WO2020246131A1 - Wire rope examination system and wire rope examination method - Google Patents

Wire rope examination system and wire rope examination method Download PDF

Info

Publication number
WO2020246131A1
WO2020246131A1 PCT/JP2020/015706 JP2020015706W WO2020246131A1 WO 2020246131 A1 WO2020246131 A1 WO 2020246131A1 JP 2020015706 W JP2020015706 W JP 2020015706W WO 2020246131 A1 WO2020246131 A1 WO 2020246131A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire rope
peak waveform
damage
acquired
type
Prior art date
Application number
PCT/JP2020/015706
Other languages
French (fr)
Japanese (ja)
Inventor
康展 伊藤
信行 山岡
亘 潮
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2021524683A priority Critical patent/JP7107438B2/en
Publication of WO2020246131A1 publication Critical patent/WO2020246131A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/12Checking, lubricating, or cleaning means for ropes, cables or guides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws

Definitions

  • the present invention relates to a wire rope inspection system and a wire rope inspection method.
  • a wire rope inspection device for inspecting the condition of a wire rope.
  • Such a configuration is disclosed, for example, in WO 2018/138850.
  • the above-mentioned International Publication No. 2018/138850 discloses an inspection device for inspecting the state of steel wire rope.
  • This inspection device includes a detection coil that detects a change in the magnetic field of the steel wire rope, and an electronic circuit unit that determines the presence or absence of scratches on the steel wire rope based on a signal from the detection coil.
  • the present invention has been made to solve the above-mentioned problems, and one object of the present invention is to effectively support the maintenance work of the wire rope by detecting the type of damage of the wire rope. It is to provide a wire rope inspection system and a wire rope inspection method which can be performed in the above.
  • the wire rope inspection system includes a detection coil that detects a change in the magnetic field of the wire rope and a control unit that controls to detect the type of damage to the wire rope.
  • the control unit acquires smoothing data, which is data obtained by smoothing the measurement data based on the measurement data acquired by the detection coil, and bases the measurement data based on the acquired smoothing data. It is configured to acquire a line, acquire a peak waveform from the measurement data based on the acquired baseline, and control to detect the type of wire rope damage based on the acquired peak waveform. ..
  • the wire rope inspection method smoothes the measurement data based on the step of detecting the change in the magnetic field of the wire rope and the measurement data obtained by detecting the change in the magnetic field of the wire rope.
  • the step of acquiring the smoothed data which is the data obtained
  • the step of acquiring the baseline of the measurement data based on the smoothed data the step of acquiring the peak waveform from the measurement data based on the baseline, and the peak waveform. It comprises a step of detecting the type of damage to the wire rope based on.
  • the peak waveform is acquired from the measurement data based on the baseline, and the type of damage to the wire rope is detected based on the peak waveform.
  • the wire rope maintenance work is effectively supported by detecting the type of wire rope damage. be able to.
  • FIG. (A) is a diagram showing a state in which measurement data is stored in a first memory and the measurement data stored in the second memory is output to a control unit in the data processing system according to the embodiment.
  • (B) is a diagram showing a state in which measurement data is stored in a second memory and the measurement data stored in the first memory is output to a control unit in the data processing system according to the embodiment.
  • the wire rope inspection system 100 is a system for inspecting the wire rope 101, which is an inspection target.
  • the wire rope inspection system 100 includes a wire rope inspection device 200 that magnetically detects the state of the wire rope 101, and an external device 300 that displays the inspection result of the wire rope 101.
  • the wire rope inspection system 100 is configured to inspect the wire rope 101 for damage by the wire rope inspection device 200 and the external device 300.
  • the wire rope 101 is formed by knitting (for example, strand knitting) a magnetic wire material.
  • the wire rope 101 is, for example, a steel wire rope (steel wire rope).
  • the wire rope 101 is a magnetic material made of a long material extending in the X direction. The state (presence or absence of scratches, etc.) of the wire rope 101 is monitored in order to prevent cutting due to deterioration. Then, the wire rope 101 whose deterioration has progressed from a predetermined amount is replaced.
  • the wire rope inspection device 200 inspects the wire rope 101 while moving the wire rope 101 relative to the surface of the wire rope 101 to be inspected.
  • the wire rope 101 is a moving rope that drives the elevator 400.
  • the elevator 400 includes a car portion 401, a hoisting machine 402 that winds up the wire rope 101 to raise and lower the car portion 401, and a position sensor 403 that detects the position of the car portion 401 (wire rope 101).
  • the inspection is performed with the movement of the wire rope 101 with the wire rope inspection device 200 fixed.
  • the wire rope 101 is arranged so as to extend in the X direction at the position of the wire rope inspection device 200.
  • the wire rope inspection device 200 includes a detection unit 1 and an electronic circuit unit 2.
  • the detection unit 1 includes a detection coil 10 which is a differential coil having a pair of reception coils 11 and 12, and an excitation coil 13.
  • the electronic circuit unit 2 includes a control unit 21, a reception I / F 22, a storage unit 23, an excitation I / F 24, a power supply circuit 25, and a communication unit 26.
  • the wire rope inspection device 200 includes a magnetic field application unit 4 (see FIG. 4).
  • An external device 300 is communicably connected to the wire rope inspection device 200 via a communication unit 26.
  • the external device 300 includes a communication unit 301, a control unit 302, a display unit 303, and a storage unit 304.
  • the external device 300 is configured to receive data such as a detection result of damage to the wire rope 101 by the wire rope inspection device 200 via the communication unit 301. Further, the external device 300 is configured to display the damage detection result of the wire rope 101 on the display unit 303 under the control of the control unit 302. Further, the external device 300 is configured to store the damage detection result of the wire rope 101 and the like in the storage unit 304.
  • the wire rope inspection device 200 is configured to detect a change in the magnetic field (magnetic flux) of the wire rope 101 by the detection coil 10.
  • a DC magnetizer is not arranged in the vicinity of the coil of the wire rope inspection device 200.
  • the magnetic field application unit 4 applies a magnetic field in advance to the wire rope 101, which is an inspection object, in the Y direction (the direction intersecting the extending direction of the wire rope 101), and the wire rope is a magnetic material. It is configured to adjust the magnitude and direction of the magnetization of 101.
  • the magnetic field application unit 4 includes a first magnetic field application unit including magnets 41 and 42, and a second magnetic field application unit including magnets 43 and 44.
  • the first magnetic field application units (magnets 41 and 42) are arranged on one side (X1 direction side) of the wire rope 101 in the extending direction with respect to the detection unit 1.
  • the second magnetic field application unit (magnets 43 and 44) is arranged on the other side (X2 direction side) of the wire rope 101 in the extending direction with respect to the detection unit 1.
  • the first magnetic field application portions (magnets 41 and 42) are configured to apply a magnetic field parallel to the plane intersecting the extending direction (X direction) of the wire rope 101 and in the Y2 direction.
  • the second magnetic field application portions (magnets 43 and 44) are configured to apply a magnetic field parallel to the plane intersecting the extending direction (X direction) of the wire rope 101 and in the Y1 direction. That is, the magnetic field application unit 4 is configured to apply a magnetic field in a direction substantially orthogonal to the X direction, which is the longitudinal direction of the long member.
  • the detection coil 10 (reception coils 11 and 12) and the excitation coil 13 are each wound a plurality of times along the longitudinal direction with the extending direction of the wire rope 101, which is a magnetic material made of a long material, as a central axis. ing. Further, the detection coil 10 and the excitation coil 13 are coils including a lead wire portion formed so as to be cylindrical along the X direction (longitudinal direction) in which the wire rope 101 extends. Therefore, the surfaces formed by the wound lead wire portions of the detection coil 10 and the excitation coil 13 are substantially orthogonal to each other in the longitudinal direction.
  • the wire rope 101 passes through the inside of the detection coil 10 and the excitation coil 13. Further, the detection coil 10 is provided inside the excitation coil 13.
  • the arrangement of the detection coil 10 and the excitation coil 13 is not limited to this.
  • the receiving coil 11 of the detection coil 10 is arranged on the X1 direction side. Further, the receiving coil 12 of the detection coil 10 is arranged on the X2 direction side.
  • the receiving coils 11 and 12 are arranged at intervals of about several mm to several cm.
  • the excitation coil 13 excites the magnetized state of the wire rope 101. Specifically, when the excitation AC current is passed through the excitation coil 13, a magnetic field generated based on the excitation AC current is applied inside the excitation coil 13 along the X direction.
  • the detection coil 10 is configured to transmit the differential signals of the pair of receiving coils 11 and 12. Specifically, the detection coil 10 is configured to detect a change in the magnetic field of the wire rope 101 and transmit a differential signal. The detection coil 10 is configured to detect a change in the magnetic field in the X direction of the wire rope 101, which is an inspection target, and output a detection signal (voltage). That is, the detection coil 10 detects a change in the magnetic field in the X direction intersecting the Y direction with respect to the wire rope 101 to which the magnetic field is applied in the Y direction by the magnetic field application unit 4. Further, the detection coil 10 is configured to output a differential signal (voltage) based on the change in the magnetic field of the detected wire rope 101 in the X direction. Further, the detection coil 10 is arranged so that substantially all of the magnetic field generated by the excitation coil 13 can be detected (input).
  • the total magnetic flux (value obtained by multiplying the magnetic field by the magnetic permeability and the area) of the wire rope 101 becomes smaller at the portion with the defect (scratch, etc.).
  • the receiving coil 11 is located at a place having a defect (scratch or the like)
  • the amount of magnetic flux passing through the receiving coil 12 changes as compared with the receiving coil 11, so that the difference in the detection voltage by the detection coil 10
  • the absolute value (differential signal) of is large.
  • the differential signal in the portion without defects (scratches, etc.) is substantially zero.
  • the detection coil 10 detects a clear signal (a signal having a good S / N ratio) indicating the presence of defects (scratches, etc.).
  • the electronic circuit unit 2 can detect the presence of defects (scratches, etc.) in the wire rope 101 based on the value of the differential signal.
  • the control unit 21 of the electronic circuit unit 2 shown in FIG. 3 is configured to control each unit of the wire rope inspection device 200.
  • the control unit 21 includes a processor such as a CPU (central processing unit), a memory, an AD converter, and the like.
  • the control unit 21 is configured to receive a differential signal from the detection coil 10 and detect the state of the wire rope 101. Further, the control unit 21 is configured to control the excitation coil 13 to be excited. Further, the control unit 21 is configured to transmit the detection result of the state of the wire rope 101 to the external device 300 via the communication unit 26.
  • the receiving I / F 22 is configured to receive a differential signal from the detection coil 10 and transmit it to the control unit 21.
  • the receiving I / F 22 includes an amplifier.
  • the receiving I / F 22 is configured to amplify the differential signal of the detection coil 10 and transmit it to the control unit 21.
  • the storage unit 23 includes a storage medium such as a flash memory and is configured to store information.
  • the excitation I / F 24 is configured to receive a control signal from the control unit 21 and control the supply of electric power to the excitation coil 13. Specifically, the excitation I / F 24 controls the supply of electric power from the power supply circuit 25 to the excitation coil 13 based on the control signal from the control unit 21.
  • the control unit 21 is configured to perform control to detect the type of damage to the wire rope 101 based on the measurement data 201 acquired by the detection coil 10.
  • the control unit 21 detects wire breakage, fixed deformation due to external pressure (hereinafter, simply referred to as “kink”), and loose twist of the wire rope (hereinafter, simply referred to as “aya”) as types of damage to the wire rope 101. It is configured to control the rope.
  • the control unit 21 controls to acquire the smoothed data 202 (smoothing data) which is the data obtained by smoothing the measurement data 201 based on the measurement data 201. Specifically, the control unit 21 controls to acquire the smoothed data 202 by smoothing the measurement data 201 with a low-pass filter. As a result, as the smoothing data 202, data of the fluctuation component (low frequency component) caused by the deformation of the rope due to the damage of the wire rope is acquired.
  • the smoothing data 202 data of the fluctuation component (low frequency component) caused by the deformation of the rope due to the damage of the wire rope is acquired.
  • control unit 21 controls to acquire the baseline 203 of the measurement data 201 based on the acquired smoothing data 202. Specifically, the control unit 21 controls to acquire the line connecting the intersection 202a between the waveform of the measurement data 201 and the waveform of the smoothing data 202 as the baseline 203.
  • the control unit 21 controls to correct the measurement data 201 based on the acquired baseline 203. Specifically, the control unit 21 makes a correction by subtracting the baseline 203 from the measurement data 201. That is, the control unit 21 makes a correction for subtracting a low frequency component from the measurement data 201. As a result, the corrected measurement data 201 is obtained by excluding the fluctuation component (low frequency component) caused by the deformation of the rope due to the damage of the wire rope.
  • the control unit 21 controls to acquire the peak waveform 204 based on the corrected measurement data 201. Specifically, the control unit 21 controls to acquire the measured value group having a positive value with respect to the baseline 203 as a positive peak waveform 204 in the corrected measurement data 201. Further, the control unit 21 controls to acquire the measured value group having a negative value with respect to the baseline 203 as the negative peak waveform 204 in the corrected measurement data 201. The control unit 21 controls to distinguish between the positive peak waveform 204 and the negative peak waveform 204.
  • the peak waveform 204 is a high-frequency component of the measurement data 201, such as a waveform component indicating damage to the wire rope 101, which remains without being removed during correction by the baseline 203.
  • control unit 21 controls to detect the type of damage of the wire rope 101 based on the acquired peak waveform 204. Specifically, the control unit 21 compares the peak waveform 204 with the reference peak waveform 205 (case peak waveform) (similarity 206 described later), and parameter 207 (peak index) for specifying the peak waveform 204. Based on the above, control is performed to detect the type of damage of the wire rope 101.
  • the control unit 21 damages the wire rope 101 based on the result of comparison between the peak waveform 204 and the reference peak waveform 205, which is a reference waveform indicating the damage of the wire rope 101 of a specific type. Controls to detect the type of.
  • the reference peak waveform 205 is a peak waveform obtained from known data in which the type of damage of the wire rope 101 is known measurement data 201 by the same process as the process of acquiring the peak waveform 204.
  • the reference peak waveform 205 is obtained by acquiring smoothing data which is data obtained by smoothing the known data based on the known data which is the measurement data 201 in which the type of damage of the wire rope 101 is known.
  • the baseline of the known data is acquired based on the smoothed data of the known data, and the peak waveform is acquired from the known data based on the baseline of the acquired known data.
  • the reference peak waveform 205 is stored in advance in the storage unit 23.
  • the storage unit 23 stores a reference peak waveform 205a indicating a wire break, a reference peak waveform 205b indicating a kink, and a reference peak waveform 205c indicating an ear.
  • the number of reference peak waveforms 205 of each damage (wire disconnection, kink, aya) stored in the storage unit 23 may be one or plural.
  • the control unit 21 controls to acquire the comparison result between each of the reference peak waveform 205a indicating the wire breakage, the reference peak waveform 205b indicating the kink, and the reference peak waveform 205c indicating the ear, and the peak waveform 204.
  • control unit 21 controls to acquire the similarity 206 between the peak waveform 204 and the reference peak waveform 205 as a comparison result between the peak waveform 204 and the reference peak waveform 205. Then, the control unit 21 controls to detect the type of damage of the wire rope 101 based on the acquired similarity 206.
  • the control unit 21 divides the peak waveform 204 by a predetermined number of n, acquires the representative values P1 to Pn for the predetermined number n, and acquires them. Control to acquire similarity 206 based on the predetermined number n of representative values P1 to Pn of the peak waveform 204 and the predetermined number of n representative values SP1 to SPn of the reference peak waveform 205. I do.
  • the predetermined number n is not particularly limited as long as it is smaller than the number of the measured value groups constituting the peak waveform 204, but can be, for example, about 7 to 9. Further, the representative values SP1 to SPn of the reference peak waveform 205 can be stored in the storage unit 23 in advance.
  • control unit 21 sets the similarity 206 as a vector of peak waveforms 204 represented by representative values P1 to Pn and a reference peak waveform represented by representative values SP1 to SPn. Control is performed to acquire the COS value of the angle ⁇ formed by the vector of 205.
  • the value of COS ( ⁇ ) can be obtained by the formula shown in FIG. The larger the value of COS ( ⁇ ) (that is, the smaller the angle ⁇ ), the larger the similarity 206, indicating that the peak waveform 204 and the reference peak waveform 205 are similar in shape.
  • COS ( ⁇ ) that is, the larger the angle ⁇
  • COS ( ⁇ ) is an example of similarity 206, and the method for acquiring similarity 206 is not limited to this method.
  • the control unit 21 includes each of the reference peak waveform 205a (see FIG. 6) indicating a wire break, the reference peak waveform 205b indicating a kink (see FIG. 6), and the reference peak waveform 205c indicating an ear (see FIG. 6). , Control to acquire the similarity 206 with the peak waveform 204. At this time, the control unit 21 controls to acquire the similarity 206 for each of the positive and negative peak waveforms 204. This is because when the detection coil 10 is a differential coil, the waveform indicating the damage of the wire rope 101 is a waveform including at least a pair of positive and negative peak waveforms.
  • the control unit 21 acquires a similarity 206 between each of the positive peak waveforms of the reference peak waveform 205c shown and the peak waveform 204.
  • the peak waveform 204 is a negative peak waveform 204
  • the negative peak waveform of the reference peak waveform 205a indicating a wire break
  • the negative peak waveform of the reference peak waveform 205b indicating a kink
  • the reference indicating an aya when the peak waveform 204 is a positive peak waveform 204, the positive peak waveform of the reference peak waveform 205a indicating wire breakage, the positive peak waveform of the reference peak waveform 205b indicating kink, and the aya.
  • the control unit 21 acquires a similarity 206 between each of the negative peak waveforms of the peak waveform 205c and the peak waveform 204. If high similarity is obtained in both the positive peak waveform 204 and the negative peak waveform 204, the damage to the wire rope 101 may be the damage to the reference peak waveform 205 with high similarity.
  • the control unit 21 acquires a positive peak waveform 204 and a negative peak waveform 204 having a high degree of similarity higher than a predetermined value
  • the control unit 21 acquires the waveform.
  • Control is performed to detect the type of damage of the wire rope 101 based on the appearance order of the positive peak waveform 204 and the negative peak waveform 204. This is because the appearance order of the positive peak waveform 204 and the negative peak waveform 204 tends to be different depending on the type of damage of the wire rope 101.
  • the appearance order of the positive and negative peak waveforms 204 is the first order (positive and negative in FIG. 9)
  • the type of damage of the wire rope 101 may be kink or aya.
  • the appearance order of the positive and negative peak waveform 204 is the second order (negative and positive order in FIG. 9) which is the reverse order of the first order
  • the type of damage of the wire rope 101 is wire breakage. It may be.
  • control unit 21 when the control unit 21 acquires a positive peak waveform 204 and a negative peak waveform 204 having a high similarity having a similarity higher than a predetermined value, it is acquired. Control is performed to detect the type of damage to the wire rope 101 based on the number of peak waveforms 204 between the positive peak waveform 204 and the negative peak waveform 204. This is because the number of peak waveforms 204 between the positive peak waveform 204 and the negative peak waveform 204 tends to differ depending on the type of damage of the wire rope 101.
  • the type of damage of the wire rope 101 is wire breakage. Or it could be a kink.
  • the number of peak waveforms 204 between the positive and negative peak waveforms 204 is equal to or more than a predetermined threshold value (that is, when there are many)
  • the type of damage of the wire rope 101 may be Aya.
  • the predetermined threshold value is not particularly limited, but may be 2, for example. This is because when the type of damage to the wire rope 101 is wire breakage or kink, the number of peak waveforms 204 between the positive and negative peak waveforms 204 is often about 0 or 1.
  • control unit 21 acquires the parameter 207 for specifying the peak waveform 204 based on the peak waveform 204, and the wire rope 101 is based on the acquired parameter 207. Controls to detect the type of damage.
