WO2020248651A1 - 一种离网裂相器和逆变器系统 - Google Patents

一种离网裂相器和逆变器系统 Download PDF

Info

Publication number
WO2020248651A1
WO2020248651A1 PCT/CN2020/081152 CN2020081152W WO2020248651A1 WO 2020248651 A1 WO2020248651 A1 WO 2020248651A1 CN 2020081152 W CN2020081152 W CN 2020081152W WO 2020248651 A1 WO2020248651 A1 WO 2020248651A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
voltage
output port
switch
switch circuit
Prior art date
Application number
PCT/CN2020/081152
Other languages
English (en)
French (fr)
Inventor
封宁波
裔杰
汪航
王庆雨
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20822724.9A priority Critical patent/EP3905509A4/en
Publication of WO2020248651A1 publication Critical patent/WO2020248651A1/zh
Priority to US17/471,701 priority patent/US11632056B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/06Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using impedances
    • H02M5/08Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using impedances using capacitors only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/275Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/293Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/2932Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage, current or power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/18Networks for phase shifting
    • H03H7/21Networks for phase shifting providing two or more phase shifted output signals, e.g. n-phase output
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/388Islanding, i.e. disconnection of local power supply from the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/009Converters characterised by their input or output configuration having two or more independently controlled outputs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the invention relates to the technical field of inverters, in particular to an off-grid phase splitter and an inverter system.
  • Inverters are power systems that convert DC power into AC power, and are widely used in photovoltaic and other new energy power generation industries. As the core equipment for power generation, the inverter converts the optimized DC of the photovoltaic module to AC, and then selects the transmission grid (on-grid) or load power supply (off-grid).
  • an inverter system in the prior art usually has three power ports: a DC input port, a battery port, and an AC output port, corresponding to three main operating modes: Solar direct current is inverted to alternating current, and the output is connected to the grid from the AC output port; when the mains power fails, the direct current of the battery port is inverted to alternating current, and the load is supplied from the AC output port; the solar direct current input is converted to the battery Charging (energy storage).
  • the inverter When the inverter is connected to the grid, for a 220V system, the AC port is connected to its live and neutral wires; and for areas where 110V systems are used in Japan/the United States, the inverter’s AC output port is connected to the two 110V systems.
  • the inverter When the utility power is abnormal, the inverter can disconnect from the grid and work in off-grid mode. If the inverter is connected to a battery, it can output 220V AC voltage to directly supply power to the load of 220V system users. But for 110V system, this voltage level cannot be used for 110V system load. This requires a step-down or phase splitting of 220V to reduce its output voltage to about 110V for household single-phase loads.
  • the embodiment of this application provides an off-grid phase splitter and inverter system.
  • the off-grid phase splitter provided in this application can meet the power supply requirements of different load systems; at the same time, the transformer of the inverter system is replaced After the off-grid phase splitter provided in this application, it can solve the problem of the excessive volume of the inverter system due to the existence of the transformer and the potential safety hazards of the surge current burning insurance or sticking relay.
  • this application provides an off-grid phase splitter, including: a first input port, a second input port, a first output port, a second output port, a third output port, a first capacitor, a second capacitor,
  • the first switch circuit, the second switch circuit and the inductor; the first input port and the second input port are respectively connected to a power supply; the power supply provides the first phase port and the second phase port A voltage; the first output port, the second output port, and the third output port, the first output port and the second output port provide a second voltage for the first load, the second The output port and the third output port provide a third voltage for the second load; the second voltage and the third voltage are both smaller than the first voltage; the first capacitor and the second capacitor, so The first capacitor is connected between the first output port and the second output port, and the second capacitor is connected between the second output port and the third output port; the first switch Circuit and the second switch circuit, the first switch circuit and the second switch circuit are connected in series between the first input port and the second input port, the
  • the embodiment of the application controls the first capacitor C1 and the second capacitor C2 by connecting the two input ports of the off-grid phase splitter to the external power supply circuit, and by controlling the on or off of the first switch circuit and the second switch circuit
  • the voltage between the two ends of the circuit can be adjusted and regulated between the voltage between the first output port L1 and the second output port N and the voltage between the second output port N and the third output port L2, so that the off-grid phase splitter satisfies Power supply requirements for different load systems.
  • it further includes: a drive control system that controls the first switch circuit and the first switch circuit according to the voltage across the first capacitor and the voltage across the second capacitor
  • the two-switch circuit conducts unidirectional conduction.
  • the present application controls the unidirectional conduction of the first switch circuit and the second switch circuit through the drive control system, so as to realize the regulation of the off-grid phase splitter.
  • the second switch circuit forms a path in the third direction; when the first switch circuit forms a path in the first direction, the first capacitor performs Discharge; when the first switching circuit forms an open circuit in the first direction, the inductor charges the second capacitor in the third direction through the second switching circuit; or when the voltage across the first capacitor
  • the second switch circuit A path is formed in the fourth direction; when the first switch circuit forms a path in the second direction, the first capacitor discharges the inductor; when the first switch circuit forms a circuit in the second direction, the inductor The second capacitor is charged in the fourth direction through the second switch circuit; or when the absolute value of
  • the first switch circuit includes a first switch and a second switch
  • the second switch circuit includes a third switch and a fourth switch
  • the first switch is configured to allow the A switch circuit forms a path or an open circuit in the first direction
  • the second switch is used to allow the first switch circuit to form a path or an open circuit in the second direction
  • the third switch is used to allow all
  • the second switch circuit forms a path or an open circuit in the third direction
  • the fourth switch is used to allow the second switch circuit to form a path or an open circuit in the fourth direction.
  • the first switch, the second switch, the third switch, and the fourth switch are formed by MOS transistors.
  • the drive control system includes: a collector for collecting the voltage across the first capacitor, the voltage across the second capacitor and the current of the inductor; and a voltage regulator for receiving The difference between the voltage value of the voltage across the first capacitor and the voltage value of the voltage across the second capacitor is used to obtain the first current; a current regulator for receiving the generated current and the current of the inductor, To obtain a fourth voltage; the drive control system calculates the fourth voltage for controlling the first capacitor based on the larger of the voltage across the first capacitor and the voltage across the second capacitor. The duty cycle of the switch, the second switch, the third switch, and the fourth switch.
  • the present application provides an off-grid phase splitting method, wherein a first input port and a second input port are respectively connected to a power source; the power source is provided through the first phase port and the second phase port A first voltage; a first output port, a second output port, and a third output port; wherein the first output port and the second output port provide a second voltage for the first load, the second output port and the The third output port provides a third voltage for the second load; both the second voltage and the third voltage are less than the first voltage; including: the voltage according to the voltage across the first capacitor and the voltage across the second capacitor The voltage difference controls one of the first switch circuit and the second switch circuit to conduct, and one of the first capacitor and the second capacitor discharges the inductor; the first capacitor is connected to the first output port and the Between the second output port, the second capacitor is connected between the second output port and the third output port; the first switch circuit and the second switch circuit are connected in series with the first Between the input port and the second input port; wherein a first no
  • the present application provides an inverter system, including: an inverter for converting a direct current signal into an alternating current signal; an off-grid phase splitter, the off-grid phase splitter relates to the first aspect
  • the power supply is provided by the inverter, and the first phase port and the second phase port of the power supply are two output phase ports of the inverter.
  • This application can meet the requirements of load power supply of different voltage systems by dividing the voltage by the off-grid phase splitter, and has a simple structure. Compared with the transformer, the volume and weight are reduced, and the product is miniaturized and modularized. Save product cost and transportation cost.
  • the off-grid phase splitter in the present application does not work when it is connected to the grid. Compared with the power consumption when the transformer is connected to the grid, the efficiency is improved.
  • Fig. 1 is a schematic structural diagram of an inverter system in the prior art
  • FIG. 2 is a schematic structural diagram of an off-grid phase splitter provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of the output voltage balance process of the off-grid phase splitter when the phase loading capacity of the first capacitor C1 is less than the phase loading capacity of the second capacitor C2 according to an embodiment of the application;
  • FIG. 4 is a schematic diagram of the output voltage balance process of the off-grid phase splitter when the phase loading capacity of the first capacitor C1 is greater than the phase loading capacity of the second capacitor C2 according to an embodiment of the application;
  • FIG. 5 is a schematic diagram of the control process of the off-grid phase splitter by the drive control system when the phase loading capacity of the first capacitor C1 is greater than the phase loading capacity of the second capacitor C2 according to an embodiment of the application;
  • FIG. 6 is a schematic diagram of the control process of the off-grid phase splitter by the drive control system when the phase load of the first capacitor C1 is less than the phase load of the second capacitor C2 according to an embodiment of the application;
  • FIG. 7 is a schematic diagram of an inverter system provided by an embodiment of the application.
  • FIG. 8 is a schematic structural diagram of an inverter system using an off-grid phase splitter provided by an embodiment of the application.
  • FIG 2 is a schematic structural diagram of an off-grid phase splitter provided by an embodiment of the application.
  • the off-grid phase splitter includes two input ports and three output ports.
  • the two input ports include an input port K1 and an input port K2.
