WO2020148737A1 - Outboard motor control device, outboard motor control method, and program - Google Patents

Outboard motor control device, outboard motor control method, and program Download PDF

Info

Publication number
WO2020148737A1
WO2020148737A1 PCT/IB2020/051231 IB2020051231W WO2020148737A1 WO 2020148737 A1 WO2020148737 A1 WO 2020148737A1 IB 2020051231 W IB2020051231 W IB 2020051231W WO 2020148737 A1 WO2020148737 A1 WO 2020148737A1
Authority
WO
WIPO (PCT)
Prior art keywords
ship
movement
heading
boat
bow
Prior art date
Application number
PCT/IB2020/051231
Other languages
French (fr)
Japanese (ja)
Inventor
白尾真人
秋田まり乃
大島隆史
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Publication of WO2020148737A1 publication Critical patent/WO2020148737A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/21Control means for engine or transmission, specially adapted for use on marine vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/42Steering or dynamic anchoring by propulsive elements; Steering or dynamic anchoring by propellers used therefor only; Steering or dynamic anchoring by rudders carrying propellers

Definitions

  • the present invention relates to an outboard motor control device, an outboard motor control method, and a program.
  • the present application claims priority based on Japanese Patent Application No. 2019-007332 filed in Japan on January 18, 2019, and the content thereof is incorporated herein.
  • Patent Document 1 a marine vessel maneuvering device capable of moving and turning in an arbitrary direction has been known (for example, see Patent Document 1).
  • two propulsion units that can arbitrarily set the direction and the strength of the propulsion force are installed on the left and right of the stern, and the direction and the strength of the propulsion force of each propulsion unit are controlled.
  • a synthetic force for moving in a desired direction and a synthetic force for turning in a desired direction act on the hull.
  • Patent Document 1 describes a joystick as an omnidirectional controller, and describes an example in which a hull moves laterally while maintaining its posture.
  • Patent Document 1 describes an example in which the hull moves diagonally forward or diagonally backward while maintaining its posture.
  • a control device that controls two outboard motors attached to a ship according to an operation by a joystick that can be tilted in all directions from a neutral state (see Patent Document 2, for example). ..
  • the control device when the joystick is tilted to the right, the control device causes the two outboard motors to generate a propulsive force that causes the boat to move in parallel to the right.
  • the control device when the joystick is tilted to the front right side, the control device causes the two outboard motors to generate a propulsive force that causes the ship to move in parallel to the front right direction.
  • the control device causes the outboard motor to apply a propulsive force that causes the boat to move in parallel (translate) to the right. generate.
  • a backward external force due to wind, tidal current, etc. is applied to the ship, the actual travel route of the ship deviates from the target travel route to the right during the period in which the ship operator is translating the ship to the right. , It may turn to the rear right.
  • the boat operator translates the ship to the right against the backward external force due to wind, tidal current, or the like, so that the operator has an additional input to the joystick. It is necessary to perform the operation (additional input operation of tilting the lever of the joystick to the front right). Further, for example, when an external force for turning the vessel clockwise is applied to the vessel due to wind, tidal current, etc., the vessel turns clockwise while the operator is translating the vessel to the right, and The heading during movement may deviate from the heading at the start of movement (that is, the vessel may not translate).
  • the present invention due to wind, tidal current, etc., causes the actual movement route of the vessel to deviate from the target movement route, or the heading of the vessel during movement deviates from the heading at the start of movement. It is an object of the present invention to provide an outboard motor control device, an outboard motor control method, and a program capable of suppressing such a failure without being operated by an operator.
  • One aspect of the present invention is an outboard motor control device that controls a plurality of outboard motors provided in a ship, wherein each of the plurality of outboard motors is a propulsion unit that generates a propulsive force of the ship.
  • a steering actuator wherein the ship is provided with an operation unit that operates the steering actuator and the propulsion unit, a ship position detection unit that detects the position of the ship, and a heading of the ship that detects the heading of the bow of the ship.
  • a detection unit, and the operation unit includes a first position that is a position where at least the plurality of outboard motors does not generate a propulsive force of the marine vessel, and a propulsive force that causes the plurality of outboard motors to move the marine vessel.
  • the machine control device controls the propulsive force that suppresses the difference between the target travel route of the ship and the actual travel route of the ship based on the position of the ship detected by the ship position detection unit. Generated in the outer unit, or based on the heading of the bow detected by the heading detection unit, between the heading of the bow at the start of movement of the ship and the heading of the bow during movement of the ship.
  • the outboard motor control device generates a propulsive force that suppresses a difference in the plurality of outboard motors.
  • One aspect of the present invention is an outboard motor control method for controlling a plurality of outboard motors provided in a ship, wherein each of the plurality of outboard motors generates a propulsion unit for the ship.
  • a steering actuator wherein the ship is provided with an operation unit that operates the steering actuator and the propulsion unit, a ship position detection unit that detects the position of the ship, and a heading of the ship that detects the heading of the bow of the ship.
  • a first position which includes a detection unit and an outboard motor control device that controls the plurality of outboard motors, and the operation unit is a position where at least the plurality of outboard motors does not generate propulsive force of the ship.
  • a second position which is a position where the plurality of outboard motors generate a propulsive force for moving the boat, and the operation unit moves the first position to the second position.
  • a propulsive force in the plurality of outboard motors that suppresses a difference between the target travel route of the ship and the actual travel route of the ship based on the position of the ship acquired in the first step
  • a propulsive force that suppresses a difference between the heading of the bow at the start of movement of the ship and the heading of the bow during movement of the ship is generated.
  • One aspect of the present invention is a program for controlling a plurality of outboard motors provided in a ship, wherein each of the plurality of outboard motors includes a propulsion unit that generates a propulsive force of the ship, and a steering actuator.
  • the boat includes an operation unit that operates the steering actuator and the propulsion unit, a boat position detection unit that detects a position of the boat, and a heading detection unit that detects a heading of the bow of the boat.
  • the operation unit is at least a first position where the plurality of outboard motors does not generate a propulsive force of the boat and a position where the plurality of outboard motors generates a propulsive force for moving the boat.
  • a first step of acquiring the position of the ship detected by the ship position detection section or the heading of the bow detected by the bow direction detection section, and the position of the ship acquired in the first step The propulsive force that suppresses the difference between the target travel route of the ship and the actual travel route of the ship is generated in the plurality of outboard motors, or the bow acquired in the first step.
  • the fact that the actual movement route of the vessel deviates from the target movement route due to wind, tidal current or the like, or that the heading of the vessel during movement deviates from the heading when the movement starts It is possible to provide an outboard motor control device, an outboard motor control method, and a program that can be suppressed without being operated by a person.
  • FIG. 1 It is a figure which shows an example of the ship to which the control apparatus for outboard motors of 1st Embodiment is applied. It is a functional block diagram of the principal part of the ship shown in FIG. It is a figure for demonstrating the example of the position of the operation part in the ship of 1st Embodiment. It is a figure for demonstrating the example of the movement path of the operation part in the ship of 1st Embodiment. It is a figure for demonstrating the target movement path TP1 ->TP2 of a ship of 1st Embodiment. It is a figure for demonstrating the bow direction etc. of the ship of 1st Embodiment. It is a figure for explaining target movement course TP1 ->TP3 etc.
  • FIG. 5 is a flowchart for explaining an example of processing executed by the outboard motor control device of the first embodiment. It is a figure which shows an example of the ship to which the control apparatus for outboard motors of 2nd Embodiment is applied.
  • FIG. 1 is a diagram showing an example of a ship 1 to which the outboard motor control device 14 of the first embodiment is applied.
  • FIG. 2 is a functional block diagram of the main part of the ship 1 shown in FIG.
  • the boat 1 includes a hull 11, an outboard motor 12, an outboard motor 13, and an outboard motor control device 14.
  • the outboard motors 12 and 13 are propulsion units of the ship 1.
  • the boat 1 includes two outboard motors 12 and 13, but in other examples, the boat 1 may include three or more outboard motors.
  • the outboard motor 12 is attached to the right rear portion of the hull 11.
  • the outboard motor 12 includes an outboard motor body 12A and a bracket 12B.
  • the bracket 12B is a mechanism for attaching the outboard motor 12 to the right rear portion of the hull 11.
  • the outboard motor body 12A is connected to the right rear portion of the hull 11 via a bracket 12B so as to be rotatable with respect to the hull 11 around a steering shaft 12AX.
  • the outboard motor body 12A includes a propulsion unit 12A1 and a steering actuator 12A2.
  • the propulsion unit 12A1 is, for example, a propeller-type propulsion unit driven by an engine (not shown), and generates the propulsive force of the ship 1.
  • the propulsion unit 12A1 may be a water jet type propulsion unit.
  • the steering actuator 12A2 rotates the entire outboard motor body 12A including the propulsion unit 12A1 with respect to the hull 11 about the steering shaft 12AX.
  • the steering actuator 12A2 serves as a rudder.
  • the outboard motor 13 is attached to the left rear part of the hull 11.
  • the outboard motor 13 includes an outboard motor body 13A and a bracket 13B.
  • the bracket 13B is a mechanism for attaching the outboard motor 13 to the left rear part of the hull 11.
  • the outboard motor main body 13A is connected to the left rear portion of the hull 11 via a bracket 13B so as to be rotatable with respect to the hull 11 about a steering shaft 13AX.
  • the outboard motor body 13A includes a propulsion unit 13A1 and a steering actuator 13A2.
  • the propulsion unit 13A1 is, for example, a propeller-type propulsion unit and generates the propulsive force of the ship 1.
  • the propulsion unit 13A1 may be a water jet specification propulsion unit.
  • the steering actuator 13A2 rotates the entire outboard motor body 13A including the propulsion unit 13A1 with respect to the hull 11 about the steering shaft 13AX.
  • the steering actuator 13A2 serves as a rudder.
  • the hull 11 includes a steering device 11A, a remote control device 11B, a remote control device 11C, an operation unit 11D, a ship position detection unit 11E, and a heading detection unit 11F.
  • the hull 11 may not include the steering device 11A, the remote control device 11B, and the remote control device 11C.
  • the hull 11 may not include one of the boat position detection unit 11E and the bow direction detection unit 11F.
  • the steering device 11A is a device that operates the steering actuators 12A2 and 13A2, and is, for example, a steering device having a steering wheel.
  • the ship operator can operate the steering actuators 12A2 and 13A2 by operating the steering device 11A to steer the ship 1.
  • the remote control device 11B is a device that receives an input operation for operating the propulsion unit 12A1 and has, for example, a remote control lever. The ship operator can change the magnitude and direction of the propulsive force generated by the propulsion unit 12A1 by operating the remote control device 11B.
  • the remote control lever of the remote control device 11B includes a forward drive region where the propulsion unit 12A1 generates a forward propulsive force of the boat 1, a reverse drive region where the propulsion unit 12A1 generates a backward propulsive force of the boat 1, and a propulsion unit 12A1. It can be located in a neutral area where no noise occurs.
  • the magnitude of the forward propulsive force of the marine vessel 1 generated by the propulsion unit 12A1 changes according to the position of the remote control lever in the forward movement region. Further, the magnitude of the rearward propulsive force generated by the propulsion unit 12A1 changes in accordance with the position of the remote control lever in the reverse region.
  • the remote controller 11C is a device that receives an input operation for operating the propulsion unit 13A1, and is configured similarly to the remote controller 11B. That is, the ship operator can change the magnitude and direction of the propulsive force generated by the propulsion unit 13A1 by operating the remote control device 11C.
  • the operation unit 11D is a device that operates the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1. Specifically, an input operation for operating the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1 is accepted.
  • the operation unit 11D is provided separately from the steering device 11A and the remote control devices 11B and 11C.
  • the operation unit 11D is configured by a joystick having a lever.
  • the ship operator can operate not only the steering actuators 12A2 and 13A2 and the propulsion units 12A1 and 13A1 by operating the steering device 11A (steering wheel) and the remote control devices 11B and 11C (remote control lever) but also the operation unit.
  • the steering actuators 12A2 and 13A2 and the propulsion units 12A1 and 13A1 can also be operated by operating 11D (joystick).
  • the ship position detection unit 11E detects the position of the ship 1.
  • the ship position detection unit 11E includes, for example, a GPS (Global Positioning System) device.
  • the GPS device calculates the position coordinates of the ship 1 by receiving signals from a plurality of GPS satellites.
  • the bow direction detection unit 11F detects the direction of the bow 1B of the ship 1.
  • the bow direction detection unit 11F includes, for example, a direction sensor.
  • the azimuth sensor calculates the azimuth of the bow 1B by using, for example, geomagnetism.
  • the azimuth sensor may be a device (gyro compass) in which a finger north device and a vibration damping device are added to a gyroscope that rotates at a high speed so as to always indicate north.
  • the azimuth sensor may be a GPS compass that includes a plurality of GPS antennas and calculates the azimuth of the bow 1B from the relative positional relationship of the plurality of GPS antennas.
  • the outboard motor control device 14 controls the steering actuator 12A2 and the propulsion unit 12A1 of the outboard motor 12 and the steering actuator of the outboard motor 13 based on the input operation to the operation unit 11D. 13A2 and propulsion unit 13A1. Specifically, the outboard motor control device 14 controls the magnitude and direction of the propulsive force of the marine vessel 1 generated by the steering actuators 12A2 and 13A2 and the propulsion units 12A1 and 13A1 based on the input operation to the operation unit 11D. ..
  • the outboard motor control device 14 includes an operation unit movement route calculation unit 14A, a ship target movement route calculation unit 14B, a ship actual movement route calculation unit 14C, a boat movement route difference calculation unit 14D, and a bow direction difference calculation unit. 14E, a propulsive force calculation unit 14F, and a storage unit 14G.
  • the operation unit movement route calculation unit 14A calculates the movement route of the operation unit 11D. Specifically, the operation unit movement path calculation unit 14A calculates the movement path of the tip end portion of the joystick lever based on the position of the joystick lever detected by a sensor (not shown) such as a microswitch.
  • the ship target travel route calculation unit 14B calculates the target travel route of the ship 1.
  • the actual ship travel route calculation unit 14C calculates the actual travel route of the ship 1.
  • the ship movement route difference calculation unit 14D calculates the difference between the target movement route of the boat 1 and the actual movement route of the boat 1.
  • the bow direction difference calculation unit 14E calculates the difference between the direction of the bow 1B at the start of movement of the boat 1 and the direction of the bow 1B during movement of the boat 1.
  • the heading of the bow 1B at the start of movement of the boat 1 is detected by the heading detection unit 11F at the start of movement of the boat 1.
  • the azimuth of the bow 1B during the movement of the boat 1 is detected by the bow azimuth detection unit 11F during the movement of the boat 1.
  • the heading difference calculation unit 14E calculates the heading of the bow 1B at the start of movement of the ship 1 and the heading 1B of the moving ship 1B based on the heading 1B detected by the heading detection unit 11F. And the difference is calculated.
  • the propulsive force calculating unit 14F basically calculates the propulsive force to be generated in the outboard motors 12 and 13 based on the movement route of the operation unit 11D calculated by the operation unit movement route calculation unit 14A.
  • the propulsion force calculation unit 14F basically determines the magnitude of the propulsion force of the boat 1 to be generated by the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1 based on the movement path of the tip of the joystick lever. And calculate the orientation.
  • the storage unit 14G stores the detection results of the ship position detection unit 11E and the bow direction detection unit 11F.
  • the storage unit 14G stores the position of the lever of the joystick detected by a sensor such as a micro switch described above, the position of the ship 1 detected by the ship position detection unit 11E at the start of movement of the ship 1, and the position of the ship 1.
  • the heading of the bow 1B and the like are stored.
  • the outboard motor control device 14 controls the steering actuators 12A2, 13A2 and the propulsion units so that the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1 generate the propulsive force having the magnitude and direction calculated by the propulsion force calculation unit 14F. It controls the units 12A1 and 13A1.
  • the lever of the operation unit 11D (joystick) is tiltable, and the operation unit 11D is configured such that the lever can rotate about the central axis of the lever.
  • the outboard motor control device 14 controls the steering actuators 12A2, 13A2 and the propulsion unit 12A1 so that the boat 1 turns right. , 13A1.
  • the outboard motor control device 14 controls the steering actuators 12A2, 13A2 and the propulsion so that the boat 1 turns left. It controls the units 12A1 and 13A1.
  • the azimuth of the bow 1B changes as the operator turns the lever about the central axis of the lever.
  • the outboard motor control device 14 moves the steering actuator 12A2 so that the boat 1 moves while maintaining its posture (that is, without changing the orientation of the bow 1B).
  • FIG. 3 is a diagram for explaining an example of the position of the operation portion 11D (specifically, the positions P1 to P9 of the tip end portion of the joystick lever) in the boat 1 of the first embodiment.
  • the lever of the operation unit 11D joint
  • the operation unit 11D is located at the position (neutral position) P1.
  • the outboard motor control device 14 does not cause the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1 to generate the propulsive force of the ship 1. That is, the position P1 is a position where the outboard motors 12 and 13 do not generate the propulsive force of the boat 1.
  • the lever of the joystick is tilted rightward. Therefore, the tip of the lever of the joystick is located at the position P2 on the right side of the position P1.
  • the outboard motor control device 14 basically applies the propulsive force for moving the boat 1 to the right to the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1. generate. That is, the position P2 is basically a position where the outboard motors 12 and 13 generate a propulsive force that moves the boat 1 to the right (specifically, translational movement).
  • the lever of the joystick is tilted to the front right.
  • the tip of the lever of the joystick is located at the position P3 on the right front side of the position P1.
  • the outboard motor control device 14 basically causes the steering actuators 12A2 and 13A2 and the propulsion units 12A1 and 13A1 to move to the front right direction forming an acute angle ⁇ 3 with the left-right direction.
  • Propulsive force for moving the ship 1 is generated. That is, the position P3 is basically a position where the outboard motors 12 and 13 generate a propulsive force that moves the boat 1 to the front right (translational movement).
  • the lever of the joystick is tilted rearward to the right.
  • the tip of the lever of the joystick is located at the position P4 on the right rear side of the position P1.
  • the outboard motor control device 14 basically causes the steering actuators 12A2 and 13A2 and the propulsion units 12A1 and 13A1 to move to the right rearward forming an acute angle ⁇ 4 with the left-right direction.
  • Propulsive force for moving the ship 1 is generated. That is, the position P4 is basically a position where the outboard motors 12 and 13 generate a propulsive force that moves the boat 1 to the right rear (translational movement).
  • the lever of the joystick is tilted leftward. Therefore, the tip of the lever of the joystick is located at the position P5 on the left side of the position P1.
  • the outboard motor control device 14 basically applies the propulsive force that moves the boat 1 to the left to the steering actuators 12A2 and 13A2 and the propulsion units 12A1 and 13A1. generate. That is, the position P5 is basically a position where the outboard motors 12 and 13 generate a propulsive force that moves the boat 1 leftward (translational movement).
  • the lever of the joystick is tilted to the front left.
  • the tip of the lever of the joystick is located at the position P6 on the left front side of the position P1.
  • the outboard motor control device 14 basically causes the steering actuators 12A2 and 13A2 and the propulsion units 12A1 and 13A1 to move to the left front facing at an acute angle ⁇ 6.
  • Propulsive force for moving the ship 1 is generated. That is, the position P6 is basically a position where the outboard motors 12 and 13 generate a propulsive force that moves (translates) the boat 1 to the left front.
  • the lever of the joystick is tilted leftward and rearward.
  • the tip of the lever of the joystick is located at the position P7 on the left rear side of the position P1.
  • the outboard motor control device 14 basically causes the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1 to move to the left rearward forming an acute angle ⁇ 7 with the left-right direction.
  • Propulsive force for moving the ship 1 is generated. That is, the position P7 is basically a position where the outboard motors 12 and 13 generate a propulsive force that moves the boat 1 to the left rearward (translational movement).
  • the lever of the joystick is tilted forward. Therefore, the tip of the lever of the joystick is located at the position P8 on the front side of the position P1.
  • the outboard motor control device 14 basically applies the propulsive force that moves the boat 1 forward to the steering actuators 12A2 and 13A2 and the propulsion units 12A1 and 13A1. generate. That is, the position P8 is basically a position where the outboard motors 12, 13 generate a propulsive force that moves (forwards) the boat 1 forward.
  • the lever of the joystick is tilted rearward.
  • the tip of the lever of the joystick is located at the position P9 behind the position P1.
  • the outboard motor control device 14 basically applies the propulsive force for moving the boat 1 backward to the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1. generate. That is, the position P9 is basically a position where the outboard motors 12 and 13 generate a propulsive force that moves (reverses) the boat 1 backward.
  • the tip of the lever of the joystick having the automatic return function is located at the position P1.
  • the tip portion of the lever of the joystick can be located at, for example, positions P1 to P9 according to the operation of the operator.
  • FIG. 4 is a diagram for explaining an example of a movement path of the operation unit 11D (specifically, a movement path of the tip end portion of the joystick lever) in the boat 1 of the first embodiment.
  • FIG. 5 is a figure for demonstrating the target movement path TP1 ->TP2 of the ship 1 of 1st Embodiment.
  • the operation unit 11D (specifically, the tip end portion of the joystick lever) is moved from the position P1 to the position P2 and is maintained at the position P2.
  • the operation unit movement path calculation unit 14A determines the position of the lever at the time when the tip of the joystick lever is located at the position P1 and the time when the tip of the joystick lever is moved to the position P2 (when the movement of the boat 1 is started. ), the movement path (movement path of the operation unit 11D) P1 ⁇ P2 of the tip of the joystick lever is calculated.
  • the ship target movement route calculation unit 14B determines the rightward direction based on the position of the ship 1 detected by the ship position detection unit 11E when the ship 1 starts moving and the position P2 of the operation unit 11D when the ship 1 starts moving. The target travel route TP1 ⁇ TP2 of the ship 1 (see FIG. 5A) is calculated.
  • the propulsive force calculating unit 14F calculates the propulsive force to be generated in the outboard motors 12 and 13 based on the target moving route TP1 ⁇ TP2 of the ship 1 facing right calculated by the target boat moving route calculating unit 14B.
  • the outboard motor control device 14 causes the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1 to generate the rightward propulsion force calculated by the propulsion force calculation unit 14F. As a result, the marine vessel 1 starts to move to the right (translational movement).
  • the ship actual movement route calculation unit 14C detects the position of the ship 1 detected by the ship position detection unit 11E when the ship 1 starts moving,
  • the actual movement route RP1 ⁇ RP2 of the marine vessel 1 (see FIG. 5(B)) is calculated based on the position of the marine vessel 1 detected by the marine vessel position detection unit 11E while the marine vessel 1 is moving.
  • the ship 1 does not receive an external force due to wind, tidal current, etc. while the ship 1 is moving, the actual travel route RP1 ⁇ RP2 (see FIG. 5(B)) of the ship 1 and the target travel route TP1 ⁇ TP2 of the ship 1 (See FIG. 5A).
  • the difference between the target travel route TP1 ⁇ TP2 of the ship 1 and the actual travel route RP1 ⁇ RP2 of the ship 1 calculated by the ship travel route difference calculation unit 14D becomes zero.
  • the difference between the bearing of the bow 1B at the start of movement of the boat 1 and the bearing of the bow 1B during movement of the boat 1 calculated by the bow bearing difference calculation unit 14E is also zero. Therefore, the propulsive force calculating unit 14F calculates a propulsive force that is equal to the propulsive force calculated when the marine vessel 1 starts moving while the marine vessel 1 is moving.
  • the outboard motor control device 14 causes the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1 to generate the rightward propulsive force calculated by the propulsive force calculating unit 14F while the boat 1 is moving. As a result, the ship 1 continues to move to the right (translational movement).
  • the actual ship movement route calculation unit 14C detects the position of the ship 1 detected by the ship position detection unit 11E at the start of the movement of the ship 1 and the position of the ship 1 detected by the ship position detection unit 11E during the movement of the ship 1.
  • the actual movement route RP1 ⁇ RP2B (see FIG. 5(C)) of the boat 1 is calculated based on the position (the position of the boat 1 flown to the rear side) RP2B (see FIG. 5(C)).
  • the ship movement route difference calculation unit 14D calculates the target movement route TP1 ⁇ TP2 of the boat 1 (see FIG. 5A) and the actual movement route RP1 ⁇ RP2B of the boat 1 (see FIG. 5C). The difference ( ⁇ 0) is calculated.
  • FIG. 5A the target movement route TP1 ⁇ TP2 of the boat 1
  • FIG. 5C the actual movement route RP1 ⁇ RP2B of the boat 1
  • the bow direction difference calculation unit 14E calculates a zero difference between the direction of the bow 1B at the start of movement of the boat 1 and the direction of the bow 1B during movement of the boat 1. Therefore, the propulsive force calculation unit 14F changes the actual movement route RP1 ⁇ RP2B (see FIG. 5C) of the boat 1 to the target movement route TP1 ⁇ TP2 of the boat 1 (FIG. 5A) while the boat 1 is moving.
  • the forward propulsive force F2F (see FIG. 5(D)) approaching (see FIG. 5D) is calculated as the propulsive force of the boat 1 generated by the steering actuators 12A2, 13A2 of the outboard motors 12, 13 and the propulsion units 12A1, 13A1.
  • the outboard motor control device 14 applies the right-forward propulsive force F2F (see FIG. 5D) calculated by the propulsive force calculating unit 14F to the steering actuators 12A2, 13A2 and the propulsion unit 12A1 while the ship 1 is moving. , 13A1. That is, the outboard motor control device 14 does not need to perform an additional operation of moving the operation unit 11D to the position P3 (see FIG. 3C) while the ship 1 is moving, and the forward rightward facing direction is not required.
  • a propulsive force F2F (see FIG. 5D) is generated in the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1.
  • the outboard motor control device 14 suppresses the difference between the target movement route TP1 ⁇ TP2 of the boat 1 and the actual movement route RP1 ⁇ RP2B of the boat 1 while the boat 1 is moving, and the right forward thrust F2F.
  • the outboard motor control device 14 determines the actual state of the ship 1 based on the position RP2B (see FIG. 5C) of the ship 1 detected by the ship position detection unit 11E while the ship 1 is moving.
  • the feedback control of the outboard motors 12 and 13 is performed to bring the moving route RP1 ⁇ RP2B of 1 to the target moving route TP1 ⁇ TP2 of the ship 1.
  • the ship 1 moves to the right (translates) against the backward external force due to wind, tidal current, etc. without the need for additional operation by the operator. Move) can be continued.
  • the actual ship movement route calculation unit 14C detects the position of the ship 1 detected by the ship position detection unit 11E at the start of the movement of the ship 1 and the position of the ship 1 detected by the ship position detection unit 11E during the movement of the ship 1.
  • the actual movement route RP1 ⁇ RP2F (see FIG. 5(E)) of the boat 1 is calculated based on the position (the position of the boat 1 flown to the front side) RP2F (see FIG. 5(E)).
  • the ship movement route difference calculation unit 14D sets the target movement route TP1 ⁇ TP2 of the boat 1 (see FIG. 5A) and the actual movement route RP1 ⁇ RP2F of the boat 1 (see FIG. 5E). The difference ( ⁇ 0) is calculated.
  • FIG. 5A the target movement route TP1 ⁇ TP2 of the boat 1
  • FIG. 5E the actual movement route RP1 ⁇ RP2F of the boat 1
  • the bow azimuth difference calculation unit 14E calculates a zero difference between the azimuth of the bow 1B at the start of movement of the boat 1 and the azimuth of the bow 1B during movement of the boat 1. Therefore, the propulsive force calculation unit 14F changes the actual movement route RP1 ⁇ RP2F (see FIG. 5(E)) of the boat 1 to the target movement route TP1 ⁇ TP2 of the boat 1 (FIG. 5(A)) while the boat 1 is moving.
  • the propulsive force F2B (see FIG. 5(F)) in the right rearward direction (see FIG.
  • the outboard motor control device 14 applies the right rearward propulsive force F2B (see FIG. 5(F)) calculated by the propulsive force calculating unit 14F to the steering actuators 12A2, 13A2 and the propulsion unit 12A1 while the boat 1 is moving. , 13A1. That is, the outboard motor control device 14 does not need to perform an additional operation of moving the operation unit 11D to the position P4 (see FIG. 3D) while the ship 1 is moving, and the right rearward Propulsive force F2B (see FIG.
  • the outboard motor control device 14 suppresses the difference between the target travel route TP1 ⁇ TP2 of the boat 1 and the actual travel route RP1 ⁇ RP2F of the boat 1 while the boat 1 is moving, and the right rearward propulsive force F2B is suppressed.
  • the outboard motor control device 14 determines the actual state of the ship 1 based on the position RP2F (see FIG. 5E) of the ship 1 detected by the ship position detection unit 11E while the ship 1 is moving.
  • the feedback control of the outboard motors 12 and 13 is performed to bring the movement route RP1 ⁇ RP2F of 1 to the target movement route TP1 ⁇ TP2 of the ship 1.
  • the ship 1 moves rightward (translates) against the forward external force due to wind, tidal current, etc. without the need for additional operation by the operator. Move) can be continued.
  • FIG. 6 is a view for explaining the heading H1 and the like of the boat 1 of the first embodiment.
  • the operation unit 11D is moved from the position P1 to the position P2 and is maintained at the position P2.
  • the heading H1 see FIG. 6A
  • the ship's heading H2 see FIG. 6B during the same period). That is, the ship 1 is translating rightward without being subjected to an external force such as a wind or a tidal current that causes the ship 1 to turn.
  • the heading H1 at the start of movement of the ship 1 calculated by the heading difference calculation unit 14E (see FIG. 6A) and the heading H2 during movement of the ship 1 (see FIG. 6B). ) Becomes zero. Therefore, the propulsive force calculating unit 14F calculates the propulsive force equal to the propulsive force calculated when the marine vessel 1 starts moving, without adding the propulsive force for turning the marine vessel 1 while the marine vessel 1 is moving.
  • the outboard motor control device 14 causes the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1 to generate the rightward propulsive force calculated by the propulsive force calculating unit 14F while the boat 1 is moving. As a result, the ship 1 continues to move to the right (translational movement).
  • the bow heading difference calculation unit 14E determines the difference between the heading H1 at the start of the movement of the ship 1 (see FIG. 6A) and the heading H2CW during the movement of the ship 1 (see FIG. 6C). Calculate ( ⁇ 0).
  • the ship movement path difference calculation unit 14D causes the difference between the target movement path of the ship 1 and the actual movement path of the ship 1. Calculate zero.
  • the propulsion force calculation unit 14F determines the heading H2CW (see FIG. 6C) of the moving vessel 1 while the ship 1 is moving to the heading H1 of the beginning of the movement of the ship 1 (FIG. 6A).
  • the combined force of the counterclockwise propulsive force FCC (see FIG. 6D) and the rightward propulsive force is generated in the steering actuators 12A2, 13A2 of the outboard motors 12, 13 and the propulsion units 12A1, 13A1. It is calculated as the propulsive force of the ship 1.
  • the outboard motor control device 14 generates a combined force of the counterclockwise propulsion force FCC (see FIG. 6D) calculated by the propulsion force calculation unit 14F and the rightward propulsion force while the ship 1 is moving.
  • the outboard motor control device 14 does not have to perform an additional operation of rotating the operation unit 11D counterclockwise while the ship 1 is moving, and the counterclockwise propulsive force FCC (FIG. 6 (D)) and the rightward propulsive force are generated in the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1. That is, the outboard motor control device 14 controls the heading H1 when the ship 1 starts moving (see FIG. 6A) and the heading H2CW of the moving ship 1 while the ship 1 is moving (see FIG. The combined force including the counterclockwise propulsive force FCC (see FIG.
  • the outboard motor control device 14 determines the heading H2CW (see FIG. 6C) detected by the heading detection unit 11F during the movement of the ship 1 at the beginning of the movement of the ship 1. Feedback control of the outboard motors 12, 13 is performed to bring the outboard motors 12 and 13 closer to the direction H1 (see FIG. 6A).
  • the bow direction difference calculation unit 14E determines the difference between the bow direction H1 (see FIG. 6(A)) at the start of movement of the vessel 1 and the heading direction H2CC (see FIG. 6(E)) during movement of the vessel 1. Calculate ( ⁇ 0). Further, in the example shown in FIGS. 4A, 6A, and 6E, the ship movement route difference calculation unit 14D causes the difference between the target movement route of the boat 1 and the actual movement route of the boat 1. Calculate zero.
  • the propulsive force calculation unit 14F determines the heading H2CC (see FIG. 6E) during the movement of the ship 1 while the ship 1 is moving, and the heading H1 at the start of the movement of the ship 1 (FIG. 6A). (Refer to FIG. 6F) and a rightward propulsive force are generated in the steering actuators 12A2 and 13A2 of the outboard motors 12 and 13 and the propulsion units 12A1 and 13A1. Calculated as the propulsive force of the ship 1.
  • the outboard motor control device 14 generates a combined force of the clockwise propulsive force FCW (see FIG. 6(F)) calculated by the propulsive force calculating unit 14F and the rightward propulsive force during movement of the boat 1.
  • the outboard motor control device 14 does not require the additional operation of rotating the operation unit 11D in the clockwise direction while the boat 1 is moving, and the clockwise propulsive force FCW (see FIG. 6( F)) and a rightward propulsive force are generated in the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1. That is, the outboard motor control device 14 controls the heading H1 at the start of movement of the ship 1 (see FIG. 6A) and the heading H2CC of the moving boat 1 during movement of the ship 1 (FIG.
  • the outboard motors 12 and 13 are generated with a combined force including a clockwise propulsive force FCW (see FIG. 6F) that suppresses the difference between the outboard motors 12 and 13.
  • FCW clockwise propulsive force
  • the outboard motor control device 14 determines the heading H2CC (see FIG. 6E) detected by the heading detection unit 11F during the movement of the ship 1 at the beginning of the movement of the ship 1. Feedback control of the outboard motors 12 and 13 is performed to bring the outboard motors 12 and 13 closer to the direction H1 (see FIG. 6A).
  • the ship movement route difference calculation unit 14D calculates the difference ( ⁇ 0) between the target movement route TP1 ⁇ TP2 (see FIG. 5A) of the boat 1 and the actual movement route of the boat 1.
  • the heading difference calculation unit 14E calculates the difference ( ⁇ 0) between the heading H1 at the start of movement of the ship 1 (see FIG.
  • the propulsive force calculating unit 14F is a propulsive force that brings the actual movement route of the boat 1 closer to the target movement route TP1 ⁇ TP2 of the boat 1 (see FIG. 5A) while the boat 1 is moving, and the movement of the boat 1 Of the steering force 12A2, 13A2 of the outboard motors 12, 13 and the propulsion units 12A1, 13A1. It is calculated as the propulsive force of the ship 1 to be generated at.
  • the outboard motor control device 14 causes the steering actuators 12A2 and 13A2 and the propulsion units 12A1 and 13A1 to generate the propulsive force (synthetic force) calculated by the propulsive force calculation unit 14F while the boat 1 is moving.
  • the outboard motor control device 14 does not have to perform an additional operation of changing the position of the operation unit 11D or an additional operation of rotating the operation unit 11D by the boat operator while the ship 1 is moving.
  • No. 1 target travel route TP1 ⁇ TP2 (see FIG. 5(A)) and the actual travel route of the boat 1 are suppressed, and the heading H1 at the start of the travel of the boat 1 (see FIG. 6(A)) )
  • the heading of the boat 1 during movement of the ship 1 are generated in the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1.
  • the outboard motor control device 14 determines the position of the ship 1 detected by the ship position detection unit 11E and the heading of the bow 1B detected by the heading direction detection unit 11F while the ship 1 is moving. Based on this, the outboard motor 12 that brings the actual movement route of the vessel 1 closer to the target movement route TP1 ⁇ TP2 of the vessel 1 and brings the heading direction of the vessel 1 in motion closer to the heading direction H1 at the start of movement of the vessel 1 , 13 feedback control is executed. As a result, even in this case, the vessel 1 can continue the rightward movement (translational movement) against an external force due to wind, tidal current, etc. without the need for additional operation by the operator.
  • FIG. 7 is a figure for demonstrating the target moving path TP1 ->TP3 of the ship 1 of 1st Embodiment.
  • the marine vessel operator wants to move the vessel 1 to the front right (translational movement).
  • the operating portion 11D (the tip of the joystick lever) is moved from the position P1 to the position P3 and is maintained at the position P3.
  • the operation unit movement path calculation unit 14A determines the position of the lever at the time when the tip of the joystick lever is located at the position P1 and the time when the tip of the joystick lever is moved to the position P3 (when the marine vessel 1 starts moving).
  • the movement path (movement path of the operation unit 11D) P1 ⁇ P3 is calculated based on the position of the lever.
  • the vessel target movement route calculation unit 14B faces forward right based on the position of the boat 1 detected by the boat position detection unit 11E at the start of movement of the boat 1 and the position P3 of the operation unit 11D at the start of movement of the boat 1.
  • the target travel route TP1 ⁇ TP3 of the ship 1 (see FIG. 7A) is calculated.
  • the propulsive force calculating unit 14F calculates the propulsive force to be generated in the outboard motors 12 and 13 based on the target moving route TP1 ⁇ TP3 of the ship 1 facing right front calculated by the target moving route calculating unit 14B.
  • the outboard motor control device 14 causes the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1 to generate the right-forward propulsion force calculated by the propulsion force calculation unit 14F. As a result, the boat 1 starts moving forward (translational movement).
  • the ship actual movement route calculation unit 14C detects the position of the ship 1 detected by the ship position detection unit 11E when the ship 1 starts moving,
  • the actual movement route RP1 ⁇ RP3 (see FIG. 7B) of the marine vessel 1 is calculated based on the position of the marine vessel 1 detected by the marine vessel position detection unit 11E while the marine vessel 1 is moving.
  • the actual travel route RP1 ⁇ RP3 see FIG. 7B of the ship 1 and the target travel route TP1 ⁇ TP3 of the ship 1 (See FIG. 7A).
  • the difference between the target travel route TP1 ⁇ TP3 of the ship 1 and the actual travel route RP1 ⁇ RP3 of the ship 1 calculated by the ship travel route difference calculation unit 14D becomes zero.
  • the difference between the bearing of the bow 1B at the start of movement of the boat 1 and the bearing of the bow 1B during movement of the boat 1 calculated by the bow bearing difference calculation unit 14E is also zero. Therefore, the propulsive force calculating unit 14F calculates a propulsive force that is equal to the propulsive force calculated when the marine vessel 1 starts moving while the marine vessel 1 is moving.
  • the outboard motor control device 14 causes the steering actuators 12A2 and 13A2 and the propulsion units 12A1 and 13A1 to generate the right forward propulsive force calculated by the propulsive force calculating unit 14F while the boat 1 is moving. As a result, the marine vessel 1 continues to move to the front right (translational movement).
  • the actual ship movement route calculation unit 14C detects the position of the ship 1 detected by the ship position detection unit 11E at the start of the movement of the ship 1 and the position of the ship 1 detected by the ship position detection unit 11E during the movement of the ship 1.
  • An actual movement route RP1 ⁇ RP3B (see FIG. 7C) of the boat 1 is calculated based on the position (the position of the boat 1 that has flowed to the rear side) RP3B (see FIG. 7C).
  • the ship movement route difference calculation unit 14D divides the target movement route TP1 ⁇ TP3 of the boat 1 (see FIG. 7A) and the actual movement route RP1 ⁇ RP3B of the boat 1 (see FIG. 7C). The difference ( ⁇ 0) is calculated.
  • FIG. 7A the target movement route TP1 ⁇ TP3 of the boat 1
  • FIG. 7C the actual movement route RP1 ⁇ RP3B of the boat 1
  • the bow direction difference calculation unit 14E calculates a zero difference between the direction of the bow 1B at the start of movement of the ship 1 and the direction of the bow 1B during movement of the ship 1. Therefore, the propulsive force calculation unit 14F changes the actual movement route RP1 ⁇ RP3B (see FIG. 7C) of the boat 1 to the target movement route TP1 ⁇ TP3 of the boat 1 (FIG. 7A) while the boat 1 is moving.
  • the propulsive force F3F (see FIG. 7(D)) toward the right toward the right is calculated as the propulsive force of the boat 1 generated by the steering actuators 12A2, 13A2 of the outboard motors 12, 13 and the propulsion units 12A1, 13A1.
  • the outboard motor control device 14 controls the steering actuators 12A2, 13A2 and the propulsion unit 12A1 to apply the forward rightward propulsive force F3F (see FIG. 7D) calculated by the propulsive force calculating unit 14F while the boat 1 is moving. , 13A1. That is, the outboard motor control device 14 does not require an additional operation for changing the position of the operation unit 11D while the ship 1 is moving, and the right forward propulsion force F3F (FIG. 7(D)). Is generated in the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1.
  • the outboard motor control device 14 suppresses the difference between the target movement route TP1 ⁇ TP3 of the boat 1 and the actual movement route RP1 ⁇ RP3B of the boat 1 while the boat 1 is moving, and the right forward thrust F3F.
  • the outboard motor control device 14 determines the actual state of the ship 1 based on the position RP3B (see FIG. 7C) of the ship 1 detected by the ship position detection unit 11E while the ship 1 is moving.
  • the feedback control of the outboard motors 12, 13 is performed to bring the movement route RP1 ⁇ RP3B of 1 to the target movement route TP1 ⁇ TP3 of the ship 1.
  • FIGS. 7(C) and 7(D) the ship 1 moves to the front right without any additional operation by the operator, against the backward external force due to wind, tidal current, or the like ( Translational movement) can be continued.
  • the actual ship movement route calculation unit 14C detects the position of the ship 1 detected by the ship position detection unit 11E at the start of the movement of the ship 1 and the position of the ship 1 detected by the ship position detection unit 11E during the movement of the ship 1.
  • An actual movement route RP1 ⁇ RP3F (see FIG. 7(E)) of the boat 1 is calculated based on the position (position of the boat 1 flown to the front side) RP3F (see FIG. 7(E)).
  • the ship movement route difference calculation unit 14D divides the target movement route TP1 ⁇ TP3 of the boat 1 (see FIG. 7A) and the actual movement route RP1 ⁇ RP3F of the boat 1 (see FIG. 7E). The difference ( ⁇ 0) is calculated.
  • FIG. 7A the target movement route TP1 ⁇ TP3 of the boat 1
  • FIG. 7E the actual movement route RP1 ⁇ RP3F of the boat 1
  • the bow azimuth difference calculation unit 14E calculates a zero difference between the azimuth of the bow 1B at the start of movement of the boat 1 and the azimuth of the bow 1B during movement of the boat 1. Therefore, the propulsive force calculating unit 14F changes the actual movement route RP1 ⁇ RP3F (see FIG. 7E) of the boat 1 to the target movement route TP1 ⁇ TP3 of the boat 1 (FIG. 7A) while the boat 1 is moving.
  • the propulsive force F3B (see FIG. 7(F)) in the right forward direction, which is closer to the reference (see FIG.
  • the outboard motor control device 14 controls the steering actuators 12A2, 13A2 and the propulsion unit 12A1 to apply the right forward propulsive force F3B (see FIG. 7(F)) calculated by the propulsive force calculating unit 14F while the boat 1 is moving. , 13A1. That is, the outboard motor control device 14 does not require an additional operation for changing the position of the operation unit 11D while the ship 1 is moving, and the right forward propulsion force F3B (FIG. 7(F)).
  • the outboard motor control device 14 suppresses the difference between the target travel route TP1 ⁇ TP3 of the boat 1 and the actual travel route RP1 ⁇ RP3F of the boat 1 while the boat 1 is moving, and the right forward thrust F3B.
  • the outboard motor control device 14 determines the actual state of the ship 1 based on the position RP3F (see FIG. 7E) of the ship 1 detected by the ship position detection unit 11E while the ship 1 is moving.
  • the feedback control of the outboard motors 12 and 13 is performed to bring the moving route RP1 ⁇ RP3F of 1 to the target moving route TP1 ⁇ TP3 of the ship 1.
  • the ship 1 moves to the right in the forward direction against the forward external force due to wind, tidal current, etc. without the need for additional operation by the operator. Translational movement) can be continued.
  • the operation unit 11D is moved from the position P1 to the position P3 and is maintained at the position P3.
  • the heading H1 (see FIG. 6(A)) at the start of movement of the boat 1 (time when the operation unit 11D is moved to the position P3) and during movement of the boat 1 (front of the boat 1 to the right)
  • the heading H2 (see FIG. 6B) during the period of movement (see FIG. 6B). That is, the ship 1 is translating in the forward right direction without receiving an external force such as a wind or a tidal current that causes the ship 1 to turn.
  • the heading H1 at the start of movement of the ship 1 calculated by the heading difference calculation unit 14E (see FIG. 6A) and the heading H2 during movement of the ship 1 (see FIG. 6B). ) Becomes zero. Therefore, the propulsive force calculating unit 14F calculates the propulsive force equal to the propulsive force calculated when the marine vessel 1 starts moving, without adding the propulsive force for turning the marine vessel 1 while the marine vessel 1 is moving.
  • the outboard motor control device 14 causes the steering actuators 12A2 and 13A2 and the propulsion units 12A1 and 13A1 to generate the right forward propulsive force calculated by the propulsive force calculating unit 14F while the boat 1 is moving. As a result, the marine vessel 1 continues to move to the front right (translational movement).
  • the bow heading difference calculation unit 14E determines the difference between the heading H1 at the start of the movement of the ship 1 (see FIG. 6A) and the heading H2CW during the movement of the ship 1 (see FIG. 6C). Calculate ( ⁇ 0).
  • the ship movement route difference calculation unit 14D causes the difference between the target movement route of the boat 1 and the actual movement route of the boat 1. Calculate zero.
  • the propulsive force calculating unit 14F determines the heading H2CW (see FIG. 6C) of the ship 1 during movement of the ship 1 while the heading H1 of the beginning of the movement of the ship 1 (see FIG. 6A). (Refer to FIG. 6(D)) and a forward-forward propulsive force to the steering actuators 12A2 and 13A2 of the outboard motors 12 and 13 and the propulsion units 12A1 and 13A1. It is calculated as the propulsive force of the ship 1 to be generated.
  • the outboard motor control device 14 combines the counterclockwise propulsive force FCC (see FIG. 6D) calculated by the propulsive force calculating unit 14F and the right forward propulsive force while the ship 1 is moving.
  • the outboard motor control device 14 does not have to perform an additional operation of rotating the operation unit 11D counterclockwise while the boat 1 is moving, and the counterclockwise propulsion force FCC (Fig. 6(D)) and a right-forward propelling force are generated in the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1. That is, the outboard motor control device 14 controls the heading H1 when the ship 1 starts moving (see FIG. 6A) and the heading H2CW of the moving ship 1 while the ship 1 is moving (see FIG. The combined force including the counterclockwise propulsive force FCC (see FIG.
