WO2020248190A1 - 坐标校正方法、装置、计算设备及计算机存储介质 - Google Patents

坐标校正方法、装置、计算设备及计算机存储介质 Download PDF

Info

Publication number
WO2020248190A1
WO2020248190A1 PCT/CN2019/091111 CN2019091111W WO2020248190A1 WO 2020248190 A1 WO2020248190 A1 WO 2020248190A1 CN 2019091111 W CN2019091111 W CN 2019091111W WO 2020248190 A1 WO2020248190 A1 WO 2020248190A1
Authority
WO
WIPO (PCT)
Prior art keywords
coordinates
spot
point cloud
angle error
theoretical
Prior art date
Application number
PCT/CN2019/091111
Other languages
English (en)
French (fr)
Inventor
王吉
Original Assignee
深圳市速腾聚创科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市速腾聚创科技有限公司 filed Critical 深圳市速腾聚创科技有限公司
Priority to PCT/CN2019/091111 priority Critical patent/WO2020248190A1/zh
Priority to CN201980002270.7A priority patent/CN112400118B/zh
Publication of WO2020248190A1 publication Critical patent/WO2020248190A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements

Definitions

  • This application relates to the field of information processing technology, and in particular to a coordinate correction method, device, computing device and computer storage medium.
  • Installation error includes position error and angle error.
  • the position error of the lidar is generally a few tenths of a millimeter, and the error of the car body is a few millimeters.
  • the position error of the lidar is relatively Small, the correction of the installation error does not improve the overall error greatly, and the position error has little effect on the accuracy of the mid-to-long distance point cloud. Therefore, in the actual error correction, the position error of the lidar is usually not corrected. Only correct for the angle error of the lidar.
  • the angle error correction generally adopts artificial and mechanical adjustment of the installation angle of the lidar, that is, the installation angle of the lidar is repeatedly adjusted multiple times according to the error between the acquired point cloud coordinates and the actual point cloud coordinates.
  • This mechanical adjustment method cannot guarantee the accuracy of the adjustment and is time-consuming.
  • the time for each vehicle to complete the calibration on the production line is very short, and repeated adjustments to the installation angle of lidar will increase production costs.
  • the purpose of the embodiments of the present application is to provide a coordinate correction method, device, computing device, and computer storage medium to correct the acquired point cloud coordinates and ensure the authenticity of the point cloud coordinates.
  • the embodiment of this application provides a coordinate correction method, which includes the following steps:
  • the theoretical coordinates of the first spot and the second spot formed on the preset target by the lasers emitted from any two channels include: according to the installation position of the solid-state lidar, And, calculating the theoretical coordinates of the first spot and the second spot of the laser emission angles of the any two channels.
  • the calculating the angle error according to the actual coordinates and the theoretical coordinates includes: according to the actual coordinates A(x 1 , y 1 ) of the first spot and the second spot respectively ,z 1 ), B(x 2 ,y 2 ,z 2 ) and the theoretical coordinates of the first spot and the second spot A'(x 1 ',y 1 ',z 1 '), B'( x 2 ',y 2 ',z 2 '), confirm the following formula:
  • the angle errors ⁇ x, ⁇ y, ⁇ z are calculated according to the formula.
  • the lasers emitted by any two channels are located on the same plane and are emitted symmetrically, then their theoretical coordinates are A'(Rtan ⁇ , 0, R) and B'(-Rtan ⁇ , 0, R) respectively ,
  • R is the distance between the solid-state lidar and the preset target
  • is the angle between the laser light emitted by any two channels and the Z axis
  • the theoretical coordinate calculation of the angle error is specifically: calculating the angle error according to the actual coordinates A (x 1 , y 1 , z 1 ), B (x 2 , y 2 , z 2 ) of the first spot and the second spot
  • the correcting the obtained point cloud coordinates according to the angle error includes: determining a rotation matrix according to the angle error; and correcting the obtained point cloud coordinates according to the rotation matrix.
  • the correcting the obtained point cloud coordinates according to the rotation matrix specifically includes: correcting the obtained point cloud coordinates according to the following formula:
  • P′ represents the corrected point cloud coordinates
  • P represents the acquired point cloud coordinates
  • Rx, Ry, and Rz represent the rotation matrix of the point cloud coordinates with respect to the X axis, the Y axis, and the Z axis, respectively.
  • the embodiment of the present application also provides a coordinate correction device, including: a first calculation module for calculating the theoretical coordinates of the first spot and the second spot formed on the preset target by lasers emitted by any two channels Obtaining module, used to obtain the actual coordinates of the first spot and the second spot; Second calculation module, used to calculate the angle error according to the actual coordinates and the theoretical coordinates; Correction module, used to calculate the angle according to the angle The error corrects the acquired point cloud coordinates.
  • the first calculation module is further configured to: calculate the first spot and the first spot according to the installation position of the solid-state lidar and the laser emission angles of the any two channels The theoretical coordinates of the two light spots.
  • the second calculation module is further configured to: respectively according to the actual coordinates A(x 1 , y 1 , z 1 ), B(x 2 , y 2 , z 2 ) and the theoretical coordinates of the first spot and the second spot A'(x 1 ', y 1 ', z 1 '), B'(x 2 ', y 2 ', z 2 '), confirm the following program:
  • the angle errors ⁇ x, ⁇ y, ⁇ z are calculated according to the formula.
  • the lasers emitted by any two channels are located on the same plane and emitted symmetrically, then their theoretical coordinates are A'(Rtan ⁇ , 0, R) and B'(-Rtan ⁇ , 0, R), where R is the distance between the solid-state lidar and the preset target, and ⁇ is the angle between the laser light emitted by any two channels and the Z axis; the second calculation module further uses ⁇ : Calculate the angle error according to the actual coordinates A (x 1 , y 1 , z 1 ), B (x 2 , y 2 , z 2 ) of the first spot and the second spot
  • the correction module is further configured to: determine a rotation matrix according to the angle error; and correct the acquired point cloud coordinates according to the rotation matrix.
  • the correcting the obtained point cloud coordinates according to the rotation matrix specifically includes: correcting the obtained point cloud coordinates according to the following formula:
  • P′ represents the corrected point cloud coordinates
  • P represents the acquired point cloud coordinates
  • Rx, Ry, and Rz represent the rotation matrix of the point cloud coordinates with respect to the X axis, the Y axis, and the Z axis, respectively.
  • the embodiment of the present application also provides a computing device, including: a processor, a memory, a communication interface, and a communication bus, and the processor, the memory, and the communication interface complete mutual communication through the communication bus;
  • the memory is used to store at least one executable instruction, and the executable instruction causes the processor to execute the aforementioned coordinate correction method.
  • the embodiments of the present application also provide a non-volatile computer-readable storage medium, the non-volatile computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to make a computer execute the above A method of coordinate correction.
  • the embodiment of the present application also provides a computer program product.
  • the computer program product includes a calculation program stored on a non-volatile computer-readable storage medium.
  • the computer program includes program instructions. When the program instructions are executed by a computer, At the time, the computer is caused to execute the coordinate method described above.
  • the theoretical and actual coordinates of the first spot and the second spot formed on the preset target formed by lasers emitted from any two channels are angular errors, and the obtained point cloud coordinates are corrected according to the angular errors .
  • the calculation method provided by the embodiments of the present invention avoids repeatedly adjusting the installation angle of the solid-state lidar. When the vehicle is equipped with solid-state lidar and enters the production line for mass production, the calibration speed is accelerated, the calibration accuracy is ensured, and the production cost is saved.
  • Fig. 1 is a flowchart of a coordinate correction method according to the first embodiment of the present application
  • Figure 1a is a top view of a target setting position according to a specific embodiment of a coordinate correction method of the present application
