WO2020246574A1 - Control device for ship propulsion device, method for controlling ship propulsion device, and program - Google Patents

Control device for ship propulsion device, method for controlling ship propulsion device, and program Download PDF

Info

Publication number
WO2020246574A1
WO2020246574A1 PCT/JP2020/022259 JP2020022259W WO2020246574A1 WO 2020246574 A1 WO2020246574 A1 WO 2020246574A1 JP 2020022259 W JP2020022259 W JP 2020022259W WO 2020246574 A1 WO2020246574 A1 WO 2020246574A1
Authority
WO
WIPO (PCT)
Prior art keywords
ship
propulsion
ship propulsion
time
propulsive force
Prior art date
Application number
PCT/JP2020/022259
Other languages
French (fr)
Japanese (ja)
Inventor
真人 白尾
まり乃 秋田
隆史 大島
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Priority to JP2021524919A priority Critical patent/JPWO2020246574A1/ja
Publication of WO2020246574A1 publication Critical patent/WO2020246574A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B49/00Arrangements of nautical instruments or navigational aids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/02Initiating means for steering, for slowing down, otherwise than by use of propulsive elements, or for dynamic anchoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/06Steering by rudders
    • B63H25/08Steering gear
    • B63H25/14Steering gear power assisted; power driven, i.e. using steering engine
    • B63H25/18Transmitting of movement of initiating means to steering engine
    • B63H25/24Transmitting of movement of initiating means to steering engine by electrical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/42Steering or dynamic anchoring by propulsive elements; Steering or dynamic anchoring by propellers used therefor only; Steering or dynamic anchoring by rudders carrying propellers