  • the input port K1 and the input port K2 are respectively connected to the first phase port and the second phase port of the power supply.
  • the power supply provides the first voltage through the input port K1 and the input port K2;
  • the output ports include an output port L1, an output port N, and an output port L2.
  • the output port L1 and the output port N provide the second voltage for the first load, and the output port N and the output port L2 provide the third voltage for the second load.
  • the second voltage and the third voltage are both lower than the first voltage.
  • the input port K1 and the output port L1 share one port
  • the input port K2 and the output port L2 share one port
  • the external power supply to the two input ports is a single-phase AC power supply.
  • the external power supply connected to the two input ports is not limited to alternating current, but can be direct current.
  • the off-grid phase splitter includes a first capacitor C1 and a second capacitor C2.
  • the first capacitor C1 is connected between the output port L1 and the output port N
  • the second capacitor C2 is connected between the output port N and the output port L2.
  • the voltage across the first capacitor C1 is the output voltage V C1 between the port and the output port L1 N
  • a second capacitor voltage V C2 C2 is the output voltage between both ends of the port and the output port N L2.
  • the voltages V C1 and V C2 can be used to drive the load.
  • the first capacitor C2 and the second capacitor C2 may be film capacitors, electrolytic capacitors, etc., which are not limited in the embodiment of the present application.
  • the off-grid phase splitter includes a first switch circuit and a second switch circuit.
  • the first switch circuit and the second switch circuit are connected in series between the input port K1 and the input port K2, and between the first switch circuit and the second switch circuit.
  • the inductor L plays an intermediary role in energy transfer.
  • the first switch circuit is turned on, so that the first capacitor C1, the first switch circuit, and the inductor L form a unidirectional loop circuit, and the first capacitor C1 discharges the inductor L.
  • the loop circuit formed by the first capacitor C1, the first switch circuit, and the inductor L is in a conducting state.
  • the first switch circuit is turned on, the first capacitor C1 is discharged and the circuit generates a current.
  • the amount of the transferred voltage is related to the amount of charge discharged from the capacitor, so by controlling the time when the switch circuit is turned on, the amount of charge discharged from the capacitor is controlled to realize the control of the transferred voltage.
  • the inductor L helps prevent sudden changes in the voltage across the first capacitor C1 and the second capacitor C2, so as to avoid a large loop current that may damage the switching circuit during the modulation of the first switching circuit and the second switching circuit.
  • the function of the first switch circuit is to make the ring circuit formed by the first switch circuit only conduct unidirectional conduction at the same time.
  • the inductor L in the loop circuit formed by the first capacitor C1, the first switch circuit and the inductor L, when the first switch circuit is turned on and the first capacitor C1 is discharged, the inductor L is charged.
  • the first switching circuit can only conduct unidirectional conduction at the same time, the resonant circuit between the inductor L and the first capacitor C1 is avoided.
  • the inductor L in the loop circuit formed by the first capacitor C1, the first switch circuit and the inductor L, when the first switch circuit is turned on and the first capacitor C1 is charged, the inductor L is discharging In the process, since the first switching circuit can only conduct unidirectional conduction at the same time, it is avoided that the first capacitor C1 is discharged when the first switching circuit is turned on, and a resonance circuit is generated between the inductor L and the first capacitor C1.
  • the function of the second switch circuit is to make the loop circuit formed by the second switch circuit only conduct unidirectional conduction at the same time.
  • the specific implementation process is the same as the principle of the first switch circuit, and will not be repeated here.
  • the first switch circuit includes a MOS (Metal Oxide Semiconductor) transistor Q1a and a MOS transistor Q1b, wherein the drain of the MOS transistor Q1a is connected to the input port K1, and the source of the MOS transistor Q1a Connected to the source of the MOS transistor Q1b, the drain of the MOS transistor Q1b is connected to the node P;
  • the second switch circuit includes the MOS transistor Q2a and the MOS transistor Q2b, wherein the drain of the MOS transistor Q2a is connected to the node P, and the source of the MOS transistor Q2a The electrode is connected to the source of the MOS transistor Q2b, and the drain of the MOS transistor Q2b is connected to the output port L2.
  • MOS Metal Oxide Semiconductor
  • the MOS transistor Q1a when a high level is provided at the gate, current can pass through the MOS transistor Q1a in both directions; when a low level is provided at the gate, the current can only flow through the body diode of the MOS transistor Q1a , The direction is that the source of the MOS transistor Q1a points to the drain.
  • the MOS transistor Q1b when the gate provides a high level, the current can pass through the MOS transistor Q1b in both directions; when the gate provides a low level, the current can only flow through the body diode of the MOS transistor Q1b, and the direction is the source of the MOS transistor Q1b Point to the drain.
  • the switching states of the MOS transistor Q1a and the MOS transistor Q1b are complementary, that is, the MOS transistor Q1b is turned off when the MOS transistor Q1a is turned on, or the MOS transistor Q1b is turned on when the MOS transistor Q1a is turned off.
  • the current can only flow from the drain of the MOS transistor Q1a to the drain of the MOS transistor Q1b; when the gate of the MOS transistor Q1a is When the low level and the gate of the MOS transistor Q1b are high, the current can only flow from the drain of the MOS transistor Q1b to the drain of the MOS transistor Q1a.
  • the MOS transistor Q2a when the gate provides a high level, the current can pass through the MOS transistor Q2a in both directions; when the gate provides a low level, the current can only flow through the body diode of the MOS transistor Q2a, and the direction is The source of the MOS transistor Q2a points to the drain.
  • MOS transistor Q2b when the gate provides high level, current can pass through MOS transistor Q2b in both directions; when the gate provides low level, current can only flow from the body diode of MOS transistor Q2b, and the direction is the source of MOS transistor Q2b Point to the drain.
  • the switching states of the MOS transistor Q2a and the MOS transistor Q2b are also complementary. Therefore, for the second circuit, when the gate of MOS transistor Q2a is high and the gate of MOS transistor Q2b is low, current can only flow from the drain of MOS transistor Q2a to the drain of MOS transistor Q2b; when the gate of MOS transistor Q2a is When the low level and the gate of the MOS transistor Q2b are high, the current can only flow from the drain of the MOS transistor Q2b to the drain of the MOS transistor Q2a.
  • first switch circuit and the second switch circuit in the embodiments of this application are implemented by MOS transistors, but this application is not limited to MOS transistors, and can also be other power switching devices such as IGBTs. Make restrictions.
  • first switch circuit and the second switch circuit in the embodiment of the present application are not limited to two switches, but can also be three switches, four switches, and so on.
  • the voltage across the first capacitor C1 and the second capacitor C2 is controlled by controlling the on or off of the first switch circuit and the second switch circuit , whereby realizing and regulating the voltage between the output port L1 and the output port N and the voltage between the output port N and the output port L2, so that the off-grid phase splitter meets the power supply requirements for different load systems.
  • the following embodiment will take the process of modulating the voltage across the first capacitor C1 and the voltage across the second capacitor C2 from different to the same as an example to describe the working principle of the off-grid phase splitter in the embodiment of the present application. It is easy for those in the art to think that the off-grid phase splitter provided in this application can also be modulated in form, which is not limited here.
  • the off-grid phase splitter in the embodiment of the present application is connected to single-phase alternating current, according to the sinusoidal change rule of alternating current, the voltage of one half cycle is positive, and the voltage of the other half cycle is negative.
  • the half cycle when the alternating current is positive is defined as a positive half cycle; the half cycle when the alternating current is negative is defined as a negative half cycle.
  • phase load of the first capacitor C1 refers to the amount of electricity on the two plates of the first capacitor C1.
  • the effective value of the voltage across the first capacitor C1 is greater than the effective value of the voltage across the second capacitor C2, that is
  • Figure 3 includes four parts of Figure 3(a), Figure 3(b), Figure 3(c) and Figure 3(d).
  • Figure 3(a) and Figure 3(b) illustrate the process of output voltage balance of the off-grid phase splitter during the positive half-cycle of the alternating current connected to the two input ports of the off-grid phase splitter;
  • Figure 3(c) and Figure 3( d) It shows the output voltage balance process of the off-grid phase splitter in the negative half cycle of the alternating current connected to the two input ports of the off-grid phase splitter.
  • the MOS transistor Q2a in the second switch circuit is placed in the off state and the MOS transistor Q2b is placed in the on state, so that in the loop formed by the second switch circuit, the current can only be Turning on clockwise; at the same time, pulse width modulation (PWM) control is performed on the MOS transistor Q1a and the MOS transistor Q1b in the first switching circuit.
  • PWM pulse width modulation
  • the MOS transistor Q1a is placed in the on state and the MOS transistor Q1b is placed in the off state.
  • the first switch circuit, the first capacitor C1 and the inductor L form a loop road.
  • the first capacitor C1 is discharged, and the current in the inductor L increases.
  • the current flows back as C1 ⁇ Q1a ⁇ Q1b ⁇ L, and the inductor L is charged.
  • the MOS transistor Q1a is placed in the off state and the MOS transistor Q1b is placed in the on state.
  • the current can only be conducted clockwise;
  • the second switch circuit since the current can be conducted clockwise in the loop formed by the second switch circuit, the second capacitor C2 and the inductor L, at this time the inductor L keeps flowing, and the freewheeling loop is L ⁇ C2 ⁇ Q2b ⁇ Q2a, charge the second capacitor C2, as shown in Figure 3(b), make the voltage V c1 across the first capacitor C1 and the voltage V c2 across the second capacitor C2 equal.
  • the MOS transistor Q2a in the second switch circuit is placed in the on state and the MOS transistor Q2b is placed in the off state, so that in the loop formed by the second switch circuit, the current can only be Turn on along the counterclockwise; at the same time, PWM control is performed on the MOS transistor Q1a and the MOS transistor Q1b in the first switch circuit.
  • the MOS transistor Q1a is placed in the off state and the MOS transistor Q1b is placed in the on state.
  • the first switch circuit, the first capacitor C1 and the inductor L form a loop road.
  • the first capacitor C1 is discharged, and the current in the inductor L increases.
  • the current flows back as C1 ⁇ L ⁇ Q1b ⁇ Q1a, and the inductor L is charged.
  • the MOS transistor Q1a is placed in the on state and the MOS transistor Q1b is placed in the off state.
  • the current can only be conducted counterclockwise;
  • the second switching circuit since the current can be conducted counterclockwise in the loop formed by the second switching circuit, the second capacitor C2 and the inductance L, the inductance L is freewheeling at this time, and the freewheeling loop is L ⁇ Q2a ⁇ Q2b ⁇ C2, charge the second capacitor C2, as shown in Figure 3(d), make the voltage V c1 across the first capacitor C1 and the voltage V c2 across the second capacitor C2 equal.