  • Fig. 1b is a front view of a target setting position according to a specific embodiment of a coordinate correction method of the present application
  • Fig. 2 is a flowchart of a coordinate correction method according to the second embodiment of the present application.
  • FIG. 3 is a functional block diagram of a coordinate correction device according to the third embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of a computing device according to a fourth embodiment of the present application.
  • the application environment of the coordinate correction method in the embodiment of the present invention is the installation error correction of the solid-state lidar installed on a vehicle or other platform.
  • the installation angle of the solid-state lidar is different.
  • the laser emission angle of the same channel is different.
  • the laser angle emitted by any channel of the solid-state lidar is determined. Due to the installation error, the theoretical value and actual value of the laser angle emitted by any channel of the solid-state lidar are different. The difference between the theoretical value and actual value of any two channels of the same solid-state lidar is the same.
  • the solid-state laser can be obtained
  • any point cloud coordinate obtained by the solid-state lidar is corrected according to the angle error.
  • the first embodiment of the present application relates to a coordinate correction method.
  • the specific process is shown in Figure 1.
  • This embodiment specifically includes:
  • Step 110 Calculate the theoretical coordinates of the first spot and the second spot formed by the lasers emitted by any two channels on the preset target.
  • a target is preset in front of the solid-state lidar, and the target can be understood as a plane for receiving light spots.
  • the laser light emitted by any two channels forms a first spot and a second spot on the target, wherein the theoretical coordinates of the first spot and the second spot refer to coordinates assuming no angular error.
  • the laser emission direction is on the xoz plane
  • the preset target is located in a plane parallel to the xoy plane, and there is a certain distance from the position (or origin) of the solid-state lidar. Since the laser emission angle of each channel is a known value when the solid-state lidar is stationary, the theoretical coordinates of the first spot and the second spot can be determined according to the laser emission angle when the solid-state lidar is stationary.
  • the theoretical projection point coordinates of the solid-state lidar on the target are (0, 0, R), where R is the distance between the solid-state lidar and the target.
  • R is the distance between the solid-state lidar and the target.
  • Step 120 Obtain the actual coordinates of the first light spot and the second light spot.
  • the actual coordinates are the coordinates that have a certain error from the theoretical coordinates due to the installation error of the solid-state lidar.
  • the acquired actual coordinates are (x 1 , y 1 , R), (x 2 , y 2 , R), respectively.
  • the way of obtaining it can be obtained through pictures. For example, with the first spot and the second spot as the center, a chessboard with a fixed scale is preset around each center. The grid size of the chessboard is set according to the accuracy of the angle error. The image of the chessboard is acquired by the camera and read from the chessboard. Take the actual coordinates of the first spot and the second spot.
  • the actual coordinates may also be obtained in other ways, and the embodiment of the present invention is not limited thereto.
  • Step 130 Calculate the angle error according to the actual coordinates and the theoretical coordinates.
  • the mapping relationship between the actual coordinates and theoretical coordinates of the first spot and the second spot is consistent, and the angle error is obtained according to the mapping relationship between the actual coordinates and the theoretical coordinates of the first spot and the second spot .
  • the theoretical coordinates of the first spot and the second spot are A respectively '(x 1 ', y 1 ', z 1 '), B'(x 2 ', y 2 ', z 2 '), according to the mapping relationship between theoretical coordinates and actual coordinates, determine the following formula:
  • Rx, Ry, and Rz represent the rotation matrix model of the point cloud coordinates about the X axis, the Y axis, and the Z axis, respectively.
  • an equation set consisting of six nonlinear equations can be obtained after expansion, which contains three unknowns.
  • the calculated angle error ⁇ x, ⁇ y, ⁇ z can be obtained.
  • the lasers emitted by any two channels are located on the same plane and emitted symmetrically, then their theoretical coordinates are A'(Rtan ⁇ , 0, R) and B'(-Rtan ⁇ , 0, R) respectively , Where R is the distance between the solid-state lidar and the preset target, and ⁇ is the angle between the laser emitted by any two channels and the Z axis.
  • R is the distance between the solid-state lidar and the preset target
  • is the angle between the laser emitted by any two channels and the Z axis.
  • the coordinate representation method is based on the laser emission direction being in the xoz plane. Since the coordinate axes are set relative to each other in the coordinate system, this method is also applicable to the case where the laser emission plane is other planes. Just adjust the corresponding coordinate values.
  • the angle error is calculated according to the actual coordinates A (x 1 , y 1 , z 1 ), B (x 2 , y 2 , z 2 ) of the first
  • a target is preset in front of the lidar, and the target is pre-marked with the two channels of lidar for emission
  • the theoretical positions of the two spots formed by the laser on the target are centered on the theoretical positions of the two spots respectively, and a checkerboard with a fixed scale is preset around each center to facilitate reading the actual coordinates of the spots.
  • the body of the vehicle is perpendicular to the target.
  • the projection of the lidar on the target is located at the center of the target.
  • the theoretical positions of the two spots are symmetrical about the center of the target and are at the same height as the center of the target.
  • the top view of the specific target setting position is shown in Figure 1a, and the front view of the specific target setting position is shown in Figure 1b.
  • the angle formed between the theoretical position of the laser spot on the target and the target center is ⁇ and - ⁇ .
  • the theoretical coordinates of the theoretical positions of the two light spots are A'(Rtan ⁇ , 0, R) and B'(-Rtan ⁇ , 0, R)
  • the actual coordinates of the two light spots are obtained through the preset grid checkerboard. According to the actual coordinates and theoretical coordinates of the two light spots, the angle error of the lidar installed on the vehicle is obtained according to the above formula for calculating the angle error.
  • Step 140 Correct the acquired point cloud coordinates according to the angle error.
  • step 130 according to the result obtained in step 130, the acquired point cloud coordinates of any point are corrected.
  • the theoretical and actual coordinates of the first spot and the second spot formed on the preset target formed by lasers emitted from any two channels are angular errors, and the obtained point cloud coordinates are corrected according to the angular errors .
  • the calculation method provided by the embodiment of the present invention avoids repeatedly adjusting the installation angle of the solid-state lidar, and when the vehicle is equipped with the solid-state lidar into the production line for mass production, the production cost is saved.
  • step 140 further includes the following steps:
  • Step 210 Determine the rotation matrix according to the angle error.
  • the rotation matrix is the rotation matrix of the point cloud coordinates, and the point cloud coordinates are passed through the rotation matrix to obtain theoretical coordinates corresponding to the point cloud coordinates.
  • the rotation angle of the rotation matrix is an angular error.
  • Step 220 Correct the obtained point cloud coordinates according to the rotation matrix.
  • P′ represents the corrected point cloud coordinates
  • P represents the acquired point cloud coordinates
  • Rx, Ry, and Rz represent the rotation matrix of the point cloud coordinates with respect to the X axis, the Y axis, and the Z axis, respectively.
  • the theoretical and actual coordinates of the first spot and the second spot formed on a preset target formed by lasers emitted from any two channels calculate the angle error, calculate the rotation matrix by the angle error, and then correct it by software
  • the method realizes the correction of the obtained point cloud coordinates, thereby ensuring the reliability of the point cloud coordinates, and greatly facilitating the use and installation of the lidar.
  • the third embodiment of the present application relates to a coordinate correction device.
  • the coordinate correction device includes: a first calculation module 310, an acquisition module 320, a second calculation module 330, and a correction module 340.
