WO2020248854A1 - 基于电阻抗成像的陶瓷基复合材料高温部件温度测量方法 - Google Patents

基于电阻抗成像的陶瓷基复合材料高温部件温度测量方法 Download PDF

Info

Publication number
WO2020248854A1
WO2020248854A1 PCT/CN2020/093692 CN2020093692W WO2020248854A1 WO 2020248854 A1 WO2020248854 A1 WO 2020248854A1 CN 2020093692 W CN2020093692 W CN 2020093692W WO 2020248854 A1 WO2020248854 A1 WO 2020248854A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
matrix composite
ceramic matrix
resistivity
electrical impedance
Prior art date
Application number
PCT/CN2020/093692
Other languages
English (en)
French (fr)
Inventor
高希光
宋迎东
魏婷婷
于国强
贾蕴发
董洪年
张盛
Original Assignee
南京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京航空航天大学 filed Critical 南京航空航天大学
Publication of WO2020248854A1 publication Critical patent/WO2020248854A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements

Definitions

  • the invention relates to the technical field of temperature measurement, in particular to a method for measuring the temperature of a ceramic matrix composite material high-temperature component based on electrical impedance imaging.
  • the electrical impedance imaging technology is combined with the relationship of electrical resistivity with temperature to measure the temperature distribution of the high-temperature component of aeroengine in real time.
  • the gas temperature and turbine inlet temperature are also increasing.
  • the life of an aeroengine depends on the life of the hot-end components, and in order to accurately predict the life of high-temperature components and verify the reliability of the engine design, it is necessary to measure the temperature distribution of the hot-end components.
  • the temperature measurement of high-temperature components has greater technical difficulties, and the existing temperature measurement technologies have certain limitations.
  • the temperature test method can be divided into contact method and non-contact method.
  • the temperature measurement method of temperature indicating paint is widely used in the temperature measurement of aero engines.
  • the temperature-indicating coating undergoes physical or chemical changes when the temperature rises, causing the surface color to change, thereby indicating the temperature distribution.
  • the temperature measurement method of temperature-indicating paint is convenient to use and has a wide range of temperature measurement. It is a non-interference test method (see Xu Fenghua. Application research of temperature-indicating paint technology in the surface temperature measurement of high-temperature parts of aero-engine [D]. University of Electronic Science and Technology.).
  • the irreversible color change of the temperature-indicating paint it can only measure the highest temperature of the hot end components, and real-time monitoring cannot be achieved; secondly, the blades need to be dismantled for temperature interpretation and in-situ monitoring cannot be carried out; at the same time, its temperature measurement accuracy and resolution .
  • the most widely used method at home and abroad is radiation temperature measurement (see Xiong Bing, Min-Jie H, Chen Hongmin, et al. Application of radiation temperature measurement technology in turbine blade temperature field [J]. Gas Turbine Test and Research, 2008, 21(3).).
  • the radiation temperature measurement method is based on infrared radiation theory to measure the surface temperature, which has the advantages of high sensitivity, strong reliability, and no interference.
  • the temperature measurement accuracy of this method is affected by factors such as radiation loss, gas absorption in the air, and reflected radiation from other objects. At present, it is not possible to realize real-time temperature monitoring when the turbine blades are rotating.
  • the present invention provides a method for measuring the temperature of ceramic matrix composite high-temperature parts based on electrical impedance imaging, which aims to solve the problems of high temperature measurement difficulty and difficulty in real-time measurement.
  • the method of the present invention can be The real-time calculation results of the resistivity distribution of the ceramic matrix composite high-temperature parts by the anti-imaging technology combined with the relationship between the resistivity and the temperature change, synchronously, quickly and accurately indirectly measure the temperature distribution of the high-temperature parts.
  • Step 1 Make electrodes, build a certain number of electrode arrays for conducting electrical signals around the measured ceramic matrix composite material structure; design a thermal protection device to ensure that the electrodes can work normally in a high temperature environment;
  • Step 2 Build a multi-channel test and measurement hardware system to collect electrical signals conducted by the electrode array