  • FIG. 4 is a schematic diagram of the output voltage balance process of the off-grid phase splitter when the phase loading capacity of the first capacitor C1 is greater than the phase loading capacity of the second capacitor C2 according to an embodiment of the application.
  • the effective value of the voltage across the first capacitor C1 is less than the effective value of the voltage across the second capacitor C2, that is
  • Figure 4 includes four parts of Figure 4(a), Figure 4(b), Figure 4(c) and Figure 4(d).
  • Fig. 4(a) and Fig. 4(b) illustrate the output voltage balance process of the off-grid phase splitter during the positive half-cycle of the alternating current connected to the two input ports of the off-grid phase splitter
  • Fig. 4(c) and Fig. 4( d) It shows the output voltage balance process of the off-grid phase splitter in the negative half cycle of the alternating current connected to the two input ports of the off-grid phase splitter.
  • the MOS transistor Q1a in the first switch circuit is placed in the off state and the MOS transistor Q1b is placed in the on state, so that in the loop formed by the first switch circuit, the current can only be Turning on clockwise; at the same time, PWM control is performed on the MOS transistor Q2a and the MOS transistor Q2b in the second switch circuit.
  • the MOS transistor Q2a is placed in the on state and the MOS transistor Q2b is placed in the off state.
  • the second switch circuit, the second capacitor C2 and the inductor L form a loop road.
  • the second capacitor C2 is discharged, and the current in the inductor L increases.
  • the current flows back to C2 ⁇ L ⁇ Q2a ⁇ Q2b, and the inductor L is charged.
  • the MOS transistor Q2a is placed in the off state and the MOS transistor Q2b is placed in the on state.
  • the current can only be conducted clockwise;
  • the first switching circuit since the current can be conducted clockwise in the loop formed by the first switching circuit, the first capacitor C1 and the inductance L, the inductance L continues to flow at this time, and the freewheeling loop is L ⁇ Q1b ⁇ Q1a ⁇ C1, charge the first capacitor C1, as shown in Figure 4(b), make the voltage V c1 across the first capacitor C1 and the voltage V c2 across the second capacitor C2 equal.
  • the MOS transistor Q1a in the first switch circuit is placed in the on state and the MOS transistor Q1b in the off state, so that in the loop formed by the first switch circuit, the current can only be Turn on along the counterclockwise; at the same time, PWM control is performed on the MOS transistor Q2a and the MOS transistor Q2b in the second switch circuit.
  • the MOS transistor Q2a is placed in the off state and the MOS transistor Q2b is placed in the on state.
  • the second switch circuit, the second capacitor C2 and the inductor L form a loop road.
  • the second capacitor C2 is discharged, and the current in the inductor L increases.
  • the current flows back as C2 ⁇ Q2b ⁇ Q2a ⁇ L, and the inductor L is charged.
  • the MOS transistor Q2a is placed in the on state and the MOS transistor Q2b is placed in the off state.
  • the current can only be conducted counterclockwise;
  • the first switching circuit since the current can be conducted counterclockwise in the loop formed by the first switching circuit, the first capacitor C1 and the inductance L, the inductance L continues to flow at this time, and the freewheeling loop is L ⁇ C1 ⁇ Q1a ⁇ Q1b, charge the first capacitor C1, as shown in Figure 4(d), make the voltage V c1 across the first capacitor C1 and the voltage V c2 across the second capacitor C2 equal.
  • the gates of the MOS transistor Q1a, MOS transistor Q1b, MOS transistor Q2a, and MOS transistor Q2b are connected to the drive control system, and the drive control system is based on the voltage V c1 across the first capacitor C1 and the second capacitor C2.
  • the terminal voltage V c2 performs PWM control on the MOS transistor Q1a, the MOS transistor Q1b, the MOS transistor Q2a, and the MOS transistor Q2b to make them in an on or off state.
  • the specific control strategy of the off-grid phase splitter is as follows:
  • the collector in the drive control system samples the instantaneous voltage V c1 across the first capacitor C1 and the instant voltage V c2 across the second capacitor C2 of the off-grid phase splitter in real time, and then determines the absolute values of V c1 and V c2 .
  • the voltage V o between the output port of the output port L1 and L2 is equal to the voltage across the first capacitor C1 instantaneous value of the instantaneous value of the voltage V c1 across the second capacitor C2 V c2 sum.
  • the collector also collects the instantaneous current on the inductor L.
  • FIG. 5 is a schematic diagram of the control process of the off-grid phase splitter by the drive control system when the phase loading capacity of the first capacitor C1 is greater than the phase loading capacity of the second capacitor C2 according to an embodiment of the application.
  • the voltage regulator Automatic Voltage Regulation, AVR
  • the current regulator receives the difference between the inductor current iL* generated by the AVR and the instantaneous current on the inductor L collected by the collector to get the inductor voltage V*.
  • the drive control system compares the inductor voltage V* to half of the absolute value of the total output voltage Vo to obtain the control variable D1, and then decomposes the control variable D1 into (1+D1)/2 and (1-D1)/2, respectively As the duty cycle of MOS transistors Q1a and Q1b.
  • the control variable D2 directly take the value of V c1 and compare its absolute value to obtain the control variable D2, and decompose the control variable D2 into (1+D2)/2 and (1-D2)/2 as the MOS transistors Q2b and Q2a, respectively. Empty ratio.
  • This control process will discharge C1 and charge C2 by adjusting the duty cycle, and finally realize that the voltage V c1 across the first capacitor C1 and the voltage V c2 across the second capacitor C2 are equal.
  • FIG. 6 is a schematic diagram of the control process of the off-grid phase splitter by the drive control system when the phase load of the first capacitor C1 is less than the phase load of the second capacitor C2 according to an embodiment of the application.
  • the AVR receives the difference between the instantaneous voltage V c1 across the first capacitor C1 and the instantaneous voltage V c2 across the second capacitor C2 to obtain the inductor current iL*;
  • ACR receives the difference between the inductor current iL* generated by the AVR and the instantaneous current on the inductor L collected by the collector to obtain the inductor voltage V*.
  • the drive control system compares the inductor voltage V* to half the absolute value of the total output voltage Vo to obtain the control variable D3, and then decomposes the control variable D3 into (1+D3)/2 and (1-D3)/2 respectively As the duty cycle of MOS transistors Q2a and Q2b.
  • the value of V c1 and compare its absolute value to obtain the control variable D4, and decompose the control variable D4 into (1+D4)/2 and (1-D4)/2 as the MOSFETs Q1b and Q1a. Empty ratio.
  • This control process will discharge C2 and charge C1 by adjusting the duty cycle, and finally realize that the voltage V c1 across the first capacitor C1 and the voltage V c2 across the second capacitor C2 are equal.
  • the off-grid phase splitter provided by the embodiment of the present application divides the connected voltage to allow the output port to output different voltages to meet the power supply requirements of the off-grid phase splitter for different load systems.
  • FIG. 7 is a schematic diagram of an inverter system provided by an embodiment of the application. As shown in Fig. 7, the inverter system provided by the embodiment of the present application includes an inverter and an off-grid phase splitter.
  • the inverter is used to convert direct current signals into alternating current signals.
  • the inverter when the inverter is connected to the DC power supply, the DC voltage input from the DC power supply is converted into AC voltage through the inverter, and then input to the grid or load.
  • the inverter can also convert alternating current signals into direct current signals.
  • the inverter when the inverter is connected to the power storage device, the AC voltage input from the grid is converted into a DC voltage by the inverter, and then input to the power storage device for power storage.
  • the off-grid phase splitter is connected to the inverter to receive the AC signal and divide the AC signal, and then input the divided AC signal to the load or/or connected to the off-grid phase splitter And on the grid.
  • the off-grid phase splitter used in the inverter system is the off-grid phase splitter proposed in the above embodiment of the present application, and its structure and working principle are not repeated here.
  • FIG. 8 is a schematic structural diagram of an inverter system using an off-grid phase splitter provided by an embodiment of the application.
  • the AC voltage output by the inverter provided by the embodiment of the present application is 220V
  • the voltage between the output port L1 and the output port N and the output port N and the output port L2 divided by the off-grid phase splitter is 110V.
  • the inverter system provided by the embodiment of the present application includes an inverter, an off-grid phase splitter, a first switch K1, a second switch K2, and a third switch K3.
  • the inverter is connected to the DC power supply, power storage equipment, grid, load and off-grid phase splitter respectively; the input port of the off-grid phase splitter is connected to the inverter and the grid, and the output port is connected to the grid and the load; the first switch K1 Set between the inverter and the grid and the load to control the connection between the inverter and the grid and the load; the second switch K2 is set between the inverter and the off-grid phase splitter to control the inverter The connection between the inverter and the off-grid phase splitter; the third switch K3 is arranged between the inverter and the load, and is used to control the connection between the inverter and the load.
  • the control switches K1 and K3 are turned on, and K2 is turned off, and the input port of the off-grid phase splitter is disconnected from the output port of the inverter.
  • the inverter draws energy from the DC power source, connects to the grid to generate electricity and charge storage equipment, and the grid supplies power to the load.
  • the L1, N, and L2 ports of the power grid are respectively connected to the output ports of the off-grid phase splitter. At this time, all the switches that control the off-grid phase splitter are in the off state, and the off-grid phase splitter does not work and no power loss occurs. .
  • the input of the off-grid phase splitter is connected to the output port of the inverter, and the output port is connected to a load.
  • the load can be the load of the 220V system (load connection Between L1 and L2), it can also be a single-phase load of the 110V system (the load is connected between L1, N or L2, N).
  • the off-grid phase splitter When the output of the off-grid phase splitter is connected to the load of the 220V system, the off-grid phase splitter is also in an inoperative state and does not produce power loss; when the output of the off-grid phase splitter is connected to the load of the 110V system, L1 will appear
  • the unbalance between the load between, N (phase C1) and the load between L2 and N (phase C2) causes the output voltage of phase C1 and the output voltage of phase C2 to be unbalanced.
  • the voltage divider capacitor C1 phase voltage is required
  • the voltage difference between Vc1 and the voltage dividing capacitor C2 phase voltage Vc2 is the control object, and the switch is used to dynamically adjust Vc1 and Vc2 to ensure the balance of the output voltages of the two.
  • the embodiment of the present application provides an inverter system using an off-grid phase splitter. After different voltages are divided by the off-grid phase splitter, it can meet the load power supply requirements of different voltage systems, and has a simple structure.
  • the transformer reduces the volume and weight, makes the product miniaturized and modular, thereby saving product cost and transportation cost.
  • the off-grid phase splitter in the present application does not work when it is connected to the grid. Compared with the power consumption when the transformer is connected to the grid, the efficiency is improved.