  • the first acquisition module 310 is used to calculate the theoretical coordinates of the first spot and the second spot formed on the preset target by lasers emitted by any two channels.
  • the obtaining module 320 is configured to obtain the actual coordinates of the first spot and the second spot.
  • the second calculation module 330 is configured to calculate the angle error according to the actual coordinates and the theoretical coordinates.
  • the correction module 340 is configured to correct the acquired point cloud coordinates according to the angle error.
  • the first calculation module 310 is further configured to calculate the first light spot and the laser beam according to the installation position of the solid-state lidar and the laser emission angles of any two channels. The theoretical coordinates of the second light spot.
  • the second calculation module 330 is further configured to: according to the actual coordinates A(x 1 , y 1 , z 1 ), B( x 2 , y 2 , z 2 ) and the theoretical coordinates of the first spot and the second spot A'(x 1 ', y 1 ', z 1 '), B'(x 2 ', y 2 ' , Z 2 '), confirm the following formula:
  • the angle errors ⁇ x, ⁇ y, ⁇ z are calculated according to the formula.
  • the lasers emitted by any two channels are located on the same plane and are emitted symmetrically, then their theoretical coordinates are A'(Rtan ⁇ , 0, R) and B'(-Rtan ⁇ , 0, R) respectively , Where R is the distance between the solid-state lidar and the preset target, and ⁇ is the angle between the laser light emitted by any two channels and the Z axis; the second calculation module is further used for: Calculate the angle error according to the actual coordinates A (x 1 , y 1 , z 1 ), B (x 2 , y 2 , z 2 ) of the first spot and the second spot
  • (x 1 , y 1 , z 1 ) is the actual coordinate A of the first light spot
  • (x 2 , y 2 , z 2 ) is the actual coordinate B of the second light spot.
  • the correction module 340 is further configured to: determine a rotation matrix according to the angle error; and correct the acquired point cloud coordinates according to the rotation matrix.
  • the obtained point cloud coordinates are corrected according to the rotation matrix, specifically: the obtained point cloud coordinates are corrected according to the following formula:
  • P′ represents the corrected point cloud coordinates
  • P represents the acquired point cloud coordinates
  • Rx, Ry, and Rz represent the rotation matrix of the point cloud coordinates with respect to the X axis, the Y axis, and the Z axis, respectively.
  • the first calculation module 310 calculates the theoretical coordinates of the first spot and the second spot formed on the preset target by lasers emitted by any two channels, and the acquisition module 320 obtains the first spot and the second spot.
  • the second calculation module 330 calculates the angle error according to the theoretical and actual coordinates, and the correction module 340 corrects the obtained point cloud coordinates according to the angle error, thereby ensuring the reliability of the point cloud coordinates and greatly facilitating the solid state The use and installation of lidar.
  • FIG. 4 is a schematic structural diagram of a computing device provided by an embodiment of the present application.
  • the computing device includes: a processor (processor) 402, a communication interface (Communications Interface) 404, a memory (memory) 406, and Communication bus 408.
  • processor processor
  • Communication interface Communication interface
  • memory memory
  • the processor 402, the communication interface 404, and the memory 406 communicate with each other through the communication bus 408.
  • the communication interface 404 is used to communicate with network elements of other devices, such as clients or other servers.
  • the processor 402 is configured to execute a program 410, and specifically can execute relevant steps in the foregoing embodiment of the coordinate correction method.
  • the program 410 may include program code, and the program code includes computer operation instructions.
  • the processor 402 may be a central processing unit CPU, or an ASIC (Application Specific Integrated Circuit), or one or more integrated circuits configured to implement the embodiments of the present invention.
  • the one or more processors included in the computing device may be processors of the same type, such as one or more CPUs; or processors of different types, such as one or more CPUs and one or more ASICs.
  • the memory 406 is used to store the program 410.
  • the memory 406 may include a high-speed RAM memory, and may also include a non-volatile memory (non-volatile memory), such as at least one disk memory.
  • the program 410 may be specifically used to cause the processor 402 to perform the following operations:
  • the program 410 may also be specifically used to cause the processor 402 to perform the following operations:
  • the theoretical coordinates of the first spot and the second spot are calculated according to the installation position of the solid-state lidar and the laser emission angles of any two channels.
  • the program 410 may also be specifically used to cause the processor 402 to perform the following operations:
  • the angle errors ⁇ x, ⁇ y, ⁇ z are calculated according to the formula.
  • the lasers emitted by any two channels are located on the same plane and emitted symmetrically, then their theoretical coordinates are A'(Rtan ⁇ , 0, R) and B'(-Rtan ⁇ , 0, R), where R is the distance between the solid-state lidar and the preset target, and ⁇ is the angle between the laser emitted by any two channels and the Z axis; program 410 can also be used to make The processor 402 performs the following operations:
  • the program 410 may also be specifically used to cause the processor 402 to perform the following operations: determine a rotation matrix according to the angle error; and correct the acquired point cloud coordinates according to the rotation matrix.
  • the program 410 may also be specifically used to cause the processor 402 to perform the following operations: correct the acquired point cloud coordinates according to the following formula:
  • P′ represents the corrected point cloud coordinates
  • P represents the acquired point cloud coordinates
  • Rx, Ry, and Rz represent the rotation matrix of the point cloud coordinates with respect to the X axis, the Y axis, and the Z axis, respectively.
  • the computing devices in the implementation of this application exist in various forms, including but not limited to:
  • Mobile communication equipment This type of equipment is characterized by mobile communication functions, and its main goal is to provide voice and data communications.
  • Such terminals include: smart phones (such as iPhone), multimedia phones, functional phones, and low-end phones.
  • Ultra-mobile personal computer equipment This type of equipment belongs to the category of personal computers, has calculation and processing functions, and generally also has mobile Internet features.
  • Such terminals include: PDA, MID and UMPC devices, such as iPad.
  • Portable entertainment equipment This type of equipment can display and play multimedia content.
  • Such devices include: audio, video players (such as iPod), handheld game consoles, e-books, as well as smart toys and portable car navigation devices.
  • Server A device that provides computing services.
  • the composition of a server includes a processor, hard disk, memory, system bus, etc.
  • the server is similar to a general computer architecture, but because it needs to provide highly reliable services, it is , Reliability, security, scalability, and manageability.
  • the embodiment of the present invention provides a computer program product, the computer program product includes a computer program stored on a computer storage medium, the computer program includes program instructions, when the program instructions are executed by a computer, the computer Perform the steps in any of the foregoing method embodiments, for example, perform the method steps 110 to 140 in FIG. 1 described above, the method steps 210 to 220 in FIG. 2, and implement the functions of the modules 310-340 in FIG. 3.
  • the embodiment of the present application provides a non-volatile computer-readable storage medium, the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are executed by one or more processors, such as the above description
  • the method steps 110 to 140 in FIG. 1, the method steps 210 to 220 in FIG. 2, and the functions of the modules 310-340 in FIG. 3 are realized.
  • each implementation manner can be implemented by means of software plus a general hardware platform, and of course, it can also be implemented by hardware.
  • All or part of the processes in the above-mentioned implementation methods can be implemented by computer programs instructing relevant hardware.
  • the programs can be stored in a computer readable storage medium. During execution, it may include the processes of the implementation manners of the above methods.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random Access Memory, RAM), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