Definitions

  • the present invention relates to a control device for a ship propulsion device, a control method and a program for a ship propulsion device.
  • the present application claims priority based on Japanese Patent Application No. 2019-106518 filed in Japan on June 6, 2019, the contents of which are incorporated herein by reference.
  • Patent Document 1 Conventionally, outboard motors that maintain good riding comfort have been known (see, for example, Patent Document 1).
  • the outboard motor described in Patent Document 1 includes an engine for driving a propeller supported at the rear of the hull.
  • the air intake opening of the engine is opened toward the rear of the hull, even if intake noise is generated when the engine is driven, the intake noise does not face the passengers on the hull, and the ride comfort is achieved. It is stated that is maintained in good condition.
  • Patent Document 1 although it is possible to prevent the intake noise from facing the passengers, no measures are taken to improve the riding comfort at the start of movement of the ship.
  • an object of the present invention is to provide a control device for a ship propulsion device, a control method and a program for a ship propulsion device, which can improve the riding comfort at the start of movement of a ship.
  • the present inventors have conducted the first period as a propulsive force generated by a ship propulsion device when, for example, the tip of a joystick lever is moved and maintained from a neutral position to, for example, a rightward tilted position.
  • a small thrust to the right is calculated during, and then during the later period, a greater propulsion than during the first period is calculated, resulting in a better ride at the start of the vessel's movement. It was found that it was significantly improved and the risk of the passengers staggering at the start of movement of the ship was suppressed.
  • One aspect of the present invention is a control device for a ship propulsion device that controls a plurality of ship propulsion devices, and each of the plurality of ship propulsion devices is a propulsion unit that is driven by an engine to generate propulsive force of the ship.
  • the ship includes a propulsion unit and an operation unit for operating the steering actuator, and the operation unit is at a position where at least the plurality of ship propulsion devices do not generate propulsive force of the ship.
  • the first position and the second position where the plurality of ship propulsion devices generate the propulsive force of the ship can be located, and the operation unit is moved from the first position to the second position.
  • the operation unit is moved from the first position to the second position from the first time to the second time.
  • the first propulsion force is generated in the plurality of ship propulsion devices, and then, during the second period after the second time, the plurality of second propulsion forces larger than the first propulsion force are generated. It is a control device for a ship propulsion device generated in the ship propulsion device of.
  • One aspect of the present invention is a control method for a ship propulsion device that controls a plurality of ship propulsion devices, and each of the plurality of ship propulsion devices is a propulsion unit that is driven by an engine to generate propulsive force of the ship.
  • the ship includes a propulsion unit and an operation unit for operating the steering actuator, and the operation unit is at a position where at least the plurality of ship propulsion devices do not generate propulsive force of the ship.
  • the first position and the second position where the plurality of ship propulsion devices generate the propulsive force of the ship can be located, and the operation unit is moved from the first position to the second position.
  • the first propulsion is performed during the first period from the first time to the second time when the operation unit is moved from the first position to the second position.
  • a ship that generates a force in the plurality of ship propulsion devices, and then generates a second propulsion force larger than the first propulsion force in the plurality of ship propulsion devices during the second period after the second time. This is a control method for propulsion devices.
  • One aspect of the present invention is a program for controlling a plurality of ship propulsion devices, and each of the plurality of ship propulsion devices includes a propulsion unit driven by an engine to generate propulsive force of the ship and a steering actuator.
  • the ship includes an operation unit for operating the propulsion unit and the steering actuator, and the operation unit includes a first position where at least the plurality of ship propulsion devices do not generate propulsive force of the ship.
  • the plurality of ship propulsion devices can be positioned at a second position, which is a position where the propulsive force of the ship is generated, and the operation unit is moved from the first position to the second position, and the first position.
  • the computer When maintained at two positions, the computer propulses the plurality of vessels during the first period from the first time to the second time when the operation unit is moved from the first position to the second position.
  • the plurality of ship propulsion devices When maintained at two positions, the computer propulses the plurality of vessels during the first period from the first time to the second time when the operation unit is moved from the first position to the second position.
  • the plurality of ship propulsion devices During the first step in which the device generates the first propulsion force and the second period after the second time, the plurality of ship propulsion devices generate a second propulsion force larger than the first propulsion force. It is a program for executing steps.
  • a control device for a ship propulsion device a control method and a program for the ship propulsion device, which can improve the riding comfort at the start of movement of the ship.
  • FIG. 1 shows an example of the ship to which the control device for a ship propulsion device of 1st Embodiment is applied. It is a functional block diagram of the main part of the ship shown in FIG. Position of the operation unit in the ship of the first embodiment (specifically, the position of the tip of the joystick lever, the clockwise rotation position of the joystick lever, and the counterclockwise rotation position of the joystick lever). It is a figure for demonstrating an example of. The control for the ship propulsion device of the first embodiment when the operation unit is moved from the position P1 to the position P2 and maintained at the position P2, and then moved from the position P2 to the position P1 and maintained at the position P1.
  • FIG. 1 shows an example of the ship to which the control device for a ship propulsion device of 2nd Embodiment is applied. It is a functional block diagram of the main part of the ship shown in FIG.
  • the target value of the propulsion force calculated by the propulsion force calculation unit of the control device for the ship propulsion device of the second embodiment is the first.
  • the target value of the propulsion force calculated by the propulsion force calculation unit of the control device for the ship propulsion device of the second embodiment is the first. It is a figure for demonstrating two examples.
  • the target value of the propulsion force calculated by the propulsion force calculation unit of the control device for the ship propulsion device of the third embodiment is the first. It is a figure for demonstrating one example. When the operation unit is moved from the position P1 to the position P2 and maintained at the position P2, the target value of the propulsion force calculated by the propulsion force calculation unit of the control device for the ship propulsion device of the third embodiment is the first. It is a figure for demonstrating two examples. It is a figure which shows an example of the ship to which the control device for a ship propulsion device of 7th Embodiment is applied.
  • FIG. 1 is a diagram showing an example of a ship 1 to which the control device 14 for a ship propulsion device of the first embodiment is applied.
  • FIG. 2 is a functional block diagram of the main part of the ship 1 shown in FIG.
  • the ship 1 includes a hull 11, a ship propulsion device 12, a ship propulsion device 13, and a ship propulsion device control device 14.
  • the ship propulsion devices 12 and 13 generate the propulsive force of the ship 1.
  • the ship propulsion device 12 is arranged on the right side of the rear 112 of the hull 11.
  • the ship propulsion device 12 includes a ship propulsion device main body 12A and a bracket 12B.
  • the bracket 12B is a mechanism for attaching the ship propulsion device 12 to the right side portion of the rear portion 112 of the hull 11.
  • the ship propulsion device main body 12A is rotatably connected to the hull 11 about the steering shaft 12AX and is connected to the right side portion of the rear 112 of the hull 11 via the bracket 12B.
  • the ship propulsion device main body 12A includes a propulsion unit 12A1 and a steering actuator 12A2.
  • the propulsion unit 12A1 is driven by an engine (not shown) to generate the propulsive force of ship 1.
  • the steering actuator 12A2 rotates the entire ship propulsion device main body 12A including the propulsion unit 12A1 with respect to the hull 11 around the steering shaft 12AX.
  • the steering actuator 12A2 serves as a rudder.
  • the ship propulsion device 13 is arranged on the left side portion of the rear 112 of the hull 11.
  • the ship propulsion device 13 includes a ship propulsion device main body 13A and a bracket 13B.
  • the bracket 13B is a mechanism for attaching the ship propulsion device 13 to the left side portion of the rear portion 112 of the hull 11.
  • the ship propulsion device main body 13A is rotatably connected to the hull 11 about the steering shaft 13AX and is connected to the left side portion of the rear 112 of the hull 11 via the bracket 13B.
  • the ship propulsion device main body 13A includes a propulsion unit 13A1 and a steering actuator 13A2.
  • the propulsion unit 13A1 is driven by an engine (not shown) to generate the propulsive force of the ship 1.
  • the steering actuator 13A2 rotates the entire ship propulsion device main body 13A including the propulsion unit 13A1 with respect to the hull 11 around the steering shaft 13AX.
  • the steering actuator 13A2 serves as a rudder.
  • the ship propulsion devices 12 and 13 are outboard motors having propeller-specification propulsion units 12A1 and 13A1 driven by, for example, an engine.
  • the ship propulsion devices 12 and 13 have an inboard unit having a propeller-specific propulsion unit driven by an engine, an inboard / outboard unit having a propeller-specific propulsion unit driven by an engine, and water driven by an engine. It may be a ship propulsion device having a jet-type propulsion unit, a pod drive type ship propulsion device driven by an engine, or the like.
  • the hull 11 includes a steering device 11A, a remote control device 11B, a remote control device 11C, and an operation unit 11D.
  • the hull 11 may not include the steering device 11A, the remote control device 11B, and the remote control device 11C.
  • the steering device 11A is a device that operates the steering actuators 12A2 and 13A2, and is, for example, a steering device having a steering wheel.
  • the remote control device 11B is a device that receives an input operation for operating the propulsion unit 12A1, and has, for example, a remote control lever. The operator can change the magnitude and direction of the propulsive force generated by the propulsion unit 12A1 by operating the remote control device 11B.
  • the remote control lever of the remote control device 11B includes a forward region in which the propulsion unit 12A1 generates a forward propulsive force for the ship 1, a reverse region in which the propulsion unit 12A1 generates a backward propulsive force for the ship 1, and a propulsion unit 12A1. Can be located in a neutral region that does not generate.
  • the magnitude of the forward propulsive force of the ship 1 generated by the propulsion unit 12A1 changes according to the position of the remote control lever in the forward region. Further, the magnitude of the backward propulsive force of the ship 1 generated by the propulsion unit 12A1 changes according to the position of the remote control lever in the reverse region.
  • the remote control device 11C is a device that receives an input operation for operating the propulsion unit 13A1, and is configured in the same manner as the remote control device 11B. That is, the operator can change the magnitude and direction of the propulsive force generated by the propulsion unit 13A1 by operating the remote control device 11C.
  • the operation unit 11D is a device that operates the propulsion units 12A1 and 13A1 and the steering actuators 12A2 and 13A2. Specifically, the operation unit 11D receives an input operation for operating the propulsion units 12A1 and 13A1 and the steering actuators 12A2 and 13A2.
  • the operation unit 11D is provided separately from the steering device 11A and the remote controller devices 11B and 11C.
  • the operation unit 11D is composed of a joystick having a lever.
  • the operator can not only operate the propulsion units 12A1 and 13A1 and the steering actuators 12A2 and 13A2, but also the operation unit.
  • the propulsion units 12A1 and 13A1 and the steering actuators 12A2 and 13A2 can also be operated by operating the 11D (joystick).
  • the control device 14 for the ship propulsion device has the propulsion unit 12A1 and the steering actuator 12A2 of the ship propulsion device 12 and the propulsion unit of the ship propulsion device 13 based on the input operation to the operation unit 11D. It controls 13A1 and the steering actuator 13A2. Specifically, the ship propulsion device control device 14 controls the magnitude and direction of the propulsive force of the ship 1 generated by the propulsion units 12A1, 13A1 and the steering actuators 12A2, 13A2 based on the input operation to the operation unit 11D. ..
  • a rotational moment may be generated in the vessel 1. That is, the control device 14 for the ship propulsion device controls the propulsion units 12A1 and 13A1 and the steering actuators 12A2 and 13A2 based on the input operation to the operation unit 11D, so that the magnitude and direction of the rotational moment generated in the ship 1 are also determined. Control.
  • the ship propulsion device control device 14 includes a movement route calculation unit 14A, an elapsed time calculation unit 14B, and a propulsion force calculation unit 14C.
  • the movement route calculation unit 14A calculates the movement route of the operation unit 11D.
  • the movement path calculation unit 14A calculates the movement path of the tip of the joystick lever based on the position of the joystick lever detected by a sensor (not shown) such as a microswitch.
  • the elapsed time calculation unit 14B calculates the elapsed time from the time when the operation unit 11D (the tip of the joystick lever) is moved to a certain position.
  • the propulsion force calculation unit 14C causes the ship propulsion devices 12 and 13 to generate propulsion based on the movement path of the operation unit 11D calculated by the movement route calculation unit 14A and the elapsed time calculated by the elapsed time calculation unit 14B. Calculate the force. Specifically, the propulsion force calculation unit 14C calculates a target value (control command value) of the propulsion force generated in the ship propulsion devices 12 and 13. Specifically, the propulsion force calculation unit 14C is a propulsion unit based on the movement path of the tip of the joystick lever and the time (elapsed time) that the tip of the joystick lever remains located at a certain position.
  • the magnitude and direction of the propulsive force of the ship 1 generated in the 12A1, 13A1 and the steering actuators 12A2, 13A2 are calculated. That is, the control device 14 for the ship propulsion device has the propulsion units 12A1 and 13A1 so that the propulsion units 12A1 and 13A1 and the steering actuators 12A2 and 13A2 generate the propulsive force of the magnitude and direction calculated by the propulsion force calculation unit 14C. And the steering actuators 12A2 and 13A2 are controlled.
  • the operation unit 11D is configured so that the lever of the operation unit 11D (joystick) can be tilted and the lever can rotate about the central axis of the lever.
  • the lever of the operation unit 11D tilted and the lever can rotate about the central axis of the lever.
  • the hull 11 of the control device 14 for the ship propulsion device turns clockwise (that is, the hull 11 turns clockwise on the spot).
  • the propulsion units 12A1 and 13A1 and the steering actuators 12A2 and 13A2 are controlled so as to.
  • the hull 11 of the ship propulsion device control device 14 turns counterclockwise (that is, the hull 11 turns counterclockwise).
  • the propulsion units 12A1 and 13A1 and the steering actuators 12A2 and 13A2 are controlled so as to turn around on the spot. That is, when the operator rotates the lever around the central axis of the lever, the direction of the front portion 111 of the hull 11 changes. Further, as will be described in detail later, when the operator tilts the lever, the ship propulsion device control device 14 moves the propulsion units 12A1, 13A1 and the hull 11 so as to maintain the attitude. It controls the steering actuators 12A2 and 13A2. That is, when the operator tilts the lever, the front portion 111 of the hull 11 and the rear portion 112 of the hull 11 are translated.
  • FIG. 3 shows the positions of the operation unit 11D in the ship 1 of the first embodiment (specifically, the positions P1 to P9 of the tip of the joystick lever, the clockwise rotation position (rotation position) P10 of the joystick lever, and , It is a figure for demonstrating an example of the counterclockwise rotation position (rotation position) P11) of a joystick lever.
  • the lever of the operation unit 11D joinystick
  • the operation unit 11D is located at the position (neutral position) P1.
  • the control device 14 for the ship propulsion device does not generate the propulsive force of the ship 1 in the propulsion units 12A1, 13A1 and the steering actuators 12A2, 13A2. That is, the position P1 is basically a position where the ship propulsion devices 12 and 13 do not generate the propulsive force of the ship 1.
  • the lever of the joystick is tilted to the right. Therefore, the tip of the joystick lever is located at the position P2 on the right side of the position P1.
  • the ship propulsion device control device 14 When the tip of the lever of the joystick is located at the position P2, the ship propulsion device control device 14 generates a propulsive force for moving the ship 1 to the right in the propulsion units 12A1 and 13A1 and the steering actuators 12A2 and 13A2. That is, the position P2 is a position where the ship propulsion devices 12 and 13 generate a propulsive force for moving the ship 1 to the right (specifically, translational movement).
  • the lever of the joystick is tilted forward to the right. Therefore, the tip of the lever of the joystick is located at the position P3 on the right front side of the position P1.
  • the control device 14 for the ship propulsion device moves the ship 1 to the propulsion units 12A1 and 13A1 and the steering actuators 12A2 and 13A2 in the left-right direction and the right forward direction forming an acute angle ⁇ 3.
  • the position P3 is a position where the ship propulsion devices 12 and 13 generate a propulsive force for moving the ship 1 forward to the right (translational movement).
  • the lever of the joystick is tilted backward to the right. Therefore, the tip of the joystick lever is located at the position P4 on the right rear side of the position P1.
  • the control device 14 for the ship propulsion device moves the ship 1 to the propulsion units 12A1 and 13A1 and the steering actuators 12A2 and 13A2 in the left-right direction and the right rearward direction forming an acute angle ⁇ 4.
  • the position P4 is a position where the ship propulsion devices 12 and 13 generate a propulsive force for moving the ship 1 backward to the right (translational movement).
  • the lever of the joystick is tilted to the left. Therefore, the tip of the joystick lever is located at the position P5 on the left side of the position P1.
  • the ship propulsion device control device 14 When the tip of the lever of the joystick is located at the position P5, the ship propulsion device control device 14 generates a propulsive force for moving the ship 1 to the left in the propulsion units 12A1 and 13A1 and the steering actuators 12A2 and 13A2. That is, the position P5 is a position where the ship propulsion devices 12 and 13 generate a propulsive force for moving the ship 1 to the left (translational movement).
  • the lever of the joystick is tilted forward to the left. Therefore, the tip of the lever of the joystick is located at the position P6 on the left front side of the position P1.
  • the control device 14 for the ship propulsion device moves the ship 1 to the propulsion units 12A1 and 13A1 and the steering actuators 12A2 and 13A2 in the left-right direction and the left forward direction forming an acute angle ⁇ 6.
  • the position P6 is a position where the ship propulsion devices 12 and 13 generate a propulsive force for moving the ship 1 forward to the left (translational movement).
  • the lever of the joystick is tilted backward to the left. Therefore, the tip of the lever of the joystick is located at the position P7 on the left rear side of the position P1.
  • the control device 14 for the ship propulsion device moves the ship 1 to the propulsion units 12A1 and 13A1 and the steering actuators 12A2 and 13A2 in the left-right direction and the left rearward direction forming an acute angle ⁇ 7.
  • the position P7 is a position where the ship propulsion devices 12 and 13 generate a propulsive force for moving the ship 1 backward to the left (translational movement).
  • the lever of the joystick is tilted forward. Therefore, the tip of the lever of the joystick is located at the position P8 on the front side of the position P1.
  • the ship propulsion device control device 14 causes the propulsion units 12A1 and 13A1 and the steering actuators 12A2 and 13A2 to generate a propulsive force for moving the ship 1 forward. That is, the position P8 is a position where the ship propulsion devices 12 and 13 generate a propulsive force for moving (advancing) the ship 1 forward.
  • the lever of the joystick is tilted backward.
  • the tip of the joystick lever is located at the position P9 behind the position P1.
  • the ship propulsion device control device 14 causes the propulsion units 12A1 and 13A1 and the steering actuators 12A2 and 13A2 to generate a propulsive force for moving the ship 1 backward. That is, the position P9 is a position where the ship propulsion devices 12 and 13 generate a propulsive force for moving (reverse) the ship 1 backward.
  • the lever of the joystick is not tilted and is rotated clockwise. Therefore, the lever of the joystick is located at the clockwise rotation position (rotation position) P10.
  • the ship propulsion device control device 14 controls the propulsion units 12A1, 13A1 and the steering actuators 12A2, 13A2 so that a clockwise rotation moment is generated on the ship 1. .. That is, the rotation position P10 is a position where the ship propulsion devices 12 and 13 generate a propulsive force (propulsive force for turning the ship 1 clockwise) to turn the ship 1 to the right.
  • the lever of the joystick is not tilted and is rotated counterclockwise. Therefore, the lever of the joystick is located at the counterclockwise rotation position (rotation position) P11.
  • the ship propulsion device control device 14 controls the propulsion units 12A1, 13A1 and the steering actuators 12A2, 13A2 so that a counterclockwise rotation moment is generated on the ship 1.
  • the rotation position P11 is a position where the ship propulsion devices 12 and 13 generate a propulsive force (propulsive force for turning the ship 1 counterclockwise) to turn the ship 1 counterclockwise.
  • the tip of the lever of the joystick having the automatic return function is located at the position P1.
  • the tip of the lever of the joystick can be positioned at positions P1 to P9, rotation positions P10, P11, and the like, depending on the operation of the operator.
  • FIG. 4 shows the ship of the first embodiment when the operation unit 11D is moved from the position P1 to the position P2 and maintained at the position P2, and then moved from the position P2 to the position P1 and maintained at the position P1.
  • the first example such as the target value of the propulsion force (the propulsion force generated by ship propulsion devices 12 and 13) calculated by the propulsion force calculation unit 14C of the control device 14 for a propulsion device.
  • FIG. 4A shows the relationship between the positions P1 and P2 of the operation unit 11D and time
  • FIG. 4B shows the propulsive force calculation of the ship propulsion device control device 14 of the first embodiment.
  • the relationship between the target value of the propulsive force calculated by the part 14C and the time is shown
  • FIG. 4 (C) shows the relationship between the target value of the propulsive force calculated by the ship of the comparative example and the time.
  • the operation unit 11D is located at the position P1 during the period before the time t1, and the operation unit 11D is moved from the position P1 to the position P2 at the time t1.
  • the operation unit 11D is maintained at the position P2 during the period from time t1 to time t3.
  • the operation unit 11D is moved from position P2 to position P1, and the operation unit 11D is maintained at position P1 during the period after time t3.
  • the propulsion force calculation unit 14C In the first example of the control device 14 for the ship propulsion device of the first embodiment, as shown in FIG. 4B, the propulsion force calculation unit 14C generates the ship propulsion devices 12 and 13 during the period before the time t1. Calculate zero as the target value of the driving force to be used. As a result, the ship propulsion devices 12 and 13 do not generate propulsive force, and the speed of the ship 1 is zero.
  • the target value of the propulsive force (the propulsive force generated by the ship propulsion devices 12 and 13) calculated by the propulsion force calculation unit 14C is from zero to the value F1, for example, a constant amount of change. Increases with.
  • the propulsive force generated by the ship propulsion devices 12 and 13 gradually increases, and the speed of the ship 1 also gradually increases.
  • the target value of the propulsive force (the propulsive force generated by the ship propulsion devices 12 and 13) calculated by the propulsion force calculation unit 14C is maintained at the value F1.
  • the propulsive force generated by the ship propulsion devices 12 and 13 is maintained at a constant value, and the speed of the ship 1 is also maintained at a constant value.
  • the target value of the propulsive force (the propulsive force generated by the ship propulsion devices 12 and 13) calculated by the propulsion force calculation unit 14C is from the value F1 to zero, for example, a constant amount of change. Decreases with. As a result, the propulsive force generated by the ship propulsion devices 12 and 13 gradually decreases, and the speed of the ship 1 also gradually decreases.
  • the propulsion force calculation unit 14C calculates zero as the target value of the propulsion force generated by the ship propulsion devices 12 and 13. As a result, the ship propulsion devices 12 and 13 do not generate propulsive force, and the speed of the ship 1 is zero.
  • the ship propulsion devices 12 and 13 have a small propulsive force (first) during the period from time t1 to time t2 when the operation unit 11D is moved from the position P1 to the position P2. Propulsion force) is generated, and then, during the period from time t2 to time t3, the ship propulsion devices 12 and 13 generate a second propulsion force (propulsion force having a value F1) larger than the first propulsion force. That is, in the example shown in FIG. 4B, the propulsive force generated by the ship propulsion devices 12 and 13 does not suddenly change from zero to the value F1, but gradually changes. Therefore, it is possible to improve the riding comfort at the start of movement of the ship 1, and it is possible to suppress the possibility that the passengers will stagger at the start of movement of the ship 1.
  • the ship propulsion devices 12 and 13 were larger than zero and the second.
  • a third propulsion force smaller than the propulsion force (propulsion force of the value F1) is generated, and then the ship propulsion devices 12 and 13 do not generate the propulsion force (that is, the ship propulsion devices 12 and 13) during the period after the time t4.
  • the driving force generated is zero). That is, in the example shown in FIG. 4B, the propulsive force generated by the ship propulsion devices 12 and 13 does not suddenly change from the value F1 to zero, but gradually changes. Therefore, it is possible to improve the riding comfort when the ship 1 is stopped, and it is possible to suppress the possibility that the passengers will stagger when the ship 1 is stopped.
  • the target value of the propulsive force generated by the ship propulsion device is zero during the period before the time t1.
  • the ship propulsion device does not generate propulsion and the speed of the ship is zero.
  • the target value of the propulsive force generated by the ship propulsion device rapidly increases from zero to the value F1.
  • the propulsive force generated by the ship propulsion device increases sharply, and the speed of the ship also sharply increases. Therefore, in the ship of the comparative example, the riding comfort at the start of movement of the ship is poor, and there is a risk that the passengers may stagger at the start of movement of the ship.
  • the target value of the propulsive force generated by the ship propulsion device is maintained at the value F1 during the period from time t1 to time t3.
  • the propulsive force generated by the ship propulsion device is maintained at a constant value, and the speed of the ship is also maintained at a constant value.
  • the target value of the propulsive force generated by the ship propulsion device sharply decreases from the value F1 to zero.
  • the propulsive force generated by the ship propulsion device sharply decreases, and the speed of the ship also sharply decreases. Therefore, in the ship of the comparative example, the riding comfort when the ship is stopped is uncomfortable, and the passenger may stagger when the ship is stopped.
  • FIG. 5 shows the ship of the first embodiment when the operation unit 11D is moved from the position P1 to the position P2 and maintained at the position P2, and then moved from the position P2 to the position P1 and maintained at the position P1.
  • the 2nd example such as the target value of the propulsion force (the propulsion force generated by the ship propulsion devices 12 and 13) calculated by the propulsion force calculation unit 14C of the control device 14 for a propulsion device.
  • FIG. 5A shows the relationship between the positions P1 and P2 of the operation unit 11D and time
  • FIG. 5B shows the propulsive force calculation of the ship propulsion device control device 14 of the first embodiment. The relationship between the target value of the propulsive force calculated by the part 14C and the time is shown.
  • the operation unit 11D is located at the position P1 during the period before the time t1, and the operation unit 11D is moved from the position P1 to the position P2 at the time t1.
  • the operation unit 11D is maintained at the position P2 during the period from time t1 to time t3.
  • the operation unit 11D is moved from position P2 to position P1, and the operation unit 11D is maintained at position P1 during the period after time t3.
  • the ship propulsion devices 12 and 13 are generated in the propulsion force calculation unit 14C during the period before the time t1. Calculate zero as the target value of the driving force to be used. As a result, the ship propulsion devices 12 and 13 do not generate propulsive force, and the speed of the ship 1 is zero.
  • the propulsion force calculation unit 14C calculates a value F2 larger than zero and smaller than the value F1 as the target value of the propulsive force generated by the ship propulsion devices 12 and 13.
  • the propulsive force generated by the ship propulsion devices 12 and 13 gradually increases at time t1 from the example shown in FIG. 4 (C), and the speed of the ship 1 also increases more slowly than the example shown in FIG. 4 (C). Increase to.
  • the propulsion force calculation unit 14C calculates the value F1 as the target value of the propulsion force generated by the ship propulsion devices 12 and 13.
  • the propulsive force generated by the ship propulsion devices 12 and 13 gradually increases at time t2 to the same extent as the time t1, and the speed of the ship 1 also gradually increases to the same extent as the time t1.
  • the propulsion force calculation unit 14C calculates a value F2 larger than zero and smaller than the value F1 as the target value of the propulsive force generated by the ship propulsion devices 12 and 13.
  • the propulsion force calculation unit 14C calculates zero as the target value of the propulsion force generated by the ship propulsion devices 12 and 13.
  • the propulsion force calculation unit 14C calculates zero as the target value of the propulsion force generated by the ship propulsion devices 12 and 13.
  • the propulsive force generated by the ship propulsion devices 12 and 13 gradually decreases at time t4 to the same extent as the time t3, and the speed of the ship 1 also gradually decreases to the same extent as the time t3.
  • the ship propulsion devices 12 and 13 have a small propulsive force (value F2) during the period from time t1 to time t2 when the operation unit 11D is moved from the position P1 to the position P2. Then, during the period from time t2 to time t3, the ship propulsion devices 12 and 13 generate a propulsion force having a value F1 larger than a propulsion force having a value F2. That is, in the example shown in FIG. 5B, the propulsive force generated by the ship propulsion devices 12 and 13 does not suddenly change from zero to the value F1, but changes in steps. Therefore, it is possible to improve the riding comfort at the start of movement of the ship 1, and it is possible to suppress the possibility that the passengers will stagger at the start of movement of the ship 1.
  • the ship propulsion devices 12 and 13 had a value F1 larger than zero. F2 propulsion force is generated, and then the ship propulsion devices 12 and 13 do not generate propulsion force during the period after time t4 (that is, the propulsion force generated by ship propulsion devices 12 and 13 is It is zero). That is, in the example shown in FIG. 5B, the propulsive force generated by the ship propulsion devices 12 and 13 does not suddenly change from the value F1 to zero, but changes in steps. Therefore, it is possible to improve the riding comfort when the ship 1 is stopped, and it is possible to suppress the possibility that the passengers will stagger when the ship 1 is stopped.
  • the operation unit 11D is moved from the position P1 to the position P3 and maintained at the position P3, and then moved from the position P3 to the position P1.
  • the ship propulsion is carried out so that the propulsion force generated by the ship propulsion devices 12 and 13 gradually changes, as in the example shown in FIG. 4 (B).
  • the target value of the propulsive force generated by the devices 12 and 13 is calculated.
  • the operation unit 11D is moved from the position P1 to the position P3 and maintained at the position P3, and then moved from the position P3 to the position P1.
  • the propulsion force calculation unit 14C When the propulsion force calculation unit 14C is maintained at the position P1, the propulsion force generated by the ship propulsion devices 12 and 13 changes stepwise in the same manner as in the example shown in FIG. 5 (B). The target value of the propulsive force generated by the propulsion devices 12 and 13 is calculated.
  • the operation unit 11D is moved from the position P1 to the position P4 and maintained at the position P4, and then moved from the position P4 to the position P1.
  • the ship propulsion is carried out so that the propulsion force generated by the ship propulsion devices 12 and 13 gradually changes, as in the example shown in FIG. 4 (B).
  • the target value of the propulsive force generated by the devices 12 and 13 is calculated.
  • the operation unit 11D is moved from the position P1 to the position P4 and maintained at the position P4, and then moved from the position P4 to the position P1.
  • the propulsion force calculation unit 14C When the propulsion force calculation unit 14C is maintained at the position P1, the propulsion force generated by the ship propulsion devices 12 and 13 changes stepwise in the same manner as in the example shown in FIG. 5 (B). The target value of the propulsive force generated by the propulsion devices 12 and 13 is calculated.
  • the ship propulsion device control device 14 of the first embodiment symmetrical control is executed on the right side and the left side of the ship 1. That is, in the first example of the ship propulsion device control device 14 of the first embodiment, the operation unit 11D is moved from the position P1 to any of the positions P5 to P7 and maintained at the positions P5 to P7, and then is maintained. , When the propulsion force calculation unit 14C is moved from the positions P5 to P7 to the position P1 and maintained at the position P1, the ship propulsion devices 12 and 13 are generated as in the example shown in FIG. 4 (B). The target value of the propulsive force generated by the ship propulsion devices 12 and 13 is calculated so that the propulsive force to be generated gradually changes.
  • the operation unit 11D is moved from the position P1 to any of the positions P5 to P7 and maintained at the positions P5 to P7, and then the operation unit 11D thereof.
  • the propulsion force calculation unit 14C When the propulsion force calculation unit 14C is moved from the positions P5 to P7 to the position P1 and maintained at the position P1, the propulsion force calculation unit 14C generates propulsion by the ship propulsion devices 12 and 13 as in the example shown in FIG. 5 (B).
  • the target value of the propulsive force generated by the ship propulsion devices 12 and 13 is calculated so that the force changes in steps.
  • the control shown in FIG. 4 (B) or FIG. 5 (B) is the control when the ship 1 moves in the front-rear direction (the ship 1 is moved forward or backward). It also applies to control). That is, in the first example of the ship propulsion device control device 14 of the first embodiment, the operation unit 11D is moved from the position P1 to any of the positions P8 and P9 and maintained at the positions P8 and P9, and then is maintained. , When the propulsion force calculation unit 14C is moved from the positions P8 and P9 to the position P1 and maintained at the position P1, the ship propulsion devices 12 and 13 are generated as in the example shown in FIG. 4 (B).
  • the target value of the propulsive force generated by the ship propulsion devices 12 and 13 is calculated so that the propulsive force to be generated gradually changes.
  • the operation unit 11D is moved from the position P1 to any of the positions P8 and P9 and maintained at the positions P8 and P9, and then the operation unit 11D thereof.
  • the propulsion force calculation unit 14C is moved from the positions P8 and P9 to the position P1 and maintained at the position P1
  • the propulsion force calculation unit 14C generates propulsion by the ship propulsion devices 12 and 13 as in the example shown in FIG. 5 (B).
  • the target value of the propulsive force generated by the ship propulsion devices 12 and 13 is calculated so that the force changes in steps.
  • the control shown in FIG. 4B or FIG. 5B is a control for turning the ship 1 clockwise (the ship 1 is turned clockwise on the spot). It also applies to turning control). That is, in the first example of the ship propulsion device control device 14 of the first embodiment, the operation unit 11D is moved from the position P1 to the rotation position (rotation position) P10 and maintained at the rotation position P10. Next, when the rotation position P10 is moved to the position P1 and maintained at the position P1, the propulsion force calculation unit 14C causes the ship propulsion devices 12 and 13 to perform in the same manner as in the example shown in FIG. 4B.
  • the target value of the propulsive force generated by the ship propulsion devices 12 and 13 is calculated so that the generated propulsive force gradually changes.
  • the operation unit 11D is moved from the position P1 to the rotation position P10 and maintained at the rotation position P10, and then the rotation position is maintained.
  • the propulsion force calculation unit 14C moves from P10 to the position P1 and is maintained at the position P1
  • the propulsion force generated by the ship propulsion devices 12 and 13 is stepped in the same manner as in the example shown in FIG.
  • the target value of the propulsive force generated by the ship propulsion devices 12 and 13 is calculated so as to change the shape.
  • the control shown in FIG. 4B or FIG. 5B is a control for turning the ship 1 counterclockwise (turning the ship 1 counterclockwise). It also applies to control to turn around on the spot). That is, in the first example of the ship propulsion device control device 14 of the first embodiment, the operation unit 11D is moved from the position P1 to the rotation position (rotation position) P11 and maintained at the rotation position P11. Next, when the rotation position P11 is moved to the position P1 and maintained at the position P1, the propulsion force calculation unit 14C causes the ship propulsion devices 12 and 13 to perform in the same manner as in the example shown in FIG. 4 (B).
  • the target value of the propulsive force generated by the ship propulsion devices 12 and 13 is calculated so that the generated propulsive force gradually changes.
  • the operation unit 11D is moved from the position P1 to the rotation position P11 and maintained at the rotation position P11, and then the rotation position is maintained.
  • the propulsion force calculation unit 14C moves from P11 to the position P1 and is maintained at the position P1
  • the propulsion force generated by the ship propulsion devices 12 and 13 is stepped in the same manner as in the example shown in FIG. 5 (B).
  • the target value of the propulsive force generated by the ship propulsion devices 12 and 13 is calculated so as to change the shape.
  • the control shown from the time t3 to the time t4 in FIG. 4 (B) when the ship 1 is stopped that is, the ship propulsion device.
  • Control in which the propulsive force generated by 12 and 13 gradually decreases) or control shown from time t3 to time t4 in FIG. 5 (B) that is, the propulsive force generated by ship propulsion devices 12 and 13 decreases stepwise.
  • None of the controls shown in (B) from time t3 to time t4 or later may be executed. That is, in the third example of the control device 14 for the ship propulsion device of the first embodiment, the control shown after the time t3 in FIG. 4C is executed when the ship 1 is stopped.
  • FIG. 6 is a flowchart for explaining an example of the process executed by the ship propulsion device control device 14 of the first embodiment.
  • the process shown in FIG. 6A and the process shown in FIG. 6B start when the position of the operation unit 11D (joystick) changes, and are executed in parallel.
  • the ship propulsion device control device 14 operates based on the position of the operation unit 11D (the position of the joystick lever) detected by a sensor such as a microswitch. It is determined whether or not the unit 11D has been moved from the position P1 to any of the positions P2 to P11.
  • the process proceeds to step S12.
  • the routine shown in FIG. 6A ends.
  • step S12 the first period (the period from time t1 to time t2) of the ship propulsion device control device 14 elapses from the time t1 when the operation unit 11D is moved from the position P1 to any of the positions P2 to P11. Determine if it has been done.
  • the first period (the period from time t1 to time t2) has not elapsed from the time t1 when the operation unit 11D is moved from the position P1 to any of the positions P2 to P11 (that is, the current time is the first period). If it is inside), the process proceeds to step S13.
  • step S14 when the first period (the period from time t1 to time t2) has elapsed from the time t1 when the operation unit 11D is moved from the position P1 to any of the positions P2 to P11 (that is, the current time is If it is in the second period after the time t2), the process proceeds to step S14.
  • step S13 the propulsion force calculation unit 14C of the ship propulsion device control device 14 sets a constant amount of change from zero to a value F1 with the passage of time as a target value of the propulsion force generated by the ship propulsion devices 12 and 13. Calculate the value that increases with, or the value that increases stepwise with the passage of time (calculate the first propulsive force). As a result, the ship propulsion device control device 14 propulses the ship during the first period (the period from time t1 to time t2) by gradually or stepwise increasing the first propulsive force with the passage of time. Generate in devices 12 and 13.
  • step S14 the propulsion force calculation unit 14C of the ship propulsion device control device 14 continues to calculate a constant value (value F1) as a target value of the propulsion force generated by the ship propulsion devices 12 and 13 (second propulsion force). Continue to calculate). As a result, during the second period (the period from time t2 to time t3), the ship propulsion device control device 14 has a second propulsive force (a constant propulsive force corresponding to a constant value F1) larger than the first propulsive force. ) Is generated in the ship propulsion devices 12 and 13.
  • step S21 the ship propulsion device control device 14 determines whether or not the operation unit 11D has been moved from any of the positions P2 to P11 to the position P1.
  • the process proceeds to step S22.
  • the routine shown in FIG. 6B ends.
  • step S22 the third period (the period from time t3 to time t4) of the ship propulsion device control device 14 elapses from the time t3 when the operation unit 11D is moved from any of the positions P2 to P11 to the position P1. Determine if it has been done.
  • the third period (the period from time t3 to time t4) has not elapsed from the time t3 when the operation unit 11D is moved from any of the positions P2 to P11 to the position P1 (that is, the current time is the third period). If it is inside), the process proceeds to step S23.
  • step S24 when the third period (the period from time t3 to time t4) has elapsed from the time t3 when the operation unit 11D is moved from any of the positions P2 to P11 to the position P1 (that is, the current time is If it is in the fourth period after the time t4), the process proceeds to step S24.
  • step S23 the propulsion force calculation unit 14C of the ship propulsion device control device 14 sets a constant amount of change from the value F1 to zero as a target value of the propulsion force generated by the ship propulsion devices 12 and 13. Calculate the value that decreases with, or the value that decreases stepwise with the passage of time (calculate the third propulsive force).
  • the control device 14 for the ship propulsion device has a third propulsive force (from zero) that gradually or stepwise decreases with the passage of time during the third period (period from time t3 to time t4).
  • a third propulsion force (largely smaller than the second propulsion force) is generated in the ship propulsion devices 12 and 13.
  • step S24 the propulsion force calculation unit 14C of the ship propulsion device control device 14 continues to calculate zero as the target value of the propulsion force generated by the ship propulsion devices 12 and 13 (continues to calculate the propulsion force zero). As a result, the ship propulsion device control device 14 does not generate propulsive force in the ship propulsion devices 12 and 13 during the fourth period (period after time t4).
  • the ship propulsion device control device 14 of the second embodiment is configured in the same manner as the ship propulsion device control device 14 of the first embodiment described above, except for the points described later. Therefore, according to the ship propulsion device control device 14 of the second embodiment, the same effect as that of the ship propulsion device control device 14 of the first embodiment described above can be obtained except for the points described later.
  • FIG. 7 is a diagram showing an example of a ship 1 to which the control device 14 for a ship propulsion device of the second embodiment is applied.
  • FIG. 8 is a functional block diagram of the main part of the ship 1 shown in FIG.
  • the hull 11 includes a steering device 11A, a remote control device 11B, a remote control device 11C, and an operation unit 11D.
  • the hull 11 includes a steering device 11A, a remote control device 11B, a remote control device 11C, an operation unit 11D, and a first period setting unit 11E.
  • the first period setting unit 11E requests, for example, a change in the length of the first period (the period from time t1 (see FIGS. 4 and 5) to time t2 (see FIGS. 4 and 5)) by the operator (specifically). Accepts extension requests or shortening requests).
  • the hull 11 may not include the steering device 11A, the remote control device 11B, and the remote control device 11C.
  • the ship propulsion device control device 14 includes a movement route calculation unit 14A, an elapsed time calculation unit 14B, and a propulsion force calculation unit 14C.
  • the ship propulsion device control device 14 includes a movement route calculation unit 14A, an elapsed time calculation unit 14B, a propulsion force calculation unit 14C, and a first period length change unit 14D. And have.
  • the first period length changing unit 14D changes the length of the first period (the period from time t1 to time t2).
  • the first period length changing unit 14D extends the length of the first period. To do.
  • the first period setting unit 11E receives, for example, a request from the operator to shorten the length of the first period, the first period length changing unit 14D shortens the length of the first period.
  • FIG. 9 shows a propulsion force calculated by the propulsion force calculation unit 14C of the ship propulsion device control device 14 of the second embodiment when the operation unit 11D is moved from the position P1 to the position P2 and maintained at the position P2. It is a figure for demonstrating the 1st example such as the target value of (the propulsive force generated by ship propulsion devices 12 and 13).
  • FIG. 9A shows the relationship between the positions P1 and P2 of the operation unit 11D and the time
  • FIG. 9B shows the length of the first period by the first period length changing unit 14D.
  • the relationship between the target value of the propulsive force calculated by the propulsive force calculation unit 14C of the ship propulsion device control device 14 of the second embodiment and the time before being changed is shown.
  • 9C shows the propulsive force calculated by the propulsive force calculation unit 14C of the ship propulsion device control device 14 of the second embodiment after the length of the first period is extended by the first period length changing unit 14D.
  • 9 (D) shows the relationship between the target value and the time
  • FIG. 9 (D) shows the control device for the ship propulsion device of the second embodiment after the length of the first period is shortened by the first period length changing unit 14D. The relationship between the target value of the propulsive force calculated by the propulsive force calculation unit 14C of 14 and the time is shown.
  • the operation unit 11D is located at the position P1 during the period before the time t1, and the operation unit 11D is moved from the position P1 to the position P2 at the time t1.
  • the operation unit 11D is maintained at the position P2 during the period after the time t1.
  • the propulsion force calculation unit 14C In the first example of the control device 14 for the ship propulsion device of the second embodiment, as shown in FIG. 9B, the propulsion force calculation unit 14C generates the ship propulsion devices 12 and 13 during the period before the time t1. Calculate zero as the target value of the driving force to be used. As a result, the ship propulsion devices 12 and 13 do not generate propulsive force, and the speed of the ship 1 is zero.
  • the target value of the propulsive force (the propulsive force generated by the ship propulsion devices 12 and 13) calculated by the propulsion force calculation unit 14C is from zero to the value F1, for example, constant. It increases with the amount of change.
  • the propulsive force generated by the ship propulsion devices 12 and 13 gradually increases, and the speed of the ship 1 also gradually increases.
  • the target value of the propulsive force (the propulsive force generated by the ship propulsion devices 12 and 13) calculated by the propulsion force calculation unit 14C is maintained at the value F1.
  • the propulsive force generated by the ship propulsion devices 12 and 13 is maintained at a constant value, and the speed of the ship 1 is also maintained at a constant value.
  • the ship propulsion devices 12 and 13 have a small propulsive force during the first period from the time t1 to the time t2 when the operation unit 11D is moved from the position P1 to the position P2.
  • the first propulsion force is generated, and then, during the second period after the time t2, the ship propulsion devices 12 and 13 generate the second propulsion force (the propulsion force having a value F1) larger than the first propulsion force. ..
  • the propulsive force generated by the ship propulsion devices 12 and 13 does not suddenly change from zero to the value F1, but gradually changes. Therefore, it is possible to improve the riding comfort at the start of movement of the ship 1, and it is possible to suppress the possibility that the passengers will stagger at the start of movement of the ship 1.
  • the first period setting unit 11E receives the request for extension of the length of the first period (the period from time t1 to time t2) by the ship operator, and the first period length changing unit 14D receives the first period length changing unit 14D.
  • the length of the period is extended from "time t1 to time t2 (see FIG. 9 (B))" to "time t1 to time t2'(see FIG. 9 (C))".
  • the propulsion force calculation unit 14C sets the target value of the propulsion force generated by the ship propulsion devices 12 and 13 during the period before the time t1. Calculate zero. As a result, the ship propulsion devices 12 and 13 do not generate propulsive force, and the speed of the ship 1 is zero.
  • the target value of the propulsive force (the propulsive force generated by the ship propulsion devices 12 and 13) calculated by the propulsion force calculation unit 14C. Gradually increases from zero to the value F1 as compared to the example shown in FIG. 9 (B).
  • the propulsive force generated by the ship propulsion devices 12 and 13 gradually increases, and the speed of the ship 1 also gradually increases.
  • the target value of the propulsive force (the propulsive force generated by the ship propulsion devices 12 and 13) calculated by the propulsion force calculation unit 14C is maintained at the value F1.
  • the propulsive force generated by the ship propulsion devices 12 and 13 is maintained at a constant value, and the speed of the ship 1 is also maintained at a constant value.
  • the ship is propelled during the first period (first period after extension) from the time t1 to the time t2'when the operation unit 11D is moved from the position P1 to the position P2.
  • the devices 12 and 13 generate a small propulsion force (first propulsion force), and then during the second period after time t2', the ship propulsion devices 12 and 13 generate a second propulsion force larger than the first propulsion force.
  • Propulsive force of value F1 is generated. That is, in the example shown in FIG. 9C, the propulsive force generated by the ship propulsion devices 12 and 13 gradually increases from zero to the value F1 as compared with the example shown in FIG. 9B. Therefore, the possibility that the passengers may stagger at the start of movement of the ship 1 can be suppressed as compared with the example shown in FIG. 9B.
  • the first period setting unit 11E receives the request for shortening the length of the first period (the period from time t1 to time t2) by the ship operator, and the first period length changing unit 14D receives the first period length changing unit 14D.
  • the length of the period is shortened from "time t1 to time t2 (see FIG. 9 (B))" to "time t1 to time t2" (see FIG. 9 (D)).
  • the propulsion force calculation unit 14C sets the target value of the propulsion force generated by the ship propulsion devices 12 and 13 during the period before the time t1. Calculate zero. As a result, the ship propulsion devices 12 and 13 do not generate propulsive force, and the speed of the ship 1 is zero.
  • the target value of the propulsive force (the propulsive force generated by the ship propulsion devices 12 and 13) calculated by the propulsion force calculation unit 14C. Increases from zero to the value F1 more rapidly than in the example shown in FIG. 9B.
  • the propulsive force generated by the ship propulsion devices 12 and 13 increases, and the speed of the ship 1 also increases.
  • the target value of the propulsive force (the propulsive force generated by the ship propulsion devices 12 and 13) calculated by the propulsion force calculation unit 14C is maintained at the value F1.
  • the propulsive force generated by the ship propulsion devices 12 and 13 is maintained at a constant value, and the speed of the ship 1 is also maintained at a constant value.
  • the ship is propelled during the first period (first period after shortening) from the time t1 to the time t2 ”when the operation unit 11D is moved from the position P1 to the position P2.
  • Devices 12 and 13 generate a small propulsion force (first propulsion force), and then during the second period after time t2 ", the ship propulsion devices 12 and 13 generate a second propulsion force larger than the first propulsion force.
  • Propulsive force of value F1 is generated. That is, in the example shown in FIG. 9D, the propulsive force generated by the ship propulsion devices 12 and 13 increases from zero to the value F1 more rapidly than in the example shown in FIG. 9B. Therefore, it is possible to suppress the possibility that the passengers may stagger at the start of movement of the ship 1 while satisfying the demands of the ship operator.
  • FIG. 10 shows a propulsion force calculated by the propulsion force calculation unit 14C of the ship propulsion device control device 14 of the second embodiment when the operation unit 11D is moved from the position P1 to the position P2 and maintained at the position P2. It is a figure for demonstrating the 2nd example such as the target value of (the propulsive force generated by ship propulsion devices 12 and 13).
  • FIG. 10 (A) shows the relationship between the positions P1 and P2 of the operation unit 11D and the time
  • FIG. 10 (B) shows the length of the first period by the first period length changing unit 14D.
  • FIG. 10C shows the propulsive force calculated by the propulsive force calculation unit 14C of the ship propulsion device control device 14 of the second embodiment after the length of the first period is extended by the first period length changing unit 14D.
  • 10 (D) shows the relationship between the target value and the time
  • FIG. 10 (D) shows the control device for the ship propulsion device of the second embodiment after the length of the first period is shortened by the first period length changing unit 14D.
  • the relationship between the target value of the propulsive force calculated by the propulsive force calculation unit 14C of 14 and the time is shown.
  • the operation unit 11D is located at the position P1 during the period before the time t1, and the operation unit 11D is moved from the position P1 to the position P2 at the time t1.
  • the operation unit 11D is maintained at the position P2 during the period after the time t1.
  • the propulsion force calculation unit 14C In the second example of the control device 14 for the ship propulsion device of the second embodiment, as shown in FIG. 10B, the propulsion force calculation unit 14C generates the ship propulsion devices 12 and 13 during the period before the time t1. Calculate zero as the target value of the driving force to be used. As a result, the ship propulsion devices 12 and 13 do not generate propulsive force, and the speed of the ship 1 is zero. Next, during the first period from time t1 to time t2, the propulsion force calculation unit 14C calculates a value F2 larger than zero and smaller than the value F1 as the target value of the propulsive force generated by the ship propulsion devices 12 and 13.
  • the propulsive force generated by the ship propulsion devices 12 and 13 gradually increases at time t1 from the example shown in FIG. 4 (C), and the speed of the ship 1 also increases more slowly than the example shown in FIG. 4 (C). Increase to.
  • the propulsion force calculation unit 14C calculates the value F1 as the target value of the propulsion force generated by the ship propulsion devices 12 and 13.
  • the propulsive force generated by the ship propulsion devices 12 and 13 gradually increases at time t2 to the same extent as the time t1, and the speed of the ship 1 also gradually increases to the same extent as the time t1.
  • the ship propulsion devices 12 and 13 were small first propulsion.
  • a force (propulsive force of value F2) is generated, and then during the second period after time t2, the ship propulsion devices 12 and 13 have a second propulsive force (propulsive force of value F1) larger than the first propulsive force.
  • the propulsive force generated by the ship propulsion devices 12 and 13 does not suddenly change from zero to the value F1, but changes in steps. Therefore, it is possible to improve the riding comfort at the start of movement of the ship 1, and it is possible to suppress the possibility that the passengers will stagger at the start of movement of the ship 1.
  • the first period setting unit 11E receives the request for extension of the length of the first period (the period from time t1 to time t2) by the ship operator, and the first period length changing unit 14D receives the first period length changing unit 14D.
  • the length of the period is extended from "time t1 to time t2 (see FIG. 10 (B))" to "time t1 to time t2'(see FIG. 10 (C))".
  • the propulsion force calculation unit 14C sets the target value of the propulsion force generated by the ship propulsion devices 12 and 13 during the period before the time t1. Calculate zero. As a result, the ship propulsion devices 12 and 13 do not generate propulsive force, and the speed of the ship 1 is zero.
  • the propulsion force calculation unit 14C sets the target value of the propulsive force generated by the ship propulsion devices 12 and 13 to be larger than zero. , A value F2 smaller than the value F1 is calculated.
  • the propulsion force calculation unit 14C calculates the value F1 as the target value of the propulsion force generated by the ship propulsion devices 12 and 13.
  • the ship is propelled during the first period (first period after extension) from the time t1 to the time t2'when the operation unit 11D is moved from the position P1 to the position P2.
  • the devices 12 and 13 generate a small propulsion force (first propulsion force), and then during the second period after time t2', the ship propulsion devices 12 and 13 generate a second propulsion force larger than the first propulsion force.
  • (Propulsive force of value F1) is generated. That is, in the example shown in FIG. 10 (C), since the first period is longer than the example shown in FIG. 10 (B), the propulsive force generated by the ship propulsion devices 12 and 13 is larger than that in the example shown in FIG. 10 (B). Also gradually increases. Therefore, the possibility that the passengers may stagger at the start of movement of the ship 1 can be suppressed as compared with the example shown in FIG. 10B.
  • the first period setting unit 11E receives the request for shortening the length of the first period (the period from time t1 to time t2) by the ship operator, and the first period length changing unit 14D receives the first period length changing unit 14D.
  • the length of the period is shortened from "time t1 to time t2 (see FIG. 10 (B))" to "time t1 to time t2" (see FIG. 10 (D)).
  • the propulsion force calculation unit 14C sets the target value of the propulsion force generated by the ship propulsion devices 12 and 13 during the period before the time t1. Calculate zero. As a result, the ship propulsion devices 12 and 13 do not generate propulsive force, and the speed of the ship 1 is zero.
  • the propulsion force calculation unit 14C sets the target value of the propulsion force generated by the ship propulsion devices 12 and 13 to be larger than zero. , A value F2 smaller than the value F1 is calculated.
  • the propulsion force calculation unit 14C calculates the value F1 as the target value of the propulsion force generated by the ship propulsion devices 12 and 13.
  • the ship is propelled during the first period (first period after shortening) from the time t1 to the time t2 ”when the operation unit 11D is moved from the position P1 to the position P2.
  • Devices 12 and 13 generate a small propulsion force (first propulsion force), and then during the second period after time t2 ", the ship propulsion devices 12 and 13 generate a second propulsion force larger than the first propulsion force.
  • Propulsive force of value F1 is generated. That is, in the example shown in FIG. 10 (D), the propulsive force generated by the ship propulsion devices 12 and 13 increases from zero to the value F1 more rapidly than in the example shown in FIG. 10 (B). Therefore, it is possible to suppress the possibility that the passengers may stagger at the start of movement of the ship 1 while satisfying the demands of the ship operator.
  • the ship propulsion device control device 14 of the third embodiment is configured in the same manner as the ship propulsion device control device 14 of the first embodiment described above, except for the points described later. Therefore, according to the ship propulsion device control device 14 of the third embodiment, the same effect as that of the ship propulsion device control device 14 of the first embodiment described above can be obtained except for the points described later.
  • FIG. 11 is a diagram showing an example of a ship 1 to which the control device 14 for a ship propulsion device of the third embodiment is applied.
  • the hull 11 includes a steering device 11A, a remote control device 11B, a remote control device 11C, and an operation unit 11D.
  • the hull 11 includes a steering device 11A, a remote control device 11B, a remote control device 11C, an operation unit 11D, and a mode setting unit 11F.
  • the mode setting unit 11F accepts, for example, the operator's selection of either a first mode (slow start mode) or a second mode (quick start mode).
  • the hull 11 may not include the steering device 11A, the remote control device 11B, and the remote control device 11C.
  • FIG. 12 shows the propulsion force calculated by the propulsion force calculation unit 14C of the ship propulsion device control device 14 of the third embodiment when the operation unit 11D is moved from the position P1 to the position P2 and maintained at the position P2. It is a figure for demonstrating the 1st example such as the target value of (the propulsive force generated by ship propulsion devices 12 and 13).
  • FIG. 12A shows the relationship between the positions P1 and P2 of the operation unit 11D and the time
  • FIG. 12B shows the mode setting unit 11F selecting the first mode (slow start mode).
  • FIG. 12 (C) shows the mode setting unit.
  • the 11th floor accepts the selection of the second mode (quick start mode)
  • the operation unit 11D is located at the position P1 during the period before the time t1, and the operation unit 11D is moved from the position P1 to the position P2 at the time t1.
  • the operation unit 11D is maintained at the position P2 during the period after the time t1.
  • the propulsion force calculation unit 14C calculates zero as the target value of the propulsion force generated by the ship propulsion devices 12 and 13. As a result, the ship propulsion devices 12 and 13 do not generate propulsive force, and the speed of the ship 1 is zero.
  • the target value of the propulsive force (the propulsive force generated by the ship propulsion devices 12 and 13) calculated by the propulsion force calculation unit 14C is from zero to the value F1, for example, constant.
  • the propulsive force generated by the ship propulsion devices 12 and 13 gradually increases, and the speed of the ship 1 also gradually increases.
  • the target value of the propulsive force (the propulsive force generated by the ship propulsion devices 12 and 13) calculated by the propulsion force calculation unit 14C is maintained at the value F1.
  • the propulsive force generated by the ship propulsion devices 12 and 13 is maintained at a constant value, and the speed of the ship 1 is also maintained at a constant value.
  • the ship propulsion devices 12 and 13 have a small propulsive force during the first period from time t1 to time t2 when the operation unit 11D is moved from the position P1 to the position P2.
  • the first propulsion force is generated, and then, during the second period after the time t2, the ship propulsion devices 12 and 13 generate the second propulsion force (the propulsion force having a value F1) larger than the first propulsion force. ..
  • the propulsive force generated by the ship propulsion devices 12 and 13 does not suddenly change from zero to the value F1, but gradually changes. Therefore, it is possible to improve the riding comfort at the start of movement of the ship 1, and it is possible to suppress the possibility that the passengers will stagger at the start of movement of the ship 1.
  • the propulsion force calculation unit 14C calculates zero as the target value of the propulsion force generated by the ship propulsion devices 12 and 13. As a result, the ship propulsion devices 12 and 13 do not generate propulsive force, and the speed of the ship 1 is zero.
  • the propulsion force calculation unit 14C calculates the value F1 as the target value of the propulsion force generated by the ship propulsion devices 12 and 13.
  • the propulsive force generated by the ship propulsion devices 12 and 13 sharply increases from zero to the value F1, and the speed of the ship 1 also sharply increases.
  • the target value of the propulsive force (the propulsive force generated by the ship propulsion devices 12 and 13) calculated by the propulsion force calculation unit 14C is maintained at the value F1.
  • the propulsive force generated by the ship propulsion devices 12 and 13 is maintained at a constant value, and the speed of the ship 1 is also maintained at a constant value.
  • the ship propulsion devices 12 and 13 have a second propulsion force (value) larger than the first propulsion force at the time t1 when the operation unit 11D is moved from the position P1 to the position P2.
  • the propulsive force of F1 is generated, and then the ship propulsion devices 12 and 13 continue to generate the second propulsive force during the period after the time t1. That is, in the example shown in FIG. 12C, the propulsive force generated by the ship propulsion devices 12 and 13 suddenly changes from zero to the value F1. Therefore, it is possible to satisfy the demand of the ship operator who desires to rapidly increase the propulsive force generated by the ship propulsion devices 12 and 13 from zero to the value F1.
  • FIG. 13 shows the propulsion force calculated by the propulsion force calculation unit 14C of the ship propulsion device control device 14 of the third embodiment when the operation unit 11D is moved from the position P1 to the position P2 and maintained at the position P2. It is a figure for demonstrating the 2nd example such as the target value of (the propulsive force generated by ship propulsion devices 12 and 13).
  • FIG. 13A shows the relationship between the positions P1 and P2 of the operation unit 11D and the time
  • FIG. 13B shows the mode setting unit 11F selecting the first mode (slow start mode).
  • FIG. 13 (C) shows the mode setting unit.
  • the 11th floor accepts the selection of the second mode (quick start mode)
  • the operation unit 11D is located at the position P1 during the period before the time t1, and the operation unit 11D is moved from the position P1 to the position P2 at the time t1.
  • the operation unit 11D is maintained at the position P2 during the period after the time t1.
  • the propulsion force calculation unit 14C calculates zero as the target value of the propulsion force generated by the ship propulsion devices 12 and 13. As a result, the ship propulsion devices 12 and 13 do not generate propulsive force, and the speed of the ship 1 is zero.
  • the propulsion force calculation unit 14C calculates a value F2 larger than zero and smaller than the value F1 as the target value of the propulsive force generated by the ship propulsion devices 12 and 13.
  • the propulsive force generated by the ship propulsion devices 12 and 13 gradually increases at time t1 from the example shown in FIG. 13 (C), and the speed of the ship 1 also increases more slowly than the example shown in FIG. 13 (C). Increase to.
  • the propulsion force calculation unit 14C calculates the value F1 as the target value of the propulsion force generated by the ship propulsion devices 12 and 13.
  • the propulsive force generated by the ship propulsion devices 12 and 13 gradually increases at time t2 to the same extent as the time t1, and the speed of the ship 1 also gradually increases to the same extent as the time t1.
  • the ship propulsion devices 12 and 13 are small first propulsion.
  • a force (propulsive force of value F2) is generated, and then during the second period after time t2, the ship propulsion devices 12 and 13 have a second propulsive force (propulsive force of value F1) larger than the first propulsive force.
  • the propulsive force generated by the ship propulsion devices 12 and 13 does not suddenly change from zero to the value F1, but changes in steps. Therefore, it is possible to improve the riding comfort at the start of movement of the ship 1, and it is possible to suppress the possibility that the passengers will stagger at the start of movement of the ship 1.
  • the propulsion force calculation unit 14C calculates zero as the target value of the propulsion force generated by the ship propulsion devices 12 and 13. As a result, the ship propulsion devices 12 and 13 do not generate propulsive force, and the speed of the ship 1 is zero.
  • the propulsion force calculation unit 14C calculates the value F1 as the target value of the propulsion force generated by the ship propulsion devices 12 and 13.
  • the propulsive force generated by the ship propulsion devices 12 and 13 sharply increases from zero to the value F1, and the speed of the ship 1 also sharply increases.
  • the target value of the propulsive force (the propulsive force generated by the ship propulsion devices 12 and 13) calculated by the propulsion force calculation unit 14C is maintained at the value F1.
  • the propulsive force generated by the ship propulsion devices 12 and 13 is maintained at a constant value, and the speed of the ship 1 is also maintained at a constant value.
  • the ship propulsion devices 12 and 13 have a second propulsion force (value) larger than the first propulsion force at the time t1 when the operation unit 11D is moved from the position P1 to the position P2.
  • the propulsive force of F1 is generated, and then the ship propulsion devices 12 and 13 continue to generate the second propulsive force during the period after the time t1. That is, in the example shown in FIG. 13C, the propulsive force generated by the ship propulsion devices 12 and 13 suddenly changes from zero to the value F1. Therefore, it is possible to satisfy the demand of the ship operator who desires to rapidly increase the propulsive force generated by the ship propulsion devices 12 and 13 from zero to the value F1.
  • the ship propulsion device control device 14 of the fourth embodiment is configured in the same manner as the ship propulsion device control device 14 of the third embodiment described above, except for the points described later. Therefore, according to the ship propulsion device control device 14 of the fourth embodiment, the same effect as that of the ship propulsion device control device 14 of the third embodiment described above can be obtained except for the points described later.
  • the hull 11 includes a steering device 11A, a remote control device 11B, a remote control device 11C, an operation unit 11D, and a mode setting unit 11F, and the mode setting unit 11F.
  • the hull 11 of the ship 1 to which the control device 14 for the ship propulsion device of the fourth embodiment is applied is not provided with the mode setting unit 11F.
  • the first mode (slow start mode) and the second mode (quick start mode) can be switched according to the position of the operation unit 11D. ..
  • the position P2 of the operation unit 11D where the ship propulsion devices 12 and 13 generate the propulsive force for translating the ship 1 to the right (FIG. 3 (FIG. 3).
  • B)) includes a first region and a second region.
  • the operation unit 11D when the operation unit 11D is located in the second region of the position P2, the operation unit 11D (the tip of the lever of the joystick) is in the state shown in FIG. 3 (B).
  • the tip of the lever of the joystick is located at the position indicated by the reference numeral “P1” in FIG. It is located between the position indicated by "P2".
  • the operation unit 11D (the tip of the lever of the joystick) is moved from the position P1 to the second region of the position P2, and the position P2.
  • the operation unit 11D moves from the position P1 to the position P2 as shown in FIG. 12 (B) or FIG. 13 (B).
  • the ship propulsion devices 12 and 13 generate a first propulsive force (a small propulsive force that translates the ship 1 to the right).
  • a second propulsion force (a large propulsion force for translating the ship 1 to the right) (a propulsion force having a value of F1) larger than the first propulsion force is applied to the ship propulsion devices 12 and 13.
  • the operation unit 11D the tip of the joystick lever
  • the control device 14 sets the second propulsion force (ship 1) at the time t1 when the operation unit 11D is moved from the position P1 to the first region of the position P2.
  • a large propulsion force for translational movement to the right) (propulsion force having a value of F1) is generated in the ship propulsion devices 12 and 13.
  • the second propulsion force is continuously generated in the ship propulsion devices 12 and 13 during the period after the time t1.
  • the position P3 of the operation unit 11D where the ship propulsion devices 12 and 13 generate the propulsive force for translating the ship 1 forward to the right (See (C)) includes a first region and a second region.
  • the operation unit 11D is moved from the position P1 (see FIG. 3A) to the first region of the position P3, the movement amount of the operation unit 11D becomes equal to or less than the threshold value (first threshold value).
  • the operation unit 11D is moved from the position P1 to the second region of the position P3, the movement amount of the operation unit 11D becomes larger than the threshold value (first threshold value).
  • the operation unit 11D when the operation unit 11D is located in the second region of the position P3, the operation unit 11D (the tip of the lever of the joystick) is in the state shown in FIG. 3C.
  • the tip of the lever of the joystick when the operation unit 11D is located in the first region of the position P3, the tip of the lever of the joystick is located at the position indicated by the reference numeral "P1" in FIG. 3A and the reference numeral "P1" in FIG. 3C. It is located between the position indicated by "P3".
  • the operation unit 11D (the tip of the lever of the joystick) is moved from the position P1 to the second region of the position P3, and the position P3.
  • the operation unit 11D moves from the position P1 to the position P3 as shown in FIG. 12 (B) or FIG. 13 (B).
  • the ship propulsion devices 12 and 13 generate a first propulsive force (a small propulsive force that translates the ship 1 forward to the right). ..
  • a second propulsion force (a large propulsion force that translates the ship 1 forward to the right) (a propulsion force equivalent to the value F1) that is larger than the first propulsion force is applied to the ship propulsion device. It is generated at 12 and 13.
  • the operation unit 11D the tip of the joystick lever
  • the control device 14 has a second propulsion force (ship 1) at time t1 when the operation unit 11D is moved from the position P1 to the first region of the position P3.
  • a large propulsive force that translates forward to the right) (a propulsive force equivalent to the value F1) is generated in the ship propulsion devices 12 and 13.
  • the second propulsion force is continuously generated in the ship propulsion devices 12 and 13 during the period after the time t1.
  • the position P4 of the operation unit 11D where the ship propulsion devices 12 and 13 generate the propulsive force for translating the ship 1 to the right rearward includes a first region and a second region.
  • the operation unit 11D is moved from the position P1 (see FIG. 3A) to the first region of the position P4, the movement amount of the operation unit 11D becomes equal to or less than the threshold value (first threshold value).
  • the operation unit 11D is moved from the position P1 to the second region of the position P4, the movement amount of the operation unit 11D becomes larger than the threshold value (first threshold value).
  • the operation unit 11D when the operation unit 11D is located in the second region of the position P4, the operation unit 11D (the tip of the lever of the joystick) is in the state shown in FIG. 3 (D).
  • the tip of the lever of the joystick when the operation unit 11D is located in the first region of the position P4, the tip of the lever of the joystick is located at the position indicated by the reference numeral “P1” in FIG. 3 (A) and the reference numeral “P1” in FIG. 3 (D). It is located between the position indicated by "P4".
  • the operation unit 11D (the tip of the lever of the joystick) is moved from the position P1 to the second region of the position P4, and the position P4.
  • the operation unit 11D moves from the position P1 to the position P4 as shown in FIG. 12 (B) or FIG. 13 (B).
  • the ship propulsion devices 12 and 13 generate a first propulsive force (a small propulsive force that translates the ship 1 backward to the right). ..
  • a second propulsion force (a large propulsion force that translates the ship 1 backward to the right) (a propulsion force equivalent to the value F1) that is larger than the first propulsion force is applied to the ship propulsion device. It is generated at 12 and 13.
  • the operation unit 11D the tip of the joystick lever
  • the control device 14 sets the second propulsion force (ship 1) at the time t1 when the operation unit 11D is moved from the position P1 to the first region of the position P4.
  • a large propulsive force for translating backward to the right) (a propulsive force equivalent to the value F1) is generated in the ship propulsion devices 12 and 13.
  • the second propulsion force is continuously generated in the ship propulsion devices 12 and 13 during the period after the time t1.
  • the ship propulsion device control device 14 of the fourth embodiment symmetrical control is executed on the right side and the left side of the ship 1. That is, in the ship 1 to which the control device 14 for the ship propulsion device of the fourth embodiment is applied, the operation unit 11D (the tip of the joystick lever) is moved from the position P1 to the second region of any of the positions P5 to P7. When moved and maintained in the second region of the positions P5 to P7 (slow start mode), the ship propulsion device control device 14 is as shown in FIG. 12 (B) or FIG. 13 (B).
  • the first propulsion force (ship 1 facing left, facing left forward or A small propulsion force that translates backward to the left) is generated in the ship propulsion devices 12 and 13.
  • a second propulsive force larger than the first propulsive force (a large propulsive force that translates the ship 1 to the left, forward left, or backward left) (propulsive force equivalent to the value F1). ) Is generated in the ship propulsion devices 12 and 13.
  • the ship propulsion device control device 14 moves the operation unit 11D from the position P1 to the first region of any of the positions P5 to P7 as shown in FIG. 12 (C) or FIG. 13 (C).
  • a second propulsive force (a large propulsive force that translates the ship 1 to the left, forward to the left, or backward to the left) (a propulsive force equivalent to the value F1) is generated in the ship propulsion devices 12 and 13.
  • the second propulsion force is continuously generated in the ship propulsion devices 12 and 13 during the period after the time t1.
  • the control shown in FIG. 12 or 13 is also applied to the control when the ship 1 moves in the front-rear direction (control to move the ship 1 forward or backward).
  • the position P8 of the operation unit 11D in which the ship propulsion devices 12 and 13 generate the propulsive force for advancing the ship 1 (see FIG. 3H). ) Includes a first region and a second region.
  • the operation unit 11D is moved from the position P1 (see FIG. 3A) to the first region of the position P8, the movement amount of the operation unit 11D becomes equal to or less than the threshold value (first threshold value).
  • the movement amount of the operation unit 11D becomes larger than the threshold value (first threshold value).
  • the operation unit 11D the tip of the lever of the joystick
  • the tip of the lever of the joystick is located at the position indicated by the reference numeral “P1” in FIG. 3 (A) and the reference numeral “P1” in FIG. 3 (H). It is located between the position indicated by "P8".
  • the operation unit 11D (the tip of the lever of the joystick) is moved from the position P1 to the second region of the position P8, and the position P8.
  • the operation unit 11D is moved from the position P1 to the position P8 as shown in FIG. 12 (B) or FIG. 13 (B).
  • the first propulsion force small propulsion force for advancing the ship 1 is generated in the ship propulsion devices 12 and 13.
  • a second propulsive force (a large propulsive force for advancing the ship 1) (a propulsive force equivalent to the value F1) larger than the first propulsive force is applied to the ship propulsion devices 12 and 13. generate.
  • the operation unit 11D the tip of the joystick lever
  • the control device 14 has a second propulsion force (ship 1) at time t1 when the operation unit 11D is moved from the position P1 to the first region of the position P8.
  • a large propulsive force to move forward) (a propulsive force equivalent to the value F1) is generated in the ship propulsion devices 12 and 13.
  • the second propulsion force is continuously generated in the ship propulsion devices 12 and 13 during the period after the time t1.
  • the position P9 of the operation unit 11D in which the ship propulsion devices 12 and 13 generate the propulsive force for moving the ship 1 backward (see FIG. 3 (I)). ) Includes a first region and a second region.
  • the operation unit 11D is moved from the position P1 (see FIG. 3A) to the first region of the position P9, the movement amount of the operation unit 11D becomes equal to or less than the threshold value (first threshold value).
  • the operation unit 11D is moved from the position P1 to the second region of the position P9, the movement amount of the operation unit 11D becomes larger than the threshold value (first threshold value).
  • the operation unit 11D when the operation unit 11D is located in the second region of the position P9, the operation unit 11D (the tip of the joystick lever) is in the state shown in FIG. 3 (I).
  • the tip of the lever of the joystick is located at the position indicated by the reference numeral “P1” in FIG. 3 (A) and the reference numeral “P1” in FIG. 3 (I). It is located between the position indicated by "P9".
  • the operation unit 11D (the tip of the lever of the joystick) is moved from the position P1 to the second region of the position P9, and the position P9.
  • the operation unit 11D is moved from the position P1 to the position P9 as shown in FIG. 12 (B) or FIG. 13 (B).
  • the first propulsion force small propulsion force for moving the ship 1 backward is generated in the ship propulsion devices 12 and 13.
  • a second propulsive force (a large propulsive force for moving the ship 1 to move backward) (a propulsive force equivalent to the value F1) larger than the first propulsive force is applied to the ship propulsion devices 12 and 13. generate.
  • the operation unit 11D the tip of the joystick lever
  • the control device 14 has a second propulsion force (ship 1) at time t1 when the operation unit 11D is moved from the position P1 to the first region of the position P9.
  • a large thrust to move backward (a propulsion force equivalent to the value F1) is generated in the ship propulsion devices 12 and 13.
  • the second propulsion force is continuously generated in the ship propulsion devices 12 and 13 during the period after the time t1.
  • the control shown in FIG. 12 or 13 also serves as a control for turning the ship 1 clockwise (control for turning the ship 1 clockwise on the spot). Applies.
  • the position P10 of the operation unit 11D in which the ship propulsion devices 12 and 13 generate the propulsive force for turning the ship 1 clockwise (FIG. 3 (FIG. 3). J)) includes a first region and a second region.
  • the operation unit 11D is moved from the position P1 (see FIG. 3A) to the first region of the position P10, the movement amount of the operation unit 11D becomes equal to or less than the threshold value (first threshold value).
  • the movement amount of the operation unit 11D becomes larger than the threshold value (first threshold value).
  • the operation unit 11D joint lever
  • the lever of the joystick has the position indicated by the reference numeral “P1” in FIG. 3 (A) and the reference numeral “P10” in FIG. 3 (H). It is located between the indicated position (that is, the amount of rotation of the joystick lever is smaller than the state shown in FIG. 3 (J)).
  • the operation unit 11D (joystick lever) is moved from the position P1 to the second region of the position P10, and the second of the position P10.
  • the control device 14 for the ship propulsion device is maintained in the region (slow start mode), as shown in FIG. 12 (B) or FIG. 13 (B)
  • the operation unit 11D moves from the position P1 to the second position P10.
  • a first propulsive force (a small propulsive force that turns the ship 1 clockwise) is generated in the ship propulsion devices 12 and 13.
  • the ship propulsion device 12 applies a second propulsion force (a large propulsion force that turns the ship 1 clockwise) (a propulsion force equivalent to the value F1) that is larger than the first propulsion force. , 13 to generate.
  • a second propulsion force a large propulsion force that turns the ship 1 clockwise
  • a propulsion force equivalent to the value F1 that is larger than the first propulsion force.
  • 13 to generate.
  • the control device 14 for the ship propulsion device 14 As shown in FIG. 12 (C) or FIG. 13 (C), the second propulsion force (vessel 1 clockwise) at time t1 when the operation unit 11D was moved from the position P1 to the first region of the position P10.
  • a large propulsive force for turning) (a propulsive force equivalent to the value F1) is generated in the ship propulsion devices 12 and 13.
  • the second propulsion force is continuously generated in the ship propulsion devices 12 and 13 during the period after the time t1.
  • the control shown in FIG. 12 or 13 is a control for turning the ship 1 counterclockwise (control for turning the ship 1 counterclockwise on the spot). Also applies to.
  • the position P11 of the operation unit 11D (FIG. 3) in which the ship propulsion devices 12 and 13 generate the propulsive force for turning the ship 1 counterclockwise. (See (K)) includes a first region and a second region. When the operation unit 11D is moved from the position P1 (see FIG. 3A) to the first region of the position P11, the movement amount of the operation unit 11D becomes equal to or less than the threshold value (first threshold value).
  • the movement amount of the operation unit 11D becomes larger than the threshold value (first threshold value).
  • the operation unit 11D joint lever
  • the lever of the joystick has the position indicated by the reference numeral "P1" in FIG. 3 (A) and the reference numeral "P11” in FIG. It is located between the indicated position (that is, the amount of rotation of the joystick lever is smaller than the state shown in FIG. 3 (K)).
  • the operation unit 11D (joystick lever) is moved from the position P1 to the second region of the position P11, and the second of the position P11.
  • the control device 14 for the ship propulsion device is maintained in the region (slow start mode), as shown in FIG. 12 (B) or FIG. 13 (B)
  • the operation unit 11D moves from the position P1 to the second position P11.
  • a first propulsion force (a small propulsion force for turning the ship 1 counterclockwise) is generated in the ship propulsion devices 12 and 13.
  • a second propulsion force (a large propulsion force that turns the ship 1 counterclockwise) (a propulsion force equivalent to the value F1) that is larger than the first propulsion force is applied to the ship propulsion device. It is generated at 12 and 13.
  • the ship propulsion device control device 14 As shown in FIG. 12 (C) or FIG. 13 (C), the second propulsion force (counterclockwise rotation of the ship 1) occurs at time t1 when the operation unit 11D is moved from the position P1 to the first region of the position P11.
  • a large propulsive force (a propulsive force equivalent to the value F1) is generated in the ship propulsion devices 12 and 13.
  • the second propulsion force is continuously generated in the ship propulsion devices 12 and 13 during the period after the time t1.
  • the slow start mode is set when the operation unit 11D (the tip of the joystick lever) is maintained in the second area
  • the quick start mode is set when the operation unit 11D is maintained in the first area.
  • the slow start mode may be set when the operation unit 11D is maintained in the first region
  • the quick start mode may be set when the operation unit 11D is maintained in the second region.
  • the ship propulsion device control device 14 of the fifth embodiment is configured in the same manner as the ship propulsion device control device 14 of the third embodiment described above, except for the points described later. Therefore, according to the ship propulsion device control device 14 of the fifth embodiment, the same effect as that of the ship propulsion device control device 14 of the third embodiment described above can be obtained except for the points described later.
  • the hull 11 includes a steering device 11A, a remote control device 11B, a remote control device 11C, an operation unit 11D, and a mode setting unit 11F, and the mode setting unit 11F.
  • the hull 11 of the ship 1 to which the control device 14 for the ship propulsion device of the fifth embodiment is applied is not provided with the mode setting unit 11F.
  • the first mode (slow start mode) is performed according to the time required for the operation unit 11D to move from the position P1 to any of the positions P2 to P11. ) And the second mode (quick start mode) can be switched.
  • the start time of movement of the operation unit 11D from the position P1 to the position P2 and the end time of the movement of the operation unit 11D from the position P1 to the position P2 are the same time (although it is shown as time t1), in reality, the movement start time of the operation unit 11D from the position P1 to the position P2 and the movement end time of the operation unit 11D from the position P1 to the position P2 are different.
  • the time from the movement start time of the operation unit 11D from the position P1 to the position P2 to the movement end time of the operation unit 11D from the position P1 to the position P2 (operation unit).
  • the movement time required for 11D) is used for switching between the first mode (slow start mode) and the second mode (quick start mode).
  • the operation unit 11D (the tip of the lever of the joystick) is moved from the position P1 (see FIG. 3A) to the position P2 (FIG. 3 (FIG. 3). B)) and maintained at position P2, and the time required to move the operation unit 11D from position P1 to position P2 is longer than a predetermined threshold (second threshold) (slow).
  • the control device 14 for the ship propulsion device is moved from the position P1 to the position P2 when the operation unit 11D is moved from the position P1 to the position P2 (movement end time) as shown in FIG. 12 (B) or FIG. 13 (B).
  • a first propulsive force (a small propulsive force that translates the ship 1 to the right) is generated in the ship propulsion devices 12 and 13.
  • a second propulsion force (a large propulsion force for translating the ship 1 to the right) (a propulsion force having a value of F1) larger than the first propulsion force is applied to the ship propulsion devices 12 and 13.
  • the control device 14 for the ship propulsion device has the operation unit 11D from the position P1 as shown in FIG. 12 (C) or FIG. 13 (C).
  • a second propulsive force (a large propulsive force that translates the ship 1 to the right) (a propulsive force having a value F1) is generated in the ship propulsion devices 12 and 13 at the time (movement end time) t1 when the ship 1 is moved to the position P2.
  • the second propulsion force is continuously generated in the ship propulsion devices 12 and 13 during the period after the time t1.
  • the operation unit 11D (the tip of the lever of the joystick) is moved from the position P1 (see FIG. 3A) to the position P3 (FIG. 3 (FIG. 3).
  • the time required for the operation unit 11D to move from the position P1 to the position P3 is longer than the threshold (second threshold) (slow start mode).
  • the ship propulsion device control device 14 starts from the time (movement end time) t1 when the operation unit 11D is moved from the position P1 to the position P3.
  • a first propulsive force (a small propulsive force that translates the ship 1 forward to the right) is generated in the ship propulsion devices 12 and 13.
  • a second propulsion force (a large propulsion force that translates the ship 1 forward to the right) (a propulsion force equivalent to the value F1) that is larger than the first propulsion force is applied to the ship propulsion device. It is generated at 12 and 13.
  • the operation unit 11D (the tip of the joystick lever) is moved from the position P1 to the position P3 and maintained at the position P3, the time required to move the operation unit 11D from the position P1 to the position P3
  • the threshold value second threshold value
  • the operation unit 11D is positioned from the position P1 as shown in FIG. 12 (C) or FIG. 13 (C).
  • a second propulsive force (a large propulsive force that translates the ship 1 forward to the right) (a propulsive force equivalent to the value F1) is generated in the ship propulsion devices 12 and 13 at the time (movement end time) t1 when the ship is moved to P3. Let me. Next, the second propulsion force is continuously generated in the ship propulsion devices 12 and 13 during the period after the time t1.
  • the operation unit 11D (the tip of the lever of the joystick) is moved from the position P1 (see FIG. 3A) to the position P4 (FIG. 3 (FIG. 3).
  • the time required to move the operation unit 11D from the position P1 to the position P4 is longer than the threshold value (second threshold value) (slow start mode).
  • the ship propulsion device control device 14 starts from the time (movement end time) t1 when the operation unit 11D is moved from the position P1 to the position P4.
  • a first propulsive force (a small propulsive force that translates the ship 1 backward to the right) is generated in the ship propulsion devices 12 and 13.
  • a second propulsion force (a large propulsion force that translates the ship 1 backward to the right) (a propulsion force equivalent to the value F1) that is larger than the first propulsion force is applied to the ship propulsion device. It is generated at 12 and 13.
  • the operation unit 11D the tip of the joystick lever
  • the operation unit 11D When it is equal to or less than the threshold value (second threshold value) (quick start mode), in the ship propulsion device control device 14, the operation unit 11D is positioned from the position P1 as shown in FIG. 12 (C) or FIG. 13 (C).
  • a second propulsive force (a large propulsive force that translates the ship 1 backward to the right) (a propulsive force equivalent to the value F1) is generated in the ship propulsion devices 12 and 13 at the time (movement end time) t1 when the ship is moved to P4. Let me. Next, the second propulsion force is continuously generated in the ship propulsion devices 12 and 13 during the period after the time t1.
  • the ship propulsion device control device 14 of the fifth embodiment symmetrical control is executed on the right side and the left side of the ship 1. That is, in the ship 1 to which the control device 14 for the ship propulsion device of the fifth embodiment is applied, the operation unit 11D (the tip of the joystick lever) is moved from the position P1 (see FIG. 3A) to the positions P5 to P7. In the case where the operation unit 11D is moved to any of the above positions and maintained at the positions P5 to P7, the time required for the operation unit 11D to move from the position P1 to the positions P5 to P7 is longer than the threshold value (second threshold value).
  • the threshold value second threshold value
  • the operation unit 11D is moved from the position P1 to the positions P5 to P7 as shown in FIG. 12 (B) or FIG. 13 (B).
  • a first propulsive force (a small propulsive force that translates the ship 1 to the left, forward left, or backward left) is generated in the ship propulsion devices 12 and 13.
  • a second propulsive force larger than the first propulsive force (a large propulsive force that translates the ship 1 to the left, forward left, or backward left) (propulsive force equivalent to the value F1).
  • the ship propulsion device control device 14 is shown in FIG. 12 (C) or FIG. 13 (C).
  • the second propulsive force (a large propulsive force that translates the ship 1 to the left, forward left, or backward left) ) (Propulsion force equivalent to the value F1) is generated in the ship propulsion devices 12 and 13.
  • the second propulsion force is continuously generated in the ship propulsion devices 12 and 13 during the period after the time t1.
  • the control shown in FIG. 12 or 13 is also applied to the control when the ship 1 moves in the front-rear direction (control to move the ship 1 forward or backward).
  • the ship In the ship 1 to which the control device 14 for the ship propulsion device of the fifth embodiment is applied, the operation unit 11D (the tip of the lever of the joystick) is moved from the position P1 (see FIG. 3A) to the position P8 (FIG. 3 (FIG. 3). H)) and maintained at position P8, and the time required to move the operation unit 11D from position P1 to position P8 is longer than the threshold (second threshold) (slow start mode). ), As shown in FIG. 12 (B) or FIG.
  • the ship propulsion device control device 14 starts from the time (movement end time) t1 when the operation unit 11D is moved from the position P1 to the position P8.
  • the first propulsion force small propulsion force for advancing the ship 1 is generated in the ship propulsion devices 12 and 13.
  • a second propulsive force (a large propulsive force for advancing the ship 1) (a propulsive force equivalent to the value F1) larger than the first propulsive force is applied to the ship propulsion devices 12 and 13. generate.
  • the operation unit 11D (the tip of the joystick lever) is moved from the position P1 to the position P8 and maintained at the position P8, the time required to move the operation unit 11D from the position P1 to the position P8 When it is equal to or less than the threshold value (second threshold value) (quick start mode), in the ship propulsion device control device 14, the operation unit 11D is positioned from the position P1 as shown in FIG. 12 (C) or FIG. 13 (C).
  • a second propulsive force (a large propulsive force for advancing the ship 1) (a propulsive force equivalent to the value F1) is generated in the ship propulsion devices 12 and 13.
  • the second propulsion force is continuously generated in the ship propulsion devices 12 and 13 during the period after the time t1.
  • the operation unit 11D (the tip of the lever of the joystick) is moved from the position P1 (see FIG. 3A) to the position P9 (FIG. 3 (FIG. 3).
  • the ship propulsion device control device 14 starts from the time (movement end time) t1 when the operation unit 11D is moved from the position P1 to the position P9.
  • the first propulsion force small propulsion force for moving the ship 1 backward
  • a second propulsive force a large propulsive force for moving the ship 1 to move backward
  • a propulsive force equivalent to the value F1 larger than the first propulsive force
  • the operation unit 11D (the tip of the joystick lever) is moved from the position P1 to the position P9 and maintained at the position P9, the time required to move the operation unit 11D from the position P1 to the position P9
  • the threshold value second threshold value
  • the operation unit 11D is positioned from the position P1 as shown in FIG. 12 (C) or FIG. 13 (C).
  • a second propulsion force (a large propulsion force for moving the ship 1 backward) (a propulsion force equivalent to the value F1) is generated in the ship propulsion devices 12 and 13 at the time (movement end time) t1 when the ship is moved to P9.
  • the second propulsion force is continuously generated in the ship propulsion devices 12 and 13 during the period after the time t1.
  • the control shown in FIG. 12 or 13 also serves as a control for turning the ship 1 clockwise (control for turning the ship 1 clockwise on the spot). Applies.
  • the operation unit 11D (joystick lever) is moved from the position P1 (see FIG. 3 (A)) to the position P10 (see FIG. 3 (J)). ), And the time required to move the operation unit 11D from the position P1 to the position P10 is longer than a predetermined threshold (second threshold) (slow start mode).
  • a predetermined threshold second threshold
  • the ship propulsion device control device 14 starts from the time (movement end time) t1 when the operation unit 11D is moved from the position P1 to the position P10.
  • a first propulsive force (a small propulsive force that turns the ship 1 clockwise) is generated in the ship propulsion devices 12 and 13.
  • the ship propulsion device 12 applies a second propulsion force (a large propulsion force that turns the ship 1 clockwise) (a propulsion force equivalent to the value F1) that is larger than the first propulsion force. , 13 to generate.
  • the time required for the operation unit 11D to move from the position P1 to the position P10 is a threshold value (third).
  • 2 threshold values 2 threshold values
  • the operation unit 11D moves from the position P1 to the position P10 as shown in FIG. 12 (C) or FIG. 13 (C).
  • a second propulsive force (a large propulsive force for turning the ship 1 clockwise) (a propulsive force equivalent to the value F1) is generated in the ship propulsion devices 12 and 13.
  • the second propulsion force is continuously generated in the ship propulsion devices 12 and 13 during the period after the time t1.
  • the control shown in FIG. 12 or 13 is a control for turning the ship 1 counterclockwise (control for turning the ship 1 counterclockwise on the spot). Also applies to.
  • the operation unit 11D (joystick lever) is moved from the position P1 (see FIG. 3 (A)) to the position P11 (see FIG. 3 (K)). ), And the time required to move the operation unit 11D from the position P1 to the position P11 is longer than the threshold (second threshold) (slow start mode).
  • the threshold second threshold
  • the control device 14 for the ship propulsion device is from the time (movement end time) t1 to the time t2 when the operation unit 11D is moved from the position P1 to the position P11.
  • the first propulsion force small propulsion force for turning the ship 1 counterclockwise
  • a second propulsion force a large propulsion force that turns the ship 1 counterclockwise
  • a propulsion force equivalent to the value F1 that is larger than the first propulsion force is applied to the ship propulsion device. It is generated at 12 and 13.
  • the time required for the operation unit 11D to move from the position P1 to the position P11 is a threshold value (third).
  • 2 threshold values 2 threshold values
  • the operation unit 11D moves from the position P1 to the position P11 as shown in FIG. 12 (C) or FIG. 13 (C).
  • a second propulsive force (a large propulsive force for turning the ship 1 counterclockwise) (a propulsive force equivalent to the value F1) is generated in the ship propulsion devices 12 and 13 at the time (movement end time) t1.
  • the second propulsion force is continuously generated in the ship propulsion devices 12 and 13 during the period after the time t1.
  • the ship 1 to which the control device 14 for the ship propulsion device of the sixth embodiment is applied is the ship 1 to which the control device 14 for the ship propulsion device 14 of the first to fifth embodiments described above is applied, except for the points described later. It is configured in the same way. Therefore, according to the ship 1 of the sixth embodiment, the same effect as that of the ship 1 of the first to fifth embodiments described above can be obtained except for the points described later.
  • the ship 1 (see FIGS. 1, 7 and 11) to which the ship propulsion device control device 14 of the first to fifth embodiments is applied is provided with two ship propulsion devices 12 and 13.
  • the ship 1 to which the control device 14 for the ship propulsion device of the sixth embodiment is applied is provided with three or more ship propulsion devices (not shown).
  • the control device 14 for the ship propulsion device of the sixth embodiment has a first propulsion force during the first period from time t1 to time t2 when the operation unit 11D is moved from the position P1 to any of the positions P2 to P11. Is generated in three or more ship propulsion devices, and then a second propulsion force larger than the first propulsion force is generated in three or more ship propulsion devices during the second period after time t2.
  • the ship 1 to which the control device 14 for the ship propulsion device of the seventh embodiment is applied is the ship 1 to which the control device 14 for the ship propulsion device 14 of the first to fifth embodiments described above is applied, except for the points described later. It is configured in the same way. Therefore, according to the ship 1 of the seventh embodiment, the same effect as that of the ship 1 of the first to fifth embodiments described above can be obtained except for the points described later.
  • FIG. 14 is a diagram showing an example of a ship 1 to which the control device 14 for a ship propulsion device of the seventh embodiment is applied.
  • the operation unit 11D is configured by a joystick having a lever.
  • the operation unit 11D is configured by a touch panel.
  • the propulsion units 12A1 and 13A1 and the steering actuators 12A2 and 13A2 can also be operated by operating the 11D (touch panel).
  • the hull 11 may not include the steering device 11A, the remote control device 11B, and the remote control device 11C.
  • the ship propulsion device control device 14 has the steering actuator 12A2 and the propulsion unit 12A1 of the ship propulsion device 12 and the steering actuator 13A2 and the propulsion of the ship propulsion device 13 based on the input operation to the operation unit 11D. It controls the unit 13A1.
  • the control device 14 for the ship propulsion device has a magnitude of the propulsive force of the ship 1 generated by the propulsion units 12A1 and 13A1 and the steering actuators 12A2 and 13A2 based on, for example, a flick input operation to the operation unit 11D (touch panel). And the direction and the magnitude and direction of the rotational moment are controlled.
  • the movement route calculation unit 14A calculates the movement route of the operation unit 11D. Specifically, the movement route calculation unit 14A calculates the movement route of the finger that the operator slides while pressing the touch panel.
  • the elapsed time calculation unit 14B calculates the elapsed time from the time when the operation unit 11D (the finger of the operator who presses the touch panel) is moved to a certain position.
  • the propulsion force calculation unit 14C has a movement path of the operation unit 11D calculated by the movement path calculation unit 14A (a movement path of a finger slid while pressing the touch panel) and an elapsed time calculated by the elapsed time calculation unit 14B.
  • the propulsive force generated in the ship propulsion devices 12 and 13 is calculated. Further, the propulsion force calculation unit 14C is used by the ship propulsion devices 12 and 13 based on the movement path of the operation unit 11D calculated by the movement route calculation unit 14A and the elapsed time calculated by the elapsed time calculation unit 14B. Calculate the rotational moment generated in 1.
  • the operation unit 11D is configured so that the flick input operation can be performed on the operation unit 11D (touch panel) and the rotation input operation can be performed.
  • the operator performs a rotation input operation by, for example, sliding one finger in the circumferential direction while pressing the touch panel in a state where one finger is brought into contact with the touch panel and fixed as a center point.
  • the ship propulsion device control device 14 steers the propulsion units 12A1, 13A1 and steering so that the hull 11 turns to the right. It controls the actuators 12A2 and 13A2.
  • the ship propulsion device control device 14 controls the propulsion units 12A1 and 13A1 so that the hull 11 turns to the left. And the steering actuators 12A2 and 13A2 are controlled. Further, when the ship operator performs a flick input operation on the operation unit 11D (touch panel), the ship operator's finger is slid on the ship propulsion device control device 14 while the hull 11 maintains the attitude. The propulsion units 12A1, 13A1 and the steering actuators 12A2, 13A2 are controlled so as to move in the direction. That is, when the operator performs a flick input operation on the operation unit 11D (touch panel), the front portion 111 of the hull 11 and the rear portion 112 of the hull 11 are translated.
  • the operation unit 11D When the operator does not perform a flick input operation on the operation unit 11D (touch panel) (that is, when the operator's finger does not touch the touch panel), the operation unit 11D is in the state shown in FIG. 3 (A). It becomes the same state as. As a result, the ship propulsion device control device 14 does not generate the propulsive force of the ship 1 in the propulsion units 12A1 and 13A1 and the steering actuators 12A2 and 13A2.
  • each part included in the control device 14 for the ship propulsion device in the above-described embodiment is recorded on a computer-readable recording medium with a program for realizing these functions, and the recording medium. It may be realized by loading the program recorded in the computer system into a computer system and executing the program.
  • the term "computer system” as used herein includes hardware such as an OS and peripheral devices.
  • the "computer-readable recording medium” refers to a portable medium such as a flexible disk, a magneto-optical disk, a ROM, or a CD-ROM, or a storage unit such as a hard disk built in a computer system.
  • a "computer-readable recording medium” is a communication line for transmitting a program via a network such as the Internet or a communication line such as a telephone line, and dynamically holds the program for a short period of time. It may also include a program that holds a program for a certain period of time, such as a volatile memory inside a computer system that serves as a server or a client in that case. Further, the above-mentioned program may be for realizing a part of the above-mentioned functions, and may further realize the above-mentioned functions in combination with a program already recorded in the computer system.
  • Ship propulsion device 13A ... Ship propulsion device body, 13A1 ... Propulsion unit, 13A2 ... Steering actuator, 13AX ... Steering shaft, 13B ... Bracket , 14 ... Ship propulsion device control device, 14A ... Movement route calculation unit, 14B ... Elapsed time calculation unit, 14C ... Propulsion force calculation unit, 14D ... First period length change unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