  • the outboard motor control device 14 determines the heading H2CW (see FIG. 6C) detected by the heading detection unit 11F during the movement of the ship 1 at the beginning of the movement of the ship 1. Feedback control of the outboard motors 12, 13 is performed to bring the outboard motors 12 and 13 closer to the direction H1 (see FIG. 6A).
  • the bow direction difference calculation unit 14E determines the difference between the bow direction H1 (see FIG. 6(A)) at the start of movement of the vessel 1 and the heading direction H2CC (see FIG. 6(E)) during movement of the vessel 1. Calculate ( ⁇ 0).
  • the ship movement route difference calculation unit 14D causes the difference between the target movement route of the boat 1 and the actual movement route of the boat 1. Calculate zero.
  • the propulsive force calculation unit 14F determines the heading H2CC (see FIG. 6(E)) of the ship 1 during movement of the ship 1 at the beginning of the movement of the ship 1 (see FIG. 6(A)). (Refer to FIG. 6(F)) and a rightward forward propulsive force are generated in the steering actuators 12A2 and 13A2 of the outboard motors 12 and 13 and the propulsion units 12A1 and 13A1. It is calculated as the propulsive force of the ship 1.
  • the outboard motor control device 14 generates a combined force of the clockwise propulsive force FCW (see FIG. 6(F)) calculated by the propulsive force calculating unit 14F and the right forward propulsive force while the ship 1 is moving.
  • the outboard motor control device 14 does not require the additional operation of rotating the operation unit 11D in the clockwise direction while the ship 1 is moving, and the clockwise propulsive force FCW (see FIG. F))) and the right frontward propulsive force are generated in the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1. That is, the outboard motor control device 14 controls the heading H1 at the start of movement of the ship 1 (see FIG. 6A) and the heading H2CC of the moving boat 1 during movement of the ship 1 (FIG.
  • the outboard motors 12 and 13 are generated with a combined force including a clockwise propulsive force FCW (see FIG. 6F) that suppresses the difference between the outboard motors 12 and 13.
  • FCW clockwise propulsive force
  • the outboard motor control device 14 determines the heading H2CC (see FIG. 6E) detected by the heading detection unit 11F during the movement of the ship 1 at the beginning of the movement of the ship 1. Feedback control of the outboard motors 12 and 13 is performed to bring the outboard motors 12 and 13 closer to the direction H1 (see FIG. 6A).
  • the ship movement route difference calculation unit 14D calculates the difference ( ⁇ 0) between the target movement route TP1 ⁇ TP3 (see FIG. 7A) of the boat 1 and the actual movement route of the boat 1.
  • the heading difference calculation unit 14E calculates the difference ( ⁇ 0) between the heading H1 at the start of movement of the ship 1 (see FIG.
  • the propulsive force calculating unit 14F is a propulsive force that brings the actual movement route of the boat 1 closer to the target movement route TP1 ⁇ TP3 of the boat 1 (see FIG. 7A) while the boat 1 is moving, and the movement of the boat 1 Of the steering force 12A2, 13A2 of the outboard motors 12 and 13 and the propulsion units 12A1 and 13A1. It is calculated as the propulsive force of the ship 1 to be generated at.
  • the outboard motor control device 14 causes the steering actuators 12A2 and 13A2 and the propulsion units 12A1 and 13A1 to generate the propulsive force (synthetic force) calculated by the propulsive force calculation unit 14F while the boat 1 is moving. That is, the outboard motor control device 14 does not have to perform an additional operation of changing the position of the operation unit 11D or an additional operation of rotating the operation unit 11D by the boat operator while the ship 1 is moving. No. 1 target travel route TP1 ⁇ TP3 (see FIG. 7A) and the actual travel route of the ship 1 are suppressed, and the heading H1 at the start of the travel of the ship 1 (see FIG.
  • the outboard motor control device 14 determines the position of the ship 1 detected by the ship position detection unit 11E and the heading of the bow 1B detected by the heading direction detection unit 11F while the ship 1 is moving. Based on this, the outboard motor 12 that brings the actual travel route of the ship 1 closer to the target travel route TP1 ⁇ TP3 of the ship 1 and brings the heading of the ship 1 in motion closer to the heading H1 at the start of the travel of the ship 1 , 13 feedback control is executed. As a result, even in this case, the vessel 1 can continue the forward movement (translational movement) in the right direction against the external force due to the wind, the tidal current, etc. without the need for additional operation by the operator.
  • FIG. 8 is a figure for demonstrating the target moving path TP1 ->TP4 of the ship 1 of 1st Embodiment.
  • the marine vessel operator wants to move the vessel 1 to the right rear (translational movement).
  • the operation portion 11D (the tip of the joystick lever) is moved from the position P1 to the position P4 and is maintained at the position P4.
  • the operation unit movement path calculation unit 14A determines the position of the lever at the time when the tip of the joystick lever is located at the position P1 and the time when the tip of the joystick lever is moved to the position P4 (when the movement of the ship 1 is started.
  • the movement path (movement path of the operation unit 11D) P1 ⁇ P4 is calculated based on the lever position.
  • the ship target movement route calculation unit 14B is directed rearward rightward based on the position of the ship 1 detected by the ship position detection unit 11E at the start of the movement of the ship 1 and the position P4 of the operation unit 11D at the start of the movement of the ship 1.
  • the target travel route TP1 ⁇ TP4 of the ship 1 (see FIG. 8A) is calculated.
  • the propulsive force calculating unit 14F calculates the propulsive force to be generated in the outboard motors 12 and 13 based on the target moving route TP1 ⁇ TP4 of the ship 1 facing right rearward, which is calculated by the target moving route calculating unit 14B.
  • the outboard motor control device 14 causes the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1 to generate the right rearward propulsion force calculated by the propulsion force calculation unit 14F. As a result, the marine vessel 1 starts moving backward (translating).
  • the boat actual movement route calculation unit 14C detects the position of the boat 1 detected by the boat position detection unit 11E when the boat 1 starts moving,
  • the actual movement route RP1 ⁇ RP4 (see FIG. 8B) of the marine vessel 1 is calculated based on the position of the marine vessel 1 detected by the marine vessel position detection unit 11E while the marine vessel 1 is moving.
  • the ship 1 does not receive an external force due to wind, tidal current, etc. while the ship 1 is moving, the actual travel route RP1 ⁇ RP4 of the ship 1 (see FIG. 8(B)) and the target travel route TP1 ⁇ TP4 of the ship 1 (See FIG. 8A).
  • the difference between the target travel route TP1 ⁇ TP4 of the ship 1 and the actual travel route RP1 ⁇ RP4 of the ship 1 calculated by the ship travel route difference calculation unit 14D becomes zero.
  • the difference between the bearing of the bow 1B at the start of movement of the boat 1 and the bearing of the bow 1B during movement of the boat 1 calculated by the bow bearing difference calculation unit 14E is also zero. Therefore, the propulsive force calculating unit 14F calculates a propulsive force that is equal to the propulsive force calculated when the marine vessel 1 starts moving while the marine vessel 1 is moving.
  • the outboard motor control device 14 causes the steering actuators 12A2 and 13A2 and the propulsion units 12A1 and 13A1 to generate the right rearward propulsive force calculated by the propulsive force calculation unit 14F while the boat 1 is moving. As a result, the ship 1 continues to move to the right rear (translational movement).
  • the actual ship movement route calculation unit 14C detects the position of the ship 1 detected by the ship position detection unit 11E at the start of the movement of the ship 1 and the position of the ship 1 detected by the ship position detection unit 11E during the movement of the ship 1.
  • the actual movement route RP1 ⁇ RP4B (see FIG. 8C) of the boat 1 is calculated based on the position (the position of the boat 1 that has flowed to the rear side) RP4B (see FIG. 8C).
  • the ship movement route difference calculation unit 14D calculates the target movement route TP1 ⁇ TP4 of the boat 1 (see FIG. 8A) and the actual movement route RP1 ⁇ RP4B of the boat 1 (see FIG. 8C). The difference ( ⁇ 0) is calculated.
  • FIG. 8A the target movement route TP1 ⁇ TP4 of the boat 1
  • FIG. 8C the actual movement route RP1 ⁇ RP4B of the boat 1
  • the bow direction difference calculation unit 14E calculates a zero difference between the direction of the bow 1B at the start of movement of the boat 1 and the direction of the bow 1B during movement of the boat 1. Therefore, the propulsive force calculation unit 14F changes the actual movement route RP1 ⁇ RP4B (see FIG. 8C) of the boat 1 to the target movement route TP1 ⁇ TP4 of the boat 1 (FIG. 8A) while the boat 1 is moving.
  • the propulsive force F4F toward the right rear (see FIG. 8D) that is closer to the reference (see FIG. 8D) is calculated as the propulsive force of the boat 1 generated by the steering actuators 12A2 and 13A2 of the outboard motors 12 and 13 and the propulsion units 12A1 and 13A1.
  • the outboard motor control device 14 applies the right rearward propulsive force F4F (see FIG. 8D) calculated by the propulsive force calculating unit 14F to the steering actuators 12A2, 13A2 and the propulsion unit 12A1 while the boat 1 is moving. , 13A1. That is, the outboard motor control device 14 does not require an additional operation for changing the position of the operation unit 11D while the boat 1 is moving, and the right rearward propulsive force F4F (FIG. 8(D)). Are generated in the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1.
  • the outboard motor control device 14 suppresses the difference between the target travel route TP1 ⁇ TP4 of the boat 1 and the actual travel route RP1 ⁇ RP4B of the boat 1 while the boat 1 is moving, and rightward rearward propulsive force F4F.
  • the outboard motor control device 14 determines the actual operation of the ship 1 based on the position RP4B (see FIG. 8C) of the ship 1 detected by the ship position detection unit 11E while the ship 1 is moving.
  • the feedback control of the outboard motors 12 and 13 is performed to bring the moving route RP1 ⁇ RP4B of 1 to the target moving route TP1 ⁇ TP4 of the ship 1.
  • FIGS. 8C and 8D the vessel 1 moves rearward to the right against the rearward external force due to wind, tidal current, etc. without the need for additional operation by the operator. Translational movement) can be continued.
  • the actual ship movement route calculation unit 14C detects the position of the ship 1 detected by the ship position detection unit 11E at the start of the movement of the ship 1 and the position of the ship 1 detected by the ship position detection unit 11E during the movement of the ship 1.
  • the actual movement route RP1 ⁇ RP4F (see FIG. 8E) of the boat 1 is calculated based on the position (the position of the boat 1 that has flowed to the front side) RP4F (see FIG. 8E).
  • the ship movement route difference calculation unit 14D divides the target movement route TP1 ⁇ TP4 of the boat 1 (see FIG. 8A) and the actual movement route RP1 ⁇ RP4F of the boat 1 (see FIG. 8E). The difference ( ⁇ 0) is calculated.
  • FIG. 8A the target movement route TP1 ⁇ TP4 of the boat 1
  • FIG. 8E the actual movement route RP1 ⁇ RP4F of the boat 1
  • the bow direction difference calculation unit 14E calculates a zero difference between the direction of the bow 1B at the start of movement of the ship 1 and the direction of the bow 1B during movement of the ship 1. Therefore, the propulsion force calculation unit 14F changes the actual movement route RP1 ⁇ RP4F (see FIG. 8E) of the boat 1 to the target movement route TP1 ⁇ TP4 of the boat 1 (FIG. 8A) while the boat 1 is moving.
  • the propulsive force F4B (see FIG. 7(F)) in the right rearward direction (see FIG. 7F) is calculated as the propulsive force of the boat 1 generated by the steering actuators 12A2, 13A2 of the outboard motors 12, 13 and the propulsion units 12A1, 13A1.
  • the outboard motor control device 14 applies the right rearward propulsive force F4B (see FIG. 8F) calculated by the propulsive force calculating unit 14F to the steering actuators 12A2, 13A2 and the propulsion unit 12A1 while the ship 1 is moving. , 13A1. That is, the outboard motor control device 14 does not require an additional operation for changing the position of the operation unit 11D while the ship 1 is moving, and the right rearward propulsive force F4B (FIG. 8(F)). Are generated in the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1.
  • the outboard motor control device 14 suppresses the difference between the target travel route TP1 ⁇ TP4 of the boat 1 and the actual travel route RP1 ⁇ RP4F of the boat 1 while the boat 1 is moving, and the right rearward propulsive force F4B is suppressed.
  • the outboard motor control device 14 determines the actual operation of the ship 1 based on the position RP4F (see FIG. 8E) of the ship 1 detected by the ship position detection unit 11E while the ship 1 is moving.
  • the feedback control of the outboard motors 12 and 13 is performed to bring the movement route RP1 ⁇ RP4F of 1 to the target movement route TP1 ⁇ TP4 of the ship 1.
  • FIGS. 8(E) and 8(F) the ship 1 moves rearward to the right against the forward external force due to wind, tidal current, etc. without the need for additional operation by the operator. Translational movement) can be continued.
  • the operation unit 11D is moved from the position P1 to the position P4 and is maintained at the position P4.
  • the heading H1 (see FIG. 6A) at the start of the movement of the boat 1 (the time when the operation unit 11D is moved to the position P4) and during the movement of the boat 1 (the front right rear of the boat 1)
  • the heading H2 (see FIG. 6B) during the period of movement (see FIG. 6B). That is, the ship 1 is translating in the rear right direction without being subjected to an external force such as a wind or a tidal current that causes the ship 1 to turn.
  • the heading H1 at the start of movement of the ship 1 calculated by the heading difference calculation unit 14E (see FIG. 6A) and the heading H2 during movement of the ship 1 (see FIG. 6B). ) Becomes zero. Therefore, the propulsive force calculating unit 14F calculates the propulsive force equal to the propulsive force calculated when the marine vessel 1 starts moving, without adding the propulsive force for turning the marine vessel 1 while the marine vessel 1 is moving.
  • the outboard motor control device 14 causes the steering actuators 12A2 and 13A2 and the propulsion units 12A1 and 13A1 to generate the right rearward propulsive force calculated by the propulsive force calculation unit 14F while the boat 1 is moving. As a result, the ship 1 continues to move to the right rear (translational movement).
  • the bow heading difference calculation unit 14E determines the difference between the heading H1 at the start of the movement of the ship 1 (see FIG. 6A) and the heading H2CW during the movement of the ship 1 (see FIG. 6C). Calculate ( ⁇ 0). Further, in the example shown in FIGS. 4C, 6A, and 6C, the ship movement route difference calculation unit 14D causes the difference between the target movement route of the boat 1 and the actual movement route of the boat 1. Calculate zero.
  • the propulsive force calculating unit 14F determines the heading H2CW (see FIG. 6C) of the ship 1 during movement of the ship 1 while the heading H1 of the beginning of the movement of the ship 1 (see FIG. 6A). (Refer to FIG. 6D) and a right rearward propulsive force to the steering actuators 12A2 and 13A2 of the outboard motors 12 and 13 and the propulsion units 12A1 and 13A1. It is calculated as the propulsive force of the ship 1 to be generated.
  • the outboard motor control device 14 combines the counterclockwise propulsive force FCC (see FIG. 6D) calculated by the propulsive force calculating unit 14F and the right rearward propulsive force while the ship 1 is moving.
  • the outboard motor control device 14 does not have to perform an additional operation of rotating the operation unit 11D counterclockwise while the ship 1 is moving, and the counterclockwise propulsive force FCC (FIG. 6(D)) and a right rearward propulsive force are generated in the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1. That is, the outboard motor control device 14 controls the heading H1 when the ship 1 starts moving (see FIG. 6A) and the heading H2CW of the moving ship 1 while the ship 1 is moving (see FIG. The combined force including the counterclockwise propulsive force FCC (see FIG.
  • the outboard motor control device 14 determines the heading H2CW (see FIG. 6C) detected by the heading detection unit 11F during the movement of the ship 1 at the beginning of the movement of the ship 1. Feedback control of the outboard motors 12, 13 is performed to bring the outboard motors 12 and 13 closer to the direction H1 (see FIG. 6A).
  • the bow direction difference calculation unit 14E determines the difference between the bow direction H1 (see FIG. 6(A)) at the start of movement of the vessel 1 and the heading direction H2CC (see FIG. 6(E)) during movement of the vessel 1. Calculate ( ⁇ 0). Further, in the example shown in FIGS. 4C, 6A, and 6E, the ship movement route difference calculation unit 14D causes the difference between the target movement route of the boat 1 and the actual movement route of the boat 1. Calculate zero.
  • the propulsive force calculation unit 14F determines the heading H2CC (see FIG. 6E) during the movement of the ship 1 while the ship 1 is moving, and the heading H1 at the start of the movement of the ship 1 (FIG. 6A). (Refer to FIG. 6F) and a rightward rearward propulsive force are generated in the steering actuators 12A2 and 13A2 of the outboard motors 12 and 13 and the propulsion units 12A1 and 13A1. It is calculated as the propulsive force of the ship 1.
  • the outboard motor control device 14 generates a combined force of the clockwise propulsive force FCW (see FIG.
  • the outboard motors 12 and 13 are generated with a combined force including a clockwise propulsive force FCW (see FIG. 6F) that suppresses the difference between the outboard motors 12 and 13.
  • FCW clockwise propulsive force
  • the outboard motor control device 14 determines the heading H2CC (see FIG. 6E) detected by the heading detection unit 11F during the movement of the ship 1 at the beginning of the movement of the ship 1. Feedback control of the outboard motors 12 and 13 is performed to bring the outboard motors 12 and 13 closer to the direction H1 (see FIG. 6A).
  • the ship movement route difference calculation unit 14D calculates the difference ( ⁇ 0) between the target movement route TP1 ⁇ TP4 (see FIG. 8A) of the boat 1 and the actual movement route of the boat 1.
  • the heading difference calculation unit 14E calculates the difference ( ⁇ 0) between the heading H1 at the start of movement of the ship 1 (see FIG.
  • the propulsive force calculation unit 14F is a propulsive force that brings the actual travel route of the boat 1 closer to the target travel route TP1 ⁇ TP4 (see FIG. 8A) of the boat 1 while the boat 1 is moving, and the boat 1 is moving.
  • the outboard motor control device 14 causes the steering actuators 12A2 and 13A2 and the propulsion units 12A1 and 13A1 to generate the propulsive force (synthetic force) calculated by the propulsive force calculation unit 14F while the boat 1 is moving. That is, the outboard motor control device 14 does not have to perform an additional operation of changing the position of the operation unit 11D or an additional operation of rotating the operation unit 11D by the boat operator while the ship 1 is moving. No. 1 target travel route TP1 ⁇ TP4 (see FIG. 8A) and the actual travel route of the ship 1 are suppressed, and the heading H1 at the start of the travel of the ship 1 (see FIG.
  • the outboard motor control device 14 determines the position of the ship 1 detected by the ship position detection unit 11E and the heading of the bow 1B detected by the heading direction detection unit 11F while the ship 1 is moving. Based on this, the outboard motor 12 that brings the actual travel route of the ship 1 closer to the target travel route TP1 ⁇ TP4 of the ship 1 and brings the heading of the ship 1 in motion closer to the heading H1 at the start of the travel of the ship 1 , 13 feedback control is executed. As a result, even in this case, the vessel 1 can continue the movement in the right rear direction (translational movement) against the external force caused by the wind, the tidal current, etc. without the need for additional operation by the operator.
  • the operator may want to move the vessel 1 leftward (translational movement).
  • the operation portion 11D (specifically, the tip end portion of the joystick lever) is moved from the position P1 to the position P5 and maintained at the position P5.
  • the operation unit movement path calculation unit 14A determines the lever position at the time when the tip of the joystick lever is located at the position P1 and the time when the tip of the joystick lever is moved to the position P5 (when the movement of the boat 1 is started. ) And the position of the lever, the moving path (the moving path of the operation unit 11D) P1 ⁇ P5 of the tip of the joystick lever is calculated.
  • the ship target movement route calculation unit 14B determines the leftward direction based on the position of the ship 1 detected by the ship position detection unit 11E when the ship 1 starts moving and the position P5 of the operation unit 11D when the ship 1 starts moving.
  • a target travel route of the ship 1 (a target travel route TP1 ⁇ TP2 shown in FIG. 5A which is horizontally reversed) is calculated.
  • the propulsive force calculation unit 14F calculates the propulsive force to be generated in the outboard motors 12 and 13 based on the target travel route of the left-handed ship 1 calculated by the ship target travel route calculation unit 14B.
  • the outboard motor control device 14 causes the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1 to generate the leftward propulsive force calculated by the propulsive force calculation unit 14F. As a result, the boat 1 starts moving leftward (translating).
  • the vessel actual movement route calculation unit 14C determines the position of the vessel 1 detected by the vessel position detection unit 11E at the start of movement of the vessel 1, and the vessel 1
  • the actual movement route of the boat 1 (the actual movement route RP1 ⁇ RP2 shown in FIG. 5B) is horizontally reversed based on the position of the boat 1 detected by the boat position detection unit 11E during the movement of the boat 1. ) Is calculated.
  • the ship 1 does not receive an external force due to wind, tidal current, etc. while the ship 1 is moving, the actual travel route of the ship 1 and the target travel route of the ship 1 match.
  • the difference between the target travel route of the ship 1 and the actual travel route of the ship 1 calculated by the ship travel route difference calculation unit 14D becomes zero. Further, the difference between the bearing of the bow 1B at the start of movement of the boat 1 and the bearing of the bow 1B during movement of the boat 1 calculated by the bow bearing difference calculation unit 14E is also zero. Therefore, the propulsive force calculating unit 14F calculates a propulsive force that is equal to the propulsive force calculated when the marine vessel 1 starts moving while the marine vessel 1 is moving.
  • the outboard motor control device 14 causes the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1 to generate the leftward propulsive force calculated by the propulsive force calculation unit 14F while the boat 1 is moving. As a result, the ship 1 continues its leftward movement (translational movement).
  • the ship 1 when the ship 1 receives a backward external force due to wind, tidal current, etc. while the ship 1 is moving leftward, the backward external force causes the ship 1 to flow to the rear side.
  • the outboard motor control device 14 executes the calculation/control which is the left-right reversal of the calculation/control shown in FIG. 5(C) and FIG. 5(D).
  • the ship 1 can continue its leftward movement (translational movement) against an external force directed backward by wind, tidal current, etc., without the need for additional operation by the operator.
  • the outboard motor control device 14 executes the calculation/control which is the left-right inversion of the calculation/control shown in FIG. 5(E) and FIG. 5(F).
  • the vessel 1 can continue the leftward movement (translational movement) against the forward external force due to wind, tidal current, etc., without the need for additional operation by the operator.
  • the propulsive force calculation unit 14F causes the ship 1 to turn.
  • the propulsive force equal to the propulsive force calculated at the time of starting the movement of the ship 1 is calculated without adding the propulsive force. As a result, the ship 1 continues its leftward movement (translational movement).
  • the outboard motor control device 14 executes the same calculation/control as the calculation/control shown in FIG. 6(C) and FIG. 6(D).
  • the outboard motor control device 14 executes the same calculation/control as the calculation/control shown in FIG. 6(E) and FIG. 6(F).
  • the target movement route of the boat 1 (the target movement route TP1 ⁇ TP2 shown in FIG. 5A) is horizontally reversed by the boat 1 receiving an external force due to wind, tidal current, etc. while the boat 1 is moving to the left. ) And the actual movement route of the ship 1 occur, and a difference between the heading of the ship 1 at the start of movement (see FIG. 6A) and the heading of the ship 1 during movement occurs.
  • the ship movement route difference calculation unit 14D calculates the difference ( ⁇ 0) between the target movement route of the boat 1 and the actual movement route of the boat 1.
  • the heading difference calculation unit 14E calculates a difference ( ⁇ 0) between the heading H1 (see FIG.
  • the propulsion force calculation unit 14F starts the movement of the boat 1 by setting the propulsion force that brings the actual movement route of the boat 1 closer to the target movement route of the boat 1 and the heading of the boat 1 during movement of the boat 1 during the leftward movement of the boat 1.
  • a propulsive force of the ship 1 generated by the steering actuators 12A2, 13A2 of the outboard motors 12, 13 and the propulsion units 12A1, 13A1
  • the combined force with the propulsive force that approaches the bow direction H1 (see FIG. 6A) at the time calculate.
  • the outboard motor control device 14 causes the steering actuators 12A2 and 13A2 and the propulsion units 12A1 and 13A1 to generate the propulsive force (synthetic force) calculated by the propulsive force calculation unit 14F while the boat 1 is moving. That is, the outboard motor control device 14 does not need to perform an additional operation for changing the position of the operation unit 11D or an additional operation for rotating the operation unit 11D by the operator during the leftward movement of the boat 1. , A difference between the target travel route of the ship 1 and the actual travel route of the ship 1 is suppressed, and the heading H1 at the start of the travel of the ship 1 (see FIG.
  • the outboard motor control device 14 controls the position of the ship 1 detected by the ship position detection unit 11E and the heading 1B detected by the heading direction detection unit 11F while the ship 1 is moving leftward. Based on the above, the outboard motor that brings the actual movement route of the vessel 1 closer to the target movement route of the vessel 1 and brings the heading direction of the vessel 1 during leftward movement closer to the heading direction H1 at the start of movement of the vessel 1. 12 and 13 feedback control is performed. As a result, even in this case, the ship 1 can continue its leftward movement (translational movement) against an external force due to wind, tidal current, etc. without the need for additional operation by the operator.
  • the marine vessel operator wants to move the vessel 1 to the left front (translational movement).
  • the operating portion 11D (the tip of the joystick lever) is moved from the position P1 to the position P6 and is maintained at the position P6.
  • the operation unit movement path calculation unit 14A calculates the lever position at the time when the tip of the joystick lever is located at the position P1 and the time when the tip of the joystick lever is moved to the position P6 (when the movement of the boat 1 is started. ) Of the lever position of the joystick, the movement path (movement path of the operation unit 11D) P1 ⁇ P6 is calculated based on the position of the lever.
  • the ship target movement route calculation unit 14B faces leftward based on the position of the ship 1 detected by the ship position detection unit 11E when the ship 1 starts moving and the position P6 of the operation unit 11D when the ship 1 starts moving.
  • the target travel route of the ship 1 (the target travel route TP1 ⁇ TP3 shown in FIG. 7A is horizontally reversed) is calculated.
  • the propulsive force calculating unit 14F calculates the propulsive force to be generated in the outboard motors 12 and 13 based on the target moving path of the ship 1 facing left front calculated by the ship target moving path calculating unit 14B.
  • the outboard motor control device 14 causes the steering actuators 12A2 and 13A2 and the propulsion units 12A1 and 13A1 to generate the left frontward propulsive force calculated by the propulsive force calculation unit 14F. As a result, the boat 1 starts to move leftward (translational movement).
  • the boat actual movement route calculation unit 14C detects the position of the boat 1 detected by the boat position detection unit 11E when the boat 1 starts moving,
  • the actual movement route of the boat 1 (the actual movement route RP1 ⁇ RP3 shown in FIG. 7B) is horizontally reversed based on the position of the boat 1 detected by the boat position detection unit 11E during the movement of the boat 1. Stuff) is calculated.
  • the ship 1 does not receive an external force due to wind, tidal current, or the like during the movement of the ship 1 toward the left front, the actual travel route of the ship 1 and the target travel route of the ship 1 match.
  • the difference between the target travel route of the ship 1 and the actual travel route of the ship 1 calculated by the ship travel route difference calculation unit 14D becomes zero. Further, the difference between the bearing of the bow 1B at the start of movement of the boat 1 and the bearing of the bow 1B during movement of the boat 1 calculated by the bow bearing difference calculation unit 14E is also zero. Therefore, the propulsive force calculating unit 14F calculates a propulsive force that is equal to the propulsive force calculated at the time of starting the movement of the marine vessel 1 while the marine vessel 1 is moving in the left front direction.
  • the outboard motor control device 14 causes the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1 to generate the left forward propulsive force calculated by the propulsive force calculating unit 14F while the boat 1 is moving leftward. As a result, the boat 1 continues to move forward (translational movement) to the left.
  • the ship 1 when the ship 1 receives, for example, a rearward external force due to wind, tidal current, or the like while the ship 1 is moving to the left front, the rearward external force causes the ship 1 to flow to the rear side.
  • the outboard motor control device 14 executes the calculation/control which is the left-right reversal of the calculation/control shown in FIGS. 7(C) and 7(D).
  • the marine vessel 1 can continue to move to the left front (translational movement) against an external force directed backward due to wind, tidal current, etc. without the need for additional operation by the operator.
  • the outboard motor control device 14 executes the operation/control which is the left-right inversion of the operation/control shown in FIG. 7(E) and FIG. 7(F).
  • the marine vessel 1 can continue its leftward forward movement (translational movement) against the forward external force due to wind, tidal current, etc. without the need for additional operation by the operator.
  • the propulsive force calculation unit 14F turns the ship 1
  • the propulsive force equal to the propulsive force calculated at the time of starting the movement of the ship 1 is calculated without adding the propulsive force.
  • the boat 1 continues to move forward (translational movement) to the left.
  • the outboard motor control device 14 executes the same calculation/control as the calculation/control shown in FIG. 6(C) and FIG. 6(D).
  • the outboard motor control device 14 executes the same calculation/control as the calculation/control shown in FIG. 6(E) and FIG. 6(F).
  • the target movement path of the ship 1 (the target movement path TP1 ⁇ TP3 shown in FIG. 7(A)) is laterally reversed by the ship 1 receiving an external force due to wind, tidal current, etc. while the ship 1 is moving to the left front. No.) and the actual movement path of the ship 1 and a difference between the heading of the ship 1 at the start of movement (see FIG. 6A) and the heading of the ship 1 during movement is generated. In some cases. In that case, the ship movement route difference calculation unit 14D calculates the difference ( ⁇ 0) between the target movement route of the boat 1 and the actual movement route of the boat 1.
  • the bow heading difference calculation unit 14E calculates a difference ( ⁇ 0) between the heading H1 at the start of movement of the boat 1 (see FIG. 6A) and the heading of the boat 1 in the forward leftward movement. To do.
  • the propulsive force calculation unit 14 ⁇ /b>F calculates the propulsive force that brings the actual movement route of the boat 1 closer to the target movement route of the boat 1 and the heading of the boat 1 that is moving during the movement of the boat 1 while the boat 1 is moving leftward. Propulsive force of the ship 1 that generates a combined force with the propulsive force that approaches the heading H1 (see FIG.
  • the outboard motor control device 14 causes the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1 to generate the propulsive force (composite force) calculated by the propulsive force calculation unit 14F while the boat 1 is moving leftward and forward. .. That is, the outboard motor control device 14 does not have to perform an additional operation of changing the position of the operation unit 11D or an additional operation of rotating the operation unit 11D by the operator while the boat 1 is moving to the left front.
  • the outboard motor control device 14 controls the position of the boat 1 detected by the boat position detection unit 11E and the bow 1B detected by the bow direction detection unit 11F while the boat 1 is moving leftward and forward.
  • a ship that brings the actual travel route of the ship 1 closer to the target travel route of the ship 1 and brings the bow azimuth of the ship 1 in the forward left direction closer to the bow azimuth H1 at the start of the travel of the ship 1.
  • the feedback control of the external units 12 and 13 is executed. As a result, even in this case, the ship 1 can continue the forward leftward movement (translational movement) against an external force due to wind, tidal current, etc. without the need for additional operation by the operator.
  • the operator may want to move the vessel 1 to the left rearward (translational movement).
  • the operation portion 11D (the tip of the joystick lever) is moved from the position P1 to the position P7 and is maintained at the position P7.
  • the operation unit movement path calculation unit 14A determines the lever position at the time when the tip of the joystick lever is located at the position P1 and the time when the tip of the joystick lever is moved to the position P7 (when the movement of the boat 1 is started. ) Of the lever of the joystick, the movement path (movement path of the operation unit 11D) P1 ⁇ P7 is calculated based on the position of the lever of FIG.
  • the ship target movement route calculation unit 14B is directed to the left rearward direction based on the position of the ship 1 detected by the ship position detection unit 11E at the start of the movement of the ship 1 and the position P7 of the operation unit 11D at the start of the movement of the ship 1.
  • the target travel route of the ship 1 (the target travel route TP1 ⁇ TP4 shown in FIG. 8A is horizontally inverted) is calculated.
  • the propulsive force calculation unit 14F calculates the propulsive force to be generated in the outboard motors 12 and 13 based on the target movement route of the ship 1 facing left rearward calculated by the boat target movement route calculation unit 14B.
  • the outboard motor control device 14 causes the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1 to generate the left rearward propulsive force calculated by the propulsive force calculation unit 14F. As a result, the boat 1 starts to move rearward (translational movement).
  • the ship actual movement route calculation unit 14C detects the position of the ship 1 detected by the ship position detection unit 11E when the ship 1 starts moving, Based on the position of the ship 1 detected by the ship position detection unit 11E while the ship 1 is moving, the actual travel route of the ship 1 (the actual travel route RP1 ⁇ RP4 shown in FIG. 8B) is horizontally reversed. Stuff) is calculated.
  • the ship 1 does not receive an external force due to wind, tidal current, etc. during the movement of the ship 1 to the left rear, the actual travel route of the ship 1 and the target travel route of the ship 1 match.
  • the difference between the target travel route of the ship 1 and the actual travel route of the ship 1 calculated by the ship travel route difference calculation unit 14D becomes zero. Further, the difference between the bearing of the bow 1B at the start of movement of the boat 1 and the bearing of the bow 1B during movement of the boat 1 calculated by the bow bearing difference calculation unit 14E is also zero. Therefore, the propulsive force calculation unit 14F calculates the propulsive force that is equal to the propulsive force calculated at the start of the movement of the boat 1 while the boat 1 is moving in the left rearward direction.
  • the outboard motor control device 14 causes the steering actuators 12A2 and 13A2 and the propulsion units 12A1 and 13A1 to generate the left rearward propulsive force calculated by the propulsive force calculation unit 14F during the leftward rearward movement of the marine vessel 1. As a result, the marine vessel 1 continues to move backward (translational movement).
  • the ship 1 when the ship 1 receives a rearward external force due to wind, tidal current, etc. while the ship 1 is moving rearward to the left, the rearward external force causes the ship 1 to flow to the rear side.
  • the outboard motor control device 14 executes the calculation/control which is the left-right reversal of the calculation/control shown in FIG. 8(C) and FIG. 8(D).
  • the marine vessel 1 can continue its leftward rearward movement (translational movement) against the rearward-directed external force due to wind, tidal current, etc. without the need for additional operation by the operator.
  • the outboard motor control device 14 executes the calculation/control which is the left-right inversion of the calculation/control shown in FIG. 8(E) and FIG. 8(F).
  • the vessel 1 can continue the movement to the left rear (translational movement) against the forward external force due to the wind, the tidal current, etc. without the need for additional operation by the operator.
  • the propulsion force calculation unit 14F turns the ship 1
  • the propulsive force equal to the propulsive force calculated at the time of starting the movement of the ship 1 is calculated without adding the propulsive force.
  • the marine vessel 1 continues to move backward (translational movement).
  • the ship 1 when the ship 1 receives an external force due to wind, tidal current, or the like that causes the ship 1 to turn clockwise, for example, while the ship 1 is moving leftward, the ship 1 turns clockwise due to the external force.
  • the outboard motor control device 14 executes the same calculation/control as the calculation/control shown in FIG. 6(C) and FIG. 6(D).
  • the outboard motor control device 14 executes the same calculation/control as the calculation/control shown in FIG. 6(E) and FIG. 6(F).
  • the ship 1 receives an external force due to wind, tidal current, etc., so that the target travel path of the ship 1 (the target travel path TP1 ⁇ TP4 shown in FIG. 8A) is horizontally reversed. No.) and the actual movement route of the ship 1 and a difference between the heading of the ship 1 at the start of movement (see FIG. 6A) and the heading of the ship 1 during movement is generated. In some cases. In that case, the ship movement route difference calculation unit 14D calculates the difference ( ⁇ 0) between the target movement route of the boat 1 and the actual movement route of the boat 1.
  • the bow heading difference calculation unit 14E calculates a difference ( ⁇ 0) between the heading H1 at the start of movement of the boat 1 (see FIG. 6A) and the heading of the boat 1 in the forward leftward movement. To do.
  • the propulsive force calculating unit 14F moves the ship 1 toward the left rearward direction, and the propulsive force that brings the actual travel route of the ship 1 closer to the target travel route of the ship 1 and the heading of the ship 1 during movement.
  • Propulsive force of the ship 1 that generates a combined force with the propulsive force that approaches the heading H1 (see FIG. 6(A)) at the start of the steering actuators 12A2, 13A2 of the outboard motors 12, 13 and the propulsion units 12A1, 13A1.
  • the outboard motor control device 14 causes the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1 to generate the propulsive force (composite force) calculated by the propulsive force calculation unit 14F while the boat 1 is moving in the left rearward direction. .. That is, the outboard motor control device 14 does not have to perform an additional operation of changing the position of the operation unit 11D or an additional operation of rotating the operation unit 11D by the operator while the boat 1 is moving to the left rear. Also suppresses the difference between the target travel route of the ship 1 and the actual travel route of the ship 1, and at the same time, the heading H1 (see FIG.
  • the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1 are caused to generate a propulsive force (synthetic force) that suppresses a difference from the heading of the boat.
  • the outboard motor control device 14 controls the position of the boat 1 detected by the boat position detection unit 11E and the bow 1B detected by the bow direction detection unit 11F while the boat 1 is moving leftward and rearward. Based on the azimuth, the actual movement path of the vessel 1 is brought closer to the target movement path of the vessel 1, and the heading of the vessel 1 in the left rearward direction is made closer to the heading H1 at the start of movement of the vessel 1.
  • the feedback control of the outer units 12 and 13 is executed. As a result, even in this case, the ship 1 can continue the movement to the left rear (translational movement) against the external force due to the wind, the tidal current, etc. without the need for additional operation by the operator.
  • the outboard motor control device 14 controls the difference between the target travel route of the boat 1 and the actual travel route of the boat 1, and controls the direction of the bow 1B when the boat 1 starts moving. Both of the controls for suppressing the difference from the heading 1B of the boat 1 during movement of the boat 1 can be executed, but in another example, the outboard motor control device 14 controls the target movement route of the boat 1 and the boat 1. Only one of the control for suppressing the difference from the actual movement route and the control for suppressing the difference between the bearing of the bow 1B at the start of movement of the boat 1 and the bearing of the bow 1B during movement of the boat 1 can be executed. It may be.
  • FIG. 9 is a flowchart for explaining an example of processing executed by the outboard motor control device 14 of the first embodiment.
  • the process shown in FIG. 9 starts when the operation unit 11D (joystick) receives an input operation for operating the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1 of the outboard motors 12, 13.
  • the outboard motor control device 14 acquires the position of the operation unit 11D (for example, the position P2 (see FIG. 3B)) detected by a sensor such as a microswitch.
  • the operation unit movement route calculation unit 14A calculates the movement route of the operation unit 11D (for example, movement route P1 ⁇ P2).
  • step S11 the outboard motor control device 14 acquires the position at the start of movement of the boat 1 detected by the boat position detection unit 11E.
  • step S12 the outboard motor control device 14 sets the direction of the bow 1B at the start of movement of the boat 1 detected by the bow direction detection unit 11F (for example, the heading H1 (see FIG. 6A)). get.
  • step S13 the ship target movement route calculation unit 14B is based on the position at the start of movement of the ship 1 acquired in step S11 and the position of the operation unit 11D (eg, position P2) acquired in step S10. Then, the target travel route of the ship 1 (for example, the target travel route TP1 ⁇ TP2 (see FIG. 5A)) is calculated.
  • step S14 the propulsion force calculation unit 14F calculates the propulsion force (for example, rightward propulsion force) generated in the outboard motors 12 and 13 based on the target travel route of the boat 1 calculated in step S13. ..
  • step S15 the outboard motor control device 14 causes the propulsive force calculated in step S14 to be generated by the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1 of the outboard motors 12, 13. It controls the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1 of the machines 12, 13. As a result, the boat 1 starts moving to the right (translational movement), for example.
  • step S16 the outboard motor control device 14 acquires the moving position of the boat 1 detected by the boat position detection unit 11E.
  • the actual ship movement route calculation unit 14C determines the ship based on the position at the start of movement of the ship 1 acquired in step S11 and the position in motion of the ship 1 acquired in step S16.
  • One actual travel route (for example, the actual travel route RP1 ⁇ RP2B (see FIG. 5C)) is calculated.
  • step S18 the ship movement route difference calculation unit 14D causes the target movement route of the boat 1 calculated in step S13 (for example, the target movement route TP1 ⁇ TP2) and the actual movement of the boat 1 calculated in step S17.
  • step S19 the outboard motor control device 14 obtains the azimuth of the moving bow 1B of the boat 1 detected by the bow azimuth detecting unit 11F (for example, the bow azimuth H2CW (see FIG. 6C)). To do.
  • step S20 the bow heading difference calculation unit 14E causes the heading 1B at the start of movement of the boat 1 acquired in step S12 (for example, heading H1) and the movement of the boat 1 acquired in step S19. Of the heading 1B (for example, heading H2CW) is calculated.
  • step S21 the propulsive force calculation unit 14F combines the propulsive force for suppressing the difference calculated in step S18 and the propulsive force for suppressing the difference calculated in step S20 with the outboard motor 12, It is calculated as the propulsive force generated in No. 13.
  • step S22 the outboard motor control device 14 causes the outboard motor control unit 14 to generate the propulsive force calculated in step S21 by the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1 of the outboard motors 12, 13. It controls the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1 of the machines 12, 13. As a result, the ship 1 maintains the rightward movement (translational movement), for example.
  • step S23 the outboard motor control device 14 acquires the position of the operation unit 11D, and the position of the operation unit 11D (for example, the position P2 (see FIG. 3B)) is the position P1 (see FIG. 3A). )), position P8 (see FIG. 3(H)) and position P9 (see FIG. 3(I)). If the position of the operation unit 11D has not been changed to any of the positions P1, P8, and P9, the process returns to step S16. When the position of the operation unit 11D is changed to any of the position P1, the position P8, and the position P9, the processing shown in FIG. 9 is ended. In the example shown in FIG. 9, as described above, the processing shown in FIG.
  • FIG. 10 is a figure which shows an example of the ship 1 to which the outboard motor control apparatus 14 of 2nd Embodiment is applied.
  • the operation unit 11D is configured by a joystick having a lever.
  • the operation unit 11D is configured by a touch panel. The ship operator can operate not only the steering actuators 12A2 and 13A2 and the propulsion units 12A1 and 13A1 by operating the steering device 11A (steering wheel) and the remote control devices 11B and 11C (remote control lever) but also the operation unit.
  • the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1 can also be operated by operating 11D (touch panel).
  • the hull 11 may not include the steering device 11A, the remote control device 11B, and the remote control device 11C.
  • the outboard motor control device 14 controls the steering actuator 12A2 and the propulsion unit 12A1 of the outboard motor 12, the steering actuator 13A2 of the outboard motor 13 and the propulsion based on the input operation to the operation unit 11D. It controls the unit 13A1. Specifically, the outboard motor control device 14 controls the magnitude of the propulsive force of the boat 1 generated by the steering actuators 12A2 and 13A2 and the propulsion units 12A1 and 13A1 based on, for example, a flick input operation on the operation unit 11D (touch panel). And control the orientation. In the flick input operation, the ship operator, for example, presses the touch panel and slides a finger pressing the touch panel in a desired direction. The operation unit movement route calculation unit 14A calculates the movement route of the operation unit 11D. Specifically, the operation unit movement path calculation unit 14A calculates the movement path of the finger that the operator has slid while pressing the touch panel.
  • the operation unit 11D is configured to be capable of flick input operation and rotational input operation to the operation unit 11D (touch panel).
  • the marine vessel operator performs a rotation input operation, for example, in a state where one finger is in contact with the touch panel and fixed as a center point, and the other finger slides in the circumferential direction while pressing the touch panel.
  • the outboard motor control device 14 controls the steering actuators 12A2, 13A2 and the propulsion so that the hull 11 turns right. It controls the units 12A1 and 13A1.
  • the outboard motor control device 14 controls the steering actuators 12A2 and 13A2 so that the hull 11 turns left. And controlling the propulsion units 12A1, 13A1.
  • the outboard motor control device 14 causes the ship operator's finger to slide while the hull 11 maintains its posture.
  • the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1 are controlled so as to move in the direction. That is, the marine vessel 1 moves in translation when the marine vessel operator performs a flick input operation on the operation unit 11D (touch panel).
  • the operation unit 11D When the operator is not performing a flick input operation on the operation unit 11D (touch panel) (that is, when the operator's finger is not in contact with the touch panel), the operation unit 11D is in the state shown in FIG. It becomes the same state as. As a result, the outboard motor control device 14 does not cause the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1 to generate the propulsive force of the marine vessel 1.
  • each unit included in the outboard motor control device 14 is recorded in a computer-readable recording medium, and a program for realizing these functions is recorded in the recording medium. It may be realized by causing a computer system to read and execute the program recorded in.
  • the “computer system” mentioned here includes an OS and hardware such as peripheral devices.
  • the "computer-readable recording medium” refers to a portable medium such as a flexible disk, a magneto-optical disk, a ROM, a CD-ROM, or a storage unit such as a hard disk built in a computer system.
  • the "computer-readable recording medium” means to hold a program dynamically for a short time like a communication line when transmitting the program through a network such as the Internet or a communication line such as a telephone line.
  • a volatile memory inside a computer system that serves as a server or a client in that case, which holds a program for a certain period of time may be included.
  • the program may be one for realizing some of the functions described above, or may be one that can realize the functions described above in combination with a program already recorded in the computer system.
  • Steering actuator 13AX... Steering shaft, 13B... Bracket, 14... Outboard Machine control device, 14A... Operation unit movement route calculation unit, 14B... Ship target movement route calculation unit, 14C... Ship actual movement route calculation unit, 14D... Ship movement route difference calculation unit, 14E... Bow heading difference calculation unit, 14F ...Propulsive force calculation unit, 14G...Storage unit