  • the control unit 21 damages the wire rope 101 based on the width 207a of the peak waveform 204, the sharpness 207b of the peak waveform 204, and the inclination 207c of the baseline 203 of the peak waveform 204 as parameters 207. Controls to detect the type of.
  • the width 207a of the peak waveform 204 can be, for example, the length of the baseline 203 of the peak waveform 204. That is, the width 207a of the peak waveform 204 can be, for example, the length between the intersection 202a between the waveform of the measurement data 201 and the waveform of the smoothing data 202, which are adjacent to each other.
  • the sharp point 207b of the peak waveform 204 can be, for example, the height 207d of the peak waveform 204 with respect to the width 207a of the peak waveform 204.
  • the height 207d of the peak waveform 204 can be, for example, the length from the baseline 203 to the peak top.
  • the slope 207c of the baseline 203 of the peak waveform 204 can be, for example, the angle formed by the line along the time axis of the measurement data 201 and the baseline 203.
  • the width 207a of the peak waveform 204 tends to differ depending on the type of damage of the wire rope 101. Specifically, when the width 207a of the peak waveform 204 is large, there is a possibility that the type of damage of the wire rope 101 is Aya. Further, when the width 207a of the peak waveform 204 is small, the type of damage of the wire rope 101 may be wire breakage or kink.
  • the size of the width 207a of the peak waveform 204 can be determined, for example, by setting a threshold value for the width 207a.
  • the threshold for width 207a can be set, for example, based on the width of the reference peak waveform 205 (205a-c).
  • the sharpness 207b of the peak waveform 204 tends to differ depending on the type of damage of the wire rope 101. Specifically, when the sharpness 207b of the peak waveform 204 is large, the type of damage of the wire rope 101 may be wire breakage or kink. Further, when the sharp point 207b of the peak waveform 204 is small, there is a possibility that the type of damage of the wire rope 101 is Aya.
  • the size of the sharp point 207b of the peak waveform 204 can be determined by using, for example, the threshold value for the sharp point 207b.
  • the threshold for the sharpness 207b can be set, for example, based on the sharpness of the reference peak waveform 205 (205a-c).
  • the inclination 207c of the baseline 203 of the peak waveform 204 tends to differ depending on the type of damage of the wire rope 101. Specifically, when the inclination 207c of the baseline 203 of the peak waveform 204 is large, there is a possibility that the type of damage of the wire rope 101 is Aya. Further, when the inclination 207c of the baseline 203 of the peak waveform 204 is small, the type of damage of the wire rope 101 may be wire breakage or kink.
  • the magnitude of the slope 207c of the baseline 203 of the peak waveform 204 can be determined by using, for example, the threshold value for the slope 207c.
  • the threshold value for the slope 207c can be set, for example, based on the slope of the baseline 203 of the reference peak waveform 205 (205a-c).
  • the control unit 21 has an evaluation value which is a value indicating that the damage may be the damage for each of the wire breakage, the kink, and the aya based on the similarity 206 and the parameter 207. Is acquired, and control is performed to detect the type of damage of the wire rope 101 based on the acquired evaluation value.
  • control unit 21 follows a predetermined evaluation procedure, and for each of the wire breakage, the kink, and the ear, the evaluation value of the magnitude of the similarity 206 and the appearance order of the positive and negative peak waveforms 204. Evaluation value, evaluation value of the number of peak waveforms 204 between positive and negative peak waveforms 204, evaluation value of width 207a of peak waveform 204, evaluation value of sharp point 207b of peak waveform 204, and baseline 203 of peak waveform 204. Control is performed to acquire the evaluation value of the inclination 207c.
  • control unit 21 acquires the total value of a plurality of evaluation values for each of the wire breakage, the kink, and the wire rope, and removes the damage having the highest total value among the acquired three total values. Control is performed to detect the type of damage of 101. Further, the control unit 21 controls to transmit the detection result of the type of damage of the wire rope 101 to the external device 300.
  • the control unit 302 of the external device 300 controls to display the detected result of the received damage type of the wire rope 101 on the display unit 303.
  • the inspector using the wire rope inspection system 100 can confirm whether the damage of the wire rope 101 is a broken wire, a kink, or an ear.
  • the inspector can perform maintenance work according to the type of damage of the wire rope 101. That is, the inspector determines that if the wire rope 101 is damaged by a broken wire, urgent action is required, or if the wire rope 101 is damaged by a kink, no urgent action is required, but monitoring is required. If the wire rope 101 is damaged, it can be determined that observation is necessary.
  • the wire rope inspection device 200 is configured to be able to detect the type of damage of the wire rope 101 while acquiring the measurement data 201 by the detection coil 10. That is, the wire rope inspection device 200 is configured to be able to detect the type of damage to the wire rope 101 while processing the measurement data 201 in real time.
  • the wire rope inspection device 200 further includes an input controller 27, a first memory 28a, a second memory 28b, and a memory switch 29.
  • the input controller 27 receives the measurement data 201 from the detection coil 10 and transmits it to the first memory 28a or the second memory 28b.
  • the first memory 28a and the second memory 28b store the measurement data 201 received from the input controller 27.
  • the memory switch 29 receives the measurement data 201 from the first memory 28a or the second memory 28b and transmits the measurement data 201 to the control unit 21.
  • the control unit 21 performs the above-mentioned damage detection process of the wire rope 101 based on the measurement data 201 received from the memory switch 29.
  • the wire rope inspection device 200 stores the measurement data 201 in one of the first memory 28a and the second memory 28b, and stores the measurement data 201 in the first memory 28a and the second memory 28a.
  • the measurement data 201 stored in the memory 28b that is not stored is transmitted to the control unit 21 to detect the type of damage to the wire rope 101.
  • the input controller 27 transfers the measurement data 201 received from the detection coil 10 into the first memory 28a. Switch the data path to send. At this time, the memory switch 29 switches the data path so as to connect the second memory 28b and the control unit 21. As a result, the measurement data 201 stored in the second memory 28b is transmitted to the control unit 21. Then, when a predetermined amount of measurement data 201 is stored in the first memory 28a, the input controller 27 transmits the measurement data 201 received from the detection coil 10 to the second memory 28b. The data path is switched. At this time, the memory switch 29 switches the data path so that the first memory 28a and the control unit 21 are connected.
  • the input controller 27 transmits the measurement data 201 received from the detection coil 10 to the second memory 28b. Switch the data path to. At this time, the memory switch 29 switches the data path so as to connect the first memory 28a and the control unit 21. As a result, the measurement data 201 stored in the first memory 28a is transmitted to the control unit 21. Then, when a predetermined amount of measurement data 201 is stored in the second memory 28b, the input controller 27 transmits the measurement data 201 received from the detection coil 10 to the first memory 28a. The data path is switched. At this time, the memory switch 29 switches the data path so that the second memory 28b and the control unit 21 are connected. As described above, the first memory 28a and the second memory 28b do not transmit the measurement data 201 to the control unit 21 while the measurement data 201 is stored from the detection coil 10.
  • control unit 21 can sequentially perform the detection process of the type of damage of the wire rope 101 while sequentially receiving the measurement data 201 stored in the first memory 28a or the second memory 28b. Further, the control unit 21 controls to sequentially transmit the detection of the type of damage of the wire rope 101 to the external device 300. Then, the control unit 302 of the external device 300 controls to sequentially display the received detection result of the type of damage of the wire rope 101 on the display unit 303.
  • the peak waveform 204 is acquired from the measurement data 201 based on the baseline 203, and the type of damage to the wire rope 101 is detected based on the peak waveform 204.
  • the type of damage to the wire rope 101 is detected based on the peak waveform 204.
  • the wire rope 101 by acquiring the peak waveform 204 from the measurement data 201 based on the baseline 203, unlike the case where the peak waveform 204 is acquired without being based on the baseline 203, the wire rope 101 It is possible to obtain an accurate peak waveform 204 in which the low frequency component due to the deformation of the wire rope 101 generated due to the damage is reduced. As a result, the type of damage to the wire rope 101 can be easily detected based on the accurate peak waveform 204 in which the low frequency component due to the deformation of the wire rope 101 generated due to the damage to the wire rope 101 is reduced.
  • the control unit 21 has a measurement value group having a positive value with respect to the baseline 203 and a measurement value group having a negative value with respect to the baseline 203. Is controlled to be acquired as the peak waveform 204.
  • the peak waveform 204 it is possible to obtain both an accurate positive peak waveform 204 and a negative peak waveform 204 in which the low frequency component due to the deformation of the wire rope 101 generated due to the damage of the wire rope 101 is reduced.
  • the damage of the wire rope 101 is based on both the accurate positive peak waveform 204 and the negative peak waveform 204 in which the low frequency component due to the deformation of the wire rope 101 caused by the damage of the wire rope 101 is reduced. The type can be detected more easily.
  • the wire rope inspection system 100 is configured to include a storage unit 23 in which the reference peak waveform 205 is stored. Further, the control unit 21 is configured to perform control to detect the type of damage of the wire rope 101 based on the comparison result between the peak waveform 204 and the reference peak waveform 205. As a result, the type of damage to the wire rope 101 can be detected based on the result of comparison between the peak waveform 204 and the reference peak waveform 205, which shows the characteristics of the damage well, so that the type of damage to the wire rope 101 can be accurately determined. Can be detected.
  • the smoothing data of the known data is acquired based on the known data in which the reference peak waveform 205 is the measurement data 201 in which the type of damage of the wire rope 101 is known.
  • the baseline of the known data is acquired based on the smoothed data of the acquired known data, and the peak waveform acquired from the known data is configured based on the baseline of the acquired known data.
  • the reference peak waveform 205 acquired by the same process as the process for acquiring the peak waveform 204 can be compared with the peak waveform 204, so that the peak waveform 204 and the reference peak waveform 205 can be easily compared. can do.
  • the control unit 21 acquires the similarity 206 between the peak waveform 204 and the reference peak waveform 205 as a comparison result between the peak waveform 204 and the reference peak waveform 205. At the same time, it is configured to control the detection of the type of damage of the wire rope 101 based on the acquired similarity 206. As a result, the type of damage to the wire rope 101 can be detected based on the similarity 206, which shows a good correlation between the peak waveform 204 and the reference peak waveform 205. It can be detected more accurately.
  • the control unit 21 divides the peak waveform 204 by a predetermined number of n, and acquires representative values P1 to Pn for a predetermined number n.
  • the similarity 206 is acquired based on the predetermined number n of representative values P1 to Pn of the acquired peak waveform 204 and the predetermined number of n representative values SP1 to SPn of the reference peak waveform 205. It is configured to perform control. As a result, the similarity 206 between the peak waveform 204 and the reference peak waveform 205 can be obtained in a state where the peak waveform 204 is compressed to the representative values P1 to Pn for several n predetermined values. It is possible to reduce the processing load of the process of acquiring 206.
  • the control unit 21 acquires a positive peak waveform 204 and a negative peak waveform 204 having a high similarity with a similarity 206 higher than a predetermined value, the acquired positives are obtained. Based on the appearance order of the peak waveform 204 and the negative peak waveform 204 of the wire rope 101, the control for detecting the type of damage of the wire rope 101 is performed. As a result, the type of damage to the wire rope 101 can be easily detected by utilizing the fact that the appearance order of the positive peak waveform 204 and the negative peak waveform 204 differs depending on the type of damage to the wire rope 101.
  • the control unit 21 acquires a positive peak waveform 204 and a negative peak waveform 204 having a high similarity with a similarity 206 higher than a predetermined value, the acquired positives are obtained. Based on the number of peak waveforms 204 between the peak waveform 204 and the negative peak waveform 204 of the wire rope 101, the control for detecting the type of damage of the wire rope 101 is performed. As a result, the type of damage to the wire rope 101 can be easily detected by utilizing the fact that the number of peak waveforms 204 between the positive peak waveform 204 and the negative peak waveform 204 differs depending on the type of damage to the wire rope 101. can do.
  • the control unit 21 acquires the parameter 207 for specifying the peak waveform 204 based on the peak waveform 204, and the wire rope 101 is damaged based on the acquired parameter 207. It is configured to control to detect the type of. As a result, the type of damage to the wire rope 101 can be detected based on the parameter 207 indicating the shape of the peak waveform 204. Therefore, it is utilized that the shape of the peak waveform 204 differs depending on the type of damage to the wire rope 101. Therefore, the type of damage to the wire rope 101 can be accurately detected.
  • the control unit 21 is based on the width 207a of the peak waveform 204, the sharpness 207b of the peak waveform 204, and the slope 207c of the baseline 203 of the peak waveform 204 as parameters 207. Therefore, it is configured to control the detection of the type of damage of the wire rope 101.
  • the width 207a of the peak waveform 204, the sharpness 207b of the peak waveform 204, and the inclination 207c of the baseline 203 of the peak waveform 204 differ depending on the type of damage of the wire rope 101. The type of damage can be detected easily and accurately.
  • the control unit 21 detects wire breakage, fixed deformation (kink) due to external pressure, and loose twist of the wire rope (ear) as the type of damage to the wire rope 101. It is configured to perform control. As a result, it is possible to detect wire breakage, fixed deformation (kink) due to external pressure, and loose twist (ear) of the wire rope 101, which are likely to occur in the wire rope 101. Kind detection can be performed effectively.
  • wire ropes may be used in configurations other than elevators such as cranes, suspension bridges and robots.
  • an external device of the wire rope inspection system may detect and control the type of damage to the wire rope.
  • the control unit of the external device acquires the smoothing data of the measurement data based on the measurement data acquired by the detection coil, and acquires the baseline of the measurement data based on the acquired smoothing data. Then, the peak waveform may be acquired from the measurement data based on the acquired baseline, and control may be performed to detect the type of damage to the wire rope based on the acquired peak waveform.
  • the detection coil is a differential coil having a pair of receiving coils, but the present invention is not limited to this.
  • the detection coil may be composed of a single coil.
  • wire breakage wire breakage
  • fixed deformation due to external pressure kink
  • loose twist of the wire rope aya
  • the present invention is not limited to this.
  • any one or two of wire breakage, fixed deformation due to external pressure (kink), and loose wire twist (aya) may be detected.
  • damage other than wire breakage, fixed deformation due to external pressure (kink), and loose twist of the wire rope (aya) may be detected.
  • the evaluation value is acquired based on both the similarity and the parameter, and the type of damage to the wire rope is detected based on the acquired evaluation value.
  • the present invention is not limited to this.
  • the evaluation value may be acquired based on only one of the similarity and the parameter, and the type of damage to the wire rope may be detected based on the acquired evaluation value.
  • the peak waveform when the similarity is acquired, the peak waveform is divided by a predetermined number of minutes, but the present invention is not limited to this.
  • the peak waveform when the similarity is acquired, the peak waveform does not necessarily have to be divided by a predetermined number of minutes. That is, the similarity between the peak waveform and the reference peak waveform may be acquired without dividing the peak waveform by a predetermined number of minutes.
  • the type of damage of the wire rope when the type of damage of the wire rope is detected based on the similarity, the magnitude of the similarity, the order of appearance of the positive peak waveform and the negative peak waveform of the high similarity, and An example is shown in which the type of wire rope damage is detected based on the number of peak waveforms between positive and negative peak waveforms with high similarity, but the present invention is not limited to this.
  • the type of wire rope damage when the type of wire rope damage is detected based on the similarity, the magnitude of the similarity, the order of appearance of the positive and negative peak waveforms of the high similarity, and the high similarity.
  • the type of wire rope damage may be detected based on any one or two of the number of peak waveforms between the positive and negative peak waveforms of.
  • the type of wire rope damage is detected based on the similarity, the magnitude of the similarity, the order of appearance of the positive and negative peak waveforms of the high similarity, and the positive of the high similarity.
  • the type of wire rope damage may be detected based on the number of peak waveforms between the peak waveform and the negative peak waveform of.
  • the width of the peak waveform, the sharpness of the peak waveform, and the inclination of the baseline of the peak waveform are used as the basis for the wire rope.
  • the present invention is not limited to this.
  • the type of wire rope damage when the type of wire rope damage is detected based on the parameters, one or two of the width of the peak waveform, the sharpness of the peak waveform, and the slope of the baseline of the peak waveform.
  • the type of damage to the wire rope may be detected based on.
  • the type of wire rope damage is based on the parameters, the type of wire rope damage is based on other than the width of the peak waveform, the sharpness of the peak waveform, and the slope of the baseline of the peak waveform. It may be detected.
  • a detection coil that detects changes in the magnetic field of the wire rope A control unit that controls to detect the type of damage to the wire rope is provided.
  • the control unit acquires smoothing data which is data obtained by smoothing the measurement data based on the measurement data acquired by the detection coil, and based on the acquired smoothing data, the measurement data of the measurement data.
  • a baseline is acquired, a peak waveform is acquired from the measurement data based on the acquired baseline, and control is performed to detect the type of damage to the wire rope based on the acquired peak waveform.
  • the wire rope inspection system is configured in.
  • the control unit controls to acquire a group of measured values having a positive value with respect to the baseline and a group of measured values having a negative value with respect to the baseline as the peak waveform.
  • the reference peak waveform is obtained by acquiring smoothing data, which is data obtained by smoothing the known data, based on known data in which the type of damage to the wire rope is known measurement data.
  • smoothing data which is data obtained by smoothing the known data, based on known data in which the type of damage to the wire rope is known measurement data.
  • the item 3 wherein a baseline of the known data is acquired based on the smoothed data and is a peak waveform acquired from the known data based on the acquired baseline of the known data. Wire rope inspection system.
  • the control unit acquires the similarity between the peak waveform and the reference peak waveform, and based on the acquired similarity, said the control unit.
  • the wire rope inspection system according to item 3 or 4 which is configured to control the detection of the type of wire rope damage.
  • the control unit divides the peak waveform by a predetermined number of minutes to acquire a predetermined number of representative values, and also obtains a predetermined number of representative values of the acquired peak waveform.
  • the control unit is configured to acquire a parameter for identifying the peak waveform based on the peak waveform and to perform control to detect the type of damage to the wire rope based on the acquired parameter.
  • the wire rope inspection system according to any one of items 1 to 8.
  • the control unit damages the wire rope based on at least one of the width of the peak waveform, the sharpness of the peak waveform, and the slope of the baseline of the peak waveform as the parameters.
  • the wire rope inspection system according to item 9 which is configured to control the detection of the type of wire rope.
  • the control unit is configured to control to detect at least one of wire breakage, fixed deformation due to external pressure, and loose twist of the wire rope as a type of damage to the wire rope. ,
  • the wire rope inspection system according to any one of items 1 to 10.
  • Steps to detect changes in the magnetic field of the wire rope Based on the measurement data acquired by detecting the change in the magnetic field of the wire rope, the step of acquiring the smoothing data which is the data obtained by smoothing the measurement data, and A step of acquiring a baseline of the measurement data based on the smoothing data, A step of acquiring a peak waveform from the measurement data based on the baseline, A wire rope inspection method comprising a step of detecting a type of damage to the wire rope based on the peak waveform.
  • Detection coil 21 Control unit 23 Storage unit 100 Wire rope inspection system 101 Wire rope 201 Measurement data 202 Smoothing data 203 Baseline 204 Peak waveform 205, 205a to c Reference peak waveform 206 Similarity 207 Parameter 207a Peak waveform width 207b Peak Waveform sharpness 207c Baseline slope of peak waveform n Predetermined number P1 to Pn Predetermined number of representative values of peak waveform SP1 to SPn Reference value of predetermined number of peak waveform

