable 107 The input fiber is connected in the melting point box 106.
  • the melting point box 106 may include:
  • a welding point placement slot a return light monitoring detector arranged above the welding point placement slot, and a melting point box signal transfer interface
  • the return light monitoring detector is used to monitor the return light power of the return light returning to the melting point box 106 and generate a return light feedback signal;
  • the welding point between the output end of the laser synthesis module 103 and the input end of the laser transmission optical cable 107 is set in the welding point placement slot;
  • the melting point box signal transfer interface is used to send the return light feedback signal to the overall electronic control module 101, and the overall electronic control module 101 is used to monitor the melting point box 106 according to the return light feedback signal The operating status of the
  • the melting point box 106 may be composed of a return light monitoring detector, a welding point placement slot and a melting point box signal transfer interface.
  • the output fiber of the laser synthesis module 103 and the input fiber of the transmission cable 107 are connected in the melting point box 106.
  • the welding point Because the welding point has good heat dissipation, it can work stably and reliably for a long time, otherwise it is easy to burn, and then burn the entire optical path; therefore, the welding point can be placed in the welding point placement slot to ensure good heat dissipation.
  • the fusion splice placement groove can be designed to have a larger contact area with the optical fiber, so that the excess heat in the optical fiber can be timely from the fusion splice placement groove through metal contact Export;
  • the splice point placement slot can also prevent the fiber from moving.
  • the return light monitoring detector is used to monitor the return light of the transmitted laser in the optical path. Due to the large amount of light leakage at the welding point, the risk of burning is high.
  • the return light monitoring detector can be placed above the welding point to better monitor the transmission laser in the optical path. The characteristics of, can better monitor the size of the return light in the melting point box 106.
  • the return light monitoring detector can generate a feedback signal according to the power of the return light, and send the feedback signal to the main electronic control module 101 through the fusion splice signal transfer interface, so as to realize the communication with the main electronic control module 101.
  • the melting point box signal transfer interface is arranged on the outer wall of the melting point box, and receives signals fed back from the detector inside the melting point box 106, and is transferred to the main electronic control module 101.
  • the ultra-high power all-fiber continuous fiber laser system of the 10,000 watt level may also include a water cooling plate;
  • the water cooling plate is used to reduce the heat generated by the operation of the at least two laser modules 1023, the at least two sub-power modules 1022, the laser synthesis module 103, and the melting point box 106.
  • the ultra-high power all-fiber continuous fiber laser system at the 10,000 watt level may further include:
  • At least one temperature feedback detector arranged on the water cooling plate
  • the at least one temperature feedback detector is used to detect the water cooling temperature of the laser module, the laser synthesis module, and the melting point box.
  • a water chiller 110 may also be included; the water path of the water chiller 110 includes a water-cooled main path 1101 and a water-cooled auxiliary path 1102;
  • the water-cooled main circuit 1101 is used to cool the laser module 102, the laser synthesis module 103, and the dehumidifier 108;
  • the water-cooled auxiliary circuit 1102 is used to cool the sub-power module 1022 and the laser output head 105.
  • the ultra-high power all-fiber continuous fiber laser system of the 10,000 watt level is driven by electricity, but the photoelectric conversion efficiency is generally about 30-40%, and about 60-70% of the energy will be in the form of heat Therefore, it is necessary to dissipate heat from devices and modules that generate heat.
  • the water path of the water chiller 110 may include two water circulation paths, a water-cooled main path 1101 and a water-cooled auxiliary path 1102.
  • the water-cooled main path 1101 has a large water flow and a low water temperature, which is mainly used for cooling parts with large heat generation, such as laser module 102 and laser synthesis module. 103.
  • Dehumidifier 108; water cooling auxiliary road 1102 with low water flow and high water temperature is mainly used to cool parts with low heat generation, such as sub-power module 1022 and laser output head 105.
  • a dehumidifier 108 and an air conditioner 109 may also be included.
  • the dehumidifier 108 and the air conditioner 109 can prevent condensation inside the system from affecting the reliable operation of the system.
  • the humidity is relatively low and the temperature is not high.
  • the dehumidifier 108 can only be used for condensation control to save power; the high temperature and high humidity environment can be combined with the air conditioner 109 and the dehumidifier 108 to prevent condensation.
  • the dual anti-condensation design can be better compatible with anti-condensation and energy consumption control requirements.
  • the power supply system may specifically include:
  • An external voltage stabilizer 111 An external voltage stabilizer 111, a main switch 112 connected to the output terminal of the external voltage stabilizer 111, a power module strong current switch with one end connected to the main switch 112 and the other end connected to the input end of the sub-power module 1022 113. One end is connected to the main switch 112, and the other end is connected to the air conditioner 109, a voltage reducer 114;
  • the external voltage regulator 111 is used to output a stable voltage
  • the at least one power module strong current switch 113 is used to control the voltage input of the sub-power module 1022;
  • the voltage reducer 114 is used to provide a stable input voltage for the air conditioner 109.
  • a switching power supply 115 connected to the main electronic control module 102 and the sub electronic control module 1021;
  • the switching power supply 115 is used to provide electrical energy for the main electronic control module 101 and the sub electronic control module 1021.
  • the sub-electronic control module 1021 and the sub-power module 1022 are integrated in the same laser module 102, but the sub-electronic control module 1021 may not be supplied by the sub-power module 1022, but may be integrated with the main electronic control module. 101 is controlled by the switching power supply 115 together.
