WO2020246115A1 - Electrostatic device and method for manufacturing electrostatic device - Google Patents

Electrostatic device and method for manufacturing electrostatic device Download PDF

Info

Publication number
WO2020246115A1
WO2020246115A1 PCT/JP2020/012458 JP2020012458W WO2020246115A1 WO 2020246115 A1 WO2020246115 A1 WO 2020246115A1 JP 2020012458 W JP2020012458 W JP 2020012458W WO 2020246115 A1 WO2020246115 A1 WO 2020246115A1
Authority
WO
WIPO (PCT)
Prior art keywords
fixed
substrate
electrostatic device
elastic support
movable
Prior art date
Application number
PCT/JP2020/012458
Other languages
French (fr)
Japanese (ja)
Inventor
年吉 洋
浩章 本間
裕幸 三屋
Original Assignee
国立大学法人 東京大学
株式会社鷺宮製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学, 株式会社鷺宮製作所 filed Critical 国立大学法人 東京大学
Priority to US17/615,153 priority Critical patent/US20220224253A1/en
Priority to EP20819353.2A priority patent/EP3965284A4/en
Priority to CN202080040763.2A priority patent/CN113924725A/en
Publication of WO2020246115A1 publication Critical patent/WO2020246115A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00134Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
    • B81C1/00182Arrangements of deformable or non-deformable structures, e.g. membrane and cavity for use in a transducer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/06Influence generators
    • H02N1/08Influence generators with conductive charge carrier, i.e. capacitor machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/03Microengines and actuators
    • B81B2201/033Comb drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/03Bonding two components
    • B81C2203/031Anodic bondings