  • Step 3 Based on the electrical impedance imaging technology reconstruction algorithm and the voltage data collected by the hardware system in Step 2, the calculation and imaging of the resistivity distribution of the ceramic matrix composite high-temperature parts are realized;
  • Step 4 Establish the functional relationship of resistivity with temperature
  • Step 5 Convert the resistivity distribution calculated in step 3 to the temperature distribution according to the functional relationship of resistivity with temperature established in step 4, and finally realize the real-time effective measurement of the temperature distribution on the ceramic matrix composite high-temperature component .
  • the tested ceramic matrix composite structure is a turbine guide vane, and the electrode is embedded at the inner edge of the high-temperature component to avoid additional interference;
  • the thermal protection device adopts an ultra-high temperature corrosion-resistant ceramic coating uniformly coated on the electrode
  • a protective cover is formed, and a quartz fiber sleeve is used to insulate the wire.
  • step 4 an experiment is carried out to simultaneously measure the resistance values at both ends of the ceramic matrix composite material specimen under a high temperature environment and the temperature values at different positions along the length of the specimen.
  • step 4 under the clamp of the clamp, the long test piece passes through the inner cavity of the high-temperature furnace, and the two ends of the test piece are symmetrically located outside the outer shell of the high-temperature furnace, and the inner wall of the inner cavity of the high-temperature furnace is equipped with insulation bricks.
  • ;Armored thermocouple probes are arranged at five positions near and far from the center of the test piece. The thermocouple probes are connected to a multi-channel temperature tester for real-time temperature measurement and storage, and the corresponding temperature and position on the test piece are obtained. Relationship: The two ends of the test piece are connected with the resistance tester, and the resistance value between the two ends is measured and stored by the resistance tester in real time.
  • step 4 from the resistance-resistivity relationship Derive the resistance-temperature relationship
  • R represents the measured resistance value
  • represents the electrical resistivity
  • L and S represent the length and cross-sectional area of the test piece respectively
  • T is the temperature
  • ⁇ (T) is the proposed electrical resistivity as a function of temperature
  • T(l) between temperature T and position l is obtained by curve fitting obtained by experiments; according to the experimental measurement results, the resistance-temperature relations at different times are combined to solve the undetermined coefficients C1 and C2 in the proposed function, Then the functional relationship of resistivity with temperature can be established.
  • step 5 the temperature distribution and the resistivity distribution are established based on the same two-dimensional finite element model of the high-temperature thin plate under test, and finally displayed visually in the form of images.
  • the present invention applies electrical impedance imaging technology to the temperature measurement of high-temperature components, solves the technical problem that the temperature is difficult to directly measure in a high-temperature harsh environment, and proposes a new method that is feasible and reliable.
  • the present invention relies on a real-time electrical impedance imaging system and a reliable electrical resistivity temperature test relationship, so the temperature measurement results are more accurate and real-time.
  • Figure 1 is an overall schematic diagram of the test scheme of the present invention.
  • Fig. 2 is a schematic diagram of the temperature measurement principle of a ceramic matrix composite material high temperature component based on the electrical impedance imaging technology of the present invention.
  • Fig. 3 is a schematic diagram of the resistance and temperature test device of the present invention.
  • Figure 4 Schematic diagram of temperature measurement results of ceramic matrix composite high temperature parts based on electrical impedance imaging technology.
  • a method for measuring the temperature of a ceramic matrix composite high-temperature component based on electrical impedance imaging includes an electrical impedance imaging system and an analysis method for real-time temperature measurement of the ceramic matrix composite high-temperature component based on the electrical impedance imaging system and the relationship between the electrical resistivity and temperature.
  • the electrical impedance imaging system consists of two parts.
  • the first part is the hardware used for multi-channel test measurement and electrical signal conduction at the test end, and the second part is the software used for calculation, imaging and control at the PC end.