本申请涉及信息处理技术领域,公开了一种坐标校正方法、装置、计算设备及计算机存储介质,本申请的坐标校正方法,包括:计算任意两个通道发射的激光在预先设置的标靶上形成的第一光斑及第二光斑的理论坐标;获取所述第一光斑及第二光斑的实际坐标;根据所述实际坐标和所述理论坐标计算角度误差;根据所述角度误差对获取的点云坐标进行校正。本申请实施方式通过任意两个通道的光斑的理论坐标和实际坐标计算角度误差,通过角度误差对获取的点云坐标进行校正,从而保证了获取的点云坐标的真实性。

Description

坐标校正方法、装置、计算设备及计算机存储介质 技术领域
本申请涉及信息处理技术领域,特别涉及一种坐标校正方法、装置、计算设备及计算机存储介质。
背景技术
激光雷达在进行点云测量时,由于安装误差的存在,测量到的点云坐标与实际的点云坐标存在一定的误差。安装误差包括位置误差和角度误差两种,当激光雷达安装在车上时,激光雷达的位置误差一般是零点几毫米,车身的误差有几毫米,相比较车身而言,激光雷达的位置误差比较小,对于安装误差的校正对于整体误差而言,并没有较大改善,且位置误差对于中远距离的点云精度影响较小,因此,在实际误差校正时,通常不对激光雷达的位置误差校正,仅针对激光雷达的角度误差进行校正。
现有技术中,对于角度误差的校正一般采用人为机械式的调整激光雷达的安装角度,即根据获取到的点云坐标与实际点云坐标之间的误差反复多次调整激光雷达的安装角度。这种机械式的调整方式无法保证调整的精确性,而且费时。当搭载激光雷达的车辆进行量产时,每辆车在产线上能够完成标定的时间非常短,反复多次调整激光雷达的安装角度会增加生产成本。
发明内容
本申请实施方式的目的在于提供一种坐标校正方法、装置、计算设备及计算机存储介质,对获取的点云坐标进行校正,保证了点云坐标的真实性。
为解决上述技术问题,本申请的实施方式提供了一种坐标校正方法,包含以下步骤:
计算任意两个通道的激光在预先设置的标靶上形成的第一光斑及第二光斑的理论坐标;
获取所述第一光斑及第二光斑的实际坐标;
根据所述实际坐标和所述理论坐标计算角度误差;
根据所述角度误差对获取的点云坐标进行校正。
在一种可选的方式中,所述任意两个通道发射的激光在预先设置的标靶上形成的第一光斑及第二光斑的理论坐标,包括:根据所述固态激光雷达的安装位置,以及,所述任意两个通道的激光发射角度,计算所述第一光斑及所述第二光斑的理论坐标。
在一种可选的方式中,所述根据所述实际坐标和所述理论坐标计算角度误差,包括:分别根据所述第一光斑和所述第二光斑的实际坐标A(x 1,y 1,z 1),B(x 2,y 2,z 2)和所述第一光斑和所述第二光斑的理论坐标A'(x 1',y 1',z 1'),B'(x 2',y 2',z 2'),确定如下程式:
Figure PCTCN2019091111-appb-000001
其中,
Figure PCTCN2019091111-appb-000002
Figure PCTCN2019091111-appb-000003
Figure PCTCN2019091111-appb-000004
根据所述程式计算所述角度误差θx、θy、θz。
在一种可选的方式中,任意两个通道发射的激光位于同一平面,且对称发射,则其理论坐标分别为A'(Rtanɑ,0,R)和B'(-Rtanɑ,0,R),其中R为所述固态激光雷达与所述预先设置的标靶之间的距离,ɑ为所述任意两个通道发射的激光与Z轴的夹角;所述根据所述实际坐标和所述理论坐标计算角度误差具体为:根据所述第一光斑和所述第二光斑的实际坐标A(x 1,y 1,z 1),B(x 2,y 2, z 2)计算角度误差
Figure PCTCN2019091111-appb-000005
根据所述角度误差θz、所述第一光斑和所述第二光斑的实际坐标A(x 1,y 1,z 1),B(x 2,y 2,z 2)和所述第一光斑和所述第二光斑的理论坐标A'(Rtanɑ,0,R)和B'(-Rtanɑ,0,R)计算角度误差
Figure PCTCN2019091111-appb-000006
Figure PCTCN2019091111-appb-000007
其中,
Figure PCTCN2019091111-appb-000008
Figure PCTCN2019091111-appb-000009
e=sinα,f=-sinα。
在一种可选的方式中,所述根据所述角度误差对获取的点云坐标进行校正,包括:根据所述角度误差确定旋转矩阵;根据所述旋转矩阵对获取的点云坐标进行校正。
在一种可选的方式中,所述根据所述旋转矩阵对获取的点云坐标进行校正,具体为:根据如下公式对获取的点云坐标进行校正:
P' T=Rx·Ry·Rz·P T
其中,P'表示校正后的点云坐标,P表示获取的点云坐标,Rx、Ry、Rz分别表示所述点云坐标关于X轴、Y轴、Z轴的旋转矩阵。
本申请的实施方式还提供了一种坐标校正装置,包含:第一计算模块,用于计算任意两个通道发射的激光在预先设置的标靶上形成的第一光斑及第二光斑的理论坐标;获取模块,用于获取所述第一光斑及第二光斑的实际坐标;第二计算模块,用于根据所述实际坐标和所述理论坐标计算角度误差;校正模块,用于根据所述角度误差对获取的点云坐标进行校正。
在一种可选的方式中,第一计算模块进一步用于:根据所述固态激光雷达的安装位置,以及,所述任意两个通道的激光发射角度,计算所述第一光斑及所述第二光斑的理论坐标。
在一种可选的方式中,第二计算模块进一步用于:分别根据所述第一光斑和所述第二光斑的实际坐标A(x 1,y 1,z 1),B(x 2,y 2,z 2)和所述第一光斑和所述第二光斑的理论坐标A'(x 1',y 1',z 1'),B'(x 2',y 2',z 2'),确定如下程式:
Figure PCTCN2019091111-appb-000010
其中,
Figure PCTCN2019091111-appb-000011
Figure PCTCN2019091111-appb-000012
Figure PCTCN2019091111-appb-000013
根据所述程式计算所述角度误差θx、θy、θz。
在一种可选的方式中,所述任意两个通道发射的激光位于同一平面,且对称发射,则其理论坐标分别为A'(Rtanɑ,0,R)和B'(-Rtanɑ,0,R),其中R为所述固态激光雷达与所述预先设置的标靶之间的距离,ɑ为所述任意两个通道发射的激光与Z轴的夹角;所述第二计算模块进一步用于:根据所述第一光斑和所述第二光斑的实际坐标A(x 1,y 1,z 1),B(x 2,y 2,z 2)计算角度误差
Figure PCTCN2019091111-appb-000014
根据所述角度误差θz、所述第一光斑和所述第二光斑的实际坐标A(x 1,y 1,z 1),B(x 2,y 2,z 2)和所述第一光斑和所述第二光斑的理论坐标A'(Rtanɑ,0,R)和B'(-Rtanɑ,0,R)计算角度误差
Figure PCTCN2019091111-appb-000015
Figure PCTCN2019091111-appb-000016
其中,
Figure PCTCN2019091111-appb-000017
Figure PCTCN2019091111-appb-000018
e=sinα,f=-sinα。
在一种可选的方式中,校正模块进一步用于:根据所述角度误差确定旋转矩阵;根据所述旋转矩阵对获取的点云坐标进行校正。
在一种可选的方式中,所述根据所述旋转矩阵对获取的点云坐标进行校正,具体为:根据如下公式对获取的点云坐标进行校正:
P' T=Rx·Ry·Rz·P T
其中,P'表示校正后的点云坐标,P表示获取的点云坐标,Rx、Ry、Rz分别表示所述点云坐标关于X轴、Y轴、Z轴的旋转矩阵。
本申请的实施方式还提供了一种计算设备,包括:处理器、存储器、通信接口和通信总线,所述处理器、所述存储器和所述通信接口通过所述通信总线完成相互间的通信;
所述存储器用于存放至少一可执行指令,所述可执行指令使所述处理器执行上述的一种坐标校正方法。
本申请的实施方式还提供了一种非易失性计算机可读存储介质,所述非易失性计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使计算机执行上述的一种坐标校正方法。
本申请的实施方式还提供了一种计算机程序产品,计算机程序产品包括存储在非易失性计算机可读存储介质上的计算程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上所述的一种坐标方法。
本发明实施例通过任意两个通道发射的激光在预先设置的标靶上形成的第一光斑和第二光斑的理论坐标与实际坐标计算角度误差,并根据角度误差对获取的点云坐标进行校正。从而保证了点云坐标的可靠性。此外,本发明实施例提供的计算方法避免了反复调整固态激光雷达的安装角度,当车辆搭载固态激光雷达进入产线量产时,加快标定的速度,确保标定的准确性,节约了生产成本。
附图说明
一个或多个实施方式通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施方式的限定,附图中具有相同参考数字标号的元件 表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是根据本申请第一实施方式的一种坐标校正方法的流程图;
图1a是根据本申请一种坐标校正方法中一个具体实施例的标靶设置位置的俯视图;