Definitions

  • the present invention relates to an electrostatic device and a method for manufacturing an electrostatic device.
  • an electrostatic device as described in Patent Document 1 is known.
  • the electrostatic device described in Patent Document 1 is manufactured from an SOI (Silicon On Insulator) substrate.
  • the SOI (Silicon On Insulator) substrate includes a silicon support layer, a BOX (Buried Oxide) layer of silicon oxide (SiO 2 ) formed on the support layer, and an active layer of silicon bonded on the BOX layer. Consists of.
  • the actuator portion or sensor portion of the electrostatic device is formed from the active layer, and the base material that supports the actuator portion or sensor portion is formed from the support layer.
  • the substrate cost is one of the factors hindering the cost reduction of the electrostatic device.
  • the electrostatic device includes a fixed portion, a movable portion, an elastic support portion that is formed integrally with the movable portion and elastically supports the movable portion, and the fixed portion and the above. It includes a glass base portion in which elastic support portions are anode-bonded in a separated state from each other.
  • the fixed portion and the movable portion are formed of silicon, and an electret is formed on at least one of the fixed portion and the movable portion. It is preferable to have it.
  • a fixed electrode is formed in the fixed portion, and a movable electrode facing the fixed electrode is formed in the movable portion. It is preferable that the capacitance of the fixed electrode and the movable electrode changes due to the displacement of the movable portion with respect to the fixed portion to generate electricity.
  • the method for manufacturing an electrostatic device according to the fourth aspect of the present invention is an electrostatic device manufacturing method for manufacturing an electrostatic device according to any one of the first to third aspects.
  • the fixed portion, the movable portion, and the elastic support portion are integrally formed with the substrate, and the base portion and the substrate are anodized to fix the fixed portion and the elastic support portion to the base portion.
  • the substrate is etched to separate the fixed portion and the elastic support portion from each other.
  • the cost of the electrostatic device can be reduced.
  • FIG. 1 is a plan view of the vibration power generation element.
  • FIG. 2 is a diagram showing a cross section taken along the line AA and a cross section taken along the line BB of FIG.
  • FIG. 3 is a diagram illustrating the first step.
  • FIG. 4 is a diagram illustrating a second step.
  • FIG. 5 is a diagram illustrating a third step.
  • FIG. 6 is a diagram showing a cross section taken along the line AA, a cross section taken along the line BB, and a cross section taken along the line CC of FIG.
  • FIG. 7 is a diagram illustrating a fourth step.
  • FIG. 8 is a diagram illustrating a fifth step.
  • FIG. 9 is a diagram illustrating a sixth step.
  • FIG. 10 is a diagram illustrating a seventh step.
  • FIG. 10 is a diagram illustrating a seventh step.
  • FIG. 11 is a diagram illustrating the eighth step.
  • FIG. 12 is a diagram illustrating a ninth step.
  • FIG. 13 is a diagram illustrating a tenth step.
  • FIG. 14 is a diagram showing a comparative example.
  • 15A and 15B are graphs showing the simulation results of vibration power generation in a comparative example, in which FIG. 15A shows a current and FIG. 15B shows an electric power.
  • FIG. 1 is a diagram showing an example of an electrostatic device, and is a plan view of the electrostatic vibration power generation element 1.
  • the vibration power generation element 1 includes a base portion 10, a fixed portion 11 provided on the base portion 10, and a movable portion 12.
  • a plurality of comb tooth electrodes 110 are formed on the pair of left and right fixing portions 11.
  • a plurality of comb tooth electrodes 120 are also formed on the movable portion 12 arranged between the pair of fixed portions 11.
  • the comb tooth electrodes 120 are arranged to face each other so as to mesh with the comb tooth electrodes 110.
  • the movable portion 12 is supported by four sets of elastic support portions 13, and when an external force is applied to the vibration power generation element 1, the movable portion 12 vibrates in the left-right direction (x direction) shown in the drawing.
  • Each elastic support portion 13 includes a fixed region 13a fixed on the base portion 10 and an elastic portion 13b that connects the fixed region 13a and the movable portion 12.
  • An electret is formed on at least one of the comb tooth electrodes 110 and 120, and the movable portion 12 vibrates left and right in the drawing to change the amount of engagement between the comb tooth electrode 110 and the comb tooth electrode 120 to generate power. ..
  • An electrode pad 111 is formed in the fixed portion 11, and an electrode pad 131 is also formed in the fixed region 13a of the elastic support portion 13. The generated power is output from the electrode pads 111 and 131.
  • FIG. 2A and 2B are views showing a cross section of FIG. 1, FIG. 2A shows a cross section taken along the line AA, and FIG. 2B shows a cross section taken along the line BB.
  • the fixed portion 11, the movable portion 12, and the elastic support portion 13 are formed from a Si substrate, and a SiO 2 film 202 containing ions of an alkali metal such as potassium is formed on the surfaces of the fixed portion 11, the movable portion 12, and the elastic support portion 13. Has been done.
  • An electret is formed on the SiO 2 film 202.
  • the fixing portion 11 and the fixing region 13a of the elastic support portion 13 are anode-bonded onto the base portion 10 formed of a glass substrate.
  • a recess 101 is formed in the base portion 10.
  • the fixed portion 11 and the fixed region 13a are separated from each other by a separation groove g1, and the fixed portion 11, the elastic support portion 13, and the movable portion 12 are electrically insulated from each other.
  • the separation groove g2 shown in FIG. 2B is for electrically separating the pair of left and right fixing portions 11.
  • the movable portion 12 is elastically supported above the recess 101 by the elastic support portion 13.
  • a metal layer 102 is formed on the back surface of the base portion 10.
  • the comb tooth electrode 110 of the fixing portion 11 is also arranged above the recess 101 so as to mesh with the comb tooth electrode 120 of the movable portion 12.
  • FIG. 3 to 16 are diagrams showing an example of a manufacturing procedure of the vibration power generation element 1.
  • a SiN film 201 is formed on both the front and back surfaces of the Si substrate 200 by LP-CVD.
  • 4A and 4B are views for explaining the second step, FIG. 4A is a plan view, and FIG. 4B is a sectional view taken along the line AA.
  • the SiN film 201 on the surface side is etched by dry etching to form the patterns P1 and P2 for forming the electrode pads 111 and 113, and the patterns P3 and P4 for forming the separation grooves g1 and g2. And form.
  • FIG. 5 and 6 are views for explaining the third step, FIG. 5 shows a plan view, FIG. 6A is a sectional view taken along the line AA, FIG. 6B is a sectional view taken along the line CC, and FIG. (C) shows a sectional view taken along line BB.
  • an Al (aluminum) mask pattern (not shown) for forming the fixing portion 11, the movable portion 12, and the elastic support portion 13 is formed on the surface side of the Si substrate 200, and the Al mask pattern is used.
  • Etching is performed so as to penetrate the Si substrate 200 and the SiN film 201 by the Deep-RIE.
  • the structure included in the illustrated region D of FIG. 5 is formed in the fixed portion 11, the movable portion 12, and the elastic support portion 13. Specifically, the fixed portion 11, the movable portion 12, and the elastic support portion 13 of the portion where the comb tooth electrodes 110 and 210 are formed are formed.
  • Region D in FIG. 5 shows an upper region of the recess 101 in FIG.
  • FIG. 7A and 7B are views for explaining the fourth step
  • FIG. 7A is a sectional view taken along the line AA
  • FIG. 7B is a sectional view taken along the line CC
  • FIG. 7C is a sectional view taken along the line BB.
  • the figure is shown.
  • etching for forming the separation grooves g1 and g2 is performed by Deep-RIE.
  • the separation grooves g1 and g2 are formed at the positions of the patterns P3 and P4 (see FIG. 4).
  • the separation grooves g1 and g2 are not completely separated, and etching is performed from the back surface side of the substrate to a depth such that the entire Si substrate 200 is integrally maintained (so-called half etching).
  • FIG. 8A and 8B are views for explaining the fifth step, FIG. 8A shows a plan view, and FIG. 8B shows a sectional view taken along the line AA.
  • a SiO 2 film 202 containing ions of an alkali metal such as potassium is formed on the exposed surface of the Si substrate 200.
  • FIG. 9A and 9B are views for explaining the sixth step, FIG. 9A shows a plan view, and FIG. 9B shows a sectional view taken along the line AA.
  • the SiN film 201 on the surface side of the substrate is removed.
  • FIG. 10A and 10B are views for explaining the seventh step, FIG. 10A shows a plan view, and FIG. 10B shows a cross-sectional view.
  • the recess 101 is formed in the glass substrate 300 for forming the base portion 10.
  • the step dimension H between the bottom surface of the recess 101 and the end surface of the frame portion 103 is set to a dimension (for example, several tens of ⁇ m) in which the vibrating movable portion 12 does not interfere.
  • a glass substrate used for anode bonding for example, a glass substrate containing sodium is used.
  • FIG. 11A and 11B are views for explaining the eighth step, FIG. 11A shows a plan view, and FIG. 11B shows a cross-sectional view.
  • a metal layer 102 such as an aluminum vapor deposition film is formed on the back surface side of the base portion 10.
  • the metal layer 102 on the back surface side is formed to disperse the electric field during the anode bonding process over the entire surface of the glass substrate 300.
  • the metal layer 102 is not indispensable because the anode bonding is possible without the metal layer 102.
  • a base portion made of the glass substrate shown in FIG. 11 is formed on the back surface side of the Si substrate 200 (see FIG. 9) on which the fixing portion 11, the movable portion 12, and the elastic support portion 13 are formed. 10 is anodized.
  • the base portion 10 is placed on the heater 40, and the Si substrate 200 on which the fixed portion 11, the movable portion 12, and the elastic support portion 13 are formed is laminated on the base portion 10.
  • the temperature of the heater 40 is set to a temperature at which the thermal diffusion of sodium ions in the glass substrate becomes sufficiently active (for example, 500 ° C. or higher).
  • the voltage V1 of the Si substrate 200 with reference to the heater 40 is set to, for example, 400 V or more.
  • the silicon substrate (Si substrate 200) and the glass substrate (base portion 10) are joined with an anode, the laminate of the silicon substrate and the glass substrate is heated, and the silicon substrate side is used as an anode to form a laminate with several hundred voltages. Apply a DC voltage of about. Sodium ions in the glass substrate move to the negative potential side, and a SiO ⁇ space charge layer (sodium ion-deficient layer) is formed on the glass substrate side of the joint surface between the glass substrate and the silicon substrate. As a result, the glass substrate and the silicon substrate are joined by electrostatic attraction.
  • FIG. 13A and 13B are views for explaining the tenth step
  • FIG. 13A is a sectional view taken along the line AA
  • FIG. 13B is a sectional view taken along the line CC
  • FIG. 13C is a sectional view taken along the line BB.
  • the Si substrate 200 anode-bonded to the base portion 10 was etched halfway by Deep-RIE to penetrate the non-penetrating separation grooves g1 and g2 shown in FIG. 7 through the front and back surfaces of the Si substrate 200. Make it a state.
  • the fixed portion 11 and the elastic support portion 13 that elastically supports the movable portion 12 are completely separated.
  • the hole-shaped electrode pads 111 and 131 are formed.
  • the fixed portion 11, the movable portion 12, and the elastic support portion 13 are formed of a silicon substrate, and the fixed portion 11 and the elastic support portion 13 are fixed to the base portion 10 formed of the glass substrate. It was configured to be. Therefore, unlike the electrostatic device described in Patent Document 1, an expensive SOI substrate is not used, so that the cost can be reduced.
  • FIG. 14 shows a comparative example.
  • the vibration power generation element 50 of the comparative example is formed by using an SOI substrate.
  • the fixed portion 51, the movable portion 52, and the elastic support portion 13 (not shown) of the vibration power generation element 50 are formed on the active layer 61 which is the upper silicon layer of the SOI substrate, and the base portion 53 is formed on the support layer 63 which is the lower silicon layer. Will be done.
  • An electret 520 is formed on the comb tooth electrode of the movable portion 52.
  • the active layer 61 and the support layer 63 are provided via the BOX layer 62 made of SiO 2 , the parasitic capacitances Cs1 and Cs2 generated between the active layer 61 and the support layer 63 generate power for the vibration power generation element 50. It will adversely affect the power generation.
  • the capacitances C1 and C2 between the fixed portion 51 and the comb tooth electrodes of the movable portion 52 change, and alternating current due to the change in the capacitances C1 and C2.
  • the current is output as the terminal current I1.
  • a part of the current I3 flows through the parasitic capacitances Cs1 and Cs2, and the remaining current I2 flows through the load resistor R connected to the vibration power generation element 50.
  • FIG. 15 shows the simulation result of power generation by the vibration power generation element 50
  • FIG. 15A shows the currents I2 and I3
  • FIG. 15B shows the power W2 and the parasitic capacitance consumed by the load resistor R.
  • the electric power W3 that goes in and out of Cs1 is shown.
  • the phase of the current of the parasitic capacitance Cs1 is 90 degrees ahead of the terminal voltage.
  • the power W3 that goes in and out of the parasitic capacitance Cs1 is reactive power that is not taken out to the outside. The same applies to the electric power that goes in and out of the parasitic capacitance Cs2.
  • the reactive power W3 increases, and the active power W2, which is the power consumed by the load resistor R, decreases.
  • the vibration power generation element 1 of the present embodiment since the fixed portion 11 and the movable portion 12 formed of silicon are joined to the base portion 10 formed of the glass substrate, it is possible to prevent the occurrence of parasitic capacitance. it can. As a result, it is possible to prevent the generation of reactive power due to the parasitic capacitance, and the generated power can be consumed by the load resistor R without waste.
  • vibration power generation element 50 is formed from the SOI substrate, it is the same as the case where the base portion 10 of the glass substrate is adopted by making the thickness of the BOX layer thicker than before and reducing the parasitic capacitance. It is possible to reduce reactive power.
  • the vibration power generation element 1 which is an electrostatic device is formed integrally with the fixed portion 11, the movable portion 12, and the movable portion 12, and is elastically supported to elastically support the movable portion 12.
  • a portion 13 and a glass base portion 10 in which the fixing portion 11 and the elastic support portion 13 are anodic-bonded in a separated state are provided. Therefore, the cost can be reduced as compared with the vibration power generation element 50 manufactured by using the SOI substrate.
  • the vibration power generation element 1 which is an electrostatic device has been described as an example, but it is applied not only to the vibration power generation element 1 but also to an actuator, a sensor, or the like as described in Patent Document 1.
  • the actuator and the sensor are manufactured from a silicon substrate, and they are supported by a glass base portion. By doing so, in addition to cost reduction, it is possible to suppress parasitic capacitance. If it has electrical conductivity and the coefficient of linear expansion is sufficiently consistent with that of the glass substrate, an actuator, a sensor, or the like can be formed not only by using a silicon substrate but also by using another glass substrate or a glass substrate on which a silicon thin film is formed. You may.
  • the fixed portion 11 and the movable portion 12 may be formed of silicon, and an electret may be formed on at least one of the fixed portion 11 and the movable portion 12.
  • a comb tooth electrode 110 which is a fixed electrode is formed in a fixed portion 11, and a movable portion 12 is a movable electrode facing the comb tooth electrode 110.
  • a certain comb tooth electrode 120 is formed, and an electlet is further formed on at least one of the fixed portion 11 and the movable portion 12, and the electrostatic capacitance between the comb tooth electrode 110 and the comb tooth electrode 120 due to the displacement of the movable portion 12 with respect to the fixed portion 11. Changes to generate power.
  • the base portion 10 is made of glass, in addition to the cost reduction described above, it is possible to prevent the generation of parasitic capacitances Cs1 and Cs2 in the vibration power generation element 50 using the SOI substrate shown in FIG. 14, and the reactive power due to the parasitic capacitance can be prevented. It is possible to prevent the occurrence of W3.
  • the fixed portion 11, the movable portion 12, and the elastic support portion 13 are integrally formed with a substrate, for example, a Si substrate 200, and a glass base portion 10 and a Si substrate are formed.
  • the fixed portion 11 and the elastic support portion 13 are fixed to the glass base portion 10 by anodizing the 200, and the Si substrate 200 is etched to separate the fixed portion 11 and the elastic support portion 13 from each other to separate the fixed portion 11 and the elastic support portion 13.
  • the 11 and the movable portion 12 are electrically separated.
  • the Si substrate 200 in which the fixed portion 11, the movable portion 12, and the elastic support portion 13 are integrated is anodic-bonded to the base portion 10 and anodic-bonded. Since they are separated later, they can be joined to the base portion 10 while maintaining the positional relationship between the wafer-level fixed portion 11, the movable portion 12, and the elastic support portion 13.