  • the hardware part of the electrical impedance imaging system mainly includes a multi-channel switch system, a precision DC power supply, a high precision data acquisition system and an electrode device.
  • the electrode device has a certain high temperature resistance and can accurately conduct electrical signals in a high temperature environment.
  • the software part of the electrical impedance imaging system includes the main functions of the calculation of resistivity distribution, imaging and program control of the hardware.
  • the analysis method for real-time temperature measurement of ceramic matrix composite high-temperature parts is to use the relationship between the resistivity of the ceramic matrix composite material and the temperature to convert the resistivity distribution results of the ceramic matrix composite high-temperature parts calculated by the electrical impedance imaging system into the temperature distribution results.
  • a method of measuring the temperature distribution of high temperature components The functional relationship of the resistivity of ceramic matrix composites with temperature is generally calculated from the relationship between the resistance of the test piece obtained in the experiment and the temperature.
  • Ceramic matrix composite high temperature parts are generally thin-plate parts, such as turbine guide blades.
  • the temperature measurement method of ceramic matrix composite high temperature parts based on electrical impedance imaging as shown in Figure 1 and Figure 2 specifically includes the following steps:
  • Step 1 Make electrodes.
  • a certain number of electrode arrays 2 ie sensor arrays used to conduct electrical signals are formed around the measured structure such as turbine guide vanes 1; a thermal protection device designed to ensure that the electrodes can work normally in a high temperature environment, such as The ultra-high temperature and corrosion-resistant ceramic coating is evenly coated on the surface of the electrode to form a protective cover, and the quartz fiber sleeve is used as the wire insulation.
  • Step 2 Build a multi-channel test and measurement hardware system 3. Realize stable transmission of small constant current, multi-channel switching and accurate collection of weak voltage data.
  • the multi-channel test and measurement hardware system has high test stability and measurement accuracy to meet the transmission and acquisition of weak current signals.
  • Step 3 Design electrical impedance real-time imaging software. Independently compile the program to control the hardware to realize automatic testing and measurement; based on the electrical impedance imaging technology reconstruction algorithm and the voltage data collected by the hardware system 3 in step 2, the independent compile program realizes the calculation and imaging of resistivity distribution.
  • the control and calculation programs are unified into the human-computer interaction software in the computer 4. The calculation speed of the reconstruction algorithm should be high to meet the real-time requirements.
  • Step 4 Establish the functional relationship of resistivity with temperature.
  • a test device for synchronously measuring the resistance and temperature of the test piece is shown in Figure 3.
  • the long-strip ceramic matrix composite material sample 6 is placed in a high-temperature furnace heating device.
  • 7 is the outer shell of the high-temperature furnace
  • 8 is the insulation brick
  • 9 is the inner cavity of the high-temperature furnace.
  • the temperature distribution is uneven along the length of the test piece, and the temperature distribution is symmetrical. Therefore, the armored thermocouple probe 10, the thermocouple test line and the multi-channel temperature are arranged at five positions from the near and far from the center of the test piece.
  • the tester 11 is connected for real-time temperature measurement and storage, thereby obtaining the corresponding relationship between the temperature and the position on the test piece. At the same time, the resistance value between the two ends of the test piece is measured and stored in real time by the precision resistance tester 12.
  • Step 5 Obtain the temperature distribution from the calculation result of the resistivity distribution.
  • the resistivity distribution calculated in step 3 is converted into temperature distribution, and finally real-time effective measurement of temperature distribution on the ceramic matrix composite high-temperature component is realized.
  • a schematic diagram of the obtained temperature distribution results is shown in Figure 4. The difference in color shows the difference in temperature value, and the dark area is the high temperature area.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