  • the switching power supply is also used to provide electrical energy for the dehumidifier 108.
  • Each sub-power module 1022 can communicate with the main electronic control module 101, and the main electronic control module 101 can control the output laser power by controlling the magnitude of the input DC power.
  • the switching power supply 115 supplies power to the dehumidifier 108, the main electronic control module 101, and the sub electronic control module 1021.
  • the bucker 114 can choose a 380V to 220V buck, and the 220V city power converted by the 380V to 220V buck can provide power to the air conditioner 109.
  • FIG. 6 there is shown a block diagram of the electronic control system structure of a 10,000-watt ultra-high power all-fiber continuous fiber laser system according to an embodiment of the application.
  • the laser combining module 103 further includes: a laser beam combiner temperature feedback detector located inside the laser beam combiner 1031;
  • the beam combiner temperature feedback detector is used to detect the internal temperature of the laser beam combiner 1031, and send the generated beam combiner temperature feedback signal to the overall electronic control module, and the overall electronic control module 101 is used to adjust the operating state of the water chiller 110 according to the temperature feedback signal of the combiner.
  • it may further include: signal conversion of the laser synthesis module respectively connected to the at least one laser module output power detector, the laser beam combiner temperature feedback detector, and the laser module output power detector. interface;
  • the laser synthesis module signal transfer interface is used to send the beam combiner power output feedback signal, the beam combiner temperature feedback signal, and the laser module power output feedback signal to the total electronic control module 101, so
  • the total electronic control module 101 is used to adjust the output current of the sub power supply module 1022 according to the power output feedback signal of the beam combiner and the power output feedback signal of the laser module;
  • the temperature feedback signal of the combiner adjusts the operating state of the water chiller 110.
  • the signals to be processed by the main electronic control module 101 may also include the feedback signal of the air conditioner 109, the dehumidifier 108, the feedback signal of the melting point box 106, and the laser synthesis module.
  • the external output signal of the entire electronic control system is only the power control signal, and the power control signal includes reset signal, enable signal, Increasing or decreasing the current signal, the processing of the power control signal determines the control efficiency of the entire electronic control system to a large extent.
  • All electrical control signals mainly include optical signals and temperature signals.
  • the detection of optical signals uses photodetectors to convert the optical signals into corresponding electrical signals for processing, so as to realize the real-time perception of the operating state of the optical path;
  • the signals come from the optical system, the power supply system and the mechanical system.
  • All temperature signals are converted into corresponding electrical signals for processing by temperature sensors, so as to realize the real-time perception of the heating and heat dissipation of the entire system and ensure that the entire system The safe and normal operation of the ultra-high power all-fiber continuous fiber laser system at the watt level.
  • FIG. 7 there is shown a structural block diagram of an implementation case of an ultra-high power all-fiber continuous fiber laser system of the 10,000 watt level in the present application.
  • the laser module, the laser synthesis module, the sub-power supply module and the melting point box are detachably arranged in the laser system; the laser module and the laser synthesis module are located Above the sub-power module, the melting point box is above the laser module and the laser synthesis module.
  • Figure 7 takes a 24000W laser system as an example.
  • the 380V mains power is connected to the external voltage regulator 111, the main switch 112 and the power module strong current switch 113 of the 6 sub power modules 1022 are turned on, and the 380V AC mains power enters the 6 sub power modules respectively.
  • the input terminal 701 of 1022 after the conversion of 6 sub-power modules 1022, outputs 6 voltage-adaptive DC power from the output terminal 702 of the sub-power module 1022; these 6 voltage-adaptive direct currents are then input into 6 4000W laser modules 1021
  • the input terminal 703 of the 4000W laser module 1021 converts the input DC power into 4000W laser.
  • the output terminal 704 of the laser module 1021 is input to the input terminal 705 of the laser synthesis module 103.
  • 6 channels of 4000W lasers are synthesized into 1
  • the 24000W laser is transmitted from the output terminal 706 of the laser synthesis module 103 to the input terminal 707 of the melting point box 106; the melting point box 106 outputs 24000W laser from the output terminal 708; 6 sub-power modules 1022 are arranged at the bottom of the entire laser system, with the middle Six 4000W laser modules 1023 and one laser synthesis module 103, the melting point box 106 is arranged at the top to facilitate the replacement of the laser transmission optical cable 107.
  • a laser output of 24000W can be achieved through this laser system.
  • the embodiments of the present application include the following advantages:
  • the total electronic control module of the embodiments of the present application controls multiple laser modules to output lasers, and couples the output lasers through the laser synthesis module, thereby realizing the output of high-power lasers, such as commercialization of 25000W lasers. Large-scale promotion.
  • the modular design of the sub-electronic control module, sub-power module, and laser module into a laser module the structure and function design of the ultra-high-power all-fiber continuous fiber laser system at the 10,000 watt level is simple and easy to commercialize Mass production.
  • the embodiments of the embodiments of the present application may be provided as methods, devices, or computer program products. Therefore, the embodiments of the present application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the embodiments of the present application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing terminal equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the instruction device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Lasers (AREA)
  • Laser Beam Processing (AREA)

