WO2020248343A1 - 多层级迁移模拟方法和装置 - Google Patents

多层级迁移模拟方法和装置 Download PDF

Info

Publication number
WO2020248343A1
WO2020248343A1 PCT/CN2019/098279 CN2019098279W WO2020248343A1 WO 2020248343 A1 WO2020248343 A1 WO 2020248343A1 CN 2019098279 W CN2019098279 W CN 2019098279W WO 2020248343 A1 WO2020248343 A1 WO 2020248343A1
Authority
WO
WIPO (PCT)
Prior art keywords
floor
building
area
topology
person
Prior art date
Application number
PCT/CN2019/098279
Other languages
English (en)
French (fr)
Inventor
贾庆山
唐静娴
刘智灵
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Priority to US17/023,889 priority Critical patent/US20210004511A1/en
Publication of WO2020248343A1 publication Critical patent/WO2020248343A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/18Network design, e.g. design based on topological or interconnect aspects of utility systems, piping, heating ventilation air conditioning [HVAC] or cabling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling

Definitions

  • the feedback of this application belongs to the technical field of building energy consumption simulation, and particularly relates to a multi-level migration simulation method and device.
  • the number of people in each area is estimated mainly with the help of sensors (video, infrared, etc.) deployed in the building, based on the Gaussian mixture model, and based on the number of people in each area, the movement process of people can be simulated through regular personnel schedule .
  • the feedback of this application aims to solve one of the technical problems in related technologies at least to a certain extent.
  • the first purpose of the feedback of this application is to propose a multi-level migration simulation method, which embodies the idea of hierarchical and multi-scale, saves computer storage space and computing resources, and can reflect personnel in different spatial scales. On the migration characteristics.
  • the second purpose of the feedback of this application is to propose a multi-level migration simulation device.
  • the third purpose of the feedback of this application is to propose a computer device.
  • the fourth purpose of the feedback of this application is to propose a non-transitory computer-readable storage medium.
  • the first aspect of the present application provides a multi-level migration simulation method, including: establishing a multi-level building topology according to the structure of the building, wherein the first layer of the multi-level building topology Contains the floor building topology, the second floor contains the floor area architectural topology, and the third floor contains the gridded building topology within the floor area; obtain the schedule of multiple personnel in the simulation experiment; obtain the schedule of the multiple personnel according to the schedule The stay time period of each person, and simulate the state transfer position of each person in the building topology in the corresponding stay time period according to a preset simulation algorithm; calculate the operation of the building according to the state transfer position Energy consumption parameters.
  • the multi-level migration simulation method of the feedback embodiment of this application solves the requirement of a large number of sensors in the prior art, does not use the schedule, does not consider individual differences, does not portray the randomness of personnel movement, and fails to reflect the distribution of personnel in different spaces.
  • the technical problem of migration characteristics on scales reflects the hierarchical and multi-scale ideas, saves computer storage space and computing resources, and can reflect the characteristics of personnel migration on different spatial scales.
  • the establishment of a multi-level architectural topology according to the structure of the building includes: constructing the floor architectural topology according to the connection relationship between the floors of the building, wherein the floor architectural topology in the floor architectural topology
  • the connection relationship between the floor nodes corresponds to the connection relationship between the floors; according to the connection relationship between the floor areas of the building, the floor area architectural topology is constructed, wherein the area in the floor area architectural topology
  • the connection relationship of the nodes corresponds to the connection relationship between the floor areas; each non-corridor area in the floor area is divided into multiple floor sub-areas according to a preset size, and the floor is constructed according to the floor sub-areas
  • An intra-area gridded building topology wherein the connection relationship of the floor subregion nodes in the gridded building topology corresponds to the connection relationship between the multiple floor subregions.
  • the stay time period of each of the plurality of personnel is acquired according to the schedule, and each personnel is simulated according to a preset simulation algorithm during the corresponding stay time period.
  • the state transition position in the architectural topology includes: determining the first state transition matrix of each person between the floor nodes according to the non-timely Markov process, wherein the first state transition matrix varies with time Change; determine the stay time period of each person on each floor according to the first state transition matrix; simulate the corresponding stay time period of each person on each floor according to the non-timely Markov process , Determine the second state transition matrix of each person between the nodes of the floor sub-area, wherein the second state transition matrix changes with time; determine the each person according to the second state transition matrix
  • the stay time period in each floor sub-area; according to the non-time-aligned Markov process, the corresponding stay time period of each person in each floor sub-area is simulated to determine the target floor sub-area where each person is located The area and the target location in the target floor sub-area
  • the dividing each non-corridor area in the floor area into multiple floor sub-areas according to a preset size includes: dividing each non-corridor area with a length of length and width of width according to The size with the length step ⁇ x and the width step ⁇ y is divided into multiple floor sub-areas of size N div, x ⁇ N div, y , where,
  • the floor nodes include floor nodes, stair nodes, and elevator nodes.
  • the second aspect of the present application provides a multi-level migration simulation device, which includes: a building module for establishing a multi-level building topology according to the structure of the building, wherein the multi-level building topology
  • the first layer contains the floor building topology
  • the second layer contains the floor area building topology
  • the third layer contains the grid building topology within the floor area
  • the acquisition module is used to obtain the schedule of multiple personnel for the simulation experiment
  • the simulation module Used to obtain the stay time period of each of the multiple personnel according to the schedule, and simulate the state of each personnel in the building topology during the corresponding stay time period according to a preset simulation algorithm Transfer location
  • a calculation module for calculating the operating energy consumption parameters of the building according to the state transfer location.
  • the establishment module is specifically used to construct the floor building topology according to the connection relationship between the floors of the building, wherein the connection between the floor nodes in the floor building topology
  • the relationship corresponds to the connection relationship between the floors
  • the floor area architectural topology is constructed according to the connection relationship between the floor areas of the building, wherein the connection relationship of the area nodes in the floor area architectural topology is
  • the connection relationship between the floor areas corresponds; each non-corridor area in the floor area is divided into multiple floor sub-areas according to a preset size, and a grid building in the floor area is constructed according to the floor sub-areas Topology, wherein the connection relationship between the floor sub-region nodes in the grided building topology corresponds to the connection relationship between the multiple floor sub-regions.