Abstract

本申请提供一种离网裂相器和逆变器系统,在一个实施例中,所述离网裂相器包括:第一输入端口和第二输入端口,分别与电源的第一相端口和第二相端口连接;第一输出端口和第二输出端口为第一负载提供第二电压,第二输出端口和第三输出端口为第二负载提供第三电压;第一电容和第二电容,第一电容连接在第一输出端口与第二输出端口之间,第二电容连接在第二输出端口和第三输出端口之间;第一开关电路和第二开关电路,第一开关电路和第二开关电路串联在第一输入端口和第二输入端口之间,第一开关电路和第二开关电路相互沿相反的方向单向导通;在第一开关电路和第二开关电路之间设置第一节点;电感,电感连接在第一节点和第二输出端口之间。

Description

一种离网裂相器和逆变器系统
本申请要求于2019年06月14日提交中国专利局、申请号为201910516735.2、申请名称为“一种离网裂相器和逆变器系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及逆变器技术领域,尤其涉及一种离网裂相器和逆变器系统。
背景技术
逆变器是将直流电源逆变成交流电源的电源系统,广泛应用于光伏等新能源发电行业。作为发电的核心设备,逆变器将光伏组件优化后的直流逆变为交流,而后选择输送电网(并网)或者负载供电(离网)。如图1所示的现有技术中一种逆变器系统,其通常具备3个功率端口:直流输入端口、电池端口和交流输出端口,对应三个主要工作模式,分别为:将直流输入的太阳能直流电逆变为交流电,从交流输出端口输出并网;当市电停电时,将电池端口的直流电逆变为交流电,从交流输出端口输出给负载供电;将直流输入的太阳能直流电变换后给电池充电(储能)。
世界范围内的家用供电系统存在两种电压等级,220V电网系统和110V电网系统,而现在业界的并网逆变器,都是按照220V的系统设计的。
当逆变器并网运行时,对于220V的系统,交流端口连接到其火线和零线上;而对于日本/美国等使用110V系统的地区,逆变器的交流输出端口连接到110V系统的两根火线,其电压差为110V*1.732=190.5V,接近220V。这样实现了全球范围内并网逆变器的统一化。
当市电异常时,逆变器可以断开与电网的连接,工作在离网模式下。如果逆变器接有电池,可以输出220V的交流电压,给220V系统用户的负载直接供电。但对于110V的系统来说,这个电压等级无法给110V系统的负载使用。这就需要对220V进行降压或裂相,使其输出电压降到110V左右,以供家用单相负载供电。
目前传统的逆变器系统中的离网裂相大都使用工频隔离变压器或自耦变压器进行裂相,然而工频隔离变压器或自耦变压器都存在体积大,质量大的问题,且在并网应用时会消耗能量,造成效率低。除此之外,离网应用时在切入到工频隔离变压器或自耦变压器后,变压器存在过渡过程,在这个过程中会出现很大的浪涌电流,容易烧断保险或粘死继电器,存在隐患。
发明内容
本申请的实施例提供了一种离网裂相器和逆变器系统,通过本申请提供的离网裂相器,实现对不同负载系统的供电要求;同时,将逆变器系统的变压器替换为本申请提供的离网裂相器后,可以解决由于变压器的存在,导致逆变器系统的体积过大问题和出现浪涌电流烧断保险或粘死继电器的安全隐患问题。
为了达到上述目的,本申请的实施例采用如下技术方案:
第一方面,本申请提供一种离网裂相器,包括:第一输入端口、第二输入端口、第一输出端口、第二输出端口、第三输出端口、第一电容、第二电容、第一开关电路、第二开关电路和电感;所述第一输入端口和所述第二输入端口,分别与电源连接;所述电源通过所述第一相端口和所述第二相端口提供第一电压;所述第一输出端口、所述第二输出端口和所述第三输出端口,所述第一输出端口和所述第二输出端口为第一负载提供第二电压,所述第二输出端口和所述第三输出端口为第二负载提供第三电压;所述第二电压和所述第三电压均小于所述第一电压;所述第一电容和所述第二电容,所述第一电容连接在所述第一输出端口与所述第二输出端口之间,所述第二电容连接在所述第二输出端口和所述第三输出端口之间;所述第一开关电路和所述第二开关电路,所述第一开关电路和所述第二开关电路串联在所述第一输入端口和所述第二输入端口之间,所述第一开关电路和所述第二开关电路相互沿相反的方向单向导通;其中在所述第一开关电路和所述第二开关电路之间设置有第一节点;所述电感,所述电感连接在所述第一节点和所述第二输出端口之间;其中,所述第一开关电路和所述第二开关电路让所述第一电容上的电量通过所述电感转移到所述第二电容上,或让所述第二电容上的电量通过所述电感转移到所述第一电容上。本申请实施例通过将离网裂相器两输入端口接入外接电源电路后,通过控制第一开关电路和第二开关电路的导通或关断,来控制第一电容C1和第二电容C2两端的电压,从而实现并对第一输出端口L1与第二输出端口N之间的电压和第二输出端口N与第三输出端口L2之间的电压进行调控,使该离网裂相器满足对不同负载系统的供电要求。
在另一个可能的实现中,还包括:驱动控制系统,所述驱动控制系统根据所述第一电容两端电压和所述第二电容两端电压来控制所述第一开关电路和所述第二开关电路的进行单向导通。本申请通过驱动控制系统来控制第一开关电路和第二开关电路的单向导通,实现对离网裂相器的调控。
在另一个可能的实现中,当所述第一电容两端电压的电压值的绝对值大于所述第二电容两端电压的电压值的绝对值,且所述第一输出端口与所述第三输出端口之间的电压值为正值时,所述第二开关电路沿第三方向形成通路;当所述第一开关电路在第一方向形成通路,所述第一电容对所述电感进行放电;当所述第一开关电路在第一方向形成断路,所述电感通过所述第二开关电路沿第三方向对所述第二电容充电;或当所述第一电容两端电压的电压值的绝对值大于所述第二电容两端电压的电压值的绝对值,且所述第一输出端口与所述第三输出端口之间的电压值为负值时,所述第二开关电路沿第四方向形成通路;当所述第一开关电路在第二方向形成通路,所述第一电容对所述电感进行放电;当所述第一开关电路在第二方向形成断路,所述电感通过所述第二开关电路沿第四方向对所述第二电容充电;或当所述第一电容两端电压的电压值的绝对值小于所述第二电容两端电压的电压值的绝对值,且所述第一输出端口与所述第三输出端口之间的电压值为正值时,所述第一开关电路沿第一方向形成通路;当所述第二开关电路在所述第三方向形成通路,所述第二电容对所述电感进行放电;当所述第二开关电路形成断路,所述电感通过所述第一开关电路沿第一方向对所述第一电容充电;或当所述第一电容两端电压的电压值的绝对值小于所述第二电容两端电压的电压值的绝对值,且所述第一输出端口与所述第三输出端口之间的电压值为负值时,所述第一开关电路沿第二方向形成通路;当所述第二开关电路在所述第四 方向形成通路,所述第二电容对所述电感进行放电;当所述第二开关电路形成断路,所述电感所述第一开关电路沿第二方向对所述第一电容充电;其中,所述第一方向和所述第二方向是相反方向,所述第三方向和所述第四方向是相反方向,且所述第一开关电路上电流沿所述第一方向流向所述电感的方向与所述第二开关电路上电流沿所述第三方向所述第三方向流向所述电感的方向相同。
在另一个可能的实现中,所述第一开关电路包括第一开关和第二开关,所述第二开关电路包括第三开关和第四开关,所述第一开关,用于让所述第一开关电路在所述第一方向形成通路或断路;所述第二开关,用于让所述第一开关电路在所述第二方向形成通路或断路;所述第三开关,用于让所述第二开关电路在所述第三方向形成通路或断路;所述第四开关,用于让所述第二开关电路在所述第四方向形成通路或断路。
在另一个可能的实现中,所述第一开关、所述第二开关、所述第三开关和所述第四开关由MOS管形成。
在另一个可能的实现中,驱动控制系统包括:采集器,用于采集所述第一电容两端电压、所述第二电容两端电压和所述电感的电流;电压调节器,用于接收所述第一电容两端电压的电压值与所述第二电容两端电压的电压值的差值,得到第一电流;电流调节器,用于接收所述生成电流和所述电感的电流,得到第四电压;所述驱动控制系统根据所述第一电容两端电压与所述第二电容两端电压中较大的电压值和所述第四电压,计算出用于控制所述第一开关、所述第二开关、所述第三开关和所述第四开关的占空比。
第二方面,本申请提供一种离网裂相方法,其中,第一输入端口和第二输入端口,分别与电源连接;所述电源通过所述第一相端口和所述第二相端口提供第一电压;第一输出端口、第二输出端口和第三输出端口;其中所述第一输出端口和所述第二输出端口为第一负载提供第二电压,所述第二输出端口和所述第三输出端口为第二负载提供第三电压;所述第二电压和所述第三电压均小于所述第一电压;包括:根据第一电容两端电压和第二电容两端电压的电压差,控制第一开关电路和第二开关电路中的一个电路导通,第一电容和第二电容中的一个电容对电感放电;所述第一电容连接在所述第一输出端口与所述第二输出端口之间,所述第二电容连接在所述第二输出端口和所述第三输出端口之间;所述第一开关电路和所述第二开关电路串联在所述第一输入端口和所述第二输入端口之间;其中在所述第一开关电路和所述第二开关电路之间设置有第一节点;所述电感连接在所述第一节点和所述第二输出端口之间;控制所述第一开关电路和所述第二开关电路中的另一个电路导通,所述电感对所述第一电容和所述第二电容中的另一个电容充电。
第三方面,本申请提供一种逆变器系统,包括:逆变器,用于将直流电信号转换成交流电信号;离网裂相器,所述离网裂相器为第一方面涉及到的任一可能实现的离网裂相器,所述电源有所述逆变器提供,所述电源的第一相端口和第二相端口为所述逆变器的两个输出相端口。本申请通过离网裂相器分压出不同电压后,能够满足于不同电压系统的负载供电的要求,且结构简单,相比变压器减小了体积和重量,使产品小型化,模块化,从而节省产品成本和运输成本。其次,本申请中的离网裂相器在并网时不工作,相比变压器并网时挂在电网侧消耗能量,提高了效率。
附图说明
下面对实施例或现有技术描述中所需使用的附图作简单地介绍。
图1为现有技术中一种逆变器系统的结构示意图;
图2为本申请实施例提供的一种离网裂相器的结构示意图;