一种基于电阻抗成像的陶瓷基复合材料高温部件温度测量方法,包括步骤如下:制作电极;搭建多通道测试测量硬件系统;设计电阻抗实时成像软件;确立电阻率随温度变化的函数关系;由电阻率分布计算结果获得温度分布情况。该方法可由电阻抗成像技术对陶瓷基复合材料高温部件电阻率分布的实时计算结果结合电阻率随温度变化关系,同步、准确地间接测量高温部件的温度分布。

Description

基于电阻抗成像的陶瓷基复合材料高温部件温度测量方法 技术领域
本发明涉及温度测量技术领域,具体涉及基于电阻抗成像的陶瓷基复合材料高温部件温度测量方法,将电阻抗成像技术与电阻率随温度变化关系相结合,实时测量航空发动机高温部件的温度分布。
背景技术
随着航空发动机性能的不断提高,燃气温度及涡轮进口温度也在不断提高。航空发动机的寿命取决于热端部件的寿命,而为准确预测高温部件的寿命并验证发动机设计的可靠性,必然需要测量热端部件的温度分布。但是,在复杂的高温恶劣环境下,高温部件的温度测量存在较大的技术难度,现有的温度测量技术均存在一定的局限性。
温度测试方法主要可分为接触法和非接触法。在接触式测温法中,示温漆测温法在航空发动机测温中应用广泛。示温涂层在温度升高时发生物理或化学变化,引起表面颜色变化,借以指示温度分布。示温漆测温法使用方便、测温范围广,是一种非干涉测试方法(见徐凤花.示温漆技术在航空发动机高温部件表面温度测试上的应用研究[D].电子科技大学.)。但由于示温漆涂料颜色变化不可逆,因此只能测量热端部件最高温度,无法实现实时监测;其次,需要拆卸叶片才能进行温度判读,无法开展原位监测;同时,其测温精度和分辨率低。对于非接触测温法,目前国内外应用最为广泛的是辐射测温法(见熊兵,Min-Jie H,陈洪敏,et al.辐射测温技术在涡轮叶片温度场中的应用[J].燃气涡轮试验与研究,2008,21(3).)。辐射测温法基于红外辐射理论测量表面温度,具有灵敏度高、可靠性强、无干扰等优点。但是,该方法的测温精度受辐射散失、空气中气体吸收及其他物体的反射辐射等因素影响,目前还无法实现涡轮叶片转动时的温度实时监测。
因此,有必要提供一种能够实时、在线、原位监测高温部件温度分布的温度测量方法,实现快速有效、经济可靠的温度测量。
发明内容
本发明针对现有技术中的不足,提供一种基于电阻抗成像的陶瓷基复合材料高温部件温度测量方法,旨在解决高温场合温度测量难度大、难以实时测量等问题,本发明的方法可由电阻抗成像技术对陶瓷基复合材料高温部件电阻率分布的实时计算结果结合电阻率随温度变化关系,同步快速、准确地间接测量高温部件的温度分布。
为实现上述目的,本发明采用以下技术方案:
基于电阻抗成像的陶瓷基复合材料高温部件温度测量方法,其特征在于,包括如下步骤:
步骤1:制作电极,围绕被测陶瓷基复合材料结构件的四周组建一定数量的用于传导电信号的电极阵列;设计用于保证电极在高温环境下能够正常工作的热防护装置;
步骤2:搭建多通道测试测量硬件系统,用于采集电极阵列所传导的电信号;
步骤3:基于电阻抗成像技术重建算法及步骤2中硬件系统采集到的电压数据,实现陶瓷基复合材料高温部件电阻率分布的计算及成像;
步骤4:确立电阻率随温度变化的函数关系;
步骤5:根据步骤4建立的电阻率随温度变化的函数关系式,将步骤3中计算得到的电阻率分布情况转换为温度分布情况,最终实现陶瓷基复合材料高温部件上温度分布的实时有效测量。
为优化上述技术方案,采取的具体措施还包括:
进一步地,步骤1中,被测陶瓷基复合材料结构件为涡轮导向叶片,电极埋入高温部件内部边缘处,以避免附加干扰;热防护装置采用超高温耐蚀陶瓷涂层均匀涂敷在电极表面,形成保护罩,以及采用石英纤维套管为导线隔热。
进一步地,步骤4中,开展试验,同步测量高温环境下陶瓷基复合材料试件两端电阻值以及沿着试件长度方向不同位置处的温度值。
进一步地,步骤4中,在夹具的夹持下,长条状的试件穿过高温炉内腔,试件的两端对称地位于高温炉外壳外,高温炉内腔的内壁安装有保温砖;在距试件中心由近及远的五个位置处布置铠装式热电偶探头,热电偶探头与多路温度测试仪相连进行实时测温及存储,进而获得试件上温度与位置的对应关系;试件的两端与电阻测试仪相连,两端之间的电阻值由电阻测试仪实时测量及存储。
进一步地,步骤4中,由电阻-电阻率关系式
Figure PCTCN2020093692-appb-000001
推导得到电阻-温度关系式
Figure PCTCN2020093692-appb-000002
其中R表示测量电阻值,ρ表示电阻率,L和S分别表示试件长度及截面积,T为温度;ρ(T)为拟定的电阻率随温度变化的函数关系
Figure PCTCN2020093692-appb-000003
温度T与位置l的函数关系T(l)通过试验获得的曲线拟合得到;根据试验测量结果,联立不同时刻下的电阻-温度关系式,求解出拟定函数中的待定系数C1及C2,即可确立电阻率随温度变化的函数关系。
进一步地,步骤5中,温度分布与电阻率分布情况基于相同的高温薄板被测件二维有限 元模型建立,并最终以图像的方式直观显示。
本发明的有益效果是:
(1)本发明将电阻抗成像技术应用于高温部件的温度测量,解决了高温恶劣环境下温度难以直接测量的技术难题,提出了一种切实可行、可靠的新方法。
(2)本发明中电阻率随温度变化关系的建立方法简明易懂,更容易让工程人员接受和掌握,同时建立出的电阻率温度函数关系较为准确。
(3)本发明与现有温度测量技术相比,由于依托于实时的电阻抗成像系统以及可靠的电阻率温度试验关系,因而温度测量结果更加准确并具有实时性。
附图说明
图1是本发明测试方案整体示意图。
图2是本发明基于电阻抗成像技术实现陶瓷基复合材料高温部件温度测量原理示意图。
图3是本发明电阻及温度的试验测量装置示意图。
图4基于电阻抗成像技术的陶瓷基复合材料高温部件温度测量结果示意图。
附图标记如下:涡轮导向叶片1,电极阵列2、硬件系统3、计算机4、夹具5、试件6、高温炉外壳7、保温砖8、高温炉内腔9、热电偶探头10、温度测试仪11、电阻测试仪12。
具体实施方式
现在结合附图对本发明作进一步详细的说明。
基于电阻抗成像的陶瓷基复合材料高温部件温度测量方法,包括电阻抗成像系统和结合电阻率随温度的变化关系进行陶瓷基复合材料高温部件温度实时测量的分析方法。
电阻抗成像系统由两部分组成,第一部分是位于测试端的用于多通道测试测量和电信号传导的硬件,第二部分是位于PC端的用于运算和成像、控制的软件。电阻抗成像系统的硬件部分主要包含多通道开关系统、精密直流电源、高精度数据采集系统及电极装置。电极装置具有一定的耐高温性能,能在高温环境中准确传导电信号。电阻抗成像系统的软件部分包含电阻率分布的计算、成像及对硬件的程序控制等主要功能。
陶瓷基复合材料高温部件温度实时测量的分析方法是利用陶瓷基复合材料电阻率随温度的变化关系将电阻抗成像系统计算得到的陶瓷基复合材料高温部件电阻率分布结果转换为温度分布结果从而实现高温部件温度分布测量的一种方法。陶瓷基复合材料电阻率随温度变化的函数关系一般由试验获得的试件电阻值随温度变化的关系进一步计算得到。陶瓷基复合材料高温部件一般为薄板件,如涡轮导向叶片。
如图1、图2所示的基于电阻抗成像的陶瓷基复合材料高温部件温度测量方法,具体包 括如下步骤:
步骤1:制作电极。围绕被测结构件如涡轮导向叶片1的四周组建一定数量的用于传导电信号的电极阵列2(即传感器阵列);设计用于保证电极在高温环境下能够正常工作的热防护装置,例如采用超高温耐蚀陶瓷涂层均匀涂敷在电极表面,形成保护罩,以及采用石英纤维套管为导线隔热等手段。
步骤2:搭建多通道测试测量硬件系统3。实现微小恒定电流的稳定传输、多通道切换以及微弱电压数据的精确采集。多通道测试测量硬件系统具有较高的测试稳定度和测量精度,以满足弱电信号的传输及采集。
步骤3:设计电阻抗实时成像软件。自主编译程序控制硬件,实现自动测试和测量;基于电阻抗成像技术重建算法及步骤2中硬件系统3采集到的电压数据,自主编译程序实现电阻率分布的计算及成像。控制及计算程序统一集成到计算机4中的人机交互软件中。重建算法的计算速度应较高,以满足实时性的要求。
步骤4:确立电阻率随温度变化的函数关系。
开展试验,同步测量高温环境下陶瓷基复合材料试件两端电阻值以及沿着试件长度方向不同位置处的温度值。一种同步测量试件电阻值及温度值的试验装置如图3所示。在夹具5的夹持下,长条状陶瓷基复合材料试件6处于高温炉加热装置中。其中,7为高温炉外壳,8为保温砖,9为高温炉内腔。沿着试件长度方向温度分布不均匀,同时温度的分布具有对称性,因此在距试件中心由近及远的五个位置布置铠装式热电偶探头10,热电偶测试线与多路温度测试仪11相连进行实时测温及存储,进而获得试件上温度与位置的对应关系。同时,试件两端之间的电阻值由精密电阻测试仪12实时测量及存储。
由电阻-电阻率关系式
Figure PCTCN2020093692-appb-000004
推导得到电阻-温度关系式
Figure PCTCN2020093692-appb-000005
其中R表示测量电阻值,ρ表示电阻率,L和S分别表示试件长度及截面积,T为温度。ρ(T)为拟定的电阻率随温度变化的函数关系,例如
Figure PCTCN2020093692-appb-000006
温度T与位置l的函数关系T(l)通过上述试验获得的曲线拟合得到。根据试验测量结果,联立不同时刻下的电阻-温度关系式,求解出拟定函数中的待定系数C1及C2,即可确立电阻率随温度变化的函数关系。
步骤5:由电阻率分布计算结果获得温度分布情况。根据步骤4建立的电阻率随温度变化的函数关系式,将步骤3中计算得到的电阻率分布情况转换为温度分布情况,最终实现陶瓷基复合材料高温部件上温度分布的实时有效测量。获得的温度分布结果示意图如图4所示,颜色的不同显示了温度值的不同,其中深色区域为高温区域。
需要注意的是,发明中所引用的如“上”、“下”、“左”、“右”、“前”、“后”等的用语,亦仅为便于叙述的明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。
以上仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,应视为本发明的保护范围。