  • the simulation module is specifically configured to determine the first state transition matrix of each person between the floor nodes according to the non-timely Markov process, where the first The state transition matrix changes with time; according to the first state transition matrix, the stay time period of each person on each floor is determined; according to the non-timely Markov process, it is simulated that each person is on each floor Determine the second state transition matrix of each person between the nodes in the floor sub-area corresponding to the stay time period, wherein the second state transition matrix changes with time; determined according to the second state transition matrix The stay time period of each person in each floor sub-area; according to the non-time-aligned Markov process, the corresponding stay time period of each person in each floor sub-area is simulated to determine each person The target floor sub-area and the target position in the target floor sub-area.
  • the multi-level migration simulation device of the feedback embodiment of the present application solves the requirement of a large number of layout design sensors in the prior art through the establishment of modules, acquisition modules, simulation modules, and calculation modules.
  • the schedule is not used, individual differences are not considered, and personnel are not depicted.
  • the randomness of movement fails to reflect the technical problem of the migration characteristics of personnel distributed on different spatial scales, reflects the hierarchical and multi-scale ideas, saves computer storage space and computing resources, and can reflect personnel in different spaces Migration characteristics on scale.
  • the third aspect of the present application provides a computer device that includes a memory, a processor, and a computer program stored on the memory and running on the processor.
  • the processor When the computer program is executed, the multi-level migration simulation method described in the first aspect of the foregoing embodiment is implemented.
  • the fourth aspect of the present application provides a non-transitory computer-readable storage medium that, when the computer program is executed by a processor, implements the multi-level migration described in the first aspect of the foregoing embodiment. Simulation method.
  • FIG. 1 is a schematic flowchart of a multi-level migration simulation method provided by a feedback embodiment of this application;
  • Figure 2 is a display diagram of floor connectivity graphs and area connectivity graphs of the feedback embodiment of this application;
  • FIG. 3 is a display diagram of the regional gridding model of the feedback embodiment of this application.
  • FIG. 4 is a schematic diagram of a multi-level personnel migration simulation method according to the feedback embodiment of this application.
  • FIG. 5 is a schematic structural diagram of a multi-level migration simulation device provided by a feedback embodiment of this application.
  • FIG. 1 is a schematic flowchart of a multi-level migration simulation method provided by a feedback embodiment of this application.
  • the feedback embodiment of the present application provides a multi-level migration simulation method.
  • the multi-level migration simulation method includes the following steps:
  • Step 101 Establish a multi-level architectural topology according to the structure of the building, where the first layer of the multi-level architectural topology includes the floor architectural topology, the second floor includes the floor area architectural topology, and the third floor includes the grid within the floor area Building topology.
  • the floor building topology is constructed according to the connection relationship between the floors of the building, where the connection relationship between the floor nodes in the floor building topology corresponds to the connection relationship between the floors, where the floor Nodes include floor nodes, stair nodes and elevator nodes.
  • the floor area architectural topology constructs the floor area architectural topology, where the connection relationship of the area nodes in the floor area architectural topology corresponds to the connection relationship between the floor areas; each non-corridor area in the floor area is The preset size is divided into multiple floor sub-areas, and the grid building topology in the floor area is constructed according to the floor sub-areas.
  • the connection relationship between the floor sub-region nodes in the grid building topology and the multiple floor sub-areas The connection relationship corresponds to.
  • a single connected graph is used to depict the building topology, where nodes represent areas in the building, edges represent connected relationships between areas, and the first floor contains the floor building topology, where each Each node represents a floor, the second layer contains the floor area building topology, where each node represents a building area, for an N-story building, each floor is represented by a connected graph, there are N connected graphs in total, and the third layer contains the floor area
  • each non-corridor area in the floor area is divided into multiple floor sub-areas according to the preset size, as shown in Figure 3, including: for each non-corridor area with length as length and width as width
  • the size with the length step ⁇ x and the width step ⁇ y is divided into multiple floor sub-areas of size N div, x ⁇ N div, y , where,
  • Step 102 Obtain the schedule of multiple personnel for the simulation experiment.
  • the time period during which they stay inside the building is obtained.
  • the schedule may be regular schedules such as commuting, meetings, and meal times of personnel.
  • Step 103 Acquire the stay time period of each of the multiple personnel according to the schedule, and simulate the state transition position of each personnel in the corresponding stay time period in the building topology according to a preset simulation algorithm.
  • the first state transition matrix of each person between floor nodes is determined, where the first The state transition matrix changes with time; according to the first state transition matrix, the stay time period of each person on each floor is determined; according to the non-timely Markov process, the corresponding stay time period of each person on each floor is simulated to determine each The second state transition matrix of each person between the nodes of the floor sub-area, where the second state transition matrix changes with time; according to the second state transition matrix, the stay time period of each person in each floor sub-area is determined; The time-aligned Markov process simulates the corresponding stay time period of each person in each floor sub-area, and determines the target floor sub-area where each person is located and the target position in the target floor sub-area.
  • the position X of the personnel at each moment constitutes a random time sequence ⁇ X ⁇ ⁇ .
  • Use a Markov chain to approximate this position sequence that is, at any time ⁇ +1, the person's position X( ⁇ +1) is only related to the position X( ⁇ ) at the previous time.
  • the matrix composed of all transition probabilities p ij is the transition matrix of Markov chain ⁇ X ⁇ ⁇ , as shown in formula (1),
  • the transition probability p ij ( ⁇ ) is not only related to the state i, j, but also related to the time ⁇ . Therefore, according to the non-timely Markov process, determine the corresponding state transition matrix between each person's floor node and floor sub-area nodes, and then determine the time period of each person's stay in the area according to the state transition matrix, and simulate each person The state transfer position in the building topology finally determines the target floor sub-area where each person is located and the target location in the target floor sub-area.
  • the simulation method of the personnel movement process follows the three general steps of simulation calculation: setting input parameters-simulation calculation-output calculation results.
  • the input parameters of the mobile simulation include: the allocation of the number of people in each area of the building, the definition of active events and their attribute parameters, the event set of the designated personnel, the simulation period and the time step.
  • the output results include time-by-hour information such as the location of personnel, the number of people in the area, and the occurrence of events.
  • the specific steps of the preset simulation algorithm are:
  • Step 301 Initialize the personnel position status.
  • Step 302 Determine the active event set at the current moment.
  • Search all event collections determine whether each event is active according to the start and end time of the event, and update the current active event collection.
  • Step 303 Calculate the personnel transfer matrix at the current moment.
  • the relevant elements of the personnel transfer matrix are set and updated.
  • Step 304 Calculate the location of the personnel.
  • the position of each person at the current moment is predicted and updated with probability.
  • Step 305 Calculate the number of people in the area.
  • Step 306 Enter the calculation at the next moment.
  • Step 104 Calculate the operating energy consumption parameters of the building according to the state transition position.
  • the state transfer position of each person in the building topology during the corresponding stay time period is simulated.
  • the state transfer position the position sequence of each person and the personnel state of each area, and the occurrence of each event can be obtained.
  • it can be substituted into building energy consumption calculation and equipment use behavior simulation, and then calculate the building's operating energy consumption parameters. For example, assisting building property managers to estimate the building’s electricity and water consumption, make good use of the exhaust system, safety system, and elevator system to better serve the people in the building.
  • the multi-level migration simulation method in this embodiment solves the requirement of a large number of sensors in the prior art, does not use the schedule, does not consider individual differences, does not portray the randomness of personnel movement, and fails to reflect the distribution of personnel on different spatial scales.
  • the technical problem of the migration characteristics of the company embodies the hierarchical and multi-scale ideas, saves computer storage space and computing resources, and can reflect the migration characteristics of personnel at different spatial scales.
  • the present application also provides a multi-level migration simulation device.
  • FIG. 5 is a schematic structural diagram of a multi-level migration simulation device provided by a feedback embodiment of this application.
  • the multi-level migration simulation device includes: an establishment module 10, an acquisition module 20, a simulation module 30, and a calculation module 40.
  • the establishment module 10 establishes a multi-level architectural topology according to the structure of the building, wherein the first layer of the multi-level architectural topology contains the floor-building topology, the second floor contains the floor area architectural topology, and the third floor contains the floor area Grid building topology.
  • the establishment module 10 is specifically used to: construct a floor building topology according to the connection relationship between the floors of the building, where the connection relationship between the floor nodes in the floor building topology is related to the floor
  • the connection relationship between the corresponding, according to the connection relationship between the floor areas of the building construct the floor area architectural topology, where the connection relationship of the area nodes in the floor area architectural topology corresponds to the connection relationship between the floor areas, and the floor area
  • Each non-corridor area is divided into multiple floor sub-areas according to the preset size, and the grid building topology in the floor area is constructed according to the floor sub-areas.
  • the connection relationship of the floor sub-area nodes in the grid building topology is Correspondence between multiple floors and sub-areas.
  • the obtaining module 20 obtains the schedule of multiple personnel in the simulation experiment.
  • the simulation module 30 obtains the stay time period of each of the multiple personnel according to the schedule, and simulates each personnel staying in the corresponding period according to the preset simulation algorithm.
  • the simulation module 30 is specifically used to determine the first state transition matrix of each person between the floor nodes according to the non-timely Markov process, Among them, the first state transition matrix changes with time. According to the first state transition matrix, the stay time period of each person on each floor is determined, and the corresponding stay time of each person on each floor is simulated according to the non-timely Markov process.
  • the calculation module 40 calculates the operating energy consumption parameters of the building according to the state transition position.
  • the multi-level migration simulation device in the feedback embodiment of this application solves the requirement of a large number of layout design sensors in the prior art through the establishment of modules, acquisition modules, simulation modules, and calculation modules.
  • the schedule is not used, individual differences are not considered, and personnel are not depicted.
  • the randomness of movement fails to reflect the technical problem of the migration characteristics of personnel distributed on different spatial scales, reflects the hierarchical and multi-scale ideas, saves computer storage space and computing resources, and can reflect personnel in different spaces Migration characteristics on scale.
  • this application feedback also proposes a computer device, including a memory, a processor, and a computer program stored on the memory and capable of running on the processor.
  • the processor executes the computer program, the implementation is as described in the above-mentioned embodiment. Describe the multi-level migration simulation method.
  • this application feedback also proposes a non-transitory computer-readable storage medium, which implements the multi-level migration simulation method as described in the above-mentioned embodiments when a computer program is executed by a processor.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include at least one of the features. In the description of feedback in this application, “multiple” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • a "computer-readable medium” can be any device that can contain, store, communicate, propagate, or transmit a program for use by an instruction execution system, device, or device or in combination with these instruction execution systems, devices, or devices.
  • computer readable media include the following: electrical connections (electronic devices) with one or more wiring, portable computer disk cases (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable and editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
  • the computer-readable medium may even be paper or other suitable media on which the program can be printed, because it can be used, for example, by optically scanning the paper or other media, and then editing, interpreting, or other suitable media if necessary. The program is processed in a manner to obtain the program electronically and then stored in the computer memory.
  • each part of the feedback in this application can be implemented by hardware, software, firmware, or a combination thereof.
  • multiple steps or methods can be implemented by software or firmware stored in a memory and executed by a suitable instruction execution system.
  • Discrete logic gate circuits for implementing logic functions on data signals
  • Logic circuits application specific integrated circuits with suitable combinational logic gates
  • PGA programmable gate array
  • FPGA field programmable gate array
  • each functional unit in each embodiment may be integrated into one processing module, or each unit may exist alone physically, or two or more units may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. If the integrated module is implemented in the form of a software function module and sold or used as an independent product, it may also be stored in a computer readable storage medium.
  • the aforementioned storage medium may be a read-only memory, a magnetic disk or an optical disk, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种多层级迁移模拟方法和装置,方法包括:根据建筑的结构建立多层级的建筑拓扑,其中,多层级的建筑拓扑中的第一层包含楼层建筑拓扑,第二层包含楼层区域建筑拓扑,第三层包含楼层区域内网格化建筑拓扑(101);获取模拟实验的多个人员的日程安排(102);根据日程安排获取多个人员中每个人员的停留时间段,并根据预设模拟算法模拟每个人员在对应停留时间段内,在建筑拓扑中的状态转移位置(103);根据状态转移位置计算建筑的运行能耗参数(104)。由此,体现了分层级、多尺度的思想,节省了计算机的存储空间和计算资源,体现人员在不同空间尺度上的迁移特点,可以较为真实地模拟建筑内的人员分布情况,估算建筑运行。