This control device for a ship propulsion device controls a plurality of ship propulsion devices. Each ship propulsion device is provided with a propulsion unit which is driven by an engine to generate a propulsive force for a ship, and a steering actuator. The ship is provided with an operating portion for actuating the steering actuator and the propulsion units. The operating portion is capable of being positioned in a first position in which the ship propulsion devices do not generate a propulsive force for the ship, and a second position in which the ship propulsion devices generate a propulsive force for the ship. When the operating portion is moved from the first position to the second position and is maintained at the second position, the ship propulsion devices generate a first propulsive force during a first period from a first time point at which the operating portion was moved from the first position to the second position, to a second time point, and the ship propulsion devices generate a second propulsive force greater than the first propulsive force during a second period after the second time point.

Description

船舶推進装置用制御装置、船舶推進装置用制御方法およびプログラムControl device for ship propulsion device, control method and program for ship propulsion device
 本発明は、船舶推進装置用制御装置、船舶推進装置用制御方法およびプログラムに関する。
 本願は、2019年6月6日に、日本に出願された特願2019-106518号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a control device for a ship propulsion device, a control method and a program for a ship propulsion device.
The present application claims priority based on Japanese Patent Application No. 2019-106518 filed in Japan on June 6, 2019, the contents of which are incorporated herein by reference.
 従来から、乗り心地が良好に保たれるようにした船外機が知られている(例えば特許文献1参照)。特許文献1に記載された船外機は、船体の後部に支持されるプロペラ駆動用のエンジンを備えている。特許文献1には、エンジンの空気吸入開口が船体の後方に向って開口しているため、エンジンの駆動時に吸気騒音が発生しても、吸気騒音が船体上の乗船者に向かわず、乗り心地が良好に保たれる旨が記載されている。
 ところで、特許文献1に記載された技術では、吸気騒音が乗船者に向かわないようにすることができるものの、船舶の移動開始時の乗り心地を向上させるための対策が施されていない。
Conventionally, outboard motors that maintain good riding comfort have been known (see, for example, Patent Document 1). The outboard motor described in Patent Document 1 includes an engine for driving a propeller supported at the rear of the hull. In Patent Document 1, since the air intake opening of the engine is opened toward the rear of the hull, even if intake noise is generated when the engine is driven, the intake noise does not face the passengers on the hull, and the ride comfort is achieved. It is stated that is maintained in good condition.
By the way, in the technique described in Patent Document 1, although it is possible to prevent the intake noise from facing the passengers, no measures are taken to improve the riding comfort at the start of movement of the ship.
特開2002-098017号公報Japanese Unexamined Patent Publication No. 2002-098017
 上述した問題点に鑑み、本発明は、船舶の移動開始時の乗り心地を向上させることができる船舶推進装置用制御装置、船舶推進装置用制御方法およびプログラムを提供することを目的とする。 In view of the above-mentioned problems, an object of the present invention is to provide a control device for a ship propulsion device, a control method and a program for a ship propulsion device, which can improve the riding comfort at the start of movement of a ship.
 本発明者等は、鋭意研究において、例えばジョイスティックのレバーの先端部が中立位置から例えば右傾倒位置などに移動させられて維持される場合に、船舶推進装置が発生する推進力として、最初の期間中に右向きの小さい推進力が算出され、次いで、その期間の後の期間中に、最初の期間中の推進力よりも大きい推進力が算出されることによって、船舶の移動開始時の乗り心地が格段に向上し、船舶の移動開始時に乗船者がよろけてしまうおそれが抑制されることを見い出したのである。 In diligent research, the present inventors have conducted the first period as a propulsive force generated by a ship propulsion device when, for example, the tip of a joystick lever is moved and maintained from a neutral position to, for example, a rightward tilted position. A small thrust to the right is calculated during, and then during the later period, a greater propulsion than during the first period is calculated, resulting in a better ride at the start of the vessel's movement. It was found that it was significantly improved and the risk of the passengers staggering at the start of movement of the ship was suppressed.
 本発明の一態様は、複数の船舶推進装置を制御する船舶推進装置用制御装置であって、前記複数の船舶推進装置のそれぞれは、エンジンによって駆動されて船舶の推進力を発生する推進ユニットと、操舵アクチュエータとを備え、前記船舶は、前記推進ユニットおよび前記操舵アクチュエータを作動させる操作部を備え、前記操作部は、少なくとも前記複数の船舶推進装置が前記船舶の推進力を発生しない位置である第1位置と、前記複数の船舶推進装置が前記船舶の推進力を発生する位置である第2位置に位置することができ、前記操作部が、前記第1位置から前記第2位置に移動させられて、前記第2位置に維持される場合に、前記船舶推進装置用制御装置は、前記操作部が前記第1位置から前記第2位置に移動させられた第1時刻から第2時刻までの第1期間中に、第1推進力を前記複数の船舶推進装置に発生させ、次いで、前記第2時刻以降の第2期間中に、前記第1推進力よりも大きい第2推進力を前記複数の船舶推進装置に発生させる、船舶推進装置用制御装置である。 One aspect of the present invention is a control device for a ship propulsion device that controls a plurality of ship propulsion devices, and each of the plurality of ship propulsion devices is a propulsion unit that is driven by an engine to generate propulsive force of the ship. The ship includes a propulsion unit and an operation unit for operating the steering actuator, and the operation unit is at a position where at least the plurality of ship propulsion devices do not generate propulsive force of the ship. The first position and the second position where the plurality of ship propulsion devices generate the propulsive force of the ship can be located, and the operation unit is moved from the first position to the second position. Then, when the control device for the ship propulsion device is maintained at the second position, the operation unit is moved from the first position to the second position from the first time to the second time. During the first period, the first propulsion force is generated in the plurality of ship propulsion devices, and then, during the second period after the second time, the plurality of second propulsion forces larger than the first propulsion force are generated. It is a control device for a ship propulsion device generated in the ship propulsion device of.
 本発明の一態様は、複数の船舶推進装置を制御する船舶推進装置用制御方法であって、前記複数の船舶推進装置のそれぞれは、エンジンによって駆動されて船舶の推進力を発生する推進ユニットと、操舵アクチュエータとを備え、前記船舶は、前記推進ユニットおよび前記操舵アクチュエータを作動させる操作部を備え、前記操作部は、少なくとも前記複数の船舶推進装置が前記船舶の推進力を発生しない位置である第1位置と、前記複数の船舶推進装置が前記船舶の推進力を発生する位置である第2位置に位置することができ、前記操作部が、前記第1位置から前記第2位置に移動させられて、前記第2位置に維持される場合に、前記操作部が前記第1位置から前記第2位置に移動させられた第1時刻から第2時刻までの第1期間中に、第1推進力を前記複数の船舶推進装置に発生させ、次いで、前記第2時刻以降の第2期間中に、前記第1推進力よりも大きい第2推進力を前記複数の船舶推進装置に発生させる、船舶推進装置用制御方法である。 One aspect of the present invention is a control method for a ship propulsion device that controls a plurality of ship propulsion devices, and each of the plurality of ship propulsion devices is a propulsion unit that is driven by an engine to generate propulsive force of the ship. The ship includes a propulsion unit and an operation unit for operating the steering actuator, and the operation unit is at a position where at least the plurality of ship propulsion devices do not generate propulsive force of the ship. The first position and the second position where the plurality of ship propulsion devices generate the propulsive force of the ship can be located, and the operation unit is moved from the first position to the second position. Then, when the operation unit is maintained at the second position, the first propulsion is performed during the first period from the first time to the second time when the operation unit is moved from the first position to the second position. A ship that generates a force in the plurality of ship propulsion devices, and then generates a second propulsion force larger than the first propulsion force in the plurality of ship propulsion devices during the second period after the second time. This is a control method for propulsion devices.
 本発明の一態様は、複数の船舶推進装置を制御するプログラムであって、前記複数の船舶推進装置のそれぞれは、エンジンによって駆動されて船舶の推進力を発生する推進ユニットと、操舵アクチュエータとを備え、前記船舶は、前記推進ユニットおよび前記操舵アクチュエータを作動させる操作部を備え、前記操作部は、少なくとも前記複数の船舶推進装置が前記船舶の推進力を発生しない位置である第1位置と、前記複数の船舶推進装置が前記船舶の推進力を発生する位置である第2位置に位置することができ、前記操作部が、前記第1位置から前記第2位置に移動させられて、前記第2位置に維持される場合に、コンピュータに、前記操作部が前記第1位置から前記第2位置に移動させられた第1時刻から第2時刻までの第1期間中に、前記複数の船舶推進装置が第1推進力を発生する第1ステップと、前記第2時刻以降の第2期間中に、前記複数の船舶推進装置が前記第1推進力よりも大きい第2推進力を発生する第2ステップとを実行させるためのプログラムである。 One aspect of the present invention is a program for controlling a plurality of ship propulsion devices, and each of the plurality of ship propulsion devices includes a propulsion unit driven by an engine to generate propulsive force of the ship and a steering actuator. The ship includes an operation unit for operating the propulsion unit and the steering actuator, and the operation unit includes a first position where at least the plurality of ship propulsion devices do not generate propulsive force of the ship. The plurality of ship propulsion devices can be positioned at a second position, which is a position where the propulsive force of the ship is generated, and the operation unit is moved from the first position to the second position, and the first position. When maintained at two positions, the computer propulses the plurality of vessels during the first period from the first time to the second time when the operation unit is moved from the first position to the second position. During the first step in which the device generates the first propulsion force and the second period after the second time, the plurality of ship propulsion devices generate a second propulsion force larger than the first propulsion force. It is a program for executing steps.
 本発明によれば、船舶の移動開始時の乗り心地を向上させることができる船舶推進装置用制御装置、船舶推進装置用制御方法およびプログラムを提供することができる。 According to the present invention, it is possible to provide a control device for a ship propulsion device, a control method and a program for the ship propulsion device, which can improve the riding comfort at the start of movement of the ship.
第1実施形態の船舶推進装置用制御装置が適用される船舶の一例を示す図である。It is a figure which shows an example of the ship to which the control device for a ship propulsion device of 1st Embodiment is applied. 図1に示す船舶の主要部の機能ブロック図である。It is a functional block diagram of the main part of the ship shown in FIG. 第1実施形態の船舶における操作部の位置(詳細には、ジョイスティックのレバーの先端部の位置、ジョイスティックのレバーの時計回りの回動位置、および、ジョイスティックのレバーの反時計回りの回動位置)の例を説明するための図である。Position of the operation unit in the ship of the first embodiment (specifically, the position of the tip of the joystick lever, the clockwise rotation position of the joystick lever, and the counterclockwise rotation position of the joystick lever). It is a figure for demonstrating an example of. 操作部が、位置P1から位置P2に移動させられて位置P2に維持され、次いで、位置P2から位置P1に移動させられて位置P1に維持される場合に第1実施形態の船舶推進装置用制御装置の推進力算出部によって算出される推進力の目標値などの第1例を説明するための図である。The control for the ship propulsion device of the first embodiment when the operation unit is moved from the position P1 to the position P2 and maintained at the position P2, and then moved from the position P2 to the position P1 and maintained at the position P1. It is a figure for demonstrating the 1st example such as the target value of the propulsive force calculated by the propulsive force calculation part of an apparatus. 操作部が、位置P1から位置P2に移動させられて位置P2に維持され、次いで、位置P2から位置P1に移動させられて位置P1に維持される場合に第1実施形態の船舶推進装置用制御装置の推進力算出部によって算出される推進力の目標値などの第2例を説明するための図である。The control for the ship propulsion device of the first embodiment when the operation unit is moved from the position P1 to the position P2 and maintained at the position P2, and then moved from the position P2 to the position P1 and maintained at the position P1. It is a figure for demonstrating the 2nd example such as the target value of the propulsion force calculated by the propulsion force calculation part of an apparatus. 第1実施形態の船舶推進装置用制御装置によって実行される処理の一例を説明するためのフローチャートである。It is a flowchart for demonstrating an example of the process executed by the control device for a ship propulsion device of 1st Embodiment. 第2実施形態の船舶推進装置用制御装置が適用される船舶の一例を示す図である。It is a figure which shows an example of the ship to which the control device for a ship propulsion device of 2nd Embodiment is applied. 図7に示す船舶の主要部の機能ブロック図である。It is a functional block diagram of the main part of the ship shown in FIG. 操作部が、位置P1から位置P2に移動させられて位置P2に維持される場合に第2実施形態の船舶推進装置用制御装置の推進力算出部によって算出される推進力の目標値などの第1例を説明するための図である。When the operation unit is moved from the position P1 to the position P2 and maintained at the position P2, the target value of the propulsion force calculated by the propulsion force calculation unit of the control device for the ship propulsion device of the second embodiment is the first. It is a figure for demonstrating one example. 操作部が、位置P1から位置P2に移動させられて位置P2に維持される場合に第2実施形態の船舶推進装置用制御装置の推進力算出部によって算出される推進力の目標値などの第2例を説明するための図である。When the operation unit is moved from the position P1 to the position P2 and maintained at the position P2, the target value of the propulsion force calculated by the propulsion force calculation unit of the control device for the ship propulsion device of the second embodiment is the first. It is a figure for demonstrating two examples. 第3実施形態の船舶推進装置用制御装置が適用される船舶の一例を示す図である。It is a figure which shows an example of the ship to which the control device for a ship propulsion device of 3rd Embodiment is applied. 操作部が、位置P1から位置P2に移動させられて位置P2に維持される場合に第3実施形態の船舶推進装置用制御装置の推進力算出部によって算出される推進力の目標値などの第1例を説明するための図である。When the operation unit is moved from the position P1 to the position P2 and maintained at the position P2, the target value of the propulsion force calculated by the propulsion force calculation unit of the control device for the ship propulsion device of the third embodiment is the first. It is a figure for demonstrating one example. 操作部が、位置P1から位置P2に移動させられて位置P2に維持される場合に第3実施形態の船舶推進装置用制御装置の推進力算出部によって算出される推進力の目標値などの第2例を説明するための図である。When the operation unit is moved from the position P1 to the position P2 and maintained at the position P2, the target value of the propulsion force calculated by the propulsion force calculation unit of the control device for the ship propulsion device of the third embodiment is the first. It is a figure for demonstrating two examples. 第7実施形態の船舶推進装置用制御装置が適用される船舶の一例を示す図である。It is a figure which shows an example of the ship to which the control device for a ship propulsion device of 7th Embodiment is applied.
<第1実施形態>
 以下、本発明の船舶推進装置用制御装置、船舶推進装置用制御方法およびプログラムの第1実施形態について説明する。
<First Embodiment>
Hereinafter, the first embodiment of the ship propulsion device control device, the ship propulsion device control method, and the program of the present invention will be described.
 図1は第1実施形態の船舶推進装置用制御装置14が適用される船舶1の一例を示す図である。図2は図1に示す船舶1の主要部の機能ブロック図である。
 図1および図2に示す例では、船舶1が、船体11と、船舶推進装置12と、船舶推進装置13と、船舶推進装置用制御装置14とを備えている。船舶推進装置12、13は、船舶1の推進力を発生する。
FIG. 1 is a diagram showing an example of a ship 1 to which the control device 14 for a ship propulsion device of the first embodiment is applied. FIG. 2 is a functional block diagram of the main part of the ship 1 shown in FIG.
In the example shown in FIGS. 1 and 2, the ship 1 includes a hull 11, a ship propulsion device 12, a ship propulsion device 13, and a ship propulsion device control device 14. The ship propulsion devices 12 and 13 generate the propulsive force of the ship 1.
 図1および図2に示す例では、船舶推進装置12が、船体11の後部112の右側部分に配置されている。船舶推進装置12は、船舶推進装置本体12Aと、ブラケット12Bとを備えている。ブラケット12Bは、船舶推進装置12を船体11の後部112の右側部分に取り付けるための機構である。船舶推進装置本体12Aは、操舵軸12AXを中心に船体11に対して回動可能に、ブラケット12Bを介して船体11の後部112の右側部分に接続されている。
 船舶推進装置本体12Aは、推進ユニット12A1と、操舵アクチュエータ12A2とを備えている。推進ユニット12A1は、エンジン(図示せず)によって駆動され、船舶1の推進力を発生する。操舵アクチュエータ12A2は、操舵軸12AXを中心に、推進ユニット12A1を含む船舶推進装置本体12Aの全体を、船体11に対して回動させる。操舵アクチュエータ12A2は、舵の役目を担う。
In the examples shown in FIGS. 1 and 2, the ship propulsion device 12 is arranged on the right side of the rear 112 of the hull 11. The ship propulsion device 12 includes a ship propulsion device main body 12A and a bracket 12B. The bracket 12B is a mechanism for attaching the ship propulsion device 12 to the right side portion of the rear portion 112 of the hull 11. The ship propulsion device main body 12A is rotatably connected to the hull 11 about the steering shaft 12AX and is connected to the right side portion of the rear 112 of the hull 11 via the bracket 12B.
The ship propulsion device main body 12A includes a propulsion unit 12A1 and a steering actuator 12A2. The propulsion unit 12A1 is driven by an engine (not shown) to generate the propulsive force of ship 1. The steering actuator 12A2 rotates the entire ship propulsion device main body 12A including the propulsion unit 12A1 with respect to the hull 11 around the steering shaft 12AX. The steering actuator 12A2 serves as a rudder.
 図1および図2に示す例では、船舶推進装置13が、船体11の後部112の左側部分に配置されている。船舶推進装置13は、船舶推進装置本体13Aと、ブラケット13Bとを備えている。ブラケット13Bは、船舶推進装置13を船体11の後部112の左側部分に取り付けるための機構である。船舶推進装置本体13Aは、操舵軸13AXを中心に船体11に対して回動可能に、ブラケット13Bを介して船体11の後部112の左側部分に接続されている。
 船舶推進装置本体13Aは、推進ユニット13A1と、操舵アクチュエータ13A2とを備えている。推進ユニット13A1は、推進ユニット12A1と同様に、エンジン(図示せず)によって駆動され、船舶1の推進力を発生する。操舵アクチュエータ13A2は、操舵軸13AXを中心に、推進ユニット13A1を含む船舶推進装置本体13Aの全体を、船体11に対して回動させる。操舵アクチュエータ13A2は、舵の役目を担う。
In the examples shown in FIGS. 1 and 2, the ship propulsion device 13 is arranged on the left side portion of the rear 112 of the hull 11. The ship propulsion device 13 includes a ship propulsion device main body 13A and a bracket 13B. The bracket 13B is a mechanism for attaching the ship propulsion device 13 to the left side portion of the rear portion 112 of the hull 11. The ship propulsion device main body 13A is rotatably connected to the hull 11 about the steering shaft 13AX and is connected to the left side portion of the rear 112 of the hull 11 via the bracket 13B.
The ship propulsion device main body 13A includes a propulsion unit 13A1 and a steering actuator 13A2. Like the propulsion unit 12A1, the propulsion unit 13A1 is driven by an engine (not shown) to generate the propulsive force of the ship 1. The steering actuator 13A2 rotates the entire ship propulsion device main body 13A including the propulsion unit 13A1 with respect to the hull 11 around the steering shaft 13AX. The steering actuator 13A2 serves as a rudder.
 図1および図2に示す例では、船舶推進装置12、13が、例えばエンジンによって駆動されるプロペラ仕様の推進ユニット12A1、13A1を有する船外機である。他の例では、船舶推進装置12、13が、エンジンによって駆動されるプロペラ仕様の推進ユニットを有する船内機、エンジンによって駆動されるプロペラ仕様の推進ユニットを有する船内外機、エンジンによって駆動されるウォータージェット仕様の推進ユニットを有する船舶推進装置、エンジンによって駆動されるポッドドライブ型の船舶推進装置などであってもよい。 In the examples shown in FIGS. 1 and 2, the ship propulsion devices 12 and 13 are outboard motors having propeller-specification propulsion units 12A1 and 13A1 driven by, for example, an engine. In another example, the ship propulsion devices 12 and 13 have an inboard unit having a propeller-specific propulsion unit driven by an engine, an inboard / outboard unit having a propeller-specific propulsion unit driven by an engine, and water driven by an engine. It may be a ship propulsion device having a jet-type propulsion unit, a pod drive type ship propulsion device driven by an engine, or the like.
 図1および図2に示す例では、船体11が、操舵装置11Aと、リモコン装置11Bと、リモコン装置11Cと、操作部11Dとを備えている。
 他の例では、船体11が、操舵装置11A、リモコン装置11Bおよびリモコン装置11Cを備えていなくてもよい。
In the example shown in FIGS. 1 and 2, the hull 11 includes a steering device 11A, a remote control device 11B, a remote control device 11C, and an operation unit 11D.
In another example, the hull 11 may not include the steering device 11A, the remote control device 11B, and the remote control device 11C.
 図1および図2に示す例では、操舵装置11Aが、操舵アクチュエータ12A2、13A2を作動させる装置であり、例えばステアリングホイールを有するステアリング装置である。操船者は、操舵装置11Aを操作することによって、操舵アクチュエータ12A2、13A2を作動させ、船舶1の操舵を行うことができる。
 リモコン装置11Bは、推進ユニット12A1を作動させる入力操作を受け付ける装置であり、例えばリモコンレバーを有する。操船者は、リモコン装置11Bを操作することによって、推進ユニット12A1が発生する推進力の大きさおよび向きを変更することができる。リモコン装置11Bのリモコンレバーは、推進ユニット12A1が船舶1の前向きの推進力を発生する前進領域と、推進ユニット12A1が船舶1の後向きの推進力を発生する後進領域と、推進ユニット12A1が推進力を発生しないニュートラル領域とに位置することができる。前進領域内におけるリモコンレバーの位置に応じて、推進ユニット12A1が発生する船舶1の前向きの推進力の大きさが変化する。また、後進領域内におけるリモコンレバーの位置に応じて、推進ユニット12A1が発生する船舶1の後向きの推進力の大きさが変化する。
In the example shown in FIGS. 1 and 2, the steering device 11A is a device that operates the steering actuators 12A2 and 13A2, and is, for example, a steering device having a steering wheel. By operating the steering device 11A, the ship operator can operate the steering actuators 12A2 and 13A2 to steer the ship 1.
The remote control device 11B is a device that receives an input operation for operating the propulsion unit 12A1, and has, for example, a remote control lever. The operator can change the magnitude and direction of the propulsive force generated by the propulsion unit 12A1 by operating the remote control device 11B. The remote control lever of the remote control device 11B includes a forward region in which the propulsion unit 12A1 generates a forward propulsive force for the ship 1, a reverse region in which the propulsion unit 12A1 generates a backward propulsive force for the ship 1, and a propulsion unit 12A1. Can be located in a neutral region that does not generate. The magnitude of the forward propulsive force of the ship 1 generated by the propulsion unit 12A1 changes according to the position of the remote control lever in the forward region. Further, the magnitude of the backward propulsive force of the ship 1 generated by the propulsion unit 12A1 changes according to the position of the remote control lever in the reverse region.
 図1および図2に示す例では、リモコン装置11Cが、推進ユニット13A1を作動させる入力操作を受け付ける装置であり、リモコン装置11Bと同様に構成されている。つまり、操船者は、リモコン装置11Cを操作することによって、推進ユニット13A1が発生する推進力の大きさおよび向きを変更することができる。
 操作部11Dは、推進ユニット12A1、13A1および操舵アクチュエータ12A2、13A2を作動させる装置である。詳細には、操作部11Dは、推進ユニット12A1、13A1および操舵アクチュエータ12A2、13A2を作動させるための入力操作を受け付ける。操作部11Dは、操舵装置11Aおよびリモコン装置11B、11Cとは別個に設けられている。
 第1実施形態の船舶1では、操作部11Dが、レバーを有するジョイスティックによって構成されている。
 操船者は、操舵装置11A(ステアリングホイール)およびリモコン装置11B、11C(リモコンレバー)を操作することによって、推進ユニット12A1、13A1および操舵アクチュエータ12A2、13A2を作動させることができるのみならず、操作部11D(ジョイスティック)を操作することによっても、推進ユニット12A1、13A1および操舵アクチュエータ12A2、13A2を作動させることができる。
In the examples shown in FIGS. 1 and 2, the remote control device 11C is a device that receives an input operation for operating the propulsion unit 13A1, and is configured in the same manner as the remote control device 11B. That is, the operator can change the magnitude and direction of the propulsive force generated by the propulsion unit 13A1 by operating the remote control device 11C.
The operation unit 11D is a device that operates the propulsion units 12A1 and 13A1 and the steering actuators 12A2 and 13A2. Specifically, the operation unit 11D receives an input operation for operating the propulsion units 12A1 and 13A1 and the steering actuators 12A2 and 13A2. The operation unit 11D is provided separately from the steering device 11A and the remote controller devices 11B and 11C.
In the ship 1 of the first embodiment, the operation unit 11D is composed of a joystick having a lever.
By operating the steering device 11A (steering wheel) and the remote control devices 11B and 11C (remote lever), the operator can not only operate the propulsion units 12A1 and 13A1 and the steering actuators 12A2 and 13A2, but also the operation unit. The propulsion units 12A1 and 13A1 and the steering actuators 12A2 and 13A2 can also be operated by operating the 11D (joystick).
 図1および図2に示す例では、船舶推進装置用制御装置14が、操作部11Dに対する入力操作に基づいて、船舶推進装置12の推進ユニット12A1および操舵アクチュエータ12A2と、船舶推進装置13の推進ユニット13A1および操舵アクチュエータ13A2とを制御する。詳細には、船舶推進装置用制御装置14は、操作部11Dに対する入力操作に基づいて、推進ユニット12A1、13A1および操舵アクチュエータ12A2、13A2が発生する船舶1の推進力の大きさおよび向きを制御する。
 推進ユニット12A1、13A1および操舵アクチュエータ12A2、13A2が発生する推進力の大きさおよび向きに応じて、船舶1には、回転モーメントが生じ得る。つまり、船舶推進装置用制御装置14は、操作部11Dに対する入力操作に基づいて推進ユニット12A1、13A1および操舵アクチュエータ12A2、13A2を制御することによって、船舶1に発生する回転モーメントの大きさおよび向きも制御する。
In the example shown in FIGS. 1 and 2, the control device 14 for the ship propulsion device has the propulsion unit 12A1 and the steering actuator 12A2 of the ship propulsion device 12 and the propulsion unit of the ship propulsion device 13 based on the input operation to the operation unit 11D. It controls 13A1 and the steering actuator 13A2. Specifically, the ship propulsion device control device 14 controls the magnitude and direction of the propulsive force of the ship 1 generated by the propulsion units 12A1, 13A1 and the steering actuators 12A2, 13A2 based on the input operation to the operation unit 11D. ..
Depending on the magnitude and direction of the propulsive force generated by the propulsion units 12A1, 13A1 and the steering actuators 12A2, 13A2, a rotational moment may be generated in the vessel 1. That is, the control device 14 for the ship propulsion device controls the propulsion units 12A1 and 13A1 and the steering actuators 12A2 and 13A2 based on the input operation to the operation unit 11D, so that the magnitude and direction of the rotational moment generated in the ship 1 are also determined. Control.
 図1および図2に示す例では、船舶推進装置用制御装置14が、移動経路算出部14Aと、経過時間算出部14Bと、推進力算出部14Cとを備えている。移動経路算出部14Aは、操作部11Dの移動経路を算出する。詳細には、移動経路算出部14Aは、例えばマイクロスイッチなどのセンサ(図示せず)によって検出されたジョイスティックのレバーの位置に基づいて、ジョイスティックのレバーの先端部の移動経路を算出する。
 経過時間算出部14Bは、操作部11D(ジョイスティックのレバーの先端部)がある位置に移動させられた時刻からの経過時間を算出する。
 推進力算出部14Cは、移動経路算出部14Aによって算出された操作部11Dの移動経路と、経過時間算出部14Bによって算出された経過時間とに基づいて、船舶推進装置12、13に発生させる推進力を算出する。詳細には、推進力算出部14Cは、船舶推進装置12、13に発生させる推進力の目標値(制御指令値)を算出する。
 具体的には、推進力算出部14Cは、ジョイスティックのレバーの先端部の移動経路と、ジョイスティックのレバーの先端部がある位置に位置し続けている時間(経過時間)とに基づいて、推進ユニット12A1、13A1および操舵アクチュエータ12A2、13A2に発生させる船舶1の推進力の大きさおよび向きを算出する。
 つまり、船舶推進装置用制御装置14は、推進力算出部14Cによって算出された大きさおよび向きの推進力を推進ユニット12A1、13A1および操舵アクチュエータ12A2、13A2が発生するように、推進ユニット12A1、13A1および操舵アクチュエータ12A2、13A2を制御する。
In the example shown in FIGS. 1 and 2, the ship propulsion device control device 14 includes a movement route calculation unit 14A, an elapsed time calculation unit 14B, and a propulsion force calculation unit 14C. The movement route calculation unit 14A calculates the movement route of the operation unit 11D. Specifically, the movement path calculation unit 14A calculates the movement path of the tip of the joystick lever based on the position of the joystick lever detected by a sensor (not shown) such as a microswitch.
The elapsed time calculation unit 14B calculates the elapsed time from the time when the operation unit 11D (the tip of the joystick lever) is moved to a certain position.
The propulsion force calculation unit 14C causes the ship propulsion devices 12 and 13 to generate propulsion based on the movement path of the operation unit 11D calculated by the movement route calculation unit 14A and the elapsed time calculated by the elapsed time calculation unit 14B. Calculate the force. Specifically, the propulsion force calculation unit 14C calculates a target value (control command value) of the propulsion force generated in the ship propulsion devices 12 and 13.
Specifically, the propulsion force calculation unit 14C is a propulsion unit based on the movement path of the tip of the joystick lever and the time (elapsed time) that the tip of the joystick lever remains located at a certain position. The magnitude and direction of the propulsive force of the ship 1 generated in the 12A1, 13A1 and the steering actuators 12A2, 13A2 are calculated.
That is, the control device 14 for the ship propulsion device has the propulsion units 12A1 and 13A1 so that the propulsion units 12A1 and 13A1 and the steering actuators 12A2 and 13A2 generate the propulsive force of the magnitude and direction calculated by the propulsion force calculation unit 14C. And the steering actuators 12A2 and 13A2 are controlled.
 図1および図2に示す例では、操作部11D(ジョイスティック)のレバーが傾倒可能であると共に、レバーが、レバーの中心軸線を中心に回動可能に、操作部11Dは構成されている。
 操船者が、レバーの中心軸線を中心にレバーを時計回りに回動させる場合に、船舶推進装置用制御装置14は、船体11が右旋回する(つまり、船体11が時計回りにその場回頭する)ように、推進ユニット12A1、13A1および操舵アクチュエータ12A2、13A2を制御する。一方、操船者が、レバーの中心軸線を中心にレバーを反時計回りに回動させる場合に、船舶推進装置用制御装置14は、船体11が左旋回する(つまり、船体11が反時計回りにその場回頭する)ように、推進ユニット12A1、13A1および操舵アクチュエータ12A2、13A2を制御する。つまり、操船者がレバーの中心軸線を中心にレバーを回動させることによって、船体11の前部111の向きが変化する。
 また、後で詳細に説明するように、操船者がレバーを傾倒させる場合には、船舶推進装置用制御装置14は、船体11が姿勢を維持したまま移動するように、推進ユニット12A1、13A1および操舵アクチュエータ12A2、13A2を制御する。つまり、操船者がレバーを傾倒させることによって、船体11の前部111と、船体11の後部112とが、並進する。
In the examples shown in FIGS. 1 and 2, the operation unit 11D is configured so that the lever of the operation unit 11D (joystick) can be tilted and the lever can rotate about the central axis of the lever.
When the operator rotates the lever clockwise around the central axis of the lever, the hull 11 of the control device 14 for the ship propulsion device turns clockwise (that is, the hull 11 turns clockwise on the spot). The propulsion units 12A1 and 13A1 and the steering actuators 12A2 and 13A2 are controlled so as to. On the other hand, when the operator rotates the lever counterclockwise around the central axis of the lever, the hull 11 of the ship propulsion device control device 14 turns counterclockwise (that is, the hull 11 turns counterclockwise). The propulsion units 12A1 and 13A1 and the steering actuators 12A2 and 13A2 are controlled so as to turn around on the spot. That is, when the operator rotates the lever around the central axis of the lever, the direction of the front portion 111 of the hull 11 changes.
Further, as will be described in detail later, when the operator tilts the lever, the ship propulsion device control device 14 moves the propulsion units 12A1, 13A1 and the hull 11 so as to maintain the attitude. It controls the steering actuators 12A2 and 13A2. That is, when the operator tilts the lever, the front portion 111 of the hull 11 and the rear portion 112 of the hull 11 are translated.
 図3は第1実施形態の船舶1における操作部11Dの位置(詳細には、ジョイスティックのレバーの先端部の位置P1~P9、ジョイスティックのレバーの時計回りの回動位置(回転位置)P10、および、ジョイスティックのレバーの反時計回りの回動位置(回転位置)P11)の例を説明するための図である。
 図3(A)に示す例では、操作部11D(ジョイスティック)のレバーが傾倒されていない。そのため、操作部11D(詳細には、ジョイスティックのレバーの先端部)は、位置(中立位置)P1に位置する。操作部11D(ジョイスティックのレバーの先端部)が位置P1に位置する場合、船舶推進装置用制御装置14は、推進ユニット12A1、13A1および操舵アクチュエータ12A2、13A2に船舶1の推進力を発生させない。
 つまり、位置P1は、基本的に、船舶推進装置12、13が船舶1の推進力を発生しない位置である。
FIG. 3 shows the positions of the operation unit 11D in the ship 1 of the first embodiment (specifically, the positions P1 to P9 of the tip of the joystick lever, the clockwise rotation position (rotation position) P10 of the joystick lever, and , It is a figure for demonstrating an example of the counterclockwise rotation position (rotation position) P11) of a joystick lever.
In the example shown in FIG. 3A, the lever of the operation unit 11D (joystick) is not tilted. Therefore, the operation unit 11D (specifically, the tip of the joystick lever) is located at the position (neutral position) P1. When the operation unit 11D (the tip of the lever of the joystick) is located at the position P1, the control device 14 for the ship propulsion device does not generate the propulsive force of the ship 1 in the propulsion units 12A1, 13A1 and the steering actuators 12A2, 13A2.
That is, the position P1 is basically a position where the ship propulsion devices 12 and 13 do not generate the propulsive force of the ship 1.
 図3(B)に示す例では、ジョイスティックのレバーが右向きに傾倒されている。そのため、ジョイスティックのレバーの先端部は、位置P1の右側の位置P2に位置する。ジョイスティックのレバーの先端部が位置P2に位置する場合、船舶推進装置用制御装置14は、推進ユニット12A1、13A1および操舵アクチュエータ12A2、13A2に、船舶1を右向きに移動させる推進力を発生させる。
 つまり、位置P2は、船舶推進装置12、13が船舶1を右向きに移動(詳細には、並進移動)させる推進力を発生する位置である。
In the example shown in FIG. 3B, the lever of the joystick is tilted to the right. Therefore, the tip of the joystick lever is located at the position P2 on the right side of the position P1. When the tip of the lever of the joystick is located at the position P2, the ship propulsion device control device 14 generates a propulsive force for moving the ship 1 to the right in the propulsion units 12A1 and 13A1 and the steering actuators 12A2 and 13A2.
That is, the position P2 is a position where the ship propulsion devices 12 and 13 generate a propulsive force for moving the ship 1 to the right (specifically, translational movement).
 図3(C)に示す例では、ジョイスティックのレバーが右前向きに傾倒されている。そのため、ジョイスティックのレバーの先端部は、位置P1の右前側の位置P3に位置する。ジョイスティックのレバーの先端部が位置P3に位置する場合、船舶推進装置用制御装置14は、推進ユニット12A1、13A1および操舵アクチュエータ12A2、13A2に、左右方向と鋭角θ3をなす右前向きに船舶1を移動させる推進力を発生させる。
 つまり、位置P3は、船舶推進装置12、13が船舶1を右前向きに移動(並進移動)させる推進力を発生する位置である。
 図3(D)に示す例では、ジョイスティックのレバーが右後向きに傾倒されている。そのため、ジョイスティックのレバーの先端部は、位置P1の右後側の位置P4に位置する。ジョイスティックのレバーの先端部が位置P4に位置する場合、船舶推進装置用制御装置14は、推進ユニット12A1、13A1および操舵アクチュエータ12A2、13A2に、左右方向と鋭角θ4をなす右後向きに船舶1を移動させる推進力を発生させる。
 つまり、位置P4は、船舶推進装置12、13が船舶1を右後向きに移動(並進移動)させる推進力を発生する位置である。
In the example shown in FIG. 3C, the lever of the joystick is tilted forward to the right. Therefore, the tip of the lever of the joystick is located at the position P3 on the right front side of the position P1. When the tip of the lever of the joystick is located at the position P3, the control device 14 for the ship propulsion device moves the ship 1 to the propulsion units 12A1 and 13A1 and the steering actuators 12A2 and 13A2 in the left-right direction and the right forward direction forming an acute angle θ3. Generate propulsive force to make.
That is, the position P3 is a position where the ship propulsion devices 12 and 13 generate a propulsive force for moving the ship 1 forward to the right (translational movement).
In the example shown in FIG. 3D, the lever of the joystick is tilted backward to the right. Therefore, the tip of the joystick lever is located at the position P4 on the right rear side of the position P1. When the tip of the lever of the joystick is located at the position P4, the control device 14 for the ship propulsion device moves the ship 1 to the propulsion units 12A1 and 13A1 and the steering actuators 12A2 and 13A2 in the left-right direction and the right rearward direction forming an acute angle θ4. Generate propulsive force to make.
That is, the position P4 is a position where the ship propulsion devices 12 and 13 generate a propulsive force for moving the ship 1 backward to the right (translational movement).
 図3(E)に示す例では、ジョイスティックのレバーが左向きに傾倒されている。そのため、ジョイスティックのレバーの先端部は、位置P1の左側の位置P5に位置する。ジョイスティックのレバーの先端部が位置P5に位置する場合、船舶推進装置用制御装置14は、推進ユニット12A1、13A1および操舵アクチュエータ12A2、13A2に、船舶1を左向きに移動させる推進力を発生させる。
 つまり、位置P5は、船舶推進装置12、13が船舶1を左向きに移動(並進移動)させる推進力を発生する位置である。
In the example shown in FIG. 3 (E), the lever of the joystick is tilted to the left. Therefore, the tip of the joystick lever is located at the position P5 on the left side of the position P1. When the tip of the lever of the joystick is located at the position P5, the ship propulsion device control device 14 generates a propulsive force for moving the ship 1 to the left in the propulsion units 12A1 and 13A1 and the steering actuators 12A2 and 13A2.
That is, the position P5 is a position where the ship propulsion devices 12 and 13 generate a propulsive force for moving the ship 1 to the left (translational movement).
 図3(F)に示す例では、ジョイスティックのレバーが左前向きに傾倒されている。そのため、ジョイスティックのレバーの先端部は、位置P1の左前側の位置P6に位置する。ジョイスティックのレバーの先端部が位置P6に位置する場合、船舶推進装置用制御装置14は、推進ユニット12A1、13A1および操舵アクチュエータ12A2、13A2に、左右方向と鋭角θ6をなす左前向きに船舶1を移動させる推進力を発生させる。
 つまり、位置P6は、船舶推進装置12、13が船舶1を左前向きに移動(並進移動)させる推進力を発生する位置である。
 図3(G)に示す例では、ジョイスティックのレバーが左後向きに傾倒されている。そのため、ジョイスティックのレバーの先端部は、位置P1の左後側の位置P7に位置する。ジョイスティックのレバーの先端部が位置P7に位置する場合、船舶推進装置用制御装置14は、推進ユニット12A1、13A1および操舵アクチュエータ12A2、13A2に、左右方向と鋭角θ7をなす左後向きに船舶1を移動させる推進力を発生させる。
 つまり、位置P7は、船舶推進装置12、13が船舶1を左後向きに移動(並進移動)させる推進力を発生する位置である。
In the example shown in FIG. 3 (F), the lever of the joystick is tilted forward to the left. Therefore, the tip of the lever of the joystick is located at the position P6 on the left front side of the position P1. When the tip of the lever of the joystick is located at the position P6, the control device 14 for the ship propulsion device moves the ship 1 to the propulsion units 12A1 and 13A1 and the steering actuators 12A2 and 13A2 in the left-right direction and the left forward direction forming an acute angle θ6. Generate propulsive force to make.
That is, the position P6 is a position where the ship propulsion devices 12 and 13 generate a propulsive force for moving the ship 1 forward to the left (translational movement).
In the example shown in FIG. 3 (G), the lever of the joystick is tilted backward to the left. Therefore, the tip of the lever of the joystick is located at the position P7 on the left rear side of the position P1. When the tip of the lever of the joystick is located at the position P7, the control device 14 for the ship propulsion device moves the ship 1 to the propulsion units 12A1 and 13A1 and the steering actuators 12A2 and 13A2 in the left-right direction and the left rearward direction forming an acute angle θ7. Generate propulsive force to make.
That is, the position P7 is a position where the ship propulsion devices 12 and 13 generate a propulsive force for moving the ship 1 backward to the left (translational movement).
 図3(H)に示す例では、ジョイスティックのレバーが前向きに傾倒されている。そのため、ジョイスティックのレバーの先端部は、位置P1の前側の位置P8に位置する。ジョイスティックのレバーの先端部が位置P8に位置する場合、船舶推進装置用制御装置14は、推進ユニット12A1、13A1および操舵アクチュエータ12A2、13A2に、船舶1を前向きに移動させる推進力を発生させる。
 つまり、位置P8は、船舶推進装置12、13が船舶1を前向きに移動(前進)させる推進力を発生する位置である。
 図3(I)に示す例では、ジョイスティックのレバーが後向きに傾倒されている。そのため、ジョイスティックのレバーの先端部は、位置P1の後側の位置P9に位置する。ジョイスティックのレバーの先端部が位置P9に位置する場合、船舶推進装置用制御装置14は、推進ユニット12A1、13A1および操舵アクチュエータ12A2、13A2に、船舶1を後向きに移動させる推進力を発生させる。
 つまり、位置P9は、船舶推進装置12、13が船舶1を後向きに移動(後進)させる推進力を発生する位置である。
In the example shown in FIG. 3H, the lever of the joystick is tilted forward. Therefore, the tip of the lever of the joystick is located at the position P8 on the front side of the position P1. When the tip of the lever of the joystick is located at position P8, the ship propulsion device control device 14 causes the propulsion units 12A1 and 13A1 and the steering actuators 12A2 and 13A2 to generate a propulsive force for moving the ship 1 forward.
That is, the position P8 is a position where the ship propulsion devices 12 and 13 generate a propulsive force for moving (advancing) the ship 1 forward.
In the example shown in FIG. 3 (I), the lever of the joystick is tilted backward. Therefore, the tip of the joystick lever is located at the position P9 behind the position P1. When the tip of the lever of the joystick is located at position P9, the ship propulsion device control device 14 causes the propulsion units 12A1 and 13A1 and the steering actuators 12A2 and 13A2 to generate a propulsive force for moving the ship 1 backward.
That is, the position P9 is a position where the ship propulsion devices 12 and 13 generate a propulsive force for moving (reverse) the ship 1 backward.
 図3(J)に示す例では、ジョイスティックのレバーが、傾倒されておらず、時計回りに回動されている。そのため、ジョイスティックのレバーは、時計回りの回動位置(回転位置)P10に位置する。ジョイスティックのレバーが回動位置P10に位置する場合、船舶推進装置用制御装置14は、時計回りの回転モーメントが船舶1に発生するように、推進ユニット12A1、13A1および操舵アクチュエータ12A2、13A2を制御する。
 つまり、回動位置P10は、船舶推進装置12、13が船舶1を右旋回させる推進力(時計回りに旋回させる推進力)を発生する位置である。
 図3(K)に示す例では、ジョイスティックのレバーが、傾倒されておらず、反時計回りに回動されている。そのため、ジョイスティックのレバーは、反時計回りの回動位置(回転位置)P11に位置する。ジョイスティックのレバーが回動位置P11に位置する場合、船舶推進装置用制御装置14は、反時計回りの回転モーメントが船舶1に発生するように、推進ユニット12A1、13A1および操舵アクチュエータ12A2、13A2を制御する。
 つまり、回動位置P11は、船舶推進装置12、13が船舶1を左旋回させる推進力(反時計回りに旋回させる推進力)を発生する位置である。
In the example shown in FIG. 3 (J), the lever of the joystick is not tilted and is rotated clockwise. Therefore, the lever of the joystick is located at the clockwise rotation position (rotation position) P10. When the lever of the joystick is located at the rotation position P10, the ship propulsion device control device 14 controls the propulsion units 12A1, 13A1 and the steering actuators 12A2, 13A2 so that a clockwise rotation moment is generated on the ship 1. ..
That is, the rotation position P10 is a position where the ship propulsion devices 12 and 13 generate a propulsive force (propulsive force for turning the ship 1 clockwise) to turn the ship 1 to the right.
In the example shown in FIG. 3 (K), the lever of the joystick is not tilted and is rotated counterclockwise. Therefore, the lever of the joystick is located at the counterclockwise rotation position (rotation position) P11. When the lever of the joystick is located at the rotation position P11, the ship propulsion device control device 14 controls the propulsion units 12A1, 13A1 and the steering actuators 12A2, 13A2 so that a counterclockwise rotation moment is generated on the ship 1. To do.
That is, the rotation position P11 is a position where the ship propulsion devices 12 and 13 generate a propulsive force (propulsive force for turning the ship 1 counterclockwise) to turn the ship 1 counterclockwise.
 操船者が操作部11D(ジョイスティック)を操作しない場合、自動復帰機能を有するジョイスティックのレバーの先端部は、位置P1に位置する。ジョイスティックのレバーの先端部は、操船者の操作に応じて、例えば位置P1~P9、回動位置P10、P11などの位置に位置することができる。 When the operator does not operate the operation unit 11D (joystick), the tip of the lever of the joystick having the automatic return function is located at the position P1. The tip of the lever of the joystick can be positioned at positions P1 to P9, rotation positions P10, P11, and the like, depending on the operation of the operator.
 図4は操作部11Dが、位置P1から位置P2に移動させられて位置P2に維持され、次いで、位置P2から位置P1に移動させられて位置P1に維持される場合に第1実施形態の船舶推進装置用制御装置14の推進力算出部14Cによって算出される推進力(船舶推進装置12、13が発生する推進力)の目標値などの第1例を説明するための図である。
 詳細には、図4(A)は操作部11Dの位置P1、P2と時間との関係を示しており、図4(B)は第1実施形態の船舶推進装置用制御装置14の推進力算出部14Cによって算出される推進力の目標値と時間との関係を示しており、図4(C)は比較例の船舶において算出される推進力の目標値と時間との関係を示している。
FIG. 4 shows the ship of the first embodiment when the operation unit 11D is moved from the position P1 to the position P2 and maintained at the position P2, and then moved from the position P2 to the position P1 and maintained at the position P1. It is a figure for demonstrating the first example such as the target value of the propulsion force (the propulsion force generated by ship propulsion devices 12 and 13) calculated by the propulsion force calculation unit 14C of the control device 14 for a propulsion device.
In detail, FIG. 4A shows the relationship between the positions P1 and P2 of the operation unit 11D and time, and FIG. 4B shows the propulsive force calculation of the ship propulsion device control device 14 of the first embodiment. The relationship between the target value of the propulsive force calculated by the part 14C and the time is shown, and FIG. 4 (C) shows the relationship between the target value of the propulsive force calculated by the ship of the comparative example and the time.
 図4に示す例では、図4(A)に示すように、時刻t1以前の期間中、操作部11Dが位置P1に位置し、時刻t1に、操作部11Dが位置P1から位置P2に移動させられ、時刻t1~時刻t3の期間中、操作部11Dが位置P2に維持される。次いで、時刻t3に、操作部11Dが位置P2から位置P1に移動させられ、時刻t3以降の期間中、操作部11Dが位置P1に維持される。 In the example shown in FIG. 4, as shown in FIG. 4A, the operation unit 11D is located at the position P1 during the period before the time t1, and the operation unit 11D is moved from the position P1 to the position P2 at the time t1. The operation unit 11D is maintained at the position P2 during the period from time t1 to time t3. Then, at time t3, the operation unit 11D is moved from position P2 to position P1, and the operation unit 11D is maintained at position P1 during the period after time t3.
 第1実施形態の船舶推進装置用制御装置14の第1例では、図4(B)に示すように、時刻t1以前の期間中、推進力算出部14Cは、船舶推進装置12、13が発生する推進力の目標値として、ゼロを算出する。その結果、船舶推進装置12、13は推進力を発生せず、船舶1の速度はゼロである。
 次いで、時刻t1~時刻t2の期間中、推進力算出部14Cが算出する推進力(船舶推進装置12、13が発生する推進力)の目標値は、ゼロから値F1まで、例えば一定の変化量で増加する。その結果、船舶推進装置12、13が発生する推進力が徐々に増加し、船舶1の速度も徐々に増加する。
 次いで、時刻t2~時刻t3の期間中、推進力算出部14Cが算出する推進力(船舶推進装置12、13が発生する推進力)の目標値は、値F1に維持される。その結果、船舶推進装置12、13が発生する推進力が一定値に維持され、船舶1の速度も一定値に維持される。
 次いで、時刻t3~時刻t4の期間中、推進力算出部14Cが算出する推進力(船舶推進装置12、13が発生する推進力)の目標値は、値F1からゼロまで、例えば一定の変化量で減少する。その結果、船舶推進装置12、13が発生する推進力が徐々に減少し、船舶1の速度も徐々に減少する。
 次いで、時刻t4以降の期間中、推進力算出部14Cは、船舶推進装置12、13が発生する推進力の目標値として、ゼロを算出する。その結果、船舶推進装置12、13は推進力を発生せず、船舶1の速度はゼロである。
In the first example of the control device 14 for the ship propulsion device of the first embodiment, as shown in FIG. 4B, the propulsion force calculation unit 14C generates the ship propulsion devices 12 and 13 during the period before the time t1. Calculate zero as the target value of the driving force to be used. As a result, the ship propulsion devices 12 and 13 do not generate propulsive force, and the speed of the ship 1 is zero.
Next, during the period from time t1 to time t2, the target value of the propulsive force (the propulsive force generated by the ship propulsion devices 12 and 13) calculated by the propulsion force calculation unit 14C is from zero to the value F1, for example, a constant amount of change. Increases with. As a result, the propulsive force generated by the ship propulsion devices 12 and 13 gradually increases, and the speed of the ship 1 also gradually increases.
Next, during the period from time t2 to time t3, the target value of the propulsive force (the propulsive force generated by the ship propulsion devices 12 and 13) calculated by the propulsion force calculation unit 14C is maintained at the value F1. As a result, the propulsive force generated by the ship propulsion devices 12 and 13 is maintained at a constant value, and the speed of the ship 1 is also maintained at a constant value.
Next, during the period from time t3 to time t4, the target value of the propulsive force (the propulsive force generated by the ship propulsion devices 12 and 13) calculated by the propulsion force calculation unit 14C is from the value F1 to zero, for example, a constant amount of change. Decreases with. As a result, the propulsive force generated by the ship propulsion devices 12 and 13 gradually decreases, and the speed of the ship 1 also gradually decreases.
Next, during the period after time t4, the propulsion force calculation unit 14C calculates zero as the target value of the propulsion force generated by the ship propulsion devices 12 and 13. As a result, the ship propulsion devices 12 and 13 do not generate propulsive force, and the speed of the ship 1 is zero.
 つまり、図4(B)に示す例では、操作部11Dが位置P1から位置P2に移動させられた時刻t1から時刻t2までの期間中に、船舶推進装置12、13が小さい推進力(第1推進力)を発生し、次いで、時刻t2~時刻t3の期間中に、船舶推進装置12、13が、第1推進力よりも大きい第2推進力(値F1の推進力)を発生する。
 すなわち、図4(B)に示す例では、船舶推進装置12、13が発生する推進力はゼロから値F1に急激に変化せず、徐々に変化する。そのため、船舶1の移動開始時の乗り心地を向上させることができ、船舶1の移動開始時に乗船者がよろけてしまうおそれを抑制することができる。
That is, in the example shown in FIG. 4B, the ship propulsion devices 12 and 13 have a small propulsive force (first) during the period from time t1 to time t2 when the operation unit 11D is moved from the position P1 to the position P2. Propulsion force) is generated, and then, during the period from time t2 to time t3, the ship propulsion devices 12 and 13 generate a second propulsion force (propulsion force having a value F1) larger than the first propulsion force.
That is, in the example shown in FIG. 4B, the propulsive force generated by the ship propulsion devices 12 and 13 does not suddenly change from zero to the value F1, but gradually changes. Therefore, it is possible to improve the riding comfort at the start of movement of the ship 1, and it is possible to suppress the possibility that the passengers will stagger at the start of movement of the ship 1.
 また、図4(B)に示す例では、操作部11Dが位置P2から位置P1に移動させられた時刻t3から時刻t4までの期間中に、船舶推進装置12、13が、ゼロより大きく第2推進力(値F1の推進力)より小さい第3推進力を発生し、次いで、時刻t4以降の期間中に、船舶推進装置12、13が推進力を発生しない(つまり、船舶推進装置12、13が発生する推進力はゼロである)。
 すなわち、図4(B)に示す例では、船舶推進装置12、13が発生する推進力は値F1からゼロに急激に変化せず、徐々に変化する。そのため、船舶1の停止時の乗り心地を向上させることができ、船舶1の停止時に乗船者がよろけてしまうおそれを抑制することができる。
Further, in the example shown in FIG. 4B, during the period from time t3 to time t4 when the operation unit 11D was moved from the position P2 to the position P1, the ship propulsion devices 12 and 13 were larger than zero and the second. A third propulsion force smaller than the propulsion force (propulsion force of the value F1) is generated, and then the ship propulsion devices 12 and 13 do not generate the propulsion force (that is, the ship propulsion devices 12 and 13) during the period after the time t4. The driving force generated is zero).
That is, in the example shown in FIG. 4B, the propulsive force generated by the ship propulsion devices 12 and 13 does not suddenly change from the value F1 to zero, but gradually changes. Therefore, it is possible to improve the riding comfort when the ship 1 is stopped, and it is possible to suppress the possibility that the passengers will stagger when the ship 1 is stopped.
 比較例の船舶では、図4(C)に示すように、時刻t1以前の期間中、船舶推進装置が発生する推進力の目標値は、ゼロである。その結果、船舶推進装置は推進力を発生せず、船舶の速度はゼロである。
 次いで、時刻t1に、船舶推進装置が発生する推進力の目標値は、ゼロから値F1まで、急激に増加する。その結果、船舶推進装置が発生する推進力が急激に増加し、船舶の速度も急激に増加する。
 そのため、比較例の船舶では、船舶の移動開始時の乗り心地が悪く、船舶の移動開始時に乗船者がよろけてしまうおそれがある。
In the ship of the comparative example, as shown in FIG. 4C, the target value of the propulsive force generated by the ship propulsion device is zero during the period before the time t1. As a result, the ship propulsion device does not generate propulsion and the speed of the ship is zero.
Then, at time t1, the target value of the propulsive force generated by the ship propulsion device rapidly increases from zero to the value F1. As a result, the propulsive force generated by the ship propulsion device increases sharply, and the speed of the ship also sharply increases.
Therefore, in the ship of the comparative example, the riding comfort at the start of movement of the ship is poor, and there is a risk that the passengers may stagger at the start of movement of the ship.
 また、比較例の船舶では、図4(C)に示すように、時刻t1~時刻t3の期間中、船舶推進装置が発生する推進力の目標値は、値F1に維持される。その結果、船舶推進装置が発生する推進力が一定値に維持され、船舶の速度も一定値に維持される。
 次いで、時刻t3に、船舶推進装置が発生する推進力の目標値は、値F1からゼロまで急激に減少する。その結果、船舶推進装置が発生する推進力が急激に減少し、船舶の速度も急激に減少する。
 そのため、比較例の船舶では、船舶の停止時の乗り心地が悪く、船舶の停止時に乗船者がよろけてしまうおそれがある。
Further, in the ship of the comparative example, as shown in FIG. 4C, the target value of the propulsive force generated by the ship propulsion device is maintained at the value F1 during the period from time t1 to time t3. As a result, the propulsive force generated by the ship propulsion device is maintained at a constant value, and the speed of the ship is also maintained at a constant value.
Then, at time t3, the target value of the propulsive force generated by the ship propulsion device sharply decreases from the value F1 to zero. As a result, the propulsive force generated by the ship propulsion device sharply decreases, and the speed of the ship also sharply decreases.
Therefore, in the ship of the comparative example, the riding comfort when the ship is stopped is uncomfortable, and the passenger may stagger when the ship is stopped.
 図5は操作部11Dが、位置P1から位置P2に移動させられて位置P2に維持され、次いで、位置P2から位置P1に移動させられて位置P1に維持される場合に第1実施形態の船舶推進装置用制御装置14の推進力算出部14Cによって算出される推進力(船舶推進装置12、13が発生する推進力)の目標値などの第2例を説明するための図である。