Abstract

In the present invention, a plurality of outboard motors are each equipped with a propulsion unit and a steering actuator. The boat is equipped with an operation unit for operating the steering actuators and the propulsion units. When the operation unit is moved from a first position at which the outboard motors do not generate propulsion power for the boat to a second position at which the outboard motors generate propulsion power for moving the boat and is maintained in the second position, an outboard motor control device either causes the outboard motors to generate propulsion power for limiting the difference between a target movement course and the actual movement course of the boat on the basis of the boat position detected by a boat position detection unit, or causes the outboard motors to generate propulsion power for limiting the difference between the heading of the bow when movement of the boat was initiated and the heading of the bow while the boat is moving on the basis of the heading of the bow detected by a bow heading detection unit.

Description

船外機用制御装置、船外機用制御方法およびプログラムOutboard motor control device, outboard motor control method, and program
 本発明は、船外機用制御装置、船外機用制御方法およびプログラムに関する。
 本願は、2019年1月18日に、日本に出願された特願2019−007332号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an outboard motor control device, an outboard motor control method, and a program.
The present application claims priority based on Japanese Patent Application No. 2019-007332 filed in Japan on January 18, 2019, and the content thereof is incorporated herein.
 従来から、任意の方向への移動と旋回が可能な船舶用操縦装置が知られている(例えば特許文献1参照)。特許文献1に記載された技術では、推進力の方向と強さを任意に設定できる2基の推進器が船尾の左右に設置され、各推進器の推進力の方向と強さを制御することによって、所望の方向に移動させる合成力および所望の方向に旋回させる合成力が船体に作用する。詳細には、特許文献1には、全方向性制御器としてジョイスティックが記載されており、船体が姿勢を維持したままで真横に移動する例が記載されている。また、特許文献1には、船体がその姿勢のままで斜め前または斜め後に移動する例が記載されている。
 また従来から、中立状態から全方向に傾倒させることができるジョイスティックによる操作に応じて、船舶に取り付けられた2基の船外機を制御する制御装置が知られている(例えば特許文献2参照)。特許文献2に記載された技術では、ジョイスティックが右側に傾倒された場合に、制御装置は、船舶が右向きに平行移動する推進力を2基の船外機に発生させる。また、特許文献2に記載された技術では、ジョイスティックが右前側に傾倒された場合に、制御装置は、船舶が右前向きに平行移動する推進力を2基の船外機に発生させる。
2. Description of the Related Art Conventionally, a marine vessel maneuvering device capable of moving and turning in an arbitrary direction has been known (for example, see Patent Document 1). In the technique described in Patent Document 1, two propulsion units that can arbitrarily set the direction and the strength of the propulsion force are installed on the left and right of the stern, and the direction and the strength of the propulsion force of each propulsion unit are controlled. As a result, a synthetic force for moving in a desired direction and a synthetic force for turning in a desired direction act on the hull. Specifically, Patent Document 1 describes a joystick as an omnidirectional controller, and describes an example in which a hull moves laterally while maintaining its posture. In addition, Patent Document 1 describes an example in which the hull moves diagonally forward or diagonally backward while maintaining its posture.
In addition, conventionally, there is known a control device that controls two outboard motors attached to a ship according to an operation by a joystick that can be tilted in all directions from a neutral state (see Patent Document 2, for example). .. In the technique described in Patent Document 2, when the joystick is tilted to the right, the control device causes the two outboard motors to generate a propulsive force that causes the boat to move in parallel to the right. Further, in the technique described in Patent Document 2, when the joystick is tilted to the front right side, the control device causes the two outboard motors to generate a propulsive force that causes the ship to move in parallel to the front right direction.
 上述したように、特許文献1、2に記載された技術では、ジョイスティックが例えば右側に傾倒された場合に、制御装置は、船舶が右向きに平行移動(並進移動)する推進力を船外機に発生させる。
 ところで、風、潮流等による例えば後向き外力が船舶にかかる場合には、操船者が船舶を右向きに並進移動させている期間中に、船舶の実際の移動経路が、右向きの目標移動経路からずれて、右後向きになってしまうことがある。
 このような場合に、特許文献1、2に記載された技術では、風、潮流等による後向き外力に抗して船舶を右向きに並進移動させるために、操船者は、ジョイスティックに対して追加の入力操作(ジョイスティックのレバーを右前向きに傾倒する追加の入力操作)を行う必要がある。
 また、風、潮流等によって例えば時計回りに船舶を旋回させる外力が船舶にかかる場合には、操船者が船舶を右向きに並進移動させている期間中に、船舶が時計回りに旋回し、船舶の移動中の船首方位が移動開始時の船首方位からずれてしまう(つまり、船舶が並進移動しなくなる)ことがある。
 このような場合にも、特許文献1、2に記載された技術では、風、潮流等による外力に抗して船舶を右向きに並進移動させるために、操船者は、ジョイスティックに対して追加の入力操作(ジョイスティックのレバーを反時計回りに回動させる追加の入力操作)を行う必要がある。
As described above, in the techniques described in Patent Documents 1 and 2, when the joystick is tilted to the right, for example, the control device causes the outboard motor to apply a propulsive force that causes the boat to move in parallel (translate) to the right. generate.
By the way, when, for example, a backward external force due to wind, tidal current, etc. is applied to the ship, the actual travel route of the ship deviates from the target travel route to the right during the period in which the ship operator is translating the ship to the right. , It may turn to the rear right.
In such a case, in the techniques described in Patent Documents 1 and 2, the boat operator translates the ship to the right against the backward external force due to wind, tidal current, or the like, so that the operator has an additional input to the joystick. It is necessary to perform the operation (additional input operation of tilting the lever of the joystick to the front right).
Further, for example, when an external force for turning the vessel clockwise is applied to the vessel due to wind, tidal current, etc., the vessel turns clockwise while the operator is translating the vessel to the right, and The heading during movement may deviate from the heading at the start of movement (that is, the vessel may not translate).
Even in such a case, in the techniques described in Patent Documents 1 and 2, the boat operator translates the ship to the right against the external force due to the wind, the tidal current, etc., so that the operator has to make an additional input to the joystick. It is necessary to perform the operation (additional input operation for rotating the lever of the joystick counterclockwise).
特開平1−285486号公報JP-A-1-285486 特許第5987624号公報Japanese Patent No. 5987624
 上述した問題点に鑑み、本発明は、風、潮流等によって、船舶の実際の移動経路が目標移動経路からずれてしまうことまたは船舶の移動中の船首方位が移動開始時の船首方位からずれてしまうことを、操船者の操作によることなく抑制することができる船外機用制御装置、船外機用制御方法およびプログラムを提供することを目的とする。 In view of the above-mentioned problems, the present invention, due to wind, tidal current, etc., causes the actual movement route of the vessel to deviate from the target movement route, or the heading of the vessel during movement deviates from the heading at the start of movement. It is an object of the present invention to provide an outboard motor control device, an outboard motor control method, and a program capable of suppressing such a failure without being operated by an operator.
 本発明の一態様は、船舶に備えられた複数の船外機を制御する船外機用制御装置であって、前記複数の船外機のそれぞれは、前記船舶の推進力を発生する推進ユニットと、操舵アクチュエータとを備え、前記船舶は、前記操舵アクチュエータおよび前記推進ユニットを作動させる操作部と、前記船舶の位置を検出する船舶位置検出部と、前記船舶の船首の方位を検出する船首方位検出部とを備え、前記操作部は、少なくとも前記複数の船外機が前記船舶の推進力を発生しない位置である第1位置と、前記複数の船外機が前記船舶を移動させる推進力を発生する位置である第2位置とに位置することができ、前記操作部が、前記第1位置から前記第2位置に移動させられて、前記第2位置に維持される場合に、前記船外機用制御装置は、前記船舶位置検出部によって検出される前記船舶の位置に基づいて、前記船舶の目標移動経路と前記船舶の実際の移動経路との差分を抑制する推進力を前記複数の船外機に発生させるか、あるいは、前記船首方位検出部によって検出される前記船首の方位に基づいて、前記船舶の移動開始時の前記船首の方位と前記船舶の移動中の前記船首の方位との差分を抑制する推進力を前記複数の船外機に発生させる、船外機用制御装置である。 One aspect of the present invention is an outboard motor control device that controls a plurality of outboard motors provided in a ship, wherein each of the plurality of outboard motors is a propulsion unit that generates a propulsive force of the ship. And a steering actuator, wherein the ship is provided with an operation unit that operates the steering actuator and the propulsion unit, a ship position detection unit that detects the position of the ship, and a heading of the ship that detects the heading of the bow of the ship. A detection unit, and the operation unit includes a first position that is a position where at least the plurality of outboard motors does not generate a propulsive force of the marine vessel, and a propulsive force that causes the plurality of outboard motors to move the marine vessel. When the operating portion is moved from the first position to the second position and is maintained at the second position, the outboard position The machine control device controls the propulsive force that suppresses the difference between the target travel route of the ship and the actual travel route of the ship based on the position of the ship detected by the ship position detection unit. Generated in the outer unit, or based on the heading of the bow detected by the heading detection unit, between the heading of the bow at the start of movement of the ship and the heading of the bow during movement of the ship. The outboard motor control device generates a propulsive force that suppresses a difference in the plurality of outboard motors.
 本発明の一態様は、船舶に備えられた複数の船外機を制御する船外機用制御方法であって、前記複数の船外機のそれぞれは、前記船舶の推進力を発生する推進ユニットと、操舵アクチュエータとを備え、前記船舶は、前記操舵アクチュエータおよび前記推進ユニットを作動させる操作部と、前記船舶の位置を検出する船舶位置検出部と、前記船舶の船首の方位を検出する船首方位検出部と、前記複数の船外機を制御する船外機用制御装置とを備え、前記操作部は、少なくとも前記複数の船外機が前記船舶の推進力を発生しない位置である第1位置と、前記複数の船外機が前記船舶を移動させる推進力を発生する位置である第2位置とに位置することができ、前記操作部が、前記第1位置から前記第2位置に移動させられて、前記第2位置に維持される場合に、前記船舶位置検出部によって検出される前記船舶の位置、または、前記船首方位検出部によって検出される前記船首の方位を取得する第1ステップと、前記第1ステップにおいて取得された前記船舶の位置に基づいて、前記船舶の目標移動経路と前記船舶の実際の移動経路との差分を抑制する推進力を前記複数の船外機に発生させるか、あるいは、前記第1ステップにおいて取得された前記船首の方位に基づいて、前記船舶の移動開始時の前記船首の方位と前記船舶の移動中の前記船首の方位との差分を抑制する推進力を前記複数の船外機に発生させる第2ステップとを備える、船外機用制御方法である。 One aspect of the present invention is an outboard motor control method for controlling a plurality of outboard motors provided in a ship, wherein each of the plurality of outboard motors generates a propulsion unit for the ship. And a steering actuator, wherein the ship is provided with an operation unit that operates the steering actuator and the propulsion unit, a ship position detection unit that detects the position of the ship, and a heading of the ship that detects the heading of the bow of the ship. A first position, which includes a detection unit and an outboard motor control device that controls the plurality of outboard motors, and the operation unit is a position where at least the plurality of outboard motors does not generate propulsive force of the ship. And a second position, which is a position where the plurality of outboard motors generate a propulsive force for moving the boat, and the operation unit moves the first position to the second position. And a first step of acquiring the position of the ship detected by the ship position detection unit or the heading of the bow detected by the heading direction detection unit when maintained at the second position. Whether to generate a propulsive force in the plurality of outboard motors that suppresses a difference between the target travel route of the ship and the actual travel route of the ship based on the position of the ship acquired in the first step Alternatively, based on the heading of the bow acquired in the first step, a propulsive force that suppresses a difference between the heading of the bow at the start of movement of the ship and the heading of the bow during movement of the ship. A second step of causing the plurality of outboard motors to generate the outboard motor control method.
 本発明の一態様は、船舶に備えられた複数の船外機を制御するプログラムであって、前記複数の船外機のそれぞれは、前記船舶の推進力を発生する推進ユニットと、操舵アクチュエータとを備え、前記船舶は、前記操舵アクチュエータおよび前記推進ユニットを作動させる操作部と、前記船舶の位置を検出する船舶位置検出部と、前記船舶の船首の方位を検出する船首方位検出部とを備え、前記操作部は、少なくとも前記複数の船外機が前記船舶の推進力を発生しない位置である第1位置と、前記複数の船外機が前記船舶を移動させる推進力を発生する位置である第2位置とに位置することができ、前記船舶に搭載されたコンピュータに、前記操作部が、前記第1位置から前記第2位置に移動させられて、前記第2位置に維持される場合に、前記船舶位置検出部によって検出される前記船舶の位置、または、前記船首方位検出部によって検出される前記船首の方位を取得する第1ステップと、前記第1ステップにおいて取得された前記船舶の位置に基づいて、前記船舶の目標移動経路と前記船舶の実際の移動経路との差分を抑制する推進力を前記複数の船外機に発生させるか、あるいは、前記第1ステップにおいて取得された前記船首の方位に基づいて、前記船舶の移動開始時の前記船首の方位と前記船舶の移動中の前記船首の方位との差分を抑制する推進力を前記複数の船外機に発生させる第2ステップとを実行させるためのプログラムである。 One aspect of the present invention is a program for controlling a plurality of outboard motors provided in a ship, wherein each of the plurality of outboard motors includes a propulsion unit that generates a propulsive force of the ship, and a steering actuator. The boat includes an operation unit that operates the steering actuator and the propulsion unit, a boat position detection unit that detects a position of the boat, and a heading detection unit that detects a heading of the bow of the boat. The operation unit is at least a first position where the plurality of outboard motors does not generate a propulsive force of the boat and a position where the plurality of outboard motors generates a propulsive force for moving the boat. A second position, and a computer mounted on the marine vessel, wherein the operating unit is moved from the first position to the second position and is maintained at the second position. A first step of acquiring the position of the ship detected by the ship position detection section or the heading of the bow detected by the bow direction detection section, and the position of the ship acquired in the first step The propulsive force that suppresses the difference between the target travel route of the ship and the actual travel route of the ship is generated in the plurality of outboard motors, or the bow acquired in the first step. A second step of generating a propulsive force in the plurality of outboard motors that suppresses a difference between the heading of the bow at the start of movement of the ship and the heading of the bow during movement of the ship, based on the heading of Is a program for executing.
 本発明によれば、風、潮流等によって、船舶の実際の移動経路が目標移動経路からずれてしまうことまたは船舶の移動中の船首方位が移動開始時の船首方位からずれてしまうことを、操船者の操作によることなく抑制することができる船外機用制御装置、船外機用制御方法およびプログラムを提供することができる。 According to the present invention, the fact that the actual movement route of the vessel deviates from the target movement route due to wind, tidal current or the like, or that the heading of the vessel during movement deviates from the heading when the movement starts It is possible to provide an outboard motor control device, an outboard motor control method, and a program that can be suppressed without being operated by a person.
第1実施形態の船外機用制御装置が適用される船舶の一例を示す図である。It is a figure which shows an example of the ship to which the control apparatus for outboard motors of 1st Embodiment is applied. 図1に示す船舶の主要部の機能ブロック図である。It is a functional block diagram of the principal part of the ship shown in FIG. 第1実施形態の船舶における操作部の位置の例を説明するための図である。It is a figure for demonstrating the example of the position of the operation part in the ship of 1st Embodiment. 第1実施形態の船舶における操作部の移動経路の例を説明するための図である。It is a figure for demonstrating the example of the movement path of the operation part in the ship of 1st Embodiment. 第1実施形態の船舶の目標移動経路TP1→TP2などを説明するための図である。It is a figure for demonstrating the target movement path TP1 ->TP2 of a ship of 1st Embodiment. 第1実施形態の船舶の船首方位などを説明するための図である。It is a figure for demonstrating the bow direction etc. of the ship of 1st Embodiment. 第1実施形態の船舶の目標移動経路TP1→TP3などを説明するための図である。It is a figure for explaining target movement course TP1 ->TP3 etc. of the vessel of a 1st embodiment. 第1実施形態の船舶の目標移動経路TP1→TP4などを説明するための図である。It is a figure for demonstrating the target movement path TP1 ->TP4 of the ship of 1st Embodiment. 第1実施形態の船外機用制御装置によって実行される処理の一例を説明するためのフローチャートである。5 is a flowchart for explaining an example of processing executed by the outboard motor control device of the first embodiment. 第2実施形態の船外機用制御装置が適用される船舶の一例を示す図である。It is a figure which shows an example of the ship to which the control apparatus for outboard motors of 2nd Embodiment is applied.
<第1実施形態>
 以下、本発明の船外機用制御装置、船外機用制御方法およびプログラムの第1実施形態について説明する。
<First Embodiment>
Hereinafter, a first embodiment of an outboard motor control device, an outboard motor control method, and a program according to the present invention will be described.
 図1は第1実施形態の船外機用制御装置14が適用される船舶1の一例を示す図である。図2は図1に示す船舶1の主要部の機能ブロック図である。
 図1および図2に示す例では、船舶1が、船体11と、船外機12と、船外機13と、船外機用制御装置14とを備えている。船外機12、13は、船舶1の推進ユニットである。
 図1および図2に示す例では、船舶1が2基の船外機12、13を備えているが、他の例では、船舶1が3基以上の船外機を備えていてもよい。
FIG. 1 is a diagram showing an example of a ship 1 to which the outboard motor control device 14 of the first embodiment is applied. FIG. 2 is a functional block diagram of the main part of the ship 1 shown in FIG.
In the example shown in FIGS. 1 and 2, the boat 1 includes a hull 11, an outboard motor 12, an outboard motor 13, and an outboard motor control device 14. The outboard motors 12 and 13 are propulsion units of the ship 1.
In the example shown in FIGS. 1 and 2, the boat 1 includes two outboard motors 12 and 13, but in other examples, the boat 1 may include three or more outboard motors.
 図1および図2に示す例では、船外機12が、船体11の右後部に取り付けられている。船外機12は、船外機本体12Aと、ブラケット12Bとを備えている。ブラケット12Bは、船外機12を船体11の右後部に取り付けるための機構である。船外機本体12Aは、操舵軸12AXを中心に船体11に対して回動可能に、ブラケット12Bを介して船体11の右後部に接続されている。
 船外機本体12Aは、推進ユニット12A1と、操舵アクチュエータ12A2とを備えている。推進ユニット12A1は、例えばエンジン(図示せず)によって駆動されるプロペラ仕様の推進ユニットであり、船舶1の推進力を発生する。他の例では、推進ユニット12A1が、ウォータージェット仕様の推進ユニットであってもよい。
 操舵アクチュエータ12A2は、操舵軸12AXを中心に、推進ユニット12A1を含む船外機本体12Aの全体を、船体11に対して回動させる。操舵アクチュエータ12A2は、舵の役目を担う。
In the example shown in FIGS. 1 and 2, the outboard motor 12 is attached to the right rear portion of the hull 11. The outboard motor 12 includes an outboard motor body 12A and a bracket 12B. The bracket 12B is a mechanism for attaching the outboard motor 12 to the right rear portion of the hull 11. The outboard motor body 12A is connected to the right rear portion of the hull 11 via a bracket 12B so as to be rotatable with respect to the hull 11 around a steering shaft 12AX.
The outboard motor body 12A includes a propulsion unit 12A1 and a steering actuator 12A2. The propulsion unit 12A1 is, for example, a propeller-type propulsion unit driven by an engine (not shown), and generates the propulsive force of the ship 1. In another example, the propulsion unit 12A1 may be a water jet type propulsion unit.
The steering actuator 12A2 rotates the entire outboard motor body 12A including the propulsion unit 12A1 with respect to the hull 11 about the steering shaft 12AX. The steering actuator 12A2 serves as a rudder.
 図1および図2に示す例では、船外機13が、船体11の左後部に取り付けられている。船外機13は、船外機本体13Aと、ブラケット13Bとを備えている。ブラケット13Bは、船外機13を船体11の左後部に取り付けるための機構である。船外機本体13Aは、操舵軸13AXを中心に船体11に対して回動可能に、ブラケット13Bを介して船体11の左後部に接続されている。
 船外機本体13Aは、推進ユニット13A1と、操舵アクチュエータ13A2とを備えている。推進ユニット13A1は、推進ユニット12A1と同様に、例えばプロペラ仕様の推進ユニットであり、船舶1の推進力を発生する。他の例では、推進ユニット13A1が、ウォータージェット仕様の推進ユニットであってもよい。
 操舵アクチュエータ13A2は、操舵軸13AXを中心に、推進ユニット13A1を含む船外機本体13Aの全体を、船体11に対して回動させる。操舵アクチュエータ13A2は、舵の役目を担う。
In the example shown in FIGS. 1 and 2, the outboard motor 13 is attached to the left rear part of the hull 11. The outboard motor 13 includes an outboard motor body 13A and a bracket 13B. The bracket 13B is a mechanism for attaching the outboard motor 13 to the left rear part of the hull 11. The outboard motor main body 13A is connected to the left rear portion of the hull 11 via a bracket 13B so as to be rotatable with respect to the hull 11 about a steering shaft 13AX.
The outboard motor body 13A includes a propulsion unit 13A1 and a steering actuator 13A2. Like the propulsion unit 12A1, the propulsion unit 13A1 is, for example, a propeller-type propulsion unit and generates the propulsive force of the ship 1. In another example, the propulsion unit 13A1 may be a water jet specification propulsion unit.
The steering actuator 13A2 rotates the entire outboard motor body 13A including the propulsion unit 13A1 with respect to the hull 11 about the steering shaft 13AX. The steering actuator 13A2 serves as a rudder.
 図1および図2に示す例では、船体11が、操舵装置11Aと、リモコン装置11Bと、リモコン装置11Cと、操作部11Dと、船舶位置検出部11Eと、船首方位検出部11Fとを備えている。
 他の例では、船体11が、操舵装置11A、リモコン装置11Bおよびリモコン装置11Cを備えていなくてもよい。
 また、他の例では、船体11が、船舶位置検出部11Eおよび船首方位検出部11Fの一方を備えていなくてもよい。
In the example shown in FIGS. 1 and 2, the hull 11 includes a steering device 11A, a remote control device 11B, a remote control device 11C, an operation unit 11D, a ship position detection unit 11E, and a heading detection unit 11F. There is.
In another example, the hull 11 may not include the steering device 11A, the remote control device 11B, and the remote control device 11C.
Further, in another example, the hull 11 may not include one of the boat position detection unit 11E and the bow direction detection unit 11F.
 図1および図2に示す例では、操舵装置11Aは、操舵アクチュエータ12A2、13A2を作動させる装置であり、例えばステアリングホイールを有するステアリング装置である。操船者は、操舵装置11Aを操作することによって、操舵アクチュエータ12A2、13A2を作動させ、船舶1の操舵を行うことができる。
 リモコン装置11Bは、推進ユニット12A1を作動させる入力操作を受け付ける装置であり、例えばリモコンレバーを有する。操船者は、リモコン装置11Bを操作することによって、推進ユニット12A1が発生する推進力の大きさおよび向きを変更することができる。リモコン装置11Bのリモコンレバーは、推進ユニット12A1が船舶1の前向きの推進力を発生する前進領域と、推進ユニット12A1が船舶1の後向きの推進力を発生する後進領域と、推進ユニット12A1が推進力を発生しないニュートラル領域とに位置することができる。前進領域内におけるリモコンレバーの位置に応じて、推進ユニット12A1が発生する船舶1の前向きの推進力の大きさが変化する。また、後進領域内におけるリモコンレバーの位置に応じて、推進ユニット12A1が発生する船舶1の後向きの推進力の大きさが変化する。
In the example illustrated in FIGS. 1 and 2, the steering device 11A is a device that operates the steering actuators 12A2 and 13A2, and is, for example, a steering device having a steering wheel. The ship operator can operate the steering actuators 12A2 and 13A2 by operating the steering device 11A to steer the ship 1.
The remote control device 11B is a device that receives an input operation for operating the propulsion unit 12A1 and has, for example, a remote control lever. The ship operator can change the magnitude and direction of the propulsive force generated by the propulsion unit 12A1 by operating the remote control device 11B. The remote control lever of the remote control device 11B includes a forward drive region where the propulsion unit 12A1 generates a forward propulsive force of the boat 1, a reverse drive region where the propulsion unit 12A1 generates a backward propulsive force of the boat 1, and a propulsion unit 12A1. It can be located in a neutral area where no noise occurs. The magnitude of the forward propulsive force of the marine vessel 1 generated by the propulsion unit 12A1 changes according to the position of the remote control lever in the forward movement region. Further, the magnitude of the rearward propulsive force generated by the propulsion unit 12A1 changes in accordance with the position of the remote control lever in the reverse region.
 図1および図2に示す例では、リモコン装置11Cが、推進ユニット13A1を作動させる入力操作を受け付ける装置であり、リモコン装置11Bと同様に構成されている。つまり、操船者は、リモコン装置11Cを操作することによって、推進ユニット13A1が発生する推進力の大きさおよび向きを変更することができる。
 操作部11Dは、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1を作動させる装置である。詳細には、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1を作動させるための入力操作を受け付ける。操作部11Dは、操舵装置11Aおよびリモコン装置11B、11Cとは別個に設けられている。
 第1実施形態の船舶1では、操作部11Dが、レバーを有するジョイステイックによって構成されている。
 操船者は、操舵装置11A(ステアリングホイール)およびリモコン装置11B、11C(リモコンレバー)を操作することによって、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1を作動させることができるのみならず、操作部11D(ジョイスティック)を操作することによっても、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1を作動させることができる。
In the example shown in FIGS. 1 and 2, the remote controller 11C is a device that receives an input operation for operating the propulsion unit 13A1, and is configured similarly to the remote controller 11B. That is, the ship operator can change the magnitude and direction of the propulsive force generated by the propulsion unit 13A1 by operating the remote control device 11C.
The operation unit 11D is a device that operates the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1. Specifically, an input operation for operating the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1 is accepted. The operation unit 11D is provided separately from the steering device 11A and the remote control devices 11B and 11C.
In the marine vessel 1 of the first embodiment, the operation unit 11D is configured by a joystick having a lever.
The ship operator can operate not only the steering actuators 12A2 and 13A2 and the propulsion units 12A1 and 13A1 by operating the steering device 11A (steering wheel) and the remote control devices 11B and 11C (remote control lever) but also the operation unit. The steering actuators 12A2 and 13A2 and the propulsion units 12A1 and 13A1 can also be operated by operating 11D (joystick).
 図1および図2に示す例では、船舶位置検出部11Eが船舶1の位置を検出する。船舶位置検出部11Eは、例えばGPS(Global Positioning System)装置を備えている。GPS装置は、複数のGPS衛星からの信号を受信することによって、船舶1の位置座標を算出する。
 船首方位検出部11Fは、船舶1の船首1Bの方位を検出する。船首方位検出部11Fは、例えば方位センサを備えている。方位センサは、例えば地磁気を利用することによって、船首1Bの方位を算出する。
 他の例では、方位センサが、高速回転するジャイロスコープに指北装置と制振装置とを付加し、常に北を示すようにした装置(ジャイロコンパス)であってもよい。
 更に他の例では、方位センサが、複数のGPSアンテナを備え、複数のGPSアンテナの相対的な位置関係から船首1Bの方位を算出するGPSコンパスであってもよい。
In the example shown in FIGS. 1 and 2, the ship position detection unit 11E detects the position of the ship 1. The ship position detection unit 11E includes, for example, a GPS (Global Positioning System) device. The GPS device calculates the position coordinates of the ship 1 by receiving signals from a plurality of GPS satellites.
The bow direction detection unit 11F detects the direction of the bow 1B of the ship 1. The bow direction detection unit 11F includes, for example, a direction sensor. The azimuth sensor calculates the azimuth of the bow 1B by using, for example, geomagnetism.
In another example, the azimuth sensor may be a device (gyro compass) in which a finger north device and a vibration damping device are added to a gyroscope that rotates at a high speed so as to always indicate north.
In still another example, the azimuth sensor may be a GPS compass that includes a plurality of GPS antennas and calculates the azimuth of the bow 1B from the relative positional relationship of the plurality of GPS antennas.
 図1および図2に示す例では、船外機用制御装置14が、操作部11Dに対する入力操作に基づいて、船外機12の操舵アクチュエータ12A2および推進ユニット12A1と、船外機13の操舵アクチュエータ13A2および推進ユニット13A1とを制御する。詳細には、船外機用制御装置14は、操作部11Dに対する入力操作に基づいて、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1が発生する船舶1の推進力の大きさおよび向きを制御する。
 船外機用制御装置14は、操作部移動経路算出部14Aと、船舶目標移動経路算出部14Bと、船舶実移動経路算出部14Cと、船舶移動経路差分算出部14Dと、船首方位差分算出部14Eと、推進力算出部14Fと、記憶部14Gとを備えている。
 操作部移動経路算出部14Aは、操作部11Dの移動経路を算出する。詳細には、操作部移動経路算出部14Aは、例えばマイクロスイッチなどのセンサ(図示せず)によって検出されたジョイスティックのレバーの位置に基づいて、ジョイスティックのレバーの先端部の移動経路を算出する。
 船舶目標移動経路算出部14Bは、船舶1の目標移動経路を算出する。船舶実移動経路算出部14Cは、船舶1の実際の移動経路を算出する。船舶移動経路差分算出部14Dは、船舶1の目標移動経路と船舶1の実際の移動経路との差分を算出する。
In the example shown in FIGS. 1 and 2, the outboard motor control device 14 controls the steering actuator 12A2 and the propulsion unit 12A1 of the outboard motor 12 and the steering actuator of the outboard motor 13 based on the input operation to the operation unit 11D. 13A2 and propulsion unit 13A1. Specifically, the outboard motor control device 14 controls the magnitude and direction of the propulsive force of the marine vessel 1 generated by the steering actuators 12A2 and 13A2 and the propulsion units 12A1 and 13A1 based on the input operation to the operation unit 11D. ..
The outboard motor control device 14 includes an operation unit movement route calculation unit 14A, a ship target movement route calculation unit 14B, a ship actual movement route calculation unit 14C, a boat movement route difference calculation unit 14D, and a bow direction difference calculation unit. 14E, a propulsive force calculation unit 14F, and a storage unit 14G.
The operation unit movement route calculation unit 14A calculates the movement route of the operation unit 11D. Specifically, the operation unit movement path calculation unit 14A calculates the movement path of the tip end portion of the joystick lever based on the position of the joystick lever detected by a sensor (not shown) such as a microswitch.
The ship target travel route calculation unit 14B calculates the target travel route of the ship 1. The actual ship travel route calculation unit 14C calculates the actual travel route of the ship 1. The ship movement route difference calculation unit 14D calculates the difference between the target movement route of the boat 1 and the actual movement route of the boat 1.
 図1および図2に示す例では、船首方位差分算出部14Eが、船舶1の移動開始時の船首1Bの方位と、船舶1の移動中の船首1Bの方位との差分を算出する。船舶1の移動開始時の船首1Bの方位は、船舶1の移動開始時に、船首方位検出部11Fによって検出される。船舶1の移動中の船首1Bの方位は、船舶1の移動中に、船首方位検出部11Fによって検出される。つまり、船首方位差分算出部14Eは、船首方位検出部11Fによって検出される船首1Bの方位に基づいて、船舶1の移動開始時の船首1Bの方位と、船舶1の移動中の船首1Bの方位との差分を算出する。
 推進力算出部14Fは、基本的に、操作部移動経路算出部14Aによって算出された操作部11Dの移動経路に基づいて、船外機12、13に発生させる推進力を算出する。詳細には、推進力算出部14Fは、基本的に、ジョイスティックのレバーの先端部の移動経路に基づいて、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる船舶1の推進力の大きさおよび向きを算出する。
 記憶部14Gは、船舶位置検出部11Eおよび船首方位検出部11Fの検出結果などを記憶する。詳細には、記憶部14Gは、上述した例えばマイクロスイッチなどのセンサによって検出されたジョイスティックのレバーの位置、船舶1の移動開始時に船舶位置検出部11Eによって検出された船舶1の位置、船舶1の移動中に船舶位置検出部11Eによって検出された船舶1の位置、船舶1の移動開始時に船首方位検出部11Fによって検出された船首1Bの方位、船舶1の移動中に船首方位検出部11Fによって検出された船首1Bの方位などを記憶する。
 船外機用制御装置14は、推進力算出部14Fによって算出された大きさおよび向きの推進力を操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1が発生するように、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1を制御する。
In the examples shown in FIGS. 1 and 2, the bow direction difference calculation unit 14E calculates the difference between the direction of the bow 1B at the start of movement of the boat 1 and the direction of the bow 1B during movement of the boat 1. The heading of the bow 1B at the start of movement of the boat 1 is detected by the heading detection unit 11F at the start of movement of the boat 1. The azimuth of the bow 1B during the movement of the boat 1 is detected by the bow azimuth detection unit 11F during the movement of the boat 1. In other words, the heading difference calculation unit 14E calculates the heading of the bow 1B at the start of movement of the ship 1 and the heading 1B of the moving ship 1B based on the heading 1B detected by the heading detection unit 11F. And the difference is calculated.
The propulsive force calculating unit 14F basically calculates the propulsive force to be generated in the outboard motors 12 and 13 based on the movement route of the operation unit 11D calculated by the operation unit movement route calculation unit 14A. Specifically, the propulsion force calculation unit 14F basically determines the magnitude of the propulsion force of the boat 1 to be generated by the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1 based on the movement path of the tip of the joystick lever. And calculate the orientation.
The storage unit 14G stores the detection results of the ship position detection unit 11E and the bow direction detection unit 11F. Specifically, the storage unit 14G stores the position of the lever of the joystick detected by a sensor such as a micro switch described above, the position of the ship 1 detected by the ship position detection unit 11E at the start of movement of the ship 1, and the position of the ship 1. The position of the ship 1 detected by the ship position detection unit 11E during movement, the direction of the bow 1B detected by the heading direction detection unit 11F at the start of movement of the ship 1, and the heading direction detection unit 11F during movement of the ship 1. The heading of the bow 1B and the like are stored.
The outboard motor control device 14 controls the steering actuators 12A2, 13A2 and the propulsion units so that the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1 generate the propulsive force having the magnitude and direction calculated by the propulsion force calculation unit 14F. It controls the units 12A1 and 13A1.
 図1および図2に示す例では、操作部11D(ジョイスティック)のレバーが傾倒可能であると共に、レバーが、レバーの中心軸線を中心に回動可能に、操作部11Dは構成されている。
 操船者が、レバーの中心軸線を中心にレバーを時計回りに回動させる場合に、船外機用制御装置14は、船舶1が右旋回するように、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1を制御する。一方、操船者が、レバーの中心軸線を中心にレバーを反時計回りに回動させる場合に、船外機用制御装置14は、船舶1が左旋回するように、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1を制御する。つまり、操船者がレバーの中心軸線を中心にレバーを回動させることによって、船首1Bの方位が変化する。
 また、操船者がレバーを傾倒させる場合に、船外機用制御装置14は、船舶1が姿勢を維持したまま(つまり、船首1Bの方位が変化することなく)移動するように、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1を制御する。つまり、操船者がレバーを傾倒させることによって、船体11の前部と、船体11の後部とが、並進する。
In the examples shown in FIGS. 1 and 2, the lever of the operation unit 11D (joystick) is tiltable, and the operation unit 11D is configured such that the lever can rotate about the central axis of the lever.
When the marine vessel operator turns the lever clockwise about the central axis of the lever, the outboard motor control device 14 controls the steering actuators 12A2, 13A2 and the propulsion unit 12A1 so that the boat 1 turns right. , 13A1. On the other hand, when the ship operator turns the lever counterclockwise about the central axis of the lever, the outboard motor control device 14 controls the steering actuators 12A2, 13A2 and the propulsion so that the boat 1 turns left. It controls the units 12A1 and 13A1. In other words, the azimuth of the bow 1B changes as the operator turns the lever about the central axis of the lever.
When the operator tilts the lever, the outboard motor control device 14 moves the steering actuator 12A2 so that the boat 1 moves while maintaining its posture (that is, without changing the orientation of the bow 1B). , 13A2 and propulsion units 12A1, 13A1. That is, when the operator tilts the lever, the front part of the hull 11 and the rear part of the hull 11 translate.
 図3は第1実施形態の船舶1における操作部11Dの位置(詳細には、ジョイスティックのレバーの先端部の位置P1~P9)の例を説明するための図である。
 図3(A)に示す例では、操作部11D(ジョイスティック)のレバーが傾倒されていない。そのため、操作部11D(詳細には、ジョイスティックのレバーの先端部)は、位置(中立位置)P1に位置する。操作部11D(ジョイスティックのレバーの先端部)が位置P1に位置する場合、船外機用制御装置14は、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に船舶1の推進力を発生させない。
 つまり、位置P1は、船外機12、13が船舶1の推進力を発生しない位置である。
FIG. 3 is a diagram for explaining an example of the position of the operation portion 11D (specifically, the positions P1 to P9 of the tip end portion of the joystick lever) in the boat 1 of the first embodiment.
In the example shown in FIG. 3A, the lever of the operation unit 11D (joystick) is not tilted. Therefore, the operation unit 11D (specifically, the tip of the joystick lever) is located at the position (neutral position) P1. When the operation unit 11D (the tip of the joystick lever) is located at the position P1, the outboard motor control device 14 does not cause the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1 to generate the propulsive force of the ship 1.
That is, the position P1 is a position where the outboard motors 12 and 13 do not generate the propulsive force of the boat 1.
 図3(B)に示す例では、ジョイスティックのレバーが右向きに傾倒されている。そのため、ジョイスティックのレバーの先端部は、位置P1の右側の位置P2に位置する。ジョイスティックのレバーの先端部が位置P2に位置する場合、船外機用制御装置14は、基本的に、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に、船舶1を右向きに移動させる推進力を発生させる。
 つまり、位置P2は、基本的に、船外機12、13が船舶1を右向きに移動(詳細には、並進移動)させる推進力を発生する位置である。
 図3(C)に示す例では、ジョイスティックのレバーが右前向きに傾倒されている。そのため、ジョイスティックのレバーの先端部は、位置P1の右前側の位置P3に位置する。ジョイスティックのレバーの先端部が位置P3に位置する場合、船外機用制御装置14は、基本的に、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に、左右方向と鋭角θ3をなす右前向きに船舶1を移動させる推進力を発生させる。
 つまり、位置P3は、基本的に、船外機12、13が船舶1を右前向きに移動(並進移動)させる推進力を発生する位置である。
 図3(D)に示す例では、ジョイスティックのレバーが右後向きに傾倒されている。そのため、ジョイスティックのレバーの先端部は、位置P1の右後側の位置P4に位置する。ジョイスティックのレバーの先端部が位置P4に位置する場合、船外機用制御装置14は、基本的に、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に、左右方向と鋭角θ4をなす右後向きに船舶1を移動させる推進力を発生させる。
 つまり、位置P4は、基本的に、船外機12、13が船舶1を右後向きに移動(並進移動)させる推進力を発生する位置である。
In the example shown in FIG. 3B, the lever of the joystick is tilted rightward. Therefore, the tip of the lever of the joystick is located at the position P2 on the right side of the position P1. When the tip part of the lever of the joystick is located at the position P2, the outboard motor control device 14 basically applies the propulsive force for moving the boat 1 to the right to the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1. generate.
That is, the position P2 is basically a position where the outboard motors 12 and 13 generate a propulsive force that moves the boat 1 to the right (specifically, translational movement).
In the example shown in FIG. 3C, the lever of the joystick is tilted to the front right. Therefore, the tip of the lever of the joystick is located at the position P3 on the right front side of the position P1. When the tip portion of the joystick lever is located at the position P3, the outboard motor control device 14 basically causes the steering actuators 12A2 and 13A2 and the propulsion units 12A1 and 13A1 to move to the front right direction forming an acute angle θ3 with the left-right direction. Propulsive force for moving the ship 1 is generated.
That is, the position P3 is basically a position where the outboard motors 12 and 13 generate a propulsive force that moves the boat 1 to the front right (translational movement).
In the example shown in FIG. 3D, the lever of the joystick is tilted rearward to the right. Therefore, the tip of the lever of the joystick is located at the position P4 on the right rear side of the position P1. When the tip of the joystick lever is located at the position P4, the outboard motor control device 14 basically causes the steering actuators 12A2 and 13A2 and the propulsion units 12A1 and 13A1 to move to the right rearward forming an acute angle θ4 with the left-right direction. Propulsive force for moving the ship 1 is generated.
That is, the position P4 is basically a position where the outboard motors 12 and 13 generate a propulsive force that moves the boat 1 to the right rear (translational movement).
 図3(E)に示す例では、ジョイスティックのレバーが左向きに傾倒されている。そのため、ジョイスティックのレバーの先端部は、位置P1の左側の位置P5に位置する。ジョイスティックのレバーの先端部が位置P5に位置する場合、船外機用制御装置14は、基本的に、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に、船舶1を左向きに移動させる推進力を発生させる。
 つまり、位置P5は、基本的に、船外機12、13が船舶1を左向きに移動(並進移動)させる推進力を発生する位置である。
 図3(F)に示す例では、ジョイスティックのレバーが左前向きに傾倒されている。そのため、ジョイスティックのレバーの先端部は、位置P1の左前側の位置P6に位置する。ジョイスティックのレバーの先端部が位置P6に位置する場合、船外機用制御装置14は、基本的に、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に、左右方向と鋭角θ6をなす左前向きに船舶1を移動させる推進力を発生させる。
 つまり、位置P6は、基本的に、船外機12、13が船舶1を左前向きに移動(並進移動)させる推進力を発生する位置である。
 図3(G)に示す例では、ジョイスティックのレバーが左後向きに傾倒されている。そのため、ジョイスティックのレバーの先端部は、位置P1の左後側の位置P7に位置する。ジョイスティックのレバーの先端部が位置P7に位置する場合、船外機用制御装置14は、基本的に、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に、左右方向と鋭角θ7をなす左後向きに船舶1を移動させる推進力を発生させる。
 つまり、位置P7は、基本的に、船外機12、13が船舶1を左後向きに移動(並進移動)させる推進力を発生する位置である。
In the example shown in FIG. 3(E), the lever of the joystick is tilted leftward. Therefore, the tip of the lever of the joystick is located at the position P5 on the left side of the position P1. When the tip of the lever of the joystick is located at the position P5, the outboard motor control device 14 basically applies the propulsive force that moves the boat 1 to the left to the steering actuators 12A2 and 13A2 and the propulsion units 12A1 and 13A1. generate.
That is, the position P5 is basically a position where the outboard motors 12 and 13 generate a propulsive force that moves the boat 1 leftward (translational movement).
In the example shown in FIG. 3F, the lever of the joystick is tilted to the front left. Therefore, the tip of the lever of the joystick is located at the position P6 on the left front side of the position P1. When the tip portion of the joystick lever is located at the position P6, the outboard motor control device 14 basically causes the steering actuators 12A2 and 13A2 and the propulsion units 12A1 and 13A1 to move to the left front facing at an acute angle θ6. Propulsive force for moving the ship 1 is generated.
That is, the position P6 is basically a position where the outboard motors 12 and 13 generate a propulsive force that moves (translates) the boat 1 to the left front.
In the example shown in FIG. 3G, the lever of the joystick is tilted leftward and rearward. Therefore, the tip of the lever of the joystick is located at the position P7 on the left rear side of the position P1. When the tip portion of the joystick lever is located at the position P7, the outboard motor control device 14 basically causes the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1 to move to the left rearward forming an acute angle θ7 with the left-right direction. Propulsive force for moving the ship 1 is generated.
That is, the position P7 is basically a position where the outboard motors 12 and 13 generate a propulsive force that moves the boat 1 to the left rearward (translational movement).
 図3(H)に示す例では、ジョイスティックのレバーが前向きに傾倒されている。そのため、ジョイスティックのレバーの先端部は、位置P1の前側の位置P8に位置する。ジョイスティックのレバーの先端部が位置P8に位置する場合、船外機用制御装置14は、基本的に、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に、船舶1を前向きに移動させる推進力を発生させる。
 つまり、位置P8は、基本的に、船外機12、13が船舶1を前向きに移動(前進)させる推進力を発生する位置である。
 図3(I)に示す例では、ジョイスティックのレバーが後向きに傾倒されている。そのため、ジョイスティックのレバーの先端部は、位置P1の後側の位置P9に位置する。ジョイスティックのレバーの先端部が位置P9に位置する場合、船外機用制御装置14は、基本的に、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に、船舶1を後向きに移動させる推進力を発生させる。
 つまり、位置P9は、基本的に、船外機12、13が船舶1を後向きに移動(後進)させる推進力を発生する位置である。
In the example shown in FIG. 3(H), the lever of the joystick is tilted forward. Therefore, the tip of the lever of the joystick is located at the position P8 on the front side of the position P1. When the tip of the lever of the joystick is located at the position P8, the outboard motor control device 14 basically applies the propulsive force that moves the boat 1 forward to the steering actuators 12A2 and 13A2 and the propulsion units 12A1 and 13A1. generate.
That is, the position P8 is basically a position where the outboard motors 12, 13 generate a propulsive force that moves (forwards) the boat 1 forward.
In the example shown in FIG. 3(I), the lever of the joystick is tilted rearward. Therefore, the tip of the lever of the joystick is located at the position P9 behind the position P1. When the tip portion of the joystick lever is located at the position P9, the outboard motor control device 14 basically applies the propulsive force for moving the boat 1 backward to the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1. generate.
That is, the position P9 is basically a position where the outboard motors 12 and 13 generate a propulsive force that moves (reverses) the boat 1 backward.
 操船者が操作部11D(ジョイスティック)を操作しない場合、自動復帰機能を有するジョイスティックのレバーの先端部は、位置P1に位置する。ジョイスティックのレバーの先端部は、操船者の操作に応じて、例えば位置P1~P9などの位置に位置することができる。 When the operator does not operate the operation unit 11D (joystick), the tip of the lever of the joystick having the automatic return function is located at the position P1. The tip portion of the lever of the joystick can be located at, for example, positions P1 to P9 according to the operation of the operator.
 図4は第1実施形態の船舶1における操作部11Dの移動経路(詳細には、ジョイスティックのレバーの先端部の移動経路)の例を説明するための図である。図5は第1実施形態の船舶1の目標移動経路TP1→TP2などを説明するための図である。
 図4(A)に示す例では、操作部11D(詳細には、ジョイスティックのレバーの先端部)が位置P1から位置P2に移動させられて、位置P2に維持される。
 操作部移動経路算出部14Aは、ジョイスティックのレバーの先端部が位置P1に位置する時刻のレバーの位置と、ジョイスティックのレバーの先端部が位置P2に移動させられた時刻(船舶1の移動開始時)のレバーの位置とに基づいて、ジョイスティックのレバーの先端部の移動経路(操作部11Dの移動経路)P1→P2を算出する。
 船舶目標移動経路算出部14Bは、船舶1の移動開始時に船舶位置検出部11Eによって検出された船舶1の位置と、船舶1の移動開始時の操作部11Dの位置P2とに基づいて、右向きの船舶1の目標移動経路TP1→TP2(図5(A)参照)を算出する。
 推進力算出部14Fは、船舶目標移動経路算出部14Bによって算出された右向きの船舶1の目標移動経路TP1→TP2に基づいて、船外機12、13に発生させる推進力を算出する。
 船外機用制御装置14は、推進力算出部14Fによって算出された右向きの推進力を、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる。
 その結果、船舶1が右向きに移動(並進移動)開始する。
FIG. 4 is a diagram for explaining an example of a movement path of the operation unit 11D (specifically, a movement path of the tip end portion of the joystick lever) in the boat 1 of the first embodiment. FIG. 5: is a figure for demonstrating the target movement path TP1 ->TP2 of the ship 1 of 1st Embodiment.
In the example illustrated in FIG. 4A, the operation unit 11D (specifically, the tip end portion of the joystick lever) is moved from the position P1 to the position P2 and is maintained at the position P2.
The operation unit movement path calculation unit 14A determines the position of the lever at the time when the tip of the joystick lever is located at the position P1 and the time when the tip of the joystick lever is moved to the position P2 (when the movement of the boat 1 is started. ), the movement path (movement path of the operation unit 11D) P1→P2 of the tip of the joystick lever is calculated.
The ship target movement route calculation unit 14B determines the rightward direction based on the position of the ship 1 detected by the ship position detection unit 11E when the ship 1 starts moving and the position P2 of the operation unit 11D when the ship 1 starts moving. The target travel route TP1→TP2 of the ship 1 (see FIG. 5A) is calculated.
The propulsive force calculating unit 14F calculates the propulsive force to be generated in the outboard motors 12 and 13 based on the target moving route TP1→TP2 of the ship 1 facing right calculated by the target boat moving route calculating unit 14B.
The outboard motor control device 14 causes the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1 to generate the rightward propulsion force calculated by the propulsion force calculation unit 14F.
As a result, the marine vessel 1 starts to move to the right (translational movement).
 次いで、船舶1が右向きに移動(並進移動)している期間中に、船舶実移動経路算出部14Cは、船舶1の移動開始時に船舶位置検出部11Eによって検出された船舶1の位置と、船舶1の移動中に船舶位置検出部11Eによって検出される船舶1の位置とに基づいて、船舶1の実際の移動経路RP1→RP2(図5(B)参照)を算出する。
 船舶1の移動中に、船舶1が風、潮流等による外力を受けない場合、船舶1の実際の移動経路RP1→RP2(図5(B)参照)と、船舶1の目標移動経路TP1→TP2(図5(A)参照)とが一致する。