Abstract

This vibration power generation element includes a fixed part, a movable part, an elastic support part that is integrally formed with the movable part and that elastically supports the movable part, and a glass base part in which the fixed part and the elastic support part are anodically bonded to each other in a separated state.

Description

静電型デバイスおよび静電型デバイス製造方法Electrostatic device and method of manufacturing electrostatic device
 本発明は、静電型デバイスおよび静電型デバイス製造方法に関する。 The present invention relates to an electrostatic device and a method for manufacturing an electrostatic device.
 静電型デバイスとして、例えば、特許文献1に記載のような静電型デバイスが知られている。特許文献1に記載の静電型デバイスは、SOI(Silicon On Insulator)基板から製作されている。SOI(Silicon On Insulator)基板は、シリコンの支持層と、支持層上に形成されたシリコン酸化物(SiO)のBOX(Buried Oxide)層と、BOX層上に接合されたシリコンの活性層とから成る。静電型デバイスのアクチュエータ部あるいはセンサ部は活性層から形成され、アクチュエータ部あるいはセンサ部を支持する基材は支持層から形成される。 As the electrostatic device, for example, an electrostatic device as described in Patent Document 1 is known. The electrostatic device described in Patent Document 1 is manufactured from an SOI (Silicon On Insulator) substrate. The SOI (Silicon On Insulator) substrate includes a silicon support layer, a BOX (Buried Oxide) layer of silicon oxide (SiO 2 ) formed on the support layer, and an active layer of silicon bonded on the BOX layer. Consists of. The actuator portion or sensor portion of the electrostatic device is formed from the active layer, and the base material that supports the actuator portion or sensor portion is formed from the support layer.
日本国特開2016-59191号公報Japanese Patent Application Laid-Open No. 2016-59191
 しかしながら、上述の静電型デバイスでは、デバイス製作用の基板として高価なSOI基板を用いているので、基板コストが静電型デバイスのコスト低減を阻害する要因の一つとなっている。 However, in the above-mentioned electrostatic device, since an expensive SOI substrate is used as a substrate for device manufacturing, the substrate cost is one of the factors hindering the cost reduction of the electrostatic device.
 本発明の第1の態様によると、静電型デバイスは、固定部と、可動部と、前記可動部と一体に形成され、前記可動部を弾性支持する弾性支持部と、前記固定部および前記弾性支持部が互いに分離状態で陽極接合されているガラス製のベース部と、を備える。
 本発明の第2の態様によると、第1の態様の静電型デバイスにおいて、前記固定部および前記可動部はシリコンで形成され、前記固定部および前記可動部の少なくとも一方にエレクトレットが形成されているのが好ましい。
 本発明の第3の態様によると、第2の態様の静電型デバイスにおいて、前記固定部には固定電極が形成され、前記可動部には前記固定電極と対向する可動電極が形成され、前記固定部に対する前記可動部の変位により前記固定電極と前記可動電極との静電容量が変化して発電を行うのが好ましい。
 本発明の第4の態様による静電型デバイス製造方法は、第1の態様から第3の態様までのいずれか一の態様の静電型デバイスを製造するための静電型デバイス製造方法であって、前記固定部、前記可動部および前記弾性支持部を基板に一体状態で形成し、前記ベース部と前記基板とを陽極接合して前記固定部および前記弾性支持部を前記ベース部に固定し、前記基板をエッチングして前記固定部と前記弾性支持部とを互いに分離する。
According to the first aspect of the present invention, the electrostatic device includes a fixed portion, a movable portion, an elastic support portion that is formed integrally with the movable portion and elastically supports the movable portion, and the fixed portion and the above. It includes a glass base portion in which elastic support portions are anode-bonded in a separated state from each other.
According to the second aspect of the present invention, in the electrostatic device of the first aspect, the fixed portion and the movable portion are formed of silicon, and an electret is formed on at least one of the fixed portion and the movable portion. It is preferable to have it.
According to the third aspect of the present invention, in the electrostatic device of the second aspect, a fixed electrode is formed in the fixed portion, and a movable electrode facing the fixed electrode is formed in the movable portion. It is preferable that the capacitance of the fixed electrode and the movable electrode changes due to the displacement of the movable portion with respect to the fixed portion to generate electricity.
The method for manufacturing an electrostatic device according to the fourth aspect of the present invention is an electrostatic device manufacturing method for manufacturing an electrostatic device according to any one of the first to third aspects. The fixed portion, the movable portion, and the elastic support portion are integrally formed with the substrate, and the base portion and the substrate are anodized to fix the fixed portion and the elastic support portion to the base portion. , The substrate is etched to separate the fixed portion and the elastic support portion from each other.
 本発明によれば、静電型デバイスのコスト低減を図ることができる。 According to the present invention, the cost of the electrostatic device can be reduced.
図1は、振動発電素子の平面図である。FIG. 1 is a plan view of the vibration power generation element. 図2は、図1のA-A断面およびB-B断面を示す図である。FIG. 2 is a diagram showing a cross section taken along the line AA and a cross section taken along the line BB of FIG. 図3は、第1の工程を説明する図である。FIG. 3 is a diagram illustrating the first step. 図4は、第2の工程を説明する図である。FIG. 4 is a diagram illustrating a second step. 図5は、第3の工程を説明する図である。FIG. 5 is a diagram illustrating a third step. 図6は、図5のA-A断面、B-B断面、C-C断面を示す図である。FIG. 6 is a diagram showing a cross section taken along the line AA, a cross section taken along the line BB, and a cross section taken along the line CC of FIG. 図7は、第4の工程を説明する図である。FIG. 7 is a diagram illustrating a fourth step. 図8は、第5の工程を説明する図である。FIG. 8 is a diagram illustrating a fifth step. 図9は、第6の工程を説明する図である。FIG. 9 is a diagram illustrating a sixth step. 図10は、第7の工程を説明する図である。FIG. 10 is a diagram illustrating a seventh step. 図11は、第8の工程を説明する図である。FIG. 11 is a diagram illustrating the eighth step. 図12は、第9の工程を説明する図である。FIG. 12 is a diagram illustrating a ninth step. 図13は、第10の工程を説明する図である。FIG. 13 is a diagram illustrating a tenth step. 図14は、比較例を示す図である。FIG. 14 is a diagram showing a comparative example. 図15は、比較例における振動発電のシミュレーション結果を示すグラフであり、(a)は電流を示し、(b)は電力を示す。15A and 15B are graphs showing the simulation results of vibration power generation in a comparative example, in which FIG. 15A shows a current and FIG. 15B shows an electric power.
 以下、図を参照して本発明を実施するための形態について説明する。図1は静電型デバイスの一例を示す図であり、静電型の振動発電素子1の平面図である。振動発電素子1は、ベース部10と、ベース部10上に設けられた固定部11と、可動部12とを備えている。左右一対の固定部11には複数の櫛歯電極110がそれぞれ形成されている。一対の固定部11間に配置された可動部12にも、複数の櫛歯電極120が形成されている。櫛歯電極120は、櫛歯電極110と噛合するように対向配置されている。 Hereinafter, a mode for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an example of an electrostatic device, and is a plan view of the electrostatic vibration power generation element 1. The vibration power generation element 1 includes a base portion 10, a fixed portion 11 provided on the base portion 10, and a movable portion 12. A plurality of comb tooth electrodes 110 are formed on the pair of left and right fixing portions 11. A plurality of comb tooth electrodes 120 are also formed on the movable portion 12 arranged between the pair of fixed portions 11. The comb tooth electrodes 120 are arranged to face each other so as to mesh with the comb tooth electrodes 110.
 可動部12は4組の弾性支持部13により支持されており、振動発電素子1に外力が加わると、可動部12が図示左右方向(x方向)に振動する。各弾性支持部13は、ベース部10上に固定された固定領域13a、および、固定領域13aと可動部12とを連結する弾性部13bを備えている。櫛歯電極110,120の少なくとも一方にはエレクトレットが形成されており、可動部12が図示左右に振動して櫛歯電極110と櫛歯電極120との噛合量が変化することで発電が行われる。固定部11には電極パッド111が形成され、弾性支持部13の固定領域13aにも電極パッド131が形成されている。発電された電力は電極パッド111、131から出力される。 The movable portion 12 is supported by four sets of elastic support portions 13, and when an external force is applied to the vibration power generation element 1, the movable portion 12 vibrates in the left-right direction (x direction) shown in the drawing. Each elastic support portion 13 includes a fixed region 13a fixed on the base portion 10 and an elastic portion 13b that connects the fixed region 13a and the movable portion 12. An electret is formed on at least one of the comb tooth electrodes 110 and 120, and the movable portion 12 vibrates left and right in the drawing to change the amount of engagement between the comb tooth electrode 110 and the comb tooth electrode 120 to generate power. .. An electrode pad 111 is formed in the fixed portion 11, and an electrode pad 131 is also formed in the fixed region 13a of the elastic support portion 13. The generated power is output from the electrode pads 111 and 131.