图3为本申请实施例提供的当第一电容C1的相带载量小于第二电容C2的相带载量时的离网裂相器输出电压平衡过程的示意图;
图4为本申请实施例提供的当第一电容C1的相带载量大于第二电容C2的相带载量时的离网裂相器输出电压平衡过程的示意图;
图5为本申请实施例提供的当第一电容C1的相带载量大于第二电容C2的相带载量时驱动控制系统对离网裂相器控制过程的示意图;
图6为本申请实施例提供的当第一电容C1的相带载量小于第二电容C2的相带载量时驱动控制系统对离网裂相器控制过程的示意图;
图7为本申请实施例提供的一种逆变器系统的示意图;
图8为本申请实施例提供的一种应用离网裂相器的逆变器系统的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
图2为本申请实施例提供的一种离网裂相器的结构示意图。如图2所示,该离网裂相器包括两个输入端口和三个输出端口。两个输入端口包括输入端口K1和输入端口K2,输入端口K1和输入端口K2分别与电源的第一相端口和第二相端口连接,电源通过输入端口K1和输入端口K2提供第一电压;三个输出端口包括输出端口L1、输出端口N和输出端口L2,输出端口L1和输出端口N为第一负载提供第二电压,输出端口N和输出端口L2为第二负载提供第三电压。其中,第二电压和第三电压均小于第一电压。
在一个优选的实施例中,输入端口K1与输出端口L1共用一个端口,输入端口K2和输出端口L2共用一个端口。
在一个优选的实施例中,与两个输入端口的外接电源为单相交流电源。当然,与两个输入端口的外接电源不仅限为交流电,可以为直流电。
该离网裂相器包括第一电容C1和第二电容C2,其中,第一电容C1连接在输出端口L1和输出端口N之间,第二电容C2连接在输出端口N和输出端口L2之间。此时第一电容C1两端的电压V C1即为输出端口L1与输出端口N之间的电压,第二电容C2两端的电压V C2即为输出端口N与输出端口L2之间的电压。电压V C1和V C2可以用于驱动负载。
根据应用场景,第一电容C2和第二电容C2可以为薄膜电容、电解电容等等,本申请实施例不对其进行限制。
该离网裂相器包括第一开关电路和第二开关电路,第一开关电路和第二开关电路串联在输入端口K1和输入端口K2之间,在第一开关电路和第二开关电路之间设置一个节点P,在该节点P和输出端口N之间串联一个电感L。
本申请实施例中,电感L起到能量转移的中介作用。在一个实施例中,以第一电容C1两端的电压V C1大于第二电容C2两端的电压V C2,且将第一电容C1两端的电压转移一部分电压到第二电容C2两端的过程为例,将第一开关电路导通,由此,在第一电容C1、第一开关电路和电感L构成单向环形电路,且由第一电容C1对电感L放电。具体地,由第一电容C1、第一开关电路和电感L构成的环形电路处于导通状态,在第一开关电路导通时,第一电容C1放电,电路产生电流,电感L的线圈上会产生电感电动势。然后,当第一电容C1放电完成后,断开第一开关电路,将第二开关电路导通,在第二电容C2、第二开关电路和电感L构成单向环形电路,且由电感L对第二电容C2充电。具体地,由第二电容C2、第二开关电路和电感L构成的环形电路处于导通状态,此时由于电感L上有电感电动势,会向第二电容C2进行充电。从而实现降低第一电容C1两端的电压V C1提升第二电容C2两端的电压V C2,实现将第一电容C1两端的电压转移一部分电压到第二电容C2两端。
需要说明的是,转移电压的多少根据电容放出电荷的电量有关,所以通过控制开关电路导通的时间,来控制电容放出电荷的电量,实现对转移电压的控制。
另外,电感L有助于防止第一电容C1与第二电容C2两端的电压突变,以免在调制第一开关电路与第二开关电路过程中,出现很大的回路电流,损坏开关电路。
本申请实施例中,第一开关电路的作用是使由第一开关电路参与构成的环形电路在同一时刻只能单向导通。
在一个实施例中,如图2所示,在第一电容C1、第一开关电路和电感L构成的环形电路中,当第一开关电路导通且第一电容C1放电时,电感L进行充电,但是由于第一开关电路在同一时刻只能单向导通,从而避免电感L和第一电容C1之间产生谐振回路。
在一个实施例中,如图2所示,在第一电容C1、第一开关电路和电感L构成的环形电路中,当第一开关电路导通且第一电容C1充电时,电感L在放电过程中,由于第一开关电路在同一时刻只能单向导通,从而避免第一电容C1在第一开关电路导通时放电,电感L和第一电容C1之间产生谐振回路。
第二开关电路的作用是使由第二开关电路构成的环形电路在同一时刻只能单向导通。具体实现过程和第一开关电路原理相同,此处不再赘述了。
在一个实施例中,第一开关电路包括MOS(Metal Oxide Semiconductor,金属-氧化物-半导体)管Q1a和MOS管Q1b,其中MOS管Q1a的漏极与输入端口K1连接,MOS管Q1a的源极与MOS管Q1b的源极连接,MOS管Q1b的漏极与节点P连接;第二开关电路包括MOS管Q2a和MOS管Q2b,其中MOS管Q2a的漏极与节点P连接,MOS管Q2a的源极与MOS管Q2b的源极连接,MOS管Q2b的漏极与输出端口L2连接。
在第一电路中,对于MOS管Q1a来说,当在栅极提供高电平时,电流可以双向通过MOS管Q1a;当在栅极提供低电平时,电流只能从通过MOS管Q1a体二极管流通,方向为MOS管Q1a的源极指向漏极。对于MOS管Q1b来说,当栅极提供高电 平时,电流可以双向通过MOS管Q1b;当栅极提供低电平时,电流只能从MOS管Q1b体二极管流通,方向为MOS管Q1b的源极指向漏极。
在第一开关电路工作过程中,MOS管Q1a和MOS管Q1b开关状态是互补的,即当MOS管Q1a导通时MOS管Q1b断开,或当MOS管Q1a断开时MOS管Q1b导通。所以对于第一电路来说,当MOS管Q1a栅极为高电平和MOS管Q1b栅极为低电平时,电流只能从MOS管Q1a的漏极流向MOS管Q1b的漏极;当MOS管Q1a栅极为低电平和MOS管Q1b栅极为高电平时,电流只能从MOS管Q1b的漏极流向MOS管Q1a的漏极。
在第二电路中,对于MOS管Q2a来说,当栅极提供高电平时,电流可以双向通过MOS管Q2a;当栅极提供低电平时,电流只能从MOS管Q2a体二极管流通,方向为MOS管Q2a的源极指向漏极。对于MOS管Q2b来说,当栅极提供高电平时,电流可以双向通过MOS管Q2b;当栅极提供低电平时,电流只能从MOS管Q2b体二极管流通,方向为MOS管Q2b的源极指向漏极。
在第二开关电路工作过程中,MOS管Q2a和MOS管Q2b开关状态也是互补。所以对于第二电路来说,当MOS管Q2a栅极为高电平和MOS管Q2b栅极为低电平时,电流只能从MOS管Q2a的漏极流向MOS管Q2b的漏极;当MOS管Q2a栅极为低电平和MOS管Q2b栅极为高电平时,电流只能从MOS管Q2b的漏极流向MOS管Q2a的漏极。
需要说明的是,本申请实施例中第一开关电路和第二开关电路采用MOS管来实现的,但是本申请不仅限于MOS管,还可以为IGBT等其它功率开关器件,本申请实施例不对其进行限制。
需要说明的是,本申请实施例中第一开关电路和第二开关电路中不仅限于两个开关,也可以为三个开关、四个开关等等。
本申请将离网裂相器两输入端口接入外接电源电路后,通过控制第一开关电路和第二开关电路的导通或关断,来控制第一电容C1和第二电容C2两端的电压,从而实现并对输出端口L1与输出端口N之间的电压和输出端口N与输出端口L2之间的电压进行调控,使该离网裂相器满足对不同负载系统的供电要求。
以下实施例将以第一电容C1两端的电压与第二电容C2两端的电压从不同调制为相同的过程为例,进行讲述本申请实施例中的离网裂相器工作原理。本领域人员很容易的想到本申请所提供的离网裂相器也可以进行形式的调制,在此不作限定。
需要说明的是,在本申请实施例中离网裂相器接入单相交流电时,根据交流电的正弦变化规律,其半个周期的电压为正值,另外半个周期的电压为负值。为了方便后续描述,在此进行规定,在一个周期内,将交流电为正值时的半个周期规定正半周;交流电为负值时的半个周期规定为负半周。
图3为本申请实施例提供的当第一电容C1的相带载量小于第二电容C2的相带载量时的离网裂相器输出电压平衡过程的示意图。其中,第一电容C1的相带载量是指 第一电容C1两个极板上的电量。当第一电容C1的相带载量小于第二电容C2的相带载量时,则第一电容C1两端的电压有效值大于第二电容C2两端的电压有效值,即|V c1|>|V c2|。
图3包括图3(a)、图3(b)、图3(c)和图3(d)四个部分。其中,图3(a)和图3(b)示意了离网裂相器的两输入端口接入的交流电在正半周离网裂相器输出电压平衡过程;图3(c)和图3(d)示意了离网裂相器的两输入端口接入的交流电在负半周离网裂相器输出电压平衡过程。
如图3(a)所示,让第二开关电路中的MOS管Q2a置于关断状态和MOS管Q2b置于导通状态,使得在由第二开关电路构成的环路中,电流只能沿顺时钟导通;与此同时,再对第一开关电路中的MOS管Q1a和MOS管Q1b进行脉冲宽度调制(Pulse Width Modulation,PWM)控制。
在第一开关电路进行脉冲宽度调制的过程中,首先,将MOS管Q1a置于导通状态和MOS管Q1b置于关断状态,此时第一开关电路、第一电容C1和电感L构成环路。由此,第一电容C1进行放电,在电感L上电流增加,此时的电流回流为C1→Q1a→Q1b→L,对电感L进行充电。
然后,将MOS管Q1a置于关断状态和MOS管Q1b置于导通状态,此时第一开关电路、第一电容C1和电感L构成的环路中,电流只能沿顺时钟导通;而在第二开关电路中,由于电流能在由第二开关电路、第二电容C2和电感L构成的环路中沿顺时钟导通,此时电感L续流,续流回路为L→C2→Q2b→Q2a,给第二电容C2充电,如图3(b)所示,使第一电容C1两端的电压V c1和第二电容C2两端的电压V c2相等。
如图3(c)所示,让第二开关电路中的MOS管Q2a置于导通状态和MOS管Q2b置于关断状态,使得在由第二开关电路构成的环路中,电流只能沿逆时钟导通;与此同时,再对第一开关电路中的MOS管Q1a和MOS管Q1b进行PWM控制。