 その結果、船舶移動経路差分算出部14Dによって算出される船舶1の目標移動経路TP1→TP2と船舶1の実際の移動経路RP1→RP2との差分がゼロになる。
 また、船首方位差分算出部14Eによって算出される船舶1の移動開始時の船首1Bの方位と、船舶1の移動中の船首1Bの方位との差分もゼロになる。
 そのため、推進力算出部14Fは、船舶1の移動中に、船舶1の移動開始時に算出した推進力と等しい推進力を算出する。
 船外機用制御装置14は、船舶1の移動中に、推進力算出部14Fによって算出された右向きの推進力を、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる。
 その結果、船舶1が右向きの移動(並進移動)を継続する。
Next, during the period in which the ship 1 is moving to the right (translational movement), the ship actual movement route calculation unit 14C detects the position of the ship 1 detected by the ship position detection unit 11E when the ship 1 starts moving, The actual movement route RP1→RP2 of the marine vessel 1 (see FIG. 5(B)) is calculated based on the position of the marine vessel 1 detected by the marine vessel position detection unit 11E while the marine vessel 1 is moving.
When the ship 1 does not receive an external force due to wind, tidal current, etc. while the ship 1 is moving, the actual travel route RP1→RP2 (see FIG. 5(B)) of the ship 1 and the target travel route TP1→TP2 of the ship 1 (See FIG. 5A).
As a result, the difference between the target travel route TP1→TP2 of the ship 1 and the actual travel route RP1→RP2 of the ship 1 calculated by the ship travel route difference calculation unit 14D becomes zero.
Further, the difference between the bearing of the bow 1B at the start of movement of the boat 1 and the bearing of the bow 1B during movement of the boat 1 calculated by the bow bearing difference calculation unit 14E is also zero.
Therefore, the propulsive force calculating unit 14F calculates a propulsive force that is equal to the propulsive force calculated when the marine vessel 1 starts moving while the marine vessel 1 is moving.
The outboard motor control device 14 causes the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1 to generate the rightward propulsive force calculated by the propulsive force calculating unit 14F while the boat 1 is moving.
As a result, the ship 1 continues to move to the right (translational movement).
 一方、船舶1の移動中に船舶1が風、潮流等による例えば後向きの外力を受ける場合には、その後向きの外力によって、船舶1が後側に流される。
 そのため、船舶実移動経路算出部14Cは、船舶1の移動開始時に船舶位置検出部11Eによって検出された船舶1の位置と、船舶1の移動中に船舶位置検出部11Eによって検出される船舶1の位置(後側に流された船舶1の位置)RP2B(図5(C)参照)とに基づいて、船舶1の実際の移動経路RP1→RP2B(図5(C)参照)を算出する。
 船舶1の移動中に船舶1が後向きの外力を受ける場合には、船舶1の実際の移動経路RP1→RP2B(図5(C)参照)と、船舶1の目標移動経路TP1→TP2(図5(A)参照)とが一致しない。
 その結果、船舶移動経路差分算出部14Dは、船舶1の目標移動経路TP1→TP2(図5(A)参照)と船舶1の実際の移動経路RP1→RP2B(図5(C)参照)との差分(≠0)を算出する。
 図5(C)に示す例では、船首方位差分算出部14Eが、船舶1の移動開始時の船首1Bの方位と、船舶1の移動中の船首1Bの方位との差分ゼロを算出する。
 従って、推進力算出部14Fは、船舶1の移動中に、船舶1の実際の移動経路RP1→RP2B(図5(C)参照)を船舶1の目標移動経路TP1→TP2(図5(A)参照)に近づける右前向きの推進力F2F(図5(D)参照)を、船外機12、13の操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる船舶1の推進力として算出する。
 船外機用制御装置14は、船舶1の移動中に、推進力算出部14Fによって算出された右前向きの推進力F2F(図5(D)参照)を、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる。
 つまり、船外機用制御装置14は、船舶1の移動中に、操船者が操作部11Dを位置P3(図3(C)参照)に移動させる追加の操作を行わなくても、右前向きの推進力F2F(図5(D)参照)を、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる。
 すなわち、船外機用制御装置14は、船舶1の移動中に、船舶1の目標移動経路TP1→TP2と船舶1の実際の移動経路RP1→RP2Bとの差分を抑制する右前向きの推進力F2Fを船外機12、13に発生させる。
 詳細には、船外機用制御装置14は、船舶1の移動中に、船舶位置検出部11Eによって検出される船舶1の位置RP2B(図5(C)参照)に基づいて、船舶1の実際の移動経路RP1→RP2Bを船舶1の目標移動経路TP1→TP2に近づける船外機12、13のフィードバック制御を実行する。
 その結果、図5(C)および図5(D)に示す例では、船舶1は、操船者の追加操作の必要なく、風、潮流等による後向きの外力に抗して、右向きの移動(並進移動)を継続することができる。
On the other hand, when the boat 1 receives a backward external force due to wind, tidal current, etc. while the boat 1 is moving, the backward external force causes the boat 1 to flow to the rear side.
Therefore, the actual ship movement route calculation unit 14C detects the position of the ship 1 detected by the ship position detection unit 11E at the start of the movement of the ship 1 and the position of the ship 1 detected by the ship position detection unit 11E during the movement of the ship 1. The actual movement route RP1→RP2B (see FIG. 5(C)) of the boat 1 is calculated based on the position (the position of the boat 1 flown to the rear side) RP2B (see FIG. 5(C)).
When the ship 1 receives a backward external force while the ship 1 is moving, the actual travel route RP1→RP2B of the ship 1 (see FIG. 5C) and the target travel route TP1→TP2 of the ship 1 (FIG. 5). (See (A)) does not match.
As a result, the ship movement route difference calculation unit 14D calculates the target movement route TP1→TP2 of the boat 1 (see FIG. 5A) and the actual movement route RP1→RP2B of the boat 1 (see FIG. 5C). The difference (≠0) is calculated.
In the example shown in FIG. 5C, the bow direction difference calculation unit 14E calculates a zero difference between the direction of the bow 1B at the start of movement of the boat 1 and the direction of the bow 1B during movement of the boat 1.
Therefore, the propulsive force calculation unit 14F changes the actual movement route RP1→RP2B (see FIG. 5C) of the boat 1 to the target movement route TP1→TP2 of the boat 1 (FIG. 5A) while the boat 1 is moving. The forward propulsive force F2F (see FIG. 5(D)) approaching (see FIG. 5D) is calculated as the propulsive force of the boat 1 generated by the steering actuators 12A2, 13A2 of the outboard motors 12, 13 and the propulsion units 12A1, 13A1.
The outboard motor control device 14 applies the right-forward propulsive force F2F (see FIG. 5D) calculated by the propulsive force calculating unit 14F to the steering actuators 12A2, 13A2 and the propulsion unit 12A1 while the ship 1 is moving. , 13A1.
That is, the outboard motor control device 14 does not need to perform an additional operation of moving the operation unit 11D to the position P3 (see FIG. 3C) while the ship 1 is moving, and the forward rightward facing direction is not required. A propulsive force F2F (see FIG. 5D) is generated in the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1.
That is, the outboard motor control device 14 suppresses the difference between the target movement route TP1→TP2 of the boat 1 and the actual movement route RP1→RP2B of the boat 1 while the boat 1 is moving, and the right forward thrust F2F. To the outboard motors 12 and 13.
Specifically, the outboard motor control device 14 determines the actual state of the ship 1 based on the position RP2B (see FIG. 5C) of the ship 1 detected by the ship position detection unit 11E while the ship 1 is moving. The feedback control of the outboard motors 12 and 13 is performed to bring the moving route RP1→RP2B of 1 to the target moving route TP1→TP2 of the ship 1.
As a result, in the example shown in FIGS. 5(C) and 5(D), the ship 1 moves to the right (translates) against the backward external force due to wind, tidal current, etc. without the need for additional operation by the operator. Move) can be continued.
 また、船舶1の移動中に船舶1が風、潮流等による例えば前向きの外力を受ける場合には、その前向きの外力によって、船舶1が前側に流される。
 そのため、船舶実移動経路算出部14Cは、船舶1の移動開始時に船舶位置検出部11Eによって検出された船舶1の位置と、船舶1の移動中に船舶位置検出部11Eによって検出される船舶1の位置(前側に流された船舶1の位置)RP2F(図5(E)参照)とに基づいて、船舶1の実際の移動経路RP1→RP2F(図5(E)参照)を算出する。
 船舶1の移動中に船舶1が前向きの外力を受ける場合には、船舶1の実際の移動経路RP1→RP2F(図5(E)参照)と、船舶1の目標移動経路TP1→TP2(図5(A)参照)とが一致しない。
 その結果、船舶移動経路差分算出部14Dは、船舶1の目標移動経路TP1→TP2(図5(A)参照)と船舶1の実際の移動経路RP1→RP2F(図5(E)参照)との差分(≠0)を算出する。
 図5(E)に示す例では、船首方位差分算出部14Eが、船舶1の移動開始時の船首1Bの方位と、船舶1の移動中の船首1Bの方位との差分ゼロを算出する。
 従って、推進力算出部14Fは、船舶1の移動中に、船舶1の実際の移動経路RP1→RP2F(図5(E)参照)を船舶1の目標移動経路TP1→TP2(図5(A)参照)に近づける右後向きの推進力F2B(図5(F)参照)を、船外機12、13の操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる船舶1の推進力として算出する。
 船外機用制御装置14は、船舶1の移動中に、推進力算出部14Fによって算出された右後向きの推進力F2B(図5(F)参照)を、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる。
 つまり、船外機用制御装置14は、船舶1の移動中に、操船者が操作部11Dを位置P4(図3(D)参照)に移動させる追加の操作を行わなくても、右後向きの推進力F2B(図5(F)参照)を、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる。
 すなわち、船外機用制御装置14は、船舶1の移動中に、船舶1の目標移動経路TP1→TP2と船舶1の実際の移動経路RP1→RP2Fとの差分を抑制する右後向きの推進力F2Bを船外機12、13に発生させる。
 詳細には、船外機用制御装置14は、船舶1の移動中に、船舶位置検出部11Eによって検出される船舶1の位置RP2F(図5(E)参照)に基づいて、船舶1の実際の移動経路RP1→RP2Fを船舶1の目標移動経路TP1→TP2に近づける船外機12、13のフィードバック制御を実行する。
 その結果、図5(E)および図5(F)に示す例では、船舶1は、操船者の追加操作の必要なく、風、潮流等による前向きの外力に抗して、右向きの移動(並進移動)を継続することができる。
Further, when the ship 1 receives a forward external force due to wind, tidal current, or the like while the ship 1 is moving, the forward external force causes the ship 1 to flow forward.
Therefore, the actual ship movement route calculation unit 14C detects the position of the ship 1 detected by the ship position detection unit 11E at the start of the movement of the ship 1 and the position of the ship 1 detected by the ship position detection unit 11E during the movement of the ship 1. The actual movement route RP1→RP2F (see FIG. 5(E)) of the boat 1 is calculated based on the position (the position of the boat 1 flown to the front side) RP2F (see FIG. 5(E)).
When the ship 1 receives a forward external force while the ship 1 is moving, the actual travel route RP1→RP2F of the ship 1 (see FIG. 5E) and the target travel route TP1→TP2 of the ship 1 (FIG. 5). (See (A)) does not match.
As a result, the ship movement route difference calculation unit 14D sets the target movement route TP1→TP2 of the boat 1 (see FIG. 5A) and the actual movement route RP1→RP2F of the boat 1 (see FIG. 5E). The difference (≠0) is calculated.
In the example shown in FIG. 5(E), the bow azimuth difference calculation unit 14E calculates a zero difference between the azimuth of the bow 1B at the start of movement of the boat 1 and the azimuth of the bow 1B during movement of the boat 1.
Therefore, the propulsive force calculation unit 14F changes the actual movement route RP1→RP2F (see FIG. 5(E)) of the boat 1 to the target movement route TP1→TP2 of the boat 1 (FIG. 5(A)) while the boat 1 is moving. The propulsive force F2B (see FIG. 5(F)) in the right rearward direction (see FIG. 5F) is calculated as the propulsive force of the boat 1 generated by the steering actuators 12A2, 13A2 of the outboard motors 12, 13 and the propulsion units 12A1, 13A1.
The outboard motor control device 14 applies the right rearward propulsive force F2B (see FIG. 5(F)) calculated by the propulsive force calculating unit 14F to the steering actuators 12A2, 13A2 and the propulsion unit 12A1 while the boat 1 is moving. , 13A1.
That is, the outboard motor control device 14 does not need to perform an additional operation of moving the operation unit 11D to the position P4 (see FIG. 3D) while the ship 1 is moving, and the right rearward Propulsive force F2B (see FIG. 5(F)) is generated in steering actuators 12A2, 13A2 and propulsion units 12A1, 13A1.
That is, the outboard motor control device 14 suppresses the difference between the target travel route TP1→TP2 of the boat 1 and the actual travel route RP1→RP2F of the boat 1 while the boat 1 is moving, and the right rearward propulsive force F2B is suppressed. To the outboard motors 12 and 13.
Specifically, the outboard motor control device 14 determines the actual state of the ship 1 based on the position RP2F (see FIG. 5E) of the ship 1 detected by the ship position detection unit 11E while the ship 1 is moving. The feedback control of the outboard motors 12 and 13 is performed to bring the movement route RP1→RP2F of 1 to the target movement route TP1→TP2 of the ship 1.
As a result, in the example shown in FIG. 5(E) and FIG. 5(F), the ship 1 moves rightward (translates) against the forward external force due to wind, tidal current, etc. without the need for additional operation by the operator. Move) can be continued.
 図6は第1実施形態の船舶1の船首方位H1などを説明するための図である。
 図4(A)、図6(A)および図6(B)に示す例では、操作部11Dが位置P1から位置P2に移動させられて、位置P2に維持される。詳細には、船舶1の移動開始時(操作部11Dが位置P2に移動させられた時刻)の船首方位H1(図6(A)参照)と、船舶1の移動中(船舶1が右向きに移動している期間中)の船首方位H2(図6(B)参照)とが一致する。つまり、船舶1は、船舶1を旋回させる風、潮流等による外力を受けることなく、右向きに並進移動している。
 この例では、船首方位差分算出部14Eによって算出される船舶1の移動開始時の船首方位H1(図6(A)参照)と、船舶1の移動中の船首方位H2(図6(B)参照)との差分がゼロになる。
 そのため、推進力算出部14Fは、船舶1の移動中に、船舶1を旋回させる推進力を加算することなく、船舶1の移動開始時に算出した推進力と等しい推進力を算出する。
 船外機用制御装置14は、船舶1の移動中に、推進力算出部14Fによって算出された右向きの推進力を、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる。
 その結果、船舶1が右向きの移動(並進移動)を継続する。
FIG. 6 is a view for explaining the heading H1 and the like of the boat 1 of the first embodiment.
In the example shown in FIG. 4A, FIG. 6A and FIG. 6B, the operation unit 11D is moved from the position P1 to the position P2 and is maintained at the position P2. Specifically, the heading H1 (see FIG. 6A) at the start of movement of the boat 1 (time when the operation unit 11D is moved to the position P2) and during movement of the boat 1 (the boat 1 moves to the right). The ship's heading H2 (see FIG. 6B) during the same period). That is, the ship 1 is translating rightward without being subjected to an external force such as a wind or a tidal current that causes the ship 1 to turn.
In this example, the heading H1 at the start of movement of the ship 1 calculated by the heading difference calculation unit 14E (see FIG. 6A) and the heading H2 during movement of the ship 1 (see FIG. 6B). ) Becomes zero.
Therefore, the propulsive force calculating unit 14F calculates the propulsive force equal to the propulsive force calculated when the marine vessel 1 starts moving, without adding the propulsive force for turning the marine vessel 1 while the marine vessel 1 is moving.
The outboard motor control device 14 causes the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1 to generate the rightward propulsive force calculated by the propulsive force calculating unit 14F while the boat 1 is moving.
As a result, the ship 1 continues to move to the right (translational movement).
 一方、船舶1の移動中に、船舶1を例えば時計回りに旋回させる風、潮流等による外力を船舶1が受ける場合には、その外力によって、船舶1が時計回りに旋回する。
 そのため、船首方位差分算出部14Eは、船舶1の移動開始時の船首方位H1(図6(A)参照)と、船舶1の移動中の船首方位H2CW(図6(C)参照)との差分(≠0)を算出する。
 また、図4(A)、図6(A)および図6(C)に示す例では、船舶移動経路差分算出部14Dが、船舶1の目標移動経路と船舶1の実際の移動経路との差分ゼロを算出する。
 従って、推進力算出部14Fは、船舶1の移動中に、船舶1の移動中の船首方位H2CW(図6(C)参照)を船舶1の移動開始時の船首方位H1(図6(A)参照)に近づける反時計回りの推進力FCC(図6(D)参照)と右向きの推進力との合成力を、船外機12、13の操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる船舶1の推進力として算出する。
 船外機用制御装置14は、船舶1の移動中に、推進力算出部14Fによって算出された反時計回りの推進力FCC(図6(D)参照)と右向きの推進力との合成力を、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる。
 つまり、船外機用制御装置14は、船舶1の移動中に、操船者が操作部11Dを反時計回りに回動させる追加の操作を行わなくても、反時計回りの推進力FCC(図6(D)参照)と右向きの推進力との合成力を、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる。
 すなわち、船外機用制御装置14は、船舶1の移動中に、船舶1の移動開始時の船首方位H1(図6(A)参照)と船舶1の移動中の船首方位H2CW(図6(C)参照)との差分を抑制する反時計回りの推進力FCC(図6(D)参照)を含む合成力を船外機12、13に発生させる。
 詳細には、船外機用制御装置14は、船舶1の移動中に、船首方位検出部11Fによって検出される船首方位H2CW(図6(C)参照)を、船舶1の移動開始時の船首方位H1(図6(A)参照)に近づける船外機12、13のフィードバック制御を実行する。
On the other hand, when the ship 1 receives an external force due to wind, tidal current, or the like that causes the ship 1 to turn clockwise, for example, while the ship 1 is moving, the ship 1 turns clockwise due to the external force.
Therefore, the bow heading difference calculation unit 14E determines the difference between the heading H1 at the start of the movement of the ship 1 (see FIG. 6A) and the heading H2CW during the movement of the ship 1 (see FIG. 6C). Calculate (≠0).
Moreover, in the example shown in FIG. 4(A), FIG. 6(A), and FIG. 6(C), the ship movement path difference calculation unit 14D causes the difference between the target movement path of the ship 1 and the actual movement path of the ship 1. Calculate zero.
Therefore, the propulsion force calculation unit 14F determines the heading H2CW (see FIG. 6C) of the moving vessel 1 while the ship 1 is moving to the heading H1 of the beginning of the movement of the ship 1 (FIG. 6A). The combined force of the counterclockwise propulsive force FCC (see FIG. 6D) and the rightward propulsive force is generated in the steering actuators 12A2, 13A2 of the outboard motors 12, 13 and the propulsion units 12A1, 13A1. It is calculated as the propulsive force of the ship 1.
The outboard motor control device 14 generates a combined force of the counterclockwise propulsion force FCC (see FIG. 6D) calculated by the propulsion force calculation unit 14F and the rightward propulsion force while the ship 1 is moving. , Steering actuators 12A2, 13A2 and propulsion units 12A1, 13A1.
That is, the outboard motor control device 14 does not have to perform an additional operation of rotating the operation unit 11D counterclockwise while the ship 1 is moving, and the counterclockwise propulsive force FCC (FIG. 6 (D)) and the rightward propulsive force are generated in the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1.
That is, the outboard motor control device 14 controls the heading H1 when the ship 1 starts moving (see FIG. 6A) and the heading H2CW of the moving ship 1 while the ship 1 is moving (see FIG. The combined force including the counterclockwise propulsive force FCC (see FIG. 6D) that suppresses the difference between the outboard motors 12 and 13 is generated.
Specifically, the outboard motor control device 14 determines the heading H2CW (see FIG. 6C) detected by the heading detection unit 11F during the movement of the ship 1 at the beginning of the movement of the ship 1. Feedback control of the outboard motors 12, 13 is performed to bring the outboard motors 12 and 13 closer to the direction H1 (see FIG. 6A).
 また、船舶1の移動中に、船舶1を例えば反時計回りに旋回させる風、潮流等による外力を船舶1が受ける場合には、その外力によって、船舶1が反時計回りに旋回する。
 そのため、船首方位差分算出部14Eは、船舶1の移動開始時の船首方位H1(図6(A)参照)と、船舶1の移動中の船首方位H2CC(図6(E)参照)との差分(≠0)を算出する。
 また、図4(A)、図6(A)および図6(E)に示す例では、船舶移動経路差分算出部14Dが、船舶1の目標移動経路と船舶1の実際の移動経路との差分ゼロを算出する。
 従って、推進力算出部14Fは、船舶1の移動中に、船舶1の移動中の船首方位H2CC(図6(E)参照)を船舶1の移動開始時の船首方位H1(図6(A)参照)に近づける時計回りの推進力FCW(図6(F)参照)と右向きの推進力との合成力を、船外機12、13の操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる船舶1の推進力として算出する。
 船外機用制御装置14は、船舶1の移動中に、推進力算出部14Fによって算出された時計回りの推進力FCW(図6(F)参照)と右向きの推進力との合成力を、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる。
 つまり、船外機用制御装置14は、船舶1の移動中に、操船者が操作部11Dを時計回りに回動させる追加の操作を行わなくても、時計回りの推進力FCW(図6(F)参照)と右向きの推進力との合成力を、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる。
 すなわち、船外機用制御装置14は、船舶1の移動中に、船舶1の移動開始時の船首方位H1(図6(A)参照)と船舶1の移動中の船首方位H2CC(図6(E)参照)との差分を抑制する時計回りの推進力FCW(図6(F)参照)を含む合成力を船外機12、13に発生させる。
 詳細には、船外機用制御装置14は、船舶1の移動中に、船首方位検出部11Fによって検出される船首方位H2CC(図6(E)参照)を、船舶1の移動開始時の船首方位H1(図6(A)参照)に近づける船外機12、13のフィードバック制御を実行する。
Further, when the ship 1 receives an external force due to wind, tidal current, or the like that causes the ship 1 to turn counterclockwise while the ship 1 is moving, the external force causes the ship 1 to turn counterclockwise.
Therefore, the bow direction difference calculation unit 14E determines the difference between the bow direction H1 (see FIG. 6(A)) at the start of movement of the vessel 1 and the heading direction H2CC (see FIG. 6(E)) during movement of the vessel 1. Calculate (≠0).
Further, in the example shown in FIGS. 4A, 6A, and 6E, the ship movement route difference calculation unit 14D causes the difference between the target movement route of the boat 1 and the actual movement route of the boat 1. Calculate zero.
Therefore, the propulsive force calculation unit 14F determines the heading H2CC (see FIG. 6E) during the movement of the ship 1 while the ship 1 is moving, and the heading H1 at the start of the movement of the ship 1 (FIG. 6A). (Refer to FIG. 6F) and a rightward propulsive force are generated in the steering actuators 12A2 and 13A2 of the outboard motors 12 and 13 and the propulsion units 12A1 and 13A1. Calculated as the propulsive force of the ship 1.
The outboard motor control device 14 generates a combined force of the clockwise propulsive force FCW (see FIG. 6(F)) calculated by the propulsive force calculating unit 14F and the rightward propulsive force during movement of the boat 1. It is generated in the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1.
That is, the outboard motor control device 14 does not require the additional operation of rotating the operation unit 11D in the clockwise direction while the boat 1 is moving, and the clockwise propulsive force FCW (see FIG. 6( F)) and a rightward propulsive force are generated in the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1.
That is, the outboard motor control device 14 controls the heading H1 at the start of movement of the ship 1 (see FIG. 6A) and the heading H2CC of the moving boat 1 during movement of the ship 1 (FIG. 6( (See E))) The outboard motors 12 and 13 are generated with a combined force including a clockwise propulsive force FCW (see FIG. 6F) that suppresses the difference between the outboard motors 12 and 13.
Specifically, the outboard motor control device 14 determines the heading H2CC (see FIG. 6E) detected by the heading detection unit 11F during the movement of the ship 1 at the beginning of the movement of the ship 1. Feedback control of the outboard motors 12 and 13 is performed to bring the outboard motors 12 and 13 closer to the direction H1 (see FIG. 6A).
 また、船舶1の移動中に、船舶1が風、潮流等による外力を受けることによって、船舶1の目標移動経路TP1→TP2(図5(A)参照)と船舶1の実際の移動経路との差分が発生し、かつ、船舶1の移動開始時の船首方位(図6(A)参照)と船舶1の移動中の船首方位との差分が発生する場合もある。
 その場合に、船舶移動経路差分算出部14Dは、船舶1の目標移動経路TP1→TP2(図5(A)参照)と船舶1の実際の移動経路との差分(≠0)を算出する。更に、船首方位差分算出部14Eは、船舶1の移動開始時の船首方位H1(図6(A)参照)と、船舶1の移動中の船首方位との差分(≠0)を算出する。
 推進力算出部14Fは、船舶1の移動中に、船舶1の実際の移動経路を船舶1の目標移動経路TP1→TP2(図5(A)参照)に近づける推進力と、船舶1の移動中の船首方位を船舶1の移動開始時の船首方位H1(図6(A)参照)に近づける推進力との合成力を、船外機12、13の操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる船舶1の推進力として算出する。
 船外機用制御装置14は、船舶1の移動中に、推進力算出部14Fによって算出された推進力(合成力)を、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる。
 つまり、船外機用制御装置14は、船舶1の移動中に、操船者が操作部11Dの位置を変更する追加の操作あるいは操作部11Dを回動させる追加の操作を行わなくても、船舶1の目標移動経路TP1→TP2(図5(A)参照)と船舶1の実際の移動経路との差分を抑制し、かつ、船舶1の移動開始時の船首方位H1(図6(A)参照)と船舶1の移動中の船首方位との差分を抑制する推進力(合成力)を、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる。
 詳細には、船外機用制御装置14は、船舶1の移動中に、船舶位置検出部11Eによって検出される船舶1の位置と、船首方位検出部11Fによって検出される船首1Bの方位とに基づいて、船舶1の実際の移動経路を船舶1の目標移動経路TP1→TP2に近づけ、かつ、船舶1の移動中の船首方位を船舶1の移動開始時の船首方位H1に近づける船外機12、13のフィードバック制御を実行する。
 その結果、この場合においても、船舶1は、操船者の追加操作の必要なく、風、潮流等による外力に抗して、右向きの移動(並進移動)を継続することができる。
Further, when the ship 1 receives an external force due to wind, tidal current, etc. while the ship 1 is moving, the target travel path TP1→TP2 (see FIG. 5A) of the ship 1 and the actual travel path of the ship 1 are A difference may occur, and a difference between the heading of the ship 1 at the start of movement (see FIG. 6A) and the heading of the ship 1 during movement may occur.
In that case, the ship movement route difference calculation unit 14D calculates the difference (≠0) between the target movement route TP1→TP2 (see FIG. 5A) of the boat 1 and the actual movement route of the boat 1. Further, the heading difference calculation unit 14E calculates the difference (≠0) between the heading H1 at the start of movement of the ship 1 (see FIG. 6A) and the heading of the ship 1 during movement.
The propulsive force calculating unit 14F is a propulsive force that brings the actual movement route of the boat 1 closer to the target movement route TP1→TP2 of the boat 1 (see FIG. 5A) while the boat 1 is moving, and the movement of the boat 1 Of the steering force 12A2, 13A2 of the outboard motors 12, 13 and the propulsion units 12A1, 13A1. It is calculated as the propulsive force of the ship 1 to be generated at.
The outboard motor control device 14 causes the steering actuators 12A2 and 13A2 and the propulsion units 12A1 and 13A1 to generate the propulsive force (synthetic force) calculated by the propulsive force calculation unit 14F while the boat 1 is moving.
That is, the outboard motor control device 14 does not have to perform an additional operation of changing the position of the operation unit 11D or an additional operation of rotating the operation unit 11D by the boat operator while the ship 1 is moving. No. 1 target travel route TP1→TP2 (see FIG. 5(A)) and the actual travel route of the boat 1 are suppressed, and the heading H1 at the start of the travel of the boat 1 (see FIG. 6(A)) ) And the heading of the boat 1 during movement of the ship 1 are generated in the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1.
Specifically, the outboard motor control device 14 determines the position of the ship 1 detected by the ship position detection unit 11E and the heading of the bow 1B detected by the heading direction detection unit 11F while the ship 1 is moving. Based on this, the outboard motor 12 that brings the actual movement route of the vessel 1 closer to the target movement route TP1→TP2 of the vessel 1 and brings the heading direction of the vessel 1 in motion closer to the heading direction H1 at the start of movement of the vessel 1 , 13 feedback control is executed.
As a result, even in this case, the vessel 1 can continue the rightward movement (translational movement) against an external force due to wind, tidal current, etc. without the need for additional operation by the operator.
 図7は第1実施形態の船舶1の目標移動経路TP1→TP3などを説明するための図である。
 操船者が、船舶1を右前向きに移動(並進移動)させたい場合もある。そのような場合には、図4(B)に示す例のように、操作部11D(ジョイスティックのレバーの先端部)が位置P1から位置P3に移動させられて、位置P3に維持される。
 操作部移動経路算出部14Aは、ジョイスティックのレバーの先端部が位置P1に位置する時刻のレバーの位置と、ジョイスティックのレバーの先端部が位置P3に移動させられた時刻(船舶1の移動開始時)のレバーの位置とに基づいて、ジョイスティックのレバーの先端部の移動経路(操作部11Dの移動経路)P1→P3を算出する。
 船舶目標移動経路算出部14Bは、船舶1の移動開始時に船舶位置検出部11Eによって検出された船舶1の位置と、船舶1の移動開始時の操作部11Dの位置P3とに基づいて、右前向きの船舶1の目標移動経路TP1→TP3(図7(A)参照)を算出する。
 推進力算出部14Fは、船舶目標移動経路算出部14Bによって算出された右前向きの船舶1の目標移動経路TP1→TP3に基づいて、船外機12、13に発生させる推進力を算出する。
 船外機用制御装置14は、推進力算出部14Fによって算出された右前向きの推進力を、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる。
 その結果、船舶1が右前向きに移動(並進移動)開始する。
FIG. 7: is a figure for demonstrating the target moving path TP1 ->TP3 of the ship 1 of 1st Embodiment.
There is also a case where the marine vessel operator wants to move the vessel 1 to the front right (translational movement). In such a case, as in the example shown in FIG. 4B, the operating portion 11D (the tip of the joystick lever) is moved from the position P1 to the position P3 and is maintained at the position P3.
The operation unit movement path calculation unit 14A determines the position of the lever at the time when the tip of the joystick lever is located at the position P1 and the time when the tip of the joystick lever is moved to the position P3 (when the marine vessel 1 starts moving). ) Of the lever position of the joystick, the movement path (movement path of the operation unit 11D) P1→P3 is calculated based on the position of the lever.
The vessel target movement route calculation unit 14B faces forward right based on the position of the boat 1 detected by the boat position detection unit 11E at the start of movement of the boat 1 and the position P3 of the operation unit 11D at the start of movement of the boat 1. The target travel route TP1→TP3 of the ship 1 (see FIG. 7A) is calculated.
The propulsive force calculating unit 14F calculates the propulsive force to be generated in the outboard motors 12 and 13 based on the target moving route TP1→TP3 of the ship 1 facing right front calculated by the target moving route calculating unit 14B.
The outboard motor control device 14 causes the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1 to generate the right-forward propulsion force calculated by the propulsion force calculation unit 14F.
As a result, the boat 1 starts moving forward (translational movement).
 次いで、船舶1が右前向きに移動(並進移動)している期間中に、船舶実移動経路算出部14Cは、船舶1の移動開始時に船舶位置検出部11Eによって検出された船舶1の位置と、船舶1の移動中に船舶位置検出部11Eによって検出される船舶1の位置とに基づいて、船舶1の実際の移動経路RP1→RP3(図7(B)参照)を算出する。
 船舶1の移動中に、船舶1が風、潮流等による外力を受けない場合、船舶1の実際の移動経路RP1→RP3(図7(B)参照)と、船舶1の目標移動経路TP1→TP3(図7(A)参照)とが一致する。
 その結果、船舶移動経路差分算出部14Dによって算出される船舶1の目標移動経路TP1→TP3と船舶1の実際の移動経路RP1→RP3との差分がゼロになる。
 また、船首方位差分算出部14Eによって算出される船舶1の移動開始時の船首1Bの方位と、船舶1の移動中の船首1Bの方位との差分もゼロになる。
 そのため、推進力算出部14Fは、船舶1の移動中に、船舶1の移動開始時に算出した推進力と等しい推進力を算出する。
 船外機用制御装置14は、船舶1の移動中に、推進力算出部14Fによって算出された右前向きの推進力を、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる。
 その結果、船舶1が右前向きの移動(並進移動)を継続する。
Next, during the period in which the ship 1 is moving to the right front (translational movement), the ship actual movement route calculation unit 14C detects the position of the ship 1 detected by the ship position detection unit 11E when the ship 1 starts moving, The actual movement route RP1→RP3 (see FIG. 7B) of the marine vessel 1 is calculated based on the position of the marine vessel 1 detected by the marine vessel position detection unit 11E while the marine vessel 1 is moving.
When the ship 1 does not receive an external force due to wind, tidal current, etc. while the ship 1 is moving, the actual travel route RP1→RP3 (see FIG. 7B) of the ship 1 and the target travel route TP1→TP3 of the ship 1 (See FIG. 7A).
As a result, the difference between the target travel route TP1→TP3 of the ship 1 and the actual travel route RP1→RP3 of the ship 1 calculated by the ship travel route difference calculation unit 14D becomes zero.
Further, the difference between the bearing of the bow 1B at the start of movement of the boat 1 and the bearing of the bow 1B during movement of the boat 1 calculated by the bow bearing difference calculation unit 14E is also zero.
Therefore, the propulsive force calculating unit 14F calculates a propulsive force that is equal to the propulsive force calculated when the marine vessel 1 starts moving while the marine vessel 1 is moving.
The outboard motor control device 14 causes the steering actuators 12A2 and 13A2 and the propulsion units 12A1 and 13A1 to generate the right forward propulsive force calculated by the propulsive force calculating unit 14F while the boat 1 is moving.
As a result, the marine vessel 1 continues to move to the front right (translational movement).
 一方、船舶1の移動中に船舶1が風、潮流等による例えば後向きの外力を受ける場合には、その後向きの外力によって、船舶1が後側に流される。
 そのため、船舶実移動経路算出部14Cは、船舶1の移動開始時に船舶位置検出部11Eによって検出された船舶1の位置と、船舶1の移動中に船舶位置検出部11Eによって検出される船舶1の位置(後側に流された船舶1の位置)RP3B(図7(C)参照)とに基づいて、船舶1の実際の移動経路RP1→RP3B(図7(C)参照)を算出する。
 船舶1の移動中に船舶1が後向きの外力を受ける場合には、船舶1の実際の移動経路RP1→RP3B(図7(C)参照)と、船舶1の目標移動経路TP1→TP3(図7(A)参照)とが一致しない。
 その結果、船舶移動経路差分算出部14Dは、船舶1の目標移動経路TP1→TP3(図7(A)参照)と船舶1の実際の移動経路RP1→RP3B(図7(C)参照)との差分(≠0)を算出する。
 図7(C)に示す例では、船首方位差分算出部14Eが、船舶1の移動開始時の船首1Bの方位と、船舶1の移動中の船首1Bの方位との差分ゼロを算出する。
 従って、推進力算出部14Fは、船舶1の移動中に、船舶1の実際の移動経路RP1→RP3B(図7(C)参照)を船舶1の目標移動経路TP1→TP3(図7(A)参照)に近づける右前向きの推進力F3F(図7(D)参照)を、船外機12、13の操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる船舶1の推進力として算出する。
 船外機用制御装置14は、船舶1の移動中に、推進力算出部14Fによって算出された右前向きの推進力F3F(図7(D)参照)を、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる。
 つまり、船外機用制御装置14は、船舶1の移動中に、操船者が操作部11Dの位置を変更する追加の操作を行わなくても、右前向きの推進力F3F(図7(D)参照)を、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる。
 すなわち、船外機用制御装置14は、船舶1の移動中に、船舶1の目標移動経路TP1→TP3と船舶1の実際の移動経路RP1→RP3Bとの差分を抑制する右前向きの推進力F3Fを船外機12、13に発生させる。
 詳細には、船外機用制御装置14は、船舶1の移動中に、船舶位置検出部11Eによって検出される船舶1の位置RP3B(図7(C)参照)に基づいて、船舶1の実際の移動経路RP1→RP3Bを船舶1の目標移動経路TP1→TP3に近づける船外機12、13のフィードバック制御を実行する。
 その結果、図7(C)および図7(D)に示す例では、船舶1は、操船者の追加操作の必要なく、風、潮流等による後向きの外力に抗して、右前向きの移動(並進移動)を継続することができる。
On the other hand, when the boat 1 receives a backward external force due to wind, tidal current, etc. while the boat 1 is moving, the backward external force causes the boat 1 to flow to the rear side.
Therefore, the actual ship movement route calculation unit 14C detects the position of the ship 1 detected by the ship position detection unit 11E at the start of the movement of the ship 1 and the position of the ship 1 detected by the ship position detection unit 11E during the movement of the ship 1. An actual movement route RP1→RP3B (see FIG. 7C) of the boat 1 is calculated based on the position (the position of the boat 1 that has flowed to the rear side) RP3B (see FIG. 7C).
When the ship 1 receives a backward external force while the ship 1 is moving, the actual travel route RP1→RP3B of the ship 1 (see FIG. 7C) and the target travel route TP1→TP3 of the ship 1 (FIG. 7). (See (A)) does not match.
As a result, the ship movement route difference calculation unit 14D divides the target movement route TP1→TP3 of the boat 1 (see FIG. 7A) and the actual movement route RP1→RP3B of the boat 1 (see FIG. 7C). The difference (≠0) is calculated.
In the example shown in FIG. 7C, the bow direction difference calculation unit 14E calculates a zero difference between the direction of the bow 1B at the start of movement of the ship 1 and the direction of the bow 1B during movement of the ship 1.
Therefore, the propulsive force calculation unit 14F changes the actual movement route RP1→RP3B (see FIG. 7C) of the boat 1 to the target movement route TP1→TP3 of the boat 1 (FIG. 7A) while the boat 1 is moving. The propulsive force F3F (see FIG. 7(D)) toward the right toward the right is calculated as the propulsive force of the boat 1 generated by the steering actuators 12A2, 13A2 of the outboard motors 12, 13 and the propulsion units 12A1, 13A1.
The outboard motor control device 14 controls the steering actuators 12A2, 13A2 and the propulsion unit 12A1 to apply the forward rightward propulsive force F3F (see FIG. 7D) calculated by the propulsive force calculating unit 14F while the boat 1 is moving. , 13A1.
That is, the outboard motor control device 14 does not require an additional operation for changing the position of the operation unit 11D while the ship 1 is moving, and the right forward propulsion force F3F (FIG. 7(D)). Is generated in the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1.
That is, the outboard motor control device 14 suppresses the difference between the target movement route TP1→TP3 of the boat 1 and the actual movement route RP1→RP3B of the boat 1 while the boat 1 is moving, and the right forward thrust F3F. To the outboard motors 12 and 13.
Specifically, the outboard motor control device 14 determines the actual state of the ship 1 based on the position RP3B (see FIG. 7C) of the ship 1 detected by the ship position detection unit 11E while the ship 1 is moving. The feedback control of the outboard motors 12, 13 is performed to bring the movement route RP1→RP3B of 1 to the target movement route TP1→TP3 of the ship 1.
As a result, in the example shown in FIGS. 7(C) and 7(D), the ship 1 moves to the front right without any additional operation by the operator, against the backward external force due to wind, tidal current, or the like ( Translational movement) can be continued.
 また、船舶1の移動中に船舶1が風、潮流等による例えば前向きの外力を受ける場合には、その前向きの外力によって、船舶1が前側に流される。
 そのため、船舶実移動経路算出部14Cは、船舶1の移動開始時に船舶位置検出部11Eによって検出された船舶1の位置と、船舶1の移動中に船舶位置検出部11Eによって検出される船舶1の位置(前側に流された船舶1の位置)RP3F(図7(E)参照)とに基づいて、船舶1の実際の移動経路RP1→RP3F(図7(E)参照)を算出する。
 船舶1の移動中に船舶1が前向きの外力を受ける場合には、船舶1の実際の移動経路RP1→RP3F(図7(E)参照)と、船舶1の目標移動経路TP1→TP3(図7(A)参照)とが一致しない。
 その結果、船舶移動経路差分算出部14Dは、船舶1の目標移動経路TP1→TP3(図7(A)参照)と船舶1の実際の移動経路RP1→RP3F(図7(E)参照)との差分(≠0)を算出する。
 図7(E)に示す例では、船首方位差分算出部14Eが、船舶1の移動開始時の船首1Bの方位と、船舶1の移動中の船首1Bの方位との差分ゼロを算出する。
 従って、推進力算出部14Fは、船舶1の移動中に、船舶1の実際の移動経路RP1→RP3F(図7(E)参照)を船舶1の目標移動経路TP1→TP3(図7(A)参照)に近づける右前向きの推進力F3B(図7(F)参照)を、船外機12、13の操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる船舶1の推進力として算出する。
 船外機用制御装置14は、船舶1の移動中に、推進力算出部14Fによって算出された右前向きの推進力F3B(図7(F)参照)を、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる。
 つまり、船外機用制御装置14は、船舶1の移動中に、操船者が操作部11Dの位置を変更する追加の操作を行わなくても、右前向きの推進力F3B(図7(F)参照)を、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる。
 すなわち、船外機用制御装置14は、船舶1の移動中に、船舶1の目標移動経路TP1→TP3と船舶1の実際の移動経路RP1→RP3Fとの差分を抑制する右前向きの推進力F3Bを船外機12、13に発生させる。
 詳細には、船外機用制御装置14は、船舶1の移動中に、船舶位置検出部11Eによって検出される船舶1の位置RP3F(図7(E)参照)に基づいて、船舶1の実際の移動経路RP1→RP3Fを船舶1の目標移動経路TP1→TP3に近づける船外機12、13のフィードバック制御を実行する。
 その結果、図7(E)および図7(F)に示す例では、船舶1は、操船者の追加操作の必要なく、風、潮流等による前向きの外力に抗して、右前向きの移動(並進移動)を継続することができる。
Further, when the ship 1 receives a forward external force due to wind, tidal current, or the like while the ship 1 is moving, the forward external force causes the ship 1 to flow forward.
Therefore, the actual ship movement route calculation unit 14C detects the position of the ship 1 detected by the ship position detection unit 11E at the start of the movement of the ship 1 and the position of the ship 1 detected by the ship position detection unit 11E during the movement of the ship 1. An actual movement route RP1→RP3F (see FIG. 7(E)) of the boat 1 is calculated based on the position (position of the boat 1 flown to the front side) RP3F (see FIG. 7(E)).
When the ship 1 receives a forward external force while the ship 1 is moving, the actual travel route RP1→RP3F of the ship 1 (see FIG. 7E) and the target travel route TP1→TP3 of the ship 1 (FIG. 7). (See (A)) does not match.
As a result, the ship movement route difference calculation unit 14D divides the target movement route TP1→TP3 of the boat 1 (see FIG. 7A) and the actual movement route RP1→RP3F of the boat 1 (see FIG. 7E). The difference (≠0) is calculated.
In the example shown in FIG. 7(E), the bow azimuth difference calculation unit 14E calculates a zero difference between the azimuth of the bow 1B at the start of movement of the boat 1 and the azimuth of the bow 1B during movement of the boat 1.
Therefore, the propulsive force calculating unit 14F changes the actual movement route RP1→RP3F (see FIG. 7E) of the boat 1 to the target movement route TP1→TP3 of the boat 1 (FIG. 7A) while the boat 1 is moving. The propulsive force F3B (see FIG. 7(F)) in the right forward direction, which is closer to the reference (see FIG. 7F), is calculated as the propulsive force of the boat 1 generated by the steering actuators 12A2, 13A2 of the outboard motors 12, 13 and the propulsion units 12A1, 13A1.
The outboard motor control device 14 controls the steering actuators 12A2, 13A2 and the propulsion unit 12A1 to apply the right forward propulsive force F3B (see FIG. 7(F)) calculated by the propulsive force calculating unit 14F while the boat 1 is moving. , 13A1.
That is, the outboard motor control device 14 does not require an additional operation for changing the position of the operation unit 11D while the ship 1 is moving, and the right forward propulsion force F3B (FIG. 7(F)). Are generated in the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1.
That is, the outboard motor control device 14 suppresses the difference between the target travel route TP1→TP3 of the boat 1 and the actual travel route RP1→RP3F of the boat 1 while the boat 1 is moving, and the right forward thrust F3B. To the outboard motors 12 and 13.
Specifically, the outboard motor control device 14 determines the actual state of the ship 1 based on the position RP3F (see FIG. 7E) of the ship 1 detected by the ship position detection unit 11E while the ship 1 is moving. The feedback control of the outboard motors 12 and 13 is performed to bring the moving route RP1→RP3F of 1 to the target moving route TP1→TP3 of the ship 1.
As a result, in the example shown in FIGS. 7(E) and 7(F), the ship 1 moves to the right in the forward direction against the forward external force due to wind, tidal current, etc. without the need for additional operation by the operator. Translational movement) can be continued.
 図4(B)、図6(A)および図6(B)に示す例では、操作部11Dが位置P1から位置P3に移動させられて、位置P3に維持される。詳細には、船舶1の移動開始時(操作部11Dが位置P3に移動させられた時刻)の船首方位H1(図6(A)参照)と、船舶1の移動中(船舶1が右向前きに移動している期間中)の船首方位H2(図6(B)参照)とが一致する。つまり、船舶1は、船舶1を旋回させる風、潮流等による外力を受けることなく、右前向きに並進移動している。
 この例では、船首方位差分算出部14Eによって算出される船舶1の移動開始時の船首方位H1(図6(A)参照)と、船舶1の移動中の船首方位H2(図6(B)参照)との差分がゼロになる。
 そのため、推進力算出部14Fは、船舶1の移動中に、船舶1を旋回させる推進力を加算することなく、船舶1の移動開始時に算出した推進力と等しい推進力を算出する。
 船外機用制御装置14は、船舶1の移動中に、推進力算出部14Fによって算出された右前向きの推進力を、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる。
 その結果、船舶1が右前向きの移動(並進移動)を継続する。
In the example shown in FIGS. 4B, 6A, and 6B, the operation unit 11D is moved from the position P1 to the position P3 and is maintained at the position P3. Specifically, the heading H1 (see FIG. 6(A)) at the start of movement of the boat 1 (time when the operation unit 11D is moved to the position P3) and during movement of the boat 1 (front of the boat 1 to the right) The heading H2 (see FIG. 6B) during the period of movement (see FIG. 6B). That is, the ship 1 is translating in the forward right direction without receiving an external force such as a wind or a tidal current that causes the ship 1 to turn.
In this example, the heading H1 at the start of movement of the ship 1 calculated by the heading difference calculation unit 14E (see FIG. 6A) and the heading H2 during movement of the ship 1 (see FIG. 6B). ) Becomes zero.
Therefore, the propulsive force calculating unit 14F calculates the propulsive force equal to the propulsive force calculated when the marine vessel 1 starts moving, without adding the propulsive force for turning the marine vessel 1 while the marine vessel 1 is moving.
The outboard motor control device 14 causes the steering actuators 12A2 and 13A2 and the propulsion units 12A1 and 13A1 to generate the right forward propulsive force calculated by the propulsive force calculating unit 14F while the boat 1 is moving.
As a result, the marine vessel 1 continues to move to the front right (translational movement).
 一方、船舶1の移動中に、船舶1を例えば時計回りに旋回させる風、潮流等による外力を船舶1が受ける場合には、その外力によって、船舶1が時計回りに旋回する。
 そのため、船首方位差分算出部14Eは、船舶1の移動開始時の船首方位H1(図6(A)参照)と、船舶1の移動中の船首方位H2CW(図6(C)参照)との差分(≠0)を算出する。
 また、図4(B)、図6(A)および図6(C)に示す例では、船舶移動経路差分算出部14Dが、船舶1の目標移動経路と船舶1の実際の移動経路との差分ゼロを算出する。
 従って、推進力算出部14Fは、船舶1の移動中に、船舶1の移動中の船首方位H2CW(図6(C)参照)を船舶1の移動開始時の船首方位H1(図6(A)参照)に近づける反時計回りの推進力FCC(図6(D)参照)と右前向きの推進力との合成力を、船外機12、13の操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる船舶1の推進力として算出する。
 船外機用制御装置14は、船舶1の移動中に、推進力算出部14Fによって算出された反時計回りの推進力FCC(図6(D)参照)と右前向きの推進力との合成力を、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる。
 つまり、船外機用制御装置14は、船舶1の移動中に、操船者が操作部11Dを反時計回りに回動させる追加の操作を行わなくても、反時計回りの推進力FCC(図6(D)参照)と右前向きの推進力との合成力を、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる。
 すなわち、船外機用制御装置14は、船舶1の移動中に、船舶1の移動開始時の船首方位H1(図6(A)参照)と船舶1の移動中の船首方位H2CW(図6(C)参照)との差分を抑制する反時計回りの推進力FCC(図6(D)参照)を含む合成力を船外機12、13に発生させる。
 詳細には、船外機用制御装置14は、船舶1の移動中に、船首方位検出部11Fによって検出される船首方位H2CW(図6(C)参照)を、船舶1の移動開始時の船首方位H1(図6(A)参照)に近づける船外機12、13のフィードバック制御を実行する。
On the other hand, when the ship 1 receives an external force due to wind, tidal current, or the like that causes the ship 1 to turn clockwise, for example, while the ship 1 is moving, the ship 1 turns clockwise due to the external force.
Therefore, the bow heading difference calculation unit 14E determines the difference between the heading H1 at the start of the movement of the ship 1 (see FIG. 6A) and the heading H2CW during the movement of the ship 1 (see FIG. 6C). Calculate (≠0).
Moreover, in the example shown in FIG. 4(B), FIG. 6(A) and FIG. 6(C), the ship movement route difference calculation unit 14D causes the difference between the target movement route of the boat 1 and the actual movement route of the boat 1. Calculate zero.
Therefore, the propulsive force calculating unit 14F determines the heading H2CW (see FIG. 6C) of the ship 1 during movement of the ship 1 while the heading H1 of the beginning of the movement of the ship 1 (see FIG. 6A). (Refer to FIG. 6(D)) and a forward-forward propulsive force to the steering actuators 12A2 and 13A2 of the outboard motors 12 and 13 and the propulsion units 12A1 and 13A1. It is calculated as the propulsive force of the ship 1 to be generated.
The outboard motor control device 14 combines the counterclockwise propulsive force FCC (see FIG. 6D) calculated by the propulsive force calculating unit 14F and the right forward propulsive force while the ship 1 is moving. Are generated in the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1.
That is, the outboard motor control device 14 does not have to perform an additional operation of rotating the operation unit 11D counterclockwise while the boat 1 is moving, and the counterclockwise propulsion force FCC (Fig. 6(D)) and a right-forward propelling force are generated in the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1.
That is, the outboard motor control device 14 controls the heading H1 when the ship 1 starts moving (see FIG. 6A) and the heading H2CW of the moving ship 1 while the ship 1 is moving (see FIG. The combined force including the counterclockwise propulsive force FCC (see FIG. 6D) that suppresses the difference between the outboard motors 12 and 13 is generated.
Specifically, the outboard motor control device 14 determines the heading H2CW (see FIG. 6C) detected by the heading detection unit 11F during the movement of the ship 1 at the beginning of the movement of the ship 1. Feedback control of the outboard motors 12, 13 is performed to bring the outboard motors 12 and 13 closer to the direction H1 (see FIG. 6A).
 また、船舶1の移動中に、船舶1を例えば反時計回りに旋回させる風、潮流等による外力を船舶1が受ける場合には、その外力によって、船舶1が反時計回りに旋回する。
 そのため、船首方位差分算出部14Eは、船舶1の移動開始時の船首方位H1(図6(A)参照)と、船舶1の移動中の船首方位H2CC(図6(E)参照)との差分(≠0)を算出する。
 また、図4(B)、図6(A)および図6(E)に示す例では、船舶移動経路差分算出部14Dが、船舶1の目標移動経路と船舶1の実際の移動経路との差分ゼロを算出する。
 従って、推進力算出部14Fは、船舶1の移動中に、船舶1の移動中の船首方位H2CC(図6(E)参照)を船舶1の移動開始時の船首方位H1(図6(A)参照)に近づける時計回りの推進力FCW(図6(F)参照)と右前向きの推進力との合成力を、船外機12、13の操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる船舶1の推進力として算出する。
 船外機用制御装置14は、船舶1の移動中に、推進力算出部14Fによって算出された時計回りの推進力FCW(図6(F)参照)と右前向きの推進力との合成力を、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる。
 つまり、船外機用制御装置14は、船舶1の移動中に、操船者が操作部11Dを時計回りに回動させる追加の操作を行わなくても、時計回りの推進力FCW(図6(F)参照)と右前向きの推進力との合成力を、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる。
 すなわち、船外機用制御装置14は、船舶1の移動中に、船舶1の移動開始時の船首方位H1(図6(A)参照)と船舶1の移動中の船首方位H2CC(図6(E)参照)との差分を抑制する時計回りの推進力FCW(図6(F)参照)を含む合成力を船外機12、13に発生させる。