Description

多层级迁移模拟方法和装置
相关申请的交叉引用
本申请要求清华大学于2019年06月13日提交的、发明名称为“多层级迁移模拟方法和装置”的、中国专利申请号“201910512150.3”的优先权。
技术领域
本申请反馈属于建筑能耗仿真技术领域,特别涉及一种多层级迁移模拟方法和装置。
背景技术
目前,主要借助布设于建筑内的传感器(视频、红外等),基于混合高斯模型,估计各区域人数,进而,基于各区域的人数,可以通过人员规律性的日程安排,来模拟人员的移动过程。
然而,这种借助布设于建筑内的传感器的估计方法,要求大量布设计数传感器,未利用日程表,未考虑个体差异,因此估计建筑内人员分布与真实情况差异较大。
发明内容
本申请反馈旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本申请反馈的第一个目的在于提出一种多层级迁移模拟方法,体现了分层级、多尺度的思想,节省了计算机的存储空间和计算资源,且能体现人员在不同空间尺度上的迁移特点。
本申请反馈的第二个目的在于提出一种多层级迁移模拟装置。
本申请反馈的第三个目的在于提出一种计算机设备。
本申请反馈的第四个目的在于提出一种非临时性计算机可读存储介质。
为达上述目的,本申请反馈第一方面实施例提出了一种多层级迁移模拟方法,包括:根据建筑的结构建立多层级的建筑拓扑,其中,所述多层级的建筑拓扑中的第一层包含楼层建筑拓扑,第二层包含楼层区域建筑拓扑,第三层包含楼层区域内网格化建筑拓扑;获取模拟实验的多个人员的日程安排;根据所述日程安排获取所述多个人员中每个人员的停留时间段,并根据预设模拟算法模拟所述每个人员在对应停留时间段内,在所述建筑拓扑中的状态转移位置;根据所述状态转移位置计算所述建筑的运行能耗参数。
本申请反馈实施例的多层级迁移模拟方法,解决现有技术中要求大量布设计数传感器, 未利用日程表,未考虑个体差异,未刻画人员移动的随机性,未能体现人员分布在不同空间尺度上的迁移特点的技术问题,体现了分层级、多尺度的思想,节省了计算机的存储空间和计算资源,且能体现人员在不同空间尺度上的迁移特点。
本申请反馈实施例中,所述根据建筑的结构建立多层级的建筑拓扑,包括:根据所述建筑的楼层之间的连接关系,构建所述楼层建筑拓扑,其中,所述楼层建筑拓扑中的楼层节点之间的连接关系与所述楼层之间的连接关系对应;根据所述建筑的楼层区域之间的连接关系,构建所述楼层区域建筑拓扑,其中,所述楼层区域建筑拓扑中的区域节点的连接关系与所述楼层区域之间的连接关系对应;对所述楼层区域中每个非走廊区域按照预设尺寸划分为多个楼层子区域,并根据所述楼层子区域构建所述楼层区域内网格化建筑拓扑,其中,所述网格化建筑拓扑中的楼层子区域节点的连接关系与所述多个楼层子区域之间的连接关系对应。
本申请反馈实施例中,所述根据所述日程安排获取所述多个人员中每个人员的停留时间段,并根据预设模拟算法模拟所述每个人员在对应停留时间段内,在所述建筑拓扑中的状态转移位置,包括:根据非时齐马氏过程,确定所述每个人员在所述楼层节点之间的第一状态转移矩阵,其中,所述第一状态转移矩阵随时间变化;根据所述第一状态转移矩阵确定所述每个人员在每个楼层的停留时间段;根据所述非时齐马氏过程,模拟所述每个人员在每个楼层的对应停留时间段,确定所述每个人员在所述楼层子区域节点之间的第二状态转移矩阵,其中,所述第二状态转移矩阵随时间变化;根据所述第二状态转移矩阵确定所述每个人员在每个楼层子区域的停留时间段;根据所述非时齐马氏过程,模拟所述每个人员在每个楼层子区域的对应停留时间段,确定所述每个人员所在的目标楼层子区域和在所述目标楼层子区域中的目标位置。
本申请反馈实施例中,所述对所述楼层区域中每个非走廊区域按照预设尺寸划分为多个楼层子区域,包括:对所述每个长度为length和宽度为width非走廊区域按照长度步长为Δ x,宽度步长为Δ y的尺寸划分为尺寸为N div,x×N div,y的多个楼层子区域,其中,
Figure PCTCN2019098279-appb-000001
本申请反馈实施例中,所述楼层节点包括楼层节点、楼梯节点和电梯节点。
为达上述目的,本申请反馈第二方面实施例提出了一种多层级迁移模拟装置,包括:建立模块,用于根据建筑的结构建立多层级的建筑拓扑,其中,所述多层级的建筑拓扑中的第一层包含楼层建筑拓扑,第二层包含楼层区域建筑拓扑,第三层包含楼层区域内网格化建筑拓扑;获取模块,用于获取模拟实验的多个人员的日程安排;模拟模块,用于根据 所述日程安排获取所述多个人员中每个人员的停留时间段,并根据预设模拟算法模拟所述每个人员在对应停留时间段内,在所述建筑拓扑中的状态转移位置;计算模块,用于根据所述状态转移位置计算所述建筑的运行能耗参数。
本申请反馈实施例中,所述建立模块,具体用于:根据所述建筑的楼层之间的连接关系,构建所述楼层建筑拓扑,其中,所述楼层建筑拓扑中的楼层节点之间的连接关系与所述楼层之间的连接关系对应;根据所述建筑的楼层区域之间的连接关系,构建所述楼层区域建筑拓扑,其中,所述楼层区域建筑拓扑中的区域节点的连接关系与所述楼层区域之间的连接关系对应;对所述楼层区域中每个非走廊区域按照预设尺寸划分为多个楼层子区域,并根据所述楼层子区域构建所述楼层区域内网格化建筑拓扑,其中,所述网格化建筑拓扑中的楼层子区域节点的连接关系与所述多个楼层子区域之间的连接关系对应。
本申请反馈实施例中,所述模拟模块,具体用于:根据非时齐马氏过程,确定所述每个人员在所述楼层节点之间的第一状态转移矩阵,其中,所述第一状态转移矩阵随时间变化;根据所述第一状态转移矩阵确定所述每个人员在每个楼层的停留时间段;根据所述非时齐马氏过程,模拟所述每个人员在每个楼层的对应停留时间段,确定所述每个人员在所述楼层子区域节点之间的第二状态转移矩阵,其中,所述第二状态转移矩阵随时间变化;根据所述第二状态转移矩阵确定所述每个人员在每个楼层子区域的停留时间段;根据所述非时齐马氏过程,模拟所述每个人员在每个楼层子区域的对应停留时间段,确定所述每个人员所在的目标楼层子区域和在所述目标楼层子区域中的目标位置。
本申请反馈实施例的多层级迁移模拟装置,通过建立模块、获取模块、模拟模块和计算模块,解决现有技术中要求大量布设计数传感器,未利用日程表,未考虑个体差异,未刻画人员移动的随机性,未能体现人员分布在不同空间尺度上的迁移特点的技术问题,体现了分层级、多尺度的思想,节省了计算机的存储空间和计算资源,且能体现人员在不同空间尺度上的迁移特点。