Claims (6)

  1. 基于电阻抗成像的陶瓷基复合材料高温部件温度测量方法,其特征在于,包括如下步骤:
    步骤1:制作电极,围绕被测陶瓷基复合材料结构件的四周组建一定数量的用于传导电信号的电极阵列;设计用于保证电极在高温环境下能够正常工作的热防护装置;
    步骤2:搭建多通道测试测量硬件系统,用于采集电极阵列所传导的电信号;
    步骤3:基于电阻抗成像技术重建算法及步骤2中硬件系统采集到的电压数据,实现陶瓷基复合材料高温部件电阻率分布的计算及成像;
    步骤4:确立电阻率随温度变化的函数关系;
    步骤5:根据步骤4建立的电阻率随温度变化的函数关系式,将步骤3中计算得到的电阻率分布情况转换为温度分布情况,最终实现陶瓷基复合材料高温部件上温度分布的实时有效测量。
  2. 如权利要求1所述的基于电阻抗成像的陶瓷基复合材料高温部件温度测量方法,其特征在于:步骤1中,被测陶瓷基复合材料结构件为涡轮导向叶片(1),电极埋入高温部件内部边缘处;热防护装置采用超高温耐蚀陶瓷涂层均匀涂敷在电极表面,形成保护罩,以及采用石英纤维套管为导线隔热。
  3. 如权利要求1所述的基于电阻抗成像的陶瓷基复合材料高温部件温度测量方法,其特征在于:步骤4中,开展试验,同步测量高温环境下陶瓷基复合材料试件两端电阻值以及沿着试件长度方向不同位置处的温度值。
  4. 如权利要求3所述的基于电阻抗成像的陶瓷基复合材料高温部件温度测量方法,其特征在于:步骤4中,在夹具(5)的夹持下,长条状的试件(6)穿过高温炉内腔(9),试件(6)的两端对称地位于高温炉外壳(7)外,高温炉内腔(9)的内壁安装有保温砖(8);在距试件(6)中心由近及远的五个位置处布置铠装式热电偶探头(10),热电偶探头(10)与多路温度测试仪(11)相连进行实时测温及存储,进而获得试件(6)上温度与位置的对应关系;试件(6)的两端与电阻测试仪(12)相连,两端之间的电阻值由电阻测试仪(12)实时测量及存储。
  5. 如权利要求3所述的基于电阻抗成像的陶瓷基复合材料高温部件温度测量方法,其特征在于:步骤4中,由电阻-电阻率关系式
    Figure PCTCN2020093692-appb-100001
    推导得到电阻-温度关系式
    Figure PCTCN2020093692-appb-100002
    其中R表示测量电阻值,ρ表示电阻率,L和S分别表示试件长度及截面积,T为温度;ρ(T) 为拟定的电阻率随温度变化的函数关系
    Figure PCTCN2020093692-appb-100003
    温度T与位置l的函数关系T(l)通过试验获得的曲线拟合得到;根据试验测量结果,联立不同时刻下的电阻-温度关系式,求解出拟定函数中的待定系数C1及C2,即可确立电阻率随温度变化的函数关系。
  6. 如权利要求3所述的基于电阻抗成像的陶瓷基复合材料高温部件温度测量方法,其特征在于:步骤5中,温度分布与电阻率分布情况基于相同的高温薄板被测件二维有限元模型建立,并最终以图像的方式直观显示。
PCT/CN2020/093692 2019-06-13 2020-06-01 基于电阻抗成像的陶瓷基复合材料高温部件温度测量方法 WO2020248854A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910514087.7A CN110186583B (zh) 2019-06-13 2019-06-13 基于电阻抗成像的陶瓷基复合材料高温部件温度测量方法
CN201910514087.7 2019-06-13

Publications (1)

Publication Number Publication Date
WO2020248854A1 true WO2020248854A1 (zh) 2020-12-17

Family

ID=67721826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/093692 WO2020248854A1 (zh) 2019-06-13 2020-06-01 基于电阻抗成像的陶瓷基复合材料高温部件温度测量方法

Country Status (2)

Country Link
CN (1) CN110186583B (zh)
WO (1) WO2020248854A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230032755A1 (en) * 2021-07-28 2023-02-02 Nanjing University Of Aeronautics And Astronautics High-temperature biaxial strength tester for ceramic matrix composite (cmc) turbine vane and test method thereof