 詳細には、船外機用制御装置14は、船舶1の移動中に、船首方位検出部11Fによって検出される船首方位H2CC(図6(E)参照)を、船舶1の移動開始時の船首方位H1(図6(A)参照)に近づける船外機12、13のフィードバック制御を実行する。
Further, when the ship 1 receives an external force due to wind, tidal current, or the like that causes the ship 1 to turn counterclockwise while the ship 1 is moving, the external force causes the ship 1 to turn counterclockwise.
Therefore, the bow direction difference calculation unit 14E determines the difference between the bow direction H1 (see FIG. 6(A)) at the start of movement of the vessel 1 and the heading direction H2CC (see FIG. 6(E)) during movement of the vessel 1. Calculate (≠0).
Moreover, in the example shown in FIG. 4(B), FIG. 6(A) and FIG. 6(E), the ship movement route difference calculation unit 14D causes the difference between the target movement route of the boat 1 and the actual movement route of the boat 1. Calculate zero.
Therefore, the propulsive force calculation unit 14F determines the heading H2CC (see FIG. 6(E)) of the ship 1 during movement of the ship 1 at the beginning of the movement of the ship 1 (see FIG. 6(A)). (Refer to FIG. 6(F)) and a rightward forward propulsive force are generated in the steering actuators 12A2 and 13A2 of the outboard motors 12 and 13 and the propulsion units 12A1 and 13A1. It is calculated as the propulsive force of the ship 1.
The outboard motor control device 14 generates a combined force of the clockwise propulsive force FCW (see FIG. 6(F)) calculated by the propulsive force calculating unit 14F and the right forward propulsive force while the ship 1 is moving. , Steering actuators 12A2, 13A2 and propulsion units 12A1, 13A1.
That is, the outboard motor control device 14 does not require the additional operation of rotating the operation unit 11D in the clockwise direction while the ship 1 is moving, and the clockwise propulsive force FCW (see FIG. F))) and the right frontward propulsive force are generated in the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1.
That is, the outboard motor control device 14 controls the heading H1 at the start of movement of the ship 1 (see FIG. 6A) and the heading H2CC of the moving boat 1 during movement of the ship 1 (FIG. 6( (See E))) The outboard motors 12 and 13 are generated with a combined force including a clockwise propulsive force FCW (see FIG. 6F) that suppresses the difference between the outboard motors 12 and 13.
Specifically, the outboard motor control device 14 determines the heading H2CC (see FIG. 6E) detected by the heading detection unit 11F during the movement of the ship 1 at the beginning of the movement of the ship 1. Feedback control of the outboard motors 12 and 13 is performed to bring the outboard motors 12 and 13 closer to the direction H1 (see FIG. 6A).
 また、船舶1の移動中に、船舶1が風、潮流等による外力を受けることによって、船舶1の目標移動経路TP1→TP3(図7(A)参照)と船舶1の実際の移動経路との差分が発生し、かつ、船舶1の移動開始時の船首方位(図6(A)参照)と船舶1の移動中の船首方位との差分が発生する場合もある。
 その場合に、船舶移動経路差分算出部14Dは、船舶1の目標移動経路TP1→TP3(図7(A)参照)と船舶1の実際の移動経路との差分(≠0)を算出する。更に、船首方位差分算出部14Eは、船舶1の移動開始時の船首方位H1(図6(A)参照)と、船舶1の移動中の船首方位との差分(≠0)を算出する。
 推進力算出部14Fは、船舶1の移動中に、船舶1の実際の移動経路を船舶1の目標移動経路TP1→TP3(図7(A)参照)に近づける推進力と、船舶1の移動中の船首方位を船舶1の移動開始時の船首方位H1(図6(A)参照)に近づける推進力との合成力を、船外機12、13の操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる船舶1の推進力として算出する。
 船外機用制御装置14は、船舶1の移動中に、推進力算出部14Fによって算出された推進力(合成力)を、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる。
 つまり、船外機用制御装置14は、船舶1の移動中に、操船者が操作部11Dの位置を変更する追加の操作あるいは操作部11Dを回動させる追加の操作を行わなくても、船舶1の目標移動経路TP1→TP3(図7(A)参照)と船舶1の実際の移動経路との差分を抑制し、かつ、船舶1の移動開始時の船首方位H1(図6(A)参照)と船舶1の移動中の船首方位との差分を抑制する推進力(合成力)を、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる。
 詳細には、船外機用制御装置14は、船舶1の移動中に、船舶位置検出部11Eによって検出される船舶1の位置と、船首方位検出部11Fによって検出される船首1Bの方位とに基づいて、船舶1の実際の移動経路を船舶1の目標移動経路TP1→TP3に近づけ、かつ、船舶1の移動中の船首方位を船舶1の移動開始時の船首方位H1に近づける船外機12、13のフィードバック制御を実行する。
 その結果、この場合においても、船舶1は、操船者の追加操作の必要なく、風、潮流等による外力に抗して、右前向きの移動(並進移動)を継続することができる。
Further, when the ship 1 receives an external force due to wind, tidal current, etc. while the ship 1 is moving, the target travel path TP1→TP3 (see FIG. 7A) of the ship 1 and the actual travel path of the ship 1 are A difference may occur, and a difference may occur between the heading of the ship 1 at the start of movement (see FIG. 6A) and the heading of the ship 1 during movement.
In that case, the ship movement route difference calculation unit 14D calculates the difference (≠0) between the target movement route TP1→TP3 (see FIG. 7A) of the boat 1 and the actual movement route of the boat 1. Further, the heading difference calculation unit 14E calculates the difference (≠0) between the heading H1 at the start of movement of the ship 1 (see FIG. 6A) and the heading of the ship 1 during movement.
The propulsive force calculating unit 14F is a propulsive force that brings the actual movement route of the boat 1 closer to the target movement route TP1→TP3 of the boat 1 (see FIG. 7A) while the boat 1 is moving, and the movement of the boat 1 Of the steering force 12A2, 13A2 of the outboard motors 12 and 13 and the propulsion units 12A1 and 13A1. It is calculated as the propulsive force of the ship 1 to be generated at.
The outboard motor control device 14 causes the steering actuators 12A2 and 13A2 and the propulsion units 12A1 and 13A1 to generate the propulsive force (synthetic force) calculated by the propulsive force calculation unit 14F while the boat 1 is moving.
That is, the outboard motor control device 14 does not have to perform an additional operation of changing the position of the operation unit 11D or an additional operation of rotating the operation unit 11D by the boat operator while the ship 1 is moving. No. 1 target travel route TP1→TP3 (see FIG. 7A) and the actual travel route of the ship 1 are suppressed, and the heading H1 at the start of the travel of the ship 1 (see FIG. 6A) ) And the heading of the boat 1 during movement of the ship 1 are generated in the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1.
Specifically, the outboard motor control device 14 determines the position of the ship 1 detected by the ship position detection unit 11E and the heading of the bow 1B detected by the heading direction detection unit 11F while the ship 1 is moving. Based on this, the outboard motor 12 that brings the actual travel route of the ship 1 closer to the target travel route TP1→TP3 of the ship 1 and brings the heading of the ship 1 in motion closer to the heading H1 at the start of the travel of the ship 1 , 13 feedback control is executed.
As a result, even in this case, the vessel 1 can continue the forward movement (translational movement) in the right direction against the external force due to the wind, the tidal current, etc. without the need for additional operation by the operator.
 図8は第1実施形態の船舶1の目標移動経路TP1→TP4などを説明するための図である。
 操船者が、船舶1を右後向きに移動(並進移動)させたい場合もある。そのような場合には、図4(C)に示す例のように、操作部11D(ジョイスティックのレバーの先端部)が位置P1から位置P4に移動させられて、位置P4に維持される。
 操作部移動経路算出部14Aは、ジョイスティックのレバーの先端部が位置P1に位置する時刻のレバーの位置と、ジョイスティックのレバーの先端部が位置P4に移動させられた時刻(船舶1の移動開始時)のレバーの位置とに基づいて、ジョイスティックのレバーの先端部の移動経路(操作部11Dの移動経路)P1→P4を算出する。
 船舶目標移動経路算出部14Bは、船舶1の移動開始時に船舶位置検出部11Eによって検出された船舶1の位置と、船舶1の移動開始時の操作部11Dの位置P4とに基づいて、右後向きの船舶1の目標移動経路TP1→TP4(図8(A)参照)を算出する。
 推進力算出部14Fは、船舶目標移動経路算出部14Bによって算出された右後向きの船舶1の目標移動経路TP1→TP4に基づいて、船外機12、13に発生させる推進力を算出する。
 船外機用制御装置14は、推進力算出部14Fによって算出された右後向きの推進力を、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる。
 その結果、船舶1が右後向きに移動(並進移動)開始する。
FIG. 8: is a figure for demonstrating the target moving path TP1 ->TP4 of the ship 1 of 1st Embodiment.
There is also a case where the marine vessel operator wants to move the vessel 1 to the right rear (translational movement). In such a case, as in the example shown in FIG. 4C, the operation portion 11D (the tip of the joystick lever) is moved from the position P1 to the position P4 and is maintained at the position P4.
The operation unit movement path calculation unit 14A determines the position of the lever at the time when the tip of the joystick lever is located at the position P1 and the time when the tip of the joystick lever is moved to the position P4 (when the movement of the ship 1 is started. ) Of the lever position of the joystick, the movement path (movement path of the operation unit 11D) P1→P4 is calculated based on the lever position.
The ship target movement route calculation unit 14B is directed rearward rightward based on the position of the ship 1 detected by the ship position detection unit 11E at the start of the movement of the ship 1 and the position P4 of the operation unit 11D at the start of the movement of the ship 1. The target travel route TP1→TP4 of the ship 1 (see FIG. 8A) is calculated.
The propulsive force calculating unit 14F calculates the propulsive force to be generated in the outboard motors 12 and 13 based on the target moving route TP1→TP4 of the ship 1 facing right rearward, which is calculated by the target moving route calculating unit 14B.
The outboard motor control device 14 causes the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1 to generate the right rearward propulsion force calculated by the propulsion force calculation unit 14F.
As a result, the marine vessel 1 starts moving backward (translating).
 次いで、船舶1が右後向きに移動(並進移動)している期間中に、船舶実移動経路算出部14Cは、船舶1の移動開始時に船舶位置検出部11Eによって検出された船舶1の位置と、船舶1の移動中に船舶位置検出部11Eによって検出される船舶1の位置とに基づいて、船舶1の実際の移動経路RP1→RP4(図8(B)参照)を算出する。
 船舶1の移動中に、船舶1が風、潮流等による外力を受けない場合、船舶1の実際の移動経路RP1→RP4(図8(B)参照)と、船舶1の目標移動経路TP1→TP4(図8(A)参照)とが一致する。
 その結果、船舶移動経路差分算出部14Dによって算出される船舶1の目標移動経路TP1→TP4と船舶1の実際の移動経路RP1→RP4との差分がゼロになる。
 また、船首方位差分算出部14Eによって算出される船舶1の移動開始時の船首1Bの方位と、船舶1の移動中の船首1Bの方位との差分もゼロになる。
 そのため、推進力算出部14Fは、船舶1の移動中に、船舶1の移動開始時に算出した推進力と等しい推進力を算出する。
 船外機用制御装置14は、船舶1の移動中に、推進力算出部14Fによって算出された右後向きの推進力を、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる。
 その結果、船舶1が右後向きの移動(並進移動)を継続する。
Next, during the period in which the boat 1 is moving rearward to the right (translational movement), the boat actual movement route calculation unit 14C detects the position of the boat 1 detected by the boat position detection unit 11E when the boat 1 starts moving, The actual movement route RP1→RP4 (see FIG. 8B) of the marine vessel 1 is calculated based on the position of the marine vessel 1 detected by the marine vessel position detection unit 11E while the marine vessel 1 is moving.
When the ship 1 does not receive an external force due to wind, tidal current, etc. while the ship 1 is moving, the actual travel route RP1→RP4 of the ship 1 (see FIG. 8(B)) and the target travel route TP1→TP4 of the ship 1 (See FIG. 8A).
As a result, the difference between the target travel route TP1→TP4 of the ship 1 and the actual travel route RP1→RP4 of the ship 1 calculated by the ship travel route difference calculation unit 14D becomes zero.
Further, the difference between the bearing of the bow 1B at the start of movement of the boat 1 and the bearing of the bow 1B during movement of the boat 1 calculated by the bow bearing difference calculation unit 14E is also zero.
Therefore, the propulsive force calculating unit 14F calculates a propulsive force that is equal to the propulsive force calculated when the marine vessel 1 starts moving while the marine vessel 1 is moving.
The outboard motor control device 14 causes the steering actuators 12A2 and 13A2 and the propulsion units 12A1 and 13A1 to generate the right rearward propulsive force calculated by the propulsive force calculation unit 14F while the boat 1 is moving.
As a result, the ship 1 continues to move to the right rear (translational movement).
 一方、船舶1の移動中に船舶1が風、潮流等による例えば後向きの外力を受ける場合には、その後向きの外力によって、船舶1が後側に流される。
 そのため、船舶実移動経路算出部14Cは、船舶1の移動開始時に船舶位置検出部11Eによって検出された船舶1の位置と、船舶1の移動中に船舶位置検出部11Eによって検出される船舶1の位置(後側に流された船舶1の位置)RP4B(図8(C)参照)とに基づいて、船舶1の実際の移動経路RP1→RP4B(図8(C)参照)を算出する。
 船舶1の移動中に船舶1が後向きの外力を受ける場合には、船舶1の実際の移動経路RP1→RP4B(図8(C)参照)と、船舶1の目標移動経路TP1→TP4(図8(A)参照)とが一致しない。
 その結果、船舶移動経路差分算出部14Dは、船舶1の目標移動経路TP1→TP4(図8(A)参照)と船舶1の実際の移動経路RP1→RP4B(図8(C)参照)との差分(≠0)を算出する。
 図8(C)に示す例では、船首方位差分算出部14Eが、船舶1の移動開始時の船首1Bの方位と、船舶1の移動中の船首1Bの方位との差分ゼロを算出する。
 従って、推進力算出部14Fは、船舶1の移動中に、船舶1の実際の移動経路RP1→RP4B(図8(C)参照)を船舶1の目標移動経路TP1→TP4(図8(A)参照)に近づける右後向きの推進力F4F(図8(D)参照)を、船外機12、13の操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる船舶1の推進力として算出する。
 船外機用制御装置14は、船舶1の移動中に、推進力算出部14Fによって算出された右後向きの推進力F4F(図8(D)参照)を、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる。
 つまり、船外機用制御装置14は、船舶1の移動中に、操船者が操作部11Dの位置を変更する追加の操作を行わなくても、右後向きの推進力F4F(図8(D)参照)を、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる。
 すなわち、船外機用制御装置14は、船舶1の移動中に、船舶1の目標移動経路TP1→TP4と船舶1の実際の移動経路RP1→RP4Bとの差分を抑制する右後向きの推進力F4Fを船外機12、13に発生させる。
 詳細には、船外機用制御装置14は、船舶1の移動中に、船舶位置検出部11Eによって検出される船舶1の位置RP4B(図8(C)参照)に基づいて、船舶1の実際の移動経路RP1→RP4Bを船舶1の目標移動経路TP1→TP4に近づける船外機12、13のフィードバック制御を実行する。
 その結果、図8(C)および図8(D)に示す例では、船舶1は、操船者の追加操作の必要なく、風、潮流等による後向きの外力に抗して、右後向きの移動(並進移動)を継続することができる。
On the other hand, when the boat 1 receives a backward external force due to wind, tidal current, etc. while the boat 1 is moving, the backward external force causes the boat 1 to flow to the rear side.
Therefore, the actual ship movement route calculation unit 14C detects the position of the ship 1 detected by the ship position detection unit 11E at the start of the movement of the ship 1 and the position of the ship 1 detected by the ship position detection unit 11E during the movement of the ship 1. The actual movement route RP1→RP4B (see FIG. 8C) of the boat 1 is calculated based on the position (the position of the boat 1 that has flowed to the rear side) RP4B (see FIG. 8C).
When the ship 1 receives a backward external force while the ship 1 is moving, the actual travel route RP1→RP4B of the ship 1 (see FIG. 8C) and the target travel route TP1→TP4 of the ship 1 (see FIG. 8). (See (A)) does not match.
As a result, the ship movement route difference calculation unit 14D calculates the target movement route TP1→TP4 of the boat 1 (see FIG. 8A) and the actual movement route RP1→RP4B of the boat 1 (see FIG. 8C). The difference (≠0) is calculated.
In the example shown in FIG. 8C, the bow direction difference calculation unit 14E calculates a zero difference between the direction of the bow 1B at the start of movement of the boat 1 and the direction of the bow 1B during movement of the boat 1.
Therefore, the propulsive force calculation unit 14F changes the actual movement route RP1→RP4B (see FIG. 8C) of the boat 1 to the target movement route TP1→TP4 of the boat 1 (FIG. 8A) while the boat 1 is moving. The propulsive force F4F toward the right rear (see FIG. 8D) that is closer to the reference (see FIG. 8D) is calculated as the propulsive force of the boat 1 generated by the steering actuators 12A2 and 13A2 of the outboard motors 12 and 13 and the propulsion units 12A1 and 13A1.
The outboard motor control device 14 applies the right rearward propulsive force F4F (see FIG. 8D) calculated by the propulsive force calculating unit 14F to the steering actuators 12A2, 13A2 and the propulsion unit 12A1 while the boat 1 is moving. , 13A1.
That is, the outboard motor control device 14 does not require an additional operation for changing the position of the operation unit 11D while the boat 1 is moving, and the right rearward propulsive force F4F (FIG. 8(D)). Are generated in the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1.
That is, the outboard motor control device 14 suppresses the difference between the target travel route TP1→TP4 of the boat 1 and the actual travel route RP1→RP4B of the boat 1 while the boat 1 is moving, and rightward rearward propulsive force F4F. To the outboard motors 12 and 13.
Specifically, the outboard motor control device 14 determines the actual operation of the ship 1 based on the position RP4B (see FIG. 8C) of the ship 1 detected by the ship position detection unit 11E while the ship 1 is moving. The feedback control of the outboard motors 12 and 13 is performed to bring the moving route RP1→RP4B of 1 to the target moving route TP1→TP4 of the ship 1.
As a result, in the example shown in FIGS. 8C and 8D, the vessel 1 moves rearward to the right against the rearward external force due to wind, tidal current, etc. without the need for additional operation by the operator. Translational movement) can be continued.
 また、船舶1の移動中に船舶1が風、潮流等による例えば前向きの外力を受ける場合には、その前向きの外力によって、船舶1が前側に流される。
 そのため、船舶実移動経路算出部14Cは、船舶1の移動開始時に船舶位置検出部11Eによって検出された船舶1の位置と、船舶1の移動中に船舶位置検出部11Eによって検出される船舶1の位置(前側に流された船舶1の位置)RP4F(図8(E)参照)とに基づいて、船舶1の実際の移動経路RP1→RP4F(図8(E)参照)を算出する。
 船舶1の移動中に船舶1が前向きの外力を受ける場合には、船舶1の実際の移動経路RP1→RP4F(図8(E)参照)と、船舶1の目標移動経路TP1→TP4(図8(A)参照)とが一致しない。
 その結果、船舶移動経路差分算出部14Dは、船舶1の目標移動経路TP1→TP4(図8(A)参照)と船舶1の実際の移動経路RP1→RP4F(図8(E)参照)との差分(≠0)を算出する。
 図8(E)に示す例では、船首方位差分算出部14Eが、船舶1の移動開始時の船首1Bの方位と、船舶1の移動中の船首1Bの方位との差分ゼロを算出する。
 従って、推進力算出部14Fは、船舶1の移動中に、船舶1の実際の移動経路RP1→RP4F(図8(E)参照)を船舶1の目標移動経路TP1→TP4(図8(A)参照)に近づける右後向きの推進力F4B(図7(F)参照)を、船外機12、13の操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる船舶1の推進力として算出する。
 船外機用制御装置14は、船舶1の移動中に、推進力算出部14Fによって算出された右後向きの推進力F4B(図8(F)参照)を、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる。
 つまり、船外機用制御装置14は、船舶1の移動中に、操船者が操作部11Dの位置を変更する追加の操作を行わなくても、右後向きの推進力F4B(図8(F)参照)を、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる。
 すなわち、船外機用制御装置14は、船舶1の移動中に、船舶1の目標移動経路TP1→TP4と船舶1の実際の移動経路RP1→RP4Fとの差分を抑制する右後向きの推進力F4Bを船外機12、13に発生させる。
 詳細には、船外機用制御装置14は、船舶1の移動中に、船舶位置検出部11Eによって検出される船舶1の位置RP4F(図8(E)参照)に基づいて、船舶1の実際の移動経路RP1→RP4Fを船舶1の目標移動経路TP1→TP4に近づける船外機12、13のフィードバック制御を実行する。
 その結果、図8(E)および図8(F)に示す例では、船舶1は、操船者の追加操作の必要なく、風、潮流等による前向きの外力に抗して、右後向きの移動(並進移動)を継続することができる。
Further, when the ship 1 receives a forward external force due to wind, tidal current, or the like while the ship 1 is moving, the forward external force causes the ship 1 to flow forward.
Therefore, the actual ship movement route calculation unit 14C detects the position of the ship 1 detected by the ship position detection unit 11E at the start of the movement of the ship 1 and the position of the ship 1 detected by the ship position detection unit 11E during the movement of the ship 1. The actual movement route RP1→RP4F (see FIG. 8E) of the boat 1 is calculated based on the position (the position of the boat 1 that has flowed to the front side) RP4F (see FIG. 8E).
When the ship 1 receives a forward external force while the ship 1 is moving, the actual travel route RP1→RP4F of the ship 1 (see FIG. 8E) and the target travel route TP1→TP4 of the ship 1 (FIG. 8). (See (A)) does not match.
As a result, the ship movement route difference calculation unit 14D divides the target movement route TP1→TP4 of the boat 1 (see FIG. 8A) and the actual movement route RP1→RP4F of the boat 1 (see FIG. 8E). The difference (≠0) is calculated.
In the example shown in FIG. 8E, the bow direction difference calculation unit 14E calculates a zero difference between the direction of the bow 1B at the start of movement of the ship 1 and the direction of the bow 1B during movement of the ship 1.
Therefore, the propulsion force calculation unit 14F changes the actual movement route RP1→RP4F (see FIG. 8E) of the boat 1 to the target movement route TP1→TP4 of the boat 1 (FIG. 8A) while the boat 1 is moving. The propulsive force F4B (see FIG. 7(F)) in the right rearward direction (see FIG. 7F) is calculated as the propulsive force of the boat 1 generated by the steering actuators 12A2, 13A2 of the outboard motors 12, 13 and the propulsion units 12A1, 13A1.
The outboard motor control device 14 applies the right rearward propulsive force F4B (see FIG. 8F) calculated by the propulsive force calculating unit 14F to the steering actuators 12A2, 13A2 and the propulsion unit 12A1 while the ship 1 is moving. , 13A1.
That is, the outboard motor control device 14 does not require an additional operation for changing the position of the operation unit 11D while the ship 1 is moving, and the right rearward propulsive force F4B (FIG. 8(F)). Are generated in the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1.
That is, the outboard motor control device 14 suppresses the difference between the target travel route TP1→TP4 of the boat 1 and the actual travel route RP1→RP4F of the boat 1 while the boat 1 is moving, and the right rearward propulsive force F4B is suppressed. To the outboard motors 12 and 13.
Specifically, the outboard motor control device 14 determines the actual operation of the ship 1 based on the position RP4F (see FIG. 8E) of the ship 1 detected by the ship position detection unit 11E while the ship 1 is moving. The feedback control of the outboard motors 12 and 13 is performed to bring the movement route RP1→RP4F of 1 to the target movement route TP1→TP4 of the ship 1.
As a result, in the example shown in FIGS. 8(E) and 8(F), the ship 1 moves rearward to the right against the forward external force due to wind, tidal current, etc. without the need for additional operation by the operator. Translational movement) can be continued.
 図4(C)、図6(A)および図6(B)に示す例では、操作部11Dが位置P1から位置P4に移動させられて、位置P4に維持される。詳細には、船舶1の移動開始時(操作部11Dが位置P4に移動させられた時刻)の船首方位H1(図6(A)参照)と、船舶1の移動中(船舶1が右後前きに移動している期間中)の船首方位H2(図6(B)参照)とが一致する。つまり、船舶1は、船舶1を旋回させる風、潮流等による外力を受けることなく、右後向きに並進移動している。
 この例では、船首方位差分算出部14Eによって算出される船舶1の移動開始時の船首方位H1(図6(A)参照)と、船舶1の移動中の船首方位H2(図6(B)参照)との差分がゼロになる。
 そのため、推進力算出部14Fは、船舶1の移動中に、船舶1を旋回させる推進力を加算することなく、船舶1の移動開始時に算出した推進力と等しい推進力を算出する。
 船外機用制御装置14は、船舶1の移動中に、推進力算出部14Fによって算出された右後向きの推進力を、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる。
 その結果、船舶1が右後向きの移動(並進移動)を継続する。
In the example shown in FIGS. 4C, 6A, and 6B, the operation unit 11D is moved from the position P1 to the position P4 and is maintained at the position P4. Specifically, the heading H1 (see FIG. 6A) at the start of the movement of the boat 1 (the time when the operation unit 11D is moved to the position P4) and during the movement of the boat 1 (the front right rear of the boat 1) The heading H2 (see FIG. 6B) during the period of movement (see FIG. 6B). That is, the ship 1 is translating in the rear right direction without being subjected to an external force such as a wind or a tidal current that causes the ship 1 to turn.
In this example, the heading H1 at the start of movement of the ship 1 calculated by the heading difference calculation unit 14E (see FIG. 6A) and the heading H2 during movement of the ship 1 (see FIG. 6B). ) Becomes zero.
Therefore, the propulsive force calculating unit 14F calculates the propulsive force equal to the propulsive force calculated when the marine vessel 1 starts moving, without adding the propulsive force for turning the marine vessel 1 while the marine vessel 1 is moving.
The outboard motor control device 14 causes the steering actuators 12A2 and 13A2 and the propulsion units 12A1 and 13A1 to generate the right rearward propulsive force calculated by the propulsive force calculation unit 14F while the boat 1 is moving.
As a result, the ship 1 continues to move to the right rear (translational movement).
 一方、船舶1の移動中に、船舶1を例えば時計回りに旋回させる風、潮流等による外力を船舶1が受ける場合には、その外力によって、船舶1が時計回りに旋回する。
 そのため、船首方位差分算出部14Eは、船舶1の移動開始時の船首方位H1(図6(A)参照)と、船舶1の移動中の船首方位H2CW(図6(C)参照)との差分(≠0)を算出する。
 また、図4(C)、図6(A)および図6(C)に示す例では、船舶移動経路差分算出部14Dが、船舶1の目標移動経路と船舶1の実際の移動経路との差分ゼロを算出する。
 従って、推進力算出部14Fは、船舶1の移動中に、船舶1の移動中の船首方位H2CW(図6(C)参照)を船舶1の移動開始時の船首方位H1(図6(A)参照)に近づける反時計回りの推進力FCC(図6(D)参照)と右後向きの推進力との合成力を、船外機12、13の操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる船舶1の推進力として算出する。
 船外機用制御装置14は、船舶1の移動中に、推進力算出部14Fによって算出された反時計回りの推進力FCC(図6(D)参照)と右後向きの推進力との合成力を、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる。
 つまり、船外機用制御装置14は、船舶1の移動中に、操船者が操作部11Dを反時計回りに回動させる追加の操作を行わなくても、反時計回りの推進力FCC(図6(D)参照)と右後向きの推進力との合成力を、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる。
 すなわち、船外機用制御装置14は、船舶1の移動中に、船舶1の移動開始時の船首方位H1(図6(A)参照)と船舶1の移動中の船首方位H2CW(図6(C)参照)との差分を抑制する反時計回りの推進力FCC(図6(D)参照)を含む合成力を船外機12、13に発生させる。
 詳細には、船外機用制御装置14は、船舶1の移動中に、船首方位検出部11Fによって検出される船首方位H2CW(図6(C)参照)を、船舶1の移動開始時の船首方位H1(図6(A)参照)に近づける船外機12、13のフィードバック制御を実行する。
On the other hand, when the ship 1 receives an external force due to wind, tidal current, or the like that causes the ship 1 to turn clockwise, for example, while the ship 1 is moving, the ship 1 turns clockwise due to the external force.
Therefore, the bow heading difference calculation unit 14E determines the difference between the heading H1 at the start of the movement of the ship 1 (see FIG. 6A) and the heading H2CW during the movement of the ship 1 (see FIG. 6C). Calculate (≠0).
Further, in the example shown in FIGS. 4C, 6A, and 6C, the ship movement route difference calculation unit 14D causes the difference between the target movement route of the boat 1 and the actual movement route of the boat 1. Calculate zero.
Therefore, the propulsive force calculating unit 14F determines the heading H2CW (see FIG. 6C) of the ship 1 during movement of the ship 1 while the heading H1 of the beginning of the movement of the ship 1 (see FIG. 6A). (Refer to FIG. 6D) and a right rearward propulsive force to the steering actuators 12A2 and 13A2 of the outboard motors 12 and 13 and the propulsion units 12A1 and 13A1. It is calculated as the propulsive force of the ship 1 to be generated.
The outboard motor control device 14 combines the counterclockwise propulsive force FCC (see FIG. 6D) calculated by the propulsive force calculating unit 14F and the right rearward propulsive force while the ship 1 is moving. Are generated in the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1.
That is, the outboard motor control device 14 does not have to perform an additional operation of rotating the operation unit 11D counterclockwise while the ship 1 is moving, and the counterclockwise propulsive force FCC (FIG. 6(D)) and a right rearward propulsive force are generated in the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1.
That is, the outboard motor control device 14 controls the heading H1 when the ship 1 starts moving (see FIG. 6A) and the heading H2CW of the moving ship 1 while the ship 1 is moving (see FIG. The combined force including the counterclockwise propulsive force FCC (see FIG. 6D) that suppresses the difference between the outboard motors 12 and 13 is generated.
Specifically, the outboard motor control device 14 determines the heading H2CW (see FIG. 6C) detected by the heading detection unit 11F during the movement of the ship 1 at the beginning of the movement of the ship 1. Feedback control of the outboard motors 12, 13 is performed to bring the outboard motors 12 and 13 closer to the direction H1 (see FIG. 6A).
 また、船舶1の移動中に、船舶1を例えば反時計回りに旋回させる風、潮流等による外力を船舶1が受ける場合には、その外力によって、船舶1が反時計回りに旋回する。
 そのため、船首方位差分算出部14Eは、船舶1の移動開始時の船首方位H1(図6(A)参照)と、船舶1の移動中の船首方位H2CC(図6(E)参照)との差分(≠0)を算出する。
 また、図4(C)、図6(A)および図6(E)に示す例では、船舶移動経路差分算出部14Dが、船舶1の目標移動経路と船舶1の実際の移動経路との差分ゼロを算出する。
 従って、推進力算出部14Fは、船舶1の移動中に、船舶1の移動中の船首方位H2CC(図6(E)参照)を船舶1の移動開始時の船首方位H1(図6(A)参照)に近づける時計回りの推進力FCW(図6(F)参照)と右後向きの推進力との合成力を、船外機12、13の操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる船舶1の推進力として算出する。
 船外機用制御装置14は、船舶1の移動中に、推進力算出部14Fによって算出された時計回りの推進力FCW(図6(F)参照)と右後向きの推進力との合成力を、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる。
 つまり、船外機用制御装置14は、船舶1の移動中に、操船者が操作部11Dを時計回りに回動させる追加の操作を行わなくても、時計回りの推進力FCW(図6(F)参照)と右後向きの推進力との合成力を、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる。
 すなわち、船外機用制御装置14は、船舶1の移動中に、船舶1の移動開始時の船首方位H1(図6(A)参照)と船舶1の移動中の船首方位H2CC(図6(E)参照)との差分を抑制する時計回りの推進力FCW(図6(F)参照)を含む合成力を船外機12、13に発生させる。
 詳細には、船外機用制御装置14は、船舶1の移動中に、船首方位検出部11Fによって検出される船首方位H2CC(図6(E)参照)を、船舶1の移動開始時の船首方位H1(図6(A)参照)に近づける船外機12、13のフィードバック制御を実行する。
Further, when the ship 1 receives an external force due to wind, tidal current, or the like that causes the ship 1 to turn counterclockwise while the ship 1 is moving, the external force causes the ship 1 to turn counterclockwise.
Therefore, the bow direction difference calculation unit 14E determines the difference between the bow direction H1 (see FIG. 6(A)) at the start of movement of the vessel 1 and the heading direction H2CC (see FIG. 6(E)) during movement of the vessel 1. Calculate (≠0).
Further, in the example shown in FIGS. 4C, 6A, and 6E, the ship movement route difference calculation unit 14D causes the difference between the target movement route of the boat 1 and the actual movement route of the boat 1. Calculate zero.
Therefore, the propulsive force calculation unit 14F determines the heading H2CC (see FIG. 6E) during the movement of the ship 1 while the ship 1 is moving, and the heading H1 at the start of the movement of the ship 1 (FIG. 6A). (Refer to FIG. 6F) and a rightward rearward propulsive force are generated in the steering actuators 12A2 and 13A2 of the outboard motors 12 and 13 and the propulsion units 12A1 and 13A1. It is calculated as the propulsive force of the ship 1.
The outboard motor control device 14 generates a combined force of the clockwise propulsive force FCW (see FIG. 6(F)) calculated by the propulsive force calculating unit 14F and the right rearward propulsive force while the boat 1 is moving. , Steering actuators 12A2, 13A2 and propulsion units 12A1, 13A1.
That is, the outboard motor control device 14 does not require the additional operation of rotating the operation unit 11D in the clockwise direction while the ship 1 is moving, and the clockwise propulsive force FCW (see FIG. F))) and a right rearward propulsive force are generated in the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1.
That is, the outboard motor control device 14 controls the heading H1 at the start of movement of the ship 1 (see FIG. 6A) and the heading H2CC of the moving boat 1 during movement of the ship 1 (FIG. 6( (See E))) The outboard motors 12 and 13 are generated with a combined force including a clockwise propulsive force FCW (see FIG. 6F) that suppresses the difference between the outboard motors 12 and 13.
Specifically, the outboard motor control device 14 determines the heading H2CC (see FIG. 6E) detected by the heading detection unit 11F during the movement of the ship 1 at the beginning of the movement of the ship 1. Feedback control of the outboard motors 12 and 13 is performed to bring the outboard motors 12 and 13 closer to the direction H1 (see FIG. 6A).
 また、船舶1の移動中に、船舶1が風、潮流等による外力を受けることによって、船舶1の目標移動経路TP1→TP4(図8(A)参照)と船舶1の実際の移動経路との差分が発生し、かつ、船舶1の移動開始時の船首方位(図6(A)参照)と船舶1の移動中の船首方位との差分が発生する場合もある。
 その場合に、船舶移動経路差分算出部14Dは、船舶1の目標移動経路TP1→TP4(図8(A)参照)と船舶1の実際の移動経路との差分(≠0)を算出する。更に、船首方位差分算出部14Eは、船舶1の移動開始時の船首方位H1(図6(A)参照)と、船舶1の移動中の船首方位との差分(≠0)を算出する。
 推進力算出部14Fは、船舶1の移動中に、船舶1の実際の移動経路を船舶1の目標移動経路TP1→TP4(図8(A)参照)に近づける推進力と、船舶1の移動中の船首方位を船舶1の移動開始時の船首方位H1(図6(A)参照)に近づける推進力との合成力を、船外機12、13の操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる船舶1の推進力として算出する。
 船外機用制御装置14は、船舶1の移動中に、推進力算出部14Fによって算出された推進力(合成力)を、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる。
 つまり、船外機用制御装置14は、船舶1の移動中に、操船者が操作部11Dの位置を変更する追加の操作あるいは操作部11Dを回動させる追加の操作を行わなくても、船舶1の目標移動経路TP1→TP4(図8(A)参照)と船舶1の実際の移動経路との差分を抑制し、かつ、船舶1の移動開始時の船首方位H1(図6(A)参照)と船舶1の移動中の船首方位との差分を抑制する推進力(合成力)を、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる。
 詳細には、船外機用制御装置14は、船舶1の移動中に、船舶位置検出部11Eによって検出される船舶1の位置と、船首方位検出部11Fによって検出される船首1Bの方位とに基づいて、船舶1の実際の移動経路を船舶1の目標移動経路TP1→TP4に近づけ、かつ、船舶1の移動中の船首方位を船舶1の移動開始時の船首方位H1に近づける船外機12、13のフィードバック制御を実行する。
 その結果、この場合においても、船舶1は、操船者の追加操作の必要なく、風、潮流等による外力に抗して、右後向きの移動(並進移動)を継続することができる。
Further, when the ship 1 receives an external force due to wind, tidal current, etc. while the ship 1 is moving, the target travel path TP1→TP4 (see FIG. 8A) of the ship 1 and the actual travel path of the ship 1 are A difference may occur, and a difference between the heading of the ship 1 at the start of movement (see FIG. 6A) and the heading of the ship 1 during movement may occur.
In that case, the ship movement route difference calculation unit 14D calculates the difference (≠0) between the target movement route TP1→TP4 (see FIG. 8A) of the boat 1 and the actual movement route of the boat 1. Further, the heading difference calculation unit 14E calculates the difference (≠0) between the heading H1 at the start of movement of the ship 1 (see FIG. 6A) and the heading of the ship 1 during movement.
The propulsive force calculation unit 14F is a propulsive force that brings the actual travel route of the boat 1 closer to the target travel route TP1→TP4 (see FIG. 8A) of the boat 1 while the boat 1 is moving, and the boat 1 is moving. Of the steering force 12A2, 13A2 of the outboard motors 12, 13 and the propulsion units 12A1, 13A1 of the combined force with the propulsive force that brings the heading of the outboard motor 1 closer to the heading H1 (see FIG. 6A) at the start of movement of the ship 1. It is calculated as the propulsive force of the ship 1 to be generated at.
The outboard motor control device 14 causes the steering actuators 12A2 and 13A2 and the propulsion units 12A1 and 13A1 to generate the propulsive force (synthetic force) calculated by the propulsive force calculation unit 14F while the boat 1 is moving.
That is, the outboard motor control device 14 does not have to perform an additional operation of changing the position of the operation unit 11D or an additional operation of rotating the operation unit 11D by the boat operator while the ship 1 is moving. No. 1 target travel route TP1→TP4 (see FIG. 8A) and the actual travel route of the ship 1 are suppressed, and the heading H1 at the start of the travel of the ship 1 (see FIG. 6A) ) And the heading of the boat 1 during movement of the ship 1 are generated in the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1.
Specifically, the outboard motor control device 14 determines the position of the ship 1 detected by the ship position detection unit 11E and the heading of the bow 1B detected by the heading direction detection unit 11F while the ship 1 is moving. Based on this, the outboard motor 12 that brings the actual travel route of the ship 1 closer to the target travel route TP1→TP4 of the ship 1 and brings the heading of the ship 1 in motion closer to the heading H1 at the start of the travel of the ship 1 , 13 feedback control is executed.
As a result, even in this case, the vessel 1 can continue the movement in the right rear direction (translational movement) against the external force caused by the wind, the tidal current, etc. without the need for additional operation by the operator.
 操船者が、船舶1を左向きに移動(並進移動)させたい場合もある。
 そのような場合には、図4(D)に示す例のように、操作部11D(詳細には、ジョイスティックのレバーの先端部)が位置P1から位置P5に移動させられて、位置P5に維持される。
 操作部移動経路算出部14Aは、ジョイスティックのレバーの先端部が位置P1に位置する時刻のレバーの位置と、ジョイスティックのレバーの先端部が位置P5に移動させられた時刻(船舶1の移動開始時)のレバーの位置とに基づいて、ジョイスティックのレバーの先端部の移動経路(操作部11Dの移動経路)P1→P5を算出する。
 船舶目標移動経路算出部14Bは、船舶1の移動開始時に船舶位置検出部11Eによって検出された船舶1の位置と、船舶1の移動開始時の操作部11Dの位置P5とに基づいて、左向きの船舶1の目標移動経路(図5(A)に示す目標移動経路TP1→TP2を左右反転したもの)を算出する。
 推進力算出部14Fは、船舶目標移動経路算出部14Bによって算出された左向きの船舶1の目標移動経路に基づいて、船外機12、13に発生させる推進力を算出する。
 船外機用制御装置14は、推進力算出部14Fによって算出された左向きの推進力を、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる。
 その結果、船舶1が左向きに移動(並進移動)開始する。
In some cases, the operator may want to move the vessel 1 leftward (translational movement).
In such a case, as in the example shown in FIG. 4D, the operation portion 11D (specifically, the tip end portion of the joystick lever) is moved from the position P1 to the position P5 and maintained at the position P5. To be done.
The operation unit movement path calculation unit 14A determines the lever position at the time when the tip of the joystick lever is located at the position P1 and the time when the tip of the joystick lever is moved to the position P5 (when the movement of the boat 1 is started. ) And the position of the lever, the moving path (the moving path of the operation unit 11D) P1→P5 of the tip of the joystick lever is calculated.
The ship target movement route calculation unit 14B determines the leftward direction based on the position of the ship 1 detected by the ship position detection unit 11E when the ship 1 starts moving and the position P5 of the operation unit 11D when the ship 1 starts moving. A target travel route of the ship 1 (a target travel route TP1→TP2 shown in FIG. 5A which is horizontally reversed) is calculated.
The propulsive force calculation unit 14F calculates the propulsive force to be generated in the outboard motors 12 and 13 based on the target travel route of the left-handed ship 1 calculated by the ship target travel route calculation unit 14B.
The outboard motor control device 14 causes the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1 to generate the leftward propulsive force calculated by the propulsive force calculation unit 14F.
As a result, the boat 1 starts moving leftward (translating).
 次いで、船舶1が左向きに移動(並進移動)している期間中に、船舶実移動経路算出部14Cは、船舶1の移動開始時に船舶位置検出部11Eによって検出された船舶1の位置と、船舶1の移動中に船舶位置検出部11Eによって検出される船舶1の位置とに基づいて、船舶1の実際の移動経路(図5(B)に示す実際の移動経路RP1→RP2を左右反転したもの)を算出する。
 船舶1の移動中に、船舶1が風、潮流等による外力を受けない場合、船舶1の実際の移動経路と、船舶1の目標移動経路とが一致する。
 その結果、船舶移動経路差分算出部14Dによって算出される船舶1の目標移動経路と船舶1の実際の移動経路との差分がゼロになる。
 また、船首方位差分算出部14Eによって算出される船舶1の移動開始時の船首1Bの方位と、船舶1の移動中の船首1Bの方位との差分もゼロになる。
 そのため、推進力算出部14Fは、船舶1の移動中に、船舶1の移動開始時に算出した推進力と等しい推進力を算出する。
 船外機用制御装置14は、船舶1の移動中に、推進力算出部14Fによって算出された左向きの推進力を、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる。
 その結果、船舶1が左向きの移動(並進移動)を継続する。
Next, during the period in which the vessel 1 is moving leftward (translational movement), the vessel actual movement route calculation unit 14C determines the position of the vessel 1 detected by the vessel position detection unit 11E at the start of movement of the vessel 1, and the vessel 1 The actual movement route of the boat 1 (the actual movement route RP1→RP2 shown in FIG. 5B) is horizontally reversed based on the position of the boat 1 detected by the boat position detection unit 11E during the movement of the boat 1. ) Is calculated.
When the ship 1 does not receive an external force due to wind, tidal current, etc. while the ship 1 is moving, the actual travel route of the ship 1 and the target travel route of the ship 1 match.
As a result, the difference between the target travel route of the ship 1 and the actual travel route of the ship 1 calculated by the ship travel route difference calculation unit 14D becomes zero.
Further, the difference between the bearing of the bow 1B at the start of movement of the boat 1 and the bearing of the bow 1B during movement of the boat 1 calculated by the bow bearing difference calculation unit 14E is also zero.
Therefore, the propulsive force calculating unit 14F calculates a propulsive force that is equal to the propulsive force calculated when the marine vessel 1 starts moving while the marine vessel 1 is moving.
The outboard motor control device 14 causes the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1 to generate the leftward propulsive force calculated by the propulsive force calculation unit 14F while the boat 1 is moving.
As a result, the ship 1 continues its leftward movement (translational movement).
 一方、船舶1の左向きの移動中に船舶1が風、潮流等による例えば後向きの外力を受ける場合には、その後向きの外力によって、船舶1が後側に流される。
 その場合に、船外機用制御装置14は、図5(C)および図5(D)に示す演算・制御を左右反転した演算・制御を実行する。
 その結果、この場合に、船舶1は、操船者の追加操作の必要なく、風、潮流等による後向きの外力に抗して、左向きの移動(並進移動)を継続することができる。
On the other hand, when the ship 1 receives a backward external force due to wind, tidal current, etc. while the ship 1 is moving leftward, the backward external force causes the ship 1 to flow to the rear side.
In that case, the outboard motor control device 14 executes the calculation/control which is the left-right reversal of the calculation/control shown in FIG. 5(C) and FIG. 5(D).
As a result, in this case, the ship 1 can continue its leftward movement (translational movement) against an external force directed backward by wind, tidal current, etc., without the need for additional operation by the operator.
 また、船舶1の左向きの移動中に船舶1が風、潮流等による例えば前向きの外力を受ける場合には、その前向きの外力によって、船舶1が前側に流される。
 その場合に、船外機用制御装置14は、図5(E)および図5(F)に示す演算・制御を左右反転した演算・制御を実行する。
 その結果、この場合に、船舶1は、操船者の追加操作の必要なく、風、潮流等による前向きの外力に抗して、左向きの移動(並進移動)を継続することができる。
Further, when the ship 1 receives a forward external force due to wind, tidal current, etc. while the ship 1 is moving leftward, the forward external force causes the ship 1 to flow forward.
In that case, the outboard motor control device 14 executes the calculation/control which is the left-right inversion of the calculation/control shown in FIG. 5(E) and FIG. 5(F).
As a result, in this case, the vessel 1 can continue the leftward movement (translational movement) against the forward external force due to wind, tidal current, etc., without the need for additional operation by the operator.
 船舶1が左向きに移動(並進移動)している期間中に、船舶1を旋回させる風、潮流等による外力を船舶1が受けない場合には、推進力算出部14Fは、船舶1を旋回させる推進力を加算することなく、船舶1の移動開始時に算出した推進力と等しい推進力を算出する。
 その結果、船舶1が左向きの移動(並進移動)を継続する。
When the ship 1 does not receive an external force due to wind, tidal current, or the like that causes the ship 1 to turn while the ship 1 is moving to the left (translational movement), the propulsive force calculation unit 14F causes the ship 1 to turn. The propulsive force equal to the propulsive force calculated at the time of starting the movement of the ship 1 is calculated without adding the propulsive force.
As a result, the ship 1 continues its leftward movement (translational movement).
 一方、船舶1の左向きの移動中に、船舶1を例えば時計回りに旋回させる風、潮流等による外力を船舶1が受ける場合には、その外力によって、船舶1が時計回りに旋回する。
 その場合に、船外機用制御装置14は、図6(C)および図6(D)に示す演算・制御と同様の演算・制御を実行する。
On the other hand, when the ship 1 receives an external force due to wind, tidal current, or the like that causes the ship 1 to turn clockwise, for example, while the ship 1 is moving to the left, the external force causes the ship 1 to turn clockwise.
In that case, the outboard motor control device 14 executes the same calculation/control as the calculation/control shown in FIG. 6(C) and FIG. 6(D).
 また、船舶1の左向きの移動中に、船舶1を例えば反時計回りに旋回させる風、潮流等による外力を船舶1が受ける場合には、その外力によって、船舶1が反時計回りに旋回する。
 その場合に、船外機用制御装置14は、図6(E)および図6(F)に示す演算・制御と同様の演算・制御を実行する。
Further, when the ship 1 receives an external force due to wind, tidal current, or the like that causes the ship 1 to turn counterclockwise while the ship 1 is moving to the left, the external force causes the ship 1 to turn counterclockwise.
In that case, the outboard motor control device 14 executes the same calculation/control as the calculation/control shown in FIG. 6(E) and FIG. 6(F).
 また、船舶1の左向きの移動中に、船舶1が風、潮流等による外力を受けることによって、船舶1の目標移動経路(図5(A)に示す目標移動経路TP1→TP2を左右反転したもの)と船舶1の実際の移動経路との差分が発生し、かつ、船舶1の移動開始時の船首方位(図6(A)参照)と船舶1の移動中の船首方位との差分が発生する場合もある。
 その場合に、船舶移動経路差分算出部14Dは、船舶1の目標移動経路と船舶1の実際の移動経路との差分(≠0)を算出する。更に、船首方位差分算出部14Eは、船舶1の移動開始時の船首方位H1(図6(A)参照)と、船舶1の左向きの移動中の船首方位との差分(≠0)を算出する。
 推進力算出部14Fは、船舶1の左向きの移動中に、船舶1の実際の移動経路を船舶1の目標移動経路に近づける推進力と、船舶1の移動中の船首方位を船舶1の移動開始時の船首方位H1(図6(A)参照)に近づける推進力との合成力を、船外機12、13の操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる船舶1の推進力として算出する。
 船外機用制御装置14は、船舶1の移動中に、推進力算出部14Fによって算出された推進力(合成力)を、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる。
 つまり、船外機用制御装置14は、船舶1の左向きの移動中に、操船者が操作部11Dの位置を変更する追加の操作あるいは操作部11Dを回動させる追加の操作を行わなくても、船舶1の目標移動経路と船舶1の実際の移動経路との差分を抑制し、かつ、船舶1の移動開始時の船首方位H1(図6(A)参照)と船舶1の移動中の船首方位との差分を抑制する推進力(合成力)を、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる。
 詳細には、船外機用制御装置14は、船舶1の左向きの移動中に、船舶位置検出部11Eによって検出される船舶1の位置と、船首方位検出部11Fによって検出される船首1Bの方位とに基づいて、船舶1の実際の移動経路を船舶1の目標移動経路に近づけ、かつ、船舶1の左向きの移動中の船首方位を船舶1の移動開始時の船首方位H1に近づける船外機12、13のフィードバック制御を実行する。
 その結果、この場合においても、船舶1は、操船者の追加操作の必要なく、風、潮流等による外力に抗して、左向きの移動(並進移動)を継続することができる。
In addition, the target movement route of the boat 1 (the target movement route TP1→TP2 shown in FIG. 5A) is horizontally reversed by the boat 1 receiving an external force due to wind, tidal current, etc. while the boat 1 is moving to the left. ) And the actual movement route of the ship 1 occur, and a difference between the heading of the ship 1 at the start of movement (see FIG. 6A) and the heading of the ship 1 during movement occurs. In some cases.
In that case, the ship movement route difference calculation unit 14D calculates the difference (≠0) between the target movement route of the boat 1 and the actual movement route of the boat 1. Further, the heading difference calculation unit 14E calculates a difference (≠0) between the heading H1 (see FIG. 6A) at the start of the movement of the ship 1 and the heading of the ship 1 in the leftward movement. ..
The propulsion force calculation unit 14F starts the movement of the boat 1 by setting the propulsion force that brings the actual movement route of the boat 1 closer to the target movement route of the boat 1 and the heading of the boat 1 during movement of the boat 1 during the leftward movement of the boat 1. As a propulsive force of the ship 1 generated by the steering actuators 12A2, 13A2 of the outboard motors 12, 13 and the propulsion units 12A1, 13A1, the combined force with the propulsive force that approaches the bow direction H1 (see FIG. 6A) at the time calculate.
The outboard motor control device 14 causes the steering actuators 12A2 and 13A2 and the propulsion units 12A1 and 13A1 to generate the propulsive force (synthetic force) calculated by the propulsive force calculation unit 14F while the boat 1 is moving.