 図2は図1の断面を示す図であり、図2(a)はA-A断面を、図2(b)はB-B断面を示している。固定部11,可動部12および弾性支持部13はSi基板から形成され、固定部11,可動部12および弾性支持部13の表面にはカリウム等のアルカリ金属のイオンを含むSiO膜202が形成されている。このSiO膜202にエレクトレットが形成される。固定部11と弾性支持部13の固定領域13aとは、ガラス基板で形成されたベース部10上に陽極接合される。ベース部10には凹部101が形成されている。 2A and 2B are views showing a cross section of FIG. 1, FIG. 2A shows a cross section taken along the line AA, and FIG. 2B shows a cross section taken along the line BB. The fixed portion 11, the movable portion 12, and the elastic support portion 13 are formed from a Si substrate, and a SiO 2 film 202 containing ions of an alkali metal such as potassium is formed on the surfaces of the fixed portion 11, the movable portion 12, and the elastic support portion 13. Has been done. An electret is formed on the SiO 2 film 202. The fixing portion 11 and the fixing region 13a of the elastic support portion 13 are anode-bonded onto the base portion 10 formed of a glass substrate. A recess 101 is formed in the base portion 10.
 固定部11と固定領域13aとは分離溝g1により互いに分離されており、固定部11と弾性支持部13および可動部12とは電気的に絶縁されている。なお、図2(b)に示す分離溝g2は、左右一対の固定部11を電気的に分離するためのものである。可動部12は、弾性支持部13によって凹部101の上方に弾性支持されている。ベース部10の裏面にはメタル層102が形成されている。また、固定部11の櫛歯電極110も、凹部101の上方に可動部12の櫛歯電極120と噛合するように配置されている。 The fixed portion 11 and the fixed region 13a are separated from each other by a separation groove g1, and the fixed portion 11, the elastic support portion 13, and the movable portion 12 are electrically insulated from each other. The separation groove g2 shown in FIG. 2B is for electrically separating the pair of left and right fixing portions 11. The movable portion 12 is elastically supported above the recess 101 by the elastic support portion 13. A metal layer 102 is formed on the back surface of the base portion 10. Further, the comb tooth electrode 110 of the fixing portion 11 is also arranged above the recess 101 so as to mesh with the comb tooth electrode 120 of the movable portion 12.
(振動発電素子1の製造方法)
 図3~16は、振動発電素子1の製造手順の一例を示す図である。図3に示す第1の工程では、Si基板200の表裏両面にLP-CVDによりSiN膜201を成膜する。図4は第2の工程を説明する図であり、図4(a)は平面図、図4(b)はA-A断面図である。第2の工程では、表面側のSiN膜201をドライエッチングによりエッチングして、電極パッド111,113を形成するためのパターンP1,P2と、分離溝g1、g2を形成するためのパターンP3,P4とを形成する。
(Manufacturing method of vibration power generation element 1)
3 to 16 are diagrams showing an example of a manufacturing procedure of the vibration power generation element 1. In the first step shown in FIG. 3, a SiN film 201 is formed on both the front and back surfaces of the Si substrate 200 by LP-CVD. 4A and 4B are views for explaining the second step, FIG. 4A is a plan view, and FIG. 4B is a sectional view taken along the line AA. In the second step, the SiN film 201 on the surface side is etched by dry etching to form the patterns P1 and P2 for forming the electrode pads 111 and 113, and the patterns P3 and P4 for forming the separation grooves g1 and g2. And form.
 図5,6は第3の工程を説明する図であり、図5は平面図を示し、図6(a)はA-A断面図、図6(b)はC-C断面図、図6(c)はB-B断面図を示す。第3の工程では、Si基板200の表面側に固定部11,可動部12および弾性支持部13を形成するためのAl(アルミ)マスクパターン(不図示)を形成し、そのAlマスクパターンを用いたDeep-RIEによりSi基板200およびSiN膜201を貫通するようにエッチングする。このエッチングにより、固定部11,可動部12および弾性支持部13における図5の図示領域Dに含まれる構造を形成する。具体的には、櫛歯電極110、210が形成されている部分の固定部11および可動部12、弾性支持部13を形成する。図5の領域Dは、図2の凹部101の上方領域を示している。 5 and 6 are views for explaining the third step, FIG. 5 shows a plan view, FIG. 6A is a sectional view taken along the line AA, FIG. 6B is a sectional view taken along the line CC, and FIG. (C) shows a sectional view taken along line BB. In the third step, an Al (aluminum) mask pattern (not shown) for forming the fixing portion 11, the movable portion 12, and the elastic support portion 13 is formed on the surface side of the Si substrate 200, and the Al mask pattern is used. Etching is performed so as to penetrate the Si substrate 200 and the SiN film 201 by the Deep-RIE. By this etching, the structure included in the illustrated region D of FIG. 5 is formed in the fixed portion 11, the movable portion 12, and the elastic support portion 13. Specifically, the fixed portion 11, the movable portion 12, and the elastic support portion 13 of the portion where the comb tooth electrodes 110 and 210 are formed are formed. Region D in FIG. 5 shows an upper region of the recess 101 in FIG.
 図7は第4の工程を説明する図であり、図7(a)はA-A断面図を、図7(b)はC-C断面図を、図7(c)はB-B断面図を示す。第4の工程では、分離溝g1,g2を形成するためのエッチングをDeep-RIEにより行う。分離溝g1,g2は、パターンP3,P4(図4参照)の位置に形成される。ただし、第4の工程では分離溝g1,g2で完全に分離させず、基板裏面側からSi基板200全体が一体に保たれる程度の深さまでエッチング(いわゆる、ハーフエッチング)する。 7A and 7B are views for explaining the fourth step, FIG. 7A is a sectional view taken along the line AA, FIG. 7B is a sectional view taken along the line CC, and FIG. 7C is a sectional view taken along the line BB. The figure is shown. In the fourth step, etching for forming the separation grooves g1 and g2 is performed by Deep-RIE. The separation grooves g1 and g2 are formed at the positions of the patterns P3 and P4 (see FIG. 4). However, in the fourth step, the separation grooves g1 and g2 are not completely separated, and etching is performed from the back surface side of the substrate to a depth such that the entire Si substrate 200 is integrally maintained (so-called half etching).
 図8は第5の工程を説明する図であり、図8(a)は平面図を、図8(b)はA-A断面図を示す。第5の工程では、Si基板200の露出面にカリウム等のアルカリ金属のイオンを含むSiO膜202を形成する。 8A and 8B are views for explaining the fifth step, FIG. 8A shows a plan view, and FIG. 8B shows a sectional view taken along the line AA. In the fifth step, a SiO 2 film 202 containing ions of an alkali metal such as potassium is formed on the exposed surface of the Si substrate 200.
 図9は第6の工程を説明する図であり、図9(a)は平面図を、図9(b)はA-A断面図を示す。第6の工程では、まず、CFガスを用いたRIEにより、基板裏面側のSiN膜201を除去する。同様に、基板表面側のSiN膜201を除去する。 9A and 9B are views for explaining the sixth step, FIG. 9A shows a plan view, and FIG. 9B shows a sectional view taken along the line AA. In the sixth step, the RIE using CF 4 gas to remove the SiN film 201 of the substrate rear surface side. Similarly, the SiN film 201 on the surface side of the substrate is removed.
 図10は第7の工程を説明する図であり、図10(a)は平面図を、図10(b)は断面図を示す。第7の工程では、ベース部10を形成するためのガラス基板300に凹部101を形成する。凹部101の底面と枠部103の端面との段差寸法Hは、振動する可動部12が干渉しない寸法(例えば、数十μm)に設定される。ガラス基板300には、陽極接合に用いられるガラス基板(例えば、ナトリウム含有のガラス基板)が用いられる。 10A and 10B are views for explaining the seventh step, FIG. 10A shows a plan view, and FIG. 10B shows a cross-sectional view. In the seventh step, the recess 101 is formed in the glass substrate 300 for forming the base portion 10. The step dimension H between the bottom surface of the recess 101 and the end surface of the frame portion 103 is set to a dimension (for example, several tens of μm) in which the vibrating movable portion 12 does not interfere. As the glass substrate 300, a glass substrate used for anode bonding (for example, a glass substrate containing sodium) is used.