为达上述目的,本申请反馈第三方面实施例提出了一种计算机设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时,实现如上述实施例第一方面所述的多层级迁移模拟方法。
为了实现上述目的,本申请反馈第四方面实施例提出了一种非临时性计算机可读存储介质,所述计算机程序被处理器执行时,实现如上述实施例第一方面所述的多层级迁移模拟方法。
本申请反馈附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请反馈的实践了解到。
附图说明
本申请反馈上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本申请反馈实施例所提供的一种多层级迁移模拟方法的流程示意图;
图2为本申请反馈实施例对楼层连通图和区域连通图的展示图;
图3为本申请反馈实施例对区域网格化模型的展示图;
图4为本申请反馈实施例的多层级人员迁移模拟方法示意图;
图5为本申请反馈实施例提供的一种多层级迁移模拟装置的结构示意图。
具体实施方式
下面详细描述本申请反馈的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请反馈,而不能理解为对本申请反馈的限制。
下面参考附图描述本申请反馈实施例的多层级迁移模拟方法和装置。
图1为本申请反馈实施例所提供的一种多层级迁移模拟方法的流程示意图。
针对上述实施例,本申请反馈实施例提供了多层级迁移模拟方法,如图1所示,该多层级迁移模拟方法包括以下步骤:
步骤101,根据建筑的结构建立多层级的建筑拓扑,其中,多层级的建筑拓扑中的第一层包含楼层建筑拓扑,第二层包含楼层区域建筑拓扑,第三层包含楼层区域内网格化建筑拓扑。
具体的,如图2所示,根据建筑的楼层之间的连接关系,构建楼层建筑拓扑,其中,楼层建筑拓扑中的楼层节点之间的连接关系与楼层之间的连接关系对应,其中,楼层节点包括楼层节点、楼梯节点和电梯节点。根据建筑的楼层区域之间的连接关系,构建楼层区域建筑拓扑,其中,楼层区域建筑拓扑中的区域节点的连接关系与楼层区域之间的连接关系对应;对楼层区域中每个非走廊区域按照预设尺寸划分为多个楼层子区域,并根据楼层子区域构建楼层区域内网格化建筑拓扑,其中,网格化建筑拓扑中的楼层子区域节点的连接关系与多个楼层子区域之间的连接关系对应。
可以理解,作为本申请反馈实施例可能实现的一种方式,以单个连通图刻画建筑拓扑,其中节点表示建筑内的区域,边表示区域间的连通关系,第一层包含楼层建筑拓扑,其中每个节点表示一个楼层,第二层包含楼层区域建筑拓扑,其中每个节点表示一个建筑区域,对于N层建筑,每层用一张连通图表示,共有N张连通图,第三层包含楼层区域内网格化建 筑拓扑,对楼层区域中每个非走廊区域按照预设尺寸划分为多个楼层子区域,如图3所示,包括:对每个长度为length和宽度为width非走廊区域按照长度步长为Δ x,宽度步长为Δ y的尺寸划分为尺寸为N div,x×N div,y的多个楼层子区域,其中,
Figure PCTCN2019098279-appb-000002
步骤102,获取模拟实验的多个人员的日程安排。
具体的,根据获取到的多个人员的日程安排,得到其当天停留在建筑内部的时间段,本实施例中,日程安排可以是人员的上下班、会议、吃饭时间等规律的日程安排。
步骤103,根据日程安排获取多个人员中每个人员的停留时间段,并根据预设模拟算法模拟每个人员在对应停留时间段内,在建筑拓扑中的状态转移位置。
具体的,作为本申请反馈实施例一种可能实现的方式,如图4所示,根据非时齐马氏过程,确定每个人员在楼层节点之间的第一状态转移矩阵,其中,第一状态转移矩阵随时间变化;根据第一状态转移矩阵确定每个人员在每个楼层的停留时间段;根据非时齐马氏过程,模拟每个人员在每个楼层的对应停留时间段,确定每个人员在楼层子区域节点之间的第二状态转移矩阵,其中,第二状态转移矩阵随时间变化;根据第二状态转移矩阵确定每个人员在每个楼层子区域的停留时间段;根据非时齐马氏过程,模拟每个人员在每个楼层子区域的对应停留时间段,确定每个人员所在的目标楼层子区域和在目标楼层子区域中的目标位置。
需要说明的是,采用非时齐马氏过程来确定状态转移矩阵的具体情况如下:假设一个建筑物楼层内部有n个区域,每个区域编号依次为1,2,……,n,同时把建筑物楼层外部当做一个特殊的区域,编号为0。这些区域就构成一个具有n+1个节点的封闭拓扑网络,每个节点代表一个区域,人员位置用区域节点编号进行标识。人员在建筑内外各个区域之间移动,其位置状态可视为随机变量。如果他的移动范围覆盖了所有区域,则其位置状态可能全部取值为{0=outside,1=room1,2=room2,……,N=roomN}。人员在各个时刻的位置X,就构成一个随机时间序列{X τ}。用马氏链近似表示这个位置序列,即在任意时刻τ+1,人员位置X(τ+1)仅与上一时刻的位置X(τ)有关。转移概率p ij(τ)=P{X τ+1=j|X τ=i}表示人员在时刻τ处于位置i时,在时刻τ+1处于位置j的概率,亦即人员在时刻τ从区域i出发,下一时刻移动到区域j的概率。
由全部转移概率p ij所组成的矩阵为马氏链{X τ}的转移矩阵,如公式(1)所示,
Figure PCTCN2019098279-appb-000003
一般地,转移概率p ij(τ)不仅与状态i,j有关,而且与时刻τ有关。因此根据非时齐马氏过程,确定每个人员在楼层节点,楼层子区域节点之间对应的状态转移矩阵,然后根据状态转移矩阵确定每个人员所在区域停留的时间段,通过模拟每个人员在建筑拓扑中的状态转移位置,最终确定每个人员所在的目标楼层子区域和在目标楼层子区域中的目标位置。
进一步说明的是,人员移动过程的模拟方法遵循模拟计算的3个通用步骤:设置输入参数-模拟计算-输出计算结果。移动模拟的输人参数包括:建筑内各区域的人数分配、定义活跃事件及其属性参数、指定人员的事件集、模拟时段及时间步长。输出结果包括:人员位置、区域人数、事件的发生等逐时信息。预设模拟算法的具体步骤为:
步骤301,初始化人员位置状态。
设置全部人员在0时刻(第一天0:00)的位置状态,例如对办公建筑,设为室外,对住宅建筑,设为个人所属的卧室。
步骤302,确定当前时刻的活跃事件集。
对全部事件集合进行搜索,根据事件的起始和结束时间判断各个事件是否处于活跃状态,更新当前的活跃事件集合。
步骤303,计算当前时刻的人员转移矩阵。