 詳細には、図5(A)は操作部11Dの位置P1、P2と時間との関係を示しており、図5(B)は第1実施形態の船舶推進装置用制御装置14の推進力算出部14Cによって算出される推進力の目標値と時間との関係を示している。
FIG. 5 shows the ship of the first embodiment when the operation unit 11D is moved from the position P1 to the position P2 and maintained at the position P2, and then moved from the position P2 to the position P1 and maintained at the position P1. It is a figure for demonstrating the 2nd example such as the target value of the propulsion force (the propulsion force generated by the ship propulsion devices 12 and 13) calculated by the propulsion force calculation unit 14C of the control device 14 for a propulsion device.
In detail, FIG. 5A shows the relationship between the positions P1 and P2 of the operation unit 11D and time, and FIG. 5B shows the propulsive force calculation of the ship propulsion device control device 14 of the first embodiment. The relationship between the target value of the propulsive force calculated by the part 14C and the time is shown.
 図5に示す例では、図5(A)に示すように、時刻t1以前の期間中、操作部11Dが位置P1に位置し、時刻t1に、操作部11Dが位置P1から位置P2に移動させられ、時刻t1~時刻t3の期間中、操作部11Dが位置P2に維持される。次いで、時刻t3に、操作部11Dが位置P2から位置P1に移動させられ、時刻t3以降の期間中、操作部11Dが位置P1に維持される。 In the example shown in FIG. 5, as shown in FIG. 5A, the operation unit 11D is located at the position P1 during the period before the time t1, and the operation unit 11D is moved from the position P1 to the position P2 at the time t1. The operation unit 11D is maintained at the position P2 during the period from time t1 to time t3. Then, at time t3, the operation unit 11D is moved from position P2 to position P1, and the operation unit 11D is maintained at position P1 during the period after time t3.
 第1実施形態の船舶推進装置用制御装置14の第2例では、図5(B)に示すように、時刻t1以前の期間中、推進力算出部14Cは、船舶推進装置12、13が発生する推進力の目標値として、ゼロを算出する。その結果、船舶推進装置12、13は推進力を発生せず、船舶1の速度はゼロである。
 次いで、時刻t1~時刻t2の期間中、推進力算出部14Cは、船舶推進装置12、13が発生する推進力の目標値として、ゼロより大きく、値F1より小さい値F2を算出する。その結果、船舶推進装置12、13が発生する推進力は、時刻t1に、図4(C)に示す例より緩やかに増加し、船舶1の速度も、図4(C)に示す例より緩やかに増加する。
 次いで、時刻t2~時刻t3の期間中、推進力算出部14Cは、船舶推進装置12、13が発生する推進力の目標値として、値F1を算出する。その結果、船舶推進装置12、13が発生する推進力は、時刻t2に、時刻t1と同程度に緩やかに増加し、船舶1の速度も、時刻t1と同程度に緩やかに増加する。
 次いで、時刻t3~時刻t4の期間中、推進力算出部14Cは、船舶推進装置12、13が発生する推進力の目標値として、ゼロより大きく、値F1より小さい値F2を算出する。その結果、船舶推進装置12、13が発生する推進力は、時刻t3に、図4(C)に示す例より緩やかに減少し、船舶1の速度も、図4(C)に示す例より緩やかに減少する。
 次いで、時刻t4以降の期間中、推進力算出部14Cは、船舶推進装置12、13が発生する推進力の目標値として、ゼロを算出する。その結果、船舶推進装置12、13が発生する推進力は、時刻t4に、時刻t3と同程度に緩やかに減少し、船舶1の速度も、時刻t3と同程度に緩やかに減少する。
In the second example of the ship propulsion device control device 14 of the first embodiment, as shown in FIG. 5 (B), the ship propulsion devices 12 and 13 are generated in the propulsion force calculation unit 14C during the period before the time t1. Calculate zero as the target value of the driving force to be used. As a result, the ship propulsion devices 12 and 13 do not generate propulsive force, and the speed of the ship 1 is zero.
Next, during the period from time t1 to time t2, the propulsion force calculation unit 14C calculates a value F2 larger than zero and smaller than the value F1 as the target value of the propulsive force generated by the ship propulsion devices 12 and 13. As a result, the propulsive force generated by the ship propulsion devices 12 and 13 gradually increases at time t1 from the example shown in FIG. 4 (C), and the speed of the ship 1 also increases more slowly than the example shown in FIG. 4 (C). Increase to.
Next, during the period from time t2 to time t3, the propulsion force calculation unit 14C calculates the value F1 as the target value of the propulsion force generated by the ship propulsion devices 12 and 13. As a result, the propulsive force generated by the ship propulsion devices 12 and 13 gradually increases at time t2 to the same extent as the time t1, and the speed of the ship 1 also gradually increases to the same extent as the time t1.
Next, during the period from time t3 to time t4, the propulsion force calculation unit 14C calculates a value F2 larger than zero and smaller than the value F1 as the target value of the propulsive force generated by the ship propulsion devices 12 and 13. As a result, the propulsive force generated by the ship propulsion devices 12 and 13 gradually decreases at time t3 from the example shown in FIG. 4 (C), and the speed of the ship 1 also decreases more slowly than the example shown in FIG. 4 (C). Decreases to.
Next, during the period after time t4, the propulsion force calculation unit 14C calculates zero as the target value of the propulsion force generated by the ship propulsion devices 12 and 13. As a result, the propulsive force generated by the ship propulsion devices 12 and 13 gradually decreases at time t4 to the same extent as the time t3, and the speed of the ship 1 also gradually decreases to the same extent as the time t3.
 つまり、図5(B)に示す例では、操作部11Dが位置P1から位置P2に移動させられた時刻t1から時刻t2までの期間中に、船舶推進装置12、13が小さい推進力(値F2の推進力)を発生し、次いで、時刻t2~時刻t3の期間中に、船舶推進装置12、13が、値F2の推進力よりも大きい値F1の推進力を発生する。
 すなわち、図5(B)に示す例では、船舶推進装置12、13が発生する推進力はゼロから値F1に急激に変化せず、ステップ状に変化する。そのため、船舶1の移動開始時の乗り心地を向上させることができ、船舶1の移動開始時に乗船者がよろけてしまうおそれを抑制することができる。
That is, in the example shown in FIG. 5B, the ship propulsion devices 12 and 13 have a small propulsive force (value F2) during the period from time t1 to time t2 when the operation unit 11D is moved from the position P1 to the position P2. Then, during the period from time t2 to time t3, the ship propulsion devices 12 and 13 generate a propulsion force having a value F1 larger than a propulsion force having a value F2.
That is, in the example shown in FIG. 5B, the propulsive force generated by the ship propulsion devices 12 and 13 does not suddenly change from zero to the value F1, but changes in steps. Therefore, it is possible to improve the riding comfort at the start of movement of the ship 1, and it is possible to suppress the possibility that the passengers will stagger at the start of movement of the ship 1.
 また、図5(B)に示す例では、操作部11Dが位置P2から位置P1に移動させられた時刻t3から時刻t4までの期間中に、船舶推進装置12、13が、ゼロより大きく値F1の推進力より小さい値F2推進力を発生し、次いで、時刻t4以降の期間中に、船舶推進装置12、13が推進力を発生しない(つまり、船舶推進装置12、13が発生する推進力はゼロである)。
 すなわち、図5(B)に示す例では、船舶推進装置12、13が発生する推進力は値F1からゼロに急激に変化せず、ステップ状に変化する。そのため、船舶1の停止時の乗り心地を向上させることができ、船舶1の停止時に乗船者がよろけてしまうおそれを抑制することができる。
Further, in the example shown in FIG. 5B, during the period from time t3 to time t4 when the operation unit 11D was moved from the position P2 to the position P1, the ship propulsion devices 12 and 13 had a value F1 larger than zero. F2 propulsion force is generated, and then the ship propulsion devices 12 and 13 do not generate propulsion force during the period after time t4 (that is, the propulsion force generated by ship propulsion devices 12 and 13 is It is zero).
That is, in the example shown in FIG. 5B, the propulsive force generated by the ship propulsion devices 12 and 13 does not suddenly change from the value F1 to zero, but changes in steps. Therefore, it is possible to improve the riding comfort when the ship 1 is stopped, and it is possible to suppress the possibility that the passengers will stagger when the ship 1 is stopped.
 第1実施形態の船舶推進装置用制御装置14の第1例では、操作部11Dが、位置P1から位置P3に移動させられて位置P3に維持され、次いで、位置P3から位置P1に移動させられて位置P1に維持される場合に、推進力算出部14Cが、図4(B)に示す例と同様に、船舶推進装置12、13が発生する推進力が徐々に変化するように、船舶推進装置12、13が発生する推進力の目標値を算出する。
 第1実施形態の船舶推進装置用制御装置14の第2例では、操作部11Dが、位置P1から位置P3に移動させられて位置P3に維持され、次いで、位置P3から位置P1に移動させられて位置P1に維持される場合に、推進力算出部14Cが、図5(B)に示す例と同様に、船舶推進装置12、13が発生する推進力がステップ状に変化するように、船舶推進装置12、13が発生する推進力の目標値を算出する。
In the first example of the ship propulsion device control device 14 of the first embodiment, the operation unit 11D is moved from the position P1 to the position P3 and maintained at the position P3, and then moved from the position P3 to the position P1. When the propulsion force calculation unit 14C is maintained at the position P1, the ship propulsion is carried out so that the propulsion force generated by the ship propulsion devices 12 and 13 gradually changes, as in the example shown in FIG. 4 (B). The target value of the propulsive force generated by the devices 12 and 13 is calculated.
In the second example of the ship propulsion device control device 14 of the first embodiment, the operation unit 11D is moved from the position P1 to the position P3 and maintained at the position P3, and then moved from the position P3 to the position P1. When the propulsion force calculation unit 14C is maintained at the position P1, the propulsion force generated by the ship propulsion devices 12 and 13 changes stepwise in the same manner as in the example shown in FIG. 5 (B). The target value of the propulsive force generated by the propulsion devices 12 and 13 is calculated.
 第1実施形態の船舶推進装置用制御装置14の第1例では、操作部11Dが、位置P1から位置P4に移動させられて位置P4に維持され、次いで、位置P4から位置P1に移動させられて位置P1に維持される場合に、推進力算出部14Cが、図4(B)に示す例と同様に、船舶推進装置12、13が発生する推進力が徐々に変化するように、船舶推進装置12、13が発生する推進力の目標値を算出する。
 第1実施形態の船舶推進装置用制御装置14の第2例では、操作部11Dが、位置P1から位置P4に移動させられて位置P4に維持され、次いで、位置P4から位置P1に移動させられて位置P1に維持される場合に、推進力算出部14Cが、図5(B)に示す例と同様に、船舶推進装置12、13が発生する推進力がステップ状に変化するように、船舶推進装置12、13が発生する推進力の目標値を算出する。
In the first example of the ship propulsion device control device 14 of the first embodiment, the operation unit 11D is moved from the position P1 to the position P4 and maintained at the position P4, and then moved from the position P4 to the position P1. When the propulsion force calculation unit 14C is maintained at the position P1, the ship propulsion is carried out so that the propulsion force generated by the ship propulsion devices 12 and 13 gradually changes, as in the example shown in FIG. 4 (B). The target value of the propulsive force generated by the devices 12 and 13 is calculated.
In the second example of the ship propulsion device control device 14 of the first embodiment, the operation unit 11D is moved from the position P1 to the position P4 and maintained at the position P4, and then moved from the position P4 to the position P1. When the propulsion force calculation unit 14C is maintained at the position P1, the propulsion force generated by the ship propulsion devices 12 and 13 changes stepwise in the same manner as in the example shown in FIG. 5 (B). The target value of the propulsive force generated by the propulsion devices 12 and 13 is calculated.
 第1実施形態の船舶推進装置用制御装置14では、船舶1の右側と左側とで左右対称の制御が実行される。
 つまり、第1実施形態の船舶推進装置用制御装置14の第1例では、操作部11Dが、位置P1から位置P5~P7のいずれかに移動させられてその位置P5~P7に維持され、次いで、その位置P5~P7から位置P1に移動させられて位置P1に維持される場合に、推進力算出部14Cが、図4(B)に示す例と同様に、船舶推進装置12、13が発生する推進力が徐々に変化するように、船舶推進装置12、13が発生する推進力の目標値を算出する。
 第1実施形態の船舶推進装置用制御装置14の第2例では、操作部11Dが、位置P1から位置P5~P7のいずれかに移動させられてその位置P5~P7に維持され、次いで、その位置P5~P7から位置P1に移動させられて位置P1に維持される場合に、推進力算出部14Cが、図5(B)に示す例と同様に、船舶推進装置12、13が発生する推進力がステップ状に変化するように、船舶推進装置12、13が発生する推進力の目標値を算出する。
In the ship propulsion device control device 14 of the first embodiment, symmetrical control is executed on the right side and the left side of the ship 1.
That is, in the first example of the ship propulsion device control device 14 of the first embodiment, the operation unit 11D is moved from the position P1 to any of the positions P5 to P7 and maintained at the positions P5 to P7, and then is maintained. , When the propulsion force calculation unit 14C is moved from the positions P5 to P7 to the position P1 and maintained at the position P1, the ship propulsion devices 12 and 13 are generated as in the example shown in FIG. 4 (B). The target value of the propulsive force generated by the ship propulsion devices 12 and 13 is calculated so that the propulsive force to be generated gradually changes.
In the second example of the ship propulsion device control device 14 of the first embodiment, the operation unit 11D is moved from the position P1 to any of the positions P5 to P7 and maintained at the positions P5 to P7, and then the operation unit 11D thereof. When the propulsion force calculation unit 14C is moved from the positions P5 to P7 to the position P1 and maintained at the position P1, the propulsion force calculation unit 14C generates propulsion by the ship propulsion devices 12 and 13 as in the example shown in FIG. 5 (B). The target value of the propulsive force generated by the ship propulsion devices 12 and 13 is calculated so that the force changes in steps.
 また、第1実施形態の船舶推進装置用制御装置14では、図4(B)または図5(B)に示す制御が、船舶1の前後方向の移動時の制御(船舶1を前進または後進させる制御)にも適用される。
 つまり、第1実施形態の船舶推進装置用制御装置14の第1例では、操作部11Dが、位置P1から位置P8、P9のいずれかに移動させられてその位置P8、P9に維持され、次いで、その位置P8、P9から位置P1に移動させられて位置P1に維持される場合に、推進力算出部14Cが、図4(B)に示す例と同様に、船舶推進装置12、13が発生する推進力が徐々に変化するように、船舶推進装置12、13が発生する推進力の目標値を算出する。
 第1実施形態の船舶推進装置用制御装置14の第2例では、操作部11Dが、位置P1から位置P8、P9のいずれかに移動させられてその位置P8、P9に維持され、次いで、その位置P8、P9から位置P1に移動させられて位置P1に維持される場合に、推進力算出部14Cが、図5(B)に示す例と同様に、船舶推進装置12、13が発生する推進力がステップ状に変化するように、船舶推進装置12、13が発生する推進力の目標値を算出する。
Further, in the control device 14 for the ship propulsion device of the first embodiment, the control shown in FIG. 4 (B) or FIG. 5 (B) is the control when the ship 1 moves in the front-rear direction (the ship 1 is moved forward or backward). It also applies to control).
That is, in the first example of the ship propulsion device control device 14 of the first embodiment, the operation unit 11D is moved from the position P1 to any of the positions P8 and P9 and maintained at the positions P8 and P9, and then is maintained. , When the propulsion force calculation unit 14C is moved from the positions P8 and P9 to the position P1 and maintained at the position P1, the ship propulsion devices 12 and 13 are generated as in the example shown in FIG. 4 (B). The target value of the propulsive force generated by the ship propulsion devices 12 and 13 is calculated so that the propulsive force to be generated gradually changes.
In the second example of the ship propulsion device control device 14 of the first embodiment, the operation unit 11D is moved from the position P1 to any of the positions P8 and P9 and maintained at the positions P8 and P9, and then the operation unit 11D thereof. When the propulsion force calculation unit 14C is moved from the positions P8 and P9 to the position P1 and maintained at the position P1, the propulsion force calculation unit 14C generates propulsion by the ship propulsion devices 12 and 13 as in the example shown in FIG. 5 (B). The target value of the propulsive force generated by the ship propulsion devices 12 and 13 is calculated so that the force changes in steps.
 また、第1実施形態の船舶推進装置用制御装置14では、図4(B)または図5(B)に示す制御が、船舶1を時計回りに旋回させる制御(船舶1を時計回りにその場回頭させる制御)にも適用される。
 つまり、第1実施形態の船舶推進装置用制御装置14の第1例では、操作部11Dが、位置P1から回動位置(回転位置)P10に移動させられてその回動位置P10に維持され、次いで、その回動位置P10から位置P1に移動させられて位置P1に維持される場合に、推進力算出部14Cが、図4(B)に示す例と同様に、船舶推進装置12、13が発生する推進力が徐々に変化するように、船舶推進装置12、13が発生する推進力の目標値を算出する。
 第1実施形態の船舶推進装置用制御装置14の第2例では、操作部11Dが、位置P1から回動位置P10に移動させられてその回動位置P10に維持され、次いで、その回動位置P10から位置P1に移動させられて位置P1に維持される場合に、推進力算出部14Cが、図5(B)に示す例と同様に、船舶推進装置12、13が発生する推進力がステップ状に変化するように、船舶推進装置12、13が発生する推進力の目標値を算出する。
Further, in the control device 14 for the ship propulsion device of the first embodiment, the control shown in FIG. 4B or FIG. 5B is a control for turning the ship 1 clockwise (the ship 1 is turned clockwise on the spot). It also applies to turning control).
That is, in the first example of the ship propulsion device control device 14 of the first embodiment, the operation unit 11D is moved from the position P1 to the rotation position (rotation position) P10 and maintained at the rotation position P10. Next, when the rotation position P10 is moved to the position P1 and maintained at the position P1, the propulsion force calculation unit 14C causes the ship propulsion devices 12 and 13 to perform in the same manner as in the example shown in FIG. 4B. The target value of the propulsive force generated by the ship propulsion devices 12 and 13 is calculated so that the generated propulsive force gradually changes.
In the second example of the ship propulsion device control device 14 of the first embodiment, the operation unit 11D is moved from the position P1 to the rotation position P10 and maintained at the rotation position P10, and then the rotation position is maintained. When the propulsion force calculation unit 14C moves from P10 to the position P1 and is maintained at the position P1, the propulsion force generated by the ship propulsion devices 12 and 13 is stepped in the same manner as in the example shown in FIG. The target value of the propulsive force generated by the ship propulsion devices 12 and 13 is calculated so as to change the shape.
 また、第1実施形態の船舶推進装置用制御装置14では、図4(B)または図5(B)に示す制御が、船舶1を反時計回りに旋回させる制御(船舶1を反時計回りにその場回頭させる制御)にも適用される。
 つまり、第1実施形態の船舶推進装置用制御装置14の第1例では、操作部11Dが、位置P1から回動位置(回転位置)P11に移動させられてその回動位置P11に維持され、次いで、その回動位置P11から位置P1に移動させられて位置P1に維持される場合に、推進力算出部14Cが、図4(B)に示す例と同様に、船舶推進装置12、13が発生する推進力が徐々に変化するように、船舶推進装置12、13が発生する推進力の目標値を算出する。
 第1実施形態の船舶推進装置用制御装置14の第2例では、操作部11Dが、位置P1から回動位置P11に移動させられてその回動位置P11に維持され、次いで、その回動位置P11から位置P1に移動させられて位置P1に維持される場合に、推進力算出部14Cが、図5(B)に示す例と同様に、船舶推進装置12、13が発生する推進力がステップ状に変化するように、船舶推進装置12、13が発生する推進力の目標値を算出する。
Further, in the control device 14 for the ship propulsion device of the first embodiment, the control shown in FIG. 4B or FIG. 5B is a control for turning the ship 1 counterclockwise (turning the ship 1 counterclockwise). It also applies to control to turn around on the spot).
That is, in the first example of the ship propulsion device control device 14 of the first embodiment, the operation unit 11D is moved from the position P1 to the rotation position (rotation position) P11 and maintained at the rotation position P11. Next, when the rotation position P11 is moved to the position P1 and maintained at the position P1, the propulsion force calculation unit 14C causes the ship propulsion devices 12 and 13 to perform in the same manner as in the example shown in FIG. 4 (B). The target value of the propulsive force generated by the ship propulsion devices 12 and 13 is calculated so that the generated propulsive force gradually changes.
In the second example of the ship propulsion device control device 14 of the first embodiment, the operation unit 11D is moved from the position P1 to the rotation position P11 and maintained at the rotation position P11, and then the rotation position is maintained. When the propulsion force calculation unit 14C moves from P11 to the position P1 and is maintained at the position P1, the propulsion force generated by the ship propulsion devices 12 and 13 is stepped in the same manner as in the example shown in FIG. 5 (B). The target value of the propulsive force generated by the ship propulsion devices 12 and 13 is calculated so as to change the shape.
 上述した第1実施形態の船舶推進装置用制御装置14の第1例または第2例では、船舶1の停止時に図4(B)の時刻t3から時刻t4以降に示す制御(つまり、船舶推進装置12、13が発生する推進力が徐々に減少する制御)または図5(B)の時刻t3から時刻t4以降に示す制御(つまり、船舶推進装置12、13が発生する推進力がステップ状に減少する制御)が実行されるが、第1実施形態の船舶推進装置用制御装置14の第3例では、船舶1の停止時に図4(B)の時刻t3から時刻t4以降に示す制御および図5(B)の時刻t3から時刻t4以降に示す制御のいずれもが実行されなくてもよい。つまり、第1実施形態の船舶推進装置用制御装置14の第3例では、船舶1の停止時に図4(C)の時刻t3以降に示す制御が実行される。 In the first example or the second example of the ship propulsion device control device 14 of the first embodiment described above, the control shown from the time t3 to the time t4 in FIG. 4 (B) when the ship 1 is stopped (that is, the ship propulsion device). Control in which the propulsive force generated by 12 and 13 gradually decreases) or control shown from time t3 to time t4 in FIG. 5 (B) (that is, the propulsive force generated by ship propulsion devices 12 and 13 decreases stepwise. However, in the third example of the control device 14 for the ship propulsion device of the first embodiment, when the ship 1 is stopped, the control shown from time t3 to time t4 in FIG. 4B and FIG. 5 None of the controls shown in (B) from time t3 to time t4 or later may be executed. That is, in the third example of the control device 14 for the ship propulsion device of the first embodiment, the control shown after the time t3 in FIG. 4C is executed when the ship 1 is stopped.
 図6は第1実施形態の船舶推進装置用制御装置14によって実行される処理の一例を説明するためのフローチャートである。
 図6(A)に示す処理および図6(B)に示す処理は、操作部11D(ジョイスティック)の位置が変化した場合に開始し、並列に実行される。
 図6(A)に示す例では、ステップS11において、船舶推進装置用制御装置14が、例えばマイクロスイッチなどのセンサによって検出された操作部11Dの位置(ジョイスティックのレバーの位置)に基づいて、操作部11Dが位置P1から位置P2~P11のいずれかに移動させられたか否かを判定する。操作部11Dが位置P1から位置P2~P11のいずれかに移動させられた場合には、ステップS12に進む。一方、操作部11Dが位置P1から位置P2~P11のいずれかに移動させられていない場合には、図6(A)に示すルーチンを終了する。
FIG. 6 is a flowchart for explaining an example of the process executed by the ship propulsion device control device 14 of the first embodiment.
The process shown in FIG. 6A and the process shown in FIG. 6B start when the position of the operation unit 11D (joystick) changes, and are executed in parallel.
In the example shown in FIG. 6A, in step S11, the ship propulsion device control device 14 operates based on the position of the operation unit 11D (the position of the joystick lever) detected by a sensor such as a microswitch. It is determined whether or not the unit 11D has been moved from the position P1 to any of the positions P2 to P11. When the operation unit 11D is moved from the position P1 to any of the positions P2 to P11, the process proceeds to step S12. On the other hand, when the operation unit 11D is not moved from the position P1 to any of the positions P2 to P11, the routine shown in FIG. 6A ends.
 ステップS12において、船舶推進装置用制御装置14は、操作部11Dが位置P1から位置P2~P11のいずれかに移動させられた時刻t1から、第1期間(時刻t1~時刻t2の期間)が経過したか否かを判定する。操作部11Dが位置P1から位置P2~P11のいずれかに移動させられた時刻t1から、第1期間(時刻t1~時刻t2の期間)が経過していない場合(つまり、現在時刻が第1期間中である場合)には、ステップS13に進む。一方、操作部11Dが位置P1から位置P2~P11のいずれかに移動させられた時刻t1から、第1期間(時刻t1~時刻t2の期間)が経過している場合(つまり、現在時刻が、時刻t2以降の第2期間中である場合)には、ステップS14に進む。 In step S12, the first period (the period from time t1 to time t2) of the ship propulsion device control device 14 elapses from the time t1 when the operation unit 11D is moved from the position P1 to any of the positions P2 to P11. Determine if it has been done. When the first period (the period from time t1 to time t2) has not elapsed from the time t1 when the operation unit 11D is moved from the position P1 to any of the positions P2 to P11 (that is, the current time is the first period). If it is inside), the process proceeds to step S13. On the other hand, when the first period (the period from time t1 to time t2) has elapsed from the time t1 when the operation unit 11D is moved from the position P1 to any of the positions P2 to P11 (that is, the current time is If it is in the second period after the time t2), the process proceeds to step S14.
 ステップS13において、船舶推進装置用制御装置14の推進力算出部14Cは、船舶推進装置12、13が発生する推進力の目標値として、時間の経過に伴ってゼロから値F1まで一定の変化量で増加する値、あるいは、時間の経過に伴ってステップ状に増加する値を算出する(第1推進力を算出する)。その結果、船舶推進装置用制御装置14は、第1期間(時刻t1~時刻t2の期間)中に、時間の経過に伴って徐々に、あるいは、ステップ状に増加する第1推進力を船舶推進装置12、13に発生させる。
 ステップS14において、船舶推進装置用制御装置14の推進力算出部14Cは、船舶推進装置12、13が発生する推進力の目標値として、一定値(値F1)を算出し続ける(第2推進力を算出し続ける)。その結果、船舶推進装置用制御装置14は、第2期間(時刻t2~時刻t3の期間)中に、第1推進力よりも大きい第2推進力(一定の値F1に相当する一定の推進力)を船舶推進装置12、13に発生させる。
In step S13, the propulsion force calculation unit 14C of the ship propulsion device control device 14 sets a constant amount of change from zero to a value F1 with the passage of time as a target value of the propulsion force generated by the ship propulsion devices 12 and 13. Calculate the value that increases with, or the value that increases stepwise with the passage of time (calculate the first propulsive force). As a result, the ship propulsion device control device 14 propulses the ship during the first period (the period from time t1 to time t2) by gradually or stepwise increasing the first propulsive force with the passage of time. Generate in devices 12 and 13.
In step S14, the propulsion force calculation unit 14C of the ship propulsion device control device 14 continues to calculate a constant value (value F1) as a target value of the propulsion force generated by the ship propulsion devices 12 and 13 (second propulsion force). Continue to calculate). As a result, during the second period (the period from time t2 to time t3), the ship propulsion device control device 14 has a second propulsive force (a constant propulsive force corresponding to a constant value F1) larger than the first propulsive force. ) Is generated in the ship propulsion devices 12 and 13.
 図6(B)に示す例では、ステップS21において、船舶推進装置用制御装置14は、操作部11Dが位置P2~P11のいずれかから位置P1に移動させられたか否かを判定する。操作部11Dが位置P2~P11のいずれかからに位置P1移動させられた場合には、ステップS22に進む。一方、操作部11Dが位置P2~P11のいずれかから位置P1に移動させられていない場合には、図6(B)に示すルーチンを終了する。 In the example shown in FIG. 6B, in step S21, the ship propulsion device control device 14 determines whether or not the operation unit 11D has been moved from any of the positions P2 to P11 to the position P1. When the operation unit 11D is moved to the position P1 from any of the positions P2 to P11, the process proceeds to step S22. On the other hand, if the operation unit 11D has not been moved from any of the positions P2 to P11 to the position P1, the routine shown in FIG. 6B ends.
 ステップS22において、船舶推進装置用制御装置14は、操作部11Dが位置P2~P11のいずれかから位置P1に移動させられた時刻t3から、第3期間(時刻t3~時刻t4の期間)が経過したか否かを判定する。操作部11Dが位置P2~P11のいずれかから位置P1に移動させられた時刻t3から、第3期間(時刻t3~時刻t4の期間)が経過していない場合(つまり、現在時刻が第3期間中である場合)には、ステップS23に進む。一方、操作部11Dが位置P2~P11のいずれかから位置P1に移動させられた時刻t3から、第3期間(時刻t3~時刻t4の期間)が経過している場合(つまり、現在時刻が、時刻t4以降の第4期間中である場合)には、ステップS24に進む。 In step S22, the third period (the period from time t3 to time t4) of the ship propulsion device control device 14 elapses from the time t3 when the operation unit 11D is moved from any of the positions P2 to P11 to the position P1. Determine if it has been done. When the third period (the period from time t3 to time t4) has not elapsed from the time t3 when the operation unit 11D is moved from any of the positions P2 to P11 to the position P1 (that is, the current time is the third period). If it is inside), the process proceeds to step S23. On the other hand, when the third period (the period from time t3 to time t4) has elapsed from the time t3 when the operation unit 11D is moved from any of the positions P2 to P11 to the position P1 (that is, the current time is If it is in the fourth period after the time t4), the process proceeds to step S24.
 ステップS23において、船舶推進装置用制御装置14の推進力算出部14Cは、船舶推進装置12、13が発生する推進力の目標値として、時間の経過に伴って値F1からゼロまで一定の変化量で減少する値、あるいは、時間の経過に伴ってステップ状に減少する値を算出する(第3推進力を算出する)。その結果、船舶推進装置用制御装置14は、第3期間(時刻t3~時刻t4の期間)中に、時間の経過に伴って徐々に、あるいは、ステップ状に減少する第3推進力(ゼロより大きく第2推進力より小さい第3推進力)を船舶推進装置12、13に発生させる。
 ステップS24において、船舶推進装置用制御装置14の推進力算出部14Cは、船舶推進装置12、13が発生する推進力の目標値として、ゼロを算出し続ける(推進力ゼロを算出し続ける)。その結果、船舶推進装置用制御装置14は、第4期間(時刻t4以降の期間)中に、船舶推進装置12、13に推進力を発生させない。
In step S23, the propulsion force calculation unit 14C of the ship propulsion device control device 14 sets a constant amount of change from the value F1 to zero as a target value of the propulsion force generated by the ship propulsion devices 12 and 13. Calculate the value that decreases with, or the value that decreases stepwise with the passage of time (calculate the third propulsive force). As a result, the control device 14 for the ship propulsion device has a third propulsive force (from zero) that gradually or stepwise decreases with the passage of time during the third period (period from time t3 to time t4). A third propulsion force (largely smaller than the second propulsion force) is generated in the ship propulsion devices 12 and 13.
In step S24, the propulsion force calculation unit 14C of the ship propulsion device control device 14 continues to calculate zero as the target value of the propulsion force generated by the ship propulsion devices 12 and 13 (continues to calculate the propulsion force zero). As a result, the ship propulsion device control device 14 does not generate propulsive force in the ship propulsion devices 12 and 13 during the fourth period (period after time t4).
<第2実施形態>
 以下、本発明の船舶推進装置用制御装置、船舶推進装置用制御方法およびプログラムの第2実施形態について説明する。
 第2実施形態の船舶推進装置用制御装置14は、後述する点を除き、上述した第1実施形態の船舶推進装置用制御装置14と同様に構成されている。従って、第2実施形態の船舶推進装置用制御装置14によれば、後述する点を除き、上述した第1実施形態の船舶推進装置用制御装置14と同様の効果を奏することができる。
<Second Embodiment>
Hereinafter, a second embodiment of the ship propulsion device control device, the ship propulsion device control method, and the program of the present invention will be described.
The ship propulsion device control device 14 of the second embodiment is configured in the same manner as the ship propulsion device control device 14 of the first embodiment described above, except for the points described later. Therefore, according to the ship propulsion device control device 14 of the second embodiment, the same effect as that of the ship propulsion device control device 14 of the first embodiment described above can be obtained except for the points described later.
 図7は第2実施形態の船舶推進装置用制御装置14が適用される船舶1の一例を示す図である。図8は図7に示す船舶1の主要部の機能ブロック図である。
 上述したように、図1および図2に示す例では、船体11が、操舵装置11Aと、リモコン装置11Bと、リモコン装置11Cと、操作部11Dとを備えている。
 一方、図7および図8に示す例では、船体11が、操舵装置11Aと、リモコン装置11Bと、リモコン装置11Cと、操作部11Dと、第1期間設定部11Eとを備えている。第1期間設定部11Eは、例えば操船者による第1期間(時刻t1(図4および図5参照)~時刻t2(図4および図5参照)の期間)の長さの変更要求(具体的には、延長要求または短縮要求)を受け付ける。
 他の例では、船体11が、操舵装置11A、リモコン装置11Bおよびリモコン装置11Cを備えていなくてもよい。
FIG. 7 is a diagram showing an example of a ship 1 to which the control device 14 for a ship propulsion device of the second embodiment is applied. FIG. 8 is a functional block diagram of the main part of the ship 1 shown in FIG.
As described above, in the example shown in FIGS. 1 and 2, the hull 11 includes a steering device 11A, a remote control device 11B, a remote control device 11C, and an operation unit 11D.
On the other hand, in the example shown in FIGS. 7 and 8, the hull 11 includes a steering device 11A, a remote control device 11B, a remote control device 11C, an operation unit 11D, and a first period setting unit 11E. The first period setting unit 11E requests, for example, a change in the length of the first period (the period from time t1 (see FIGS. 4 and 5) to time t2 (see FIGS. 4 and 5)) by the operator (specifically). Accepts extension requests or shortening requests).
In another example, the hull 11 may not include the steering device 11A, the remote control device 11B, and the remote control device 11C.
 上述したように、図1および図2に示す例では、船舶推進装置用制御装置14が、移動経路算出部14Aと、経過時間算出部14Bと、推進力算出部14Cとを備えている。
 一方、図7および図8に示す例では、船舶推進装置用制御装置14が、移動経路算出部14Aと、経過時間算出部14Bと、推進力算出部14Cと、第1期間長さ変更部14Dとを備えている。
 第1期間長さ変更部14Dは、第1期間(時刻t1~時刻t2の期間)の長さを変更する。具体的には、第1期間設定部11Eが、例えば操船者による第1期間の長さの延長要求を受け付けた場合に、第1期間長さ変更部14Dは、第1期間の長さを延長する。一方、第1期間設定部11Eが、例えば操船者による第1期間の長さの短縮要求を受け付けた場合には、第1期間長さ変更部14Dが、第1期間の長さを短縮する。
As described above, in the examples shown in FIGS. 1 and 2, the ship propulsion device control device 14 includes a movement route calculation unit 14A, an elapsed time calculation unit 14B, and a propulsion force calculation unit 14C.
On the other hand, in the examples shown in FIGS. 7 and 8, the ship propulsion device control device 14 includes a movement route calculation unit 14A, an elapsed time calculation unit 14B, a propulsion force calculation unit 14C, and a first period length change unit 14D. And have.
The first period length changing unit 14D changes the length of the first period (the period from time t1 to time t2). Specifically, when the first period setting unit 11E receives, for example, a request from the operator to extend the length of the first period, the first period length changing unit 14D extends the length of the first period. To do. On the other hand, when the first period setting unit 11E receives, for example, a request from the operator to shorten the length of the first period, the first period length changing unit 14D shortens the length of the first period.
 図9は操作部11Dが、位置P1から位置P2に移動させられて位置P2に維持される場合に第2実施形態の船舶推進装置用制御装置14の推進力算出部14Cによって算出される推進力(船舶推進装置12、13が発生する推進力)の目標値などの第1例を説明するための図である。
 詳細には、図9(A)は操作部11Dの位置P1、P2と時間との関係を示しており、図9(B)は第1期間長さ変更部14Dによって第1期間の長さが変更される前に第2実施形態の船舶推進装置用制御装置14の推進力算出部14Cによって算出される推進力の目標値と時間との関係を示している。図9(C)は第1期間長さ変更部14Dによって第1期間の長さが延長された後に第2実施形態の船舶推進装置用制御装置14の推進力算出部14Cによって算出される推進力の目標値と時間との関係を示しており、図9(D)は第1期間長さ変更部14Dによって第1期間の長さが短縮された後に第2実施形態の船舶推進装置用制御装置14の推進力算出部14Cによって算出される推進力の目標値と時間との関係を示している。
FIG. 9 shows a propulsion force calculated by the propulsion force calculation unit 14C of the ship propulsion device control device 14 of the second embodiment when the operation unit 11D is moved from the position P1 to the position P2 and maintained at the position P2. It is a figure for demonstrating the 1st example such as the target value of (the propulsive force generated by ship propulsion devices 12 and 13).
In detail, FIG. 9A shows the relationship between the positions P1 and P2 of the operation unit 11D and the time, and FIG. 9B shows the length of the first period by the first period length changing unit 14D. The relationship between the target value of the propulsive force calculated by the propulsive force calculation unit 14C of the ship propulsion device control device 14 of the second embodiment and the time before being changed is shown. FIG. 9C shows the propulsive force calculated by the propulsive force calculation unit 14C of the ship propulsion device control device 14 of the second embodiment after the length of the first period is extended by the first period length changing unit 14D. 9 (D) shows the relationship between the target value and the time, and FIG. 9 (D) shows the control device for the ship propulsion device of the second embodiment after the length of the first period is shortened by the first period length changing unit 14D. The relationship between the target value of the propulsive force calculated by the propulsive force calculation unit 14C of 14 and the time is shown.
 図9に示す例では、図9(A)に示すように、時刻t1以前の期間中、操作部11Dが位置P1に位置し、時刻t1に、操作部11Dが位置P1から位置P2に移動させられ、時刻t1以降の期間中、操作部11Dが位置P2に維持される。 In the example shown in FIG. 9, as shown in FIG. 9A, the operation unit 11D is located at the position P1 during the period before the time t1, and the operation unit 11D is moved from the position P1 to the position P2 at the time t1. The operation unit 11D is maintained at the position P2 during the period after the time t1.
 第2実施形態の船舶推進装置用制御装置14の第1例では、図9(B)に示すように、時刻t1以前の期間中、推進力算出部14Cは、船舶推進装置12、13が発生する推進力の目標値として、ゼロを算出する。その結果、船舶推進装置12、13は推進力を発生せず、船舶1の速度はゼロである。
 次いで、時刻t1~時刻t2の第1期間中、推進力算出部14Cが算出する推進力(船舶推進装置12、13が発生する推進力)の目標値は、ゼロから値F1まで、例えば一定の変化量で増加する。その結果、船舶推進装置12、13が発生する推進力が徐々に増加し、船舶1の速度も徐々に増加する。
 次いで、時刻t2以降の第2期間中、推進力算出部14Cが算出する推進力(船舶推進装置12、13が発生する推進力)の目標値は、値F1に維持される。その結果、船舶推進装置12、13が発生する推進力が一定値に維持され、船舶1の速度も一定値に維持される。
In the first example of the control device 14 for the ship propulsion device of the second embodiment, as shown in FIG. 9B, the propulsion force calculation unit 14C generates the ship propulsion devices 12 and 13 during the period before the time t1. Calculate zero as the target value of the driving force to be used. As a result, the ship propulsion devices 12 and 13 do not generate propulsive force, and the speed of the ship 1 is zero.
Next, during the first period from time t1 to time t2, the target value of the propulsive force (the propulsive force generated by the ship propulsion devices 12 and 13) calculated by the propulsion force calculation unit 14C is from zero to the value F1, for example, constant. It increases with the amount of change. As a result, the propulsive force generated by the ship propulsion devices 12 and 13 gradually increases, and the speed of the ship 1 also gradually increases.
Next, during the second period after the time t2, the target value of the propulsive force (the propulsive force generated by the ship propulsion devices 12 and 13) calculated by the propulsion force calculation unit 14C is maintained at the value F1. As a result, the propulsive force generated by the ship propulsion devices 12 and 13 is maintained at a constant value, and the speed of the ship 1 is also maintained at a constant value.
 つまり、図9(B)に示す例では、操作部11Dが位置P1から位置P2に移動させられた時刻t1から時刻t2までの第1期間中に、船舶推進装置12、13が小さい推進力(第1推進力)を発生し、次いで、時刻t2以降の第2期間中に、船舶推進装置12、13が、第1推進力よりも大きい第2推進力(値F1の推進力)を発生する。
 すなわち、図9(B)に示す例では、船舶推進装置12、13が発生する推進力はゼロから値F1に急激に変化せず、徐々に変化する。そのため、船舶1の移動開始時の乗り心地を向上させることができ、船舶1の移動開始時に乗船者がよろけてしまうおそれを抑制することができる。
That is, in the example shown in FIG. 9B, the ship propulsion devices 12 and 13 have a small propulsive force during the first period from the time t1 to the time t2 when the operation unit 11D is moved from the position P1 to the position P2. The first propulsion force) is generated, and then, during the second period after the time t2, the ship propulsion devices 12 and 13 generate the second propulsion force (the propulsion force having a value F1) larger than the first propulsion force. ..
That is, in the example shown in FIG. 9B, the propulsive force generated by the ship propulsion devices 12 and 13 does not suddenly change from zero to the value F1, but gradually changes. Therefore, it is possible to improve the riding comfort at the start of movement of the ship 1, and it is possible to suppress the possibility that the passengers will stagger at the start of movement of the ship 1.
 一方、操船者によっては、船舶推進装置12、13が発生する推進力をゼロから値F1まで、図9(B)に示す例よりも緩やかに増加させることを望む操船者も存在し得る。
 そのような場合に、第1期間設定部11Eが、操船者による第1期間(時刻t1~時刻t2の期間)の長さの延長要求を受け付け、第1期間長さ変更部14Dは、第1期間の長さを、「時刻t1~時刻t2(図9(B)参照)」から「時刻t1~時刻t2’(図9(C)参照)」に延長する。
On the other hand, depending on the ship operator, there may be a ship operator who desires to increase the propulsive force generated by the ship propulsion devices 12 and 13 from zero to the value F1 more slowly than in the example shown in FIG. 9B.
In such a case, the first period setting unit 11E receives the request for extension of the length of the first period (the period from time t1 to time t2) by the ship operator, and the first period length changing unit 14D receives the first period length changing unit 14D. The length of the period is extended from "time t1 to time t2 (see FIG. 9 (B))" to "time t1 to time t2'(see FIG. 9 (C))".
 第1期間の長さが延長された図9(C)に示す例では、時刻t1以前の期間中、推進力算出部14Cは、船舶推進装置12、13が発生する推進力の目標値として、ゼロを算出する。その結果、船舶推進装置12、13は推進力を発生せず、船舶1の速度はゼロである。
 次いで、時刻t1~時刻t2’の第1期間(つまり、延長後の第1期間)中、推進力算出部14Cが算出する推進力(船舶推進装置12、13が発生する推進力)の目標値は、ゼロから値F1まで、図9(B)に示す例よりも緩やかに増加する。その結果、船舶推進装置12、13が発生する推進力が徐々に増加し、船舶1の速度も徐々に増加する。
 次いで、時刻t2’以降の第2期間中、推進力算出部14Cが算出する推進力(船舶推進装置12、13が発生する推進力)の目標値は、値F1に維持される。その結果、船舶推進装置12、13が発生する推進力が一定値に維持され、船舶1の速度も一定値に維持される。
In the example shown in FIG. 9C in which the length of the first period is extended, the propulsion force calculation unit 14C sets the target value of the propulsion force generated by the ship propulsion devices 12 and 13 during the period before the time t1. Calculate zero. As a result, the ship propulsion devices 12 and 13 do not generate propulsive force, and the speed of the ship 1 is zero.
Next, during the first period from time t1 to time t2'(that is, the first period after the extension), the target value of the propulsive force (the propulsive force generated by the ship propulsion devices 12 and 13) calculated by the propulsion force calculation unit 14C. Gradually increases from zero to the value F1 as compared to the example shown in FIG. 9 (B). As a result, the propulsive force generated by the ship propulsion devices 12 and 13 gradually increases, and the speed of the ship 1 also gradually increases.
Next, during the second period after the time t2', the target value of the propulsive force (the propulsive force generated by the ship propulsion devices 12 and 13) calculated by the propulsion force calculation unit 14C is maintained at the value F1. As a result, the propulsive force generated by the ship propulsion devices 12 and 13 is maintained at a constant value, and the speed of the ship 1 is also maintained at a constant value.
 つまり、図9(C)に示す例では、操作部11Dが位置P1から位置P2に移動させられた時刻t1から時刻t2’までの第1期間(延長後の第1期間)中に、船舶推進装置12、13が小さい推進力(第1推進力)を発生し、次いで、時刻t2’以降の第2期間中に、船舶推進装置12、13が、第1推進力よりも大きい第2推進力(値F1の推進力)を発生する。
 すなわち、図9(C)に示す例では、船舶推進装置12、13が発生する推進力はゼロから値F1に、図9(B)に示す例よりも緩やかに増加する。そのため、船舶1の移動開始時に乗船者がよろけてしまうおそれを、図9(B)に示す例よりも抑制することができる。
That is, in the example shown in FIG. 9C, the ship is propelled during the first period (first period after extension) from the time t1 to the time t2'when the operation unit 11D is moved from the position P1 to the position P2. The devices 12 and 13 generate a small propulsion force (first propulsion force), and then during the second period after time t2', the ship propulsion devices 12 and 13 generate a second propulsion force larger than the first propulsion force. (Propulsive force of value F1) is generated.
That is, in the example shown in FIG. 9C, the propulsive force generated by the ship propulsion devices 12 and 13 gradually increases from zero to the value F1 as compared with the example shown in FIG. 9B. Therefore, the possibility that the passengers may stagger at the start of movement of the ship 1 can be suppressed as compared with the example shown in FIG. 9B.
 また、操船者によっては、船舶推進装置12、13が発生する推進力をゼロから値F1まで、図9(B)に示す例よりも迅速に増加させることを望む操船者も存在し得る。
 そのような場合に、第1期間設定部11Eが、操船者による第1期間(時刻t1~時刻t2の期間)の長さの短縮要求を受け付け、第1期間長さ変更部14Dは、第1期間の長さを、「時刻t1~時刻t2(図9(B)参照)」から「時刻t1~時刻t2”(図9(D)参照)」に短縮する。
Further, depending on the ship operator, there may be a ship operator who desires to increase the propulsive force generated by the ship propulsion devices 12 and 13 from zero to the value F1 more quickly than in the example shown in FIG. 9B.
In such a case, the first period setting unit 11E receives the request for shortening the length of the first period (the period from time t1 to time t2) by the ship operator, and the first period length changing unit 14D receives the first period length changing unit 14D. The length of the period is shortened from "time t1 to time t2 (see FIG. 9 (B))" to "time t1 to time t2" (see FIG. 9 (D)).
 第1期間の長さが短縮された図9(D)に示す例では、時刻t1以前の期間中、推進力算出部14Cは、船舶推進装置12、13が発生する推進力の目標値として、ゼロを算出する。その結果、船舶推進装置12、13は推進力を発生せず、船舶1の速度はゼロである。
 次いで、時刻t1~時刻t2”の第1期間(つまり、短縮後の第1期間)中、推進力算出部14Cが算出する推進力(船舶推進装置12、13が発生する推進力)の目標値は、ゼロから値F1まで、図9(B)に示す例よりも迅速に増加する。その結果、船舶推進装置12、13が発生する推進力が増加し、船舶1の速度も増加する。
 次いで、時刻t2”以降の第2期間中、推進力算出部14Cが算出する推進力(船舶推進装置12、13が発生する推進力)の目標値は、値F1に維持される。その結果、船舶推進装置12、13が発生する推進力が一定値に維持され、船舶1の速度も一定値に維持される。
In the example shown in FIG. 9D in which the length of the first period is shortened, the propulsion force calculation unit 14C sets the target value of the propulsion force generated by the ship propulsion devices 12 and 13 during the period before the time t1. Calculate zero. As a result, the ship propulsion devices 12 and 13 do not generate propulsive force, and the speed of the ship 1 is zero.
Next, during the first period of "time t1 to time t2" (that is, the first period after shortening), the target value of the propulsive force (the propulsive force generated by the ship propulsion devices 12 and 13) calculated by the propulsion force calculation unit 14C. Increases from zero to the value F1 more rapidly than in the example shown in FIG. 9B. As a result, the propulsive force generated by the ship propulsion devices 12 and 13 increases, and the speed of the ship 1 also increases.
Next, during the second period after time t2 ", the target value of the propulsive force (the propulsive force generated by the ship propulsion devices 12 and 13) calculated by the propulsion force calculation unit 14C is maintained at the value F1. The propulsive force generated by the ship propulsion devices 12 and 13 is maintained at a constant value, and the speed of the ship 1 is also maintained at a constant value.
 つまり、図9(D)に示す例では、操作部11Dが位置P1から位置P2に移動させられた時刻t1から時刻t2”までの第1期間(短縮後の第1期間)中に、船舶推進装置12、13が小さい推進力(第1推進力)を発生し、次いで、時刻t2”以降の第2期間中に、船舶推進装置12、13が、第1推進力よりも大きい第2推進力(値F1の推進力)を発生する。
 すなわち、図9(D)に示す例では、船舶推進装置12、13が発生する推進力はゼロから値F1に、図9(B)に示す例よりも迅速に増加する。そのため、操船者の要求を満足させつつ、船舶1の移動開始時に乗船者がよろけてしまうおそれを抑制することができる。
That is, in the example shown in FIG. 9D, the ship is propelled during the first period (first period after shortening) from the time t1 to the time t2 ”when the operation unit 11D is moved from the position P1 to the position P2. Devices 12 and 13 generate a small propulsion force (first propulsion force), and then during the second period after time t2 ", the ship propulsion devices 12 and 13 generate a second propulsion force larger than the first propulsion force. (Propulsive force of value F1) is generated.
That is, in the example shown in FIG. 9D, the propulsive force generated by the ship propulsion devices 12 and 13 increases from zero to the value F1 more rapidly than in the example shown in FIG. 9B. Therefore, it is possible to suppress the possibility that the passengers may stagger at the start of movement of the ship 1 while satisfying the demands of the ship operator.
 図10は操作部11Dが、位置P1から位置P2に移動させられて位置P2に維持される場合に第2実施形態の船舶推進装置用制御装置14の推進力算出部14Cによって算出される推進力(船舶推進装置12、13が発生する推進力)の目標値などの第2例を説明するための図である。
 詳細には、図10(A)は操作部11Dの位置P1、P2と時間との関係を示しており、図10(B)は第1期間長さ変更部14Dによって第1期間の長さが変更される前に第2実施形態の船舶推進装置用制御装置14の推進力算出部14Cによって算出される推進力の目標値と時間との関係を示している。図10(C)は第1期間長さ変更部14Dによって第1期間の長さが延長された後に第2実施形態の船舶推進装置用制御装置14の推進力算出部14Cによって算出される推進力の目標値と時間との関係を示しており、図10(D)は第1期間長さ変更部14Dによって第1期間の長さが短縮された後に第2実施形態の船舶推進装置用制御装置14の推進力算出部14Cによって算出される推進力の目標値と時間との関係を示している。
FIG. 10 shows a propulsion force calculated by the propulsion force calculation unit 14C of the ship propulsion device control device 14 of the second embodiment when the operation unit 11D is moved from the position P1 to the position P2 and maintained at the position P2. It is a figure for demonstrating the 2nd example such as the target value of (the propulsive force generated by ship propulsion devices 12 and 13).
In detail, FIG. 10 (A) shows the relationship between the positions P1 and P2 of the operation unit 11D and the time, and FIG. 10 (B) shows the length of the first period by the first period length changing unit 14D. The relationship between the target value of the propulsive force calculated by the propulsive force calculating unit 14C of the ship propulsion device control device 14 of the second embodiment and the time before being changed is shown. FIG. 10C shows the propulsive force calculated by the propulsive force calculation unit 14C of the ship propulsion device control device 14 of the second embodiment after the length of the first period is extended by the first period length changing unit 14D. 10 (D) shows the relationship between the target value and the time, and FIG. 10 (D) shows the control device for the ship propulsion device of the second embodiment after the length of the first period is shortened by the first period length changing unit 14D. The relationship between the target value of the propulsive force calculated by the propulsive force calculation unit 14C of 14 and the time is shown.
 図10に示す例では、図10(A)に示すように、時刻t1以前の期間中、操作部11Dが位置P1に位置し、時刻t1に、操作部11Dが位置P1から位置P2に移動させられ、時刻t1以降の期間中、操作部11Dが位置P2に維持される。 In the example shown in FIG. 10, as shown in FIG. 10A, the operation unit 11D is located at the position P1 during the period before the time t1, and the operation unit 11D is moved from the position P1 to the position P2 at the time t1. The operation unit 11D is maintained at the position P2 during the period after the time t1.
 第2実施形態の船舶推進装置用制御装置14の第2例では、図10(B)に示すように、時刻t1以前の期間中、推進力算出部14Cは、船舶推進装置12、13が発生する推進力の目標値として、ゼロを算出する。その結果、船舶推進装置12、13は推進力を発生せず、船舶1の速度はゼロである。
 次いで、時刻t1~時刻t2の第1期間中、推進力算出部14Cは、船舶推進装置12、13が発生する推進力の目標値として、ゼロより大きく、値F1より小さい値F2を算出する。その結果、船舶推進装置12、13が発生する推進力は、時刻t1に、図4(C)に示す例より緩やかに増加し、船舶1の速度も、図4(C)に示す例より緩やかに増加する。
 次いで、時刻t2以降の第2期間中、推進力算出部14Cは、船舶推進装置12、13が発生する推進力の目標値として、値F1を算出する。その結果、船舶推進装置12、13が発生する推進力は、時刻t2に、時刻t1と同程度に緩やかに増加し、船舶1の速度も、時刻t1と同程度に緩やかに増加する。
In the second example of the control device 14 for the ship propulsion device of the second embodiment, as shown in FIG. 10B, the propulsion force calculation unit 14C generates the ship propulsion devices 12 and 13 during the period before the time t1. Calculate zero as the target value of the driving force to be used. As a result, the ship propulsion devices 12 and 13 do not generate propulsive force, and the speed of the ship 1 is zero.
Next, during the first period from time t1 to time t2, the propulsion force calculation unit 14C calculates a value F2 larger than zero and smaller than the value F1 as the target value of the propulsive force generated by the ship propulsion devices 12 and 13. As a result, the propulsive force generated by the ship propulsion devices 12 and 13 gradually increases at time t1 from the example shown in FIG. 4 (C), and the speed of the ship 1 also increases more slowly than the example shown in FIG. 4 (C). Increase to.
Next, during the second period after the time t2, the propulsion force calculation unit 14C calculates the value F1 as the target value of the propulsion force generated by the ship propulsion devices 12 and 13. As a result, the propulsive force generated by the ship propulsion devices 12 and 13 gradually increases at time t2 to the same extent as the time t1, and the speed of the ship 1 also gradually increases to the same extent as the time t1.
 つまり、図10(B)に示す例では、操作部11Dが位置P1から位置P2に移動させられた時刻t1から時刻t2までの第1期間中に、船舶推進装置12、13が小さい第1推進力(値F2の推進力)を発生し、次いで、時刻t2以降の第2期間中に、船舶推進装置12、13が、第1推進力よりも大きい第2推進力(値F1の推進力)を発生する。
 すなわち、図10(B)に示す例では、船舶推進装置12、13が発生する推進力はゼロから値F1に急激に変化せず、ステップ状に変化する。そのため、船舶1の移動開始時の乗り心地を向上させることができ、船舶1の移動開始時に乗船者がよろけてしまうおそれを抑制することができる。
That is, in the example shown in FIG. 10B, during the first period from time t1 to time t2 when the operation unit 11D was moved from position P1 to position P2, the ship propulsion devices 12 and 13 were small first propulsion. A force (propulsive force of value F2) is generated, and then during the second period after time t2, the ship propulsion devices 12 and 13 have a second propulsive force (propulsive force of value F1) larger than the first propulsive force. Occurs.
That is, in the example shown in FIG. 10B, the propulsive force generated by the ship propulsion devices 12 and 13 does not suddenly change from zero to the value F1, but changes in steps. Therefore, it is possible to improve the riding comfort at the start of movement of the ship 1, and it is possible to suppress the possibility that the passengers will stagger at the start of movement of the ship 1.
 一方、操船者によっては、船舶推進装置12、13が小さい第1推進力(値F2の推進力)を発生する第1期間として、図10(B)に示す例よりも長い第1期間を望む操船者も存在し得る。