 図11は第8の工程を説明する図であり、図11(a)は平面図を、図11(b)は断面図を示す。第8の工程では、ベース部10の裏面側にアルミ蒸着膜等のメタル層102を形成する。なお、裏面側のメタル層102は、陽極接合プロセス時の電界をガラス基板300全面に分散させるために形成したものである。しかし、メタル層102が無くても陽極接合は可能なため、メタル層102は必須ではない。 11A and 11B are views for explaining the eighth step, FIG. 11A shows a plan view, and FIG. 11B shows a cross-sectional view. In the eighth step, a metal layer 102 such as an aluminum vapor deposition film is formed on the back surface side of the base portion 10. The metal layer 102 on the back surface side is formed to disperse the electric field during the anode bonding process over the entire surface of the glass substrate 300. However, the metal layer 102 is not indispensable because the anode bonding is possible without the metal layer 102.
 図12に示す第9の工程では、固定部11、可動部12および弾性支持部13が形成されたSi基板200(図9参照)の裏面側に、図11に示したガラス基板から成るベース部10を陽極接合する。ヒータ40上にベース部10を載置し、そのベース部10の上に固定部11、可動部12および弾性支持部13が形成されたSi基板200を積層する。ヒータ40の温度は、ガラス基板中におけるナトリウムイオンの熱拡散が十分活発になる温度(例えば、500℃以上)に設定される。ヒータ40を基準とするSi基板200の電圧V1は、例えば、400V以上に設定される。 In the ninth step shown in FIG. 12, a base portion made of the glass substrate shown in FIG. 11 is formed on the back surface side of the Si substrate 200 (see FIG. 9) on which the fixing portion 11, the movable portion 12, and the elastic support portion 13 are formed. 10 is anodized. The base portion 10 is placed on the heater 40, and the Si substrate 200 on which the fixed portion 11, the movable portion 12, and the elastic support portion 13 are formed is laminated on the base portion 10. The temperature of the heater 40 is set to a temperature at which the thermal diffusion of sodium ions in the glass substrate becomes sufficiently active (for example, 500 ° C. or higher). The voltage V1 of the Si substrate 200 with reference to the heater 40 is set to, for example, 400 V or more.
 シリコン基板(Si基板200)とガラス基板(ベース部10)とを陽極接合する場合には、シリコン基板とガラス基板との積層体を加熱しつつ、シリコン基板側を陽極として積層体に数百V程度の直流電圧を印加する。ガラス基板内のナトリウムイオンがマイナス電位側へ移動し、ガラス基板とシリコン基板との接合面のガラス基板側にSiOの空間電荷層(ナトリウムイオンが欠乏した層)が形成される。その結果、静電引力によりガラス基板とシリコン基板とが接合される。 When the silicon substrate (Si substrate 200) and the glass substrate (base portion 10) are joined with an anode, the laminate of the silicon substrate and the glass substrate is heated, and the silicon substrate side is used as an anode to form a laminate with several hundred voltages. Apply a DC voltage of about. Sodium ions in the glass substrate move to the negative potential side, and a SiO space charge layer (sodium ion-deficient layer) is formed on the glass substrate side of the joint surface between the glass substrate and the silicon substrate. As a result, the glass substrate and the silicon substrate are joined by electrostatic attraction.
 図13は第10の工程を説明する図であり、図13(a)はA-A断面図を、図13(b)はC-C断面図を、図13(c)はB-B断面図を示す。第10の工程では、ベース部10に陽極接合されたSi基板200をDeep-RIEにより途中までエッチングすることにより、図7に示す非貫通の分離溝g1、g2をSi基板200の表裏に貫通した状態とする。これにより、固定部11と可動部12を弾性支持する弾性支持部13とが完全に分離される。なお、このエッチングにより、分離溝g1、g2が貫通状態となるだけではなく、穴形状の電極パッド111、131も形成される。 13A and 13B are views for explaining the tenth step, FIG. 13A is a sectional view taken along the line AA, FIG. 13B is a sectional view taken along the line CC, and FIG. 13C is a sectional view taken along the line BB. The figure is shown. In the tenth step, the Si substrate 200 anode-bonded to the base portion 10 was etched halfway by Deep-RIE to penetrate the non-penetrating separation grooves g1 and g2 shown in FIG. 7 through the front and back surfaces of the Si substrate 200. Make it a state. As a result, the fixed portion 11 and the elastic support portion 13 that elastically supports the movable portion 12 are completely separated. By this etching, not only the separation grooves g1 and g2 are in a penetrating state, but also the hole-shaped electrode pads 111 and 131 are formed.
 その後、周知のエレクトレット形成方法、例えば、日本国特開2013-13256号公報に記載のBias-Temperature法により、櫛歯電極110,120の少なくとも一方にエレクトレットを形成することで、図1の振動発電素子1が完成する。 Then, by forming an electret on at least one of the comb tooth electrodes 110 and 120 by a well-known electret forming method, for example, the Bias-Temperature method described in Japanese Patent Application Laid-Open No. 2013-13256, the vibration power generation of FIG. 1 is performed. Element 1 is completed.
 本実施の形態の振動発電素子1では、固定部11、可動部12および弾性支持部13をシリコン基板により形成し、固定部11および弾性支持部13をガラス基板により形成されたベース部10に固定する構成とした。そのため、特許文献1に記載の静電型デバイスのように高価なSOI基板を用いていないので、コスト低減を図ることができる。 In the vibration power generation element 1 of the present embodiment, the fixed portion 11, the movable portion 12, and the elastic support portion 13 are formed of a silicon substrate, and the fixed portion 11 and the elastic support portion 13 are fixed to the base portion 10 formed of the glass substrate. It was configured to be. Therefore, unlike the electrostatic device described in Patent Document 1, an expensive SOI substrate is not used, so that the cost can be reduced.
(比較例)
 図14は比較例を示すである。比較例の振動発電素子50は、SOI基板を用いて形成される。振動発電素子50の固定部51、可動部52および不図示の弾性支持部13はSOI基板の上部シリコン層である活性層61に形成され、ベース部53は下部シリコン層である支持層63に形成される。可動部52の櫛歯電極にはエレクトレット520が形成されている。活性層61と支持層63とはSiOから成るBOX層62を介して設けられているので、活性層61と支持層63との間に生じる寄生容量Cs1,Cs2が、振動発電素子50の発電電力に悪影響を与えることになる。
(Comparison example)
FIG. 14 shows a comparative example. The vibration power generation element 50 of the comparative example is formed by using an SOI substrate. The fixed portion 51, the movable portion 52, and the elastic support portion 13 (not shown) of the vibration power generation element 50 are formed on the active layer 61 which is the upper silicon layer of the SOI substrate, and the base portion 53 is formed on the support layer 63 which is the lower silicon layer. Will be done. An electret 520 is formed on the comb tooth electrode of the movable portion 52. Since the active layer 61 and the support layer 63 are provided via the BOX layer 62 made of SiO 2 , the parasitic capacitances Cs1 and Cs2 generated between the active layer 61 and the support layer 63 generate power for the vibration power generation element 50. It will adversely affect the power generation.
 固定部51に対して可動部52が図示左右方向に振動すると、固定部51および可動部52の櫛歯電極間の静電容量C1,C2が変化し、静電容量C1,C2の変化による交流電流が端子電流I1として出力される。出力された端子電流I1は、一部の電流I3が寄生容量Cs1,Cs2を流れ、残りの電流I2が振動発電素子50に接続された負荷抵抗Rを流れる。 When the movable portion 52 vibrates with respect to the fixed portion 51 in the left-right direction shown in the drawing, the capacitances C1 and C2 between the fixed portion 51 and the comb tooth electrodes of the movable portion 52 change, and alternating current due to the change in the capacitances C1 and C2. The current is output as the terminal current I1. In the output terminal current I1, a part of the current I3 flows through the parasitic capacitances Cs1 and Cs2, and the remaining current I2 flows through the load resistor R connected to the vibration power generation element 50.
 図15は振動発電素子50による発電のシミュレーション結果を示したものであり、図15(a)は電流I2,I3を示し、図15(b)は負荷抵抗Rで消費される電力W2および寄生容量Cs1に出入りする電力W3を示す。寄生容量Cs1の電流は端子電圧に対して位相が90度進んでいる。寄生容量Cs1に出入りする電力W3は外部に取り出されない無効電力である。寄生容量Cs2に出入りする電力についても同様である。寄生容量Cs1,Cs2の増加により無効電力W3は増加し、負荷抵抗Rで消費される電力である有効電力W2は減少する。 FIG. 15 shows the simulation result of power generation by the vibration power generation element 50, FIG. 15A shows the currents I2 and I3, and FIG. 15B shows the power W2 and the parasitic capacitance consumed by the load resistor R. The electric power W3 that goes in and out of Cs1 is shown. The phase of the current of the parasitic capacitance Cs1 is 90 degrees ahead of the terminal voltage. The power W3 that goes in and out of the parasitic capacitance Cs1 is reactive power that is not taken out to the outside. The same applies to the electric power that goes in and out of the parasitic capacitance Cs2. As the parasitic capacitances Cs1 and Cs2 increase, the reactive power W3 increases, and the active power W2, which is the power consumed by the load resistor R, decreases.