根据活跃事件集合以及各个事件的特征参数,对人员转移矩阵的相关元素进行设置和更新。
步骤304,计算人员位置。
根据上一时刻的位置及更新后的转移矩阵,依概率预测和更新各个人员在当前时刻的位置。
步骤305,计算区域内人数。
根据全部人员的位置,计算和更新各个区域内的人数。
步骤306,进入下一时刻的计算。
重复以上步骤,就能得到各个人员的位置序列和各个区域的人员状态,以及各个事件发生的时刻。
步骤104,根据状态转移位置计算建筑的运行能耗参数。
具体的,根据预设模拟算法模拟每个人员在对应停留时间段内,在建筑拓扑中的状态转移位置,根据状态转移位置可以得到各个人员的位置序列和各个区域的人员状态,以及 各个事件发生的时刻,根据这些结果,就可以代入到建筑能耗计算和设备使用行为的模拟之中,进而计算建筑的运行能耗参数。比如,辅助建筑物物业管理人员估算建筑物的用电量、用水量,用好排风系统、安全系统以及电梯系统,更好的为建筑物内的人员服务。
需要强调的是,由于在实际生活中,建筑内包含的人员类型是多种多样的,比如,清洁人员、电梯维修人员、上班人员等,而不同的人员的状态转移位置是不同的,因此,为了更真实的模拟人员的转移,可以获取不同类型的人员的日程安排作为本申请反馈的模拟样本。
本实施例中多层级迁移模拟方法,解决现有技术中要求大量布设计数传感器,未利用日程表,未考虑个体差异,未刻画人员移动的随机性,未能体现人员分布在不同空间尺度上的迁移特点的技术问题,体现了分层级、多尺度的思想,节省了计算机的存储空间和计算资源,且能体现人员在不同空间尺度上的迁移特点。
为了实现上述实施例,本申请反馈还提出一种多层级迁移模拟装置。
图5为本申请反馈实施例提供的一种多层级迁移模拟装置的结构示意图。
如图5所示,该多层级迁移模拟装置包括:建立模块10、获取模块20、模拟模块30和计算模块40。其中,建立模块10,根据建筑的结构建立多层级的建筑拓扑,其中,多层级的建筑拓扑中的第一层包含楼层建筑拓扑,第二层包含楼层区域建筑拓扑,第三层包含楼层区域内网格化建筑拓扑,本实施例中,建立模块10,具体用于:根据建筑的楼层之间的连接关系,构建楼层建筑拓扑,其中,楼层建筑拓扑中的楼层节点之间的连接关系与楼层之间的连接关系对应,根据建筑的楼层区域之间的连接关系,构建楼层区域建筑拓扑,其中,楼层区域建筑拓扑中的区域节点的连接关系与楼层区域之间的连接关系对应,对楼层区域中每个非走廊区域按照预设尺寸划分为多个楼层子区域,并根据楼层子区域构建楼层区域内网格化建筑拓扑,其中,网格化建筑拓扑中的楼层子区域节点的连接关系与多个楼层子区域之间的连接关系对应。其次,获取模块20获取模拟实验的多个人员的日程安排,然后,模拟模块30根据日程安排获取多个人员中每个人员的停留时间段,并根据预设模拟算法模拟每个人员在对应停留时间段内,在建筑拓扑中的状态转移位置,本实施例中,模拟模块30,具体用于:根据非时齐马氏过程,确定每个人员在楼层节点之间的第一状态转移矩阵,其中,第一状态转移矩阵随时间变化,根据第一状态转移矩阵确定每个人员在每个楼层的停留时间段,根据非时齐马氏过程,模拟每个人员在每个楼层的对应停留时间段,确定每个人员在楼层子区域节点之间的第二状态转移矩阵,其中,第二状态转移矩阵随时间变化,根据第二状态转移矩阵确定每个人员在每个楼层子区域的停留时间段,根据非时齐马氏过程,模拟每个人员在每个楼层子区域的对应停留时间段,确定每个人员所在的目标楼层子区域和在目标楼层子区域中的目标位置。最后,计算模块40根据状态转移位置计 算建筑的运行能耗参数。
本申请反馈实施例中多层级迁移模拟装置,通过建立模块、获取模块、模拟模块和计算模块,解决现有技术中要求大量布设计数传感器,未利用日程表,未考虑个体差异,未刻画人员移动的随机性,未能体现人员分布在不同空间尺度上的迁移特点的技术问题,体现了分层级、多尺度的思想,节省了计算机的存储空间和计算资源,且能体现人员在不同空间尺度上的迁移特点。
为了实现上述实施例,本申请反馈还提出一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时,实现如上述实施例所描述的多层级迁移模拟方法。
为了实现上述实施例,本申请反馈还提出一种非临时性计算机可读存储介质,计算机程序被处理器执行时实现如上述实施例所描述的多层级迁移模拟方法。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请反馈的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请反馈的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本申请反馈的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请反馈的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播 或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置)、便携式计算机盘盒(磁装置),随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编辑只读存储器(EPROM或闪速存储器)、光纤装置、以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本申请反馈的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路、具有合适的组合逻辑门电路的专用集成电路、可编程门阵列(PGA)、现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本申请反馈各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本申请反馈的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请反馈的限制,本领域的普通技术人员在本申请反馈的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种多层级迁移模拟方法,其特征在于,包括以下步骤:
    根据建筑的结构建立多层级的建筑拓扑,其中,所述多层级的建筑拓扑中的第一层包含楼层建筑拓扑,第二层包含楼层区域建筑拓扑,第三层包含楼层区域内网格化建筑拓扑;