图1b是根据本申请一种坐标校正方法中一个具体实施例的标靶设置位置的正视图;
图2是根据本申请第二实施方式的一种坐标校正方法的流程图;
图3是根据本申请第三实施方式的一种坐标校正装置的功能框图;
图4是根据本申请第四实施方式的一种计算设备的结构示意图。
具体实施方式
为使本申请实施方式的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施方式中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本申请所要求保护的技术方案。
本发明实施例中的坐标校正方法的应用环境是安装于车辆或其他平台上的固态激光雷达的安装误差校正。固态激光雷达的安装角度不同,在固态激光雷达静止时同一通道的激光发射角度不同,固态激光雷达安装角度确定后,固态激光雷达任意一个通道发射的激光角度是确定的。由于安装误差的存在,固态激光雷达任一通道发射的激光角度的理论值和实际值存在差异。同一固态激光雷达的任意两个通道的理论值和实际值之间存在的差异是相同的,通过任意两个通道的激光形成的光斑的理论坐标和实际坐标之间的映射关系,可以得到固态激光雷达的安装角度误差,根据该角度误差对固态激光雷达获取的任一点云坐标进行校正。下面对本发明各实施例进行具体说明。
本申请的第一实施方式涉及一种坐标校正方法。具体流程如图1所示,本实施方式具体包括:
步骤110:计算任意两个通道发射的激光在预先设置的标靶上形成的第一光 斑及第二光斑的理论坐标。
在本步骤中,在固态激光雷达前预先设置一个标靶,该标靶可以理解为一个用于接收光斑的平面。任意两个通道发射的激光在标靶上形成第一光斑和第二光斑,其中,第一光斑和第二光斑的理论坐标是指假定不存在角度误差的坐标。在计算理论坐标时,以固态激光雷达所在的位置为原点,沿垂直于预先设置的标靶方向为Z轴,沿水平方向为X轴,沿竖直方向为Y轴;激光出射方向位于xoz面内,预先设置的标靶位于与xoy面平行的平面内,且与固态激光雷达所在的位置(即原点)存在一定的距离。由于固态激光雷达在静止时,每一个通道的激光发射角度均为已知值,因此,可以根据固态激光雷达静止时的激光发射角度确定第一光斑及第二光斑的理论坐标。
在一种具体的实施方式中,固态激光雷达在标靶上的理论投影点坐标为(0,0,R),其中,R为固态激光雷达与标靶之间的距离。假设某一通道的激光发射方向与z轴的夹角为ɑ,该激光的发射方向处于xoz面内,则该通道发射的激光在标靶上的理论坐标为(Rtanɑ,0,R)。
步骤120:获取第一光斑及第二光斑的实际坐标。
在本步骤中,实际坐标为因为固态激光雷达的安装误差造成的与理论坐标存在一定误差的坐标。获取第一光斑及第二光斑的实际坐标时,获取到的实际坐标分别为(x 1,y 1,R),(x 2,y 2,R)。获取方式可以通过图片方式获取。例如,分别以第一光斑和第二光斑为中心,在每一中心周围预先设置固定刻度的棋盘,棋盘的网格大小根据角度误差的精度设置,通过相机获取棋盘的图像,并从棋盘中读取第一光斑和第二光斑的实际坐标。在具体实施方式中,实际坐标也可以通过其他方式获取,本发明实施例并不以此为限。
步骤130:根据实际坐标和理论坐标计算角度误差。
在本步骤中,第一光斑与第二光斑的实际坐标和理论坐标之间的映射关系是一致的,根据第一光斑和第二光斑的实际坐标和理论坐标之间的映射关系,得到角度误差。
假设第一光斑和第二光斑的实际坐标分别为A(x 1,y 1,z 1),B(x 2,y 2,z 2),第一光斑和第二光斑的理论坐标分别为A'(x 1',y 1',z 1'),B'(x 2',y 2',z 2'),根据理论坐标和实际坐标之间的映射关系,确定如下程式:
Figure PCTCN2019091111-appb-000019
其中,
Figure PCTCN2019091111-appb-000020
Figure PCTCN2019091111-appb-000021
Figure PCTCN2019091111-appb-000022
其中,Rx、Ry、Rz分别表示点云坐标关于X轴、Y轴、Z轴的旋转矩阵模型。根据上述程式,展开后可以得到由六个非线性方程组成的方程组,里面含有三个未知数,通过求解该方程组可以得到计算角度误差θx、θy、θz。在一种具体的实施方式中,任意两个通道发射的激光位于同一平面,且对称发射,则其理论坐标分别为A'(Rtanɑ,0,R)和B'(-Rtanɑ,0,R),其中R为固态激光雷达与预先设置的标靶之间的距离,ɑ为任意两个通道发射的激光与Z轴的夹角。需要说明,该坐标表示方法是基于激光发射的方向处于xoz面内,由于在坐标系中,各坐标轴是相对设置的,因此,该方法对于激光发射平面为其他面的情况同样适用,只需要调整相应的坐标值即可。在该具体实施方式中,根据第一光斑和第二光斑的实际坐标A(x 1,y 1,z 1),B(x 2,y 2,z 2)计算角度误差
Figure PCTCN2019091111-appb-000023
根据所述角度误差θz、所述第一光斑和所述第二光斑的实际坐标A(x 1,y 1,z 1),B(x 2,y 2,z 2)和所述第一光斑和所述第二光斑的理论坐标A'(Rtanɑ,0,R)和B'(-Rtanɑ,0,R)计算角度误差
Figure PCTCN2019091111-appb-000024
Figure PCTCN2019091111-appb-000025
其中,
Figure PCTCN2019091111-appb-000026
Figure PCTCN2019091111-appb-000027
e=sinα,f=-sinα。
在一种具体的应用场景中,当搭载激光雷达的车辆在产线上进行激光雷达的安装误差校正时,在激光雷达前预先设置一标靶,标靶上预先标注有激光雷达两个通道发射的激光在标靶上形成的两个光斑的理论位置,分别以两个光斑的理论位置为中心,在每一中心周围预设一个固定刻度的棋盘,便于读取光斑的实际坐标。车辆的车身与标靶垂直,激光雷达在标靶上的投影位于标靶中心,两个光斑的理论位置关于该标靶中心对称,且与该标靶中心位于同一高度。具体标靶设置位置的俯视图如图1a所示,具体标靶设置位置的正视图如图1b所示。
当预先设置的标靶与车身及车辆搭载的激光雷达的位置不满足上述条件时,通过龙门吊调整标靶的位置,使其满足上述条件;或者将车辆置于可调台架上,通过可调台架调整车身的位置和角度,使其满足上述条件。
在完成标靶设置后,假设激光雷达安装位置与标靶之间的距离为R,激光雷达在标靶上形成的光斑的理论位置与标靶中心之间形成的夹角分别为ɑ和-ɑ,则两个光斑的理论位置的理论坐标分别为A'(Rtanɑ,0,R)和B'(-Rtanɑ,0,R),通过预设的网格棋盘,获取两个光斑的实际坐标,根据两个光斑的实际坐标和理论坐标,按照上述计算角度误差的公式,得到安装于车辆上的激光雷达的角度误差。
步骤140:根据角度误差对获取的点云坐标进行校正。
在本步骤中,根据步骤130得到的结果,对获取的任一点的点云坐标进行校正。
本发明实施例通过任意两个通道发射的激光在预先设置的标靶上形成的第一光斑和第二光斑的理论坐标与实际坐标计算角度误差,并根据角度误差对获取的点云坐标进行校正。从而保证了点云坐标的可靠性。此外,本发明实施例提供的计算方法避免了反复调整固态激光雷达的安装角度,当车辆搭载固态激光雷达进入产线量产时,节约了生产成本。
本申请的第二实施方式涉及一种坐标校正方法,如图2所示,步骤140进一步包括以下步骤:
步骤210:根据角度误差确定旋转矩阵。
在本步骤中,旋转矩阵是点云坐标的旋转矩阵,将点云坐标通过旋转矩阵,得到与点云坐标对应的理论坐标。在本实施方式中,旋转矩阵的旋转角为角度误差。
步骤220:根据旋转矩阵对获取的点云坐标进行校正。
在本步骤中,通过如下公式对获取的点云坐标进行校正:
P' T=Rx·Ry·Rz·P T
其中,P'表示校正后的点云坐标,P表示获取的点云坐标,Rx、Ry、Rz分别表示所述点云坐标关于X轴、Y轴、Z轴的旋转矩阵。
本发明实施例通过任意两个通道发射的激光在预先设置的标靶上形成的第一光斑和第二光斑的理论坐标与实际坐标计算角度误差,通过角度误差计算旋转矩阵,进而通过软件修正的方式实现了对获取的点云坐标的校正,从而保证了点云坐标的可靠性,大大方便了激光雷达的使用和安装。
本申请第三实施方式涉及一种坐标校正装置,如图3所示,坐标校正装置包括:第一计算模块310、获取模块320、第二计算模块330和校正模块340。其中,第一获取模块310用于计算任意两个通道发射的激光在预先设置的标靶上形成的第一光斑及第二光斑的理论坐标。获取模块320,用于获取所述第一光斑及第二光斑的实际坐标。第二计算模块330,用于根据所述实际坐标和所述理论坐标计算角度误差。校正模块340,用于根据所述角度误差对获取的点云坐标进行校正。
在一种可选的方式中,所述第一计算模块310进一步用于:根据所述固态激光雷达的安装位置,以及,所述任意两个通道的激光发射角度,计算所述第一光斑及所述第二光斑的理论坐标。
在一种可选的方式中,所述第二计算模块330进一步用于:分别根据所述第一光斑和所述第二光斑的实际坐标A(x 1,y 1,z 1),B(x 2,y 2,z 2)和所述第一光斑和所述第二光斑的理论坐标A'(x 1',y 1',z 1'),B'(x 2',y 2',z 2'),确定如下程式:
Figure PCTCN2019091111-appb-000028
其中,
Figure PCTCN2019091111-appb-000029