在第一开关电路进行脉冲宽度调制的过程中,首先,将MOS管Q1a置于关断状态和MOS管Q1b置于导通状态,此时第一开关电路、第一电容C1和电感L构成环路。由此,第一电容C1进行放电,在电感L上电流增加,此时的电流回流为C1→L→Q1b→Q1a,对电感L进行充电。
然后,将MOS管Q1a置于导通状态和MOS管Q1b置于关断状态,此时第一开关电路、第一电容C1和电感L构成的环路中,电流只能沿逆时钟导通;而在第二开关电路中,由于电流能在由第二开关电路、第二电容C2和电感L构成的环路中沿逆时钟导通,此时电感L续流,续流回路为L→Q2a→Q2b→C2,给第二电容C2充电,如图3(d)所示,使第一电容C1两端的电压V c1和第二电容C2两端的电压V c2相等。
图4为本申请实施例提供的当第一电容C1的相带载量大于第二电容C2的相带载量时的离网裂相器输出电压平衡过程的示意图。当第一电容C1的相带载量大于第二电容C2的相带载量时,则第一电容C1两端的电压有效值小于第二电容C2两端的电压有效值,即|V c1|<|V c2|。
图4包括图4(a)、图4(b)、图4(c)和图4(d)四个部分。其中,图4(a)和图4(b)示意了离网裂相器的两输入端口接入的交流电在正半周离网裂相器输出电压平衡过程;图4(c)和图4(d)示意了离网裂相器的两输入端口接入的交流电在负半周离网裂相器输出电压平衡过程。
如图4(a)所示,让第一开关电路中的MOS管Q1a置于关断状态和MOS管Q1b置于导通状态,使得在由第一开关电路构成的环路中,电流只能沿顺时钟导通;与此同时,再对第二开关电路中的MOS管Q2a和MOS管Q2b进行PWM控制。
在第二开关电路进行脉冲宽度调制的过程中,首先,将MOS管Q2a置于导通状态和MOS管Q2b置于关断状态,此时第二开关电路、第二电容C2和电感L构成环路。由此,第二电容C2进行放电,在电感L上电流增加,此时的电流回流为C2→L→Q2a→Q2b,对电感L进行充电。
然后,将MOS管Q2a置于关断状态和MOS管Q2b置于导通状态,此时第二开关电路、第二电容C2和电感L构成的环路中,电流只能沿顺时钟导通;而在第一开关电路中,由于电流能在由第一开关电路、第一电容C1和电感L构成的环路中沿顺时钟导通,此时电感L续流,续流回路为L→Q1b→Q1a→C1,给第一电容C1充电,如图4(b)所示,使第一电容C1两端的电压V c1和第二电容C2两端的电压V c2相等。
如图4(c)所示,让第一开关电路中的MOS管Q1a置于导通状态和MOS管Q1b置于关断状态,使得在由第一开关电路构成的环路中,电流只能沿逆时钟导通;与此同时,再对第二开关电路中的MOS管Q2a和MOS管Q2b进行PWM控制。
在第二开关电路进行脉冲宽度调制的过程中,首先,将MOS管Q2a置于关断状态和MOS管Q2b置于导通状态,此时第二开关电路、第二电容C2和电感L构成环路。由此,第二电容C2进行放电,在电感L上电流增加,此时的电流回流为C2→Q2b→Q2a→L,对电感L进行充电。
然后,将MOS管Q2a置于导通状态和MOS管Q2b置于关断状态,此时第二开关电路、第二电容C2和电感L构成的环路中,电流只能沿逆时钟导通;而在第一开关电路中,由于电流能在由第一开关电路、第一电容C1和电感L构成的环路中沿逆时钟导通,此时电感L续流,续流回路为L→C1→Q1a→Q1b,给第一电容C1充电,如图4(d)所示,使第一电容C1两端的电压V c1和第二电容C2两端的电压V c2相等。
在一个实施例中,将MOS管Q1a、MOS管Q1b、MOS管Q2a和MOS管Q2b的栅极连接到驱动控制系统,驱动控制系统根据第一电容C1两端的电压V c1和第二电容C2两端的电压V c2对MOS管Q1a、MOS管Q1b、MOS管Q2a和MOS管Q2b进行PWM控制,使其处于导通或关断状态。离网裂相器的具体控制策略如下:
驱动控制系统中的采集器实时采样离网裂相器的第一电容C1两端的电压瞬时值V c1和第二电容C2两端的电压瞬时值V c2,然后判断V c1和V c2绝对值的大小。其中,输出端口L1与输出端口L2之间的电压V o等于第一电容C1两端的电压瞬时值V c1和第二电容C2两端的电压瞬时值V c2之和。同时,采集器还采集电感L上的瞬时电流。
图5为本申请实施例提供的当第一电容C1的相带载量大于第二电容C2的相带载量时驱动控制系统对离网裂相器控制过程的示意图。如图5所示,当|Vc1|>|Vc2|时,电压调节器(Automatic Voltage Regulation,AVR)接收第一电容C1两端的电压瞬时值V c1和第二电容C2两端的电压瞬时值V c2之间的差值,得到电感电流iL*;电流调节器(Automatic Current Regulation,ACR)接收AVR生成的电感电流iL*和采集器采集的电感L上的瞬时电流之间的差值,得到电感电压V*。
然后,驱动控制系统将电感电压V*比上输出总电压Vo绝对值的一半,得到控制变量D1,然后将该控制变量D1分解为(1+D1)/2和(1-D1)/2分别作为MOS管Q1a和Q1b的占空比。同时,直接取V c1的值比上其绝对值,得到控制变量D2,将该控制变量D2分解为(1+D2)/2和(1-D2)/2分别作为MOS管Q2b和Q2a的占空比。这个控制过程通过调节占空比将使C1放电,C2充电,最终实现第一电容C1两端的电压V c1和第二电容C2两端的电压V c2相等。
图6为本申请实施例提供的当第一电容C1的相带载量小于第二电容C2的相带载量时驱动控制系统对离网裂相器控制过程的示意图。如图6所示,当|Vc1|<|Vc2|时,AVR接收第一电容C1两端的电压瞬时值V c1和第二电容C2两端的电压瞬时值V c2之间的差值,得到电感电流iL*;ACR接收AVR生成的电感电流iL*和采集器采集的电感L上的瞬时电流之间的差值,得到电感电压V*。
然后,驱动控制系统将电感电压V*比上输出总电压Vo绝对值的一半,得到控制变量D3,然后将该控制变量D3分解为(1+D3)/2和(1-D3)/2分别作为MOS管Q2a和Q2b的占空比。同时,直接取V c1的值比上其绝对值,得到控制变量D4,将该控制变量D4分解为(1+D4)/2和(1-D4)/2分别作为MOS管Q1b和Q1a的占空比。这个控制过程通过调节占空比将使C2放电,C1充电,最终实现第一电容C1两端的电压V c1和第二电容C2两端的电压V c2相等。
本申请实施例提供的一种离网裂相器,通过对接入的电压进行分压,让输出端口输出不同的电压,以满足离网裂相器对不同负载系统的供电要求。
图7为本申请实施例提供的一种逆变器系统的示意图。如图7所示,本申请实施例提供的逆变器系统包括逆变器和离网裂相器。
逆变器用于将直流电信号转换成交流电信号。在一个实施例中,当逆变器与直流电源连接,通过逆变器将直流电源输入的直流电压转换成交流电压,然后输入到电网或负载中。
其中,逆变器还可以将交流电信号转换成直流电信号。在另一个实施例中,当逆变器与储电设备连接时,通过逆变器将来自电网输入的交流电压转换成直流电压,然后输入到储电设备中进行储电。
离网裂相器与逆变器连接,用于接收交流电信号,并对交流电信号进行分压,然后将分压后的交流电信号输入到与离网裂相器相连接的负载或/和电网上。
其中,在逆变器系统中应用的离网裂相器为上述本申请实施例提出的离网裂相器, 其结构和工作原理在此不再赘述。
图8为本申请实施例提供的一种应用离网裂相器的逆变器系统的结构示意图。如图8所示,本申请实施例提供的逆变器输出的交流电压为220V,离网裂相器分压出的输出端口L1与输出端口N之间的电压和输出端口N与输出端口L2之间的电压均为110V。
本申请实施例提供的逆变器系统包括逆变器、离网裂相器、第一开关K1、第二开关K2和第三开关K3。
逆变器分别与直流电源、储电设备、电网、负载和离网裂相器连接;离网裂相器输入端口与逆变器和电网连接,输出端口与电网和负载连接;第一开关K1设置在逆变器与电网和负载之间,用于控制逆变器与电网和负载之间的连接;第二开关K2设置在逆变器与离网裂相器之间,用于控制逆变器与离网裂相器之间的连接;第三开关K3设置在逆变器与负载之间,用于控制逆变器与负载之间的连接。
逆变器并网运行时,控制开关K1、K3打开,K2关断,离网裂相器的输入端口与逆变器输出端口断开。逆变器从直流电源汲取能量,对电网并网发电和对储电设备充电,电网对负载供电。电网的L1、N、L2端口分别连接至离网裂相器的输出端口,此时控制离网裂相器的所有开关处于关断状态,则该离网裂相器不工作,不产生功率损耗。
逆变器离网运行时,控制开关K1、K3关断,K2打开,离网裂相器的输入与逆变器输出端口连接,输出端口接负载,该负载可以为220V系统的负载(负载接在L1、L2之间),也可以为110V系统的单相负载(负载接在L1、N或者L2、N之间)。当离网裂相器的输出接220V系统的负载时,该离网裂相器同样处于不工作状态,不产生功率损耗;当离网裂相器的输出接110V系统的负载时,会出现L1、N之间(C1相)的负载和L2、N之间(C2相)的负载不平衡的情况,导致C1相输出电压和C2相输出电压不平衡,此时需要以分压电容C1相电压Vc1和分压电容C2相电压Vc2的电压差为控制对象,利用开关动态调节Vc1和Vc2,保证两者输出电压平衡。
本申请实施例提供一种应用离网裂相器的逆变器系统,通过离网裂相器分压出不同电压后,能够满足于不同电压系统的负载供电的要求,且结构简单,相比变压器减小了体积和重量,使产品小型化,模块化,从而节省产品成本和运输成本。其次,本申请中的离网裂相器在并网时不工作,相比变压器并网时挂在电网侧消耗能量,提高了效率。
在本说明书的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以适合的方式结合。
最后说明的是:以上实施例仅用以说明本申请的技术方案,而对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (8)