 そのような場合に、第1期間設定部11Eが、操船者による第1期間(時刻t1~時刻t2の期間)の長さの延長要求を受け付け、第1期間長さ変更部14Dは、第1期間の長さを、「時刻t1~時刻t2(図10(B)参照)」から「時刻t1~時刻t2’(図10(C)参照)」に延長する。
On the other hand, depending on the ship operator, as the first period in which the ship propulsion devices 12 and 13 generate a small first propulsion force (propulsion force having a value of F2), a first period longer than the example shown in FIG. 10B is desired. There can also be ship operators.
In such a case, the first period setting unit 11E receives the request for extension of the length of the first period (the period from time t1 to time t2) by the ship operator, and the first period length changing unit 14D receives the first period length changing unit 14D. The length of the period is extended from "time t1 to time t2 (see FIG. 10 (B))" to "time t1 to time t2'(see FIG. 10 (C))".
 第1期間の長さが延長された図10(C)に示す例では、時刻t1以前の期間中、推進力算出部14Cは、船舶推進装置12、13が発生する推進力の目標値として、ゼロを算出する。その結果、船舶推進装置12、13は推進力を発生せず、船舶1の速度はゼロである。
 次いで、時刻t1~時刻t2’の第1期間(つまり、延長後の第1期間)中、推進力算出部14Cは、船舶推進装置12、13が発生する推進力の目標値として、ゼロより大きく、値F1より小さい値F2を算出する。
 次いで、時刻t2’以降の第2期間中、推進力算出部14Cは、船舶推進装置12、13が発生する推進力の目標値として、値F1を算出する。
In the example shown in FIG. 10C in which the length of the first period is extended, the propulsion force calculation unit 14C sets the target value of the propulsion force generated by the ship propulsion devices 12 and 13 during the period before the time t1. Calculate zero. As a result, the ship propulsion devices 12 and 13 do not generate propulsive force, and the speed of the ship 1 is zero.
Next, during the first period from time t1 to time t2'(that is, the first period after the extension), the propulsion force calculation unit 14C sets the target value of the propulsive force generated by the ship propulsion devices 12 and 13 to be larger than zero. , A value F2 smaller than the value F1 is calculated.
Next, during the second period after the time t2', the propulsion force calculation unit 14C calculates the value F1 as the target value of the propulsion force generated by the ship propulsion devices 12 and 13.
 つまり、図10(C)に示す例では、操作部11Dが位置P1から位置P2に移動させられた時刻t1から時刻t2’までの第1期間(延長後の第1期間)中に、船舶推進装置12、13が小さい推進力(第1推進力)を発生し、次いで、時刻t2’以降の第2期間中に、船舶推進装置12、13が、第1推進力よりも大きい第2推進力(値F1の推進力)を発生する。
 すなわち、図10(C)に示す例では、第1期間が図10(B)に示す例より長いため、船舶推進装置12、13が発生する推進力は、図10(B)に示す例よりも緩やかに増加する。そのため、船舶1の移動開始時に乗船者がよろけてしまうおそれを、図10(B)に示す例よりも抑制することができる。
That is, in the example shown in FIG. 10C, the ship is propelled during the first period (first period after extension) from the time t1 to the time t2'when the operation unit 11D is moved from the position P1 to the position P2. The devices 12 and 13 generate a small propulsion force (first propulsion force), and then during the second period after time t2', the ship propulsion devices 12 and 13 generate a second propulsion force larger than the first propulsion force. (Propulsive force of value F1) is generated.
That is, in the example shown in FIG. 10 (C), since the first period is longer than the example shown in FIG. 10 (B), the propulsive force generated by the ship propulsion devices 12 and 13 is larger than that in the example shown in FIG. 10 (B). Also gradually increases. Therefore, the possibility that the passengers may stagger at the start of movement of the ship 1 can be suppressed as compared with the example shown in FIG. 10B.
 また、操船者によっては、船舶推進装置12、13が発生する推進力を、図10(B)に示す例よりも迅速に増加させることを望む操船者も存在し得る。
 そのような場合に、第1期間設定部11Eが、操船者による第1期間(時刻t1~時刻t2の期間)の長さの短縮要求を受け付け、第1期間長さ変更部14Dは、第1期間の長さを、「時刻t1~時刻t2(図10(B)参照)」から「時刻t1~時刻t2”(図10(D)参照)」に短縮する。
Further, depending on the ship operator, there may be a ship operator who desires to increase the propulsive force generated by the ship propulsion devices 12 and 13 more quickly than in the example shown in FIG. 10 (B).
In such a case, the first period setting unit 11E receives the request for shortening the length of the first period (the period from time t1 to time t2) by the ship operator, and the first period length changing unit 14D receives the first period length changing unit 14D. The length of the period is shortened from "time t1 to time t2 (see FIG. 10 (B))" to "time t1 to time t2" (see FIG. 10 (D)).
 第1期間の長さが短縮された図10(D)に示す例では、時刻t1以前の期間中、推進力算出部14Cは、船舶推進装置12、13が発生する推進力の目標値として、ゼロを算出する。その結果、船舶推進装置12、13は推進力を発生せず、船舶1の速度はゼロである。
 次いで、時刻t1~時刻t2”の第1期間(つまり、短縮後の第1期間)中、推進力算出部14Cは、船舶推進装置12、13が発生する推進力の目標値として、ゼロより大きく、値F1より小さい値F2を算出する。
 次いで、時刻t2”以降の第2期間中、推進力算出部14Cは、船舶推進装置12、13が発生する推進力の目標値として、値F1を算出する。
In the example shown in FIG. 10 (D) in which the length of the first period is shortened, the propulsion force calculation unit 14C sets the target value of the propulsion force generated by the ship propulsion devices 12 and 13 during the period before the time t1. Calculate zero. As a result, the ship propulsion devices 12 and 13 do not generate propulsive force, and the speed of the ship 1 is zero.
Next, during the first period of "time t1 to time t2" (that is, the first period after shortening), the propulsion force calculation unit 14C sets the target value of the propulsion force generated by the ship propulsion devices 12 and 13 to be larger than zero. , A value F2 smaller than the value F1 is calculated.
Next, during the second period after the time t2 ", the propulsion force calculation unit 14C calculates the value F1 as the target value of the propulsion force generated by the ship propulsion devices 12 and 13.
 つまり、図10(D)に示す例では、操作部11Dが位置P1から位置P2に移動させられた時刻t1から時刻t2”までの第1期間(短縮後の第1期間)中に、船舶推進装置12、13が小さい推進力(第1推進力)を発生し、次いで、時刻t2”以降の第2期間中に、船舶推進装置12、13が、第1推進力よりも大きい第2推進力(値F1の推進力)を発生する。
 すなわち、図10(D)に示す例では、船舶推進装置12、13が発生する推進力はゼロから値F1に、図10(B)に示す例よりも迅速に増加する。そのため、操船者の要求を満足させつつ、船舶1の移動開始時に乗船者がよろけてしまうおそれを抑制することができる。
That is, in the example shown in FIG. 10D, the ship is propelled during the first period (first period after shortening) from the time t1 to the time t2 ”when the operation unit 11D is moved from the position P1 to the position P2. Devices 12 and 13 generate a small propulsion force (first propulsion force), and then during the second period after time t2 ", the ship propulsion devices 12 and 13 generate a second propulsion force larger than the first propulsion force. (Propulsive force of value F1) is generated.
That is, in the example shown in FIG. 10 (D), the propulsive force generated by the ship propulsion devices 12 and 13 increases from zero to the value F1 more rapidly than in the example shown in FIG. 10 (B). Therefore, it is possible to suppress the possibility that the passengers may stagger at the start of movement of the ship 1 while satisfying the demands of the ship operator.
<第3実施形態>
 以下、本発明の船舶推進装置用制御装置、船舶推進装置用制御方法およびプログラムの第3実施形態について説明する。
 第3実施形態の船舶推進装置用制御装置14は、後述する点を除き、上述した第1実施形態の船舶推進装置用制御装置14と同様に構成されている。従って、第3実施形態の船舶推進装置用制御装置14によれば、後述する点を除き、上述した第1実施形態の船舶推進装置用制御装置14と同様の効果を奏することができる。
<Third Embodiment>
Hereinafter, a third embodiment of the ship propulsion device control device, the ship propulsion device control method, and the program of the present invention will be described.
The ship propulsion device control device 14 of the third embodiment is configured in the same manner as the ship propulsion device control device 14 of the first embodiment described above, except for the points described later. Therefore, according to the ship propulsion device control device 14 of the third embodiment, the same effect as that of the ship propulsion device control device 14 of the first embodiment described above can be obtained except for the points described later.
 図11は第3実施形態の船舶推進装置用制御装置14が適用される船舶1の一例を示す図である。
 上述したように、図1に示す例では、船体11が、操舵装置11Aと、リモコン装置11Bと、リモコン装置11Cと、操作部11Dとを備えている。
 一方、図11に示す例では、船体11が、操舵装置11Aと、リモコン装置11Bと、リモコン装置11Cと、操作部11Dと、モード設定部11Fとを備えている。モード設定部11Fは、例えば操船者による第1モード(スロースタートモード)および第2モード(クイックスタートモード)のいずれかの選択を受け付ける。
 他の例では、船体11が、操舵装置11A、リモコン装置11Bおよびリモコン装置11Cを備えていなくてもよい。
FIG. 11 is a diagram showing an example of a ship 1 to which the control device 14 for a ship propulsion device of the third embodiment is applied.
As described above, in the example shown in FIG. 1, the hull 11 includes a steering device 11A, a remote control device 11B, a remote control device 11C, and an operation unit 11D.
On the other hand, in the example shown in FIG. 11, the hull 11 includes a steering device 11A, a remote control device 11B, a remote control device 11C, an operation unit 11D, and a mode setting unit 11F. The mode setting unit 11F accepts, for example, the operator's selection of either a first mode (slow start mode) or a second mode (quick start mode).
In another example, the hull 11 may not include the steering device 11A, the remote control device 11B, and the remote control device 11C.
 図12は操作部11Dが、位置P1から位置P2に移動させられて位置P2に維持される場合に第3実施形態の船舶推進装置用制御装置14の推進力算出部14Cによって算出される推進力(船舶推進装置12、13が発生する推進力)の目標値などの第1例を説明するための図である。
 詳細には、図12(A)は操作部11Dの位置P1、P2と時間との関係を示しており、図12(B)はモード設定部11Fが第1モード(スロースタートモード)の選択を受け付けた場合に第3実施形態の船舶推進装置用制御装置14の推進力算出部14Cによって算出される推進力の目標値と時間との関係を示しており、図12(C)はモード設定部11Fが第2モード(クイックスタートモード)の選択を受け付けた場合に第3実施形態の船舶推進装置用制御装置14の推進力算出部14Cによって算出される推進力の目標値と時間との関係を示している。
FIG. 12 shows the propulsion force calculated by the propulsion force calculation unit 14C of the ship propulsion device control device 14 of the third embodiment when the operation unit 11D is moved from the position P1 to the position P2 and maintained at the position P2. It is a figure for demonstrating the 1st example such as the target value of (the propulsive force generated by ship propulsion devices 12 and 13).
In detail, FIG. 12A shows the relationship between the positions P1 and P2 of the operation unit 11D and the time, and FIG. 12B shows the mode setting unit 11F selecting the first mode (slow start mode). The relationship between the time and the target value of the propulsive force calculated by the propulsive force calculation unit 14C of the ship propulsion device control device 14 of the third embodiment when the reception is received is shown, and FIG. 12 (C) shows the mode setting unit. When the 11th floor accepts the selection of the second mode (quick start mode), the relationship between the target value of the propulsive force calculated by the propulsive force calculation unit 14C of the control device 14 for the ship propulsion device 14 of the third embodiment and the time. Shown.
 図12に示す例では、図12(A)に示すように、時刻t1以前の期間中、操作部11Dが位置P1に位置し、時刻t1に、操作部11Dが位置P1から位置P2に移動させられ、時刻t1以降の期間中、操作部11Dが位置P2に維持される。 In the example shown in FIG. 12, as shown in FIG. 12A, the operation unit 11D is located at the position P1 during the period before the time t1, and the operation unit 11D is moved from the position P1 to the position P2 at the time t1. The operation unit 11D is maintained at the position P2 during the period after the time t1.
 第3実施形態の船舶推進装置用制御装置14の第1例では、モード設定部11Fが第1モード(スロースタートモード)の選択を受け付けた場合、図12(B)に示すように、時刻t1以前の期間中、推進力算出部14Cは、船舶推進装置12、13が発生する推進力の目標値として、ゼロを算出する。その結果、船舶推進装置12、13は推進力を発生せず、船舶1の速度はゼロである。
 次いで、時刻t1~時刻t2の第1期間中、推進力算出部14Cが算出する推進力(船舶推進装置12、13が発生する推進力)の目標値は、ゼロから値F1まで、例えば一定の変化量で増加する。その結果、船舶推進装置12、13が発生する推進力が徐々に増加し、船舶1の速度も徐々に増加する。
 次いで、時刻t2以降の第2期間中、推進力算出部14Cが算出する推進力(船舶推進装置12、13が発生する推進力)の目標値は、値F1に維持される。その結果、船舶推進装置12、13が発生する推進力が一定値に維持され、船舶1の速度も一定値に維持される。
In the first example of the ship propulsion device control device 14 of the third embodiment, when the mode setting unit 11F accepts the selection of the first mode (slow start mode), as shown in FIG. 12B, the time t1 During the previous period, the propulsion force calculation unit 14C calculates zero as the target value of the propulsion force generated by the ship propulsion devices 12 and 13. As a result, the ship propulsion devices 12 and 13 do not generate propulsive force, and the speed of the ship 1 is zero.
Next, during the first period from time t1 to time t2, the target value of the propulsive force (the propulsive force generated by the ship propulsion devices 12 and 13) calculated by the propulsion force calculation unit 14C is from zero to the value F1, for example, constant. It increases with the amount of change. As a result, the propulsive force generated by the ship propulsion devices 12 and 13 gradually increases, and the speed of the ship 1 also gradually increases.
Next, during the second period after the time t2, the target value of the propulsive force (the propulsive force generated by the ship propulsion devices 12 and 13) calculated by the propulsion force calculation unit 14C is maintained at the value F1. As a result, the propulsive force generated by the ship propulsion devices 12 and 13 is maintained at a constant value, and the speed of the ship 1 is also maintained at a constant value.
 つまり、図12(B)に示す例では、操作部11Dが位置P1から位置P2に移動させられた時刻t1から時刻t2までの第1期間中に、船舶推進装置12、13が小さい推進力(第1推進力)を発生し、次いで、時刻t2以降の第2期間中に、船舶推進装置12、13が、第1推進力よりも大きい第2推進力(値F1の推進力)を発生する。
 すなわち、図12(B)に示す例では、船舶推進装置12、13が発生する推進力はゼロから値F1に急激に変化せず、徐々に変化する。そのため、船舶1の移動開始時の乗り心地を向上させることができ、船舶1の移動開始時に乗船者がよろけてしまうおそれを抑制することができる。
That is, in the example shown in FIG. 12B, the ship propulsion devices 12 and 13 have a small propulsive force during the first period from time t1 to time t2 when the operation unit 11D is moved from the position P1 to the position P2. The first propulsion force) is generated, and then, during the second period after the time t2, the ship propulsion devices 12 and 13 generate the second propulsion force (the propulsion force having a value F1) larger than the first propulsion force. ..
That is, in the example shown in FIG. 12B, the propulsive force generated by the ship propulsion devices 12 and 13 does not suddenly change from zero to the value F1, but gradually changes. Therefore, it is possible to improve the riding comfort at the start of movement of the ship 1, and it is possible to suppress the possibility that the passengers will stagger at the start of movement of the ship 1.
 第3実施形態の船舶推進装置用制御装置14の第1例では、モード設定部11Fが第2モード(クイックスタートモード)の選択を受け付けた場合、図12(C)に示すように、時刻t1以前の期間中、推進力算出部14Cは、船舶推進装置12、13が発生する推進力の目標値として、ゼロを算出する。その結果、船舶推進装置12、13は推進力を発生せず、船舶1の速度はゼロである。
 次いで、時刻t1に、推進力算出部14Cは、船舶推進装置12、13が発生する推進力の目標値として、値F1を算出する。その結果、船舶推進装置12、13が発生する推進力がゼロから値F1に急激に増加し、船舶1の速度も急激に増加する。
 次いで、時刻t1以降の期間中、推進力算出部14Cが算出する推進力(船舶推進装置12、13が発生する推進力)の目標値は、値F1に維持される。その結果、船舶推進装置12、13が発生する推進力が一定値に維持され、船舶1の速度も一定値に維持される。
In the first example of the ship propulsion device control device 14 of the third embodiment, when the mode setting unit 11F accepts the selection of the second mode (quick start mode), as shown in FIG. 12C, the time t1 During the previous period, the propulsion force calculation unit 14C calculates zero as the target value of the propulsion force generated by the ship propulsion devices 12 and 13. As a result, the ship propulsion devices 12 and 13 do not generate propulsive force, and the speed of the ship 1 is zero.
Next, at time t1, the propulsion force calculation unit 14C calculates the value F1 as the target value of the propulsion force generated by the ship propulsion devices 12 and 13. As a result, the propulsive force generated by the ship propulsion devices 12 and 13 sharply increases from zero to the value F1, and the speed of the ship 1 also sharply increases.
Next, during the period after the time t1, the target value of the propulsive force (the propulsive force generated by the ship propulsion devices 12 and 13) calculated by the propulsion force calculation unit 14C is maintained at the value F1. As a result, the propulsive force generated by the ship propulsion devices 12 and 13 is maintained at a constant value, and the speed of the ship 1 is also maintained at a constant value.
 つまり、図12(C)に示す例では、操作部11Dが位置P1から位置P2に移動させられた時刻t1に、船舶推進装置12、13が第1推進力よりも大きい第2推進力(値F1の推進力)を発生し、次いで、時刻t1以降の期間中に、船舶推進装置12、13が、第2推進力を発生し続ける。
 すなわち、図12(C)に示す例では、船舶推進装置12、13が発生する推進力はゼロから値F1に急激に変化する。そのため、船舶推進装置12、13が発生する推進力をゼロから値F1まで迅速に増加させることを望む操船者の要求を満足させることができる。
That is, in the example shown in FIG. 12C, the ship propulsion devices 12 and 13 have a second propulsion force (value) larger than the first propulsion force at the time t1 when the operation unit 11D is moved from the position P1 to the position P2. The propulsive force of F1) is generated, and then the ship propulsion devices 12 and 13 continue to generate the second propulsive force during the period after the time t1.
That is, in the example shown in FIG. 12C, the propulsive force generated by the ship propulsion devices 12 and 13 suddenly changes from zero to the value F1. Therefore, it is possible to satisfy the demand of the ship operator who desires to rapidly increase the propulsive force generated by the ship propulsion devices 12 and 13 from zero to the value F1.
 図13は操作部11Dが、位置P1から位置P2に移動させられて位置P2に維持される場合に第3実施形態の船舶推進装置用制御装置14の推進力算出部14Cによって算出される推進力(船舶推進装置12、13が発生する推進力)の目標値などの第2例を説明するための図である。
 詳細には、図13(A)は操作部11Dの位置P1、P2と時間との関係を示しており、図13(B)はモード設定部11Fが第1モード(スロースタートモード)の選択を受け付けた場合に第3実施形態の船舶推進装置用制御装置14の推進力算出部14Cによって算出される推進力の目標値と時間との関係を示しており、図13(C)はモード設定部11Fが第2モード(クイックスタートモード)の選択を受け付けた場合に第3実施形態の船舶推進装置用制御装置14の推進力算出部14Cによって算出される推進力の目標値と時間との関係を示している。
FIG. 13 shows the propulsion force calculated by the propulsion force calculation unit 14C of the ship propulsion device control device 14 of the third embodiment when the operation unit 11D is moved from the position P1 to the position P2 and maintained at the position P2. It is a figure for demonstrating the 2nd example such as the target value of (the propulsive force generated by ship propulsion devices 12 and 13).
In detail, FIG. 13A shows the relationship between the positions P1 and P2 of the operation unit 11D and the time, and FIG. 13B shows the mode setting unit 11F selecting the first mode (slow start mode). The relationship between the target value of the propulsive force calculated by the propulsive force calculation unit 14C of the ship propulsion device control device 14 of the third embodiment and the time when the object is received is shown, and FIG. 13 (C) shows the mode setting unit. When the 11th floor accepts the selection of the second mode (quick start mode), the relationship between the target value of the propulsive force calculated by the propulsive force calculation unit 14C of the control device 14 for the ship propulsion device 14 of the third embodiment and the time. Shown.
 図13に示す例では、図13(A)に示すように、時刻t1以前の期間中、操作部11Dが位置P1に位置し、時刻t1に、操作部11Dが位置P1から位置P2に移動させられ、時刻t1以降の期間中、操作部11Dが位置P2に維持される。 In the example shown in FIG. 13, as shown in FIG. 13A, the operation unit 11D is located at the position P1 during the period before the time t1, and the operation unit 11D is moved from the position P1 to the position P2 at the time t1. The operation unit 11D is maintained at the position P2 during the period after the time t1.
 第3実施形態の船舶推進装置用制御装置14の第1例では、モード設定部11Fが第1モード(スロースタートモード)の選択を受け付けた場合、図13(B)に示すように、時刻t1以前の期間中、推進力算出部14Cは、船舶推進装置12、13が発生する推進力の目標値として、ゼロを算出する。その結果、船舶推進装置12、13は推進力を発生せず、船舶1の速度はゼロである。
 次いで、時刻t1~時刻t2の第1期間中、推進力算出部14Cは、船舶推進装置12、13が発生する推進力の目標値として、ゼロより大きく、値F1より小さい値F2を算出する。その結果、船舶推進装置12、13が発生する推進力は、時刻t1に、図13(C)に示す例より緩やかに増加し、船舶1の速度も、図13(C)に示す例より緩やかに増加する。
 次いで、時刻t2以降の第2期間中、推進力算出部14Cは、船舶推進装置12、13が発生する推進力の目標値として、値F1を算出する。その結果、船舶推進装置12、13が発生する推進力は、時刻t2に、時刻t1と同程度に緩やかに増加し、船舶1の速度も、時刻t1と同程度に緩やかに増加する。
In the first example of the ship propulsion device control device 14 of the third embodiment, when the mode setting unit 11F accepts the selection of the first mode (slow start mode), as shown in FIG. 13B, the time t1 During the previous period, the propulsion force calculation unit 14C calculates zero as the target value of the propulsion force generated by the ship propulsion devices 12 and 13. As a result, the ship propulsion devices 12 and 13 do not generate propulsive force, and the speed of the ship 1 is zero.
Next, during the first period from time t1 to time t2, the propulsion force calculation unit 14C calculates a value F2 larger than zero and smaller than the value F1 as the target value of the propulsive force generated by the ship propulsion devices 12 and 13. As a result, the propulsive force generated by the ship propulsion devices 12 and 13 gradually increases at time t1 from the example shown in FIG. 13 (C), and the speed of the ship 1 also increases more slowly than the example shown in FIG. 13 (C). Increase to.
Next, during the second period after the time t2, the propulsion force calculation unit 14C calculates the value F1 as the target value of the propulsion force generated by the ship propulsion devices 12 and 13. As a result, the propulsive force generated by the ship propulsion devices 12 and 13 gradually increases at time t2 to the same extent as the time t1, and the speed of the ship 1 also gradually increases to the same extent as the time t1.
 つまり、図13(B)に示す例では、操作部11Dが位置P1から位置P2に移動させられた時刻t1から時刻t2までの第1期間中に、船舶推進装置12、13が小さい第1推進力(値F2の推進力)を発生し、次いで、時刻t2以降の第2期間中に、船舶推進装置12、13が、第1推進力よりも大きい第2推進力(値F1の推進力)を発生する。
 すなわち、図13(B)に示す例では、船舶推進装置12、13が発生する推進力はゼロから値F1に急激に変化せず、ステップ状に変化する。そのため、船舶1の移動開始時の乗り心地を向上させることができ、船舶1の移動開始時に乗船者がよろけてしまうおそれを抑制することができる。
That is, in the example shown in FIG. 13 (B), during the first period from time t1 to time t2 when the operation unit 11D is moved from the position P1 to the position P2, the ship propulsion devices 12 and 13 are small first propulsion. A force (propulsive force of value F2) is generated, and then during the second period after time t2, the ship propulsion devices 12 and 13 have a second propulsive force (propulsive force of value F1) larger than the first propulsive force. Occurs.
That is, in the example shown in FIG. 13B, the propulsive force generated by the ship propulsion devices 12 and 13 does not suddenly change from zero to the value F1, but changes in steps. Therefore, it is possible to improve the riding comfort at the start of movement of the ship 1, and it is possible to suppress the possibility that the passengers will stagger at the start of movement of the ship 1.
 第3実施形態の船舶推進装置用制御装置14の第2例では、モード設定部11Fが第2モード(クイックスタートモード)の選択を受け付けた場合、図13(C)に示すように、時刻t1以前の期間中、推進力算出部14Cは、船舶推進装置12、13が発生する推進力の目標値として、ゼロを算出する。その結果、船舶推進装置12、13は推進力を発生せず、船舶1の速度はゼロである。
 次いで、時刻t1に、推進力算出部14Cは、船舶推進装置12、13が発生する推進力の目標値として、値F1を算出する。その結果、船舶推進装置12、13が発生する推進力がゼロから値F1に急激に増加し、船舶1の速度も急激に増加する。
 次いで、時刻t1以降の期間中、推進力算出部14Cが算出する推進力(船舶推進装置12、13が発生する推進力)の目標値は、値F1に維持される。その結果、船舶推進装置12、13が発生する推進力が一定値に維持され、船舶1の速度も一定値に維持される。
In the second example of the ship propulsion device control device 14 of the third embodiment, when the mode setting unit 11F accepts the selection of the second mode (quick start mode), as shown in FIG. 13C, the time t1 During the previous period, the propulsion force calculation unit 14C calculates zero as the target value of the propulsion force generated by the ship propulsion devices 12 and 13. As a result, the ship propulsion devices 12 and 13 do not generate propulsive force, and the speed of the ship 1 is zero.
Next, at time t1, the propulsion force calculation unit 14C calculates the value F1 as the target value of the propulsion force generated by the ship propulsion devices 12 and 13. As a result, the propulsive force generated by the ship propulsion devices 12 and 13 sharply increases from zero to the value F1, and the speed of the ship 1 also sharply increases.
Next, during the period after the time t1, the target value of the propulsive force (the propulsive force generated by the ship propulsion devices 12 and 13) calculated by the propulsion force calculation unit 14C is maintained at the value F1. As a result, the propulsive force generated by the ship propulsion devices 12 and 13 is maintained at a constant value, and the speed of the ship 1 is also maintained at a constant value.
 つまり、図13(C)に示す例では、操作部11Dが位置P1から位置P2に移動させられた時刻t1に、船舶推進装置12、13が第1推進力よりも大きい第2推進力(値F1の推進力)を発生し、次いで、時刻t1以降の期間中に、船舶推進装置12、13が、第2推進力を発生し続ける。
 すなわち、図13(C)に示す例では、船舶推進装置12、13が発生する推進力はゼロから値F1に急激に変化する。そのため、船舶推進装置12、13が発生する推進力をゼロから値F1まで迅速に増加させることを望む操船者の要求を満足させることができる。
That is, in the example shown in FIG. 13C, the ship propulsion devices 12 and 13 have a second propulsion force (value) larger than the first propulsion force at the time t1 when the operation unit 11D is moved from the position P1 to the position P2. The propulsive force of F1) is generated, and then the ship propulsion devices 12 and 13 continue to generate the second propulsive force during the period after the time t1.
That is, in the example shown in FIG. 13C, the propulsive force generated by the ship propulsion devices 12 and 13 suddenly changes from zero to the value F1. Therefore, it is possible to satisfy the demand of the ship operator who desires to rapidly increase the propulsive force generated by the ship propulsion devices 12 and 13 from zero to the value F1.
<第4実施形態>
 以下、本発明の船舶推進装置用制御装置、船舶推進装置用制御方法およびプログラムの第4実施形態について説明する。
 第4実施形態の船舶推進装置用制御装置14は、後述する点を除き、上述した第3実施形態の船舶推進装置用制御装置14と同様に構成されている。従って、第4実施形態の船舶推進装置用制御装置14によれば、後述する点を除き、上述した第3実施形態の船舶推進装置用制御装置14と同様の効果を奏することができる。
<Fourth Embodiment>
Hereinafter, a fourth embodiment of the ship propulsion device control device, the ship propulsion device control method, and the program of the present invention will be described.
The ship propulsion device control device 14 of the fourth embodiment is configured in the same manner as the ship propulsion device control device 14 of the third embodiment described above, except for the points described later. Therefore, according to the ship propulsion device control device 14 of the fourth embodiment, the same effect as that of the ship propulsion device control device 14 of the third embodiment described above can be obtained except for the points described later.
 上述したように、図11に示す例では、船体11が、操舵装置11Aと、リモコン装置11Bと、リモコン装置11Cと、操作部11Dと、モード設定部11Fとを備えており、モード設定部11Fは、例えば操船者による第1モード(スロースタートモード)および第2モード(クイックスタートモード)のいずれかの選択を受け付ける。
 一方、第4実施形態の船舶推進装置用制御装置14が適用される船舶1の船体11には、モード設定部11Fが備えられていない。第4実施形態の船舶推進装置用制御装置14が適用される船舶1では、操作部11Dの位置に応じて、第1モード(スロースタートモード)と第2モード(クイックスタートモード)とが切り替えられる。
As described above, in the example shown in FIG. 11, the hull 11 includes a steering device 11A, a remote control device 11B, a remote control device 11C, an operation unit 11D, and a mode setting unit 11F, and the mode setting unit 11F. Accepts, for example, the operator's choice of either a first mode (slow start mode) or a second mode (quick start mode).
On the other hand, the hull 11 of the ship 1 to which the control device 14 for the ship propulsion device of the fourth embodiment is applied is not provided with the mode setting unit 11F. In the ship 1 to which the control device 14 for the ship propulsion device of the fourth embodiment is applied, the first mode (slow start mode) and the second mode (quick start mode) can be switched according to the position of the operation unit 11D. ..
 第4実施形態の船舶推進装置用制御装置14が適用される船舶1では、船舶1を右向きに並進移動させる推進力を船舶推進装置12、13が発生する操作部11Dの位置P2(図3(B)参照)に、第1領域と第2領域とが含まれる。
 操作部11Dが位置P1(図3(A)参照)から位置P2の第1領域に移動させられる場合、操作部11Dの移動量は、所定の閾値(第1閾値)以下になる。一方、操作部11Dが位置P1から位置P2の第2領域に移動させられる場合、操作部11Dの移動量は、その閾値(第1閾値)よりも大きくなる。
 具体的には、操作部11Dが位置P2の第2領域に位置する場合に、操作部11D(ジョイスティックのレバーの先端部)は、図3(B)に示す状態になる。一方、操作部11Dが位置P2の第1領域に位置する場合には、ジョイスティックのレバーの先端部が、図3(A)に符号「P1」で示す位置と、図3(B)に符号「P2」で示す位置との間に位置する。
In the ship 1 to which the control device 14 for the ship propulsion device of the fourth embodiment is applied, the position P2 of the operation unit 11D where the ship propulsion devices 12 and 13 generate the propulsive force for translating the ship 1 to the right (FIG. 3 (FIG. 3). B)) includes a first region and a second region.
When the operation unit 11D is moved from the position P1 (see FIG. 3A) to the first region of the position P2, the movement amount of the operation unit 11D becomes equal to or less than a predetermined threshold value (first threshold value). On the other hand, when the operation unit 11D is moved from the position P1 to the second region of the position P2, the movement amount of the operation unit 11D becomes larger than the threshold value (first threshold value).
Specifically, when the operation unit 11D is located in the second region of the position P2, the operation unit 11D (the tip of the lever of the joystick) is in the state shown in FIG. 3 (B). On the other hand, when the operation unit 11D is located in the first region of the position P2, the tip of the lever of the joystick is located at the position indicated by the reference numeral “P1” in FIG. It is located between the position indicated by "P2".
 第4実施形態の船舶推進装置用制御装置14が適用される船舶1では、操作部11D(ジョイスティックのレバーの先端部)が、位置P1から位置P2の第2領域に移動させられて、位置P2の第2領域に維持される場合(スロースタートモード)に、船舶推進装置用制御装置14は、図12(B)または図13(B)に示すように、操作部11Dが位置P1から位置P2の第2領域に移動させられた時刻t1から時刻t2までの第1期間中に、第1推進力(船舶1を右向きに並進移動させる小さい推進力)を船舶推進装置12、13に発生させる。次いで、時刻t2以降の第2期間中に、第1推進力よりも大きい第2推進力(船舶1を右向きに並進移動させる大きい推進力)(値F1の推進力)を船舶推進装置12、13に発生させる。
 操作部11D(ジョイスティックのレバーの先端部)が、位置P1から位置P2の第1領域に移動させられて、位置P2の第1領域に維持される場合(クイックスタートモード)に、船舶推進装置用制御装置14は、図12(C)または図13(C)に示すように、操作部11Dが位置P1から位置P2の第1領域に移動させられた時刻t1に第2推進力(船舶1を右向きに並進移動させる大きい推進力)(値F1の推進力)を船舶推進装置12、13に発生させる。次いで、時刻t1以降の期間中に第2推進力を船舶推進装置12、13に発生させ続ける。
In the ship 1 to which the control device 14 for the ship propulsion device of the fourth embodiment is applied, the operation unit 11D (the tip of the lever of the joystick) is moved from the position P1 to the second region of the position P2, and the position P2. When the control device 14 for the ship propulsion device is maintained in the second region of the above (slow start mode), the operation unit 11D moves from the position P1 to the position P2 as shown in FIG. 12 (B) or FIG. 13 (B). During the first period from time t1 to time t2 moved to the second region of the ship, the ship propulsion devices 12 and 13 generate a first propulsive force (a small propulsive force that translates the ship 1 to the right). Next, during the second period after time t2, a second propulsion force (a large propulsion force for translating the ship 1 to the right) (a propulsion force having a value of F1) larger than the first propulsion force is applied to the ship propulsion devices 12 and 13. To generate.
When the operation unit 11D (the tip of the joystick lever) is moved from the position P1 to the first region of the position P2 and maintained in the first region of the position P2 (quick start mode), for the ship propulsion device. As shown in FIG. 12C or FIG. 13C, the control device 14 sets the second propulsion force (ship 1) at the time t1 when the operation unit 11D is moved from the position P1 to the first region of the position P2. A large propulsion force for translational movement to the right) (propulsion force having a value of F1) is generated in the ship propulsion devices 12 and 13. Next, the second propulsion force is continuously generated in the ship propulsion devices 12 and 13 during the period after the time t1.
 第4実施形態の船舶推進装置用制御装置14が適用される船舶1では、船舶1を右前向きに並進移動させる推進力を船舶推進装置12、13が発生する操作部11Dの位置P3(図3(C)参照)に、第1領域と第2領域とが含まれる。
 操作部11Dが位置P1(図3(A)参照)から位置P3の第1領域に移動させられる場合、操作部11Dの移動量は、閾値(第1閾値)以下になる。一方、操作部11Dが位置P1から位置P3の第2領域に移動させられる場合、操作部11Dの移動量は、その閾値(第1閾値)よりも大きくなる。
 具体的には、操作部11Dが位置P3の第2領域に位置する場合に、操作部11D(ジョイスティックのレバーの先端部)は、図3(C)に示す状態になる。一方、操作部11Dが位置P3の第1領域に位置する場合には、ジョイスティックのレバーの先端部が、図3(A)に符号「P1」で示す位置と、図3(C)に符号「P3」で示す位置との間に位置する。
In the ship 1 to which the control device 14 for the ship propulsion device of the fourth embodiment is applied, the position P3 of the operation unit 11D where the ship propulsion devices 12 and 13 generate the propulsive force for translating the ship 1 forward to the right (FIG. 3). (See (C)) includes a first region and a second region.
When the operation unit 11D is moved from the position P1 (see FIG. 3A) to the first region of the position P3, the movement amount of the operation unit 11D becomes equal to or less than the threshold value (first threshold value). On the other hand, when the operation unit 11D is moved from the position P1 to the second region of the position P3, the movement amount of the operation unit 11D becomes larger than the threshold value (first threshold value).
Specifically, when the operation unit 11D is located in the second region of the position P3, the operation unit 11D (the tip of the lever of the joystick) is in the state shown in FIG. 3C. On the other hand, when the operation unit 11D is located in the first region of the position P3, the tip of the lever of the joystick is located at the position indicated by the reference numeral "P1" in FIG. 3A and the reference numeral "P1" in FIG. 3C. It is located between the position indicated by "P3".
 第4実施形態の船舶推進装置用制御装置14が適用される船舶1では、操作部11D(ジョイスティックのレバーの先端部)が、位置P1から位置P3の第2領域に移動させられて、位置P3の第2領域に維持される場合(スロースタートモード)に、船舶推進装置用制御装置14は、図12(B)または図13(B)に示すように、操作部11Dが位置P1から位置P3の第2領域に移動させられた時刻t1から時刻t2までの第1期間中に、第1推進力(船舶1を右前向きに並進移動させる小さい推進力)を船舶推進装置12、13に発生させる。次いで、時刻t2以降の第2期間中に、第1推進力よりも大きい第2推進力(船舶1を右前向きに並進移動させる大きい推進力)(値F1と同等の推進力)を船舶推進装置12、13に発生させる。
 操作部11D(ジョイスティックのレバーの先端部)が、位置P1から位置P3の第1領域に移動させられて、位置P3の第1領域に維持される場合(クイックスタートモード)に、船舶推進装置用制御装置14は、図12(C)または図13(C)に示すように、操作部11Dが位置P1から位置P3の第1領域に移動させられた時刻t1に第2推進力(船舶1を右前向きに並進移動させる大きい推進力)(値F1と同等の推進力)を船舶推進装置12、13に発生させる。次いで、時刻t1以降の期間中に第2推進力を船舶推進装置12、13に発生させ続ける。
In the ship 1 to which the control device 14 for the ship propulsion device of the fourth embodiment is applied, the operation unit 11D (the tip of the lever of the joystick) is moved from the position P1 to the second region of the position P3, and the position P3. When the control device 14 for the ship propulsion device is maintained in the second region of the above (slow start mode), the operation unit 11D moves from the position P1 to the position P3 as shown in FIG. 12 (B) or FIG. 13 (B). During the first period from time t1 to time t2 moved to the second region of the ship, the ship propulsion devices 12 and 13 generate a first propulsive force (a small propulsive force that translates the ship 1 forward to the right). .. Next, during the second period after time t2, a second propulsion force (a large propulsion force that translates the ship 1 forward to the right) (a propulsion force equivalent to the value F1) that is larger than the first propulsion force is applied to the ship propulsion device. It is generated at 12 and 13.
When the operation unit 11D (the tip of the joystick lever) is moved from the position P1 to the first region of the position P3 and maintained in the first region of the position P3 (quick start mode), for the ship propulsion device. As shown in FIG. 12 (C) or FIG. 13 (C), the control device 14 has a second propulsion force (ship 1) at time t1 when the operation unit 11D is moved from the position P1 to the first region of the position P3. A large propulsive force that translates forward to the right) (a propulsive force equivalent to the value F1) is generated in the ship propulsion devices 12 and 13. Next, the second propulsion force is continuously generated in the ship propulsion devices 12 and 13 during the period after the time t1.
 第4実施形態の船舶推進装置用制御装置14が適用される船舶1では、船舶1を右後向きに並進移動させる推進力を船舶推進装置12、13が発生する操作部11Dの位置P4(図3(D)参照)に、第1領域と第2領域とが含まれる。
 操作部11Dが位置P1(図3(A)参照)から位置P4の第1領域に移動させられる場合、操作部11Dの移動量は、閾値(第1閾値)以下になる。一方、操作部11Dが位置P1から位置P4の第2領域に移動させられる場合、操作部11Dの移動量は、その閾値(第1閾値)よりも大きくなる。
 具体的には、操作部11Dが位置P4の第2領域に位置する場合に、操作部11D(ジョイスティックのレバーの先端部)は、図3(D)に示す状態になる。一方、操作部11Dが位置P4の第1領域に位置する場合には、ジョイスティックのレバーの先端部が、図3(A)に符号「P1」で示す位置と、図3(D)に符号「P4」で示す位置との間に位置する。
In the ship 1 to which the control device 14 for the ship propulsion device of the fourth embodiment is applied, the position P4 of the operation unit 11D where the ship propulsion devices 12 and 13 generate the propulsive force for translating the ship 1 to the right rearward (FIG. 3). (See (D)) includes a first region and a second region.
When the operation unit 11D is moved from the position P1 (see FIG. 3A) to the first region of the position P4, the movement amount of the operation unit 11D becomes equal to or less than the threshold value (first threshold value). On the other hand, when the operation unit 11D is moved from the position P1 to the second region of the position P4, the movement amount of the operation unit 11D becomes larger than the threshold value (first threshold value).
Specifically, when the operation unit 11D is located in the second region of the position P4, the operation unit 11D (the tip of the lever of the joystick) is in the state shown in FIG. 3 (D). On the other hand, when the operation unit 11D is located in the first region of the position P4, the tip of the lever of the joystick is located at the position indicated by the reference numeral “P1” in FIG. 3 (A) and the reference numeral “P1” in FIG. 3 (D). It is located between the position indicated by "P4".
 第4実施形態の船舶推進装置用制御装置14が適用される船舶1では、操作部11D(ジョイスティックのレバーの先端部)が、位置P1から位置P4の第2領域に移動させられて、位置P4の第2領域に維持される場合(スロースタートモード)に、船舶推進装置用制御装置14は、図12(B)または図13(B)に示すように、操作部11Dが位置P1から位置P4の第2領域に移動させられた時刻t1から時刻t2までの第1期間中に、第1推進力(船舶1を右後向きに並進移動させる小さい推進力)を船舶推進装置12、13に発生させる。次いで、時刻t2以降の第2期間中に、第1推進力よりも大きい第2推進力(船舶1を右後向きに並進移動させる大きい推進力)(値F1と同等の推進力)を船舶推進装置12、13に発生させる。
 操作部11D(ジョイスティックのレバーの先端部)が、位置P1から位置P4の第1領域に移動させられて、位置P4の第1領域に維持される場合(クイックスタートモード)に、船舶推進装置用制御装置14は、図12(C)または図13(C)に示すように、操作部11Dが位置P1から位置P4の第1領域に移動させられた時刻t1に第2推進力(船舶1を右後向きに並進移動させる大きい推進力)(値F1と同等の推進力)を船舶推進装置12、13に発生させる。次いで、時刻t1以降の期間中に第2推進力を船舶推進装置12、13に発生させ続ける。
In the ship 1 to which the control device 14 for the ship propulsion device of the fourth embodiment is applied, the operation unit 11D (the tip of the lever of the joystick) is moved from the position P1 to the second region of the position P4, and the position P4. When the control device 14 for the ship propulsion device is maintained in the second region of the above (slow start mode), the operation unit 11D moves from the position P1 to the position P4 as shown in FIG. 12 (B) or FIG. 13 (B). During the first period from time t1 to time t2 moved to the second region of the ship, the ship propulsion devices 12 and 13 generate a first propulsive force (a small propulsive force that translates the ship 1 backward to the right). .. Next, during the second period after time t2, a second propulsion force (a large propulsion force that translates the ship 1 backward to the right) (a propulsion force equivalent to the value F1) that is larger than the first propulsion force is applied to the ship propulsion device. It is generated at 12 and 13.
When the operation unit 11D (the tip of the joystick lever) is moved from the position P1 to the first region of the position P4 and maintained in the first region of the position P4 (quick start mode), for the ship propulsion device. As shown in FIG. 12C or FIG. 13C, the control device 14 sets the second propulsion force (ship 1) at the time t1 when the operation unit 11D is moved from the position P1 to the first region of the position P4. A large propulsive force for translating backward to the right) (a propulsive force equivalent to the value F1) is generated in the ship propulsion devices 12 and 13. Next, the second propulsion force is continuously generated in the ship propulsion devices 12 and 13 during the period after the time t1.
 第4実施形態の船舶推進装置用制御装置14では、船舶1の右側と左側とで左右対称の制御が実行される。
 つまり、第4実施形態の船舶推進装置用制御装置14が適用される船舶1では、操作部11D(ジョイスティックのレバーの先端部)が、位置P1から位置P5~P7のいずれかの第2領域に移動させられて、その位置P5~P7の第2領域に維持される場合(スロースタートモード)に、船舶推進装置用制御装置14は、図12(B)または図13(B)に示すように、操作部11Dが位置P1から位置P5~P7のいずれかの第2領域に移動させられた時刻t1から時刻t2までの第1期間中に、第1推進力(船舶1を左向き、左前向きまたは左後向きに並進移動させる小さい推進力)を船舶推進装置12、13に発生させる。次いで、時刻t2以降の第2期間中に、第1推進力よりも大きい第2推進力(船舶1を左向き、左前向きまたは左後向きに並進移動させる大きい推進力)(値F1と同等の推進力)を船舶推進装置12、13に発生させる。
 操作部11D(ジョイスティックのレバーの先端部)が、位置P1から位置P5~P7のいずれかの第1領域に移動させられて、その位置P5~P7の第1領域に維持される場合(クイックスタートモード)に、船舶推進装置用制御装置14は、図12(C)または図13(C)に示すように、操作部11Dが位置P1から位置P5~P7のいずれかの第1領域に移動させられた時刻t1に第2推進力(船舶1を左向き、左前向きまたは左後向きに並進移動させる大きい推進力)(値F1と同等の推進力)を船舶推進装置12、13に発生させる。次いで、時刻t1以降の期間中に第2推進力を船舶推進装置12、13に発生させ続ける。
In the ship propulsion device control device 14 of the fourth embodiment, symmetrical control is executed on the right side and the left side of the ship 1.
That is, in the ship 1 to which the control device 14 for the ship propulsion device of the fourth embodiment is applied, the operation unit 11D (the tip of the joystick lever) is moved from the position P1 to the second region of any of the positions P5 to P7. When moved and maintained in the second region of the positions P5 to P7 (slow start mode), the ship propulsion device control device 14 is as shown in FIG. 12 (B) or FIG. 13 (B). During the first period from time t1 to time t2 when the operation unit 11D was moved from position P1 to any second region of positions P5 to P7, the first propulsion force (ship 1 facing left, facing left forward or A small propulsion force that translates backward to the left) is generated in the ship propulsion devices 12 and 13. Then, during the second period after time t2, a second propulsive force larger than the first propulsive force (a large propulsive force that translates the ship 1 to the left, forward left, or backward left) (propulsive force equivalent to the value F1). ) Is generated in the ship propulsion devices 12 and 13.
When the operation unit 11D (the tip of the joystick lever) is moved from the position P1 to the first region of any of the positions P5 to P7 and maintained in the first region of the positions P5 to P7 (quick start). In the mode), the ship propulsion device control device 14 moves the operation unit 11D from the position P1 to the first region of any of the positions P5 to P7 as shown in FIG. 12 (C) or FIG. 13 (C). At the time t1, a second propulsive force (a large propulsive force that translates the ship 1 to the left, forward to the left, or backward to the left) (a propulsive force equivalent to the value F1) is generated in the ship propulsion devices 12 and 13. Next, the second propulsion force is continuously generated in the ship propulsion devices 12 and 13 during the period after the time t1.
 また、第4実施形態の船舶推進装置用制御装置14では、図12または図13に示す制御が、船舶1の前後方向の移動時の制御(船舶1を前進または後進させる制御)にも適用される。
 第4実施形態の船舶推進装置用制御装置14が適用される船舶1では、船舶1を前進させる推進力を船舶推進装置12、13が発生する操作部11Dの位置P8(図3(H)参照)に、第1領域と第2領域とが含まれる。
 操作部11Dが位置P1(図3(A)参照)から位置P8の第1領域に移動させられる場合、操作部11Dの移動量は、閾値(第1閾値)以下になる。一方、操作部11Dが位置P1から位置P8の第2領域に移動させられる場合、操作部11Dの移動量は、その閾値(第1閾値)よりも大きくなる。
 具体的には、操作部11Dが位置P8の第2領域に位置する場合に、操作部11D(ジョイスティックのレバーの先端部)は、図3(H)に示す状態になる。一方、操作部11Dが位置P8の第1領域に位置する場合には、ジョイスティックのレバーの先端部が、図3(A)に符号「P1」で示す位置と、図3(H)に符号「P8」で示す位置との間に位置する。
Further, in the control device 14 for the ship propulsion device of the fourth embodiment, the control shown in FIG. 12 or 13 is also applied to the control when the ship 1 moves in the front-rear direction (control to move the ship 1 forward or backward). The ship.
In the ship 1 to which the control device 14 for the ship propulsion device of the fourth embodiment is applied, the position P8 of the operation unit 11D in which the ship propulsion devices 12 and 13 generate the propulsive force for advancing the ship 1 (see FIG. 3H). ) Includes a first region and a second region.
When the operation unit 11D is moved from the position P1 (see FIG. 3A) to the first region of the position P8, the movement amount of the operation unit 11D becomes equal to or less than the threshold value (first threshold value). On the other hand, when the operation unit 11D is moved from the position P1 to the second region of the position P8, the movement amount of the operation unit 11D becomes larger than the threshold value (first threshold value).
Specifically, when the operation unit 11D is located in the second region of the position P8, the operation unit 11D (the tip of the lever of the joystick) is in the state shown in FIG. 3 (H). On the other hand, when the operation unit 11D is located in the first region of the position P8, the tip of the lever of the joystick is located at the position indicated by the reference numeral “P1” in FIG. 3 (A) and the reference numeral “P1” in FIG. 3 (H). It is located between the position indicated by "P8".
 第4実施形態の船舶推進装置用制御装置14が適用される船舶1では、操作部11D(ジョイスティックのレバーの先端部)が、位置P1から位置P8の第2領域に移動させられて、位置P8の第2領域に維持される場合(スロースタートモード)に、船舶推進装置用制御装置14は、図12(B)または図13(B)に示すように、操作部11Dが位置P1から位置P8の第2領域に移動させられた時刻t1から時刻t2までの第1期間中に、第1推進力(船舶1を前進させる小さい推進力)を船舶推進装置12、13に発生させる。次いで、時刻t2以降の第2期間中に、第1推進力よりも大きい第2推進力(船舶1を前進させる大きい推進力)(値F1と同等の推進力)を船舶推進装置12、13に発生させる。
 操作部11D(ジョイスティックのレバーの先端部)が、位置P1から位置P8の第1領域に移動させられて、位置P8の第1領域に維持される場合(クイックスタートモード)に、船舶推進装置用制御装置14は、図12(C)または図13(C)に示すように、操作部11Dが位置P1から位置P8の第1領域に移動させられた時刻t1に第2推進力(船舶1を前進させる大きい推進力)(値F1と同等の推進力)を船舶推進装置12、13に発生させる。次いで、時刻t1以降の期間中に第2推進力を船舶推進装置12、13に発生させ続ける。
In the ship 1 to which the control device 14 for the ship propulsion device of the fourth embodiment is applied, the operation unit 11D (the tip of the lever of the joystick) is moved from the position P1 to the second region of the position P8, and the position P8. When the control device 14 for the ship propulsion device is maintained in the second region of the above (slow start mode), the operation unit 11D is moved from the position P1 to the position P8 as shown in FIG. 12 (B) or FIG. 13 (B). During the first period from time t1 to time t2 moved to the second region of the above, the first propulsion force (small propulsion force for advancing the ship 1) is generated in the ship propulsion devices 12 and 13. Next, during the second period after time t2, a second propulsive force (a large propulsive force for advancing the ship 1) (a propulsive force equivalent to the value F1) larger than the first propulsive force is applied to the ship propulsion devices 12 and 13. generate.
When the operation unit 11D (the tip of the joystick lever) is moved from the position P1 to the first region of the position P8 and maintained in the first region of the position P8 (quick start mode), for the ship propulsion device. As shown in FIG. 12 (C) or FIG. 13 (C), the control device 14 has a second propulsion force (ship 1) at time t1 when the operation unit 11D is moved from the position P1 to the first region of the position P8. A large propulsive force to move forward) (a propulsive force equivalent to the value F1) is generated in the ship propulsion devices 12 and 13. Next, the second propulsion force is continuously generated in the ship propulsion devices 12 and 13 during the period after the time t1.
 第4実施形態の船舶推進装置用制御装置14が適用される船舶1では、船舶1を後進させる推進力を船舶推進装置12、13が発生する操作部11Dの位置P9(図3(I)参照)に、第1領域と第2領域とが含まれる。
 操作部11Dが位置P1(図3(A)参照)から位置P9の第1領域に移動させられる場合、操作部11Dの移動量は、閾値(第1閾値)以下になる。一方、操作部11Dが位置P1から位置P9の第2領域に移動させられる場合、操作部11Dの移動量は、その閾値(第1閾値)よりも大きくなる。
 具体的には、操作部11Dが位置P9の第2領域に位置する場合に、操作部11D(ジョイスティックのレバーの先端部)は、図3(I)に示す状態になる。一方、操作部11Dが位置P9の第1領域に位置する場合には、ジョイスティックのレバーの先端部が、図3(A)に符号「P1」で示す位置と、図3(I)に符号「P9」で示す位置との間に位置する。
In the ship 1 to which the control device 14 for the ship propulsion device of the fourth embodiment is applied, the position P9 of the operation unit 11D in which the ship propulsion devices 12 and 13 generate the propulsive force for moving the ship 1 backward (see FIG. 3 (I)). ) Includes a first region and a second region.
When the operation unit 11D is moved from the position P1 (see FIG. 3A) to the first region of the position P9, the movement amount of the operation unit 11D becomes equal to or less than the threshold value (first threshold value). On the other hand, when the operation unit 11D is moved from the position P1 to the second region of the position P9, the movement amount of the operation unit 11D becomes larger than the threshold value (first threshold value).
Specifically, when the operation unit 11D is located in the second region of the position P9, the operation unit 11D (the tip of the joystick lever) is in the state shown in FIG. 3 (I). On the other hand, when the operation unit 11D is located in the first region of the position P9, the tip of the lever of the joystick is located at the position indicated by the reference numeral “P1” in FIG. 3 (A) and the reference numeral “P1” in FIG. 3 (I). It is located between the position indicated by "P9".
 第4実施形態の船舶推進装置用制御装置14が適用される船舶1では、操作部11D(ジョイスティックのレバーの先端部)が、位置P1から位置P9の第2領域に移動させられて、位置P9の第2領域に維持される場合(スロースタートモード)に、船舶推進装置用制御装置14は、図12(B)または図13(B)に示すように、操作部11Dが位置P1から位置P9の第2領域に移動させられた時刻t1から時刻t2までの第1期間中に、第1推進力(船舶1を後進させる小さい推進力)を船舶推進装置12、13に発生させる。次いで、時刻t2以降の第2期間中に、第1推進力よりも大きい第2推進力(船舶1を後進させる大きい推進力)(値F1と同等の推進力)を船舶推進装置12、13に発生させる。
 操作部11D(ジョイスティックのレバーの先端部)が、位置P1から位置P9の第1領域に移動させられて、位置P9の第1領域に維持される場合(クイックスタートモード)に、船舶推進装置用制御装置14は、図12(C)または図13(C)に示すように、操作部11Dが位置P1から位置P9の第1領域に移動させられた時刻t1に第2推進力(船舶1を後進させる大きい推進力)(値F1と同等の推進力)を船舶推進装置12、13に発生させる。次いで、時刻t1以降の期間中に第2推進力を船舶推進装置12、13に発生させ続ける。
In the ship 1 to which the control device 14 for the ship propulsion device of the fourth embodiment is applied, the operation unit 11D (the tip of the lever of the joystick) is moved from the position P1 to the second region of the position P9, and the position P9. When the control device 14 for the ship propulsion device is maintained in the second region of the above (slow start mode), the operation unit 11D is moved from the position P1 to the position P9 as shown in FIG. 12 (B) or FIG. 13 (B). During the first period from time t1 to time t2 moved to the second region of the above, the first propulsion force (small propulsion force for moving the ship 1 backward) is generated in the ship propulsion devices 12 and 13. Next, during the second period after time t2, a second propulsive force (a large propulsive force for moving the ship 1 to move backward) (a propulsive force equivalent to the value F1) larger than the first propulsive force is applied to the ship propulsion devices 12 and 13. generate.
When the operation unit 11D (the tip of the joystick lever) is moved from the position P1 to the first region of the position P9 and maintained in the first region of the position P9 (quick start mode), for the ship propulsion device. As shown in FIG. 12 (C) or FIG. 13 (C), the control device 14 has a second propulsion force (ship 1) at time t1 when the operation unit 11D is moved from the position P1 to the first region of the position P9. A large thrust to move backward) (a propulsion force equivalent to the value F1) is generated in the ship propulsion devices 12 and 13. Next, the second propulsion force is continuously generated in the ship propulsion devices 12 and 13 during the period after the time t1.