Figure PCTCN2019091111-appb-000030
Figure PCTCN2019091111-appb-000031
根据所述程式计算所述角度误差θx、θy、θz。
在一种可选的方式中,任意两个通道发射的激光位于同一平面,且对称发射,则其理论坐标分别为A'(Rtanɑ,0,R)和B'(-Rtanɑ,0,R),其中R为所述固态激光雷达与所述预先设置的标靶之间的距离,ɑ为所述任意两个通道发射的激光与Z轴的夹角;所述第二计算模块进一步用于:根据所述第一光斑和所述第二光斑的实际坐标A(x 1,y 1,z 1),B(x 2,y 2,z 2)计算角度误差
Figure PCTCN2019091111-appb-000032
根据所述角度误差θz、所述第一光斑和所述第二光斑的实际坐标A(x 1,y 1,z 1),B(x 2,y 2,z 2)和所述第一光斑和所述第二光斑的理论坐标A'(Rtanɑ,0,R)和B'(-Rtanɑ,0,R)计算角度误差
Figure PCTCN2019091111-appb-000033
Figure PCTCN2019091111-appb-000034
其中,
Figure PCTCN2019091111-appb-000035
Figure PCTCN2019091111-appb-000036
e=sinα,f=-sinα。
其中,(x 1,y 1,z 1)为所述第一光斑的实际坐标A,(x 2,y 2,z 2)为所述第二光斑的实际坐标B。
在一种可选的方式中,校正模块340进一步用于:根据所述角度误差确定旋转矩阵;根据所述旋转矩阵对获取的点云坐标进行校正。
在一种可选的方式中,根据所述旋转矩阵对获取的点云坐标进行校正,具 体为:根据如下公式对获取的点云坐标进行校正:
P' T=Rx·Ry·Rz·P T
其中,P'表示校正后的点云坐标,P表示获取的点云坐标,Rx、Ry、Rz分别表示所述点云坐标关于X轴、Y轴、Z轴的旋转矩阵。
本发明实施例通过第一计算模块310计算任意两个通道发射的激光在预先设置的标靶上形成的第一光斑及第二光斑的理论坐标,通过获取模块320获取所述第一光斑及第二光斑的实际坐标,第二计算模块330根据理论坐标和实际坐标计算角度误差,校正模块340根据角度误差对获取的点云坐标进行校正,从而保证了点云坐标的可靠性,大大方便了固态激光雷达的使用和安装。
图4是本申请实施方式提供的一种计算设备的结构示意图,如图4所示,该计算设备包括:处理器(processor)402、通信接口(Communications Interface)404、存储器(memory)406、以及通信总线408。
其中:
处理器402、通信接口404、以及存储器406通过通信总线408完成相互间的通信。
通信接口404,用于与其它设备比如客户端或其它服务器等的网元通信。
处理器402,用于执行程序410,具体可以执行上述一种坐标校正方法实施例中的相关步骤。
具体地,程序410可以包括程序代码,该程序代码包括计算机操作指令。
处理器402可能是中央处理器CPU,或者是特定集成电路ASIC(Application Specific Integrated Circuit),或者是被配置成实施本发明实施例的一个或多个集成电路。计算设备包括的一个或多个处理器,可以是同一类型的处理器,如一个或多个CPU;也可以是不同类型的处理器,如一个或多个CPU以及一个或多个ASIC。
存储器406,用于存放程序410。存储器406可能包含高速RAM存储器,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。
程序410具体可以用于使得处理器402执行以下操作:
计算任意两个通道发射的激光在预先设置的标靶上形成的第一光斑及第二光斑的理论坐标;
获取所述第一光斑及第二光斑的实际坐标;
根据所述实际坐标和所述理论坐标计算角度误差;
根据所述角度误差对获取的点云坐标进行校正。
程序410具体还可以用于使得处理器402执行以下操作:
根据所述固态激光雷达的安装位置,以及,所述任意两个通道的激光发射角度,计算所述第一光斑及所述第二光斑的理论坐标。
程序410具体还可以用于使得处理器402执行以下操作:
分别根据所述第一光斑和所述第二光斑的实际坐标A(x 1,y 1,z 1),B(x 2,y 2,z 2)和所述第一光斑和所述第二光斑的理论坐标A'(x 1',y 1',z 1'),B'(x 2',y 2',z 2'),确定如下程式:
Figure PCTCN2019091111-appb-000037
其中,
Figure PCTCN2019091111-appb-000038
Figure PCTCN2019091111-appb-000039
Figure PCTCN2019091111-appb-000040
根据所述程式计算所述角度误差θx、θy、θz。
在一种可选的方式中,所述任意两个通道发射的激光位于同一平面,且对称发射,则其理论坐标分别为A'(Rtanɑ,0,R)和B'(-Rtanɑ,0,R),其中R 为所述固态激光雷达与所述预先设置的标靶之间的距离,ɑ为所述任意两个通道发射的激光与Z轴的夹角;程序410具体还可以用于使得处理器402执行以下操作:
根据所述第一光斑和所述第二光斑的实际坐标A(x 1,y 1,z 1),B(x 2,y 2,z 2)计算角度误差
Figure PCTCN2019091111-appb-000041
根据所述角度误差θz、所述第一光斑和所述第二光斑的实际坐标A(x 1,y 1,z 1),B(x 2,y 2,z 2)和所述第一光斑和所述第二光斑的理论坐标A'(Rtanɑ,0,R)和B'(-Rtanɑ,0,R)计算角度误差
Figure PCTCN2019091111-appb-000042
Figure PCTCN2019091111-appb-000043
其中,
Figure PCTCN2019091111-appb-000044
Figure PCTCN2019091111-appb-000045
e=sinα,f=-sinα。
程序410具体还可以用于使得处理器402执行以下操作:根据所述角度误差确定旋转矩阵;根据所述旋转矩阵对获取的点云坐标进行校正。
程序410具体还可以用于使得处理器402执行以下操作:根据如下公式对获取的点云坐标进行校正:
P' T=Rx·Ry·Rz·P T
其中,P'表示校正后的点云坐标,P表示获取的点云坐标,Rx、Ry、Rz分别表示所述点云坐标关于X轴、Y轴、Z轴的旋转矩阵。
本申请实施方式的计算设备以多种形式存在,包括但不限于:
(1)移动通信设备:这类设备的特点是具备移动通信功能,并且以提供话音、数据通信为主要目标。这类终端包括:智能手机(例如iPhone)、多媒体手机、功能性手机,以及低端手机等。
(2)超移动个人计算机设备:这类设备属于个人计算机的范畴,有计算和处理功能,一般也具备移动上网特性。这类终端包括:PDA、MID和UMPC设备等,例如iPad。
(3)便携式娱乐设备:这类设备可以显示和播放多媒体内容。该类设备包括: 音频、视频播放器(例如iPod),掌上游戏机,电子书,以及智能玩具和便携式车载导航设备。
(4)服务器:提供计算服务的设备,服务器的构成包括处理器、硬盘、内存、系统总线等,服务器和通用的计算机架构类似,但是由于需要提供高可靠的服务,因此在处理能力、稳定性、可靠性、安全性、可扩展性、可管理性等方面要求较高。
(5)其他具有数据交互功能的电子装置。
本发明实施例提供了一种计算机程序产品,所述计算机程序产品包括存储在计算机存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述任一方法实施例中的步骤,例如执行以上描述的图1中的方法步骤110至步骤140,图2中的方法步骤210至步骤220,和实现图3中模块310-340的功能。
本申请实施方式提供了一种非易失性计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个处理器执行,例如执行以上描述的图1中的方法步骤110至步骤140,图2中的方法步骤210至步骤220,和实现图3中模块310-340的功能。
通过以上的实施方式的描述,本领域普通技术人员可以清楚地了解到各实施方式可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件。本领域普通技术人员可以理解实现上述实施方式方法中的全部或部分流程是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施方式的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
最后应说明的是:以上实施方式仅用以说明本申请的技术方案,而非对其限制;在本申请的思路下,以上实施方式或者不同实施方式中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本申请的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施方式对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施方式所记载的技术方案进行修改,或者对其中部分技术特征进 行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施方式技术方案的范围。