 一方、本実施の形態の振動発電素子1では、シリコンで形成された固定部11および可動部12はガラス基板で形成したベース部10に接合されているので、寄生容量の発生を防止することができる。その結果、寄生容量に起因する無効電力の発生を防止することができ、発電された電力を無駄なく負荷抵抗Rにより消費することができる。 On the other hand, in the vibration power generation element 1 of the present embodiment, since the fixed portion 11 and the movable portion 12 formed of silicon are joined to the base portion 10 formed of the glass substrate, it is possible to prevent the occurrence of parasitic capacitance. it can. As a result, it is possible to prevent the generation of reactive power due to the parasitic capacitance, and the generated power can be consumed by the load resistor R without waste.
 なお、SOI基板から振動発電素子50を形成した場合であっても、BOX層の厚さを従来よりも厚くして寄生容量を小さくすることにより、ガラス基板のベース部10を採用する場合と同様に無効電力の低減を図ることができる。 Even when the vibration power generation element 50 is formed from the SOI substrate, it is the same as the case where the base portion 10 of the glass substrate is adopted by making the thickness of the BOX layer thicker than before and reducing the parasitic capacitance. It is possible to reduce reactive power.
 上述した実施の形態の作用効果をまとめると以下のようになる。
(1)静電型デバイスである振動発電素子1は、図1に示すように、固定部11と、可動部12と、可動部12と一体に形成され、可動部12を弾性支持する弾性支持部13と、固定部11および弾性支持部13が互いに分離状態で陽極接合されているガラス製のベース部10と、を備える。そのため、SOI基板を用いて製作される振動発電素子50に比べてコスト低減を図ることができる。
The effects of the above-described embodiments can be summarized as follows.
(1) As shown in FIG. 1, the vibration power generation element 1 which is an electrostatic device is formed integrally with the fixed portion 11, the movable portion 12, and the movable portion 12, and is elastically supported to elastically support the movable portion 12. A portion 13 and a glass base portion 10 in which the fixing portion 11 and the elastic support portion 13 are anodic-bonded in a separated state are provided. Therefore, the cost can be reduced as compared with the vibration power generation element 50 manufactured by using the SOI substrate.
 なお、上述した実施の形態では、静電型デバイスである振動発電素子1を例に説明したが、振動発電素子1に限らず、特許文献1に記載のようなアクチュエータやセンサ等にも適用することができる。すなわち、アクチュエータやセンサをシリコン基板から製作し、それらをガラス製のベース部で支持するような構成とする。そうすることで、コスト低減に加えて寄生容量の抑制も図ることができる。なお、電気伝導性を有しガラス基板との線膨張係数が十分に一致すれば、シリコン基板に限らずその他のガラス基板やシリコン薄膜を成膜したガラス基板などを用いてアクチュエータやセンサ等を形成しても良い。 In the above-described embodiment, the vibration power generation element 1 which is an electrostatic device has been described as an example, but it is applied not only to the vibration power generation element 1 but also to an actuator, a sensor, or the like as described in Patent Document 1. be able to. That is, the actuator and the sensor are manufactured from a silicon substrate, and they are supported by a glass base portion. By doing so, in addition to cost reduction, it is possible to suppress parasitic capacitance. If it has electrical conductivity and the coefficient of linear expansion is sufficiently consistent with that of the glass substrate, an actuator, a sensor, or the like can be formed not only by using a silicon substrate but also by using another glass substrate or a glass substrate on which a silicon thin film is formed. You may.
(2)さらに、固定部11および可動部12をシリコンで形成し、固定部11および可動部12の少なくとも一方にエレクトレットを形成するようにしても良い。 (2) Further, the fixed portion 11 and the movable portion 12 may be formed of silicon, and an electret may be formed on at least one of the fixed portion 11 and the movable portion 12.
(3)図1に示す静電型デバイスである振動発電素子1は、固定部11には固定電極である櫛歯電極110が形成され、可動部12は櫛歯電極110と対向する可動電極である櫛歯電極120が形成され、さらに固定部11および可動部12の少なくとも一方にエレクトレットが形成され、固定部11に対する可動部12の変位により櫛歯電極110と櫛歯電極120との静電容量が変化して発電を行う。ベース部10がガラス製であるため、上述したコスト低減に加えて、図14に示すSOI基板を用いた振動発電素子50における寄生容量Cs1,Cs2の発生を防止でき、寄生容量に起因する無効電力W3の発生を防止することができる。 (3) In the vibration power generation element 1 which is an electrostatic device shown in FIG. 1, a comb tooth electrode 110 which is a fixed electrode is formed in a fixed portion 11, and a movable portion 12 is a movable electrode facing the comb tooth electrode 110. A certain comb tooth electrode 120 is formed, and an electlet is further formed on at least one of the fixed portion 11 and the movable portion 12, and the electrostatic capacitance between the comb tooth electrode 110 and the comb tooth electrode 120 due to the displacement of the movable portion 12 with respect to the fixed portion 11. Changes to generate power. Since the base portion 10 is made of glass, in addition to the cost reduction described above, it is possible to prevent the generation of parasitic capacitances Cs1 and Cs2 in the vibration power generation element 50 using the SOI substrate shown in FIG. 14, and the reactive power due to the parasitic capacitance can be prevented. It is possible to prevent the occurrence of W3.
(4)上述した静電型デバイスの製造方法では、固定部11、可動部12および弾性支持部13を基板、例えばSi基板200、に一体状態で形成し、ガラス製のベース部10とSi基板200とを陽極接合して固定部11および弾性支持部13をガラス製のベース部10に固定し、Si基板200をエッチングして固定部11と弾性支持部13とを互いに分離して、固定部11と可動部12とを電気的に分離する。 (4) In the method for manufacturing an electrostatic device described above, the fixed portion 11, the movable portion 12, and the elastic support portion 13 are integrally formed with a substrate, for example, a Si substrate 200, and a glass base portion 10 and a Si substrate are formed. The fixed portion 11 and the elastic support portion 13 are fixed to the glass base portion 10 by anodizing the 200, and the Si substrate 200 is etched to separate the fixed portion 11 and the elastic support portion 13 from each other to separate the fixed portion 11 and the elastic support portion 13. The 11 and the movable portion 12 are electrically separated.
 このように固定部11と弾性支持部13とを分離する前に、固定部11,可動部12および弾性支持部13が一体状態となったSi基板200をベース部10に陽極接合し、陽極接合後に分離するようにしているので、ウエハレベルの固定部11、可動部12および弾性支持部13の位置関係を維持した状態で、それらをベース部10に接合することができる。 Before separating the fixed portion 11 and the elastic support portion 13 in this way, the Si substrate 200 in which the fixed portion 11, the movable portion 12, and the elastic support portion 13 are integrated is anodic-bonded to the base portion 10 and anodic-bonded. Since they are separated later, they can be joined to the base portion 10 while maintaining the positional relationship between the wafer-level fixed portion 11, the movable portion 12, and the elastic support portion 13.
 本発明は上述した実施の形態の内容に限定されるものではなく、本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。 The present invention is not limited to the contents of the above-described embodiments, and other aspects considered within the scope of the technical idea of the present invention are also included within the scope of the present invention.
 次の優先権基礎出願および公開公報の開示内容は引用文としてここに組み込まれる。
 日本国特願2019-106230号(2019年6月6日出願)
 日本国特開2013-13256号公報
The disclosures of the following priority basic applications and publications are incorporated herein by reference.
Japanese Patent Application No. 2019-106230 (filed on June 6, 2019)
Japanese Patent Application Laid-Open No. 2013-13256
 1,50…振動発電素子、10,53…ベース部、11,51…固定部、12,52…可動部、13…弾性支持部、13a…固定領域、13b…弾性部、40…ヒータ、110,120…櫛歯電極、200…Si基板、300…ガラス基板、Cs1,Cs2…寄生容量 1,50 ... Vibration power generation element, 10,53 ... Base part, 11,51 ... Fixed part, 12,52 ... Movable part, 13 ... Elastic support part, 13a ... Fixed area, 13b ... Elastic part, 40 ... Heater, 110 , 120 ... comb tooth electrode, 200 ... Si substrate, 300 ... glass substrate, Cs1, Cs2 ... parasitic capacitance