Abstract

本申请实施例提供了一种万瓦级别的超高功率全光纤连续光纤激光器系统,包括:总电控模块、分别与总电控模块连接的至少两个激光模组、与至少两个激光模组的输出端连接的激光合成模块;总电控模块,用于分别控制各个激光模组的开启或者关闭,以及,分别监测各个激光模组和激光合成模块的运行状态;激光模组,用于独立生成预设第一功率的激光;激光合成模块,用于耦合开启的激光模组输出的激光,并输出耦合后的预设第二功率的激光。通过本申请实施例,实现了高功率激光的输出。同时,通过将子电控模块、子电源模块、激光模块集合成激光模组的模块化设计,使得万瓦级别的超高功率全光纤连续光纤激光器系统的结构和功能设计简洁,易于商业化批量生产。

Description

万瓦级别的超高功率全光纤连续光纤激光器系统 技术领域
本申请实施方式涉及激光技术领域,特别是涉及一种万瓦级别的超高功率全光纤连续光纤激光器系统。
背景技术
光纤激光器是指用掺稀土元素光纤作为激光工作物质的激光器。作为增益介质的掺稀土元素光纤具有良好的绕柔性,较大的体积/表面积比,独特的波导特性等特点,从而使得光纤激光器相对于其他类型的激光器有效率高、散热好、光束质量高、兼容性好、结构简单紧凑、使用方便可靠、工作寿命长、易于维护等特点。
中、高功率光纤激光器主要应用于金属的切割、焊接和熔覆等工艺,2017年中功率光纤激光器国产化率稳步提升,达到60.5%,实现大部分进口替代。
然而高功率国产激光器技术与进口激光器尚有一定差距,国产化率仅为10.6%,特别是万瓦以上级别的高功率连续光纤激光器更是只能依赖进口。
申请内容
鉴于上述问题,提出了本申请实施例以便提供一种克服上述问题或者至少部分地解决上述问题的一种万瓦级别的超高功率全光纤连续光纤激光器系统。
为了解决上述问题,本申请实施例公开了一种万瓦级别的超高功率全光纤连续光纤激光器系统,包括:
总电控模块、分别与所述总电控模块连接的至少两个激光模组、与所述至少两个激光模组的输出端连接的激光合成模块;
所述总电控模块,用于分别控制各个所述激光模组的开启或者关闭,以及,分别监测各个所述激光模组和所述激光合成模块的运行状态;
所述激光模组,用于独立生成预设第一功率的激光;
所述激光合成模块,用于耦合开启的激光模组输出的激光,并输出耦合后的预设第二功率的激光。
可选地,所述至少两个激光模组各自独立,每个所述激光模组包括:
与所述总电控模块连接的子电控模块、与所述子电控模块连接的子电源模块、与所述子电源模块的输出端以及所述子电控模块连接的激光模块;所述激光模块输出端与所述激光合成模块的输入端连接;
所述子电控模块,用于监控所述激光模块和对应的所述子电源模块的运行状态,并将监控结果反馈给所述总电控模块;
所述总电控模块,用于根据所述监控结果调节对应的所述子电源模块的输出电流;
所述子电源模块,用于为所述激光模块提供电能;
所述激光模块,用于生成预设第一功率的激光。
可选地,还包括:
所述至少两个激光模组分别可拆卸连接至所述总电控模块;
所述激光合成模块与所述至少两个激光模组可拆卸连接;
所述子电控模块与所述总电控模块可拆卸连接。
可选地,所述激光模块包括:
振荡模块、一端与所述振荡模块连接,另一端与所述激光合成模块连接的放大模块;
所述振荡模块,用于产生预设第三功率的振荡激光;
所述放大模块,用于接收所述振荡激光,并将所述振荡激光进行放大,生成所述预设第一功率的激光。
可选地,所述激光模块还包括:
与所述放大模块输出端连接的光功率反馈探测器,用于探测所述放大模块的输出功率,并将探测结果通过所述子电控模块发送至所述总电控模块,所述总电控模块用于根据所述探测结果调节对应的所述子电源模块的输出电流。
可选地,所述激光合成模块包括:
激光合束器、分别与所述激光模块的输出光纤和所述激光合束器的输入光纤连接的模式匹配器;
所述激光合束器,用于耦合开启的激光模组输出的激光,并输出耦合后的激光。
可选地,所述激光合成模块还包括:
设置于所述激光合束器输入端上的至少一个激光模块输出功率探测器、设置于所述激光合束器内部的合束器输出功率探测器;
所述至少一个激光模块输出功率探测器,用于探测所述至少一个激光模块的输出功率,并将所述至少一个激光模块输出功率探测器产生的激光模块功率输出反馈信号发送至所述总电控模块,所述总电控模块用于根据所述激光模块功率输出反馈信号调节对应的所述子电源模块的输出电流;
所述合束器输出功率探测器,用于探测所述激光合束器的输出功率,并将所述合束器输出功率探测器产生的合束器功率输出反馈信号发送至所述总电控模块,所述总电控模块用于根据所述合束器功率输出反馈信号调节所述子电源模块的输出电流。
可选地,还包括:
一端与所述激光合成模块的输出端连接,另一端通过传输光缆输出激光的熔点盒。
可选地,所述熔点盒包括:
熔接点放置槽、设置于所述熔接点放置槽上方的回光监测探测器,以及,熔点盒信号转接口;
所述激光合成模块的输出端与所述激光传输光缆的输入端的熔接点设于所述熔接点放置槽;
所述回光监测探测器,用于监测返回至所述熔点盒的回光的回光功率,并产生回光反馈信号;
所述熔点盒信号转接口,用于将所述回光反馈信号发送至所述总电控模块,所述总电控模块用于根据所述回光反馈信号监控所述熔点盒的运行状态。
可选地,所述激光模组的数量为2~7个。
可选地,还包括:
通过光纤与所述激光合成模块的输出端连接的激光输出头,与所述总电控模块和所述子电控模块连接的开关电源,除湿机和空调;
所述开关电源,用于为所述总电控模块和所述子电控模块提供电能。
可选地,还包括水冷机;所述水冷机的水路包括水冷主路和水冷辅路;
所述水冷主路,用于冷却所述激光模块、所述激光合成模块、以及所述除湿器;
所述水冷辅路,用于冷却所述子电源模块和所述激光输出头。
可选地,还包括水冷板;
所述水冷板,用于降低所述至少一个激光模块、所述至少一个子电源模块、所述激光合成模块、以及所述熔点盒运行产生的热量。
可选地,还包括:
设置于所述水冷板上的至少一个温度反馈探测器;
所述至少一个温度反馈探测器,用于探测所述激光模块、所述激光合成模块、以及所述熔点盒的水冷温度,并将探测到的水冷温度发送至所述总电控模块,所述总电控模块用于根据所述水冷温度调节所述水冷机的运行状态。
可选地,还包括:
外接稳压器、与所述外接稳压器输出端连接的总开关、一端与所述总开关连接,另一端与所述子电源模块的输入端连接的电源模块强电开关,一端与所述总开关连接,另一端与所述空调连接的降压器;
所述外接稳压器,用于输出稳定的电压;
所述总开关,用于控制所述外接稳压器的电压输出;
所述至少一个电源模块强电开关,用于控制所述子电源模块的电压输入;
所述降压器,用于为所述空调提供稳定的输入电压。
可选地,所述激光合成模块还包括:位于所述激光合束器内部的激光合束器温度反馈探测器;
所述合束器温度反馈探测器,用于探测所述激光合束器的内部的温度,并将产生的合束器温度反馈信号发送至所述总电控模块,所述总电控模块用于根据所述合束器温度反馈信号调节所述水冷机的运行状态。
可选地,还包括:
分别与所述至少一个激光模块输出功率探测器、所述激光合束器温度反馈探测器和所述激光模块输出功率探测器连接的激光合成模块信号转接口;
所述激光合成模块信号转接口,用于将所述合束器功率输出反馈信号、所述合束器温度反馈信号和所述激光模块功率输出反馈信号发送至所述总电控模块,所述总电控模块用于根据所述合束器功率输出反馈信号和所述激光模块功率输出反馈信号调节所述子电源模块的输出电流;所述总电控模块用于根据所述合束器温度反馈信号调节所述水冷机的运行状态。