That is, the outboard motor control device 14 does not need to perform an additional operation for changing the position of the operation unit 11D or an additional operation for rotating the operation unit 11D by the operator during the leftward movement of the boat 1. , A difference between the target travel route of the ship 1 and the actual travel route of the ship 1 is suppressed, and the heading H1 at the start of the travel of the ship 1 (see FIG. 6A) and the bow of the ship 1 in motion Propulsive force (composite force) that suppresses the difference from the azimuth is generated in the steering actuators 12A2 and 13A2 and the propulsion units 12A1 and 13A1.
Specifically, the outboard motor control device 14 controls the position of the ship 1 detected by the ship position detection unit 11E and the heading 1B detected by the heading direction detection unit 11F while the ship 1 is moving leftward. Based on the above, the outboard motor that brings the actual movement route of the vessel 1 closer to the target movement route of the vessel 1 and brings the heading direction of the vessel 1 during leftward movement closer to the heading direction H1 at the start of movement of the vessel 1. 12 and 13 feedback control is performed.
As a result, even in this case, the ship 1 can continue its leftward movement (translational movement) against an external force due to wind, tidal current, etc. without the need for additional operation by the operator.
 操船者が、船舶1を左前向きに移動(並進移動)させたい場合もある。
 そのような場合には、図4(E)に示す例のように、操作部11D(ジョイスティックのレバーの先端部)が位置P1から位置P6に移動させられて、位置P6に維持される。
 操作部移動経路算出部14Aは、ジョイスティックのレバーの先端部が位置P1に位置する時刻のレバーの位置と、ジョイスティックのレバーの先端部が位置P6に移動させられた時刻(船舶1の移動開始時)のレバーの位置とに基づいて、ジョイスティックのレバーの先端部の移動経路(操作部11Dの移動経路)P1→P6を算出する。
 船舶目標移動経路算出部14Bは、船舶1の移動開始時に船舶位置検出部11Eによって検出された船舶1の位置と、船舶1の移動開始時の操作部11Dの位置P6とに基づいて、左前向きの船舶1の目標移動経路(図7(A)に示す目標移動経路TP1→TP3を左右反転したもの)を算出する。
 推進力算出部14Fは、船舶目標移動経路算出部14Bによって算出された左前向きの船舶1の目標移動経路に基づいて、船外機12、13に発生させる推進力を算出する。
 船外機用制御装置14は、推進力算出部14Fによって算出された左前向きの推進力を、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる。
 その結果、船舶1が左前向きに移動(並進移動)開始する。
There is also a case where the marine vessel operator wants to move the vessel 1 to the left front (translational movement).
In such a case, as in the example shown in FIG. 4E, the operating portion 11D (the tip of the joystick lever) is moved from the position P1 to the position P6 and is maintained at the position P6.
The operation unit movement path calculation unit 14A calculates the lever position at the time when the tip of the joystick lever is located at the position P1 and the time when the tip of the joystick lever is moved to the position P6 (when the movement of the boat 1 is started. ) Of the lever position of the joystick, the movement path (movement path of the operation unit 11D) P1→P6 is calculated based on the position of the lever.
The ship target movement route calculation unit 14B faces leftward based on the position of the ship 1 detected by the ship position detection unit 11E when the ship 1 starts moving and the position P6 of the operation unit 11D when the ship 1 starts moving. The target travel route of the ship 1 (the target travel route TP1→TP3 shown in FIG. 7A is horizontally reversed) is calculated.
The propulsive force calculating unit 14F calculates the propulsive force to be generated in the outboard motors 12 and 13 based on the target moving path of the ship 1 facing left front calculated by the ship target moving path calculating unit 14B.
The outboard motor control device 14 causes the steering actuators 12A2 and 13A2 and the propulsion units 12A1 and 13A1 to generate the left frontward propulsive force calculated by the propulsive force calculation unit 14F.
As a result, the boat 1 starts to move leftward (translational movement).
 次いで、船舶1が左前向きに移動(並進移動)している期間中に、船舶実移動経路算出部14Cは、船舶1の移動開始時に船舶位置検出部11Eによって検出された船舶1の位置と、船舶1の移動中に船舶位置検出部11Eによって検出される船舶1の位置とに基づいて、船舶1の実際の移動経路(図7(B)に示す実際の移動経路RP1→RP3を左右反転したもの)を算出する。
 船舶1の左前向きの移動中に、船舶1が風、潮流等による外力を受けない場合、船舶1の実際の移動経路と、船舶1の目標移動経路とが一致する。
 その結果、船舶移動経路差分算出部14Dによって算出される船舶1の目標移動経路と船舶1の実際の移動経路との差分がゼロになる。
 また、船首方位差分算出部14Eによって算出される船舶1の移動開始時の船首1Bの方位と、船舶1の移動中の船首1Bの方位との差分もゼロになる。
 そのため、推進力算出部14Fは、船舶1の左前向きの移動中に、船舶1の移動開始時に算出した推進力と等しい推進力を算出する。
 船外機用制御装置14は、船舶1の左前向きの移動中に、推進力算出部14Fによって算出された左前向きの推進力を、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる。
 その結果、船舶1が左前向きの移動(並進移動)を継続する。
Next, during the period in which the boat 1 is moving to the left front (translational movement), the boat actual movement route calculation unit 14C detects the position of the boat 1 detected by the boat position detection unit 11E when the boat 1 starts moving, The actual movement route of the boat 1 (the actual movement route RP1→RP3 shown in FIG. 7B) is horizontally reversed based on the position of the boat 1 detected by the boat position detection unit 11E during the movement of the boat 1. Stuff) is calculated.
When the ship 1 does not receive an external force due to wind, tidal current, or the like during the movement of the ship 1 toward the left front, the actual travel route of the ship 1 and the target travel route of the ship 1 match.
As a result, the difference between the target travel route of the ship 1 and the actual travel route of the ship 1 calculated by the ship travel route difference calculation unit 14D becomes zero.
Further, the difference between the bearing of the bow 1B at the start of movement of the boat 1 and the bearing of the bow 1B during movement of the boat 1 calculated by the bow bearing difference calculation unit 14E is also zero.
Therefore, the propulsive force calculating unit 14F calculates a propulsive force that is equal to the propulsive force calculated at the time of starting the movement of the marine vessel 1 while the marine vessel 1 is moving in the left front direction.
The outboard motor control device 14 causes the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1 to generate the left forward propulsive force calculated by the propulsive force calculating unit 14F while the boat 1 is moving leftward.
As a result, the boat 1 continues to move forward (translational movement) to the left.
 一方、船舶1の左前向きの移動中に船舶1が風、潮流等による例えば後向きの外力を受ける場合には、その後向きの外力によって、船舶1が後側に流される。
 その場合に、船外機用制御装置14は、図7(C)および図7(D)に示す演算・制御を左右反転した演算・制御を実行する。
 その結果、この場合に、船舶1は、操船者の追加操作の必要なく、風、潮流等による後向きの外力に抗して、左前向きの移動(並進移動)を継続することができる。
On the other hand, when the ship 1 receives, for example, a rearward external force due to wind, tidal current, or the like while the ship 1 is moving to the left front, the rearward external force causes the ship 1 to flow to the rear side.
In that case, the outboard motor control device 14 executes the calculation/control which is the left-right reversal of the calculation/control shown in FIGS. 7(C) and 7(D).
As a result, in this case, the marine vessel 1 can continue to move to the left front (translational movement) against an external force directed backward due to wind, tidal current, etc. without the need for additional operation by the operator.
 また、船舶1の左前向きの移動中に船舶1が風、潮流等による例えば前向きの外力を受ける場合には、その前向きの外力によって、船舶1が前側に流される。
 その場合に、船外機用制御装置14は、図7(E)および図7(F)に示す演算・制御を左右反転した演算・制御を実行する。
 その結果、この場合に、船舶1は、操船者の追加操作の必要なく、風、潮流等による前向きの外力に抗して、左前向きの移動(並進移動)を継続することができる。
Further, when the ship 1 receives a forward external force due to wind, tidal current, etc., while the ship 1 is moving leftward and forward, the forward external force causes the ship 1 to flow forward.
In that case, the outboard motor control device 14 executes the operation/control which is the left-right inversion of the operation/control shown in FIG. 7(E) and FIG. 7(F).
As a result, in this case, the marine vessel 1 can continue its leftward forward movement (translational movement) against the forward external force due to wind, tidal current, etc. without the need for additional operation by the operator.
 船舶1が左前向きに移動(並進移動)している期間中に、船舶1を旋回させる風、潮流等による外力を船舶1が受けない場合には、推進力算出部14Fは、船舶1を旋回させる推進力を加算することなく、船舶1の移動開始時に算出した推進力と等しい推進力を算出する。
 その結果、船舶1が左前向きの移動(並進移動)を継続する。
When the ship 1 does not receive an external force due to wind, tidal current, or the like that causes the ship 1 to turn while the ship 1 is moving to the left front (translational movement), the propulsive force calculation unit 14F turns the ship 1 The propulsive force equal to the propulsive force calculated at the time of starting the movement of the ship 1 is calculated without adding the propulsive force.
As a result, the boat 1 continues to move forward (translational movement) to the left.
 一方、船舶1の左前向きの移動中に、船舶1を例えば時計回りに旋回させる風、潮流等による外力を船舶1が受ける場合には、その外力によって、船舶1が時計回りに旋回する。
 その場合に、船外機用制御装置14は、図6(C)および図6(D)に示す演算・制御と同様の演算・制御を実行する。
On the other hand, when the ship 1 receives an external force due to wind, tidal current, or the like that causes the ship 1 to turn clockwise, for example, while the ship 1 is moving leftward, the external force causes the ship 1 to turn clockwise.
In that case, the outboard motor control device 14 executes the same calculation/control as the calculation/control shown in FIG. 6(C) and FIG. 6(D).
 また、船舶1の左前向きの移動中に、船舶1を例えば反時計回りに旋回させる風、潮流等による外力を船舶1が受ける場合には、その外力によって、船舶1が反時計回りに旋回する。
 その場合に、船外機用制御装置14は、図6(E)および図6(F)に示す演算・制御と同様の演算・制御を実行する。
Further, when the ship 1 receives an external force due to wind, tidal current, or the like that causes the ship 1 to turn counterclockwise, for example, while the ship 1 is moving leftward, the external force causes the ship 1 to turn counterclockwise. ..
In that case, the outboard motor control device 14 executes the same calculation/control as the calculation/control shown in FIG. 6(E) and FIG. 6(F).
 また、船舶1の左前向きの移動中に、船舶1が風、潮流等による外力を受けることによって、船舶1の目標移動経路(図7(A)に示す目標移動経路TP1→TP3を左右反転したもの)と船舶1の実際の移動経路との差分が発生し、かつ、船舶1の移動開始時の船首方位(図6(A)参照)と船舶1の移動中の船首方位との差分が発生する場合もある。
 その場合に、船舶移動経路差分算出部14Dは、船舶1の目標移動経路と船舶1の実際の移動経路との差分(≠0)を算出する。更に、船首方位差分算出部14Eは、船舶1の移動開始時の船首方位H1(図6(A)参照)と、船舶1の左前向きの移動中の船首方位との差分(≠0)を算出する。
 推進力算出部14Fは、船舶1の左前向きの移動中に、船舶1の実際の移動経路を船舶1の目標移動経路に近づける推進力と、船舶1の移動中の船首方位を船舶1の移動開始時の船首方位H1(図6(A)参照)に近づける推進力との合成力を、船外機12、13の操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる船舶1の推進力として算出する。
 船外機用制御装置14は、船舶1の左前向きの移動中に、推進力算出部14Fによって算出された推進力(合成力)を、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる。
 つまり、船外機用制御装置14は、船舶1の左前向きの移動中に、操船者が操作部11Dの位置を変更する追加の操作あるいは操作部11Dを回動させる追加の操作を行わなくても、船舶1の目標移動経路と船舶1の実際の移動経路との差分を抑制し、かつ、船舶1の移動開始時の船首方位H1(図6(A)参照)と船舶1の移動中の船首方位との差分を抑制する推進力(合成力)を、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる。
 詳細には、船外機用制御装置14は、船舶1の左前向きの移動中に、船舶位置検出部11Eによって検出される船舶1の位置と、船首方位検出部11Fによって検出される船首1Bの方位とに基づいて、船舶1の実際の移動経路を船舶1の目標移動経路に近づけ、かつ、船舶1の左前向きの移動中の船首方位を船舶1の移動開始時の船首方位H1に近づける船外機12、13のフィードバック制御を実行する。
 その結果、この場合においても、船舶1は、操船者の追加操作の必要なく、風、潮流等による外力に抗して、左前向きの移動(並進移動)を継続することができる。
In addition, the target movement path of the ship 1 (the target movement path TP1→TP3 shown in FIG. 7(A)) is laterally reversed by the ship 1 receiving an external force due to wind, tidal current, etc. while the ship 1 is moving to the left front. No.) and the actual movement path of the ship 1 and a difference between the heading of the ship 1 at the start of movement (see FIG. 6A) and the heading of the ship 1 during movement is generated. In some cases.
In that case, the ship movement route difference calculation unit 14D calculates the difference (≠0) between the target movement route of the boat 1 and the actual movement route of the boat 1. Further, the bow heading difference calculation unit 14E calculates a difference (≠0) between the heading H1 at the start of movement of the boat 1 (see FIG. 6A) and the heading of the boat 1 in the forward leftward movement. To do.
The propulsive force calculation unit 14</b>F calculates the propulsive force that brings the actual movement route of the boat 1 closer to the target movement route of the boat 1 and the heading of the boat 1 that is moving during the movement of the boat 1 while the boat 1 is moving leftward. Propulsive force of the ship 1 that generates a combined force with the propulsive force that approaches the heading H1 (see FIG. 6(A)) at the start of the steering actuators 12A2, 13A2 of the outboard motors 12, 13 and the propulsion units 12A1, 13A1. Calculate as
The outboard motor control device 14 causes the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1 to generate the propulsive force (composite force) calculated by the propulsive force calculation unit 14F while the boat 1 is moving leftward and forward. ..
That is, the outboard motor control device 14 does not have to perform an additional operation of changing the position of the operation unit 11D or an additional operation of rotating the operation unit 11D by the operator while the boat 1 is moving to the left front. Also suppresses the difference between the target travel route of the ship 1 and the actual travel route of the ship 1, and at the same time, the heading H1 (see FIG. 6A) at the start of the travel of the ship 1 and the movement of the ship 1 The steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1 are caused to generate a propulsive force (synthetic force) that suppresses a difference from the heading.
Specifically, the outboard motor control device 14 controls the position of the boat 1 detected by the boat position detection unit 11E and the bow 1B detected by the bow direction detection unit 11F while the boat 1 is moving leftward and forward. Based on the azimuth, a ship that brings the actual travel route of the ship 1 closer to the target travel route of the ship 1 and brings the bow azimuth of the ship 1 in the forward left direction closer to the bow azimuth H1 at the start of the travel of the ship 1. The feedback control of the external units 12 and 13 is executed.
As a result, even in this case, the ship 1 can continue the forward leftward movement (translational movement) against an external force due to wind, tidal current, etc. without the need for additional operation by the operator.
 また、操船者が、船舶1を左後向きに移動(並進移動)させたい場合もある。
 そのような場合には、図4(F)に示す例のように、操作部11D(ジョイスティックのレバーの先端部)が位置P1から位置P7に移動させられて、位置P7に維持される。
 操作部移動経路算出部14Aは、ジョイスティックのレバーの先端部が位置P1に位置する時刻のレバーの位置と、ジョイスティックのレバーの先端部が位置P7に移動させられた時刻(船舶1の移動開始時)のレバーの位置とに基づいて、ジョイスティックのレバーの先端部の移動経路(操作部11Dの移動経路)P1→P7を算出する。
 船舶目標移動経路算出部14Bは、船舶1の移動開始時に船舶位置検出部11Eによって検出された船舶1の位置と、船舶1の移動開始時の操作部11Dの位置P7とに基づいて、左後向きの船舶1の目標移動経路(図8(A)に示す目標移動経路TP1→TP4を左右反転したもの)を算出する。
 推進力算出部14Fは、船舶目標移動経路算出部14Bによって算出された左後向きの船舶1の目標移動経路に基づいて、船外機12、13に発生させる推進力を算出する。
 船外機用制御装置14は、推進力算出部14Fによって算出された左後向きの推進力を、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる。
 その結果、船舶1が左後向きに移動(並進移動)開始する。
In addition, the operator may want to move the vessel 1 to the left rearward (translational movement).
In such a case, as in the example shown in FIG. 4F, the operation portion 11D (the tip of the joystick lever) is moved from the position P1 to the position P7 and is maintained at the position P7.
The operation unit movement path calculation unit 14A determines the lever position at the time when the tip of the joystick lever is located at the position P1 and the time when the tip of the joystick lever is moved to the position P7 (when the movement of the boat 1 is started. ) Of the lever of the joystick, the movement path (movement path of the operation unit 11D) P1→P7 is calculated based on the position of the lever of FIG.
The ship target movement route calculation unit 14B is directed to the left rearward direction based on the position of the ship 1 detected by the ship position detection unit 11E at the start of the movement of the ship 1 and the position P7 of the operation unit 11D at the start of the movement of the ship 1. The target travel route of the ship 1 (the target travel route TP1→TP4 shown in FIG. 8A is horizontally inverted) is calculated.
The propulsive force calculation unit 14F calculates the propulsive force to be generated in the outboard motors 12 and 13 based on the target movement route of the ship 1 facing left rearward calculated by the boat target movement route calculation unit 14B.
The outboard motor control device 14 causes the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1 to generate the left rearward propulsive force calculated by the propulsive force calculation unit 14F.
As a result, the boat 1 starts to move rearward (translational movement).
 次いで、船舶1が左後向きに移動(並進移動)している期間中に、船舶実移動経路算出部14Cは、船舶1の移動開始時に船舶位置検出部11Eによって検出された船舶1の位置と、船舶1の移動中に船舶位置検出部11Eによって検出される船舶1の位置とに基づいて、船舶1の実際の移動経路(図8(B)に示す実際の移動経路RP1→RP4を左右反転したもの)を算出する。
 船舶1の左後向きの移動中に、船舶1が風、潮流等による外力を受けない場合、船舶1の実際の移動経路と、船舶1の目標移動経路とが一致する。
 その結果、船舶移動経路差分算出部14Dによって算出される船舶1の目標移動経路と船舶1の実際の移動経路との差分がゼロになる。
 また、船首方位差分算出部14Eによって算出される船舶1の移動開始時の船首1Bの方位と、船舶1の移動中の船首1Bの方位との差分もゼロになる。
 そのため、推進力算出部14Fは、船舶1の左後向きの移動中に、船舶1の移動開始時に算出した推進力と等しい推進力を算出する。
 船外機用制御装置14は、船舶1の左後向きの移動中に、推進力算出部14Fによって算出された左後向きの推進力を、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる。
 その結果、船舶1が左後向きの移動(並進移動)を継続する。
Next, during the period in which the ship 1 is moving leftward (translating), the ship actual movement route calculation unit 14C detects the position of the ship 1 detected by the ship position detection unit 11E when the ship 1 starts moving, Based on the position of the ship 1 detected by the ship position detection unit 11E while the ship 1 is moving, the actual travel route of the ship 1 (the actual travel route RP1→RP4 shown in FIG. 8B) is horizontally reversed. Stuff) is calculated.
When the ship 1 does not receive an external force due to wind, tidal current, etc. during the movement of the ship 1 to the left rear, the actual travel route of the ship 1 and the target travel route of the ship 1 match.
As a result, the difference between the target travel route of the ship 1 and the actual travel route of the ship 1 calculated by the ship travel route difference calculation unit 14D becomes zero.
Further, the difference between the bearing of the bow 1B at the start of movement of the boat 1 and the bearing of the bow 1B during movement of the boat 1 calculated by the bow bearing difference calculation unit 14E is also zero.
Therefore, the propulsive force calculation unit 14F calculates the propulsive force that is equal to the propulsive force calculated at the start of the movement of the boat 1 while the boat 1 is moving in the left rearward direction.
The outboard motor control device 14 causes the steering actuators 12A2 and 13A2 and the propulsion units 12A1 and 13A1 to generate the left rearward propulsive force calculated by the propulsive force calculation unit 14F during the leftward rearward movement of the marine vessel 1.
As a result, the marine vessel 1 continues to move backward (translational movement).
 一方、船舶1の左後向きの移動中に船舶1が風、潮流等による例えば後向きの外力を受ける場合には、その後向きの外力によって、船舶1が後側に流される。
 その場合に、船外機用制御装置14は、図8(C)および図8(D)に示す演算・制御を左右反転した演算・制御を実行する。
 その結果、この場合に、船舶1は、操船者の追加操作の必要なく、風、潮流等による後向きの外力に抗して、左後向きの移動(並進移動)を継続することができる。
On the other hand, when the ship 1 receives a rearward external force due to wind, tidal current, etc. while the ship 1 is moving rearward to the left, the rearward external force causes the ship 1 to flow to the rear side.
In that case, the outboard motor control device 14 executes the calculation/control which is the left-right reversal of the calculation/control shown in FIG. 8(C) and FIG. 8(D).
As a result, in this case, the marine vessel 1 can continue its leftward rearward movement (translational movement) against the rearward-directed external force due to wind, tidal current, etc. without the need for additional operation by the operator.
 また、船舶1の左後向きの移動中に船舶1が風、潮流等による例えば前向きの外力を受ける場合には、その前向きの外力によって、船舶1が前側に流される。
 その場合に、船外機用制御装置14は、図8(E)および図8(F)に示す演算・制御を左右反転した演算・制御を実行する。
 その結果、この場合に、船舶1は、操船者の追加操作の必要なく、風、潮流等による前向きの外力に抗して、左後向きの移動(並進移動)を継続することができる。
Further, when the ship 1 receives a forward external force due to wind, tidal current, etc., while the ship 1 is moving rearward to the left, the forward external force causes the ship 1 to flow forward.
In that case, the outboard motor control device 14 executes the calculation/control which is the left-right inversion of the calculation/control shown in FIG. 8(E) and FIG. 8(F).
As a result, in this case, the vessel 1 can continue the movement to the left rear (translational movement) against the forward external force due to the wind, the tidal current, etc. without the need for additional operation by the operator.
 船舶1が左後向きに移動(並進移動)している期間中に、船舶1を旋回させる風、潮流等による外力を船舶1が受けない場合には、推進力算出部14Fは、船舶1を旋回させる推進力を加算することなく、船舶1の移動開始時に算出した推進力と等しい推進力を算出する。
 その結果、船舶1が左後向きの移動(並進移動)を継続する。
When the ship 1 does not receive an external force due to wind, tidal current, or the like that causes the ship 1 to turn during the period in which the ship 1 moves to the left rearward (translational movement), the propulsion force calculation unit 14F turns the ship 1 The propulsive force equal to the propulsive force calculated at the time of starting the movement of the ship 1 is calculated without adding the propulsive force.
As a result, the marine vessel 1 continues to move backward (translational movement).
 一方、船舶1の左後向きの移動中に、船舶1を例えば時計回りに旋回させる風、潮流等による外力を船舶1が受ける場合には、その外力によって、船舶1が時計回りに旋回する。
 その場合に、船外機用制御装置14は、図6(C)および図6(D)に示す演算・制御と同様の演算・制御を実行する。
On the other hand, when the ship 1 receives an external force due to wind, tidal current, or the like that causes the ship 1 to turn clockwise, for example, while the ship 1 is moving leftward, the ship 1 turns clockwise due to the external force.
In that case, the outboard motor control device 14 executes the same calculation/control as the calculation/control shown in FIG. 6(C) and FIG. 6(D).
 また、船舶1の左後向きの移動中に、船舶1を例えば反時計回りに旋回させる風、潮流等による外力を船舶1が受ける場合には、その外力によって、船舶1が反時計回りに旋回する。
 その場合に、船外機用制御装置14は、図6(E)および図6(F)に示す演算・制御と同様の演算・制御を実行する。
Further, when the ship 1 receives an external force due to wind, tidal current, or the like that causes the ship 1 to turn counterclockwise, for example, while the ship 1 is moving to the left rear, the external force causes the ship 1 to turn counterclockwise. ..
In that case, the outboard motor control device 14 executes the same calculation/control as the calculation/control shown in FIG. 6(E) and FIG. 6(F).
 また、船舶1の左後向きの移動中に、船舶1が風、潮流等による外力を受けることによって、船舶1の目標移動経路(図8(A)に示す目標移動経路TP1→TP4を左右反転したもの)と船舶1の実際の移動経路との差分が発生し、かつ、船舶1の移動開始時の船首方位(図6(A)参照)と船舶1の移動中の船首方位との差分が発生する場合もある。
 その場合に、船舶移動経路差分算出部14Dは、船舶1の目標移動経路と船舶1の実際の移動経路との差分(≠0)を算出する。更に、船首方位差分算出部14Eは、船舶1の移動開始時の船首方位H1(図6(A)参照)と、船舶1の左前向きの移動中の船首方位との差分(≠0)を算出する。
 推進力算出部14Fは、船舶1の左後向きの移動中に、船舶1の実際の移動経路を船舶1の目標移動経路に近づける推進力と、船舶1の移動中の船首方位を船舶1の移動開始時の船首方位H1(図6(A)参照)に近づける推進力との合成力を、船外機12、13の操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる船舶1の推進力として算出する。
 船外機用制御装置14は、船舶1の左後向きの移動中に、推進力算出部14Fによって算出された推進力(合成力)を、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる。
 つまり、船外機用制御装置14は、船舶1の左後向きの移動中に、操船者が操作部11Dの位置を変更する追加の操作あるいは操作部11Dを回動させる追加の操作を行わなくても、船舶1の目標移動経路と船舶1の実際の移動経路との差分を抑制し、かつ、船舶1の移動開始時の船首方位H1(図6(A)参照)と船舶1の移動中の船首方位との差分を抑制する推進力(合成力)を、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に発生させる。
 詳細には、船外機用制御装置14は、船舶1の左後向きの移動中に、船舶位置検出部11Eによって検出される船舶1の位置と、船首方位検出部11Fによって検出される船首1Bの方位とに基づいて、船舶1の実際の移動経路を船舶1の目標移動経路に近づけ、かつ、船舶1の左後向きの移動中の船首方位を船舶1の移動開始時の船首方位H1に近づける船外機12、13のフィードバック制御を実行する。
 その結果、この場合においても、船舶1は、操船者の追加操作の必要なく、風、潮流等による外力に抗して、左後向きの移動(並進移動)を継続することができる。
Further, while the ship 1 is moving in the left rearward direction, the ship 1 receives an external force due to wind, tidal current, etc., so that the target travel path of the ship 1 (the target travel path TP1→TP4 shown in FIG. 8A) is horizontally reversed. No.) and the actual movement route of the ship 1 and a difference between the heading of the ship 1 at the start of movement (see FIG. 6A) and the heading of the ship 1 during movement is generated. In some cases.
In that case, the ship movement route difference calculation unit 14D calculates the difference (≠0) between the target movement route of the boat 1 and the actual movement route of the boat 1. Further, the bow heading difference calculation unit 14E calculates a difference (≠0) between the heading H1 at the start of movement of the boat 1 (see FIG. 6A) and the heading of the boat 1 in the forward leftward movement. To do.
The propulsive force calculating unit 14F moves the ship 1 toward the left rearward direction, and the propulsive force that brings the actual travel route of the ship 1 closer to the target travel route of the ship 1 and the heading of the ship 1 during movement. Propulsive force of the ship 1 that generates a combined force with the propulsive force that approaches the heading H1 (see FIG. 6(A)) at the start of the steering actuators 12A2, 13A2 of the outboard motors 12, 13 and the propulsion units 12A1, 13A1. Calculate as
The outboard motor control device 14 causes the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1 to generate the propulsive force (composite force) calculated by the propulsive force calculation unit 14F while the boat 1 is moving in the left rearward direction. ..
That is, the outboard motor control device 14 does not have to perform an additional operation of changing the position of the operation unit 11D or an additional operation of rotating the operation unit 11D by the operator while the boat 1 is moving to the left rear. Also suppresses the difference between the target travel route of the ship 1 and the actual travel route of the ship 1, and at the same time, the heading H1 (see FIG. 6A) at the start of the travel of the ship 1 and the movement of the ship 1 The steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1 are caused to generate a propulsive force (synthetic force) that suppresses a difference from the heading of the boat.
Specifically, the outboard motor control device 14 controls the position of the boat 1 detected by the boat position detection unit 11E and the bow 1B detected by the bow direction detection unit 11F while the boat 1 is moving leftward and rearward. Based on the azimuth, the actual movement path of the vessel 1 is brought closer to the target movement path of the vessel 1, and the heading of the vessel 1 in the left rearward direction is made closer to the heading H1 at the start of movement of the vessel 1. The feedback control of the outer units 12 and 13 is executed.
As a result, even in this case, the ship 1 can continue the movement to the left rear (translational movement) against the external force due to the wind, the tidal current, etc. without the need for additional operation by the operator.
 上述した例では、船外機用制御装置14が、船舶1の目標移動経路と船舶1の実際の移動経路との差分を抑制する制御、および、船舶1の移動開始時の船首1Bの方位と船舶1の移動中の船首1Bの方位との差分を抑制する制御の両方を実行可能であるが、他の例では、船外機用制御装置14が、船舶1の目標移動経路と船舶1の実際の移動経路との差分を抑制する制御、および、船舶1の移動開始時の船首1Bの方位と船舶1の移動中の船首1Bの方位との差分を抑制する制御の一方のみを実行可能であってもよい。 In the above-described example, the outboard motor control device 14 controls the difference between the target travel route of the boat 1 and the actual travel route of the boat 1, and controls the direction of the bow 1B when the boat 1 starts moving. Both of the controls for suppressing the difference from the heading 1B of the boat 1 during movement of the boat 1 can be executed, but in another example, the outboard motor control device 14 controls the target movement route of the boat 1 and the boat 1. Only one of the control for suppressing the difference from the actual movement route and the control for suppressing the difference between the bearing of the bow 1B at the start of movement of the boat 1 and the bearing of the bow 1B during movement of the boat 1 can be executed. It may be.
 図9は第1実施形態の船外機用制御装置14によって実行される処理の一例を説明するためのフローチャートである。
 図9に示す処理は、操作部11D(ジョイスティック)が、船外機12、13の操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1を作動させるための入力操作を受け付けた場合に開始する。
 図9に示す例では、ステップS10において、船外機用制御装置14が、例えばマイクロスイッチなどのセンサによって検出された操作部11Dの位置(例えば位置P2(図3(B)参照))を取得し、操作部移動経路算出部14Aが、操作部11Dの移動経路(例えば移動経路P1→P2)を算出する。
 次いで、ステップS11では、船外機用制御装置14が、船舶位置検出部11Eによって検出された船舶1の移動開始時の位置を取得する。
 次いで、ステップS12では、船外機用制御装置14が、船首方位検出部11Fによって検出された船舶1の移動開始時の船首1Bの方位(例えば船首方位H1(図6(A)参照))を取得する。
 次いで、ステップS13では、船舶目標移動経路算出部14Bが、ステップS11において取得された船舶1の移動開始時の位置と、ステップS10において取得された操作部11Dの位置(例えば位置P2)とに基づいて、船舶1の目標移動経路(例えば目標移動経路TP1→TP2(図5(A)参照))を算出する。
 次いで、ステップS14では、推進力算出部14Fが、ステップS13において算出された船舶1の目標移動経路に基づいて、船外機12、13に発生させる推進力(例えば右向きの推進力)を算出する。
 次いで、ステップS15では、船外機用制御装置14が、ステップS14において算出された推進力を船外機12、13の操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1が発生するように、船外機12、13の操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1を制御する。その結果、船舶1が例えば右向きの移動(並進移動)を開始する。
FIG. 9 is a flowchart for explaining an example of processing executed by the outboard motor control device 14 of the first embodiment.
The process shown in FIG. 9 starts when the operation unit 11D (joystick) receives an input operation for operating the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1 of the outboard motors 12, 13.
In the example shown in FIG. 9, in step S10, the outboard motor control device 14 acquires the position of the operation unit 11D (for example, the position P2 (see FIG. 3B)) detected by a sensor such as a microswitch. Then, the operation unit movement route calculation unit 14A calculates the movement route of the operation unit 11D (for example, movement route P1→P2).
Next, in step S11, the outboard motor control device 14 acquires the position at the start of movement of the boat 1 detected by the boat position detection unit 11E.
Next, in step S12, the outboard motor control device 14 sets the direction of the bow 1B at the start of movement of the boat 1 detected by the bow direction detection unit 11F (for example, the heading H1 (see FIG. 6A)). get.
Next, in step S13, the ship target movement route calculation unit 14B is based on the position at the start of movement of the ship 1 acquired in step S11 and the position of the operation unit 11D (eg, position P2) acquired in step S10. Then, the target travel route of the ship 1 (for example, the target travel route TP1→TP2 (see FIG. 5A)) is calculated.
Next, in step S14, the propulsion force calculation unit 14F calculates the propulsion force (for example, rightward propulsion force) generated in the outboard motors 12 and 13 based on the target travel route of the boat 1 calculated in step S13. ..
Next, in step S15, the outboard motor control device 14 causes the propulsive force calculated in step S14 to be generated by the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1 of the outboard motors 12, 13. It controls the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1 of the machines 12, 13. As a result, the boat 1 starts moving to the right (translational movement), for example.
 次いで、ステップS16では、船外機用制御装置14が、船舶位置検出部11Eによって検出された船舶1の移動中の位置を取得する。
 次いで、ステップS17では、船舶実移動経路算出部14Cが、ステップS11において取得された船舶1の移動開始時の位置と、ステップS16において取得された船舶1の移動中の位置とに基づいて、船舶1の実際の移動経路(例えば実際の移動経路RP1→RP2B(図5(C)参照))を算出する。
 次いで、ステップS18では、船舶移動経路差分算出部14Dが、ステップS13において算出された船舶1の目標移動経路(例えば目標移動経路TP1→TP2)と、ステップS17において算出された船舶1の実際の移動経路(例えば実際の移動経路RP1→RP2B)との差分を算出する。
 次いで、ステップS19では、船外機用制御装置14が、船首方位検出部11Fによって検出された船舶1の移動中の船首1Bの方位(例えば船首方位H2CW(図6(C)参照))を取得する。
 次いで、ステップS20では、船首方位差分算出部14Eが、ステップS12において取得された船舶1の移動開始時の船首1Bの方位(例えば船首方位H1)と、ステップS19において取得された船舶1の移動中の船首1Bの方位(例えば船首方位H2CW)との差分を算出する。
 次いで、ステップS21では、推進力算出部14Fが、ステップS18において算出された差分を抑制する推進力と、ステップS20において算出された差分を抑制する推進力との合成力を、船外機12、13に発生させる推進力として算出する。
 次いで、ステップS22では、船外機用制御装置14が、ステップS21において算出された推進力を船外機12、13の操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1が発生するように、船外機12、13の操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1を制御する。その結果、船舶1が例えば右向きの移動(並進移動)を維持する。
 次いで、ステップS23では、船外機用制御装置14が、操作部11Dの位置を取得し、操作部11Dの位置(例えば位置P2(図3(B)参照))が位置P1(図3(A)参照)、位置P8(図3(H)参照)および位置P9(図3(I)参照)のいずれかに変更されたか否かを判定する。操作部11Dの位置が位置P1、位置P8および位置P9のいずれにも変更されていない場合には、ステップS16に戻る。操作部11Dの位置が位置P1、位置P8および位置P9のいずれかに変更された場合には、図9に示す処理を終了する。
 図9に示す例では、上述したように、操作部11Dの位置が位置P1、位置P8および位置P9のいずれかに変更された場合に図9に示す処理を終了するが、他の例では、操作部11Dの位置が位置P1、位置P8および位置P9のいずれかに変更された場合のみならず、操作部11Dの位置が斜め位置P3、斜め位置P4、斜め位置P6および斜め位置P7のいずれかに変更された場合にも図9に示す処理を終了してもよい。
Next, in step S16, the outboard motor control device 14 acquires the moving position of the boat 1 detected by the boat position detection unit 11E.
Next, in step S17, the actual ship movement route calculation unit 14C determines the ship based on the position at the start of movement of the ship 1 acquired in step S11 and the position in motion of the ship 1 acquired in step S16. One actual travel route (for example, the actual travel route RP1→RP2B (see FIG. 5C)) is calculated.
Next, in step S18, the ship movement route difference calculation unit 14D causes the target movement route of the boat 1 calculated in step S13 (for example, the target movement route TP1→TP2) and the actual movement of the boat 1 calculated in step S17. The difference from the route (for example, the actual travel route RP1→RP2B) is calculated.
Next, in step S19, the outboard motor control device 14 obtains the azimuth of the moving bow 1B of the boat 1 detected by the bow azimuth detecting unit 11F (for example, the bow azimuth H2CW (see FIG. 6C)). To do.
Next, in step S20, the bow heading difference calculation unit 14E causes the heading 1B at the start of movement of the boat 1 acquired in step S12 (for example, heading H1) and the movement of the boat 1 acquired in step S19. Of the heading 1B (for example, heading H2CW) is calculated.
Next, in step S21, the propulsive force calculation unit 14F combines the propulsive force for suppressing the difference calculated in step S18 and the propulsive force for suppressing the difference calculated in step S20 with the outboard motor 12, It is calculated as the propulsive force generated in No. 13.
Next, in step S22, the outboard motor control device 14 causes the outboard motor control unit 14 to generate the propulsive force calculated in step S21 by the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1 of the outboard motors 12, 13. It controls the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1 of the machines 12, 13. As a result, the ship 1 maintains the rightward movement (translational movement), for example.
Next, in step S23, the outboard motor control device 14 acquires the position of the operation unit 11D, and the position of the operation unit 11D (for example, the position P2 (see FIG. 3B)) is the position P1 (see FIG. 3A). )), position P8 (see FIG. 3(H)) and position P9 (see FIG. 3(I)). If the position of the operation unit 11D has not been changed to any of the positions P1, P8, and P9, the process returns to step S16. When the position of the operation unit 11D is changed to any of the position P1, the position P8, and the position P9, the processing shown in FIG. 9 is ended.
In the example shown in FIG. 9, as described above, the processing shown in FIG. 9 ends when the position of the operation unit 11D is changed to any of the positions P1, P8, and P9, but in other examples, Not only when the position of the operation unit 11D is changed to any of the position P1, the position P8, and the position P9, but the position of the operation unit 11D is any one of the oblique position P3, the oblique position P4, the oblique position P6, and the oblique position P7. The processing shown in FIG. 9 may be terminated even when the setting is changed to.
<第2実施形態>
 以下、本発明の船外機用制御装置、船外機用制御方法およびプログラムの第2実施形態について説明する。
 第2実施形態の船外機用制御装置14が適用される船舶1は、後述する点を除き、上述した第1実施形態の船外機用制御装置14が適用される船舶1と同様に構成されている。従って、第2実施形態の船舶1によれば、後述する点を除き、上述した第1実施形態の船舶1と同様の効果を奏することができる。
<Second Embodiment>
Hereinafter, a second embodiment of an outboard motor control device, an outboard motor control method, and a program according to the present invention will be described.
The boat 1 to which the outboard motor control device 14 of the second embodiment is applied has the same configuration as the boat 1 to which the outboard motor control device 14 of the first embodiment described above is applied, except for the points described below. Has been done. Therefore, according to the ship 1 of the second embodiment, the same effects as those of the ship 1 of the above-described first embodiment can be achieved, except for the points described below.
 図10は第2実施形態の船外機用制御装置14が適用される船舶1の一例を示す図である。
 上述したように、第1実施形態の船舶1(図1および図2に示す例)では、操作部11Dが、レバーを有するジョイスティックによって構成されている。
 一方、第2実施形態の船舶1(図10に示す例)では、操作部11Dが、タッチパネルによって構成されている。操船者は、操舵装置11A(ステアリングホイール)およびリモコン装置11B、11C(リモコンレバー)を操作することによって、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1を作動させることができるのみならず、操作部11D(タッチパネル)を操作することによっても、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1を作動させることができる。
 他の例では、船体11が、操舵装置11A、リモコン装置11Bおよびリモコン装置11Cを備えていなくてもよい。
FIG. 10: is a figure which shows an example of the ship 1 to which the outboard motor control apparatus 14 of 2nd Embodiment is applied.
As described above, in the marine vessel 1 of the first embodiment (example shown in FIGS. 1 and 2), the operation unit 11D is configured by a joystick having a lever.
On the other hand, in the marine vessel 1 of the second embodiment (example shown in FIG. 10), the operation unit 11D is configured by a touch panel. The ship operator can operate not only the steering actuators 12A2 and 13A2 and the propulsion units 12A1 and 13A1 by operating the steering device 11A (steering wheel) and the remote control devices 11B and 11C (remote control lever) but also the operation unit. The steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1 can also be operated by operating 11D (touch panel).
In another example, the hull 11 may not include the steering device 11A, the remote control device 11B, and the remote control device 11C.
 図10に示す例では、船外機用制御装置14が、操作部11Dに対する入力操作に基づいて、船外機12の操舵アクチュエータ12A2および推進ユニット12A1と、船外機13の操舵アクチュエータ13A2および推進ユニット13A1とを制御する。
 詳細には、船外機用制御装置14は、操作部11D(タッチパネル)に対する例えばフリック入力操作に基づいて、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1が発生する船舶1の推進力の大きさおよび向きを制御する。
 フリック入力操作では、操船者は、例えば、タッチパネルを押圧しつつ、タッチパネルを押圧している指を目的の向きにスライドさせる。
 操作部移動経路算出部14Aは、操作部11Dの移動経路を算出する。詳細には、操作部移動経路算出部14Aは、操船者がタッチパネルを押圧しながらスライドさせた指の移動経路を算出する。
In the example shown in FIG. 10, the outboard motor control device 14 controls the steering actuator 12A2 and the propulsion unit 12A1 of the outboard motor 12, the steering actuator 13A2 of the outboard motor 13 and the propulsion based on the input operation to the operation unit 11D. It controls the unit 13A1.
Specifically, the outboard motor control device 14 controls the magnitude of the propulsive force of the boat 1 generated by the steering actuators 12A2 and 13A2 and the propulsion units 12A1 and 13A1 based on, for example, a flick input operation on the operation unit 11D (touch panel). And control the orientation.
In the flick input operation, the ship operator, for example, presses the touch panel and slides a finger pressing the touch panel in a desired direction.
The operation unit movement route calculation unit 14A calculates the movement route of the operation unit 11D. Specifically, the operation unit movement path calculation unit 14A calculates the movement path of the finger that the operator has slid while pressing the touch panel.
 図10に示す例では、操作部11D(タッチパネル)に対してフリック入力操作可能であると共に、回転入力操作可能に、操作部11Dが構成されている。
 操船者は、例えば、1本の指をタッチパネルに当接させて中心点として固定させた状態で、他の指を、タッチパネルを押圧しながら周方向にスライドさせることによって、回転入力操作を行う。
 操船者が、操作部11D(タッチパネル)に対して時計回りの回転入力操作を行う場合に、船外機用制御装置14は、船体11が右旋回するように、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1を制御する。一方、操船者が、操作部11D(タッチパネル)に対して反時計回りの回転入力操作を行う場合に、船外機用制御装置14は、船体11が左旋回するように、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1を制御する。
 また、操船者が操作部11D(タッチパネル)に対してフリック入力操作を行う場合に、船外機用制御装置14は、船体11が、姿勢を維持したまま、操船者の指がスライドさせられた向きに移動するように、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1を制御する。つまり、操船者が操作部11D(タッチパネル)に対してフリック入力操作を行うことによって、船舶1が並進移動する。
In the example illustrated in FIG. 10, the operation unit 11D is configured to be capable of flick input operation and rotational input operation to the operation unit 11D (touch panel).
The marine vessel operator performs a rotation input operation, for example, in a state where one finger is in contact with the touch panel and fixed as a center point, and the other finger slides in the circumferential direction while pressing the touch panel.
When the ship operator performs a clockwise rotation input operation on the operation unit 11D (touch panel), the outboard motor control device 14 controls the steering actuators 12A2, 13A2 and the propulsion so that the hull 11 turns right. It controls the units 12A1 and 13A1. On the other hand, when the ship operator performs a counterclockwise rotation input operation on the operation unit 11D (touch panel), the outboard motor control device 14 controls the steering actuators 12A2 and 13A2 so that the hull 11 turns left. And controlling the propulsion units 12A1, 13A1.
In addition, when the ship operator performs a flick input operation on the operation unit 11D (touch panel), the outboard motor control device 14 causes the ship operator's finger to slide while the hull 11 maintains its posture. The steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1 are controlled so as to move in the direction. That is, the marine vessel 1 moves in translation when the marine vessel operator performs a flick input operation on the operation unit 11D (touch panel).
 操船者が操作部11D(タッチパネル)に対してフリック入力操作を行っていない場合(つまり、操船者の指がタッチパネルに当接していない場合)、操作部11Dは、図3(A)に示す状態と同様の状態になる。その結果、船外機用制御装置14は、操舵アクチュエータ12A2、13A2および推進ユニット12A1、13A1に船舶1の推進力を発生させない。 When the operator is not performing a flick input operation on the operation unit 11D (touch panel) (that is, when the operator's finger is not in contact with the touch panel), the operation unit 11D is in the state shown in FIG. It becomes the same state as. As a result, the outboard motor control device 14 does not cause the steering actuators 12A2, 13A2 and the propulsion units 12A1, 13A1 to generate the propulsive force of the marine vessel 1.
 以上、本発明を実施するための形態について実施形態を用いて説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形及び置換を加えることができる。上述した各実施形態および各例に記載の構成を組み合わせてもよい。 As described above, the embodiments for carrying out the present invention have been described using the embodiments, but the present invention is not limited to such embodiments, and various modifications and substitutions are made within the scope not departing from the gist of the present invention. Can be added. The configurations described in the above embodiments and examples may be combined.
 なお、上述した実施形態における船外機用制御装置14が備える各部の機能全体あるいはその一部は、これらの機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現しても良い。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶部のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでも良い。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
It should be noted that all or a part of the functions of each unit included in the outboard motor control device 14 according to the above-described embodiment is recorded in a computer-readable recording medium, and a program for realizing these functions is recorded in the recording medium. It may be realized by causing a computer system to read and execute the program recorded in. The “computer system” mentioned here includes an OS and hardware such as peripheral devices.
The "computer-readable recording medium" refers to a portable medium such as a flexible disk, a magneto-optical disk, a ROM, a CD-ROM, or a storage unit such as a hard disk built in a computer system. Further, the "computer-readable recording medium" means to hold a program dynamically for a short time like a communication line when transmitting the program through a network such as the Internet or a communication line such as a telephone line. In this case, a volatile memory inside a computer system that serves as a server or a client in that case, which holds a program for a certain period of time, may be included. Further, the program may be one for realizing some of the functions described above, or may be one that can realize the functions described above in combination with a program already recorded in the computer system.
1…船舶、1B…船首、11…船体、11A…操舵装置、11B…リモコン装置、11C…リモコン装置、11D…操作部、11E…船舶位置検出部、11F…船首方位検出部、P1…位置、P2…位置、P3…位置、P4…位置、P5…位置、P6…位置、P7…位置、P8…位置、P9…位置、12…船外機、12A…船外機本体、12A1…推進ユニット、12A2…操舵アクチュエータ、12AX…操舵軸、12B…ブラケット、13…船外機、13A…船外機本体、13A1…推進ユニット、13A2…操舵アクチュエータ、13AX…操舵軸、13B…ブラケット、14…船外機用制御装置、14A…操作部移動経路算出部、14B…船舶目標移動経路算出部、14C…船舶実移動経路算出部、14D…船舶移動経路差分算出部、14E…船首方位差分算出部、14F…推進力算出部、14G…記憶部 DESCRIPTION OF SYMBOLS 1... Ship, 1B... Bow, 11... Hull, 11A... Steering device, 11B... Remote control device, 11C... Remote control device, 11D... Operation part, 11E... Ship position detection part, 11F... Bow heading detection part, P1... Position, P2... Position, P3... Position, P4... Position, P5... Position, P6... Position, P7... Position, P8... Position, P9... Position, 12... Outboard motor, 12A... Outboard motor body, 12A1... Propulsion unit, 12A2... Steering actuator, 12AX... Steering shaft, 12B... Bracket, 13... Outboard motor, 13A... Outboard motor body, 13A1... Propulsion unit, 13A2... Steering actuator, 13AX... Steering shaft, 13B... Bracket, 14... Outboard Machine control device, 14A... Operation unit movement route calculation unit, 14B... Ship target movement route calculation unit, 14C... Ship actual movement route calculation unit, 14D... Ship movement route difference calculation unit, 14E... Bow heading difference calculation unit, 14F …Propulsive force calculation unit, 14G…Storage unit