Claims (4)

  1.  固定部と、
     可動部と、
     前記可動部と一体に形成され、前記可動部を弾性支持する弾性支持部と、
     前記固定部および前記弾性支持部が互いに分離状態で陽極接合されているガラス製のベース部と、を備える静電型デバイス。
    Fixed part and
    Moving parts and
    An elastic support portion that is formed integrally with the movable portion and elastically supports the movable portion,
    An electrostatic device comprising a glass base portion in which the fixing portion and the elastic support portion are anode-bonded in a separated state from each other.
  2.  請求項1に記載の静電型デバイスにおいて、
     前記固定部および前記可動部はシリコンで形成され、
     前記固定部および前記可動部の少なくとも一方にエレクトレットが形成されている、静電型デバイス。
    In the electrostatic device according to claim 1,
    The fixed portion and the movable portion are made of silicon.
    An electrostatic device in which an electret is formed on at least one of the fixed portion and the movable portion.
  3.  請求項2に記載の静電型デバイスにおいて、
     前記固定部には固定電極が形成され、
     前記可動部には前記固定電極と対向する可動電極が形成され、
     前記固定部に対する前記可動部の変位により前記固定電極と前記可動電極との静電容量が変化して発電を行う、静電型デバイス。
    In the electrostatic device according to claim 2,
    A fixed electrode is formed on the fixed portion,
    A movable electrode facing the fixed electrode is formed on the movable portion.
    An electrostatic device that generates electricity by changing the capacitance between the fixed electrode and the movable electrode due to the displacement of the movable portion with respect to the fixed portion.
  4.  請求項1から請求項3までのいずれか一項に記載の静電型デバイスを製造するための静電型デバイス製造方法であって、
     前記固定部、前記可動部および前記弾性支持部を基板に一体状態で形成し、
     前記ベース部と前記基板とを陽極接合して前記固定部および前記弾性支持部を前記ベース部に固定し、
     前記基板をエッチングして前記固定部と前記弾性支持部とを互いに分離する、静電型デバイス製造方法。
    A method for manufacturing an electrostatic device for manufacturing the electrostatic device according to any one of claims 1 to 3.
    The fixed portion, the movable portion, and the elastic support portion are integrally formed on the substrate.
    The base portion and the substrate are anode-bonded to fix the fixing portion and the elastic support portion to the base portion.
    A method for manufacturing an electrostatic device, in which the substrate is etched to separate the fixed portion and the elastic support portion from each other.
PCT/JP2020/012458 2019-06-06 2020-03-19 Electrostatic device and method for manufacturing electrostatic device WO2020246115A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/615,153 US20220224253A1 (en) 2019-06-06 2020-03-19 Electrostatic Device and Method for Manufacturing Electrostatic Device
EP20819353.2A EP3965284A4 (en) 2019-06-06 2020-03-19 Electrostatic device and method for manufacturing electrostatic device
CN202080040763.2A CN113924725A (en) 2019-06-06 2020-03-19 Electrostatic device and method for manufacturing electrostatic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019106230A JP2020202613A (en) 2019-06-06 2019-06-06 Electrostatic device and manufacturing method thereof
JP2019-106230 2019-06-06