  1. 一种离网裂相器,其特征在于,包括:第一输入端口、第二输入端口、第一输出端口、第二输出端口、第三输出端口、第一电容、第二电容、第一开关电路、第二开关电路和电感;
    所述第一输入端口和所述第二输入端口,分别与电源连接;所述电源提供第一电压;
    所述第一输出端口、所述第二输出端口和所述第三输出端口,所述第一输出端口和所述第二输出端口为第一负载提供第二电压,所述第二输出端口和所述第三输出端口为第二负载提供第三电压;所述第二电压和所述第三电压均小于所述第一电压;
    所述第一电容和所述第二电容,所述第一电容连接在所述第一输出端口与所述第二输出端口之间,所述第二电容连接在所述第二输出端口和所述第三输出端口之间;
    所述第一开关电路和所述第二开关电路,所述第一开关电路和所述第二开关电路串联在所述第一输入端口和所述第二输入端口之间,所述第一开关电路和所述第二开关电路相互沿相反的方向单向导通;其中在所述第一开关电路和所述第二开关电路之间设置有第一节点;
    所述电感,所述电感连接在所述第一节点和所述第二输出端口之间;
    其中,所述第一开关电路和所述第二开关电路让所述第一电容上的电量通过所述电感转移到所述第二电容上,或让所述第二电容上的电量通过所述电感转移到所述第一电容上。
  2. 根据权利要求1所述的离网裂相器,其特征在于,还包括:驱动控制系统,所述驱动控制系统根据所述第一电容两端电压和所述第二电容两端电压来控制所述第一开关电路和所述第二开关电路的进行单向导通。
  3. 根据权利要求1所述的离网裂相器,其特征在于,
    当所述第一电容两端电压的电压值的绝对值大于所述第二电容两端电压的电压值的绝对值,且所述第一输出端口与所述第三输出端口之间的电压值为正值时,所述第二开关电路沿第三方向形成通路;当所述第一开关电路在第一方向形成通路,所述第一电容对所述电感进行放电;当所述第一开关电路在第一方向形成断路,所述电感通过所述第二开关电路沿第三方向对所述第二电容充电;或
    当所述第一电容两端电压的电压值的绝对值大于所述第二电容两端电压的电压值的绝对值,且所述第一输出端口与所述第三输出端口之间的电压值为负值时,所述第二开关电路沿第四方向形成通路;当所述第一开关电路在第二方向形成通路,所述第一电容对所述电感进行放电;当所述第一开关电路在第二方向形成断路,所述电感通过所述第二开关电路沿第四方向对所述第二电容充电;或
    当所述第一电容两端电压的电压值的绝对值小于所述第二电容两端电压的电压值的绝对值,且所述第一输出端口与所述第三输出端口之间的电压值为正值时,所述第一开关电路沿第一方向形成通路;当所述第二开关电路在所述第三方向形成通路,所述第二电容对所述电感进行放电;当所述第二开关电路形成断路,所述电感通过所述第一开关电路沿第一方向对所述第一电容充电;或
    当所述第一电容两端电压的电压值的绝对值小于所述第二电容两端电压的电压值的绝对值,且所述第一输出端口与所述第三输出端口之间的电压值为负值时,所述第一开关电路沿第二方向形成通路;当所述第二开关电路在所述第四方向形成通路,所述第二电容 对所述电感进行放电;当所述第二开关电路形成断路,所述电感所述第一开关电路沿第二方向对所述第一电容充电;
    其中,所述第一方向和所述第二方向是相反方向,所述第三方向和所述第四方向是相反方向,且所述第一开关电路上电流沿所述第一方向流向所述电感的方向与所述第二开关电路上电流沿所述第三方向所述第三方向流向所述电感的方向相同。
  4. 根据权利要求3所述的离网裂相器,其特征在于,所述第一开关电路包括第一开关和第二开关,所述第二开关电路包括第三开关和第四开关,
    所述第一开关,用于让所述第一开关电路在所述第一方向形成通路或断路;所述第二开关,用于让所述第一开关电路在所述第二方向形成通路或断路;
    所述第三开关,用于让所述第二开关电路在所述第三方向形成通路或断路;所述第四开关,用于让所述第二开关电路在所述第四方向形成通路或断路。
  5. 根据权利要求3所述的离网裂相器,其特征在于,所述第一开关、所述第二开关、所述第三开关和所述第四开关由MOS管形成。
  6. 根据权利要求2-5所述的离网裂相器,其特征在于,驱动控制系统包括:
    采集器,用于采集所述第一电容两端电压、所述第二电容两端电压和所述电感的电流;
    电压调节器,用于接收所述第一电容两端电压的电压值与所述第二电容两端电压的电压值的差值,得到第一电流;
    电流调节器,用于接收所述生成电流和所述电感的电流,得到第四电压;
    所述驱动控制系统根据所述第一电容两端电压与所述第二电容两端电压中较大的电压值和所述第四电压,计算出用于控制所述第一开关、所述第二开关、所述第三开关和所述第四开关的占空比。
  7. 一种离网裂相方法,其中,第一输入端口和第二输入端口,分别与电源连接;所述电源提供第一电压;第一输出端口、第二输出端口和第三输出端口;其中所述第一输出端口和所述第二输出端口为第一负载提供第二电压,所述第二输出端口和所述第三输出端口为第二负载提供第三电压;所述第二电压和所述第三电压均小于所述第一电压;其特征在于,包括:
    根据第一电容两端电压和第二电容两端电压的电压差,控制第一开关电路和第二开关电路中的一个电路导通,第一电容和第二电容中的一个电容对电感放电;所述第一电容连接在所述第一输出端口与所述第二输出端口之间,所述第二电容连接在所述第二输出端口和所述第三输出端口之间;所述第一开关电路和所述第二开关电路串联在所述第一输入端口和所述第二输入端口之间;其中在所述第一开关电路和所述第二开关电路之间设置有第一节点;所述电感连接在所述第一节点和所述第二输出端口之间;
    控制所述第一开关电路和所述第二开关电路中的另一个电路导通,所述电感对所述第一电容和所述第二电容中的另一个电容充电。
  8. 一种逆变器系统,其特征在于,包括:
    逆变器,用于将直流电信号转换成交流电信号;
    离网裂相器,所述离网裂相器为如权利要求1至权利要求6任一项所述的离网裂相器,所述电源有所述逆变器提供,所述电源的第一相端口和第二相端口为所述逆变器的两个输出相端口。
PCT/CN2020/081152 2019-06-14 2020-03-25 一种离网裂相器和逆变器系统 WO2020248651A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20822724.9A EP3905509A4 (en) 2019-06-14 2020-03-25 OFFLINE PHASE SEPARATION DEVICE AND INVERTER SYSTEM
US17/471,701 US11632056B2 (en) 2019-06-14 2021-09-10 Off-grid phase splitter and inverter system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910516735.2A CN110323955B (zh) 2019-06-14 2019-06-14 一种离网裂相器和逆变器系统
CN201910516735.2 2019-06-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/471,701 Continuation US11632056B2 (en) 2019-06-14 2021-09-10 Off-grid phase splitter and inverter system