 また、第4実施形態の船舶推進装置用制御装置14では、図12または図13に示す制御が、船舶1を時計回りに旋回させる制御(船舶1を時計回りにその場回頭させる制御)にも適用される。
 第4実施形態の船舶推進装置用制御装置14が適用される船舶1では、船舶1を時計回りに旋回させる推進力を船舶推進装置12、13が発生する操作部11Dの位置P10(図3(J)参照)に、第1領域と第2領域とが含まれる。
 操作部11Dが位置P1(図3(A)参照)から位置P10の第1領域に移動させられる場合、操作部11Dの移動量は、閾値(第1閾値)以下になる。一方、操作部11Dが位置P1から位置P10の第2領域に移動させられる場合、操作部11Dの移動量は、その閾値(第1閾値)よりも大きくなる。
 具体的には、操作部11Dが位置P10の第2領域に位置する場合に、操作部11D(ジョイスティックのレバー)は、図3(J)に示す状態になる。一方、操作部11Dが位置P10の第1領域に位置する場合には、ジョイスティックのレバーが、図3(A)に符号「P1」で示す位置と、図3(H)に符号「P10」で示す位置との間に位置する(つまり、ジョイスティックのレバーの回動量が、図3(J)に示す状態よりも小さい)。
Further, in the control device 14 for the ship propulsion device of the fourth embodiment, the control shown in FIG. 12 or 13 also serves as a control for turning the ship 1 clockwise (control for turning the ship 1 clockwise on the spot). Applies.
In the ship 1 to which the control device 14 for the ship propulsion device of the fourth embodiment is applied, the position P10 of the operation unit 11D in which the ship propulsion devices 12 and 13 generate the propulsive force for turning the ship 1 clockwise (FIG. 3 (FIG. 3). J)) includes a first region and a second region.
When the operation unit 11D is moved from the position P1 (see FIG. 3A) to the first region of the position P10, the movement amount of the operation unit 11D becomes equal to or less than the threshold value (first threshold value). On the other hand, when the operation unit 11D is moved from the position P1 to the second region of the position P10, the movement amount of the operation unit 11D becomes larger than the threshold value (first threshold value).
Specifically, when the operation unit 11D is located in the second region of the position P10, the operation unit 11D (joystick lever) is in the state shown in FIG. 3 (J). On the other hand, when the operation unit 11D is located in the first region of the position P10, the lever of the joystick has the position indicated by the reference numeral “P1” in FIG. 3 (A) and the reference numeral “P10” in FIG. 3 (H). It is located between the indicated position (that is, the amount of rotation of the joystick lever is smaller than the state shown in FIG. 3 (J)).
 第4実施形態の船舶推進装置用制御装置14が適用される船舶1では、操作部11D(ジョイスティックのレバー)が、位置P1から位置P10の第2領域に移動させられて、位置P10の第2領域に維持される場合(スロースタートモード)に、船舶推進装置用制御装置14は、図12(B)または図13(B)に示すように、操作部11Dが位置P1から位置P10の第2領域に移動させられた時刻t1から時刻t2までの第1期間中に、第1推進力(船舶1を時計回りに旋回させる小さい推進力)を船舶推進装置12、13に発生させる。次いで、時刻t2以降の第2期間中に、第1推進力よりも大きい第2推進力(船舶1を時計回りに旋回させる大きい推進力)(値F1と同等の推進力)を船舶推進装置12、13に発生させる。
 操作部11D(ジョイスティックのレバー)が、位置P1から位置P10の第1領域に移動させられて、位置P10の第1領域に維持される場合(クイックスタートモード)に、船舶推進装置用制御装置14は、図12(C)または図13(C)に示すように、操作部11Dが位置P1から位置P10の第1領域に移動させられた時刻t1に第2推進力(船舶1を時計回りに旋回させる大きい推進力)(値F1と同等の推進力)を船舶推進装置12、13に発生させる。次いで、時刻t1以降の期間中に第2推進力を船舶推進装置12、13に発生させ続ける。
In the ship 1 to which the control device 14 for the ship propulsion device of the fourth embodiment is applied, the operation unit 11D (joystick lever) is moved from the position P1 to the second region of the position P10, and the second of the position P10. When the control device 14 for the ship propulsion device is maintained in the region (slow start mode), as shown in FIG. 12 (B) or FIG. 13 (B), the operation unit 11D moves from the position P1 to the second position P10. During the first period from time t1 to time t2 moved to the region, a first propulsive force (a small propulsive force that turns the ship 1 clockwise) is generated in the ship propulsion devices 12 and 13. Next, during the second period after time t2, the ship propulsion device 12 applies a second propulsion force (a large propulsion force that turns the ship 1 clockwise) (a propulsion force equivalent to the value F1) that is larger than the first propulsion force. , 13 to generate.
When the operation unit 11D (joystick lever) is moved from the position P1 to the first region of the position P10 and maintained in the first region of the position P10 (quick start mode), the control device 14 for the ship propulsion device 14 As shown in FIG. 12 (C) or FIG. 13 (C), the second propulsion force (vessel 1 clockwise) at time t1 when the operation unit 11D was moved from the position P1 to the first region of the position P10. A large propulsive force for turning) (a propulsive force equivalent to the value F1) is generated in the ship propulsion devices 12 and 13. Next, the second propulsion force is continuously generated in the ship propulsion devices 12 and 13 during the period after the time t1.
 また、第1実施形態の船舶推進装置用制御装置14では、図12または図13に示す制御が、船舶1を反時計回りに旋回させる制御(船舶1を反時計回りにその場回頭させる制御)にも適用される。
 第4実施形態の船舶推進装置用制御装置14が適用される船舶1では、船舶1を反時計回りに旋回させる推進力を船舶推進装置12、13が発生する操作部11Dの位置P11(図3(K)参照)に、第1領域と第2領域とが含まれる。
 操作部11Dが位置P1(図3(A)参照)から位置P11の第1領域に移動させられる場合、操作部11Dの移動量は、閾値(第1閾値)以下になる。一方、操作部11Dが位置P1から位置P11の第2領域に移動させられる場合、操作部11Dの移動量は、その閾値(第1閾値)よりも大きくなる。
 具体的には、操作部11Dが位置P11の第2領域に位置する場合に、操作部11D(ジョイスティックのレバー)は、図3(K)に示す状態になる。一方、操作部11Dが位置P11の第1領域に位置する場合には、ジョイスティックのレバーが、図3(A)に符号「P1」で示す位置と、図3(K)に符号「P11」で示す位置との間に位置する(つまり、ジョイスティックのレバーの回動量が、図3(K)に示す状態よりも小さい)。
Further, in the control device 14 for the ship propulsion device of the first embodiment, the control shown in FIG. 12 or 13 is a control for turning the ship 1 counterclockwise (control for turning the ship 1 counterclockwise on the spot). Also applies to.
In the ship 1 to which the control device 14 for the ship propulsion device of the fourth embodiment is applied, the position P11 of the operation unit 11D (FIG. 3) in which the ship propulsion devices 12 and 13 generate the propulsive force for turning the ship 1 counterclockwise. (See (K)) includes a first region and a second region.
When the operation unit 11D is moved from the position P1 (see FIG. 3A) to the first region of the position P11, the movement amount of the operation unit 11D becomes equal to or less than the threshold value (first threshold value). On the other hand, when the operation unit 11D is moved from the position P1 to the second region of the position P11, the movement amount of the operation unit 11D becomes larger than the threshold value (first threshold value).
Specifically, when the operation unit 11D is located in the second region of the position P11, the operation unit 11D (joystick lever) is in the state shown in FIG. 3 (K). On the other hand, when the operation unit 11D is located in the first region of the position P11, the lever of the joystick has the position indicated by the reference numeral "P1" in FIG. 3 (A) and the reference numeral "P11" in FIG. It is located between the indicated position (that is, the amount of rotation of the joystick lever is smaller than the state shown in FIG. 3 (K)).
 第4実施形態の船舶推進装置用制御装置14が適用される船舶1では、操作部11D(ジョイスティックのレバー)が、位置P1から位置P11の第2領域に移動させられて、位置P11の第2領域に維持される場合(スロースタートモード)に、船舶推進装置用制御装置14は、図12(B)または図13(B)に示すように、操作部11Dが位置P1から位置P11の第2領域に移動させられた時刻t1から時刻t2までの第1期間中に、第1推進力(船舶1を反時計回りに旋回させる小さい推進力)を船舶推進装置12、13に発生させる。次いで、時刻t2以降の第2期間中に、第1推進力よりも大きい第2推進力(船舶1を反時計回りに旋回させる大きい推進力)(値F1と同等の推進力)を船舶推進装置12、13に発生させる。
 操作部11D(ジョイスティックのレバー)が、位置P1から位置P11の第1領域に移動させられて、位置P11の第1領域に維持される場合(クイックスタートモード)に、船舶推進装置用制御装置14は、図12(C)または図13(C)に示すように、操作部11Dが位置P1から位置P11の第1領域に移動させられた時刻t1に第2推進力(船舶1を反時計回りに旋回させる大きい推進力)(値F1と同等の推進力)を船舶推進装置12、13に発生させる。次いで、時刻t1以降の期間中に第2推進力を船舶推進装置12、13に発生させ続ける。
 上述した例では、操作部11D(ジョイスティックのレバーの先端部)が第2領域に維持される場合にスロースタートモードになり、操作部11Dが第1領域に維持される場合にクイックスタートモードになるが、他の例では、操作部11Dが第1領域に維持される場合にスロースタートモードになり、操作部11Dが第2領域に維持される場合にクイックスタートモードになってもよい。
In the ship 1 to which the control device 14 for the ship propulsion device of the fourth embodiment is applied, the operation unit 11D (joystick lever) is moved from the position P1 to the second region of the position P11, and the second of the position P11. When the control device 14 for the ship propulsion device is maintained in the region (slow start mode), as shown in FIG. 12 (B) or FIG. 13 (B), the operation unit 11D moves from the position P1 to the second position P11. During the first period from time t1 to time t2 moved to the region, a first propulsion force (a small propulsion force for turning the ship 1 counterclockwise) is generated in the ship propulsion devices 12 and 13. Next, during the second period after time t2, a second propulsion force (a large propulsion force that turns the ship 1 counterclockwise) (a propulsion force equivalent to the value F1) that is larger than the first propulsion force is applied to the ship propulsion device. It is generated at 12 and 13.
When the operation unit 11D (joystick lever) is moved from the position P1 to the first region of the position P11 and maintained in the first region of the position P11 (quick start mode), the ship propulsion device control device 14 As shown in FIG. 12 (C) or FIG. 13 (C), the second propulsion force (counterclockwise rotation of the ship 1) occurs at time t1 when the operation unit 11D is moved from the position P1 to the first region of the position P11. A large propulsive force (a propulsive force equivalent to the value F1) is generated in the ship propulsion devices 12 and 13. Next, the second propulsion force is continuously generated in the ship propulsion devices 12 and 13 during the period after the time t1.
In the above example, the slow start mode is set when the operation unit 11D (the tip of the joystick lever) is maintained in the second area, and the quick start mode is set when the operation unit 11D is maintained in the first area. However, in another example, the slow start mode may be set when the operation unit 11D is maintained in the first region, and the quick start mode may be set when the operation unit 11D is maintained in the second region.
<第5実施形態>
 以下、本発明の船舶推進装置用制御装置、船舶推進装置用制御方法およびプログラムの第5実施形態について説明する。
 第5実施形態の船舶推進装置用制御装置14は、後述する点を除き、上述した第3実施形態の船舶推進装置用制御装置14と同様に構成されている。従って、第5実施形態の船舶推進装置用制御装置14によれば、後述する点を除き、上述した第3実施形態の船舶推進装置用制御装置14と同様の効果を奏することができる。
<Fifth Embodiment>
Hereinafter, a fifth embodiment of the ship propulsion device control device, the ship propulsion device control method, and the program of the present invention will be described.
The ship propulsion device control device 14 of the fifth embodiment is configured in the same manner as the ship propulsion device control device 14 of the third embodiment described above, except for the points described later. Therefore, according to the ship propulsion device control device 14 of the fifth embodiment, the same effect as that of the ship propulsion device control device 14 of the third embodiment described above can be obtained except for the points described later.
 上述したように、図11に示す例では、船体11が、操舵装置11Aと、リモコン装置11Bと、リモコン装置11Cと、操作部11Dと、モード設定部11Fとを備えており、モード設定部11Fは、例えば操船者による第1モード(スロースタートモード)および第2モード(クイックスタートモード)のいずれかの選択を受け付ける。
 一方、第5実施形態の船舶推進装置用制御装置14が適用される船舶1の船体11には、モード設定部11Fが備えられていない。第5実施形態の船舶推進装置用制御装置14が適用される船舶1では、位置P1から位置P2~P11のいずれかへの操作部11Dの移動所要時間に応じて、第1モード(スロースタートモード)と第2モード(クイックスタートモード)とが切り替えられる。
As described above, in the example shown in FIG. 11, the hull 11 includes a steering device 11A, a remote control device 11B, a remote control device 11C, an operation unit 11D, and a mode setting unit 11F, and the mode setting unit 11F. Accepts, for example, the operator's choice of either a first mode (slow start mode) or a second mode (quick start mode).
On the other hand, the hull 11 of the ship 1 to which the control device 14 for the ship propulsion device of the fifth embodiment is applied is not provided with the mode setting unit 11F. In the ship 1 to which the control device 14 for the ship propulsion device of the fifth embodiment is applied, the first mode (slow start mode) is performed according to the time required for the operation unit 11D to move from the position P1 to any of the positions P2 to P11. ) And the second mode (quick start mode) can be switched.
 図12(A)および図13(A)には、位置P1から位置P2への操作部11Dの移動開始時刻と、位置P1から位置P2への操作部11Dの移動終了時刻とが、同一時刻(時刻t1)として示されているが、現実には、位置P1から位置P2への操作部11Dの移動開始時刻と、位置P1から位置P2への操作部11Dの移動終了時刻とは異なる。
 第5実施形態の船舶推進装置用制御装置14では、位置P1から位置P2への操作部11Dの移動開始時刻から、位置P1から位置P2への操作部11Dの移動終了時刻までの時間(操作部11Dの移動所要時間)が、第1モード(スロースタートモード)と第2モード(クイックスタートモード)との切り替えに利用される。
In FIGS. 12A and 13A, the start time of movement of the operation unit 11D from the position P1 to the position P2 and the end time of the movement of the operation unit 11D from the position P1 to the position P2 are the same time ( Although it is shown as time t1), in reality, the movement start time of the operation unit 11D from the position P1 to the position P2 and the movement end time of the operation unit 11D from the position P1 to the position P2 are different.
In the ship propulsion device control device 14 of the fifth embodiment, the time from the movement start time of the operation unit 11D from the position P1 to the position P2 to the movement end time of the operation unit 11D from the position P1 to the position P2 (operation unit). The movement time required for 11D) is used for switching between the first mode (slow start mode) and the second mode (quick start mode).
 第5実施形態の船舶推進装置用制御装置14が適用される船舶1では、操作部11D(ジョイスティックのレバーの先端部)が、位置P1(図3(A)参照)から位置P2(図3(B)参照)に移動させられて、位置P2に維持される場合であって、位置P1から位置P2への操作部11Dの移動所要時間が所定の閾値(第2閾値)よりも長い場合(スロースタートモード)に、船舶推進装置用制御装置14は、図12(B)または図13(B)に示すように、操作部11Dが位置P1から位置P2に移動させられた時刻(移動終了時刻)t1から時刻t2までの第1期間中に、第1推進力(船舶1を右向きに並進移動させる小さい推進力)を船舶推進装置12、13に発生させる。次いで、時刻t2以降の第2期間中に、第1推進力よりも大きい第2推進力(船舶1を右向きに並進移動させる大きい推進力)(値F1の推進力)を船舶推進装置12、13に発生させる。
 操作部11D(ジョイスティックのレバーの先端部)が、位置P1から位置P2に移動させられて、位置P2に維持される場合であって、位置P1から位置P2への操作部11Dの移動所要時間がその閾値(第2閾値)以下である場合(クイックスタートモード)に、船舶推進装置用制御装置14は、図12(C)または図13(C)に示すように、操作部11Dが位置P1から位置P2に移動させられた時刻(移動終了時刻)t1に第2推進力(船舶1を右向きに並進移動させる大きい推進力)(値F1の推進力)を船舶推進装置12、13に発生させる。次いで、時刻t1以降の期間中に第2推進力を船舶推進装置12、13に発生させ続ける。
In the ship 1 to which the control device 14 for the ship propulsion device of the fifth embodiment is applied, the operation unit 11D (the tip of the lever of the joystick) is moved from the position P1 (see FIG. 3A) to the position P2 (FIG. 3 (FIG. 3). B)) and maintained at position P2, and the time required to move the operation unit 11D from position P1 to position P2 is longer than a predetermined threshold (second threshold) (slow). In the start mode), the control device 14 for the ship propulsion device is moved from the position P1 to the position P2 when the operation unit 11D is moved from the position P1 to the position P2 (movement end time) as shown in FIG. 12 (B) or FIG. 13 (B). During the first period from t1 to time t2, a first propulsive force (a small propulsive force that translates the ship 1 to the right) is generated in the ship propulsion devices 12 and 13. Next, during the second period after time t2, a second propulsion force (a large propulsion force for translating the ship 1 to the right) (a propulsion force having a value of F1) larger than the first propulsion force is applied to the ship propulsion devices 12 and 13. To generate.
When the operation unit 11D (the tip of the joystick lever) is moved from the position P1 to the position P2 and maintained at the position P2, the time required to move the operation unit 11D from the position P1 to the position P2 When it is equal to or less than the threshold value (second threshold value) (quick start mode), the control device 14 for the ship propulsion device has the operation unit 11D from the position P1 as shown in FIG. 12 (C) or FIG. 13 (C). A second propulsive force (a large propulsive force that translates the ship 1 to the right) (a propulsive force having a value F1) is generated in the ship propulsion devices 12 and 13 at the time (movement end time) t1 when the ship 1 is moved to the position P2. Next, the second propulsion force is continuously generated in the ship propulsion devices 12 and 13 during the period after the time t1.
 第5実施形態の船舶推進装置用制御装置14が適用される船舶1では、操作部11D(ジョイスティックのレバーの先端部)が、位置P1(図3(A)参照)から位置P3(図3(C)参照)に移動させられて、位置P3に維持される場合であって、位置P1から位置P3への操作部11Dの移動所要時間が閾値(第2閾値)よりも長い場合(スロースタートモード)に、船舶推進装置用制御装置14は、図12(B)または図13(B)に示すように、操作部11Dが位置P1から位置P3に移動させられた時刻(移動終了時刻)t1から時刻t2までの第1期間中に、第1推進力(船舶1を右前向きに並進移動させる小さい推進力)を船舶推進装置12、13に発生させる。次いで、時刻t2以降の第2期間中に、第1推進力よりも大きい第2推進力(船舶1を右前向きに並進移動させる大きい推進力)(値F1と同等の推進力)を船舶推進装置12、13に発生させる。
 操作部11D(ジョイスティックのレバーの先端部)が、位置P1から位置P3に移動させられて、位置P3に維持される場合であって、位置P1から位置P3への操作部11Dの移動所要時間が閾値(第2閾値)以下である場合(クイックスタートモード)に、船舶推進装置用制御装置14は、図12(C)または図13(C)に示すように、操作部11Dが位置P1から位置P3に移動させられた時刻(移動終了時刻)t1に第2推進力(船舶1を右前向きに並進移動させる大きい推進力)(値F1と同等の推進力)を船舶推進装置12、13に発生させる。次いで、時刻t1以降の期間中に第2推進力を船舶推進装置12、13に発生させ続ける。
In the ship 1 to which the control device 14 for the ship propulsion device of the fifth embodiment is applied, the operation unit 11D (the tip of the lever of the joystick) is moved from the position P1 (see FIG. 3A) to the position P3 (FIG. 3 (FIG. 3). When it is moved to (see C)) and maintained at the position P3, and the time required for the operation unit 11D to move from the position P1 to the position P3 is longer than the threshold (second threshold) (slow start mode). ), As shown in FIG. 12B or FIG. 13B, the ship propulsion device control device 14 starts from the time (movement end time) t1 when the operation unit 11D is moved from the position P1 to the position P3. During the first period up to time t2, a first propulsive force (a small propulsive force that translates the ship 1 forward to the right) is generated in the ship propulsion devices 12 and 13. Next, during the second period after time t2, a second propulsion force (a large propulsion force that translates the ship 1 forward to the right) (a propulsion force equivalent to the value F1) that is larger than the first propulsion force is applied to the ship propulsion device. It is generated at 12 and 13.
When the operation unit 11D (the tip of the joystick lever) is moved from the position P1 to the position P3 and maintained at the position P3, the time required to move the operation unit 11D from the position P1 to the position P3 When it is equal to or less than the threshold value (second threshold value) (quick start mode), in the ship propulsion device control device 14, the operation unit 11D is positioned from the position P1 as shown in FIG. 12 (C) or FIG. 13 (C). A second propulsive force (a large propulsive force that translates the ship 1 forward to the right) (a propulsive force equivalent to the value F1) is generated in the ship propulsion devices 12 and 13 at the time (movement end time) t1 when the ship is moved to P3. Let me. Next, the second propulsion force is continuously generated in the ship propulsion devices 12 and 13 during the period after the time t1.
 第5実施形態の船舶推進装置用制御装置14が適用される船舶1では、操作部11D(ジョイスティックのレバーの先端部)が、位置P1(図3(A)参照)から位置P4(図3(D)参照)に移動させられて、位置P4に維持される場合であって、位置P1から位置P4への操作部11Dの移動所要時間が閾値(第2閾値)よりも長い場合(スロースタートモード)に、船舶推進装置用制御装置14は、図12(B)または図13(B)に示すように、操作部11Dが位置P1から位置P4に移動させられた時刻(移動終了時刻)t1から時刻t2までの第1期間中に、第1推進力(船舶1を右後向きに並進移動させる小さい推進力)を船舶推進装置12、13に発生させる。次いで、時刻t2以降の第2期間中に、第1推進力よりも大きい第2推進力(船舶1を右後向きに並進移動させる大きい推進力)(値F1と同等の推進力)を船舶推進装置12、13に発生させる。
 操作部11D(ジョイスティックのレバーの先端部)が、位置P1から位置P4に移動させられて、位置P4に維持される場合であって、位置P1から位置P4への操作部11Dの移動所要時間が閾値(第2閾値)以下である場合(クイックスタートモード)に、船舶推進装置用制御装置14は、図12(C)または図13(C)に示すように、操作部11Dが位置P1から位置P4に移動させられた時刻(移動終了時刻)t1に第2推進力(船舶1を右後向きに並進移動させる大きい推進力)(値F1と同等の推進力)を船舶推進装置12、13に発生させる。次いで、時刻t1以降の期間中に第2推進力を船舶推進装置12、13に発生させ続ける。
In the ship 1 to which the control device 14 for the ship propulsion device of the fifth embodiment is applied, the operation unit 11D (the tip of the lever of the joystick) is moved from the position P1 (see FIG. 3A) to the position P4 (FIG. 3 (FIG. 3). When it is moved to (see D)) and maintained at the position P4, and the time required to move the operation unit 11D from the position P1 to the position P4 is longer than the threshold value (second threshold value) (slow start mode). ), As shown in FIG. 12B or FIG. 13B, the ship propulsion device control device 14 starts from the time (movement end time) t1 when the operation unit 11D is moved from the position P1 to the position P4. During the first period up to time t2, a first propulsive force (a small propulsive force that translates the ship 1 backward to the right) is generated in the ship propulsion devices 12 and 13. Next, during the second period after time t2, a second propulsion force (a large propulsion force that translates the ship 1 backward to the right) (a propulsion force equivalent to the value F1) that is larger than the first propulsion force is applied to the ship propulsion device. It is generated at 12 and 13.
When the operation unit 11D (the tip of the joystick lever) is moved from the position P1 to the position P4 and maintained at the position P4, the time required to move the operation unit 11D from the position P1 to the position P4. When it is equal to or less than the threshold value (second threshold value) (quick start mode), in the ship propulsion device control device 14, the operation unit 11D is positioned from the position P1 as shown in FIG. 12 (C) or FIG. 13 (C). A second propulsive force (a large propulsive force that translates the ship 1 backward to the right) (a propulsive force equivalent to the value F1) is generated in the ship propulsion devices 12 and 13 at the time (movement end time) t1 when the ship is moved to P4. Let me. Next, the second propulsion force is continuously generated in the ship propulsion devices 12 and 13 during the period after the time t1.
 第5実施形態の船舶推進装置用制御装置14では、船舶1の右側と左側とで左右対称の制御が実行される。
 つまり、第5実施形態の船舶推進装置用制御装置14が適用される船舶1では、操作部11D(ジョイスティックのレバーの先端部)が、位置P1(図3(A)参照)から位置P5~P7のいずれかに移動させられて、その位置P5~P7に維持される場合であって、位置P1からその位置P5~P7への操作部11Dの移動所要時間が閾値(第2閾値)よりも長い場合(スロースタートモード)に、船舶推進装置用制御装置14は、図12(B)または図13(B)に示すように、操作部11Dが位置P1からその位置P5~P7に移動させられた時刻(移動終了時刻)t1から時刻t2までの第1期間中に、第1推進力(船舶1を左向き、左前向きまたは左後向きに並進移動させる小さい推進力)を船舶推進装置12、13に発生させる。次いで、時刻t2以降の第2期間中に、第1推進力よりも大きい第2推進力(船舶1を左向き、左前向きまたは左後向きに並進移動させる大きい推進力)(値F1と同等の推進力)を船舶推進装置12、13に発生させる。
 操作部11D(ジョイスティックのレバーの先端部)が、位置P1から位置P5~P7のいずれかに移動させられて、その位置P5~P7に維持される場合であって、位置P1からその位置P5~P7への操作部11Dの移動所要時間が閾値(第2閾値)以下である場合(クイックスタートモード)に、船舶推進装置用制御装置14は、図12(C)または図13(C)に示すように、操作部11Dが位置P1からその位置P5~P7に移動させられた時刻(移動終了時刻)t1に第2推進力(船舶1を左向き、左前向きまたは左後向きに並進移動させる大きい推進力)(値F1と同等の推進力)を船舶推進装置12、13に発生させる。次いで、時刻t1以降の期間中に第2推進力を船舶推進装置12、13に発生させ続ける。
In the ship propulsion device control device 14 of the fifth embodiment, symmetrical control is executed on the right side and the left side of the ship 1.
That is, in the ship 1 to which the control device 14 for the ship propulsion device of the fifth embodiment is applied, the operation unit 11D (the tip of the joystick lever) is moved from the position P1 (see FIG. 3A) to the positions P5 to P7. In the case where the operation unit 11D is moved to any of the above positions and maintained at the positions P5 to P7, the time required for the operation unit 11D to move from the position P1 to the positions P5 to P7 is longer than the threshold value (second threshold value). In the case (slow start mode), in the ship propulsion device control device 14, the operation unit 11D is moved from the position P1 to the positions P5 to P7 as shown in FIG. 12 (B) or FIG. 13 (B). During the first period from time (movement end time) t1 to time t2, a first propulsive force (a small propulsive force that translates the ship 1 to the left, forward left, or backward left) is generated in the ship propulsion devices 12 and 13. Let me. Then, during the second period after time t2, a second propulsive force larger than the first propulsive force (a large propulsive force that translates the ship 1 to the left, forward left, or backward left) (propulsive force equivalent to the value F1). ) Is generated in the ship propulsion devices 12 and 13.
When the operation unit 11D (the tip of the joystick lever) is moved from the position P1 to any of the positions P5 to P7 and maintained at the positions P5 to P7, the position P1 to the position P5 to When the time required to move the operation unit 11D to P7 is equal to or less than the threshold value (second threshold value) (quick start mode), the ship propulsion device control device 14 is shown in FIG. 12 (C) or FIG. 13 (C). As described above, at the time (movement end time) t1 when the operation unit 11D is moved from the position P1 to the positions P5 to P7, the second propulsive force (a large propulsive force that translates the ship 1 to the left, forward left, or backward left) ) (Propulsion force equivalent to the value F1) is generated in the ship propulsion devices 12 and 13. Next, the second propulsion force is continuously generated in the ship propulsion devices 12 and 13 during the period after the time t1.
 また、第5実施形態の船舶推進装置用制御装置14では、図12または図13に示す制御が、船舶1の前後方向の移動時の制御(船舶1を前進または後進させる制御)にも適用される。
 第5実施形態の船舶推進装置用制御装置14が適用される船舶1では、操作部11D(ジョイスティックのレバーの先端部)が、位置P1(図3(A)参照)から位置P8(図3(H)参照)に移動させられて、位置P8に維持される場合であって、位置P1から位置P8への操作部11Dの移動所要時間が閾値(第2閾値)よりも長い場合(スロースタートモード)に、船舶推進装置用制御装置14は、図12(B)または図13(B)に示すように、操作部11Dが位置P1から位置P8に移動させられた時刻(移動終了時刻)t1から時刻t2までの第1期間中に、第1推進力(船舶1を前進させる小さい推進力)を船舶推進装置12、13に発生させる。次いで、時刻t2以降の第2期間中に、第1推進力よりも大きい第2推進力(船舶1を前進させる大きい推進力)(値F1と同等の推進力)を船舶推進装置12、13に発生させる。
 操作部11D(ジョイスティックのレバーの先端部)が、位置P1から位置P8に移動させられて、位置P8に維持される場合であって、位置P1から位置P8への操作部11Dの移動所要時間が閾値(第2閾値)以下である場合(クイックスタートモード)に、船舶推進装置用制御装置14は、図12(C)または図13(C)に示すように、操作部11Dが位置P1から位置P8に移動させられた時刻(移動終了時刻)t1に第2推進力(船舶1を前進させる大きい推進力)(値F1と同等の推進力)を船舶推進装置12、13に発生させる。次いで、時刻t1以降の期間中に第2推進力を船舶推進装置12、13に発生させ続ける。
Further, in the control device 14 for the ship propulsion device of the fifth embodiment, the control shown in FIG. 12 or 13 is also applied to the control when the ship 1 moves in the front-rear direction (control to move the ship 1 forward or backward). The ship.
In the ship 1 to which the control device 14 for the ship propulsion device of the fifth embodiment is applied, the operation unit 11D (the tip of the lever of the joystick) is moved from the position P1 (see FIG. 3A) to the position P8 (FIG. 3 (FIG. 3). H)) and maintained at position P8, and the time required to move the operation unit 11D from position P1 to position P8 is longer than the threshold (second threshold) (slow start mode). ), As shown in FIG. 12 (B) or FIG. 13 (B), the ship propulsion device control device 14 starts from the time (movement end time) t1 when the operation unit 11D is moved from the position P1 to the position P8. During the first period up to time t2, the first propulsion force (small propulsion force for advancing the ship 1) is generated in the ship propulsion devices 12 and 13. Next, during the second period after time t2, a second propulsive force (a large propulsive force for advancing the ship 1) (a propulsive force equivalent to the value F1) larger than the first propulsive force is applied to the ship propulsion devices 12 and 13. generate.
When the operation unit 11D (the tip of the joystick lever) is moved from the position P1 to the position P8 and maintained at the position P8, the time required to move the operation unit 11D from the position P1 to the position P8 When it is equal to or less than the threshold value (second threshold value) (quick start mode), in the ship propulsion device control device 14, the operation unit 11D is positioned from the position P1 as shown in FIG. 12 (C) or FIG. 13 (C). At the time when the ship is moved to P8 (movement end time) t1, a second propulsive force (a large propulsive force for advancing the ship 1) (a propulsive force equivalent to the value F1) is generated in the ship propulsion devices 12 and 13. Next, the second propulsion force is continuously generated in the ship propulsion devices 12 and 13 during the period after the time t1.
 第5実施形態の船舶推進装置用制御装置14が適用される船舶1では、操作部11D(ジョイスティックのレバーの先端部)が、位置P1(図3(A)参照)から位置P9(図3(I)参照)に移動させられて、位置P9に維持される場合であって、位置P1から位置P9への操作部11Dの移動所要時間が閾値(第2閾値)よりも長い場合(スロースタートモード)に、船舶推進装置用制御装置14は、図12(B)または図13(B)に示すように、操作部11Dが位置P1から位置P9に移動させられた時刻(移動終了時刻)t1から時刻t2までの第1期間中に、第1推進力(船舶1を後進させる小さい推進力)を船舶推進装置12、13に発生させる。次いで、時刻t2以降の第2期間中に、第1推進力よりも大きい第2推進力(船舶1を後進させる大きい推進力)(値F1と同等の推進力)を船舶推進装置12、13に発生させる。
 操作部11D(ジョイスティックのレバーの先端部)が、位置P1から位置P9に移動させられて、位置P9に維持される場合であって、位置P1から位置P9への操作部11Dの移動所要時間が閾値(第2閾値)以下である場合(クイックスタートモード)に、船舶推進装置用制御装置14は、図12(C)または図13(C)に示すように、操作部11Dが位置P1から位置P9に移動させられた時刻(移動終了時刻)t1に第2推進力(船舶1を後進させる大きい推進力)(値F1と同等の推進力)を船舶推進装置12、13に発生させる。次いで、時刻t1以降の期間中に第2推進力を船舶推進装置12、13に発生させ続ける。
In the ship 1 to which the control device 14 for the ship propulsion device of the fifth embodiment is applied, the operation unit 11D (the tip of the lever of the joystick) is moved from the position P1 (see FIG. 3A) to the position P9 (FIG. 3 (FIG. 3). I) Moved to (see) and maintained at position P9, and the time required to move the operation unit 11D from position P1 to position P9 is longer than the threshold (second threshold) (slow start mode) ), As shown in FIG. 12B or FIG. 13B, the ship propulsion device control device 14 starts from the time (movement end time) t1 when the operation unit 11D is moved from the position P1 to the position P9. During the first period up to time t2, the first propulsion force (small propulsion force for moving the ship 1 backward) is generated in the ship propulsion devices 12 and 13. Next, during the second period after time t2, a second propulsive force (a large propulsive force for moving the ship 1 to move backward) (a propulsive force equivalent to the value F1) larger than the first propulsive force is applied to the ship propulsion devices 12 and 13. generate.
When the operation unit 11D (the tip of the joystick lever) is moved from the position P1 to the position P9 and maintained at the position P9, the time required to move the operation unit 11D from the position P1 to the position P9 When it is equal to or less than the threshold value (second threshold value) (quick start mode), in the ship propulsion device control device 14, the operation unit 11D is positioned from the position P1 as shown in FIG. 12 (C) or FIG. 13 (C). A second propulsion force (a large propulsion force for moving the ship 1 backward) (a propulsion force equivalent to the value F1) is generated in the ship propulsion devices 12 and 13 at the time (movement end time) t1 when the ship is moved to P9. Next, the second propulsion force is continuously generated in the ship propulsion devices 12 and 13 during the period after the time t1.
 また、第5実施形態の船舶推進装置用制御装置14では、図12または図13に示す制御が、船舶1を時計回りに旋回させる制御(船舶1を時計回りにその場回頭させる制御)にも適用される。
 第5実施形態の船舶推進装置用制御装置14が適用される船舶1では、操作部11D(ジョイスティックのレバー)が、位置P1(図3(A)参照)から位置P10(図3(J)参照)に移動させられて、位置P10に維持される場合であって、位置P1から位置P10への操作部11Dの移動所要時間が所定の閾値(第2閾値)よりも長い場合(スロースタートモード)に、船舶推進装置用制御装置14は、図12(B)または図13(B)に示すように、操作部11Dが位置P1から位置P10に移動させられた時刻(移動終了時刻)t1から時刻t2までの第1期間中に、第1推進力(船舶1を時計回りに旋回させる小さい推進力)を船舶推進装置12、13に発生させる。次いで、時刻t2以降の第2期間中に、第1推進力よりも大きい第2推進力(船舶1を時計回りに旋回させる大きい推進力)(値F1と同等の推進力)を船舶推進装置12、13に発生させる。
 操作部11D(ジョイスティックのレバー)が、位置P1から位置P10に移動させられて、位置P10に維持される場合であって、位置P1から位置P10への操作部11Dの移動所要時間が閾値(第2閾値)以下である場合(クイックスタートモード)に、船舶推進装置用制御装置14は、図12(C)または図13(C)に示すように、操作部11Dが位置P1から位置P10に移動させられた時刻(移動終了時刻)t1に第2推進力(船舶1を時計回りに旋回させる大きい推進力)(値F1と同等の推進力)を船舶推進装置12、13に発生させる。次いで、時刻t1以降の期間中に第2推進力を船舶推進装置12、13に発生させ続ける。
Further, in the control device 14 for the ship propulsion device of the fifth embodiment, the control shown in FIG. 12 or 13 also serves as a control for turning the ship 1 clockwise (control for turning the ship 1 clockwise on the spot). Applies.
In the ship 1 to which the control device 14 for the ship propulsion device of the fifth embodiment is applied, the operation unit 11D (joystick lever) is moved from the position P1 (see FIG. 3 (A)) to the position P10 (see FIG. 3 (J)). ), And the time required to move the operation unit 11D from the position P1 to the position P10 is longer than a predetermined threshold (second threshold) (slow start mode). In addition, as shown in FIG. 12B or FIG. 13B, the ship propulsion device control device 14 starts from the time (movement end time) t1 when the operation unit 11D is moved from the position P1 to the position P10. During the first period up to t2, a first propulsive force (a small propulsive force that turns the ship 1 clockwise) is generated in the ship propulsion devices 12 and 13. Next, during the second period after time t2, the ship propulsion device 12 applies a second propulsion force (a large propulsion force that turns the ship 1 clockwise) (a propulsion force equivalent to the value F1) that is larger than the first propulsion force. , 13 to generate.
When the operation unit 11D (joystick lever) is moved from the position P1 to the position P10 and maintained at the position P10, the time required for the operation unit 11D to move from the position P1 to the position P10 is a threshold value (third). When it is less than or equal to (2 threshold values) (quick start mode), in the ship propulsion device control device 14, the operation unit 11D moves from the position P1 to the position P10 as shown in FIG. 12 (C) or FIG. 13 (C). At the set time (movement end time) t1, a second propulsive force (a large propulsive force for turning the ship 1 clockwise) (a propulsive force equivalent to the value F1) is generated in the ship propulsion devices 12 and 13. Next, the second propulsion force is continuously generated in the ship propulsion devices 12 and 13 during the period after the time t1.
 また、第5実施形態の船舶推進装置用制御装置14では、図12または図13に示す制御が、船舶1を反時計回りに旋回させる制御(船舶1を反時計回りにその場回頭させる制御)にも適用される。
 第5実施形態の船舶推進装置用制御装置14が適用される船舶1では、操作部11D(ジョイスティックのレバー)が、位置P1(図3(A)参照)から位置P11(図3(K)参照)に移動させられて、位置P11に維持される場合であって、位置P1から位置P11への操作部11Dの移動所要時間が閾値(第2閾値)よりも長い場合(スロースタートモード)に、船舶推進装置用制御装置14は、図12(B)または図13(B)に示すように、操作部11Dが位置P1から位置P11に移動させられた時刻(移動終了時刻)t1から時刻t2までの第1期間中に、第1推進力(船舶1を反時計回りに旋回させる小さい推進力)を船舶推進装置12、13に発生させる。次いで、時刻t2以降の第2期間中に、第1推進力よりも大きい第2推進力(船舶1を反時計回りに旋回させる大きい推進力)(値F1と同等の推進力)を船舶推進装置12、13に発生させる。
 操作部11D(ジョイスティックのレバー)が、位置P1から位置P11に移動させられて、位置P11に維持される場合であって、位置P1から位置P11への操作部11Dの移動所要時間が閾値(第2閾値)以下である場合(クイックスタートモード)に、船舶推進装置用制御装置14は、図12(C)または図13(C)に示すように、操作部11Dが位置P1から位置P11に移動させられた時刻(移動終了時刻)t1に第2推進力(船舶1を反時計回りに旋回させる大きい推進力)(値F1と同等の推進力)を船舶推進装置12、13に発生させる。次いで、時刻t1以降の期間中に第2推進力を船舶推進装置12、13に発生させ続ける。
Further, in the control device 14 for the ship propulsion device of the fifth embodiment, the control shown in FIG. 12 or 13 is a control for turning the ship 1 counterclockwise (control for turning the ship 1 counterclockwise on the spot). Also applies to.
In the ship 1 to which the control device 14 for the ship propulsion device of the fifth embodiment is applied, the operation unit 11D (joystick lever) is moved from the position P1 (see FIG. 3 (A)) to the position P11 (see FIG. 3 (K)). ), And the time required to move the operation unit 11D from the position P1 to the position P11 is longer than the threshold (second threshold) (slow start mode). As shown in FIG. 12B or FIG. 13B, the control device 14 for the ship propulsion device is from the time (movement end time) t1 to the time t2 when the operation unit 11D is moved from the position P1 to the position P11. During the first period of the above, the first propulsion force (small propulsion force for turning the ship 1 counterclockwise) is generated in the ship propulsion devices 12 and 13. Next, during the second period after time t2, a second propulsion force (a large propulsion force that turns the ship 1 counterclockwise) (a propulsion force equivalent to the value F1) that is larger than the first propulsion force is applied to the ship propulsion device. It is generated at 12 and 13.
When the operation unit 11D (joystick lever) is moved from the position P1 to the position P11 and maintained at the position P11, the time required for the operation unit 11D to move from the position P1 to the position P11 is a threshold value (third). When it is less than or equal to (2 threshold values) (quick start mode), in the ship propulsion device control device 14, the operation unit 11D moves from the position P1 to the position P11 as shown in FIG. 12 (C) or FIG. 13 (C). A second propulsive force (a large propulsive force for turning the ship 1 counterclockwise) (a propulsive force equivalent to the value F1) is generated in the ship propulsion devices 12 and 13 at the time (movement end time) t1. Next, the second propulsion force is continuously generated in the ship propulsion devices 12 and 13 during the period after the time t1.
<第6実施形態>
 以下、本発明の船舶推進装置用制御装置、船舶推進装置用制御方法およびプログラムの第6実施形態について説明する。
 第6実施形態の船舶推進装置用制御装置14が適用される船舶1は、後述する点を除き、上述した第1~第5実施形態の船舶推進装置用制御装置14が適用される船舶1と同様に構成されている。従って、第6実施形態の船舶1によれば、後述する点を除き、上述した第1~第5実施形態の船舶1と同様の効果を奏することができる。
<Sixth Embodiment>
Hereinafter, a sixth embodiment of the control device for a ship propulsion device, the control method for a ship propulsion device, and the program of the present invention will be described.
The ship 1 to which the control device 14 for the ship propulsion device of the sixth embodiment is applied is the ship 1 to which the control device 14 for the ship propulsion device 14 of the first to fifth embodiments described above is applied, except for the points described later. It is configured in the same way. Therefore, according to the ship 1 of the sixth embodiment, the same effect as that of the ship 1 of the first to fifth embodiments described above can be obtained except for the points described later.
 第1~第5実施形態の船舶推進装置用制御装置14が適用される船舶1(図1、図7および図11参照)には、2つの船舶推進装置12、13が備えられている。
 一方、第6実施形態の船舶推進装置用制御装置14が適用される船舶1には、3つ以上の船舶推進装置(図示せず)が備えられている。
The ship 1 (see FIGS. 1, 7 and 11) to which the ship propulsion device control device 14 of the first to fifth embodiments is applied is provided with two ship propulsion devices 12 and 13.
On the other hand, the ship 1 to which the control device 14 for the ship propulsion device of the sixth embodiment is applied is provided with three or more ship propulsion devices (not shown).
 第6実施形態の船舶推進装置用制御装置14は、操作部11Dが位置P1から位置P2~P11のいずれかに移動させられた時刻t1から時刻t2までの第1期間中に、第1推進力を3つ以上の船舶推進装置に発生させ、次いで、時刻t2以降の第2期間中に、第1推進力よりも大きい第2推進力を3つ以上の船舶推進装置に発生させる。 The control device 14 for the ship propulsion device of the sixth embodiment has a first propulsion force during the first period from time t1 to time t2 when the operation unit 11D is moved from the position P1 to any of the positions P2 to P11. Is generated in three or more ship propulsion devices, and then a second propulsion force larger than the first propulsion force is generated in three or more ship propulsion devices during the second period after time t2.
<第7実施形態>
 以下、本発明の船舶推進装置用制御装置、船舶推進装置用制御方法およびプログラムの第7実施形態について説明する。
 第7実施形態の船舶推進装置用制御装置14が適用される船舶1は、後述する点を除き、上述した第1~第5実施形態の船舶推進装置用制御装置14が適用される船舶1と同様に構成されている。従って、第7実施形態の船舶1によれば、後述する点を除き、上述した第1~第5実施形態の船舶1と同様の効果を奏することができる。
<7th Embodiment>
Hereinafter, a seventh embodiment of the ship propulsion device control device, the ship propulsion device control method, and the program of the present invention will be described.
The ship 1 to which the control device 14 for the ship propulsion device of the seventh embodiment is applied is the ship 1 to which the control device 14 for the ship propulsion device 14 of the first to fifth embodiments described above is applied, except for the points described later. It is configured in the same way. Therefore, according to the ship 1 of the seventh embodiment, the same effect as that of the ship 1 of the first to fifth embodiments described above can be obtained except for the points described later.
 図14は第7実施形態の船舶推進装置用制御装置14が適用される船舶1の一例を示す図である。
 上述したように、第1実施形態の船舶1(図1および図2に示す例)では、操作部11Dが、レバーを有するジョイスティックによって構成されている。
 一方、第7実施形態の船舶1(図14に示す例)では、操作部11Dが、タッチパネルによって構成されている。操船者は、操舵装置11A(ステアリングホイール)およびリモコン装置11B、11C(リモコンレバー)を操作することによって、推進ユニット12A1、13A1および操舵アクチュエータ12A2、13A2を作動させることができるのみならず、操作部11D(タッチパネル)を操作することによっても、推進ユニット12A1、13A1および操舵アクチュエータ12A2、13A2を作動させることができる。
 他の例では、船体11が、操舵装置11A、リモコン装置11Bおよびリモコン装置11Cを備えていなくてもよい。
FIG. 14 is a diagram showing an example of a ship 1 to which the control device 14 for a ship propulsion device of the seventh embodiment is applied.
As described above, in the ship 1 of the first embodiment (examples shown in FIGS. 1 and 2), the operation unit 11D is configured by a joystick having a lever.
On the other hand, in the ship 1 of the seventh embodiment (example shown in FIG. 14), the operation unit 11D is configured by a touch panel. By operating the steering device 11A (steering wheel) and the remote control devices 11B and 11C (remote control lever), the operator can not only operate the propulsion units 12A1 and 13A1 and the steering actuators 12A2 and 13A2, but also the operation unit. The propulsion units 12A1 and 13A1 and the steering actuators 12A2 and 13A2 can also be operated by operating the 11D (touch panel).
In another example, the hull 11 may not include the steering device 11A, the remote control device 11B, and the remote control device 11C.
 図14に示す例では、船舶推進装置用制御装置14が、操作部11Dに対する入力操作に基づいて、船舶推進装置12の操舵アクチュエータ12A2および推進ユニット12A1と、船舶推進装置13の操舵アクチュエータ13A2および推進ユニット13A1とを制御する。
 詳細には、船舶推進装置用制御装置14は、操作部11D(タッチパネル)に対する例えばフリック入力操作に基づいて、推進ユニット12A1、13A1および操舵アクチュエータ12A2、13A2が発生する船舶1の推進力の大きさおよび向き並びに回転モーメントの大きさおよび向きを制御する。
 フリック入力操作では、操船者は、例えば、タッチパネルを押圧しつつ、タッチパネルを押圧している指を目的の向きにスライドさせる。
 移動経路算出部14Aは、操作部11Dの移動経路を算出する。詳細には、移動経路算出部14Aは、操船者がタッチパネルを押圧しながらスライドさせた指の移動経路を算出する。
 経過時間算出部14Bは、操作部11D(タッチパネルを押圧する操船者の指)がある位置に移動させられた時刻からの経過時間を算出する。
 推進力算出部14Cは、移動経路算出部14Aによって算出された操作部11Dの移動経路(タッチパネルを押圧しながらスライドさせられた指の移動経路)と、経過時間算出部14Bによって算出された経過時間とに基づいて、船舶推進装置12、13に発生させる推進力を算出する。
 また、推進力算出部14Cは、移動経路算出部14Aによって算出された操作部11Dの移動経路と、経過時間算出部14Bによって算出された経過時間とに基づいて、船舶推進装置12、13によって船舶1に発生させる回転モーメントを算出する。
In the example shown in FIG. 14, the ship propulsion device control device 14 has the steering actuator 12A2 and the propulsion unit 12A1 of the ship propulsion device 12 and the steering actuator 13A2 and the propulsion of the ship propulsion device 13 based on the input operation to the operation unit 11D. It controls the unit 13A1.
Specifically, the control device 14 for the ship propulsion device has a magnitude of the propulsive force of the ship 1 generated by the propulsion units 12A1 and 13A1 and the steering actuators 12A2 and 13A2 based on, for example, a flick input operation to the operation unit 11D (touch panel). And the direction and the magnitude and direction of the rotational moment are controlled.
In the flick input operation, the operator, for example, presses the touch panel and slides the finger pressing the touch panel in a desired direction.
The movement route calculation unit 14A calculates the movement route of the operation unit 11D. Specifically, the movement route calculation unit 14A calculates the movement route of the finger that the operator slides while pressing the touch panel.
The elapsed time calculation unit 14B calculates the elapsed time from the time when the operation unit 11D (the finger of the operator who presses the touch panel) is moved to a certain position.
The propulsion force calculation unit 14C has a movement path of the operation unit 11D calculated by the movement path calculation unit 14A (a movement path of a finger slid while pressing the touch panel) and an elapsed time calculated by the elapsed time calculation unit 14B. Based on the above, the propulsive force generated in the ship propulsion devices 12 and 13 is calculated.
Further, the propulsion force calculation unit 14C is used by the ship propulsion devices 12 and 13 based on the movement path of the operation unit 11D calculated by the movement route calculation unit 14A and the elapsed time calculated by the elapsed time calculation unit 14B. Calculate the rotational moment generated in 1.
 図14に示す例では、操作部11D(タッチパネル)に対してフリック入力操作可能であると共に、回転入力操作可能に、操作部11Dが構成されている。
 操船者は、例えば、1本の指をタッチパネルに当接させて中心点として固定させた状態で、他の指を、タッチパネルを押圧しながら周方向にスライドさせることによって、回転入力操作を行う。
 操船者が、操作部11D(タッチパネル)に対して時計回りの回転入力操作を行う場合に、船舶推進装置用制御装置14は、船体11が右旋回するように、推進ユニット12A1、13A1および操舵アクチュエータ12A2、13A2を制御する。一方、操船者が、操作部11D(タッチパネル)に対して反時計回りの回転入力操作を行う場合に、船舶推進装置用制御装置14は、船体11が左旋回するように、推進ユニット12A1、13A1および操舵アクチュエータ12A2、13A2を制御する。
 また、操船者が操作部11D(タッチパネル)に対してフリック入力操作を行う場合に、船舶推進装置用制御装置14は、船体11が、姿勢を維持したまま、操船者の指がスライドさせられた向きに移動するように、推進ユニット12A1、13A1および操舵アクチュエータ12A2、13A2を制御する。つまり、操船者が操作部11D(タッチパネル)に対してフリック入力操作を行うことによって、船体11の前部111と、船体11の後部112とが、並進する。
In the example shown in FIG. 14, the operation unit 11D is configured so that the flick input operation can be performed on the operation unit 11D (touch panel) and the rotation input operation can be performed.
The operator performs a rotation input operation by, for example, sliding one finger in the circumferential direction while pressing the touch panel in a state where one finger is brought into contact with the touch panel and fixed as a center point.
When the ship operator performs a clockwise rotation input operation on the operation unit 11D (touch panel), the ship propulsion device control device 14 steers the propulsion units 12A1, 13A1 and steering so that the hull 11 turns to the right. It controls the actuators 12A2 and 13A2. On the other hand, when the ship operator performs a counterclockwise rotation input operation with respect to the operation unit 11D (touch panel), the ship propulsion device control device 14 controls the propulsion units 12A1 and 13A1 so that the hull 11 turns to the left. And the steering actuators 12A2 and 13A2 are controlled.
Further, when the ship operator performs a flick input operation on the operation unit 11D (touch panel), the ship operator's finger is slid on the ship propulsion device control device 14 while the hull 11 maintains the attitude. The propulsion units 12A1, 13A1 and the steering actuators 12A2, 13A2 are controlled so as to move in the direction. That is, when the operator performs a flick input operation on the operation unit 11D (touch panel), the front portion 111 of the hull 11 and the rear portion 112 of the hull 11 are translated.
 操船者が操作部11D(タッチパネル)に対してフリック入力操作を行っていない場合(つまり、操船者の指がタッチパネルに当接していない場合)、操作部11Dは、図3(A)に示す状態と同様の状態になる。その結果、船舶推進装置用制御装置14は、推進ユニット12A1、13A1および操舵アクチュエータ12A2、13A2に船舶1の推進力を発生させない。 When the operator does not perform a flick input operation on the operation unit 11D (touch panel) (that is, when the operator's finger does not touch the touch panel), the operation unit 11D is in the state shown in FIG. 3 (A). It becomes the same state as. As a result, the ship propulsion device control device 14 does not generate the propulsive force of the ship 1 in the propulsion units 12A1 and 13A1 and the steering actuators 12A2 and 13A2.
 以上、本発明を実施するための形態について実施形態を用いて説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形及び置換を加えることができる。上述した各実施形態および各例に記載の構成を組み合わせてもよい。 Although the embodiments for carrying out the present invention have been described above using the embodiments, the present invention is not limited to these embodiments, and various modifications and substitutions are made without departing from the gist of the present invention. Can be added. The configurations described in each of the above-described embodiments and examples may be combined.
 なお、上述した実施形態における船舶推進装置用制御装置14が備える各部の機能全体あるいはその一部は、これらの機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現しても良い。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶部のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでも良い。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
In addition, all or a part of the functions of each part included in the control device 14 for the ship propulsion device in the above-described embodiment is recorded on a computer-readable recording medium with a program for realizing these functions, and the recording medium. It may be realized by loading the program recorded in the computer system into a computer system and executing the program. The term "computer system" as used herein includes hardware such as an OS and peripheral devices.
Further, the "computer-readable recording medium" refers to a portable medium such as a flexible disk, a magneto-optical disk, a ROM, or a CD-ROM, or a storage unit such as a hard disk built in a computer system. Further, a "computer-readable recording medium" is a communication line for transmitting a program via a network such as the Internet or a communication line such as a telephone line, and dynamically holds the program for a short period of time. It may also include a program that holds a program for a certain period of time, such as a volatile memory inside a computer system that serves as a server or a client in that case. Further, the above-mentioned program may be for realizing a part of the above-mentioned functions, and may further realize the above-mentioned functions in combination with a program already recorded in the computer system.
1…船舶、11…船体、111…前部、112…後部、11A…操舵装置、11B…リモコン装置、11C…リモコン装置、11D…操作部、11E…第1期間設定部、11F…モード設定部、P1…位置、P2…位置、P3…位置、P4…位置、P5…位置、P6…位置、P7…位置、P8…位置、P9…位置、12…船舶推進装置、12A…船舶推進装置本体、12A1…推進ユニット、12A2…操舵アクチュエータ、12AX…操舵軸、12B…ブラケット、13…船舶推進装置、13A…船舶推進装置本体、13A1…推進ユニット、13A2…操舵アクチュエータ、13AX…操舵軸、13B…ブラケット、14…船舶推進装置用制御装置、14A…移動経路算出部、14B…経過時間算出部、14C…推進力算出部、14D…第1期間長さ変更部 1 ... Ship, 11 ... Hull, 111 ... Front, 112 ... Rear, 11A ... Steering device, 11B ... Remote control device, 11C ... Remote control device, 11D ... Operation unit, 11E ... First period setting unit, 11F ... Mode setting unit , P1 ... position, P2 ... position, P3 ... position, P4 ... position, P5 ... position, P6 ... position, P7 ... position, P8 ... position, P9 ... position, 12 ... ship propulsion device, 12A ... ship propulsion device body, 12A1 ... Propulsion unit, 12A2 ... Steering actuator, 12AX ... Steering shaft, 12B ... Bracket, 13 ... Ship propulsion device, 13A ... Ship propulsion device body, 13A1 ... Propulsion unit, 13A2 ... Steering actuator, 13AX ... Steering shaft, 13B ... Bracket , 14 ... Ship propulsion device control device, 14A ... Movement route calculation unit, 14B ... Elapsed time calculation unit, 14C ... Propulsion force calculation unit, 14D ... First period length change unit