CN117970055A (zh) * 2024-02-08 2024-05-03 北京新雨华祺科技有限公司 一种用于环保陶瓷镀银孔板的高压测试系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110186583B (zh) * 2019-06-13 2020-07-14 南京航空航天大学 基于电阻抗成像的陶瓷基复合材料高温部件温度测量方法
CN112880565A (zh) * 2019-11-29 2021-06-01 南京毛勒工程材料有限公司 一种球形支座x-x方向位移测量装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010237065A (ja) * 2009-03-31 2010-10-21 Japan Fine Ceramics Center 表面温度分布検知装置とこれを利用した配管の減肉検知方法
CN102008303A (zh) * 2010-10-29 2011-04-13 重庆大学 一种电阻抗成像系统频差fnoser成像方法
CN103630750A (zh) * 2013-11-22 2014-03-12 上海交通大学 一种基于电阻抗成像的凝胶电导率测量方法
CN108489628A (zh) * 2018-03-26 2018-09-04 昆明理工大学 一种高温测量方法
CN109101742A (zh) * 2018-08-28 2018-12-28 南京航空航天大学 基于电阻抗成像损伤监测的复合材料强度预测方法
CN109100043A (zh) * 2018-08-21 2018-12-28 西北工业大学 一种用于热-电-力耦合测试系统中的试件温度测量方法
CN110186583A (zh) * 2019-06-13 2019-08-30 南京航空航天大学 基于电阻抗成像的陶瓷基复合材料高温部件温度测量方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010237065A (ja) * 2009-03-31 2010-10-21 Japan Fine Ceramics Center 表面温度分布検知装置とこれを利用した配管の減肉検知方法
CN102008303A (zh) * 2010-10-29 2011-04-13 重庆大学 一种电阻抗成像系统频差fnoser成像方法
CN103630750A (zh) * 2013-11-22 2014-03-12 上海交通大学 一种基于电阻抗成像的凝胶电导率测量方法
CN108489628A (zh) * 2018-03-26 2018-09-04 昆明理工大学 一种高温测量方法
CN109100043A (zh) * 2018-08-21 2018-12-28 西北工业大学 一种用于热-电-力耦合测试系统中的试件温度测量方法
CN109101742A (zh) * 2018-08-28 2018-12-28 南京航空航天大学 基于电阻抗成像损伤监测的复合材料强度预测方法
CN110186583A (zh) * 2019-06-13 2019-08-30 南京航空航天大学 基于电阻抗成像的陶瓷基复合材料高温部件温度测量方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230032755A1 (en) * 2021-07-28 2023-02-02 Nanjing University Of Aeronautics And Astronautics High-temperature biaxial strength tester for ceramic matrix composite (cmc) turbine vane and test method thereof
US11644382B2 (en) * 2021-07-28 2023-05-09 Nanjing University Of Aeronautics And Astronautics High-temperature biaxial strength tester for ceramic matrix composite (CMC) turbine vane and test method thereof
CN117970055A (zh) * 2024-02-08 2024-05-03 北京新雨华祺科技有限公司 一种用于环保陶瓷镀银孔板的高压测试系统