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

This wire rope examination system (100) acquires smoothed data (202) of measured data on the basis of measured data (201) that has been acquired by a detection coil (10), acquires the baseline (203) of the measured data on the basis of the acquired smoothed data, acquires the peak waveform (204) from the measured data on the basis of the acquired baseline, and detects the type of damage in a wire rope on the basis of the acquired peak waveform.

Description

ワイヤロープ検査システムおよびワイヤロープ検査方法Wire rope inspection system and wire rope inspection method
 本発明は、ワイヤロープ検査システムおよびワイヤロープ検査方法に関する。 The present invention relates to a wire rope inspection system and a wire rope inspection method.
 従来、ワイヤロープの状態を検査するワイヤロープ検査装置が知られている。このような構成は、たとえば、国際公開第2018/138850号に開示されている。 Conventionally, a wire rope inspection device for inspecting the condition of a wire rope is known. Such a configuration is disclosed, for example, in WO 2018/138850.
 上記国際公開第2018/138850号には、スチールワイヤロープの状態を検査する検査装置が開示されている。この検査装置は、スチールワイヤロープの磁界の変化を検知する検知コイルと、検知コイルからの信号に基づいてスチールワイヤロープの傷の有無を判定する電子回路部とを備えている。 The above-mentioned International Publication No. 2018/138850 discloses an inspection device for inspecting the state of steel wire rope. This inspection device includes a detection coil that detects a change in the magnetic field of the steel wire rope, and an electronic circuit unit that determines the presence or absence of scratches on the steel wire rope based on a signal from the detection coil.
国際公開第2018/138850号International Publication No. 2018/138850
 しかしながら、上記国際公開第2018/138850号に記載された検査装置では、スチールワイヤロープの傷の有無を判定することができるだけで、スチールワイヤロープの傷の種類までは判定することができない。この場合、検査員が測定データを確認してスチールワイヤロープの傷の種類を判定する必要があるため、スチールワイヤロープの保守作業の効果的な支援が困難であるという問題点がある。 However, the inspection device described in International Publication No. 2018/138850 can only determine the presence or absence of scratches on the steel wire rope, and cannot determine the type of scratches on the steel wire rope. In this case, since it is necessary for the inspector to confirm the measurement data and determine the type of scratches on the steel wire rope, there is a problem that it is difficult to effectively support the maintenance work of the steel wire rope.
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、ワイヤロープの傷みの種類を検出することにより、ワイヤロープの保守作業の支援を効果的に行うことが可能なワイヤロープ検査システムおよびワイヤロープ検査方法を提供することである。 The present invention has been made to solve the above-mentioned problems, and one object of the present invention is to effectively support the maintenance work of the wire rope by detecting the type of damage of the wire rope. It is to provide a wire rope inspection system and a wire rope inspection method which can be performed in the above.
 上記目的を達成するために、この発明の第1の局面によるワイヤロープ検査システムは、ワイヤロープの磁界の変化を検知する検知コイルと、ワイヤロープの傷みの種類を検出する制御を行う制御部と、を備え、制御部は、検知コイルにより取得した測定データに基づいて、測定データを平滑化処理したデータである平滑化データを取得して、取得した平滑化データに基づいて、測定データのベースラインを取得して、取得したベースラインに基づいて、測定データからピーク波形を取得して、取得したピーク波形に基づいて、ワイヤロープの傷みの種類を検出する制御を行うように構成されている。 In order to achieve the above object, the wire rope inspection system according to the first aspect of the present invention includes a detection coil that detects a change in the magnetic field of the wire rope and a control unit that controls to detect the type of damage to the wire rope. , And the control unit acquires smoothing data, which is data obtained by smoothing the measurement data based on the measurement data acquired by the detection coil, and bases the measurement data based on the acquired smoothing data. It is configured to acquire a line, acquire a peak waveform from the measurement data based on the acquired baseline, and control to detect the type of wire rope damage based on the acquired peak waveform. ..
 この発明の第2の局面によるワイヤロープ検査方法は、ワイヤロープの磁界の変化を検知するステップと、ワイヤロープの磁界の変化を検知して取得した測定データに基づいて、測定データを平滑化処理したデータである平滑化データを取得するステップと、平滑化データに基づいて、測定データのベースラインを取得するステップと、ベースラインに基づいて、測定データからピーク波形を取得するステップと、ピーク波形に基づいて、ワイヤロープの傷みの種類を検出するステップと、を備える。 The wire rope inspection method according to the second aspect of the present invention smoothes the measurement data based on the step of detecting the change in the magnetic field of the wire rope and the measurement data obtained by detecting the change in the magnetic field of the wire rope. The step of acquiring the smoothed data, which is the data obtained, the step of acquiring the baseline of the measurement data based on the smoothed data, the step of acquiring the peak waveform from the measurement data based on the baseline, and the peak waveform. It comprises a step of detecting the type of damage to the wire rope based on.
 本発明によれば、上記のように、ベースラインに基づいて、測定データからピーク波形が取得されるとともに、ピーク波形に基づいて、ワイヤロープの傷みの種類が検出される。これにより、ワイヤロープの傷みの有無だけでなく、ワイヤロープの傷みの種類も検出して、検査員に通知することができる。その結果、検査員が測定データを確認してワイヤロープの傷みの種類を判定する必要がないので、ワイヤロープの傷みの種類を検出することにより、ワイヤロープの保守作業の支援を効果的に行うことができる。また、上記のように、ベースラインに基づいて、測定データからピーク波形が取得されることにより、ベースラインに基づかずにピーク波形が取得される場合と異なり、ワイヤロープの傷みに伴い発生するワイヤロープの変形による低周波成分が低減された正確なピーク波形を取得することができる。その結果、ワイヤロープの傷みに伴い発生するワイヤロープの変形による低周波成分が低減された正確なピーク波形に基づいて、ワイヤロープの傷みの種類を容易に検出することができる。 According to the present invention, as described above, the peak waveform is acquired from the measurement data based on the baseline, and the type of damage to the wire rope is detected based on the peak waveform. As a result, not only the presence or absence of damage to the wire rope but also the type of damage to the wire rope can be detected and notified to the inspector. As a result, since it is not necessary for the inspector to check the measurement data to determine the type of wire rope damage, the wire rope maintenance work is effectively supported by detecting the type of wire rope damage. be able to. Further, as described above, by acquiring the peak waveform from the measurement data based on the baseline, the wire generated due to the damage of the wire rope is different from the case where the peak waveform is acquired without being based on the baseline. It is possible to obtain an accurate peak waveform in which the low frequency component due to the deformation of the rope is reduced. As a result, the type of wire rope damage can be easily detected based on the accurate peak waveform in which the low frequency component due to the deformation of the wire rope generated due to the wire rope damage is reduced.
一実施形態によるワイヤロープ検査システムの構成を示す概略図である。It is the schematic which shows the structure of the wire rope inspection system by one Embodiment. 一実施形態によるワイヤロープ検査装置により検査されるワイヤロープが使用されるエレベータを示した模式図である。It is a schematic diagram which showed the elevator which uses the wire rope which is inspected by the wire rope inspection apparatus by one Embodiment. 一実施形態によるワイヤロープ検査装置の制御的な構成を示すブロック図である。It is a block diagram which shows the control structure of the wire rope inspection apparatus by one Embodiment. 一実施形態による磁性体検査装置の磁界印加部および検出部の構成を説明するための図である。It is a figure for demonstrating the structure of the magnetic field application part and the detection part of the magnetic material inspection apparatus by one Embodiment. 一実施形態によるワイヤロープの傷みの種類の検出処理の全体構成を説明するための図である。It is a figure for demonstrating the whole structure of the wire rope damage type detection process by one Embodiment. 一実施形態によるピーク波形と参照ピーク波形との間の類似度の取得処理を説明するための図である。It is a figure for demonstrating the acquisition process of the degree of similarity between a peak waveform and a reference peak waveform by one Embodiment. 一実施形態によるピーク波形と参照ピーク波形との間の類似度の取得処理における代表値の取得処理を説明するための図である。It is a figure for demonstrating the acquisition process of the representative value in the acquisition process of the degree of similarity between a peak waveform and a reference peak waveform by one Embodiment. 一実施形態によるピーク波形と参照ピーク波形との間の類似度の取得処理の詳細を説明するための図である。It is a figure for demonstrating the detail of the acquisition process of the degree of similarity between a peak waveform and a reference peak waveform by one Embodiment. 一実施形態による正負ピーク波形間の出現順序の取得処理を説明するための図である。It is a figure for demonstrating the acquisition process of the appearance order between positive and negative peak waveforms by one Embodiment. 一実施形態による正負ピーク波形間のピーク波形の数の取得処理を説明するための図である。It is a figure for demonstrating the acquisition process of the number of peak waveforms between positive and negative peak waveforms by one Embodiment. 一実施形態によるピーク波形のパラメータの取得処理を説明するための図である。It is a figure for demonstrating the acquisition process of the parameter of the peak waveform by one Embodiment. 一実施形態によるピーク波形のパラメータに基づくワイヤロープの傷みの種類の検出処理を説明するための図である。It is a figure for demonstrating the detection process of the damage type of a wire rope based on the parameter of the peak waveform by one Embodiment. 一実施形態によるピーク波形の類似度およびピーク波形のパラメータに基づくワイヤロープの傷みの種類の検出処理を説明するための図である。It is a figure for demonstrating the detection process of the damage type of a wire rope based on the similarity of a peak waveform and the parameter of a peak waveform by one Embodiment. 一実施形態によるワイヤロープ検査装置のデータ処理系を説明するための図である。It is a figure for demonstrating the data processing system of the wire rope inspection apparatus by one Embodiment. (A)は、一実施形態によるデータ処理系において、第1メモリに測定データを格納して、第2メモリに格納された測定データを制御部に出力する状態を示した図である。(B)は、一実施形態によるデータ処理系において、第2メモリに測定データを格納して、第1メモリに格納された測定データを制御部に出力する状態を示した図である。FIG. (A) is a diagram showing a state in which measurement data is stored in a first memory and the measurement data stored in the second memory is output to a control unit in the data processing system according to the embodiment. (B) is a diagram showing a state in which measurement data is stored in a second memory and the measurement data stored in the first memory is output to a control unit in the data processing system according to the embodiment.
 以下、本発明を具体化した実施形態を図面に基づいて説明する。 Hereinafter, embodiments embodying the present invention will be described with reference to the drawings.
 まず、図1~図4を参照して、一実施形態によるワイヤロープ検査システム100の全体構成について説明する。 First, with reference to FIGS. 1 to 4, the overall configuration of the wire rope inspection system 100 according to one embodiment will be described.
(ワイヤロープ検査システムの構成)
 図1に示すように、ワイヤロープ検査システム100は、検査対象物であるワイヤロープ101を検査するシステムである。ワイヤロープ検査システム100は、ワイヤロープ101の状態を磁気的に検知するワイヤロープ検査装置200と、ワイヤロープ101の検査結果を表示する外部装置300とを備えている。ワイヤロープ検査システム100は、ワイヤロープ検査装置200と外部装置300とによりワイヤロープ101の傷みを検査するように構成されている。
(Structure of wire rope inspection system)
As shown in FIG. 1, the wire rope inspection system 100 is a system for inspecting the wire rope 101, which is an inspection target. The wire rope inspection system 100 includes a wire rope inspection device 200 that magnetically detects the state of the wire rope 101, and an external device 300 that displays the inspection result of the wire rope 101. The wire rope inspection system 100 is configured to inspect the wire rope 101 for damage by the wire rope inspection device 200 and the external device 300.
 ワイヤロープ101は、磁性を有する素線材料が編みこまれる(たとえば、ストランド編みされる)ことにより形成されている。ワイヤロープ101は、たとえば、鋼製のワイヤロープ(スチールワイヤロープ)である。ワイヤロープ101は、X方向に延びる長尺材からなる磁性体である。ワイヤロープ101は、劣化による切断が起こるのを防ぐために、状態(傷等の有無)を監視されている。そして、劣化が所定量より進行したワイヤロープ101は、交換される。 The wire rope 101 is formed by knitting (for example, strand knitting) a magnetic wire material. The wire rope 101 is, for example, a steel wire rope (steel wire rope). The wire rope 101 is a magnetic material made of a long material extending in the X direction. The state (presence or absence of scratches, etc.) of the wire rope 101 is monitored in order to prevent cutting due to deterioration. Then, the wire rope 101 whose deterioration has progressed from a predetermined amount is replaced.
(ワイヤロープ検査装置)
 図2に示すように、ワイヤロープ検査装置200は、検査対象物であるワイヤロープ101の表面に沿って相対移動させながら、ワイヤロープ101を検査する。ワイヤロープ101は、エレベータ400を駆動する動索である。エレベータ400は、かご部401と、ワイヤロープ101を巻き上げてかご部401を昇降させる巻上機402と、かご部401(ワイヤロープ101)の位置を検知する位置センサ403とを備えている。エレベータ400では、ワイヤロープ101が巻上機402により移動されるため、ワイヤロープ検査装置200を固定した状態で、ワイヤロープ101の移動に伴って、検査が行われる。ワイヤロープ101は、ワイヤロープ検査装置200の位置において、X方向に延びるように配置されている。
(Wire rope inspection device)
As shown in FIG. 2, the wire rope inspection device 200 inspects the wire rope 101 while moving the wire rope 101 relative to the surface of the wire rope 101 to be inspected. The wire rope 101 is a moving rope that drives the elevator 400. The elevator 400 includes a car portion 401, a hoisting machine 402 that winds up the wire rope 101 to raise and lower the car portion 401, and a position sensor 403 that detects the position of the car portion 401 (wire rope 101). In the elevator 400, since the wire rope 101 is moved by the hoisting machine 402, the inspection is performed with the movement of the wire rope 101 with the wire rope inspection device 200 fixed. The wire rope 101 is arranged so as to extend in the X direction at the position of the wire rope inspection device 200.
 図3に示すように、ワイヤロープ検査装置200は、検知部1と、電子回路部2とを備えている。検知部1は、一対の受信コイル11および12を有する差動コイルである検知コイル10と、励振コイル13とを含んでいる。電子回路部2は、制御部21と、受信I/F22と、記憶部23と、励振I/F24と、電源回路25と、通信部26とを含んでいる。また、ワイヤロープ検査装置200は、磁界印加部4(図4参照)を備えている。 As shown in FIG. 3, the wire rope inspection device 200 includes a detection unit 1 and an electronic circuit unit 2. The detection unit 1 includes a detection coil 10 which is a differential coil having a pair of reception coils 11 and 12, and an excitation coil 13. The electronic circuit unit 2 includes a control unit 21, a reception I / F 22, a storage unit 23, an excitation I / F 24, a power supply circuit 25, and a communication unit 26. Further, the wire rope inspection device 200 includes a magnetic field application unit 4 (see FIG. 4).
 ワイヤロープ検査装置200には、通信部26を介して外部装置300が通信可能に接続されている。 An external device 300 is communicably connected to the wire rope inspection device 200 via a communication unit 26.
 図1に示すように、外部装置300は、通信部301と、制御部302と、表示部303と、記憶部304とを備えている。外部装置300は、通信部301を介して、ワイヤロープ検査装置200によるワイヤロープ101の傷みの検出結果などのデータを受信するように構成されている。また、外部装置300は、制御部302による制御の下、ワイヤロープ101の傷みの検出結果を、表示部303に表示するように構成されている。また、外部装置300は、ワイヤロープ101の傷みの検出結果などを、記憶部304に記憶するように構成されている。 As shown in FIG. 1, the external device 300 includes a communication unit 301, a control unit 302, a display unit 303, and a storage unit 304. The external device 300 is configured to receive data such as a detection result of damage to the wire rope 101 by the wire rope inspection device 200 via the communication unit 301. Further, the external device 300 is configured to display the damage detection result of the wire rope 101 on the display unit 303 under the control of the control unit 302. Further, the external device 300 is configured to store the damage detection result of the wire rope 101 and the like in the storage unit 304.
 図4に示すように、ワイヤロープ検査装置200は、検知コイル10によりワイヤロープ101の磁界(磁束)の変化を検知するように構成されている。ワイヤロープ検査装置200のコイル近傍には、直流磁化器が配置されないように構成されている。 As shown in FIG. 4, the wire rope inspection device 200 is configured to detect a change in the magnetic field (magnetic flux) of the wire rope 101 by the detection coil 10. A DC magnetizer is not arranged in the vicinity of the coil of the wire rope inspection device 200.
(磁界印加部の構成)
 図4に示すように、磁界印加部4は、検査対象物であるワイヤロープ101に対して予めY方向(ワイヤロープ101の延びる方向に交差する方向)に磁界を印加し磁性体であるワイヤロープ101の磁化の大きさおよび方向を整えるように構成されている。また、磁界印加部4は、磁石41および42を含む第1磁界印加部と、磁石43および44を含む第2磁界印加部とを含んでいる。第1磁界印加部(磁石41および42)は、検知部1に対して、ワイヤロープ101の延びる方向の一方側(X1方向側)に配置されている。また、第2磁界印加部(磁石43および44)は、検知部1に対して、ワイヤロープ101の延びる方向の他方側(X2方向側)に配置されている。
(Structure of magnetic field application part)
As shown in FIG. 4, the magnetic field application unit 4 applies a magnetic field in advance to the wire rope 101, which is an inspection object, in the Y direction (the direction intersecting the extending direction of the wire rope 101), and the wire rope is a magnetic material. It is configured to adjust the magnitude and direction of the magnetization of 101. Further, the magnetic field application unit 4 includes a first magnetic field application unit including magnets 41 and 42, and a second magnetic field application unit including magnets 43 and 44. The first magnetic field application units (magnets 41 and 42) are arranged on one side (X1 direction side) of the wire rope 101 in the extending direction with respect to the detection unit 1. Further, the second magnetic field application unit (magnets 43 and 44) is arranged on the other side (X2 direction side) of the wire rope 101 in the extending direction with respect to the detection unit 1.
 第1磁界印加部(磁石41および42)は、ワイヤロープ101の延びる方向(X方向)に交差する面に平行かつY2方向に磁界を印加するように構成されている。第2磁界印加部(磁石43および44)は、ワイヤロープ101の延びる方向(X方向)に交差する面に平行かつY1方向に磁界を印加するように構成されている。すなわち、磁界印加部4は、長尺材の長手方向であるX方向と略直交する方向に磁界を印加するように構成されている。 The first magnetic field application portions (magnets 41 and 42) are configured to apply a magnetic field parallel to the plane intersecting the extending direction (X direction) of the wire rope 101 and in the Y2 direction. The second magnetic field application portions (magnets 43 and 44) are configured to apply a magnetic field parallel to the plane intersecting the extending direction (X direction) of the wire rope 101 and in the Y1 direction. That is, the magnetic field application unit 4 is configured to apply a magnetic field in a direction substantially orthogonal to the X direction, which is the longitudinal direction of the long member.
(検知部の構成)
 検知コイル10(受信コイル11および12)と、励振コイル13とは、長尺材からなる磁性体であるワイヤロープ101の延びる方向を中心軸として、長手方向に沿うようにそれぞれ複数回巻回されている。また、検知コイル10および励振コイル13は、ワイヤロープ101の延びるX方向(長手方向)に沿って円筒形となるように形成される導線部分を含むコイルである。したがって、検知コイル10および励振コイル13の巻回される導線部分の形成する面は、長手方向に略直交している。ワイヤロープ101は、検知コイル10および励振コイル13の内部を通過する。また、検知コイル10は、励振コイル13の内側に設けられている。なお、検知コイル10および励振コイル13の配置はこれに限られない。検知コイル10の受信コイル11は、X1方向側に配置されている。また、検知コイル10の受信コイル12は、X2方向側に配置されている。受信コイル11および12は、数mm~数cm程度の間隔を隔てて配置されている。
(Configuration of detector)
The detection coil 10 (reception coils 11 and 12) and the excitation coil 13 are each wound a plurality of times along the longitudinal direction with the extending direction of the wire rope 101, which is a magnetic material made of a long material, as a central axis. ing. Further, the detection coil 10 and the excitation coil 13 are coils including a lead wire portion formed so as to be cylindrical along the X direction (longitudinal direction) in which the wire rope 101 extends. Therefore, the surfaces formed by the wound lead wire portions of the detection coil 10 and the excitation coil 13 are substantially orthogonal to each other in the longitudinal direction. The wire rope 101 passes through the inside of the detection coil 10 and the excitation coil 13. Further, the detection coil 10 is provided inside the excitation coil 13. The arrangement of the detection coil 10 and the excitation coil 13 is not limited to this. The receiving coil 11 of the detection coil 10 is arranged on the X1 direction side. Further, the receiving coil 12 of the detection coil 10 is arranged on the X2 direction side. The receiving coils 11 and 12 are arranged at intervals of about several mm to several cm.
 励振コイル13は、ワイヤロープ101の磁化の状態を励振する。具体的には、励振コイル13に励振交流電流が流されることにより、励振コイル13の内部において、励振交流電流に基づいて発生する磁界がX方向に沿って印加されるように構成されている。 The excitation coil 13 excites the magnetized state of the wire rope 101. Specifically, when the excitation AC current is passed through the excitation coil 13, a magnetic field generated based on the excitation AC current is applied inside the excitation coil 13 along the X direction.
 検知コイル10は、一対の受信コイル11および12の差動信号を送信するように構成されている。具体的には、検知コイル10は、ワイヤロープ101の磁界の変化を検知して差動信号を送信するように構成されている。検知コイル10は、検査対象物であるワイヤロープ101のX方向の磁界の変化を検知して検知信号(電圧)を出力するように構成されている。すなわち、検知コイル10は、磁界印加部4によりY方向に磁界が印加されたワイヤロープ101に対して、Y方向に交差するX方向の磁界の変化を検知する。また、検知コイル10は、検知したワイヤロープ101のX方向の磁界の変化に基づく差動信号(電圧)を出力するように構成されている。また、検知コイル10は、励振コイル13によって発生する磁界の略全てが検知可能に(入力される様に)配置されている。 The detection coil 10 is configured to transmit the differential signals of the pair of receiving coils 11 and 12. Specifically, the detection coil 10 is configured to detect a change in the magnetic field of the wire rope 101 and transmit a differential signal. The detection coil 10 is configured to detect a change in the magnetic field in the X direction of the wire rope 101, which is an inspection target, and output a detection signal (voltage). That is, the detection coil 10 detects a change in the magnetic field in the X direction intersecting the Y direction with respect to the wire rope 101 to which the magnetic field is applied in the Y direction by the magnetic field application unit 4. Further, the detection coil 10 is configured to output a differential signal (voltage) based on the change in the magnetic field of the detected wire rope 101 in the X direction. Further, the detection coil 10 is arranged so that substantially all of the magnetic field generated by the excitation coil 13 can be detected (input).