Claims (12)

  1.  複数の船舶推進装置を制御する船舶推進装置用制御装置であって、
     前記複数の船舶推進装置のそれぞれは、エンジンによって駆動されて船舶の推進力を発生する推進ユニットと、操舵アクチュエータとを備え、
     前記船舶は、
     前記推進ユニットおよび前記操舵アクチュエータを作動させる操作部を備え、
     前記操作部は、少なくとも
     前記複数の船舶推進装置が前記船舶の推進力を発生しない位置である第1位置と、
     前記複数の船舶推進装置が前記船舶の推進力を発生する位置である第2位置に位置することができ、
     前記操作部が、前記第1位置から前記第2位置に移動させられて、前記第2位置に維持される場合に、
     前記船舶推進装置用制御装置は、
     前記操作部が前記第1位置から前記第2位置に移動させられた第1時刻から第2時刻までの第1期間中に、第1推進力を前記複数の船舶推進装置に発生させ、
     次いで、前記第2時刻以降の第2期間中に、前記第1推進力よりも大きい第2推進力を前記複数の船舶推進装置に発生させる、
     船舶推進装置用制御装置。
    A control device for a ship propulsion device that controls a plurality of ship propulsion devices.
    Each of the plurality of ship propulsion devices includes a propulsion unit driven by an engine to generate propulsive force of the ship, and a steering actuator.
    The ship
    The operation unit for operating the propulsion unit and the steering actuator is provided.
    The operation unit includes a first position where at least the plurality of ship propulsion devices do not generate propulsive force for the ship.
    The plurality of ship propulsion devices can be located at a second position, which is a position where the propulsive force of the ship is generated.
    When the operating unit is moved from the first position to the second position and maintained at the second position,
    The control device for the ship propulsion device is
    During the first period from the first time to the second time when the operation unit is moved from the first position to the second position, a first propulsive force is generated in the plurality of ship propulsion devices.
    Next, during the second period after the second time, a second propulsive force larger than the first propulsive force is generated in the plurality of ship propulsion devices.
    Control device for ship propulsion device.
  2.  前記第2位置には、前記複数の船舶推進装置が前記船舶の右向きまたは左向きに前記船舶を並進移動させる推進力を発生する位置である左右位置が含まれる、
     請求項1に記載の船舶推進装置用制御装置。
    The second position includes a left-right position, which is a position where the plurality of ship propulsion devices generate a propulsive force for translating the ship to the right or left.
    The control device for a ship propulsion device according to claim 1.
  3.  前記第2位置には、前記複数の船舶推進装置が前記船舶を前進または後進させる推進力を発生する位置である前後位置が含まれる、
     請求項1に記載の船舶推進装置用制御装置。
    The second position includes a front-rear position, which is a position where the plurality of ship propulsion devices generate a propulsive force for moving the ship forward or backward.
    The control device for a ship propulsion device according to claim 1.
  4.  前記第2位置には、前記複数の船舶推進装置が前記船舶の右前向き、右後向き、左前向きまたは左後向きに前記船舶を並進移動させる推進力を発生する位置である斜め位置が含まれる、
     請求項1に記載の船舶推進装置用制御装置。
    The second position includes an oblique position, which is a position where the plurality of ship propulsion devices generate a propulsive force for translating the ship in the right front direction, the right rear direction, the left front direction, or the left rear direction.
    The control device for a ship propulsion device according to claim 1.
  5.  前記第2位置には、前記複数の船舶推進装置が前記船舶を時計回りまたは反時計回りに旋回させる推進力を発生する位置である回転位置が含まれる、
     請求項1に記載の船舶推進装置用制御装置。
    The second position includes a rotation position, which is a position where the plurality of ship propulsion devices generate a propulsive force for turning the ship clockwise or counterclockwise.
    The control device for a ship propulsion device according to claim 1.
  6.  前記操作部が、前記第2位置から前記第1位置に移動させられて、前記第1位置に維持される場合に、
     前記船舶推進装置用制御装置は、
     前記操作部が前記第2位置から前記第1位置に移動させられた第3時刻から第4時刻までの第3期間中に、ゼロより大きく前記第2推進力より小さい第3推進力を前記複数の船舶推進装置に発生させ、
     次いで、前記第4時刻以降の第4期間中に、前記複数の船舶推進装置に推進力を発生させない、
     請求項1から請求項5のいずれか一項に記載の船舶推進装置用制御装置。
    When the operating unit is moved from the second position to the first position and maintained at the first position,
    The control device for the ship propulsion device is
    During the third period from the third time to the fourth time when the operation unit is moved from the second position to the first position, the plurality of third propulsive forces larger than zero and smaller than the second propulsive force are applied. Generated in the ship propulsion device of
    Next, during the fourth period after the fourth time, no propulsive force is generated in the plurality of ship propulsion devices.
    The control device for a ship propulsion device according to any one of claims 1 to 5.
  7.  前記船舶は、前記第1期間の長さの変更要求を受け付ける第1期間設定部を更に備え、
     前記船舶推進装置用制御装置は、
     前記第1期間設定部が前記第1期間の長さの延長要求を受け付けた場合に、前記複数の船舶推進装置に前記第1推進力を発生させる前記第1期間の長さを延長し、
     前記第1期間設定部が前記第1期間の長さの短縮要求を受け付けた場合に、前記複数の船舶推進装置に前記第1推進力を発生させる前記第1期間の長さを短縮する、
     請求項1から請求項5のいずれか一項に記載の船舶推進装置用制御装置。
    The ship further includes a first period setting unit that receives a request for changing the length of the first period.
    The control device for the ship propulsion device is
    When the first period setting unit receives the request for extension of the length of the first period, the length of the first period for generating the first propulsive force in the plurality of ship propulsion devices is extended.
    When the first period setting unit receives the request for shortening the length of the first period, the length of the first period for generating the first propulsive force in the plurality of ship propulsion devices is shortened.
    The control device for a ship propulsion device according to any one of claims 1 to 5.
  8.  前記船舶は、第1モードおよび第2モードのいずれかの選択を受け付けるモード設定部を更に備え、
     前記船舶推進装置用制御装置は、
     前記モード設定部が前記第1モードの選択を受け付けた場合に、前記第1期間中に前記第1推進力を前記複数の船舶推進装置に発生させ、次いで、前記第2期間中に前記第2推進力を前記複数の船舶推進装置に発生させ、
     前記モード設定部が前記第2モードの選択を受け付けた場合に、前記操作部が前記第1位置から前記第2位置に移動させられた前記第1時刻に前記第2推進力を前記複数の船舶推進装置に発生させ、前記第1時刻以降の期間中に前記第2推進力を前記複数の船舶推進装置に発生させ続ける、
     請求項1から請求項5のいずれか一項に記載の船舶推進装置用制御装置。
    The ship further includes a mode setting unit that accepts selection of either a first mode or a second mode.
    The control device for the ship propulsion device is
    When the mode setting unit accepts the selection of the first mode, the first propulsive force is generated in the plurality of ship propulsion devices during the first period, and then the second propulsion force is generated during the second period. Propulsive force is generated in the plurality of ship propulsion devices,
    When the mode setting unit accepts the selection of the second mode, the second propulsive force is applied to the plurality of ships at the first time when the operation unit is moved from the first position to the second position. It is generated in the propulsion device, and the second propulsive force is continuously generated in the plurality of ship propulsion devices during the period after the first time.
    The control device for a ship propulsion device according to any one of claims 1 to 5.
  9.  前記第2位置には、
     前記第1位置からの前記操作部の移動量が第1閾値以下である第1領域と、
     前記第1位置からの前記操作部の移動量が前記第1閾値よりも大きい第2領域とが含まれ、
     前記操作部が、前記第1位置から、前記第1領域および前記第2領域の一方に移動させられて、前記第1領域および前記第2領域の一方に維持される場合に、
     前記船舶推進装置用制御装置は、
     前記操作部が前記第1位置から前記第1領域および前記第2領域の一方に移動させられた前記第1時刻から前記第2時刻までの前記第1期間中に、前記第1推進力を前記複数の船舶推進装置に発生させ、
     次いで、前記第2時刻以降の前記第2期間中に、前記第2推進力を前記複数の船舶推進装置に発生させ、
     前記操作部が、前記第1位置から、前記第1領域および前記第2領域の他方に移動させられて、前記第1領域および前記第2領域の他方に維持される場合に、
     前記船舶推進装置用制御装置は、
     前記操作部が前記第1位置から前記第1領域および前記第2領域の他方に移動させられた前記第1時刻に前記第2推進力を前記複数の船舶推進装置に発生させ、
     前記第1時刻以降の期間中に前記第2推進力を前記複数の船舶推進装置に発生させ続ける、
     請求項1から請求項5のいずれか一項に記載の船舶推進装置用制御装置。
    At the second position
    A first region in which the amount of movement of the operation unit from the first position is equal to or less than the first threshold value, and
    A second region in which the amount of movement of the operation unit from the first position is larger than the first threshold value is included.
    When the operating unit is moved from the first position to one of the first region and the second region and maintained in one of the first region and the second region.
    The control device for the ship propulsion device is
    During the first period from the first time to the second time when the operation unit is moved from the first position to one of the first region and the second region, the first propulsive force is applied. Generated in multiple ship propulsion devices
    Then, during the second period after the second time, the second propulsion force is generated in the plurality of ship propulsion devices.
    When the operating unit is moved from the first position to the other of the first region and the second region and maintained in the other of the first region and the second region.
    The control device for the ship propulsion device is
    At the first time when the operating unit is moved from the first position to the other of the first region and the second region, the second propulsive force is generated in the plurality of ship propulsion devices.
    The second propulsion force is continuously generated in the plurality of ship propulsion devices during the period after the first time.
    The control device for a ship propulsion device according to any one of claims 1 to 5.
  10.  前記操作部が、前記第1位置から前記第2位置に移動させられて、前記第2位置に維持される場合であって、前記第1位置から前記第2位置への前記操作部の移動所要時間が第2閾値よりも長い場合に、
     前記船舶推進装置用制御装置は、
     前記第1位置から前記第2位置への前記操作部の移動完了時刻である前記第1時刻から前記第2時刻までの前記第1期間中に、前記第1推進力を前記複数の船舶推進装置に発生させ、
     次いで、前記第2時刻以降の前記第2期間中に、前記第2推進力を前記複数の船舶推進装置に発生させ、
     前記操作部が、前記第1位置から前記第2位置に移動させられて、前記第2位置に維持される場合であって、前記第1位置から前記第2位置への前記操作部の移動所要時間が前記第2閾値以下である場合に、
     前記船舶推進装置用制御装置は、
     前記第1時刻に前記第2推進力を前記複数の船舶推進装置に発生させ、
     前記第1時刻以降の期間中に前記第2推進力を前記複数の船舶推進装置に発生させ続ける、
     請求項1から請求項5のいずれか一項に記載の船舶推進装置用制御装置。
    When the operation unit is moved from the first position to the second position and maintained at the second position, the operation unit needs to be moved from the first position to the second position. If the time is longer than the second threshold
    The control device for the ship propulsion device is
    During the first period from the first time to the second time, which is the time when the operation unit is moved from the first position to the second position, the first propulsion force is applied to the plurality of ship propulsion devices. Generated in
    Then, during the second period after the second time, the second propulsion force is generated in the plurality of ship propulsion devices.
    When the operation unit is moved from the first position to the second position and maintained at the second position, the operation unit needs to be moved from the first position to the second position. When the time is equal to or less than the second threshold value
    The control device for the ship propulsion device is
    At the first time, the second propulsion force is generated in the plurality of ship propulsion devices.
    The second propulsion force is continuously generated in the plurality of ship propulsion devices during the period after the first time.
    The control device for a ship propulsion device according to any one of claims 1 to 5.
  11.  複数の船舶推進装置を制御する船舶推進装置用制御方法であって、
     前記複数の船舶推進装置のそれぞれは、エンジンによって駆動されて船舶の推進力を発生する推進ユニットと、操舵アクチュエータとを備え、
     前記船舶は、
     前記推進ユニットおよび前記操舵アクチュエータを作動させる操作部を備え、
     前記操作部は、少なくとも
     前記複数の船舶推進装置が前記船舶の推進力を発生しない位置である第1位置と、
     前記複数の船舶推進装置が前記船舶の推進力を発生する位置である第2位置に位置することができ、
     前記操作部が、前記第1位置から前記第2位置に移動させられて、前記第2位置に維持される場合に、
     前記操作部が前記第1位置から前記第2位置に移動させられた第1時刻から第2時刻までの第1期間中に、第1推進力を前記複数の船舶推進装置に発生させ、
     次いで、前記第2時刻以降の第2期間中に、前記第1推進力よりも大きい第2推進力を前記複数の船舶推進装置に発生させる、
     船舶推進装置用制御方法。
    A control method for ship propulsion devices that controls multiple ship propulsion devices.
    Each of the plurality of ship propulsion devices includes a propulsion unit driven by an engine to generate propulsive force of the ship, and a steering actuator.
    The ship
    The operation unit for operating the propulsion unit and the steering actuator is provided.
    The operation unit includes a first position where at least the plurality of ship propulsion devices do not generate propulsive force for the ship.
    The plurality of ship propulsion devices can be located at a second position, which is a position where the propulsive force of the ship is generated.
    When the operating unit is moved from the first position to the second position and maintained at the second position,
    During the first period from the first time to the second time when the operation unit is moved from the first position to the second position, a first propulsive force is generated in the plurality of ship propulsion devices.
    Next, during the second period after the second time, a second propulsive force larger than the first propulsive force is generated in the plurality of ship propulsion devices.
    Control method for ship propulsion devices.
  12.  複数の船舶推進装置を制御するプログラムであって、
     前記複数の船舶推進装置のそれぞれは、エンジンによって駆動されて船舶の推進力を発生する推進ユニットと、操舵アクチュエータとを備え、
     前記船舶は、
     前記推進ユニットおよび前記操舵アクチュエータを作動させる操作部を備え、
     前記操作部は、少なくとも
     前記複数の船舶推進装置が前記船舶の推進力を発生しない位置である第1位置と、
     前記複数の船舶推進装置が前記船舶の推進力を発生する位置である第2位置に位置することができ、
     前記操作部が、前記第1位置から前記第2位置に移動させられて、前記第2位置に維持される場合に、
     コンピュータに、
     前記操作部が前記第1位置から前記第2位置に移動させられた第1時刻から第2時刻までの第1期間中に、前記複数の船舶推進装置が第1推進力を発生する第1ステップと、
     前記第2時刻以降の第2期間中に、前記複数の船舶推進装置が前記第1推進力よりも大きい第2推進力を発生する第2ステップと
     を実行させるためのプログラム。
    A program that controls multiple ship propulsion devices
    Each of the plurality of ship propulsion devices includes a propulsion unit driven by an engine to generate propulsive force of the ship, and a steering actuator.
    The ship
    The operation unit for operating the propulsion unit and the steering actuator is provided.
    The operation unit includes a first position where at least the plurality of ship propulsion devices do not generate propulsive force for the ship.
    The plurality of ship propulsion devices can be located at a second position, which is a position where the propulsive force of the ship is generated.
    When the operating unit is moved from the first position to the second position and maintained at the second position,
    On the computer
    The first step in which the plurality of ship propulsion devices generate a first propulsive force during the first period from the first time to the second time when the operation unit is moved from the first position to the second position. When,
    A program for causing the plurality of ship propulsion devices to execute a second step of generating a second propulsion force larger than the first propulsion force during the second period after the second time.
PCT/JP2020/022259 2019-06-06 2020-06-05 Control device for ship propulsion device, method for controlling ship propulsion device, and program WO2020246574A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021524919A JPWO2020246574A1 (en) 2019-06-06 2020-06-05