Publications (1)

Publication Number Publication Date
WO2020248651A1 true WO2020248651A1 (zh) 2020-12-17

Family

ID=68119597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081152 WO2020248651A1 (zh) 2019-06-14 2020-03-25 一种离网裂相器和逆变器系统

Country Status (4)

Country Link
US (1) US11632056B2 (zh)
EP (1) EP3905509A4 (zh)
CN (1) CN110323955B (zh)
WO (1) WO2020248651A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110323955B (zh) 2019-06-14 2020-12-22 华为技术有限公司 一种离网裂相器和逆变器系统
EP4071990A4 (en) * 2019-12-24 2023-01-11 Huawei Digital Power Technologies Co., Ltd. CONVERSION CIRCUIT AND RELATED ELECTRONIC DEVICE
CN112290593B (zh) * 2020-11-02 2022-03-15 浙江艾罗网络能源技术股份有限公司 用于180度相角裂相电网的并网逆变器防逆流控制方法
CN112952819A (zh) * 2021-03-19 2021-06-11 江苏固德威电源科技股份有限公司 分相输出快速切换电路及其采用的抑制浪涌电流控制方法
KR20240004525A (ko) * 2021-05-04 2024-01-11 엔페이즈 에너지, 인코포레이티드 스위칭 모드 중성점 형성 장치 적용에서의 질화갈륨 양방향 고 전자 이동도 트랜지스터

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040165408A1 (en) * 2003-02-21 2004-08-26 Mr.Rick West Dc to ac inverter with single-switch bipolar boost circuit
CN102244477A (zh) * 2011-07-07 2011-11-16 西南交通大学 具有直流电容辅助均压电路的多电平变换器
CN102255550A (zh) * 2011-07-04 2011-11-23 华北电力大学 基于三相桥式逆变电路的电源裂相装置及其控制方法
CN105846696A (zh) * 2016-03-21 2016-08-10 南京航空航天大学 一种两级式ac-dc变换器及其控制方法
CN110323955A (zh) * 2019-06-14 2019-10-11 华为技术有限公司 一种离网裂相器和逆变器系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3656694B2 (ja) * 1996-10-14 2005-06-08 富士電機ホールディングス株式会社 電力変換装置
CN101552555B (zh) * 2009-04-30 2011-01-26 淮海工学院 降压式电压平衡变换器
CN102891611B (zh) * 2012-06-30 2014-10-08 华为技术有限公司 五电平功率变换器及其控制方法、控制装置
CN103580501B (zh) * 2013-11-08 2016-04-20 中国计量学院 固定变比1/4或4的切换开关电容型ac-ac变换器
CN204538975U (zh) * 2015-04-26 2015-08-05 中国计量学院 实现1/n及其衍生变比的开关电容型ac-ac变换器
US10924024B2 (en) * 2016-09-02 2021-02-16 Panasonic Intellectual Property Management Co, Ltd. Regenerative power conversion system with inverter and converter
CN108111041A (zh) * 2018-01-09 2018-06-01 青岛大学 多绕组分时供电正激周波变换型单级多输入高频链逆变器
US11677327B2 (en) * 2018-09-07 2023-06-13 Board Of Regents, The University Of Texas System Transformer converter with center tap inductance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040165408A1 (en) * 2003-02-21 2004-08-26 Mr.Rick West Dc to ac inverter with single-switch bipolar boost circuit
CN102255550A (zh) * 2011-07-04 2011-11-23 华北电力大学 基于三相桥式逆变电路的电源裂相装置及其控制方法
CN102244477A (zh) * 2011-07-07 2011-11-16 西南交通大学 具有直流电容辅助均压电路的多电平变换器
CN105846696A (zh) * 2016-03-21 2016-08-10 南京航空航天大学 一种两级式ac-dc变换器及其控制方法
CN110323955A (zh) * 2019-06-14 2019-10-11 华为技术有限公司 一种离网裂相器和逆变器系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3905509A4

Also Published As

Publication number Publication date
CN110323955B (zh) 2020-12-22
US20210408938A1 (en) 2021-12-30
EP3905509A4 (en) 2022-03-16
CN110323955A (zh) 2019-10-11
EP3905509A1 (en) 2021-11-03
US11632056B2 (en) 2023-04-18

Similar Documents

Publication Publication Date Title
WO2020248651A1 (zh) 一种离网裂相器和逆变器系统
US11588397B2 (en) Three-level power conversion system and control method
Tao et al. A soft-switched three-port bidirectional converter for fuel cell and supercapacitor applications
JP2680494B2 (ja) 単相交流電力変換装置
US6160722A (en) Uninterruptible power supplies with dual-sourcing capability and methods of operation thereof
US9041251B2 (en) Boost converter with multiple inputs and inverter circuit
WO2021232785A1 (zh) 三桥臂拓扑装置、控制方法、以及不间断电源系统
Fang A novel Z-source dc-dc converter
Kim et al. Asymmetric duty control of a dual-half-bridge DC/DC converter for single-phase distributed generators
WO2021232706A1 (zh) 三桥臂拓扑装置、控制方法、逆变系统及不间断电源系统
WO2021232749A1 (zh) 三桥臂拓扑装置及不间断电源系统
US20120113694A1 (en) Step-down converter and inverter circuit
US20230208150A1 (en) Single stage charger for high voltage batteries
CN113474986B (zh) 用于mmc的换流器单元、mmc及其控制方法
Burlaka et al. Bidirectional single stage isolated DC-AC converter
KR20190115364A (ko) 단상 및 3상 겸용 충전기
Kabalcı Solid state transformers with multilevel inverters
RU2676678C1 (ru) Энергопреобразующая аппаратура для систем электропитания постоянного тока
Jean-Pierre et al. An optimized start-up scheme for isolated cascaded AC/DC power converters
RU2388136C2 (ru) Способ регулирования мощности и устройство преобразователя сопротивления для электрических машин переменного тока
Gupta et al. Power Generation System using Dual DC-DC Converter
WO2024065280A1 (zh) 多电平变换电路、功率变换器和电力系统
Aldosari et al. A New Isolated AC-DC Power Converter Topology with Reduced Number of Switches for High-Input Voltage and High-Output Current Applications
CN117175596B (zh) 基于开关耦合的潮流转供装置
Tao et al. A Four-quadrant Buck-boost Partial Power DC/DC Converter for Battery Energy Storage System

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20822724

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020822724

Country of ref document: EP

Effective date: 20210728

NENP Non-entry into the national phase

Ref country code: DE