 ワイヤロープ101に欠陥(傷等)が存在する場合は、欠陥(傷等)のある部分でワイヤロープ101の全磁束(磁界に透磁率と面積とを掛けた値)が小さくなる。その結果、たとえば、受信コイル11が、欠陥(傷等)のある場所に位置する場合、受信コイル12を通る磁束量が受信コイル11と比較して変化するため、検知コイル10による検知電圧の差の絶対値(差動信号)が大きくなる。一方、欠陥(傷等)のない部分での差動信号は略ゼロとなる。このように、検知コイル10において、欠陥(傷等)の存在をあらわす明確な信号(S/N比の良い信号)が検知される。これにより、電子回路部2は、差動信号の値に基づいてワイヤロープ101の欠陥(傷等)の存在を検出することが可能である。 If there is a defect (scratch, etc.) in the wire rope 101, the total magnetic flux (value obtained by multiplying the magnetic field by the magnetic permeability and the area) of the wire rope 101 becomes smaller at the portion with the defect (scratch, etc.). As a result, for example, when the receiving coil 11 is located at a place having a defect (scratch or the like), the amount of magnetic flux passing through the receiving coil 12 changes as compared with the receiving coil 11, so that the difference in the detection voltage by the detection coil 10 The absolute value (differential signal) of is large. On the other hand, the differential signal in the portion without defects (scratches, etc.) is substantially zero. In this way, the detection coil 10 detects a clear signal (a signal having a good S / N ratio) indicating the presence of defects (scratches, etc.). As a result, the electronic circuit unit 2 can detect the presence of defects (scratches, etc.) in the wire rope 101 based on the value of the differential signal.
(電子回路部の構成)
 図3に示す電子回路部2の制御部21は、ワイヤロープ検査装置200の各部を制御するように構成されている。具体的には、制御部21は、CPU(中央処理装置)などのプロセッサ、メモリ、AD変換器などを含んでいる。
(Configuration of electronic circuit section)
The control unit 21 of the electronic circuit unit 2 shown in FIG. 3 is configured to control each unit of the wire rope inspection device 200. Specifically, the control unit 21 includes a processor such as a CPU (central processing unit), a memory, an AD converter, and the like.
 制御部21は、検知コイル10から差動信号を受信して、ワイヤロープ101の状態を検知するように構成されている。また、制御部21は、励振コイル13を励振させる制御を行うように構成されている。また、制御部21は、通信部26を介して、ワイヤロープ101の状態の検知結果を外部装置300に送信するように構成されている。 The control unit 21 is configured to receive a differential signal from the detection coil 10 and detect the state of the wire rope 101. Further, the control unit 21 is configured to control the excitation coil 13 to be excited. Further, the control unit 21 is configured to transmit the detection result of the state of the wire rope 101 to the external device 300 via the communication unit 26.
 受信I/F22は、検知コイル10から差動信号を受信して、制御部21に送信するように構成されている。具体的には、受信I/F22は、増幅器を含んでいる。また、受信I/F22は、検知コイル10の差動信号を増幅して、制御部21に送信するように構成されている。記憶部23は、フラッシュメモリなどの記憶媒体を含み、情報を記憶するように構成されている。 The receiving I / F 22 is configured to receive a differential signal from the detection coil 10 and transmit it to the control unit 21. Specifically, the receiving I / F 22 includes an amplifier. Further, the receiving I / F 22 is configured to amplify the differential signal of the detection coil 10 and transmit it to the control unit 21. The storage unit 23 includes a storage medium such as a flash memory and is configured to store information.
 励振I/F24は、制御部21から制御信号を受信して、励振コイル13に対する電力の供給を制御するように構成されている。具体的には、励振I/F24は、制御部21からの制御信号に基づいて、電源回路25から励振コイル13への電力の供給を制御する。 The excitation I / F 24 is configured to receive a control signal from the control unit 21 and control the supply of electric power to the excitation coil 13. Specifically, the excitation I / F 24 controls the supply of electric power from the power supply circuit 25 to the excitation coil 13 based on the control signal from the control unit 21.
(ワイヤロープの傷みの種類の検出)
 次に、図5~図13を参照して、ワイヤロープ101の傷みの種類の検出処理について説明する。
(Detection of type of wire rope damage)
Next, the process of detecting the type of damage of the wire rope 101 will be described with reference to FIGS. 5 to 13.
 本実施形態では、図5に示すように、制御部21は、検知コイル10により取得した測定データ201に基づいて、ワイヤロープ101の傷みの種類を検出する制御を行うように構成されている。制御部21は、ワイヤロープ101の傷みの種類として、素線断線、外圧による固定的変形(以下、単に「キンク」という)および素線の撚りの緩み(以下、単に「アヤ」という)を検出する制御を行うように構成されている。 In the present embodiment, as shown in FIG. 5, the control unit 21 is configured to perform control to detect the type of damage to the wire rope 101 based on the measurement data 201 acquired by the detection coil 10. The control unit 21 detects wire breakage, fixed deformation due to external pressure (hereinafter, simply referred to as “kink”), and loose twist of the wire rope (hereinafter, simply referred to as “aya”) as types of damage to the wire rope 101. It is configured to control the rope.
 具体的には、まず、制御部21は、測定データ201に基づいて、測定データ201を平滑化処理したデータである平滑化データ202(スムージングデータ)を取得する制御を行う。具体的には、制御部21は、測定データ201をローパスフィルタにより平滑化処理することにより、平滑化データ202を取得する制御を行う。これにより、平滑化データ202として、ワイヤロープの傷みに伴うロープの変形により生じた揺らぎ成分(低周波成分)のデータが取得される。 Specifically, first, the control unit 21 controls to acquire the smoothed data 202 (smoothing data) which is the data obtained by smoothing the measurement data 201 based on the measurement data 201. Specifically, the control unit 21 controls to acquire the smoothed data 202 by smoothing the measurement data 201 with a low-pass filter. As a result, as the smoothing data 202, data of the fluctuation component (low frequency component) caused by the deformation of the rope due to the damage of the wire rope is acquired.
 次に、制御部21は、取得した平滑化データ202に基づいて、測定データ201のベースライン203を取得する制御を行う。具体的には、制御部21は、測定データ201の波形と平滑化データ202の波形との交点202aを結ぶラインを、ベースライン203として取得する制御を行う。 Next, the control unit 21 controls to acquire the baseline 203 of the measurement data 201 based on the acquired smoothing data 202. Specifically, the control unit 21 controls to acquire the line connecting the intersection 202a between the waveform of the measurement data 201 and the waveform of the smoothing data 202 as the baseline 203.
 次に、制御部21は、取得したベースライン203に基づいて、測定データ201を補正する制御を行う。具体的には、制御部21は、測定データ201からベースライン203を減算する補正を行う。すなわち、制御部21は、測定データ201から低周波成分を減算する補正を行う。これにより、補正した測定データ201は、ワイヤロープの傷みに伴うロープの変形により生じた揺らぎ成分(低周波成分)を除いたデータが取得される。 Next, the control unit 21 controls to correct the measurement data 201 based on the acquired baseline 203. Specifically, the control unit 21 makes a correction by subtracting the baseline 203 from the measurement data 201. That is, the control unit 21 makes a correction for subtracting a low frequency component from the measurement data 201. As a result, the corrected measurement data 201 is obtained by excluding the fluctuation component (low frequency component) caused by the deformation of the rope due to the damage of the wire rope.
 次に、制御部21は、補正した測定データ201に基づいて、ピーク波形204を取得する制御を行う。具体的には、制御部21は、補正した測定データ201において、ベースライン203に対して正の値を有する測定値群を正のピーク波形204として取得する制御を行う。また、制御部21は、補正した測定データ201において、ベースライン203に対して負の値を有する測定値群を負のピーク波形204として取得する制御を行う。制御部21は、正のピーク波形204と、負のピーク波形204とを区別して取得する制御を行う。ピーク波形204は、ベースライン203による補正時に除かれずに残った、ワイヤロープ101の傷みを示す波形成分などの測定データ201の高周波成分である。 Next, the control unit 21 controls to acquire the peak waveform 204 based on the corrected measurement data 201. Specifically, the control unit 21 controls to acquire the measured value group having a positive value with respect to the baseline 203 as a positive peak waveform 204 in the corrected measurement data 201. Further, the control unit 21 controls to acquire the measured value group having a negative value with respect to the baseline 203 as the negative peak waveform 204 in the corrected measurement data 201. The control unit 21 controls to distinguish between the positive peak waveform 204 and the negative peak waveform 204. The peak waveform 204 is a high-frequency component of the measurement data 201, such as a waveform component indicating damage to the wire rope 101, which remains without being removed during correction by the baseline 203.
 最後に、制御部21は、取得したピーク波形204に基づいて、ワイヤロープ101の傷みの種類を検出する制御を行う。具体的には、制御部21は、ピーク波形204と、参照ピーク波形205(症例ピーク波形)との比較結果(後述する類似度206)、および、ピーク波形204を特定するパラメータ207(ピーク指標)に基づいて、ワイヤロープ101の傷みの種類を検出する制御を行う。 Finally, the control unit 21 controls to detect the type of damage of the wire rope 101 based on the acquired peak waveform 204. Specifically, the control unit 21 compares the peak waveform 204 with the reference peak waveform 205 (case peak waveform) (similarity 206 described later), and parameter 207 (peak index) for specifying the peak waveform 204. Based on the above, control is performed to detect the type of damage of the wire rope 101.
〈参照ピーク波形との比較に基づくワイヤロープの傷みの種類の検出〉
 図6に示すように、制御部21は、ピーク波形204と、特定種類のワイヤロープ101の傷みを示す参照用の波形である参照ピーク波形205との比較結果に基づいて、ワイヤロープ101の傷みの種類を検出する制御を行う。参照ピーク波形205は、ピーク波形204を取得する処理と同様の処理により、ワイヤロープ101の傷みの種類が既知の測定データ201である既知データから得られたピーク波形である。すなわち、参照ピーク波形205は、ワイヤロープ101の傷みの種類が既知の測定データ201である既知データに基づいて、既知データを平滑化処理したデータである平滑化データが取得されて、取得された既知データの平滑化データに基づいて、既知データのベースラインが取得されて、取得された既知データのベースラインに基づいて、既知データから取得されたピーク波形である。
<Detection of wire rope damage type based on comparison with reference peak waveform>
As shown in FIG. 6, the control unit 21 damages the wire rope 101 based on the result of comparison between the peak waveform 204 and the reference peak waveform 205, which is a reference waveform indicating the damage of the wire rope 101 of a specific type. Controls to detect the type of. The reference peak waveform 205 is a peak waveform obtained from known data in which the type of damage of the wire rope 101 is known measurement data 201 by the same process as the process of acquiring the peak waveform 204. That is, the reference peak waveform 205 is obtained by acquiring smoothing data which is data obtained by smoothing the known data based on the known data which is the measurement data 201 in which the type of damage of the wire rope 101 is known. The baseline of the known data is acquired based on the smoothed data of the known data, and the peak waveform is acquired from the known data based on the baseline of the acquired known data.
 参照ピーク波形205は、記憶部23に予め記憶されている。記憶部23には、参照ピーク波形205として、素線断線を示す参照ピーク波形205a、キンクを示す参照ピーク波形205b、および、アヤを示す参照ピーク波形205cが記憶されている。なお、記憶部23に記憶される各傷み(素線断線、キンク、アヤ)の参照ピーク波形205の数は、1つであってもよいし、複数であってもよい。制御部21は、素線断線を示す参照ピーク波形205a、キンクを示す参照ピーク波形205b、および、アヤを示す参照ピーク波形205cの各々と、ピーク波形204との比較結果を取得する制御を行う。 The reference peak waveform 205 is stored in advance in the storage unit 23. As the reference peak waveform 205, the storage unit 23 stores a reference peak waveform 205a indicating a wire break, a reference peak waveform 205b indicating a kink, and a reference peak waveform 205c indicating an ear. The number of reference peak waveforms 205 of each damage (wire disconnection, kink, aya) stored in the storage unit 23 may be one or plural. The control unit 21 controls to acquire the comparison result between each of the reference peak waveform 205a indicating the wire breakage, the reference peak waveform 205b indicating the kink, and the reference peak waveform 205c indicating the ear, and the peak waveform 204.
 また、制御部21は、ピーク波形204と、参照ピーク波形205との比較結果として、ピーク波形204と、参照ピーク波形205との間の類似度206を取得する制御を行う。そして、制御部21は、取得した類似度206に基づいて、ワイヤロープ101の傷みの種類を検出する制御を行う。 Further, the control unit 21 controls to acquire the similarity 206 between the peak waveform 204 and the reference peak waveform 205 as a comparison result between the peak waveform 204 and the reference peak waveform 205. Then, the control unit 21 controls to detect the type of damage of the wire rope 101 based on the acquired similarity 206.
 この際、図7に示すように、制御部21は、ピーク波形204を予め決められた数n分だけ分割して、予め決められた数n分の代表値P1~Pnを取得するとともに、取得したピーク波形204の予め決められた数n分の代表値P1~Pnと、参照ピーク波形205の予め決められた数n分の代表値SP1~SPnとに基づいて、類似度206を取得する制御を行う。予め決められた数nは、ピーク波形204を構成する測定値群の数よりも小さい数であれば特に限られないが、たとえば、7~9程度とすることができる。また、参照ピーク波形205の代表値SP1~SPnは、予め記憶部23に記憶させておくことができる。 At this time, as shown in FIG. 7, the control unit 21 divides the peak waveform 204 by a predetermined number of n, acquires the representative values P1 to Pn for the predetermined number n, and acquires them. Control to acquire similarity 206 based on the predetermined number n of representative values P1 to Pn of the peak waveform 204 and the predetermined number of n representative values SP1 to SPn of the reference peak waveform 205. I do. The predetermined number n is not particularly limited as long as it is smaller than the number of the measured value groups constituting the peak waveform 204, but can be, for example, about 7 to 9. Further, the representative values SP1 to SPn of the reference peak waveform 205 can be stored in the storage unit 23 in advance.
 具体的には、図8に示すように、制御部21は、類似度206として、代表値P1~Pnにより表されるピーク波形204のベクトルと、代表値SP1~SPnにより表される参照ピーク波形205のベクトルとのなす角度θのCOS値を取得する制御を行う。COS(θ)の値は、図8に示す式により求めることができる。COS(θ)の値が大きいほど(すなわち、角度θが小さいほど)、類似度206が大きく、ピーク波形204と参照ピーク波形205との形が類似することを示す。また、COS(θ)の値が小さいほど(すなわち、角度θが大きいほど)、類似度206が小さく、ピーク波形204と参照ピーク波形205との形が類似しないことを示す。なお、COS(θ)は、類似度206の一例であり、類似度206の取得方法は、この方法には限られない。 Specifically, as shown in FIG. 8, the control unit 21 sets the similarity 206 as a vector of peak waveforms 204 represented by representative values P1 to Pn and a reference peak waveform represented by representative values SP1 to SPn. Control is performed to acquire the COS value of the angle θ formed by the vector of 205. The value of COS (θ) can be obtained by the formula shown in FIG. The larger the value of COS (θ) (that is, the smaller the angle θ), the larger the similarity 206, indicating that the peak waveform 204 and the reference peak waveform 205 are similar in shape. Further, the smaller the value of COS (θ) (that is, the larger the angle θ), the smaller the similarity 206, indicating that the shapes of the peak waveform 204 and the reference peak waveform 205 are not similar. Note that COS (θ) is an example of similarity 206, and the method for acquiring similarity 206 is not limited to this method.
 制御部21は、素線断線を示す参照ピーク波形205a(図6参照)、キンクを示す参照ピーク波形205b(図6参照)、および、アヤを示す参照ピーク波形205c(図6参照)の各々と、ピーク波形204との間の類似度206を取得する制御を行う。この際、制御部21は、正負のピーク波形204の各々について、類似度206を取得する制御を行う。検知コイル10が差動コイルである場合、ワイヤロープ101の傷みを示す波形は、正負の一対のピーク波形を少なくとも含む波形となるためである。 The control unit 21 includes each of the reference peak waveform 205a (see FIG. 6) indicating a wire break, the reference peak waveform 205b indicating a kink (see FIG. 6), and the reference peak waveform 205c indicating an ear (see FIG. 6). , Control to acquire the similarity 206 with the peak waveform 204. At this time, the control unit 21 controls to acquire the similarity 206 for each of the positive and negative peak waveforms 204. This is because when the detection coil 10 is a differential coil, the waveform indicating the damage of the wire rope 101 is a waveform including at least a pair of positive and negative peak waveforms.
 具体的には、ピーク波形204が正のピーク波形204である場合、素線断線を示す参照ピーク波形205aの正のピーク波形、キンクを示す参照ピーク波形205bの正のピーク波形、および、アヤを示す参照ピーク波形205cの正のピーク波形の各々と、ピーク波形204との間の類似度206が制御部21により取得される。同様に、ピーク波形204が負のピーク波形204である場合、素線断線を示す参照ピーク波形205aの負のピーク波形、キンクを示す参照ピーク波形205bの負のピーク波形、および、アヤを示す参照ピーク波形205cの負のピーク波形の各々と、ピーク波形204との間の類似度206が制御部21により取得される。正のピーク波形204および負のピーク波形204の両方において高類似度が得られた場合、ワイヤロープ101の傷みは高類似度が得られた参照ピーク波形205の傷みである可能性がある。 Specifically, when the peak waveform 204 is a positive peak waveform 204, the positive peak waveform of the reference peak waveform 205a indicating wire breakage, the positive peak waveform of the reference peak waveform 205b indicating kink, and the aya The control unit 21 acquires a similarity 206 between each of the positive peak waveforms of the reference peak waveform 205c shown and the peak waveform 204. Similarly, when the peak waveform 204 is a negative peak waveform 204, the negative peak waveform of the reference peak waveform 205a indicating a wire break, the negative peak waveform of the reference peak waveform 205b indicating a kink, and the reference indicating an aya. The control unit 21 acquires a similarity 206 between each of the negative peak waveforms of the peak waveform 205c and the peak waveform 204. If high similarity is obtained in both the positive peak waveform 204 and the negative peak waveform 204, the damage to the wire rope 101 may be the damage to the reference peak waveform 205 with high similarity.
 また、本実施形態では、図9に示すように、制御部21は、類似度が所定値よりも高い高類似度の、正のピーク波形204および負のピーク波形204を取得した場合、取得した正のピーク波形204および負のピーク波形204の出現順序に基づいて、ワイヤロープ101の傷みの種類を検出する制御を行う。ワイヤロープ101の傷みの種類により、正のピーク波形204および負のピーク波形204の出現順序が異なる傾向があるためである。具体的には、正負のピーク波形204の出現順序が第1順序(図9では、正、負の順)である場合、ワイヤロープ101の傷みの種類がキンクまたはアヤである可能性がある。また、正負のピーク波形204の出現順序が第1順序とは逆の順序である第2順序(図9では、負、正の順)である場合、ワイヤロープ101の傷みの種類が素線断線である可能性がある。 Further, in the present embodiment, as shown in FIG. 9, when the control unit 21 acquires a positive peak waveform 204 and a negative peak waveform 204 having a high degree of similarity higher than a predetermined value, the control unit 21 acquires the waveform. Control is performed to detect the type of damage of the wire rope 101 based on the appearance order of the positive peak waveform 204 and the negative peak waveform 204. This is because the appearance order of the positive peak waveform 204 and the negative peak waveform 204 tends to be different depending on the type of damage of the wire rope 101. Specifically, when the appearance order of the positive and negative peak waveforms 204 is the first order (positive and negative in FIG. 9), the type of damage of the wire rope 101 may be kink or aya. Further, when the appearance order of the positive and negative peak waveform 204 is the second order (negative and positive order in FIG. 9) which is the reverse order of the first order, the type of damage of the wire rope 101 is wire breakage. It may be.
 また、本実施形態では、図10に示すように、制御部21は、類似度が所定値よりも高い高類似度の、正のピーク波形204および負のピーク波形204を取得した場合、取得した正のピーク波形204および負のピーク波形204の間のピーク波形204の数に基づいて、ワイヤロープ101の傷みの種類を検出する制御を行う。ワイヤロープ101の傷みの種類により、正のピーク波形204および負のピーク波形204の間のピーク波形204の数が異なる傾向があるためである。具体的には、正負のピーク波形204の間のピーク波形204の数が予め決められたしきい値未満である場合(すなわち、0または少ない場合)、ワイヤロープ101の傷みの種類が素線断線またはキンクである可能性がある。また、正負のピーク波形204の間のピーク波形204の数が予め決められたしきい値以上である場合(すなわち、多い場合)、ワイヤロープ101の傷みの種類がアヤである可能性がある。予め決められたしきい値は、特に限られないが、たとえば、2とすることができる。ワイヤロープ101の傷みの種類が素線断線またはキンクである場合、正負のピーク波形204の間のピーク波形204の数が、0または1程度である場合が多いためである。 Further, in the present embodiment, as shown in FIG. 10, when the control unit 21 acquires a positive peak waveform 204 and a negative peak waveform 204 having a high similarity having a similarity higher than a predetermined value, it is acquired. Control is performed to detect the type of damage to the wire rope 101 based on the number of peak waveforms 204 between the positive peak waveform 204 and the negative peak waveform 204. This is because the number of peak waveforms 204 between the positive peak waveform 204 and the negative peak waveform 204 tends to differ depending on the type of damage of the wire rope 101. Specifically, when the number of peak waveforms 204 between positive and negative peak waveforms 204 is less than a predetermined threshold value (that is, 0 or less), the type of damage of the wire rope 101 is wire breakage. Or it could be a kink. Further, when the number of peak waveforms 204 between the positive and negative peak waveforms 204 is equal to or more than a predetermined threshold value (that is, when there are many), the type of damage of the wire rope 101 may be Aya. The predetermined threshold value is not particularly limited, but may be 2, for example. This is because when the type of damage to the wire rope 101 is wire breakage or kink, the number of peak waveforms 204 between the positive and negative peak waveforms 204 is often about 0 or 1.
〈パラメータに基づくワイヤロープの傷みの種類の検出〉
 また、本実施形態では、図11に示すように、制御部21は、ピーク波形204に基づいて、ピーク波形204を特定するパラメータ207を取得するとともに、取得したパラメータ207に基づいて、ワイヤロープ101の傷みの種類を検出する制御を行う。
<Detection of type of wire rope damage based on parameters>
Further, in the present embodiment, as shown in FIG. 11, the control unit 21 acquires the parameter 207 for specifying the peak waveform 204 based on the peak waveform 204, and the wire rope 101 is based on the acquired parameter 207. Controls to detect the type of damage.