    获取模拟实验的多个人员的日程安排;
    根据所述日程安排获取所述多个人员中每个人员的停留时间段,并根据预设模拟算法模拟所述每个人员在对应停留时间段内,在所述建筑拓扑中的状态转移位置;
    根据所述状态转移位置计算所述建筑的运行能耗参数。
  2. 如权利要求1所述的方法,其特征在于,所述根据建筑的结构建立多层级的建筑拓扑,包括:
    根据所述建筑的楼层之间的连接关系,构建所述楼层建筑拓扑,其中,所述楼层建筑拓扑中的楼层节点之间的连接关系与所述楼层之间的连接关系对应;
    根据所述建筑的楼层区域之间的连接关系,构建所述楼层区域建筑拓扑,其中,所述楼层区域建筑拓扑中的区域节点的连接关系与所述楼层区域之间的连接关系对应;
    对所述楼层区域中每个非走廊区域按照预设尺寸划分为多个楼层子区域,并根据所述楼层子区域构建所述楼层区域内网格化建筑拓扑,其中,所述网格化建筑拓扑中的楼层子区域节点的连接关系与所述多个楼层子区域之间的连接关系对应。
  3. 如权利要求2所述的方法,其特征在于,所述根据所述日程安排获取所述多个人员中每个人员的停留时间段,并根据预设模拟算法模拟所述每个人员在对应停留时间段内,在所述建筑拓扑中的状态转移位置,包括:
    根据非时齐马氏过程,确定所述每个人员在所述楼层节点之间的第一状态转移矩阵,其中,所述第一状态转移矩阵随时间变化;
    根据所述第一状态转移矩阵确定所述每个人员在每个楼层的停留时间段;
    根据所述非时齐马氏过程,模拟所述每个人员在每个楼层的对应停留时间段,确定所述每个人员在所述楼层区域节点之间的第二状态转移矩阵,其中,所述第二状态转移矩阵随时间变化;
    根据所述第二状态转移矩阵确定所述每个人员在每个楼层区域的停留时间段;
    根据所述非时齐马氏过程,模拟所述每个人员在每个楼层区域的对应停留时间段,确定所述每个人员所在的目标楼层子区域和在所述目标楼层子区域中的目标位置。
  4. 如权利要求2所述的方法,其特征在于,所述对所述楼层区域中每个非走廊区域按照预设尺寸划分为多个楼层子区域,包括:
    对所述每个长度为length和宽度为width非走廊区域按照长度步长为Δ x,宽度步长为Δ y的尺寸划分为尺寸为N div,x×N div,y的多个楼层子区域,其中,
    Figure PCTCN2019098279-appb-100001
  5. 如权利要求2所述的方法,其特征在于,所述楼层节点包括楼层节点、楼梯节点和电梯节点。
  6. 一种多层级迁移模拟装置,其特征在于,包括:
    建立模块,用于根据建筑的结构建立多层级的建筑拓扑,其中,所述多层级的建筑拓扑中的第一层包含楼层建筑拓扑,第二层包含楼层区域建筑拓扑,第三层包含楼层区域内网格化建筑拓扑;
    获取模块,用于获取模拟实验的多个人员的日程安排;
    模拟模块,用于根据所述日程安排获取所述多个人员中每个人员的停留时间段,并根据预设模拟算法模拟所述每个人员在对应停留时间段内,在所述建筑拓扑中的状态转移位置;
    计算模块,用于根据所述状态转移位置计算所述建筑的运行能耗参数。
  7. 如权利要求6所述的装置,其特征在于,所述建立模块,具体用于:
    根据所述建筑的楼层之间的连接关系,构建所述楼层建筑拓扑,其中,所述楼层建筑拓扑中的楼层节点之间的连接关系与所述楼层之间的连接关系对应;
    根据所述建筑的楼层区域之间的连接关系,构建所述楼层区域建筑拓扑,其中,所述楼层区域建筑拓扑中的区域节点的连接关系与所述楼层区域之间的连接关系对应;
    对所述楼层区域中每个非走廊区域按照预设尺寸划分为多个楼层子区域,并根据所述楼层子区域构建所述楼层区域内网格化建筑拓扑,其中,所述网格化建筑拓扑中的楼层子区域节点的连接关系与所述多个楼层子区域之间的连接关系对应。
  8. 如权利要求7所述的装置,其特征在于,所述模拟模块,具体用于:
    根据非时齐马氏过程,确定所述每个人员在所述楼层节点之间的第一状态转移矩阵,其中,所述第一状态转移矩阵随时间变化;
    根据所述第一状态转移矩阵确定所述每个人员在每个楼层的停留时间段;
    根据所述非时齐马氏过程,模拟所述每个人员在每个楼层的对应停留时间段,确定所述每个人员在所述楼层子区域节点之间的第二状态转移矩阵,其中,所述第二状态转移矩阵随时间变化;
    根据所述第二状态转移矩阵确定所述每个人员在每个楼层子区域的停留时间段;
    根据所述非时齐马氏过程,模拟所述每个人员在每个楼层子区域的对应停留时间段,确定所述每个人员所在的目标楼层子区域和在所述目标楼层子区域中的目标位置。
  9. 一种计算机设备,其特征在于,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时,实现如权利要求1-5任一所述的多层级迁移模拟方法。
  10. 一种非临时性计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1-5任一所述的多层级迁移模拟方法。
PCT/CN2019/098279 2019-06-13 2019-07-30 多层级迁移模拟方法和装置 WO2020248343A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/023,889 US20210004511A1 (en) 2019-06-13 2020-09-17 Multi-level occupant movement simulation method and apparatus, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910512150.3 2019-06-13
CN201910512150.3A CN110309560B (zh) 2019-06-13 2019-06-13 多层级迁移模拟方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/023,889 Continuation US20210004511A1 (en) 2019-06-13 2020-09-17 Multi-level occupant movement simulation method and apparatus, and storage medium