Claims (6)

  1.  船舶に備えられた複数の船外機を制御する船外機用制御装置であって、
     前記複数の船外機のそれぞれは、前記船舶の推進力を発生する推進ユニットと、操舵アクチュエータとを備え、
     前記船舶は、
     前記操舵アクチュエータおよび前記推進ユニットを作動させる操作部と、
     前記船舶の位置を検出する船舶位置検出部と、
     前記船舶の船首の方位を検出する船首方位検出部とを備え、
     前記操作部は、少なくとも
     前記複数の船外機が前記船舶の推進力を発生しない位置である第1位置と、
     前記複数の船外機が前記船舶を移動させる推進力を発生する位置である第2位置とに位置することができ、
     前記操作部が、前記第1位置から前記第2位置に移動させられて、前記第2位置に維持される場合に、
     前記船外機用制御装置は、
     前記船舶位置検出部によって検出される前記船舶の位置に基づいて、前記船舶の目標移動経路と前記船舶の実際の移動経路との差分を抑制する推進力を前記複数の船外機に発生させるか、あるいは、
     前記船首方位検出部によって検出される前記船首の方位に基づいて、前記船舶の移動開始時の前記船首の方位と前記船舶の移動中の前記船首の方位との差分を抑制する推進力を前記複数の船外機に発生させる、
     船外機用制御装置。
    An outboard motor control device for controlling a plurality of outboard motors provided in a ship, comprising:
    Each of the plurality of outboard motors includes a propulsion unit that generates a propulsive force of the ship, and a steering actuator,
    The ship is
    An operation unit for operating the steering actuator and the propulsion unit,
    A ship position detection unit for detecting the position of the ship,
    A heading detection unit for detecting the heading of the bow of the ship;
    The operation unit is a position where at least the plurality of outboard motors does not generate a propulsive force of the ship;
    The plurality of outboard motors may be located at a second position, which is a position where a propulsive force for moving the ship is generated,
    When the operation unit is moved from the first position to the second position and is maintained at the second position,
    The outboard motor control device,
    Whether to generate a propulsive force in the plurality of outboard motors that suppresses a difference between the target travel route of the ship and the actual travel route of the ship based on the position of the ship detected by the ship position detection unit. , Or
    Based on the heading of the bow detected by the bow heading detection unit, a plurality of propulsive forces that suppress the difference between the heading of the bow at the start of movement of the ship and the heading of the bow during movement of the ship are provided. To the outboard motor of
    Control device for outboard motors.
  2.  前記操作部が、前記第1位置から前記第2位置に移動させられて、前記第2位置に維持される場合に、
     前記船外機用制御装置は、
     前記船舶の目標移動経路と前記船舶の実際の移動経路との差分を抑制し、かつ、前記船舶の移動開始時の前記船首の方位と前記船舶の移動中の前記船首の方位との差分を抑制する推進力を前記複数の船外機に発生させる、
     請求項1に記載の船外機用制御装置。
    When the operation unit is moved from the first position to the second position and is maintained at the second position,
    The outboard motor control device,
    Suppressing the difference between the target travel path of the ship and the actual travel path of the ship, and suppressing the difference between the heading of the bow at the start of the travel of the ship and the heading of the bow during movement of the ship. Generate propulsive force in the plurality of outboard motors,
    The outboard motor control device according to claim 1.
  3.  前記操作部が、前記第1位置から前記第2位置に移動させられて、前記第2位置に維持される場合に、
     前記船外機用制御装置は、
     前記船舶位置検出部によって検出される前記船舶の位置と、前記船首方位検出部によって検出される前記船首の方位とに基づいて、
     前記船舶の実際の移動経路を前記船舶の目標移動経路に近づけ、かつ、前記船舶の移動中の前記船首の方位を前記船舶の移動開始時の前記船首の方位に近づける前記複数の船外機のフィードバック制御を実行する、
     請求項2に記載の船外機用制御装置。
    When the operation unit is moved from the first position to the second position and is maintained at the second position,
    The outboard motor control device,
    Based on the position of the ship detected by the ship position detection unit, and the azimuth of the bow detected by the bow azimuth detection unit,
    Of the plurality of outboard motors that bring the actual travel route of the ship closer to the target travel route of the ship, and that bring the heading of the bow during movement of the ship closer to the heading of the bow at the start of movement of the ship. Perform feedback control,
    The outboard motor control device according to claim 2.
  4.  前記操作部の移動経路を算出する操作部移動経路算出部と、
     前記船舶の移動開始時に前記船舶位置検出部によって検出される前記船舶の位置と、前記操作部の前記第2位置とに基づいて前記船舶の目標移動経路を算出する船舶目標移動経路算出部と、
     前記船舶の移動開始時に前記船舶位置検出部によって検出される前記船舶の位置と、前記船舶の移動中に前記船舶位置検出部によって検出される前記船舶の位置とに基づいて前記船舶の実際の移動経路を算出する船舶実移動経路算出部と、
     前記船舶の目標移動経路と前記船舶の実際の移動経路との差分を算出する船舶移動経路差分算出部と、
     前記船舶の移動開始時に前記船首方位検出部によって検出される前記船首の方位と、前記船舶の移動中に前記船首方位検出部によって検出される前記船首の方位とに基づいて、前記船舶の移動開始時の前記船首の方位と前記船舶の移動中の前記船首の方位との差分を算出する船首方位差分算出部と、
     前記船舶の実際の移動経路を前記船舶の目標移動経路に近づけ、かつ、前記船舶の移動中の前記船首の方位を前記船舶の移動開始時の前記船首の方位に近づける推進力を、前記複数の船外機に発生させる前記船舶の推進力として算出する推進力算出部とを備える、
     請求項3に記載の船外機用制御装置。
    An operation unit movement route calculation unit for calculating a movement route of the operation unit,
    A ship target travel route calculation unit that calculates a target travel route of the ship based on the position of the ship detected by the ship position detection unit at the start of movement of the ship and the second position of the operation unit;
    The actual movement of the vessel based on the position of the vessel detected by the vessel position detection unit at the start of movement of the vessel and the position of the vessel detected by the vessel position detection unit during movement of the vessel. A ship actual movement route calculation unit that calculates a route,
    A ship movement path difference calculation unit that calculates a difference between the target movement path of the ship and the actual movement path of the ship,
    Based on the heading of the bow detected by the bow heading detector at the start of the movement of the ship and the heading of the bow detected by the heading bearing detector during the movement of the ship, the movement of the ship is started. A heading difference calculation unit that calculates a difference between the heading of the bow at time and the heading of the bow while the ship is moving,
    A propulsive force that brings the actual movement route of the vessel closer to the target movement route of the vessel and brings the orientation of the bow during movement of the vessel closer to the orientation of the bow at the start of movement of the vessel, A propulsion force calculation unit that calculates the propulsion force of the ship generated in the outboard motor;
    The outboard motor control device according to claim 3.
  5.  船舶に備えられた複数の船外機を制御する船外機用制御方法であって、
     前記複数の船外機のそれぞれは、前記船舶の推進力を発生する推進ユニットと、操舵アクチュエータとを備え、
     前記船舶は、
     前記操舵アクチュエータおよび前記推進ユニットを作動させる操作部と、
     前記船舶の位置を検出する船舶位置検出部と、
     前記船舶の船首の方位を検出する船首方位検出部と、
     前記複数の船外機を制御する船外機用制御装置とを備え、
     前記操作部は、少なくとも
     前記複数の船外機が前記船舶の推進力を発生しない位置である第1位置と、
     前記複数の船外機が前記船舶を移動させる推進力を発生する位置である第2位置とに位置することができ、
     前記操作部が、前記第1位置から前記第2位置に移動させられて、前記第2位置に維持される場合に、前記船舶位置検出部によって検出される前記船舶の位置、または、前記船首方位検出部によって検出される前記船首の方位を取得する第1ステップと、
     前記第1ステップにおいて取得された前記船舶の位置に基づいて、前記船舶の目標移動経路と前記船舶の実際の移動経路との差分を抑制する推進力を前記複数の船外機に発生させるか、あるいは、前記第1ステップにおいて取得された前記船首の方位に基づいて、前記船舶の移動開始時の前記船首の方位と前記船舶の移動中の前記船首の方位との差分を抑制する推進力を前記複数の船外機に発生させる第2ステップとを備える、
     船外機用制御方法。
    An outboard motor control method for controlling a plurality of outboard motors provided in a ship, comprising:
    Each of the plurality of outboard motors includes a propulsion unit that generates a propulsive force of the ship, and a steering actuator,
    The ship is
    An operation unit for operating the steering actuator and the propulsion unit,
    A ship position detection unit for detecting the position of the ship,
    A heading detector for detecting the heading of the bow of the ship,
    An outboard motor control device for controlling the plurality of outboard motors,
    The operation unit is a position where at least the plurality of outboard motors does not generate a propulsive force of the ship;
    The plurality of outboard motors may be located at a second position, which is a position where a propulsive force for moving the ship is generated,
    When the operation unit is moved from the first position to the second position and maintained at the second position, the position of the ship detected by the ship position detection unit or the bow direction A first step of acquiring the heading of the bow detected by the detector,
    Based on the position of the ship acquired in the first step, a propulsive force that suppresses a difference between a target travel route of the ship and an actual travel route of the ship is generated in the plurality of outboard motors, Alternatively, on the basis of the heading of the bow acquired in the first step, the propulsive force that suppresses a difference between the heading of the bow at the start of movement of the ship and the heading of the bow during movement of the ship is described above. A second step of generating a plurality of outboard motors,
    Control method for outboard motor.
  6.  船舶に備えられた複数の船外機を制御するプログラムであって、
     前記複数の船外機のそれぞれは、前記船舶の推進力を発生する推進ユニットと、操舵アクチュエータとを備え、
     前記船舶は、
     前記操舵アクチュエータおよび前記推進ユニットを作動させる操作部と、
     前記船舶の位置を検出する船舶位置検出部と、
     前記船舶の船首の方位を検出する船首方位検出部とを備え、
     前記操作部は、少なくとも
     前記複数の船外機が前記船舶の推進力を発生しない位置である第1位置と、
     前記複数の船外機が前記船舶を移動させる推進力を発生する位置である第2位置とに位置することができ、
     前記船舶に搭載されたコンピュータに、
     前記操作部が、前記第1位置から前記第2位置に移動させられて、前記第2位置に維持される場合に、前記船舶位置検出部によって検出される前記船舶の位置、または、前記船首方位検出部によって検出される前記船首の方位を取得する第1ステップと、
     前記第1ステップにおいて取得された前記船舶の位置に基づいて、前記船舶の目標移動経路と前記船舶の実際の移動経路との差分を抑制する推進力を前記複数の船外機に発生させるか、あるいは、前記第1ステップにおいて取得された前記船首の方位に基づいて、前記船舶の移動開始時の前記船首の方位と前記船舶の移動中の前記船首の方位との差分を抑制する推進力を前記複数の船外機に発生させる第2ステップと
     を実行させるためのプログラム。
    A program for controlling a plurality of outboard motors equipped on a ship,
    Each of the plurality of outboard motors includes a propulsion unit that generates a propulsive force of the ship, and a steering actuator,
    The ship is
    An operation unit for operating the steering actuator and the propulsion unit,
    A ship position detection unit for detecting the position of the ship,
    A heading detection unit for detecting the heading of the bow of the ship;
    The operation unit is a position where at least the plurality of outboard motors does not generate a propulsive force of the ship;
    The plurality of outboard motors may be located at a second position, which is a position where a propulsive force for moving the ship is generated,
    The computer installed in the ship,
    When the operation unit is moved from the first position to the second position and maintained at the second position, the position of the ship detected by the ship position detection unit or the bow direction A first step of acquiring the heading of the bow detected by the detector,
    Based on the position of the ship acquired in the first step, a propulsive force that suppresses a difference between a target travel route of the ship and an actual travel route of the ship is generated in the plurality of outboard motors, Alternatively, on the basis of the heading of the bow acquired in the first step, the propulsive force that suppresses a difference between the heading of the bow at the start of movement of the ship and the heading of the bow during movement of the ship is described above. A program to execute the second step generated by multiple outboard motors.
PCT/IB2020/051231 2019-01-18 2020-02-14 Outboard motor control device, outboard motor control method, and program WO2020148737A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-007332 2019-01-18
JP2019007332A JP7324995B2 (en) 2019-01-18 2019-01-18 OUTBOARD MOTOR CONTROL DEVICE, OUTBOARD MOTOR CONTROL METHOD AND PROGRAM