可选地,还包括:
所述激光模块、所述激光合成模块、所述子电源模块和所述熔点盒可拆卸地设置在所述激光器系统中;所述激光模块和所述激光合成模块位于所述子电源模块上方,所述熔点盒位于所述激光模块和所述激光合成模块上方。
本申请实施例包括以下优点:
本申请实施例通过总电控模块控制激光模组的开启或者关闭;以及通过总电控模块监测激光模组和激光合成模块的运行状态;从而实现对激光器系统的闭环控制。
本申请实施例总电控模块控制多个激光模组输出激光,并经由激光合成模块将输出激光耦合,从而实现了高功率激光的输出。同时,通过将子电控模块、子电源模块、激光模块集合成激光模组的模块化设计,使得万瓦级别的超高功率全光纤连续光纤激光器系统的结构和功能设计简洁,易于实现商业化批量生产。
附图说明
一个或多个实施方式通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施方式的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本申请一实施例的一种万瓦级别的超高功率全光纤连续光纤激光器系统的结构框图;
图2是本申请一实施例的一种万瓦级别的超高功率全光纤连续光纤激光器系统的结构框图;
图3是本申请一实施例的一种万瓦级别的超高功率全光纤连续光纤激光器系统的光路系统结构框图;
图4是本申请一实施例的一种万瓦级别的超高功率全光纤连续光纤激光器系统的水冷系统结构框图;
图5是本申请一实施例的一种万瓦级别的超高功率全光纤连续光纤激光器系统的电源系统结构框图;
图6是本申请一实施例的一种万瓦级别的超高功率全光纤连续光纤激光器系统的电控系统结构框图;
图7是本申请一实施例的一种万瓦级别的超高功率全光纤连续光纤激光器系统的一种实施案例的结构框图。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本申请作进一步详细的说明。
参照图1,示出了本申请一实施例的一种万瓦级别的超高功率全光纤连续光纤激光器系统的结构框图,具体可以包括如下模块:
总电控模块101、分别与所述总电控模块连接的至少一个激光模组102、与所述至少一个激光模组的输出端连接的激光合成模块103;
所述总电控模块101,用于分别控制各个所述激光模组102的开启或者关闭,以及,分别监测各个所述激光模组102和所述激光合成模块103的运行状态;
所述激光模组102,用于独立生成预设第一功率的激光;
所述激光合成模块103,用于耦合开启的激光模组102输出的激光,并输出耦合后的预设第二功率的激光。
在本申请实施例中,总电控模块101与激光模组102,以及激光合成模块103连接,接收来自激光模组102和激光合成模块103的反馈信号,以监测激光模组102和激光合成模块103的运行状态。同时,根据反馈信号控制启用或禁用的激光模组102的数量。
激光模组102用于输出一定功率的激光,激光功率的上限受激光模组102的规格的限制。
激光合成模块103用于将至少一个激光模组102输出的激光耦合至同一个光路输出,以实现高功率的激光输出。
所述激光模组的数量为2~7个。在一个示例中,可以选用3~7个如4000W的激光模组102来为系统供应激光。总电控模块101根据需要输出的激光总功率的大小来决定激光模组102的启用个数。例如,当需要输出20000W的激光 功率时,可以开启5个激光模组102,5个激光模组102输出的激光通过激光合成模块103耦合后便可输出20000W的激光。
参照图2,示出了本申请一实施例的一种万瓦级别的超高功率全光纤连续光纤激光器系统的结构框图。
在本申请实施例中,所述至少两个激光模组各自独立,每个所述激光模组102可以包括:与所述总电控模块101连接的子电控模块1021、与所述子电控模块1021连接的子电源模块1022、与所述子电源模块1022的输出端以及所述子电控模块1021连接的激光模块1023;所述激光模块1023输出端与所述激光合成模块103的输入端连接;
所述子电控模块1021,用于监控所述激光模块1023和对应的所述子电源模块1022的运行状态,并将监控结果反馈给所述总电控模块101;所述总电控模块101用于根据所述监控结果调节对应的所述子电源模块1022的输出电流;
所述子电源模块1022,用于为所述激光模块1023提供电能;
所述激光模块1023,用于生成预设第一功率的激光。
在本申请实施例中,所述至少两个激光模组102分别可拆卸连接至所述总电控模块101;所述激光合成模块103与所述至少两个激光模组102可拆卸连接;所述子电控模块1031与所述总电控模块101可拆卸连接。
在本申请实施例中,每个激光模组102可以独立运行,又可以与其他激光模组102相互配合。每个激光模组102由一个子电控模块1021、一个子电源模块1022、以及一个激光模块1023组成。
子电控模块1021用于监控激光模块1023和子电源模块1022的运行状态,并将监控结果反馈给总电控模块101,从而使得总电控模块101可以根据子电控模块1021的反馈信息来控制子电源模块1022和激光模块1023的运行。
子电源模块1022用于为激光模块1023提供电能。
激光模块1023用于生成预设第一功率的激光。
在本申请实施例中,将子电控模块1021、子电源模块1022和激光模块1023集成为激光模组102,使得整个万瓦级别的超高功率全光纤连续光纤激光器系统结构和功能设计十分简洁,易于实现商业化批量生产。
在本申请实施例中,所述激光模块1023包括:
振荡模块、一端与所述振荡模块连接,另一端与所述激光合成模块连接的放大模块;
所述振荡模块,用于产生预设第三功率的振荡激光;
所述放大模块,用于接收所述振荡激光,并将所述振荡激光进行放大,生成所述预设第一功率的激光。
在一个示例中,以4000W的激光模块1023为例,4000W的激光模块1023由1000W级别的振荡模块与4000W级别的放大模块组成。1000W级别的激光振荡模块吸收输入的泵浦光转化为初始的1000W激光,初始的1000W激光再进入4000W级别的放大模块放大至4000W的激光输出。子电源模块1022为泵浦源提供能量,激发产生泵浦光。
在本申请实施例中,所述激光模块102还包括:
与所述放大模块输出端连接的光功率反馈探测器,用于探测所述放大模块的输出功率,并将探测结果通过所述子电控模块1021发送至所述总电控模块101,所述总电控模块101用于根据所述探测结果调节对应的所述子电源模块1022的输出电流。
在本申请实施例中,放大模块输出功率需要保持稳定,才能保证激光的稳定输出。为此,可以在放大模块的输出端出设置光功率反馈探测器,用于探测放大模块的输出功率,并将探测到的结果反馈给总电控模块101,便于总电控模块101根据放大模块的输出功率大小对子电源模块1022输入激光模块1023的电流大小进行调节。
在本申请实施例中,所述激光合成模块103包括:
激光合束器1031、分别与所述激光模块1023的输出光纤和所述激光合束器的输入光纤连接的模式匹配器1032;
所述激光合束器1031,用于耦合开启的激光模组输出的激光,并输出耦合后的激光。
在本申请实施例中,模式匹配器1032由两种不同规格的光纤组成,输入光纤与激光模组102的输出光纤保持一致,输出光纤与激光合束器1031的输入光纤保持一致,完成两种不同规格光纤的低损耗连接。激光合束器1031总计可以有7根输入光纤与1根输出光纤,每根输入光纤都可接收激光模组102输出的激光;激光合束器1031的输出光纤用于将接收的来自激光模组102的激光耦合至相同的光路中输出。