Publications (1)

Publication Number Publication Date
WO2020248343A1 true WO2020248343A1 (zh) 2020-12-17

Family

ID=68077225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098279 WO2020248343A1 (zh) 2019-06-13 2019-07-30 多层级迁移模拟方法和装置

Country Status (3)

Country Link
US (1) US20210004511A1 (zh)
CN (1) CN110309560B (zh)
WO (1) WO2020248343A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114355854B (zh) * 2022-01-04 2023-08-04 四川轻化工大学 一种两层制造车间自动导引车和电梯联合调度方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102176149A (zh) * 2011-02-24 2011-09-07 浙江工业大学 基于无线传感器网络的智能楼宇能耗监测系统
CN103889052A (zh) * 2014-03-11 2014-06-25 南京邮电大学 基于特定信标传感节点的智能楼宇定位方法
KR20160063470A (ko) * 2014-11-26 2016-06-07 현대건설주식회사 건물 에너지 시뮬레이션 시스템 및 방법
CN107169606A (zh) * 2017-05-18 2017-09-15 天津大学 一种办公建筑冷负荷的预测方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10108755B2 (en) * 2013-11-19 2018-10-23 Aerohive Networks, Inc. RF floor plan building
BR102014003580B1 (pt) * 2014-02-14 2023-03-21 Samsung Eletrônica da Amazônia Ltda. Método para habilitar a arquitetura hierárquica de gateways para gerenciamento de dispositivos
JP6304771B2 (ja) * 2015-08-20 2018-04-04 株式会社サイバーウォーカー 経路生成プログラム、経路生成方法及び経路生成装置
CN107590022B (zh) * 2016-07-08 2021-06-25 上海东方延华节能技术服务股份有限公司 一种用于建筑能耗分项计量的仪表采集数据修复方法
US10409305B2 (en) * 2017-01-29 2019-09-10 Trane International Inc. HVAC system configuration and zone management
CN107087016B (zh) * 2017-03-06 2020-06-12 清华大学 基于视频监控网络的楼宇内移动物体的导航方法及系统
CN108320016B (zh) * 2018-03-08 2023-09-19 南京工业大学 一种建筑能耗短期预测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102176149A (zh) * 2011-02-24 2011-09-07 浙江工业大学 基于无线传感器网络的智能楼宇能耗监测系统
CN103889052A (zh) * 2014-03-11 2014-06-25 南京邮电大学 基于特定信标传感节点的智能楼宇定位方法
KR20160063470A (ko) * 2014-11-26 2016-06-07 현대건설주식회사 건물 에너지 시뮬레이션 시스템 및 방법
CN107169606A (zh) * 2017-05-18 2017-09-15 天津大学 一种办公建筑冷负荷的预测方法

Also Published As

Publication number Publication date
US20210004511A1 (en) 2021-01-07
CN110309560A (zh) 2019-10-08
CN110309560B (zh) 2020-12-22

Similar Documents

Publication Publication Date Title
US11675940B2 (en) Generating integrated circuit floorplans using neural networks
KR102149818B1 (ko) 인테리어 자동 견적 서비스 제공 방법 및 이를 실행하기 위한 시스템
CN110633553B (zh) 一种住宅户型平面图自动生成方法和系统
Lee Parallel vs. sequential cascading MEP coordination strategies: A pharmaceutical building case study
Shin et al. Indoor Walkability Index: BIM-enabled approach to Quantifying building circulation
KR102149436B1 (ko) 공동 주택의 공간 배치 설계 방법 및 장치
Shin et al. Pre-Occupancy Evaluation based on user behavior prediction in 3D virtual simulation
CN116882038B (zh) 一种基于bim技术的机电施工方法及系统
Stoffel et al. Applying hierarchical graphs to pedestrian indoor navigation
CN109299778B (zh) 一种基于布谷鸟搜索算法的rcrss救援地图分区的计算方法
CN109783943B (zh) 一种建筑平台智能节点拓扑生成与匹配的方法及系统
JP2016177675A (ja) 推定装置、推定方法およびコンピュータプログラム
CN111179374A (zh) 一种室内导航网络结构图构建方法、系统及电子设备
WO2020248343A1 (zh) 多层级迁移模拟方法和装置
CN115359266A (zh) 基于bim技术的建筑施工方法、装置及电子设备
WO2023125585A1 (zh) 疏散模拟方法及装置、电子设备及存储介质
Jianfeng et al. Construction of intelligent building design system based on BIM and AI
Konstantakopoulos et al. A deep learning and gamification approach to energy conservation at nanyang technological university
Goldstein et al. Towards voxel-based algorithms for building performance simulation
EP3968202A1 (en) Customizable reinforcement of learning column placement in structural design
Gianni et al. A simulation framework for the investigation of adaptive behaviours in largely populated building evacuation scenarios
Zawidzki Discrete optimization in architecture: Architectural & urban layout
JP2023106081A (ja) モデル生成方法、モデル生成装置、推論プログラム、及び推論装置
Grobler et al. Ontologies and shape grammars: communication between knowledge-based and generative systems
Si et al. Illumination modeling method for office lighting control by using RBFNN

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19933041

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19933041

Country of ref document: EP

Kind code of ref document: A1