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019106518 2019-06-06
JP2019-106518 2019-06-06

Publications (1)

Publication Number Publication Date
WO2020246574A1 true WO2020246574A1 (en) 2020-12-10

Family

ID=73652136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022259 WO2020246574A1 (en) 2019-06-06 2020-06-05 Control device for ship propulsion device, method for controlling ship propulsion device, and program

Country Status (2)

Country Link
JP (1) JPWO2020246574A1 (en)
WO (1) WO2020246574A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005200004A (en) * 2003-12-16 2005-07-28 Yamaha Motor Co Ltd Ship maneuver supporting device, ship equipped therewith, and maneuver supporting method
JP2011140272A (en) * 2010-01-07 2011-07-21 Yamaha Motor Co Ltd Marine vessel propulsion control apparatus and marine vessel
KR20170120864A (en) * 2016-04-22 2017-11-01 대우조선해양 주식회사 System for electrically propelling ship
JP2018002040A (en) * 2016-07-06 2018-01-11 三井造船株式会社 Maneuvering system, ship, and maneuvering method of ship
US9908606B1 (en) * 2015-06-23 2018-03-06 Brunswick Corporation Drive-by-wire control systems and methods for steering a marine vessel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005200004A (en) * 2003-12-16 2005-07-28 Yamaha Motor Co Ltd Ship maneuver supporting device, ship equipped therewith, and maneuver supporting method
JP2011140272A (en) * 2010-01-07 2011-07-21 Yamaha Motor Co Ltd Marine vessel propulsion control apparatus and marine vessel
US9908606B1 (en) * 2015-06-23 2018-03-06 Brunswick Corporation Drive-by-wire control systems and methods for steering a marine vessel
KR20170120864A (en) * 2016-04-22 2017-11-01 대우조선해양 주식회사 System for electrically propelling ship
JP2018002040A (en) * 2016-07-06 2018-01-11 三井造船株式会社 Maneuvering system, ship, and maneuvering method of ship

Also Published As

Publication number Publication date
JPWO2020246574A1 (en) 2020-12-10

Similar Documents

Publication Publication Date Title
US9132903B1 (en) Systems and methods for laterally maneuvering marine vessels
US8589004B1 (en) Boat propulsion system and method for controlling boat propulsion system
WO2014057725A1 (en) Device for controlling outboard motor, method for controlling outboard motor, and program
US10766589B1 (en) System for and method of controlling watercraft
US10661872B1 (en) System for and method of controlling watercraft
WO2020246574A1 (en) Control device for ship propulsion device, method for controlling ship propulsion device, and program
WO2020148736A1 (en) Outboard motor control device, outboard motor control method, and program
JP7266186B2 (en) Ship propulsion device control device, ship propulsion device control method and program
US20130072076A1 (en) Method for maneuvering a yacht
WO2020148738A1 (en) Outboard motor control device, outboard motor control method, and program
US11372412B1 (en) Vessel steering system and vessel steering method
US11370520B1 (en) Vessel steering system and vessel steering method
WO2020246575A1 (en) Ship propulsion apparatus control device, ship propulsion apparatus control method, and program
WO2020148737A1 (en) Outboard motor control device, outboard motor control method, and program
JP2022146791A (en) Maneuvering system and ship
WO2020246568A1 (en) Automatic setting device, automatic setting method, and program
US20230140061A1 (en) Marine propulsion system and marine vessel
US20230136043A1 (en) Marine propulsion system and marine vessel
US11505300B1 (en) Ship maneuvering system and ship maneuvering method
US20220363362A1 (en) Marine vessel maneuvering system and marine vessel
US20230202633A1 (en) Marine propulsion system and marine vessel
US20230139789A1 (en) Marine propulsion system and marine vessel
JP2024068485A (en) Ship propulsion system and ship equipped with same
JP2022190606A (en) Maneuvering system and vessel
JP2024068484A (en) Ship propulsion system and ship equipped with same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20817963

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021524919

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20817963

Country of ref document: EP

Kind code of ref document: A1