在本申请实施例中,所述激光合成模块103还包括:
设置于所述激光合束器1031输入端上的至少一个激光模块输出功率探测 器、设置于所述激光合束器1031内部的合束器输出功率探测器;
所述至少一个激光模块输出功率探测器,用于探测所述至少一个激光模块1023的输出功率,并将所述至少一个激光模块输出功率探测器产生的激光模块功率输出反馈信号发送至所述总电控模块101,所述总电控模块101用于根据所述激光模块功率输出反馈信号调节对应的所述子电源模块1022的输出电流;
所述合束器输出功率探测器,用于探测所述激光合束器1031的输出功率,并将所述合束器输出功率探测器产生的合束器功率输出反馈信号发送至所述总电控模块101,所述总电控模块101用于根据所述合束器功率输出反馈信号调节所述子电源模块1022的输出电流。
在本申请实施例中,激光合成模块103中的功率监测探测器可以包括合束器输出功率探测器和激光模块输出功率探测器,其中合束器输出功率探测器位于激光合束器1031内部,用于监控激光合成后的功率大小;激光模块输出功率探测器位于激光合束器1031的输入光纤上,分别监控每根输入光纤的功率大小。并将产生的反馈信号发送至总电控模块101,以使总电控模块101可以根据反馈信号调节子电源模块1022的输出电流,从而调节激光合成模块103的输出功率。
图3是本申请实施例的一种万瓦级别的超高功率全光纤连续光纤激光器系统的光路系统结构图,在本申请实施例中,光路系统具体包括:激光模块1023,激光合成模块103,其中,激光模块1023用于提供初始激光,激光合成模块103用于将1023提供的初始激光耦合至同一光路中输出。
如图3所示,在本申请实施例中,还可以包括:
通过光纤与所述激光合成模块103的输出端连接的激光输出头105;与所述总电控模块和所述子电控模块连接的开关电源,除湿机和空调。
在本申请实施例中,来自激光合成模块103的激光可以由激光输出头105输出,作用于待加工的材料上。
如图3所示,在本申请实施例中,还可以包括:
一端与所述激光合成模块103的输出端连接,另一端与所述激光输出头105的输入端连接的熔点盒106;所述熔点盒106与所述激光输出头105通过激光传输光缆107连接。
在本申请实施例中,熔点盒106用于完成激光合成模块103与传输光缆107的转接连接,方便激光输出头105出现问题时的维修更换,激光合成模块103 的输出光纤与传输光缆107的输入光纤在熔点盒106中完成连接。
如图3所示,在本申请实施例中,所述熔点盒106可以包括:
熔接点放置槽、设置于所述熔接点放置槽上方的回光监测探测器,以及,熔点盒信号转接口;
所述回光监测探测器,用于监测返回至所述熔点盒106的回光的回光功率,并产生回光反馈信号;
所述激光合成模块103的输出端与所述激光传输光缆107的输入端的熔接点的设于所述熔接点放置槽;
所所述熔点盒信号转接口,用于将所述回光反馈信号发送至所述总电控模块101,所述总电控模块101用于根据所述回光反馈信号监控所述熔点盒106的运行状态。
在本申请实施例中,熔点盒106可以由回光监测探测器、熔接点放置槽和熔点盒信号转接口组成。激光合成模块103的输出光纤与传输光缆107的输入光纤在熔点盒106中完成连接。
由于熔接点良好散热才能长时间稳定可靠地工作,否则容易烧断,进而烧毁整个光路;因此可以将熔接点放置于熔接点放置槽中保证良好散热。
在设计熔接点放置槽时,考虑到光纤是圆形的,熔接点放置槽可以设计成与光纤有较大接触面积的形式,使得光纤中多余的热量能够及时地通过金属接触从熔接点放置槽导出;此外,熔接点放置槽还可以防止光纤移动。
回光监测探测器用于监测光路中传输激光的回光,由于熔接点处漏光较多,烧毁风险高,可以将回光监测探测器放置于熔接点上方,从而能够较好地监测光路中传输激光的特性,可以较好地监测熔点盒106中的回光大小。
回光监测探测器可以根据回光功率大小生成反馈信号,通过熔接点信号转接口将反馈信号发送给总电控模块101,以实现与总电控模块101之间的通信。
熔点盒信号转接口设置在熔点盒外壁上,接收来自熔点盒106内部的探测器反馈的信号,并转接至总电控模块101。
在本申请实施例中,所述万瓦级别的超高功率全光纤连续光纤激光器系统还可以包括水冷板;
所述水冷板,用于降低所述至少两个激光模块1023、所述至少两个子电源模块1022、所述激光合成模块103、以及所述熔点盒106运行产生的热量。
在本申请实施例中,所述万瓦级别的超高功率全光纤连续光纤激光器系统 还可以包括:
设置于所述水冷板上的至少一个温度反馈探测器;
所述至少一个温度反馈探测器,用于探测所述激光模块、所述激光合成模块、以及所述熔点盒的水冷温度。
参照图4,示出了本申请一实施例的一种万瓦级别的超高功率全光纤连续光纤激光器系统的水冷系统结构框图。
如图4所示,在本申请实施例中,还可以包括水冷机110;所述水冷机110的水路包括水冷主路1101和水冷辅路1102;
所述水冷主路1101,用于冷却所述激光模块102、所述激光合成模块103、以及所述除湿器108;
所述水冷辅路1102,用于冷却所述子电源模块1022和所述激光输出头105。
在本申请实施例中,万瓦级别的超高功率全光纤连续光纤激光器系统以电力进行驱动,然而光电转换效率普遍在30~40%左右,大约有60~70%的能量会以热量的形式散失掉,因此对产生热量的器件及模块进行散热就十分必要。
水冷机110的水路可以包括水冷主路1101和水冷辅路1102两路水循环通路,其中水冷主路1101的水流量大水温低主要用于冷却发热量大的部分,如,激光模块102、激光合成模块103、除湿器108;水冷辅路1102水流量小水温高主要用于冷却发热量小的部分,如子电源模块1022和激光输出头105。
在本申请实施例中,还可以包括除湿机108和空调109。
在本申请实施例中,除湿机108和空调109可以避免系统内部结露影响系统的可靠运行。湿度相对较小,温度不高的环境可以只使用除湿机108进行结露控制以节省电能;高温高湿环境可结合空调109与除湿器108一起防止结露。双防露设计可以更好地兼容防结露与能耗控制需求。
参照图5,示出了本申请一实施例的一种万瓦级别的超高功率全光纤连续光纤激光器系统的电源系统结构框图,所述电源系统具体可以包括:
外接稳压器111、与所述外接稳压器111输出端连接的总开关112、一端与所述总开关112连接,另一端与所述子电源模块1022的输入端连接的电源模块强电开关113,一端与所述总开关112连接,另一端与所述空调109连接的降压器114;
所述外接稳压器111,用于输出稳定的电压;
所述总开关112,用于控制所述外接稳压器111的电压输出;
所述至少一个电源模块强电开关113,用于控制所述子电源模块1022的电压输入;
所述降压器114,用于为所述空调109提供稳定的输入电压。
如图5所示,在本申请实施例中,还包括:与所述总电控模块102和所述子电控模块1021连接的开关电源115;
所述开关电源115,用于为所述总电控模块101和所述子电控模块1021提供电能。
在本申请实施例中,子电控模块1021与子电源模块1022集成在同一个激光模组102中,但子电控模块1021可以不由子电源模块1022供应电能,而是可以与总电控模块101一起由开关电源115控制。
如图5所示,在本申请实施例中,所述开关电源还用于为所述除湿器108提供电能。