 具体的には、制御部21は、パラメータ207としての、ピーク波形204の幅207a、ピーク波形204の尖り207b、および、ピーク波形204のベースライン203の傾き207cに基づいて、ワイヤロープ101の傷みの種類を検出する制御を行う。ピーク波形204の幅207aは、たとえば、ピーク波形204のベースライン203の長さとすることができる。すなわち、ピーク波形204の幅207aは、たとえば、互いに隣接する、測定データ201の波形と平滑化データ202の波形との交点202aの間の長さとすることができる。ピーク波形204の尖り207bは、たとえば、ピーク波形204の幅207aに対するピーク波形204の高さ207dとすることができる。なお、ピーク波形204の高さ207dは、たとえば、ベースライン203からピークトップまでの長さとすることができる。ピーク波形204のベースライン203の傾き207cは、たとえば、測定データ201の時間軸に沿ったラインとベースライン203のなす角度とすることができる。 Specifically, the control unit 21 damages the wire rope 101 based on the width 207a of the peak waveform 204, the sharpness 207b of the peak waveform 204, and the inclination 207c of the baseline 203 of the peak waveform 204 as parameters 207. Controls to detect the type of. The width 207a of the peak waveform 204 can be, for example, the length of the baseline 203 of the peak waveform 204. That is, the width 207a of the peak waveform 204 can be, for example, the length between the intersection 202a between the waveform of the measurement data 201 and the waveform of the smoothing data 202, which are adjacent to each other. The sharp point 207b of the peak waveform 204 can be, for example, the height 207d of the peak waveform 204 with respect to the width 207a of the peak waveform 204. The height 207d of the peak waveform 204 can be, for example, the length from the baseline 203 to the peak top. The slope 207c of the baseline 203 of the peak waveform 204 can be, for example, the angle formed by the line along the time axis of the measurement data 201 and the baseline 203.
 図12に示すように、ワイヤロープ101の傷みの種類により、ピーク波形204の幅207aが異なる傾向がある。具体的には、ピーク波形204の幅207aが大きい場合、ワイヤロープ101の傷みの種類がアヤである可能性がある。また、ピーク波形204の幅207aが小さい場合、ワイヤロープ101の傷みの種類が素線断線またはキンクである可能性がある。なお、ピーク波形204の幅207aの大小は、たとえば、幅207a用のしきい値を設定して判断することができる。幅207a用のしきい値は、たとえば、参照ピーク波形205(205a~c)の幅に基づいて設定することができる。 As shown in FIG. 12, the width 207a of the peak waveform 204 tends to differ depending on the type of damage of the wire rope 101. Specifically, when the width 207a of the peak waveform 204 is large, there is a possibility that the type of damage of the wire rope 101 is Aya. Further, when the width 207a of the peak waveform 204 is small, the type of damage of the wire rope 101 may be wire breakage or kink. The size of the width 207a of the peak waveform 204 can be determined, for example, by setting a threshold value for the width 207a. The threshold for width 207a can be set, for example, based on the width of the reference peak waveform 205 (205a-c).
 また、ワイヤロープ101の傷みの種類により、ピーク波形204の尖り207bが異なる傾向がある。具体的には、ピーク波形204の尖り207bが大きい場合、ワイヤロープ101の傷みの種類が素線断線またはキンクである可能性がある。また、ピーク波形204の尖り207bが小さい場合、ワイヤロープ101の傷みの種類がアヤである可能性がある。なお、ピーク波形204の尖り207bの大小は、たとえば、尖り207b用のしきい値を用いて判断することができる。尖り207b用のしきい値は、たとえば、参照ピーク波形205(205a~c)の尖りに基づいて設定することができる。 Further, the sharpness 207b of the peak waveform 204 tends to differ depending on the type of damage of the wire rope 101. Specifically, when the sharpness 207b of the peak waveform 204 is large, the type of damage of the wire rope 101 may be wire breakage or kink. Further, when the sharp point 207b of the peak waveform 204 is small, there is a possibility that the type of damage of the wire rope 101 is Aya. The size of the sharp point 207b of the peak waveform 204 can be determined by using, for example, the threshold value for the sharp point 207b. The threshold for the sharpness 207b can be set, for example, based on the sharpness of the reference peak waveform 205 (205a-c).
 また、ワイヤロープ101の傷みの種類により、ピーク波形204のベースライン203の傾き207cが異なる傾向がある。具体的には、ピーク波形204のベースライン203の傾き207cが大きい場合、ワイヤロープ101の傷みの種類がアヤである可能性がある。また、ピーク波形204のベースライン203の傾き207cが小さい場合、ワイヤロープ101の傷みの種類が素線断線またはキンクである可能性がある。なお、ピーク波形204のベースライン203の傾き207cの大小は、たとえば、傾き207c用のしきい値を用いて判断することができる。傾き207c用のしきい値は、たとえば、参照ピーク波形205(205a~c)のベースライン203の傾きに基づいて設定することができる。 Further, the inclination 207c of the baseline 203 of the peak waveform 204 tends to differ depending on the type of damage of the wire rope 101. Specifically, when the inclination 207c of the baseline 203 of the peak waveform 204 is large, there is a possibility that the type of damage of the wire rope 101 is Aya. Further, when the inclination 207c of the baseline 203 of the peak waveform 204 is small, the type of damage of the wire rope 101 may be wire breakage or kink. The magnitude of the slope 207c of the baseline 203 of the peak waveform 204 can be determined by using, for example, the threshold value for the slope 207c. The threshold value for the slope 207c can be set, for example, based on the slope of the baseline 203 of the reference peak waveform 205 (205a-c).
〈類似度およびパラメータに基づくワイヤロープの傷みの種類の検出〉
 図13に示すように、制御部21は、類似度206、および、パラメータ207に基づいて、素線断線、キンクおよびアヤの各々について、傷みがその傷みである可能性を示す値である評価値を取得するとともに、取得した評価値に基づいて、ワイヤロープ101の傷みの種類を検出する制御を行う。
<Detection of wire rope damage type based on similarity and parameters>
As shown in FIG. 13, the control unit 21 has an evaluation value which is a value indicating that the damage may be the damage for each of the wire breakage, the kink, and the aya based on the similarity 206 and the parameter 207. Is acquired, and control is performed to detect the type of damage of the wire rope 101 based on the acquired evaluation value.
 具体的には、まず、制御部21は、予め決められた評価手順に従って、素線断線、キンクおよびアヤの各々について、類似度206の大きさの評価値、正負のピーク波形204の出現順序の評価値、正負のピーク波形204の間のピーク波形204の数の評価値、ピーク波形204の幅207aの評価値、ピーク波形204の尖り207bの評価値、および、ピーク波形204のベースライン203の傾き207cの評価値を取得する制御を行う。そして、制御部21は、素線断線、キンクおよびアヤの各々について、複数の評価値の合計値を取得するとともに、取得した3つの合計値のうち、最も高い合計値を有する傷みを、ワイヤロープ101の傷みの種類として検出する制御を行う。また、制御部21は、ワイヤロープ101の傷みの種類の検出結果を、外部装置300に送信する制御を行う。 Specifically, first, the control unit 21 follows a predetermined evaluation procedure, and for each of the wire breakage, the kink, and the ear, the evaluation value of the magnitude of the similarity 206 and the appearance order of the positive and negative peak waveforms 204. Evaluation value, evaluation value of the number of peak waveforms 204 between positive and negative peak waveforms 204, evaluation value of width 207a of peak waveform 204, evaluation value of sharp point 207b of peak waveform 204, and baseline 203 of peak waveform 204. Control is performed to acquire the evaluation value of the inclination 207c. Then, the control unit 21 acquires the total value of a plurality of evaluation values for each of the wire breakage, the kink, and the wire rope, and removes the damage having the highest total value among the acquired three total values. Control is performed to detect the type of damage of 101. Further, the control unit 21 controls to transmit the detection result of the type of damage of the wire rope 101 to the external device 300.
 そして、外部装置300の制御部302は、受信したワイヤロープ101の傷みの種類の検出結果を、表示部303に表示する制御を行う。これにより、ワイヤロープ検査システム100を使用する検査員は、ワイヤロープ101の傷みが、素線断線、キンクおよびアヤのいずれであるかを確認することができる。その結果、検査員は、ワイヤロープ101の傷みの種類に応じた保守作業を行うことができる。すなわち、検査員は、ワイヤロープ101の傷みが素線断線である場合、至急の対応を要すると判断したり、ワイヤロープ101の傷みがキンクである場合、至急の対応は必要ないが監視が必要であると判断したり、ワイヤロープ101の傷みがアヤである場合、観察が必要であると判断したりすることができる。 Then, the control unit 302 of the external device 300 controls to display the detected result of the received damage type of the wire rope 101 on the display unit 303. Thereby, the inspector using the wire rope inspection system 100 can confirm whether the damage of the wire rope 101 is a broken wire, a kink, or an ear. As a result, the inspector can perform maintenance work according to the type of damage of the wire rope 101. That is, the inspector determines that if the wire rope 101 is damaged by a broken wire, urgent action is required, or if the wire rope 101 is damaged by a kink, no urgent action is required, but monitoring is required. If the wire rope 101 is damaged, it can be determined that observation is necessary.
(測定データの処理系)
 次に、図14および図15(A)(B)を参照して、ワイヤロープ検査システム100のデータ処理系について説明する。
(Measurement data processing system)
Next, the data processing system of the wire rope inspection system 100 will be described with reference to FIGS. 14 and 15 (A) and 15 (B).
 図14に示すように、ワイヤロープ検査装置200は、検知コイル10により測定データ201を取得しつつ、ワイヤロープ101の傷みの種類を検出可能に構成されている。すなわち、ワイヤロープ検査装置200は、リアルタイムに測定データ201を処理しつつ、ワイヤロープ101の傷みの種類を検出可能に構成されている。 As shown in FIG. 14, the wire rope inspection device 200 is configured to be able to detect the type of damage of the wire rope 101 while acquiring the measurement data 201 by the detection coil 10. That is, the wire rope inspection device 200 is configured to be able to detect the type of damage to the wire rope 101 while processing the measurement data 201 in real time.
 具体的には、ワイヤロープ検査装置200は、入力制御器27と、第1メモリ28aと、第2メモリ28bと、メモリ切替器29とをさらに備えている。入力制御器27は、検知コイル10から測定データ201を受信して、第1メモリ28aまたは第2メモリ28bに送信する。第1メモリ28aおよび第2メモリ28bは、入力制御器27から受信した測定データ201を格納する。メモリ切替器29は、第1メモリ28aまたは第2メモリ28bから測定データ201を受信して、制御部21に送信する。制御部21は、メモリ切替器29から受信した測定データ201に基づいて、上記したワイヤロープ101の傷みの検出処理を行う。 Specifically, the wire rope inspection device 200 further includes an input controller 27, a first memory 28a, a second memory 28b, and a memory switch 29. The input controller 27 receives the measurement data 201 from the detection coil 10 and transmits it to the first memory 28a or the second memory 28b. The first memory 28a and the second memory 28b store the measurement data 201 received from the input controller 27. The memory switch 29 receives the measurement data 201 from the first memory 28a or the second memory 28b and transmits the measurement data 201 to the control unit 21. The control unit 21 performs the above-mentioned damage detection process of the wire rope 101 based on the measurement data 201 received from the memory switch 29.
 図15(A)(B)に示すように、ワイヤロープ検査装置200は、第1メモリ28aおよび第2メモリ28bのうちのいずれかに測定データ201を格納しつつ、第1メモリ28aおよび第2メモリ28bのうちの測定データ201を格納中ではない方に格納されている測定データ201を制御部21に送信して、ワイヤロープ101の傷みの種類の検出処理を行うように構成されている。 As shown in FIGS. 15A and 15B, the wire rope inspection device 200 stores the measurement data 201 in one of the first memory 28a and the second memory 28b, and stores the measurement data 201 in the first memory 28a and the second memory 28a. The measurement data 201 stored in the memory 28b that is not stored is transmitted to the control unit 21 to detect the type of damage to the wire rope 101.
 具体的には、図15(A)に示すように、第1メモリ28aに測定データ201を格納する場合、入力制御器27は、検知コイル10から受信した測定データ201を、第1メモリ28aに送信するように、データ経路を切り替える。この際、メモリ切替器29は、第2メモリ28bと、制御部21とを接続するように、データ経路を切り替える。これにより、第2メモリ28bに格納された測定データ201が、制御部21に送信される。そして、第1メモリ28aに予め決められた量の測定データ201が格納された場合、入力制御器27により、検知コイル10から受信した測定データ201が、第2メモリ28bに送信されるように、データ経路が切り替えられる。また、この際、メモリ切替器29により、第1メモリ28aと、制御部21とが接続されるように、データ経路が切り替えられる。 Specifically, as shown in FIG. 15A, when the measurement data 201 is stored in the first memory 28a, the input controller 27 transfers the measurement data 201 received from the detection coil 10 into the first memory 28a. Switch the data path to send. At this time, the memory switch 29 switches the data path so as to connect the second memory 28b and the control unit 21. As a result, the measurement data 201 stored in the second memory 28b is transmitted to the control unit 21. Then, when a predetermined amount of measurement data 201 is stored in the first memory 28a, the input controller 27 transmits the measurement data 201 received from the detection coil 10 to the second memory 28b. The data path is switched. At this time, the memory switch 29 switches the data path so that the first memory 28a and the control unit 21 are connected.
 また、図15(B)に示すように、第2メモリ28bに測定データ201を格納する場合、入力制御器27は、検知コイル10から受信した測定データ201を、第2メモリ28bに送信するように、データ経路を切り替える。この際、メモリ切替器29は、第1メモリ28aと、制御部21とを接続するように、データ経路を切り替える。これにより、第1メモリ28aに格納された測定データ201が、制御部21に送信される。そして、第2メモリ28bに予め決められた量の測定データ201が格納された場合、入力制御器27により、検知コイル10から受信した測定データ201が、第1メモリ28aに送信されるように、データ経路が切り替えられる。また、この際、メモリ切替器29により、第2メモリ28bと、制御部21とが接続されるように、データ経路が切り替えられる。このように、第1メモリ28aおよび第2メモリ28bは、検知コイル10からの測定データ201の格納中は、制御部21への測定データ201の送信をしない。 Further, as shown in FIG. 15B, when the measurement data 201 is stored in the second memory 28b, the input controller 27 transmits the measurement data 201 received from the detection coil 10 to the second memory 28b. Switch the data path to. At this time, the memory switch 29 switches the data path so as to connect the first memory 28a and the control unit 21. As a result, the measurement data 201 stored in the first memory 28a is transmitted to the control unit 21. Then, when a predetermined amount of measurement data 201 is stored in the second memory 28b, the input controller 27 transmits the measurement data 201 received from the detection coil 10 to the first memory 28a. The data path is switched. At this time, the memory switch 29 switches the data path so that the second memory 28b and the control unit 21 are connected. As described above, the first memory 28a and the second memory 28b do not transmit the measurement data 201 to the control unit 21 while the measurement data 201 is stored from the detection coil 10.
 これらの結果、制御部21は、第1メモリ28aまたは第2メモリ28bに格納された測定データ201を順次受信しつつ、ワイヤロープ101の傷みの種類の検出処理を順次行うことができる。また、制御部21は、ワイヤロープ101の傷みの種類の検出を順次外部装置300に送信する制御を行う。そして、外部装置300の制御部302は、受信したワイヤロープ101の傷みの種類の検出結果を、表示部303に順次表示する制御を行う。 As a result of these, the control unit 21 can sequentially perform the detection process of the type of damage of the wire rope 101 while sequentially receiving the measurement data 201 stored in the first memory 28a or the second memory 28b. Further, the control unit 21 controls to sequentially transmit the detection of the type of damage of the wire rope 101 to the external device 300. Then, the control unit 302 of the external device 300 controls to sequentially display the received detection result of the type of damage of the wire rope 101 on the display unit 303.
(本実施形態の効果)
 本実施形態では、以下のような効果を得ることができる。
(Effect of this embodiment)
In this embodiment, the following effects can be obtained.
 本実施形態では、上記のように、ベースライン203に基づいて、測定データ201からピーク波形204が取得されるとともに、ピーク波形204に基づいて、ワイヤロープ101の傷みの種類が検出される。これにより、ワイヤロープ101の傷みの有無だけでなく、ワイヤロープ101の傷みの種類も検出して、検査員に通知することができる。その結果、検査員が測定データ201を確認してワイヤロープ101の傷みの種類を判定する必要がないので、ワイヤロープ101の傷みの種類を検出することにより、ワイヤロープ101の保守作業の支援を効果的に行うことができる。また、上記のように、ベースライン203に基づいて、測定データ201からピーク波形204が取得されることにより、ベースライン203に基づかずにピーク波形204が取得される場合と異なり、ワイヤロープ101の傷みに伴い発生するワイヤロープ101の変形による低周波成分が低減された正確なピーク波形204を取得することができる。その結果、ワイヤロープ101の傷みに伴い発生するワイヤロープ101の変形による低周波成分が低減された正確なピーク波形204に基づいて、ワイヤロープ101の傷みの種類を容易に検出することができる。 In the present embodiment, as described above, the peak waveform 204 is acquired from the measurement data 201 based on the baseline 203, and the type of damage to the wire rope 101 is detected based on the peak waveform 204. As a result, not only the presence or absence of damage to the wire rope 101 but also the type of damage to the wire rope 101 can be detected and notified to the inspector. As a result, it is not necessary for the inspector to check the measurement data 201 to determine the type of damage to the wire rope 101. Therefore, by detecting the type of damage to the wire rope 101, the maintenance work of the wire rope 101 is supported. It can be done effectively. Further, as described above, by acquiring the peak waveform 204 from the measurement data 201 based on the baseline 203, unlike the case where the peak waveform 204 is acquired without being based on the baseline 203, the wire rope 101 It is possible to obtain an accurate peak waveform 204 in which the low frequency component due to the deformation of the wire rope 101 generated due to the damage is reduced. As a result, the type of damage to the wire rope 101 can be easily detected based on the accurate peak waveform 204 in which the low frequency component due to the deformation of the wire rope 101 generated due to the damage to the wire rope 101 is reduced.
 また、本実施形態では、上記のように、制御部21を、ベースライン203に対して、正の値を有する測定値群、および、ベースライン203に対して、負の値を有する測定値群を、ピーク波形204として取得する制御を行うように構成する。これにより、ワイヤロープ101の傷みに伴い発生するワイヤロープ101の変形による低周波成分が低減された正確な正のピーク波形204および負のピーク波形204の両方を取得することができる。その結果、ワイヤロープ101の傷みに伴い発生するワイヤロープ101の変形による低周波成分が低減された正確な正のピーク波形204および負のピーク波形204の両方に基づいて、ワイヤロープ101の傷みの種類をより容易に検出することができる。 Further, in the present embodiment, as described above, the control unit 21 has a measurement value group having a positive value with respect to the baseline 203 and a measurement value group having a negative value with respect to the baseline 203. Is controlled to be acquired as the peak waveform 204. As a result, it is possible to obtain both an accurate positive peak waveform 204 and a negative peak waveform 204 in which the low frequency component due to the deformation of the wire rope 101 generated due to the damage of the wire rope 101 is reduced. As a result, the damage of the wire rope 101 is based on both the accurate positive peak waveform 204 and the negative peak waveform 204 in which the low frequency component due to the deformation of the wire rope 101 caused by the damage of the wire rope 101 is reduced. The type can be detected more easily.
 また、本実施形態では、上記のように、ワイヤロープ検査システム100を、参照ピーク波形205が記憶された記憶部23を備えるように構成する。また、制御部21を、ピーク波形204と、参照ピーク波形205との比較結果に基づいて、ワイヤロープ101の傷みの種類を検出する制御を行うように構成する。これにより、ピーク波形204と、傷みの特徴を良く示す参照ピーク波形205との比較結果に基づいて、ワイヤロープ101の傷みの種類を検出することができるので、ワイヤロープ101の傷みの種類を正確に検出することができる。 Further, in the present embodiment, as described above, the wire rope inspection system 100 is configured to include a storage unit 23 in which the reference peak waveform 205 is stored. Further, the control unit 21 is configured to perform control to detect the type of damage of the wire rope 101 based on the comparison result between the peak waveform 204 and the reference peak waveform 205. As a result, the type of damage to the wire rope 101 can be detected based on the result of comparison between the peak waveform 204 and the reference peak waveform 205, which shows the characteristics of the damage well, so that the type of damage to the wire rope 101 can be accurately determined. Can be detected.
 また、本実施形態では、上記のように、参照ピーク波形205を、ワイヤロープ101の傷みの種類が既知の測定データ201である既知データに基づいて、既知データの平滑化データが取得されて、取得された既知データの平滑化データに基づいて、既知データのベースラインが取得されて、取得された既知データのベースラインに基づいて、既知データから取得されたピーク波形であるように構成する。これにより、ピーク波形204を取得する処理と同様の処理により取得された参照ピーク波形205と、ピーク波形204とを比較することができるので、ピーク波形204と、参照ピーク波形205とを容易に比較することができる。 Further, in the present embodiment, as described above, the smoothing data of the known data is acquired based on the known data in which the reference peak waveform 205 is the measurement data 201 in which the type of damage of the wire rope 101 is known. The baseline of the known data is acquired based on the smoothed data of the acquired known data, and the peak waveform acquired from the known data is configured based on the baseline of the acquired known data. As a result, the reference peak waveform 205 acquired by the same process as the process for acquiring the peak waveform 204 can be compared with the peak waveform 204, so that the peak waveform 204 and the reference peak waveform 205 can be easily compared. can do.
 また、本実施形態では、上記のように、制御部21を、ピーク波形204と、参照ピーク波形205との比較結果として、ピーク波形204と、参照ピーク波形205との間の類似度206を取得するとともに、取得した類似度206に基づいて、ワイヤロープ101の傷みの種類を検出する制御を行うように構成する。これにより、ピーク波形204と、参照ピーク波形205との間の相関を良く示す類似度206に基づいて、ワイヤロープ101の傷みの種類を検出することができるので、ワイヤロープ101の傷みの種類をより正確に検出することができる。 Further, in the present embodiment, as described above, the control unit 21 acquires the similarity 206 between the peak waveform 204 and the reference peak waveform 205 as a comparison result between the peak waveform 204 and the reference peak waveform 205. At the same time, it is configured to control the detection of the type of damage of the wire rope 101 based on the acquired similarity 206. As a result, the type of damage to the wire rope 101 can be detected based on the similarity 206, which shows a good correlation between the peak waveform 204 and the reference peak waveform 205. It can be detected more accurately.
 また、本実施形態では、上記のように、制御部21を、ピーク波形204を予め決められた数n分だけ分割して、予め決められた数n分の代表値P1~Pnを取得するとともに、取得したピーク波形204の予め決められた数n分の代表値P1~Pnと、参照ピーク波形205の予め決められた数n分の代表値SP1~SPnとに基づいて、類似度206を取得する制御を行うように構成する。これにより、ピーク波形204を予め決められた数n分の代表値P1~Pnに圧縮した状態で、ピーク波形204と、参照ピーク波形205との類似度206を取得することができるので、類似度206を取得する処理の処理負荷の低減を図ることができる。 Further, in the present embodiment, as described above, the control unit 21 divides the peak waveform 204 by a predetermined number of n, and acquires representative values P1 to Pn for a predetermined number n. , The similarity 206 is acquired based on the predetermined number n of representative values P1 to Pn of the acquired peak waveform 204 and the predetermined number of n representative values SP1 to SPn of the reference peak waveform 205. It is configured to perform control. As a result, the similarity 206 between the peak waveform 204 and the reference peak waveform 205 can be obtained in a state where the peak waveform 204 is compressed to the representative values P1 to Pn for several n predetermined values. It is possible to reduce the processing load of the process of acquiring 206.