Claims (10)

  1. 一种坐标校正方法,应用于固态激光雷达,其特征在于,所述方法包括:
    计算任意两个通道发射的激光在预先设置的标靶上形成的第一光斑及第二光斑的理论坐标;
    获取所述第一光斑及第二光斑的实际坐标;
    根据所述实际坐标和所述理论坐标计算角度误差;
    根据所述角度误差对获取的点云坐标进行校正。
  2. 根据权利要求1所述的方法,其特征在于,所述计算任意两个通道发射的激光在预先设置的标靶上形成的第一光斑及第二光斑的理论坐标,包括:根据所述固态激光雷达的安装位置,以及,所述任意两个通道的激光发射角度,计算所述第一光斑及所述第二光斑的理论坐标。
  3. 根据权利要求1所述的方法,其特征在于,所述根据所述实际坐标和所述理论坐标计算角度误差,包括:
    分别根据所述第一光斑和所述第二光斑的实际坐标A(x 1,y 1,z 1),B(x 2,y 2,z 2)和所述第一光斑和所述第二光斑的理论坐标A'(x 1',y 1',z 1'),B'(x 2',y 2',z 2'),确定如下程式:
    Figure PCTCN2019091111-appb-100001
    其中,
    Figure PCTCN2019091111-appb-100002
    Figure PCTCN2019091111-appb-100003
    Figure PCTCN2019091111-appb-100004
    根据所述程式计算所述角度误差θx、θy、θz。
  4. 根据权利要求1所述的方法,其特征在于,所述任意两个通道发射的激光位于同一平面,且对称发射,则其理论坐标分别为A'(Rtanɑ,0,R)和B'(-Rtanɑ,0,R),其中R为所述固态激光雷达与所述预先设置的标靶之间的距离,ɑ为所述任意两个通道发射的激光与Z轴的夹角;所述根据所述实际坐标和所述理论坐标计算角度误差具体为:
    根据所述第一光斑和所述第二光斑的实际坐标A(x 1,y 1,z 1),B(x 2,y 2,z 2)计算角度误差
    Figure PCTCN2019091111-appb-100005
    根据所述角度误差θz、所述第一光斑和所述第二光斑的实际坐标A(x 1,y 1,z 1),B(x 2,y 2,z 2)和所述第一光斑和所述第二光斑的理论坐标A'(Rtanɑ,0,R)和B'(-Rtanɑ,0,R)计算角度误差
    Figure PCTCN2019091111-appb-100006
    Figure PCTCN2019091111-appb-100007
    其中,
    Figure PCTCN2019091111-appb-100008
    Figure PCTCN2019091111-appb-100009
    e=sinα,f=-sinα。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述根据所述角度误差对获取的点云坐标进行校正,包括:
    根据所述角度误差确定旋转矩阵;
    根据所述旋转矩阵对获取的点云坐标进行校正。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述旋转矩阵对获取的点云坐标进行校正,具体为:根据如下公式对获取的点云坐标进行校正:
    P' T=Rx·Ry·Rz·P T
    其中,P'表示校正后的点云坐标,P表示获取的点云坐标,Rx、Ry、Rz分别表示所述点云坐标关于X轴、Y轴、Z轴的旋转矩阵。
  7. 一种坐标校正装置,其特征在于,包括:
    第一计算模块:用于计算任意两个通道发射的激光在预先设置的标靶上形 成的第一光斑及第二光斑的理论坐标;
    获取模块:用于获取所述第一光斑及第二光斑的实际坐标;
    第二计算模块:用于根据所述实际坐标和所述理论坐标计算角度误差;
    校正模块:用于根据所述角度误差对获取的点云坐标进行校正。
  8. 一种计算设备,其特征在于,包括:处理器、存储器、通信接口和通信总线,所述处理器、所述存储器和所述通信接口通过所述通信总线完成相互间的通信;
    所述存储器用于存放至少一可执行指令,所述可执行指令使所述处理器执行如权利要求1-6任一项所述的一种坐标校正方法。
  9. 一种计算机程序产品,其特征在于,所述计算机程序产品包括存储在计算机存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行如权利要求1-6任一项所述的一种坐标校正方法。
  10. 一种计算机存储介质,其特征在于,所述存储介质中存储有至少一可执行指令,所述可执行指令使处理器执行如权利要求1-7任一项所述的一种坐标校正方法。
PCT/CN2019/091111 2019-06-13 2019-06-13 坐标校正方法、装置、计算设备及计算机存储介质 WO2020248190A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/091111 WO2020248190A1 (zh) 2019-06-13 2019-06-13 坐标校正方法、装置、计算设备及计算机存储介质
CN201980002270.7A CN112400118B (zh) 2019-06-13 2019-06-13 坐标校正方法、装置、计算设备及计算机存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/091111 WO2020248190A1 (zh) 2019-06-13 2019-06-13 坐标校正方法、装置、计算设备及计算机存储介质