如图5所示,在一个示例中,380V的市电接入外接稳压器111,外接稳压器输出的电流经过总开关112后再分别进入各个子电源模块1022、开关115、降压器114。其中,进入每个子电源模块1022的380V电流由一个电源模块强电开关113控制,可以根据需要对每个子电源模块1022进行独立控制;每个子电源模块1022为相对应的激光模块1023提供合适的直流电能,在直流电能的驱动下激光模块1023才能输出相应的激光。每个子电源模块1022均可以与总电控模块101进行通信,总电控模块101可以通过控制输入直流电能的大小来对输出激光的功率进行控制。开关电源115为除湿器108、总电控模块101、以及子电控模块1021供电。降压器114可以选择380V转220V降压器,经过380V转220V降压器转化之后的220V市电可以为空调109进行供电。
参照图6,示出了申请一实施例的一种万瓦级别的超高功率全光纤连续光纤激光器系统的电控系统结构框图。
在本申请实施例中,所述激光合成模块103还包括:位于所述激光合束器1031内部的激光合束器温度反馈探测器;
所述合束器温度反馈探测器,用于探测所述激光合束器1031的内部的温度,并将产生的合束器温度反馈信号发送至所述总电控模块,所述总电控模块101用于根据所述合束器温度反馈信号调节所述水冷机110的运行状态。
在本申请实施例中,还可以包括:分别与所述至少一个激光模块输出功率探测器、所述激光合束器温度反馈探测器和所述激光模块输出功率探测器连接 的激光合成模块信号转接口;
所述激光合成模块信号转接口,用于将所述合束器功率输出反馈信号、所述合束器温度反馈信号和所述激光模块功率输出反馈信号发送至所述总电控模块101,所述总电控模块101用于根据所述合束器功率输出反馈信号和所述激光模块功率输出反馈信号调节所述子电源模块1022的输出电流;所述总电控模块101用于根据所述合束器温度反馈信号调节所述水冷机110的运行状态。
如图6所示,每个激光模组102所涉及的控制和反馈信号构成了一个子电控模块1021的控制和感知内容;子电控模块1021内部单独、独立实现运行、控制、反馈、监测、预警,有一个控制小板对上述所有信号进行处理,处理结果可与总电控模块101进行通信;总电控模块101对整个万瓦级别的超高功率全光纤连续光纤激光器系统的信号进行处理和控制,综合各方面的信息实现对万瓦级别的超高功率全光纤连续光纤激光器系统的运行、控制、反馈、监测、预警。在本申请实施例中,总电控模块101所要处理的信号除了子电控模块1021的通信信号外,还可以有空调109、除湿机108的反馈信号、熔点盒106的反馈信号、激光合成模块103的反馈信号、QBH光缆信号、机床通信控制信号、备用反馈控制信号、通信显示控制信号;整个电控系统的对外输出信号只有电源控制信号,其中电源控制信号又包含复位信号、使能信号、增减电流信号,对于电源控制信号的处理在很大程度上决定了整个电控系统的控制效能。
所有的电控信号,主要有光信号和温度信号两种,对光信号的探测全部采用光电探测器将光信号转化为相应的电信号进行处理,以实现对于光路部分运行状态的实时感知;温度信号既有来自于光路系统的、电源系统的还有机械系统,所有的温度信号均采用温度传感器转化为相应的电信号进行处理,以实现对于整个系统发热和散热情况的实时感知,保证整个万瓦级别的超高功率全光纤连续光纤激光器系统的安全和正常运行。除此之外,还有空调109和除湿机108的湿度及温度信号,可以监控整个机柜内的工作环境状态;激光输出头105的反馈信号,可以实现对激光输出功率的监控和对激光传输光缆107的保护;机床通信控制信号,可以实现激光器与加工机床的联合控制,实现机床的加工控制;通信显示控制信号,可以实现外部连接设备对激光器的控制和运行监控;备用控制信号,可以实现对于整个激光器紧急停止以保护激光器。
参照图7,示出了本申请一种万瓦级别的超高功率全光纤连续光纤激光器系统的一种实施案例的结构框图。
在本申请实施例中,所述激光模块、所述激光合成模块、所述子电源模块和所述熔点盒可拆卸地设置在所述激光器系统中;所述激光模块和所述激光合成模块位于所述子电源模块上方,所述熔点盒位于所述激光模块和所述激光合成模块上方。
图7以24000W的激光器系统为例,380V的市电接入外接稳压器111,打开总开关112与6个子电源模块1022的电源模块强电开关113,380V交流市电分别进入6个子电源模块1022的输入端701,经过6个子电源模块1022转化之后,从子电源模块1022的输出端702输出6路电压自适应的直流电;这6路电压自适应的直流电再输入6个4000W的激光模块1021的输入端703,经过4000W的激光模块1021将输入直流电转化为4000W激光从激光模块1021的输出端704输入激光合成模块103的输入端705,在激光合成模块103中将6路4000W激光合成为1路24000W激光从激光合成模块103的输出端706传输至熔点盒106的输入端707;熔点盒106将24000W激光从输出端708输出;6个子电源模块1022布局于整个激光器系统的最下方,中间为6个4000W的激光模块1023和1个激光合成模块103,熔点盒106布局于最上方方便更换激光传输光缆107。通过该激光器系统即可实现24000W的激光输出。
本申请实施例包括以下优点:本申请实施例总电控模块控制多个激光模组输出激光,并经由激光合成模块将输出激光耦合,从而实现了高功率激光的输出如可实现25000W激光器的商业化大规模推广。同时,通过将子电控模块、子电源模块、激光模块集合成激光模组的模块化设计,使得万瓦级别的超高功率全光纤连续光纤激光器系统的结构和功能设计简洁,易于实现商业化批量生产。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
本领域内的技术人员应明白,本申请实施例的实施例可提供为方法、装置、或计算机程序产品。因此,本申请实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请实施例是参照根据本申请实施例的方法、终端设备(系统)、和计算机 程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理终端设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理终端设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理终端设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理终端设备上,使得在计算机或其他可编程终端设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程终端设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请实施例的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请实施例范围的所有变更和修改。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者终端设备中还存在另外的相同要素。
以上对本申请所提供的一种万瓦级别的超高功率全光纤连续光纤激光器系 统,进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (18)