 また、本実施形態では、上記のように、制御部21を、類似度206が所定値よりも高い高類似度の、正のピーク波形204および負のピーク波形204を取得した場合、取得した正のピーク波形204および負のピーク波形204の出現順序に基づいて、ワイヤロープ101の傷みの種類を検出する制御を行うように構成する。これにより、ワイヤロープ101の傷みの種類により、正のピーク波形204および負のピーク波形204の出現順序が異なることを利用して、ワイヤロープ101の傷みの種類を容易に検出することができる。 Further, in the present embodiment, as described above, when the control unit 21 acquires a positive peak waveform 204 and a negative peak waveform 204 having a high similarity with a similarity 206 higher than a predetermined value, the acquired positives are obtained. Based on the appearance order of the peak waveform 204 and the negative peak waveform 204 of the wire rope 101, the control for detecting the type of damage of the wire rope 101 is performed. As a result, the type of damage to the wire rope 101 can be easily detected by utilizing the fact that the appearance order of the positive peak waveform 204 and the negative peak waveform 204 differs depending on the type of damage to the wire rope 101.
 また、本実施形態では、上記のように、制御部21を、類似度206が所定値よりも高い高類似度の、正のピーク波形204および負のピーク波形204を取得した場合、取得した正のピーク波形204および負のピーク波形204の間のピーク波形204の数に基づいて、ワイヤロープ101の傷みの種類を検出する制御を行うように構成する。これにより、ワイヤロープ101の傷みの種類により、正のピーク波形204および負のピーク波形204の間のピーク波形204の数が異なることを利用して、ワイヤロープ101の傷みの種類を容易に検出することができる。 Further, in the present embodiment, as described above, when the control unit 21 acquires a positive peak waveform 204 and a negative peak waveform 204 having a high similarity with a similarity 206 higher than a predetermined value, the acquired positives are obtained. Based on the number of peak waveforms 204 between the peak waveform 204 and the negative peak waveform 204 of the wire rope 101, the control for detecting the type of damage of the wire rope 101 is performed. As a result, the type of damage to the wire rope 101 can be easily detected by utilizing the fact that the number of peak waveforms 204 between the positive peak waveform 204 and the negative peak waveform 204 differs depending on the type of damage to the wire rope 101. can do.
 また、本実施形態では、上記のように、制御部21を、ピーク波形204に基づいて、ピーク波形204を特定するパラメータ207を取得するとともに、取得したパラメータ207に基づいて、ワイヤロープ101の傷みの種類を検出する制御を行うように構成する。これにより、ピーク波形204の形状を示すパラメータ207に基づいて、ワイヤロープ101の傷みの種類を検出することができるので、ワイヤロープ101の傷みの種類により、ピーク波形204の形状が異なることを利用して、ワイヤロープ101の傷みの種類を正確に検出することができる。 Further, in the present embodiment, as described above, the control unit 21 acquires the parameter 207 for specifying the peak waveform 204 based on the peak waveform 204, and the wire rope 101 is damaged based on the acquired parameter 207. It is configured to control to detect the type of. As a result, the type of damage to the wire rope 101 can be detected based on the parameter 207 indicating the shape of the peak waveform 204. Therefore, it is utilized that the shape of the peak waveform 204 differs depending on the type of damage to the wire rope 101. Therefore, the type of damage to the wire rope 101 can be accurately detected.
 また、本実施形態では、上記のように、制御部21を、パラメータ207としての、ピーク波形204の幅207a、ピーク波形204の尖り207b、および、ピーク波形204のベースライン203の傾き207cに基づいて、ワイヤロープ101の傷みの種類を検出する制御を行うように構成する。これにより、ワイヤロープ101の傷みの種類により、ピーク波形204の幅207a、ピーク波形204の尖り207b、および、ピーク波形204のベースライン203の傾き207cが異なることを利用して、ワイヤロープ101の傷みの種類を容易かつ正確に検出することができる。 Further, in the present embodiment, as described above, the control unit 21 is based on the width 207a of the peak waveform 204, the sharpness 207b of the peak waveform 204, and the slope 207c of the baseline 203 of the peak waveform 204 as parameters 207. Therefore, it is configured to control the detection of the type of damage of the wire rope 101. As a result, the width 207a of the peak waveform 204, the sharpness 207b of the peak waveform 204, and the inclination 207c of the baseline 203 of the peak waveform 204 differ depending on the type of damage of the wire rope 101. The type of damage can be detected easily and accurately.
 また、本実施形態では、上記のように、制御部21を、ワイヤロープ101の傷みの種類として、素線断線、外圧による固定的変形(キンク)および素線の撚りの緩み(アヤ)を検出する制御を行うように構成する。これにより、ワイヤロープ101に発生しやすい傷みである、素線断線、外圧による固定的変形(キンク)および素線の撚りの緩み(アヤ)を検出することができるので、ワイヤロープ101の傷みの種類の検出を効果的に行うことができる。 Further, in the present embodiment, as described above, the control unit 21 detects wire breakage, fixed deformation (kink) due to external pressure, and loose twist of the wire rope (ear) as the type of damage to the wire rope 101. It is configured to perform control. As a result, it is possible to detect wire breakage, fixed deformation (kink) due to external pressure, and loose twist (ear) of the wire rope 101, which are likely to occur in the wire rope 101. Kind detection can be performed effectively.
[変形例]
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく、請求の範囲によって示され、さらに請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
[Modification example]
It should be noted that the embodiments disclosed this time are exemplary in all respects and are not considered to be restrictive. The scope of the present invention is shown by the scope of claims, not the description of the above-described embodiment, and further includes all modifications (modifications) within the meaning and scope equivalent to the claims.
 たとえば、上記実施形態では、ワイヤロープがエレベータに使用された例を示したが、本発明はこれに限られない。本発明では、ワイヤロープが、クレーン、吊り橋およびロボットなどのエレベータ以外の構成に使用されてもよい。 For example, in the above embodiment, an example in which a wire rope is used for an elevator is shown, but the present invention is not limited to this. In the present invention, wire ropes may be used in configurations other than elevators such as cranes, suspension bridges and robots.
 また、上記実施形態では、ワイヤロープ検査システムのワイヤロープ検査装置が、ワイヤロープの傷みの種類の検出制御を行う例を示したが、本発明はこれに限られない。本発明では、ワイヤロープ検査システムの外部装置が、ワイヤロープの傷みの種類の検出制御を行ってもよい。この場合、たとえば、外部装置の制御部が、検知コイルにより取得した測定データに基づいて、測定データの平滑化データを取得して、取得した平滑化データに基づいて、測定データのベースラインを取得して、取得したベースラインに基づいて、測定データからピーク波形を取得して、取得したピーク波形に基づいて、ワイヤロープの傷みの種類を検出する制御を行うように構成すればよい。 Further, in the above embodiment, an example is shown in which the wire rope inspection device of the wire rope inspection system detects and controls the type of damage to the wire rope, but the present invention is not limited to this. In the present invention, an external device of the wire rope inspection system may detect and control the type of damage to the wire rope. In this case, for example, the control unit of the external device acquires the smoothing data of the measurement data based on the measurement data acquired by the detection coil, and acquires the baseline of the measurement data based on the acquired smoothing data. Then, the peak waveform may be acquired from the measurement data based on the acquired baseline, and control may be performed to detect the type of damage to the wire rope based on the acquired peak waveform.
 また、上記実施形態では、検知コイルが、一対の受信コイルを有する差動コイルである例を示したが、本発明はこれに限られない。本発明では、検知コイルが、単一のコイルにより構成されていてもよい。 Further, in the above embodiment, an example in which the detection coil is a differential coil having a pair of receiving coils is shown, but the present invention is not limited to this. In the present invention, the detection coil may be composed of a single coil.
 また、上記実施形態では、ワイヤロープの傷みの種類として、素線断線、外圧による固定的変形(キンク)および素線の撚りの緩み(アヤ)の3種類が検出される例を示したが、本発明はこれに限られない。本発明では、ワイヤロープの傷みの種類として、素線断線、外圧による固定的変形(キンク)および素線の撚りの緩み(アヤ)のうちのいずれか1つまたは2つが検出されてもよい。また、ワイヤロープの傷みの種類として、素線断線、外圧による固定的変形(キンク)および素線の撚りの緩み(アヤ)以外の傷みが検出されてもよい。 Further, in the above embodiment, three types of damage to the wire rope are detected: wire breakage, fixed deformation due to external pressure (kink), and loose twist of the wire rope (aya). The present invention is not limited to this. In the present invention, as the type of damage to the wire rope, any one or two of wire breakage, fixed deformation due to external pressure (kink), and loose wire twist (aya) may be detected. Further, as a type of damage to the wire rope, damage other than wire breakage, fixed deformation due to external pressure (kink), and loose twist of the wire rope (aya) may be detected.
 また、上記実施形態では、類似度およびパラメータの両方に基づいて、評価値が取得されるとともに、取得された評価値に基づいて、ワイヤロープの傷みの種類が検出される例を示したが、本発明はこれに限られない。本発明では、類似度およびパラメータのうちのいずれか一方のみに基づいて、評価値が取得されるとともに、取得された評価値に基づいて、ワイヤロープの傷みの種類が検出されてもよい。また、本発明では、ワイヤロープの傷みの種類を検出するために、必ずしも評価値が取得される必要はない。すなわち、評価値が取得されることなく、類似度およびパラメータのうちの少なくともいずれか一方に基づいて、ワイヤロープの傷みの種類が検出されてもよい。 Further, in the above embodiment, an example is shown in which the evaluation value is acquired based on both the similarity and the parameter, and the type of damage to the wire rope is detected based on the acquired evaluation value. The present invention is not limited to this. In the present invention, the evaluation value may be acquired based on only one of the similarity and the parameter, and the type of damage to the wire rope may be detected based on the acquired evaluation value. Further, in the present invention, it is not always necessary to obtain an evaluation value in order to detect the type of damage to the wire rope. That is, the type of wire rope damage may be detected based on at least one of the similarity and the parameter without obtaining an evaluation value.
 また、上記実施形態では、類似度が取得される場合に、ピーク波形が予め決められた数分だけ分割される例を示したが、本発明はこれに限られない。本発明では、類似度が取得される場合に、必ずしもピーク波形が予め決められた数分だけ分割されなくてもよい。すなわち、ピーク波形が予め決められた数分だけ分割されることなく、ピーク波形と、参照ピーク波形との類似度が取得されてもよい。 Further, in the above embodiment, when the similarity is acquired, the peak waveform is divided by a predetermined number of minutes, but the present invention is not limited to this. In the present invention, when the similarity is acquired, the peak waveform does not necessarily have to be divided by a predetermined number of minutes. That is, the similarity between the peak waveform and the reference peak waveform may be acquired without dividing the peak waveform by a predetermined number of minutes.
 また、上記実施形態では、類似度に基づいてワイヤロープの傷みの種類が検出される場合に、類似度の大きさ、高類似度の正のピーク波形および負のピーク波形の出現順序、および、高類似度の正のピーク波形および負のピーク波形の間のピーク波形の数に基づいて、ワイヤロープの傷みの種類が検出される例を示したが、本発明はこれに限られない。本発明では、類似度に基づいてワイヤロープの傷みの種類が検出される場合に、類似度の大きさ、高類似度の正のピーク波形および負のピーク波形の出現順序、および、高類似度の正のピーク波形および負のピーク波形の間のピーク波形の数のうちのいずれか1つまたは2つに基づいて、ワイヤロープの傷みの種類が検出されてもよい。また、類似度に基づいてワイヤロープの傷みの種類が検出される場合に、類似度の大きさ、高類似度の正のピーク波形および負のピーク波形の出現順序、および、高類似度の正のピーク波形および負のピーク波形の間のピーク波形の数以外に基づいて、ワイヤロープの傷みの種類が検出されてもよい。 Further, in the above embodiment, when the type of damage of the wire rope is detected based on the similarity, the magnitude of the similarity, the order of appearance of the positive peak waveform and the negative peak waveform of the high similarity, and An example is shown in which the type of wire rope damage is detected based on the number of peak waveforms between positive and negative peak waveforms with high similarity, but the present invention is not limited to this. In the present invention, when the type of wire rope damage is detected based on the similarity, the magnitude of the similarity, the order of appearance of the positive and negative peak waveforms of the high similarity, and the high similarity. The type of wire rope damage may be detected based on any one or two of the number of peak waveforms between the positive and negative peak waveforms of. Also, when the type of wire rope damage is detected based on the similarity, the magnitude of the similarity, the order of appearance of the positive and negative peak waveforms of the high similarity, and the positive of the high similarity. The type of wire rope damage may be detected based on the number of peak waveforms between the peak waveform and the negative peak waveform of.
 また、上記実施形態では、パラメータに基づいてワイヤロープの傷みの種類が検出される場合に、ピーク波形の幅、ピーク波形の尖り、および、ピーク波形のベースラインの傾きに基づいて、ワイヤロープの傷みの種類が検出される例を示したが、本発明はこれに限られない。本発明では、パラメータに基づいてワイヤロープの傷みの種類が検出される場合に、ピーク波形の幅、ピーク波形の尖り、および、ピーク波形のベースラインの傾きのうちのいずれか1つまたは2つに基づいて、ワイヤロープの傷みの種類が検出されてもよい。また、パラメータに基づいてワイヤロープの傷みの種類が検出される場合に、ピーク波形の幅、ピーク波形の尖り、および、ピーク波形のベースラインの傾き以外に基づいて、ワイヤロープの傷みの種類が検出されてもよい。 Further, in the above embodiment, when the type of damage of the wire rope is detected based on the parameters, the width of the peak waveform, the sharpness of the peak waveform, and the inclination of the baseline of the peak waveform are used as the basis for the wire rope. Although an example in which the type of damage is detected is shown, the present invention is not limited to this. In the present invention, when the type of wire rope damage is detected based on the parameters, one or two of the width of the peak waveform, the sharpness of the peak waveform, and the slope of the baseline of the peak waveform. The type of damage to the wire rope may be detected based on. Also, when the type of wire rope damage is detected based on the parameters, the type of wire rope damage is based on other than the width of the peak waveform, the sharpness of the peak waveform, and the slope of the baseline of the peak waveform. It may be detected.
[態様]
 上記した例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。
[Aspect]
It will be understood by those skilled in the art that the above exemplary embodiments are specific examples of the following embodiments.
(項目1)
 ワイヤロープの磁界の変化を検知する検知コイルと、
 前記ワイヤロープの傷みの種類を検出する制御を行う制御部と、を備え、
 前記制御部は、前記検知コイルにより取得した測定データに基づいて、前記測定データを平滑化処理したデータである平滑化データを取得して、取得した前記平滑化データに基づいて、前記測定データのベースラインを取得して、取得した前記ベースラインに基づいて、前記測定データからピーク波形を取得して、取得した前記ピーク波形に基づいて、前記ワイヤロープの傷みの種類を検出する制御を行うように構成されている、ワイヤロープ検査システム。
(Item 1)
A detection coil that detects changes in the magnetic field of the wire rope,
A control unit that controls to detect the type of damage to the wire rope is provided.
The control unit acquires smoothing data which is data obtained by smoothing the measurement data based on the measurement data acquired by the detection coil, and based on the acquired smoothing data, the measurement data of the measurement data. A baseline is acquired, a peak waveform is acquired from the measurement data based on the acquired baseline, and control is performed to detect the type of damage to the wire rope based on the acquired peak waveform. The wire rope inspection system is configured in.
(項目2)
 前記制御部は、前記ベースラインに対して、正の値を有する測定値群、および、前記ベースラインに対して、負の値を有する測定値群を、前記ピーク波形として取得する制御を行うように構成されている、項目1に記載のワイヤロープ検査システム。
(Item 2)
The control unit controls to acquire a group of measured values having a positive value with respect to the baseline and a group of measured values having a negative value with respect to the baseline as the peak waveform. The wire rope inspection system according to item 1, which is configured in.
(項目3)
 参照ピーク波形が記憶された記憶部をさらに備え、
 前記制御部は、前記ピーク波形と、前記参照ピーク波形との比較結果に基づいて、前記ワイヤロープの傷みの種類を検出する制御を行うように構成されている、項目1または2に記載のワイヤロープ検査システム。
(Item 3)
It also has a storage unit that stores the reference peak waveform.
The wire according to item 1 or 2, wherein the control unit controls to detect the type of damage to the wire rope based on the result of comparison between the peak waveform and the reference peak waveform. Rope inspection system.
(項目4)
 前記参照ピーク波形は、前記ワイヤロープの傷みの種類が既知の測定データである既知データに基づいて、前記既知データを平滑化処理したデータである平滑化データが取得されて、取得された前記既知データの平滑化データに基づいて、前記既知データのベースラインが取得されて、取得された前記既知データのベースラインに基づいて、前記既知データから取得されたピーク波形である、項目3に記載のワイヤロープ検査システム。
(Item 4)
The reference peak waveform is obtained by acquiring smoothing data, which is data obtained by smoothing the known data, based on known data in which the type of damage to the wire rope is known measurement data. The item 3 wherein a baseline of the known data is acquired based on the smoothed data and is a peak waveform acquired from the known data based on the acquired baseline of the known data. Wire rope inspection system.
(項目5)
 前記制御部は、前記ピーク波形と、前記参照ピーク波形との比較結果として、前記ピーク波形と、前記参照ピーク波形との間の類似度を取得するとともに、取得した前記類似度に基づいて、前記ワイヤロープの傷みの種類を検出する制御を行うように構成されている、項目3または4に記載のワイヤロープ検査システム。
(Item 5)
As a result of comparison between the peak waveform and the reference peak waveform, the control unit acquires the similarity between the peak waveform and the reference peak waveform, and based on the acquired similarity, said the control unit. The wire rope inspection system according to item 3 or 4, which is configured to control the detection of the type of wire rope damage.
(項目6)
 前記制御部は、前記ピーク波形を予め決められた数分だけ分割して、予め決められた数分の代表値を取得するとともに、取得した前記ピーク波形の予め決められた数分の代表値と、前記参照ピーク波形の予め決められた数分の代表値とに基づいて、前記類似度を取得する制御を行うように構成されている、項目5に記載のワイヤロープ検査システム。
(Item 6)
The control unit divides the peak waveform by a predetermined number of minutes to acquire a predetermined number of representative values, and also obtains a predetermined number of representative values of the acquired peak waveform. The wire rope inspection system according to item 5, wherein the control for acquiring the similarity is performed based on a predetermined number of representative values of the reference peak waveform.
(項目7)
 前記制御部は、前記類似度が所定値よりも高い高類似度の、正の前記ピーク波形および負の前記ピーク波形を取得した場合、取得した正の前記ピーク波形および負の前記ピーク波形の出現順序に基づいて、前記ワイヤロープの傷みの種類を検出する制御を行うように構成されている、項目4~6のいずれか1項に記載のワイヤロープ検査システム。
(Item 7)
When the control unit acquires the positive peak waveform and the negative peak waveform having a high similarity whose similarity is higher than a predetermined value, the acquired positive peak waveform and the negative peak waveform appear. The wire rope inspection system according to any one of items 4 to 6, which is configured to control the detection of the type of damage to the wire rope based on the order.
(項目8)
 前記制御部は、前記類似度が所定値よりも高い高類似度の、正の前記ピーク波形および負の前記ピーク波形を取得した場合、取得した正の前記ピーク波形および負の前記ピーク波形の間の前記ピーク波形の数に基づいて、前記ワイヤロープの傷みの種類を検出する制御を行うように構成されている、項目4~7のいずれか1項に記載のワイヤロープ検査システム。
(Item 8)
When the control unit acquires the positive peak waveform and the negative peak waveform having a high similarity whose similarity is higher than a predetermined value, it is between the acquired positive peak waveform and the negative peak waveform. The wire rope inspection system according to any one of items 4 to 7, wherein the control for detecting the type of damage to the wire rope is performed based on the number of the peak waveforms of the above.
(項目9)
 前記制御部は、前記ピーク波形に基づいて、前記ピーク波形を特定するパラメータを取得するとともに、取得した前記パラメータに基づいて、前記ワイヤロープの傷みの種類を検出する制御を行うように構成されている、項目1~8のいずれか1項に記載のワイヤロープ検査システム。
(Item 9)
The control unit is configured to acquire a parameter for identifying the peak waveform based on the peak waveform and to perform control to detect the type of damage to the wire rope based on the acquired parameter. The wire rope inspection system according to any one of items 1 to 8.
(項目10)
 前記制御部は、前記パラメータとしての、前記ピーク波形の幅、前記ピーク波形の尖り、および、前記ピーク波形の前記ベースラインの傾きのうちの少なくともいずれか1つに基づいて、前記ワイヤロープの傷みの種類を検出する制御を行うように構成されている、項目9に記載のワイヤロープ検査システム。
(Item 10)
The control unit damages the wire rope based on at least one of the width of the peak waveform, the sharpness of the peak waveform, and the slope of the baseline of the peak waveform as the parameters. 9. The wire rope inspection system according to item 9, which is configured to control the detection of the type of wire rope.
(項目11)
 前記制御部は、前記ワイヤロープの傷みの種類として、素線断線、外圧による固定的変形および素線の撚りの緩みのうちの少なくともいずれか1つを検出する制御を行うように構成されている、項目1~10のいずれか1項に記載のワイヤロープ検査システム。
(Item 11)
The control unit is configured to control to detect at least one of wire breakage, fixed deformation due to external pressure, and loose twist of the wire rope as a type of damage to the wire rope. , The wire rope inspection system according to any one of items 1 to 10.
(項目12)
 ワイヤロープの磁界の変化を検知するステップと、
 前記ワイヤロープの磁界の変化を検知して取得した測定データに基づいて、前記測定データを平滑化処理したデータである平滑化データを取得するステップと、
 前記平滑化データに基づいて、前記測定データのベースラインを取得するステップと、
 前記ベースラインに基づいて、前記測定データからピーク波形を取得するステップと、
 前記ピーク波形に基づいて、前記ワイヤロープの傷みの種類を検出するステップと、を備える、ワイヤロープ検査方法。
(Item 12)
Steps to detect changes in the magnetic field of the wire rope,
Based on the measurement data acquired by detecting the change in the magnetic field of the wire rope, the step of acquiring the smoothing data which is the data obtained by smoothing the measurement data, and
A step of acquiring a baseline of the measurement data based on the smoothing data,
A step of acquiring a peak waveform from the measurement data based on the baseline,
A wire rope inspection method comprising a step of detecting a type of damage to the wire rope based on the peak waveform.
 10 検知コイル
 21 制御部
 23 記憶部
 100 ワイヤロープ検査システム
 101 ワイヤロープ
 201 測定データ
 202 平滑化データ
 203 ベースライン
 204 ピーク波形
 205、205a~c 参照ピーク波形
 206 類似度
 207 パラメータ
 207a ピーク波形の幅
 207b ピーク波形の尖り
 207c ピーク波形のベースラインの傾き
 n 予め決められた数
 P1~Pn ピーク波形の予め決められた数分の代表値
 SP1~SPn 参照ピーク波形の予め決められた数分の代表値
10 Detection coil 21 Control unit 23 Storage unit 100 Wire rope inspection system 101 Wire rope 201 Measurement data 202 Smoothing data 203 Baseline 204 Peak waveform 205, 205a to c Reference peak waveform 206 Similarity 207 Parameter 207a Peak waveform width 207b Peak Waveform sharpness 207c Baseline slope of peak waveform n Predetermined number P1 to Pn Predetermined number of representative values of peak waveform SP1 to SPn Reference value of predetermined number of peak waveform