Publications (1)

Publication Number Publication Date
WO2020248190A1 true WO2020248190A1 (zh) 2020-12-17

Family

ID=73780721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091111 WO2020248190A1 (zh) 2019-06-13 2019-06-13 坐标校正方法、装置、计算设备及计算机存储介质

Country Status (2)

Country Link
CN (1) CN112400118B (zh)
WO (1) WO2020248190A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114488099A (zh) * 2022-01-30 2022-05-13 中国第一汽车股份有限公司 一种激光雷达系数标定方法、装置、电子设备及存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113513988B (zh) * 2021-07-12 2023-03-31 广州小鹏自动驾驶科技有限公司 一种激光雷达标靶检测方法、装置、车辆、存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040119640A1 (en) * 2002-12-23 2004-06-24 Menegozzi Lionel N. Method for determining azimuth and elevation angles using a single axis direction finding system
CN106291512A (zh) * 2016-07-29 2017-01-04 中国科学院光电研究院 一种阵列推扫式激光雷达测距非均匀性校正的方法
CN107024687A (zh) * 2016-02-01 2017-08-08 北京自动化控制设备研究所 一种离线快速实现pos/激光雷达安装误差标定的方法
CN108872966A (zh) * 2018-06-28 2018-11-23 森思泰克河北科技有限公司 激光雷达发射光束位置调节方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101246590B (zh) * 2008-03-03 2011-05-11 北京航空航天大学 星载相机空间畸变图像几何校正方法
CN103991555B (zh) * 2014-03-25 2016-01-20 浙江大学 一种用于飞机数字化装配的自动化测量方法
CN107290735B (zh) * 2017-08-22 2020-03-24 北京航空航天大学 一种基于自制地基激光雷达铅垂度误差的点云误差校正方法
CN107290734B (zh) * 2017-08-22 2020-03-24 北京航空航天大学 一种基于自制地基激光雷达垂直度误差的点云误差校正方法
CN109062265B (zh) * 2018-08-29 2021-12-14 中国电力工程顾问集团西北电力设计院有限公司 一种太阳光热发电定日镜安装误差校正方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040119640A1 (en) * 2002-12-23 2004-06-24 Menegozzi Lionel N. Method for determining azimuth and elevation angles using a single axis direction finding system
CN107024687A (zh) * 2016-02-01 2017-08-08 北京自动化控制设备研究所 一种离线快速实现pos/激光雷达安装误差标定的方法
CN106291512A (zh) * 2016-07-29 2017-01-04 中国科学院光电研究院 一种阵列推扫式激光雷达测距非均匀性校正的方法
CN108872966A (zh) * 2018-06-28 2018-11-23 森思泰克河北科技有限公司 激光雷达发射光束位置调节方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114488099A (zh) * 2022-01-30 2022-05-13 中国第一汽车股份有限公司 一种激光雷达系数标定方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN112400118A (zh) 2021-02-23
CN112400118B (zh) 2024-04-09

Similar Documents

Publication Publication Date Title
WO2020237418A1 (zh) 坐标校正方法、装置、计算设备及计算机存储介质
US10664998B2 (en) Camera calibration method, recording medium, and camera calibration apparatus
US20180300900A1 (en) Camera calibration method, recording medium, and camera calibration apparatus
EP3627109B1 (en) Visual positioning method and apparatus, electronic device and system
US10558881B2 (en) Parallax minimization stitching method and apparatus using control points in overlapping region
CN104613930B (zh) 一种测距的方法、装置及移动终端
US10447989B2 (en) Method and device for synthesizing depth images
US20140300736A1 (en) Multi-sensor camera recalibration
KR20140136016A (ko) 장면 구조-기반 자가-포즈 추정
US10481680B2 (en) Systems and methods to provide a shared augmented reality experience
CN113824942B (zh) 梯形校正方法、装置、投影仪及计算机可读存储介质
WO2020248190A1 (zh) 坐标校正方法、装置、计算设备及计算机存储介质
CN108429908B (zh) 一种摄像模组的测试方法、装置、设备及介质
US20210181747A1 (en) Robert climbing control method and robot
CN112683196B (zh) 钢轨轮廓测量方法及装置
WO2017033422A1 (ja) 画像処理装置および画像処理方法
CN114111633A (zh) 结构光三维测量的投影机镜头畸变误差校正方法
CN111537967A (zh) 一种雷达偏转角修正方法、装置及雷达终端
JP2022130588A (ja) 自動運転車両の位置合わせ方法、装置、電子機器及び車両
CN111383264B (zh) 一种定位方法、装置、终端及计算机存储介质
WO2022000147A1 (zh) 深度图像处理方法及设备
US11043009B2 (en) Method and device for calibrating depth of 3D camera, and computer device
CN112945231A (zh) 一种imu与刚体姿态对齐的方法、装置、设备以及可读存储介质
CN116385509A (zh) 点云数据配准方法、装置、电子设备、系统和存储介质
CN116245926A (zh) 一种确定岩体表面粗糙度的方法及相关组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19932309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19932309

Country of ref document: EP

Kind code of ref document: A1