Also Published As

Publication number Publication date
CN110186583B (zh) 2020-07-14
CN110186583A (zh) 2019-08-30

Similar Documents

Publication Publication Date Title
WO2020248854A1 (zh) 基于电阻抗成像的陶瓷基复合材料高温部件温度测量方法
CN110260919B (zh) 一种同时测量涡轮叶片叶尖温度和应变的方法
WO2020248853A1 (zh) 基于电阻抗成像的复合材料高温部件氧化程度监测方法
CN109269667A (zh) 一种具有温度实时监测系统的新型igbt装置及其制作方法
CN201653844U (zh) 热障涂层抗高温氧化性能测试装置
Liu et al. Differential evolution fitting-based optical step-phase thermography for micrometer thickness measurement of atmospheric corrosion layer
WO2022156740A1 (zh) 一种直接原位综合测量微纳材料热电性能的方法及装置
CN111473948A (zh) 一种低温跨声速设备tsp转捩测量试验装置
CN106932431A (zh) 一种槽式高温真空集热管在线热损测试系统及方法
CN107340080A (zh) 基于表面测温法的针型薄膜热电偶试验验证系统及其应用
CN111157139B (zh) 一种用于单连通燃烧场温度分布的可视化测量方法
CN108490237A (zh) 一种便携式金属管道热电势无损测量的装置及方法
CN103713013B (zh) 测试管状材料轴向导热系数的装置
CN114047223A (zh) 一种稳态法双试样导热系数测量装置
CN109324079B (zh) 一种基于超声的材料热膨胀系数的测量方法
CN105203848B (zh) 复阻抗谱的检测装置及其方法
CN213985451U (zh) 一种物体表面温度测量传感器
Li et al. Thickness measurement of thermal barrier coating based on mutual inductance of eddy current system
CN107966472B (zh) 一种高温接触热阻的无损快速测量方法
CN208125653U (zh) 一种热气流冲击下纺织品传热性能的测试装置
CN105423891A (zh) 一种叶片表面铝硅渗层厚度的检测方法
CN206177858U (zh) 一种测定热障涂层隔热效果的测试装置
CN215525613U (zh) 一种基于谐波探测的微纳材料热电性能原位综合测量装置
CN211785255U (zh) 一种测量多孔材料中异质含量的装置
CN209707421U (zh) 利用psd器件对固体线膨胀系数的测量实验装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20822140

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20822140

Country of ref document: EP

Kind code of ref document: A1