Claims (12)

  1.  ワイヤロープの磁界の変化を検知する検知コイルと、
     前記ワイヤロープの傷みの種類を検出する制御を行う制御部と、を備え、
     前記制御部は、前記検知コイルにより取得した測定データに基づいて、前記測定データを平滑化処理したデータである平滑化データを取得して、取得した前記平滑化データに基づいて、前記測定データのベースラインを取得して、取得した前記ベースラインに基づいて、前記測定データからピーク波形を取得して、取得した前記ピーク波形に基づいて、前記ワイヤロープの傷みの種類を検出する制御を行うように構成されている、ワイヤロープ検査システム。
    A detection coil that detects changes in the magnetic field of the wire rope,
    A control unit that controls to detect the type of damage to the wire rope is provided.
    The control unit acquires smoothing data which is data obtained by smoothing the measurement data based on the measurement data acquired by the detection coil, and based on the acquired smoothing data, the measurement data of the measurement data. A baseline is acquired, a peak waveform is acquired from the measurement data based on the acquired baseline, and control is performed to detect the type of damage to the wire rope based on the acquired peak waveform. The wire rope inspection system is configured in.
  2.  前記制御部は、前記ベースラインに対して、正の値を有する測定値群、および、前記ベースラインに対して、負の値を有する測定値群を、前記ピーク波形として取得する制御を行うように構成されている、請求項1に記載のワイヤロープ検査システム。 The control unit controls to acquire a group of measured values having a positive value with respect to the baseline and a group of measured values having a negative value with respect to the baseline as the peak waveform. The wire rope inspection system according to claim 1, which is configured in the above.
  3.  参照ピーク波形が記憶された記憶部をさらに備え、
     前記制御部は、前記ピーク波形と、前記参照ピーク波形との比較結果に基づいて、前記ワイヤロープの傷みの種類を検出する制御を行うように構成されている、請求項1に記載のワイヤロープ検査システム。
    It also has a storage unit that stores the reference peak waveform.
    The wire rope according to claim 1, wherein the control unit controls to detect the type of damage to the wire rope based on a comparison result between the peak waveform and the reference peak waveform. Inspection system.
  4.  前記参照ピーク波形は、前記ワイヤロープの傷みの種類が既知の測定データである既知データに基づいて、前記既知データを平滑化処理したデータである平滑化データが取得されて、取得された前記既知データの平滑化データに基づいて、前記既知データのベースラインが取得されて、取得された前記既知データのベースラインに基づいて、前記既知データから取得されたピーク波形である、請求項3に記載のワイヤロープ検査システム。 The reference peak waveform is obtained by acquiring smoothing data, which is data obtained by smoothing the known data, based on known data in which the type of damage to the wire rope is known measurement data. The third aspect of claim 3, wherein the baseline of the known data is acquired based on the smoothed data, and the peak waveform is acquired from the known data based on the acquired baseline of the known data. Wire rope inspection system.
  5.  前記制御部は、前記ピーク波形と、前記参照ピーク波形との比較結果として、前記ピーク波形と、前記参照ピーク波形との間の類似度を取得するとともに、取得した前記類似度に基づいて、前記ワイヤロープの傷みの種類を検出する制御を行うように構成されている、請求項3に記載のワイヤロープ検査システム。 As a result of comparison between the peak waveform and the reference peak waveform, the control unit acquires the similarity between the peak waveform and the reference peak waveform, and based on the acquired similarity, said the control unit. The wire rope inspection system according to claim 3, which is configured to control the detection of the type of damage to the wire rope.
  6.  前記制御部は、前記ピーク波形を予め決められた数分だけ分割して、予め決められた数分の代表値を取得するとともに、取得した前記ピーク波形の予め決められた数分の代表値と、前記参照ピーク波形の予め決められた数分の代表値とに基づいて、前記類似度を取得する制御を行うように構成されている、請求項5に記載のワイヤロープ検査システム。 The control unit divides the peak waveform by a predetermined number of minutes to acquire a predetermined number of representative values, and also obtains a predetermined number of representative values of the acquired peak waveform. The wire rope inspection system according to claim 5, wherein the control for acquiring the similarity is performed based on a predetermined number of representative values of the reference peak waveform.
  7.  前記制御部は、前記類似度が所定値よりも高い高類似度の、正の前記ピーク波形および負の前記ピーク波形を取得した場合、取得した正の前記ピーク波形および負の前記ピーク波形の出現順序に基づいて、前記ワイヤロープの傷みの種類を検出する制御を行うように構成されている、請求項4に記載のワイヤロープ検査システム。 When the control unit acquires the positive peak waveform and the negative peak waveform having a high similarity whose similarity is higher than a predetermined value, the acquired positive peak waveform and the negative peak waveform appear. The wire rope inspection system according to claim 4, wherein the wire rope inspection system is configured to control the detection of the type of damage to the wire rope based on the order.
  8.  前記制御部は、前記類似度が所定値よりも高い高類似度の、正の前記ピーク波形および負の前記ピーク波形を取得した場合、取得した正の前記ピーク波形および負の前記ピーク波形の間の前記ピーク波形の数に基づいて、前記ワイヤロープの傷みの種類を検出する制御を行うように構成されている、請求項4に記載のワイヤロープ検査システム。 When the control unit acquires the positive peak waveform and the negative peak waveform having a high similarity whose similarity is higher than a predetermined value, it is between the acquired positive peak waveform and the negative peak waveform. The wire rope inspection system according to claim 4, wherein the wire rope inspection system is configured to control the detection of the type of damage to the wire rope based on the number of the peak waveforms of the above.
  9.  前記制御部は、前記ピーク波形に基づいて、前記ピーク波形を特定するパラメータを取得するとともに、取得した前記パラメータに基づいて、前記ワイヤロープの傷みの種類を検出する制御を行うように構成されている、請求項1に記載のワイヤロープ検査システム。 The control unit is configured to acquire a parameter for specifying the peak waveform based on the peak waveform, and to perform control to detect the type of damage to the wire rope based on the acquired parameter. The wire rope inspection system according to claim 1.
  10.  前記制御部は、前記パラメータとしての、前記ピーク波形の幅、前記ピーク波形の尖り、および、前記ピーク波形の前記ベースラインの傾きのうちの少なくともいずれか1つに基づいて、前記ワイヤロープの傷みの種類を検出する制御を行うように構成されている、請求項9に記載のワイヤロープ検査システム。 The control unit damages the wire rope based on at least one of the width of the peak waveform, the sharpness of the peak waveform, and the slope of the baseline of the peak waveform as the parameters. The wire rope inspection system according to claim 9, which is configured to control the detection of the type of wire rope.
  11.  前記制御部は、前記ワイヤロープの傷みの種類として、素線断線、外圧による固定的変形および素線の撚りの緩みのうちの少なくともいずれか1つを検出する制御を行うように構成されている、請求項1に記載のワイヤロープ検査システム。 The control unit is configured to control to detect at least one of wire breakage, fixed deformation due to external pressure, and loose twist of the wire rope as a type of damage to the wire rope. , The wire rope inspection system according to claim 1.
  12.  ワイヤロープの磁界の変化を検知するステップと、
     前記ワイヤロープの磁界の変化を検知して取得した測定データに基づいて、前記測定データを平滑化処理したデータである平滑化データを取得するステップと、
     前記平滑化データに基づいて、前記測定データのベースラインを取得するステップと、
     前記ベースラインに基づいて、前記測定データからピーク波形を取得するステップと、
     前記ピーク波形に基づいて、前記ワイヤロープの傷みの種類を検出するステップと、を備える、ワイヤロープ検査方法。
    Steps to detect changes in the magnetic field of the wire rope,
    Based on the measurement data acquired by detecting the change in the magnetic field of the wire rope, the step of acquiring the smoothing data which is the data obtained by smoothing the measurement data, and
    A step of acquiring a baseline of the measurement data based on the smoothing data,
    A step of acquiring a peak waveform from the measurement data based on the baseline,
    A wire rope inspection method comprising a step of detecting a type of damage to the wire rope based on the peak waveform.
PCT/JP2020/015706 2019-06-05 2020-04-07 Wire rope examination system and wire rope examination method WO2020246131A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021524683A JP7107438B2 (en) 2019-06-05 2020-04-07 WIRE ROPE INSPECTION SYSTEM AND WIRE ROPE INSPECTION METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-105692 2019-06-05
JP2019105692 2019-06-05