  1. 一种万瓦级别的超高功率全光纤连续光纤激光器系统,其特征在于,包括:
    总电控模块、分别与所述总电控模块连接的至少两个激光模组、与所述至少两个激光模组的输出端连接的激光合成模块;
    所述总电控模块,用于分别控制各个所述激光模组的开启或者关闭,以及,分别监测各个所述激光模组和所述激光合成模块的运行状态;
    所述激光模组,用于独立生成预设第一功率的激光;
    所述激光合成模块,用于耦合开启的激光模组输出的激光,并输出耦合后的预设第二功率的激光。
  2. 根据权利要求1所述的系统,其特征在于,所述至少两个激光模组各自独立,每个所述激光模组包括:
    与所述总电控模块连接的子电控模块、与所述子电控模块连接的子电源模块、与所述子电源模块的输出端以及所述子电控模块连接的激光模块;所述激光模块的输出端与所述激光合成模块的输入端连接;
    所述子电控模块,用于监控所述激光模块和对应的所述子电源模块的运行状态,并将监控结果反馈给所述总电控模块;
    所述总电控模块,用于根据所述监控结果调节对应的所述子电源模块的输出电流;
    所述子电源模块,用于为所述激光模块提供电能;
    所述激光模块,用于生成预设第一功率的激光。
  3. 根据权利要求2所述的系统,其特征在于,还包括:
    所述至少两个激光模组分别可拆卸连接至所述总电控模块;
    所述激光合成模块与所述至少两个激光模组可拆卸连接;
    所述子电控模块与所述总电控模块可拆卸连接。
  4. 根据权利要求2所述的系统,其特征在于,所述激光模块包括:
    振荡模块、一端与所述振荡模块连接,另一端与所述激光合成模块连接的放大模块;
    所述振荡模块,用于产生预设第三功率的振荡激光;
    所述放大模块,用于接收所述振荡激光,并将所述振荡激光进行放大,生成所述预设第一功率的激光。
  5. 根据权利要求4所述的系统,其特征在于,所述激光模块还包括:
    与所述放大模块输出端连接的光功率反馈探测器,用于探测所述放大模块的输出功率,并将探测结果通过所述子电控模块发送至所述总电控模块,所述总电控模块用于根据所述探测结果调节对应的所述子电源模块的输出电流。
  6. 根据权利要求1所述的系统,其特征在于,所述激光合成模块包括:
    激光合束器、分别与所述激光模块的输出光纤和所述激光合束器的输入光纤连接的模式匹配器;
    所述激光合束器,用于耦合开启的激光模组输出的激光,并输出耦合后的激光。
  7. 根据权利要求6所述的系统,其特征在于,所述激光合成模块还包括:
    设置于所述激光合束器输入端上的至少一个激光模块输出功率探测器、设置于所述激光合束器内部的合束器输出功率探测器;
    所述至少一个激光模块输出功率探测器,用于探测所述至少一个激光模块的输出功率,并将所述至少一个激光模块输出功率探测器产生的激光模块功率输出反馈信号发送至所述总电控模块,所述总电控模块用于根据所述激光模块功率输出反馈信号调节对应的所述子电源模块的输出电流;
    所述合束器输出功率探测器,用于探测所述激光合束器的输出功率,并将所述合束器输出功率探测器产生的合束器功率输出反馈信号发送至所述总电控模块,所述总电控模块用于根据所述合束器功率输出反馈信号调节所述子电源模块的输出电流。
  8. 根据权利要求3所述的系统,其特征在于,还包括:
    一端与所述激光合成模块的输出端连接,另一端通过传输光缆输出激光的熔点盒。
  9. 根据权利要求8所述的系统,其特征在于,所述熔点盒包括:
    熔接点放置槽、设置于所述熔接点放置槽上方的回光监测探测器,以及,熔点盒信号转接口;
    所述激光合成模块的输出端与所述激光传输光缆的输入端的熔接点设于所述熔接点放置槽内;
    所述回光监测探测器,用于监测返回至所述熔点盒的回光的回光功率,并产生回光反馈信号;
    所述熔点盒信号转接口,用于将所述回光反馈信号发送至所述总电控模块,所述总电控模块用于根据所述回光反馈信号监控所述熔点盒的运行状态。
  10. 根据权利要求1所述的系统,其特征在于,所述激光模组的数量为2~7个。
  11. 根据权利要求9所述的系统,其特征在于,还包括:
    通过光纤与所述激光合成模块的输出端连接的激光输出头,与所述总电控模块和所述子电控模块连接的开关电源,除湿机和空调;
    所述开关电源,用于为所述总电控模块和所述子电控模块提供电能。
  12. 根据权利要求11所述的系统,其特征在于,还包括水冷机;所述水冷机的水路包括水冷主路和水冷辅路;
    所述水冷主路,用于冷却所述激光模块、所述激光合成模块、以及所述除湿器;
    所述水冷辅路,用于冷却所述子电源模块和所述激光输出头。
  13. 根据权利要求12所述的系统,其特征在于,还包括水冷板;
    所述水冷板,用于降低所述至少一个激光模块、所述至少一个子电源模块、所述激光合成模块、以及所述熔点盒运行产生的热量。
  14. 根据权利要求13所述的系统,其特征在于,还包括:
    设置于所述水冷板上的至少一个温度反馈探测器;
    所述至少一个温度反馈探测器,用于探测所述激光模块、所述激光合成模块、以及所述熔点盒的水冷温度,并将探测到的水冷温度发送至所述总电控模块,所述总电控模块用于根据所述水冷温度调节所述水冷机的运行状态。
  15. 根据权利要求14所述的系统,其特征在于,还包括:
    外接稳压器、与所述外接稳压器输出端连接的总开关、一端与所述总开关连接,另一端与所述子电源模块的输入端连接的电源模块强电开关,一端与所述总开关连接,另一端与所述空调连接的降压器;
    所述外接稳压器,用于输出稳定的电压;
    所述总开关,用于控制所述外接稳压器的电压输出;
    所述至少一个电源模块强电开关,用于控制所述子电源模块的电压输入;
    所述降压器,用于为所述空调提供稳定的输入电压。
  16. 根据权利要求12所述的系统,其特征在于,所述激光合成模块还包括:位于所述激光合束器内部的激光合束器温度反馈探测器;
    所述合束器温度反馈探测器,用于探测所述激光合束器的内部的温度,并将产生的合束器温度反馈信号发送至所述总电控模块,所述总电控模块用于根据所述合束器温度反馈信号调节所述水冷机的运行状态。
  17. 根据权利要求16所述的系统,其特征在于,还包括:
    分别与所述至少一个激光模块输出功率探测器、所述激光合束器温度反馈探测器和所述激光模块输出功率探测器连接的激光合成模块信号转接口;
    所述激光合成模块信号转接口,用于将所述合束器功率输出反馈信号、所述合束器温度反馈信号和所述激光模块功率输出反馈信号发送至所述总电控模块,所述总电控模块用于根据所述合束器功率输出反馈信号和所述激光模块功率输出反馈信号调节所述子电源模块的输出电流;所述总电控模块用于根据所述合束器温度反馈信号调节所述水冷机的运行状态。
  18. 根据权利要求8所述的系统,其特征在于,还包括:
    所述激光模块、所述激光合成模块、所述子电源模块和所述熔点盒可拆卸地设置在所述激光器系统中;所述激光模块和所述激光合成模块位于所述子电源模块上方,所述熔点盒位于所述激光模块和所述激光合成模块上方。
PCT/CN2020/094881 2019-06-11 2020-06-08 万瓦级别的超高功率全光纤连续光纤激光器系统 WO2020248931A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910502358.7A CN110137795A (zh) 2019-06-11 2019-06-11 万瓦级别的超高功率全光纤连续光纤激光器系统
CN201910502358.7 2019-06-11