Publications (1)

Publication Number Publication Date
WO2020148737A1 true WO2020148737A1 (en) 2020-07-23

Family

ID=71614512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2020/051231 WO2020148737A1 (en) 2019-01-18 2020-02-14 Outboard motor control device, outboard motor control method, and program

Country Status (2)

Country Link
JP (1) JP7324995B2 (en)
WO (1) WO2020148737A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005200004A (en) * 2003-12-16 2005-07-28 Yamaha Motor Co Ltd Ship maneuver supporting device, ship equipped therewith, and maneuver supporting method
JP2005212693A (en) * 2004-01-30 2005-08-11 Yamaha Motor Co Ltd Maneuvering supporting device, maneuvering supporting method, control program for maneuvering supporting device, and travel controller
JP2011140272A (en) * 2010-01-07 2011-07-21 Yamaha Motor Co Ltd Marine vessel propulsion control apparatus and marine vessel
JP2014076755A (en) * 2012-10-11 2014-05-01 Suzuki Motor Corp Watercraft control system, watercraft control method, and program
JP2016083973A (en) * 2014-10-23 2016-05-19 ヤンマー株式会社 Ship steering device
JP2017154734A (en) * 2016-03-01 2017-09-07 ブランスウィック コーポレイションBrunswick Corporation Improved marine vessel maneuvering methods and systems
JP2017171221A (en) * 2016-03-25 2017-09-28 ヤンマー株式会社 Maneuvering device and ship comprising the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005200004A (en) * 2003-12-16 2005-07-28 Yamaha Motor Co Ltd Ship maneuver supporting device, ship equipped therewith, and maneuver supporting method
JP2005212693A (en) * 2004-01-30 2005-08-11 Yamaha Motor Co Ltd Maneuvering supporting device, maneuvering supporting method, control program for maneuvering supporting device, and travel controller
JP2011140272A (en) * 2010-01-07 2011-07-21 Yamaha Motor Co Ltd Marine vessel propulsion control apparatus and marine vessel
JP2014076755A (en) * 2012-10-11 2014-05-01 Suzuki Motor Corp Watercraft control system, watercraft control method, and program
JP2016083973A (en) * 2014-10-23 2016-05-19 ヤンマー株式会社 Ship steering device
JP2017154734A (en) * 2016-03-01 2017-09-07 ブランスウィック コーポレイションBrunswick Corporation Improved marine vessel maneuvering methods and systems
JP2017171221A (en) * 2016-03-25 2017-09-28 ヤンマー株式会社 Maneuvering device and ship comprising the same

Also Published As

Publication number Publication date
JP7324995B2 (en) 2023-08-14
JP2020116983A (en) 2020-08-06

Similar Documents

Publication Publication Date Title
WO2014057725A1 (en) Device for controlling outboard motor, method for controlling outboard motor, and program
JP2016074247A (en) Ship maneuvering system
WO2020148737A1 (en) Outboard motor control device, outboard motor control method, and program
WO2020148736A1 (en) Outboard motor control device, outboard motor control method, and program
US20130072076A1 (en) Method for maneuvering a yacht
JP7266186B2 (en) Ship propulsion device control device, ship propulsion device control method and program
JP7157945B2 (en) Automatic setting device, automatic setting method and program
US11834143B2 (en) Control device for outboard motor, control method for outboard motor, and program
WO2020246575A1 (en) Ship propulsion apparatus control device, ship propulsion apparatus control method, and program
JP2022146791A (en) Maneuvering system and ship
WO2022270235A1 (en) Ship control system, ship control device, ship control method, and program
WO2021251382A1 (en) Ship, ship control device, ship control method, and program
EP4177152A1 (en) Marine propulsion system
US20230136043A1 (en) Marine propulsion system and marine vessel
US20230202633A1 (en) Marine propulsion system and marine vessel
WO2021251367A1 (en) Automatic ship maneuvering system, ship control device, ship control method, and program
JP2023068787A (en) Ship propulsion system and ship
JP2022174500A (en) Maneuvering system and vessel
JP2022190606A (en) Maneuvering system and vessel
JP2022146792A (en) Maneuvering system and ship

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20741680

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20741680

Country of ref document: EP

Kind code of ref document: A1