Publications (1)

Publication Number Publication Date
WO2020246131A1 true WO2020246131A1 (en) 2020-12-10

Family

ID=73652757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015706 WO2020246131A1 (en) 2019-06-05 2020-04-07 Wire rope examination system and wire rope examination method

Country Status (2)

Country Link
JP (1) JP7107438B2 (en)
WO (1) WO2020246131A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112723071A (en) * 2020-12-28 2021-04-30 上海三菱电梯有限公司 Elevator component performance monitoring method
US20220050152A1 (en) * 2020-08-17 2022-02-17 Shimadzu Corporation Magnetic Material Inspection Device
EP4145121A1 (en) * 2021-09-03 2023-03-08 Shimadzu Corporation Wire rope inspection method and wire rope inspection system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55126853A (en) * 1979-03-26 1980-10-01 Furukawa Electric Co Ltd:The Electromagnetic induction flaw detecting method
JPH06331602A (en) * 1993-05-14 1994-12-02 Ndt Technol Inc Method and equipment for checking structural defect of long magnetic material nondestructively
JPH07306185A (en) * 1994-05-10 1995-11-21 Sumitomo Electric Ind Ltd Method for detecting ferromagnetic material in nonferrous wire
WO2018109824A1 (en) * 2016-12-13 2018-06-21 東京製綱株式会社 Wire rope damage detection method, and signal processing device and damage detection device used for wire rope damage detection
JP2020008500A (en) * 2018-07-11 2020-01-16 株式会社島津製作所 Magnetic body inspection system, magnetic body inspection apparatus, and magnetic body inspection method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55126853A (en) * 1979-03-26 1980-10-01 Furukawa Electric Co Ltd:The Electromagnetic induction flaw detecting method
JPH06331602A (en) * 1993-05-14 1994-12-02 Ndt Technol Inc Method and equipment for checking structural defect of long magnetic material nondestructively
JPH07306185A (en) * 1994-05-10 1995-11-21 Sumitomo Electric Ind Ltd Method for detecting ferromagnetic material in nonferrous wire
WO2018109824A1 (en) * 2016-12-13 2018-06-21 東京製綱株式会社 Wire rope damage detection method, and signal processing device and damage detection device used for wire rope damage detection
JP2020008500A (en) * 2018-07-11 2020-01-16 株式会社島津製作所 Magnetic body inspection system, magnetic body inspection apparatus, and magnetic body inspection method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220050152A1 (en) * 2020-08-17 2022-02-17 Shimadzu Corporation Magnetic Material Inspection Device
US11493574B2 (en) * 2020-08-17 2022-11-08 Shimadzu Corporation Magnetic material inspection device
CN112723071A (en) * 2020-12-28 2021-04-30 上海三菱电梯有限公司 Elevator component performance monitoring method
EP4145121A1 (en) * 2021-09-03 2023-03-08 Shimadzu Corporation Wire rope inspection method and wire rope inspection system

Also Published As

Publication number Publication date
JP7107438B2 (en) 2022-07-27
JPWO2020246131A1 (en) 2021-11-04

Similar Documents

Publication Publication Date Title
JP6879389B2 (en) Wire rope inspection equipment, wire rope inspection system and wire rope inspection method
WO2020246131A1 (en) Wire rope examination system and wire rope examination method
JP7187855B2 (en) Magnetic material inspection system, magnetic material inspection apparatus, and magnetic material inspection method
JP7172135B2 (en) Magnetic inspection device
WO2020079747A1 (en) Magnetic body management system and magnetic body management method
JP7081446B2 (en) Magnetic material inspection device and magnetic material inspection system
JP7095808B2 (en) Wire rope inspection system and wire rope inspection method
JP7027927B2 (en) Magnetic material inspection equipment
CN111855794A (en) Steel wire rope flaw detection system and flaw detection method thereof
JP7371791B2 (en) Wire rope inspection equipment and wire rope inspection system
JP7200697B2 (en) WIRE ROPE INSPECTION DEVICE AND WIRE ROPE INSPECTION METHOD
US11493574B2 (en) Magnetic material inspection device
JP7271866B2 (en) Magnetic inspection system and program
US11480546B2 (en) Magnetic material inspection system, magnetic material inspection device, and magnetic material inspection method
JP7318749B2 (en) WIRE ROPE INSPECTION DEVICE, WIRE ROPE INSPECTION SYSTEM, AND WIRE ROPE INSPECTION METHOD
JP7276233B2 (en) Elevator wire rope inspection device, elevator wire rope inspection system, and elevator wire rope inspection method
KR100946285B1 (en) The apparatus for detecting a wire rope using an eddy current
JP2021173605A (en) Wire rope inspection device and wire rope inspection system
JP2022027026A (en) Wire rope inspection device, wire rope inspection system and wire rope inspection method
JP2007155429A (en) Method and device for inspecting concrete structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20818824

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021524683

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20818824

Country of ref document: EP

Kind code of ref document: A1