Publications (1)

Publication Number Publication Date
WO2020248931A1 true WO2020248931A1 (zh) 2020-12-17

Family

ID=67581081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094881 WO2020248931A1 (zh) 2019-06-11 2020-06-08 万瓦级别的超高功率全光纤连续光纤激光器系统

Country Status (2)

Country Link
CN (1) CN110137795A (zh)
WO (1) WO2020248931A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110137795A (zh) * 2019-06-11 2019-08-16 深圳市创鑫激光股份有限公司 万瓦级别的超高功率全光纤连续光纤激光器系统
CN110829161B (zh) * 2019-10-08 2021-08-17 苏州创鑫激光科技有限公司 一种激光器系统的控制方法和装置
CN110854654B (zh) * 2019-11-18 2021-06-15 无锡锐科光纤激光技术有限责任公司 一种半闭环控制激光器
CN110829158B (zh) * 2019-11-18 2024-07-30 中国人民解放军国防科技大学 一种温度分布可时空调制的高功率光纤激光器模块化热管理装置
CN111541487B (zh) * 2020-04-22 2021-12-24 四川思创优光科技有限公司 多模光纤激光器的组网方法及多模光纤激光器
CN111585155A (zh) * 2020-05-19 2020-08-25 宝宇(武汉)激光技术有限公司 一种复合激光器系统
CN112582870A (zh) * 2020-12-01 2021-03-30 上海飞博激光科技有限公司 高功率全光纤脉冲光纤激光器系统
CN115459047A (zh) * 2022-08-30 2022-12-09 深圳清华大学研究院 一种模块化半导体激光器及半导体激光器系统
CN117335256B (zh) * 2023-12-01 2024-03-08 上海频准激光科技有限公司 一种光信号功率控制系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012036664A1 (en) * 2010-09-13 2012-03-22 Ipg Photonics Corporation Industrial high power fiber laser system with optical monitoring assembly
CN203445410U (zh) * 2013-09-23 2014-02-19 山东能源机械集团大族再制造有限公司 一种半导体激光器系统
CN104836099A (zh) * 2015-05-19 2015-08-12 大族激光科技产业集团股份有限公司 光纤激光器系统及其监控装置
CN106063055A (zh) * 2014-02-25 2016-10-26 株式会社藤仓 光纤激光器装置及其异常检测方法
CN106679937A (zh) * 2017-03-02 2017-05-17 大族激光科技产业集团股份有限公司 半导体激光器的测试系统
CN206340823U (zh) * 2016-08-31 2017-07-18 山东海富光子科技股份有限公司 带有功率反馈机制的2μm波段线偏振单频光纤激光器
CN108390246A (zh) * 2018-04-28 2018-08-10 无锡源清瑞光激光科技有限公司 一种模块化合束的准连续光纤激光器
CN108695681A (zh) * 2017-04-06 2018-10-23 发那科株式会社 具备多个激光模块的激光装置
CN110137795A (zh) * 2019-06-11 2019-08-16 深圳市创鑫激光股份有限公司 万瓦级别的超高功率全光纤连续光纤激光器系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105811229A (zh) * 2016-05-31 2016-07-27 中国工程物理研究院激光聚变研究中心 超连续谱激光产生装置
CN107181160A (zh) * 2017-07-03 2017-09-19 山东海富光子科技股份有限公司 一种基于多次非相干合束的高能量纳秒脉冲全光纤激光器
CN209844199U (zh) * 2019-06-11 2019-12-24 苏州创鑫激光科技有限公司 万瓦级别的超高功率全光纤连续光纤激光器系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012036664A1 (en) * 2010-09-13 2012-03-22 Ipg Photonics Corporation Industrial high power fiber laser system with optical monitoring assembly
CN203445410U (zh) * 2013-09-23 2014-02-19 山东能源机械集团大族再制造有限公司 一种半导体激光器系统
CN106063055A (zh) * 2014-02-25 2016-10-26 株式会社藤仓 光纤激光器装置及其异常检测方法
CN104836099A (zh) * 2015-05-19 2015-08-12 大族激光科技产业集团股份有限公司 光纤激光器系统及其监控装置
CN206340823U (zh) * 2016-08-31 2017-07-18 山东海富光子科技股份有限公司 带有功率反馈机制的2μm波段线偏振单频光纤激光器
CN106679937A (zh) * 2017-03-02 2017-05-17 大族激光科技产业集团股份有限公司 半导体激光器的测试系统
CN108695681A (zh) * 2017-04-06 2018-10-23 发那科株式会社 具备多个激光模块的激光装置
CN108390246A (zh) * 2018-04-28 2018-08-10 无锡源清瑞光激光科技有限公司 一种模块化合束的准连续光纤激光器
CN110137795A (zh) * 2019-06-11 2019-08-16 深圳市创鑫激光股份有限公司 万瓦级别的超高功率全光纤连续光纤激光器系统

Also Published As

Publication number Publication date
CN110137795A (zh) 2019-08-16

Similar Documents

Publication Publication Date Title
WO2020248931A1 (zh) 万瓦级别的超高功率全光纤连续光纤激光器系统
CN102781129B (zh) 一种自适应电磁感应加热控制器
CN209844199U (zh) 万瓦级别的超高功率全光纤连续光纤激光器系统
EP3920360A1 (en) Photovoltaic air conditioning system starting method, controller, and photovoltaic air conditioning system
CN103414103A (zh) 一种并联扩容大功率全固态激光器驱动电源装置
CN209088619U (zh) 一种不间断电源系统
CN204046233U (zh) 一种电子控制式充电器及电路的结构
CN203445788U (zh) 一种用于血液透析机的供电装置
CN206217371U (zh) 一种印刷工艺节能环保led紫外线干燥固化设备
CN109283418A (zh) 一种通用变频器的出厂功率测试试验方法
CN201976289U (zh) 工矿灯用led驱动电源
CN209974887U (zh) 高密度电浆化学气相沉积设备及其射频电源机柜
CN208782227U (zh) 小功率连续光纤激光器
CN208173997U (zh) 一种模块化合束的准连续光纤激光器
CN202206597U (zh) 具有温度调节功能的led驱动电源
CN206302618U (zh) 灯光音响控制系统
CN116827144A (zh) 一种热泵的电源系统及热泵系统
CN213513475U (zh) 一种便捷安装的三合一激光光源
CN205105006U (zh) 一种激光供能装置
CN210517308U (zh) 中功率连续光纤激光器
CN209676560U (zh) 短弧直流氙灯智能电源
CN207730861U (zh) 自带电源台区低压线路在线监测装置
CN207801146U (zh) 一种防水稳定型高功率光纤激光器系统
CN206272495U (zh) 一种电压源稳压装置
CN206269449U (zh) 一种多压缩机制冷系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20821791

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20821791

Country of ref document: EP

Kind code of ref document: A1