Publications (1)

Publication Number Publication Date
WO2020246115A1 true WO2020246115A1 (en) 2020-12-10

Family

ID=73651995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012458 WO2020246115A1 (en) 2019-06-06 2020-03-19 Electrostatic device and method for manufacturing electrostatic device

Country Status (5)

Country Link
US (1) US20220224253A1 (en)
EP (1) EP3965284A4 (en)
JP (1) JP2020202613A (en)
CN (1) CN113924725A (en)
WO (1) WO2020246115A1 (en)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09166618A (en) * 1995-12-15 1997-06-24 Matsushita Electric Works Ltd Semiconductor acceleration sensor
US6146917A (en) * 1997-03-03 2000-11-14 Ford Motor Company Fabrication method for encapsulated micromachined structures
JP2008105162A (en) * 2006-10-27 2008-05-08 Hitachi Ltd Functional element
JP2008229823A (en) * 2007-03-23 2008-10-02 Mitsutoyo Corp Manufacturing method of mems device
JP2009045712A (en) * 2007-08-21 2009-03-05 Toshiba Corp Mems device and method of manufacturing the same
JP2009515338A (en) * 2005-11-03 2009-04-09 マキシム・インテグレーテッド・プロダクツ・インコーポレーテッド Wafer level packaging method
JP2010011547A (en) * 2008-06-24 2010-01-14 Panasonic Electric Works Co Ltd Power generation device
JP2010512548A (en) * 2006-12-12 2010-04-22 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ Micromirror actuator having encapsulation capability and method of manufacturing the same
JP2013013256A (en) 2011-06-29 2013-01-17 Aoi Electronics Co Ltd Electret film and vibration power generating element using the same
JP2013030759A (en) * 2011-06-20 2013-02-07 Tohoku Univ Packaged device, packaging method and production method of package material
JP2013250133A (en) * 2012-05-31 2013-12-12 Seiko Epson Corp Electronic device, method of manufacturing electronic device, and electronic apparatus
JP2014187354A (en) * 2013-02-21 2014-10-02 Ricoh Co Ltd Device and method of manufacturing device
JP2016059191A (en) 2014-09-11 2016-04-21 ソニー株式会社 Electrostatic device
JP2018523846A (en) * 2015-07-15 2018-08-23 テクノロジー イノベーション モメンタム ファンド(イスラエル)リミテッド パートナーシップTechnology Innovation Momentum Fund(israel)Limited Partnership Adjustable MEMS etalon
JP2019106230A (en) 2011-12-05 2019-06-27 株式会社半導体エネルギー研究所 Semiconductor device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7258010B2 (en) * 2005-03-09 2007-08-21 Honeywell International Inc. MEMS device with thinned comb fingers
JP2008046078A (en) * 2006-08-21 2008-02-28 Hitachi Ltd Micro electromechanical system element and manufacturing method thereof
JP5320625B2 (en) * 2008-10-20 2013-10-23 Towa株式会社 Actuator and manufacturing method thereof
JP2013118784A (en) * 2011-12-05 2013-06-13 Murata Mfg Co Ltd Power generator and manufacturing method of the same
WO2015019919A1 (en) * 2013-08-08 2015-02-12 アオイ電子株式会社 Actuator, shutter device, fluid control device, switch, and two-dimensional scanning sensor device
JP2016209935A (en) * 2015-04-30 2016-12-15 アオイ電子株式会社 Method for forming electret and mems device
JP6682106B2 (en) * 2015-10-02 2020-04-15 株式会社鷺宮製作所 Vibration generator

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09166618A (en) * 1995-12-15 1997-06-24 Matsushita Electric Works Ltd Semiconductor acceleration sensor
US6146917A (en) * 1997-03-03 2000-11-14 Ford Motor Company Fabrication method for encapsulated micromachined structures
JP2009515338A (en) * 2005-11-03 2009-04-09 マキシム・インテグレーテッド・プロダクツ・インコーポレーテッド Wafer level packaging method
JP2008105162A (en) * 2006-10-27 2008-05-08 Hitachi Ltd Functional element
JP2010512548A (en) * 2006-12-12 2010-04-22 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ Micromirror actuator having encapsulation capability and method of manufacturing the same
JP2008229823A (en) * 2007-03-23 2008-10-02 Mitsutoyo Corp Manufacturing method of mems device
JP2009045712A (en) * 2007-08-21 2009-03-05 Toshiba Corp Mems device and method of manufacturing the same
JP2010011547A (en) * 2008-06-24 2010-01-14 Panasonic Electric Works Co Ltd Power generation device
JP2013030759A (en) * 2011-06-20 2013-02-07 Tohoku Univ Packaged device, packaging method and production method of package material
JP2013013256A (en) 2011-06-29 2013-01-17 Aoi Electronics Co Ltd Electret film and vibration power generating element using the same
JP2019106230A (en) 2011-12-05 2019-06-27 株式会社半導体エネルギー研究所 Semiconductor device
JP2013250133A (en) * 2012-05-31 2013-12-12 Seiko Epson Corp Electronic device, method of manufacturing electronic device, and electronic apparatus
JP2014187354A (en) * 2013-02-21 2014-10-02 Ricoh Co Ltd Device and method of manufacturing device
JP2016059191A (en) 2014-09-11 2016-04-21 ソニー株式会社 Electrostatic device
JP2018523846A (en) * 2015-07-15 2018-08-23 テクノロジー イノベーション モメンタム ファンド(イスラエル)リミテッド パートナーシップTechnology Innovation Momentum Fund(israel)Limited Partnership Adjustable MEMS etalon

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3965284A4

Also Published As

Publication number Publication date
EP3965284A4 (en) 2023-02-08
CN113924725A (en) 2022-01-11
EP3965284A1 (en) 2022-03-09
US20220224253A1 (en) 2022-07-14
JP2020202613A (en) 2020-12-17

Similar Documents

Publication Publication Date Title
JP5305797B2 (en) Electrostatic induction power generation device and manufacturing method thereof
US10972071B2 (en) Resonator device
TW202104065A (en) Mems having a large fluidically effective surface
CN109478876A (en) Resonator and resonance device
WO2020246115A1 (en) Electrostatic device and method for manufacturing electrostatic device
JP6841433B2 (en) Power generation element
JP6123613B2 (en) Physical quantity sensor and manufacturing method thereof
CN113316891A (en) Vibration power generation element and method for manufacturing vibration power generation element
US10756651B2 (en) Power generating element and power generating device
WO2020246116A1 (en) Electrostatic device, electrostatic device intermediate body and production method
JP5545410B2 (en) Electronic device having variable capacitance element and manufacturing method thereof
WO2020153362A1 (en) Vibration power generation element
JP2010509086A (en) Charging guard using Paschen stacking
JP2014230398A (en) Electrostatic transformer
JP2002373829A (en) Variable capacitor
WO2021070946A1 (en) Mems element and vibration power generation device
JP2009212451A (en) Varactor
US20090284101A1 (en) Device for Converting Mechanical Energy Into Electrical Energy, and Method for Operating Said Device
JP2021136704A (en) MEMS element and vibration power generation device
JP2020021780A (en) Electrostatic chuck
JP2019180236A (en) Electret element, electromechanical transducer, and manufacturing method of electret element
JP2020022038A (en) MEMS microphone
JPH097889A (en) Variable capacitor
JPH07170762A (en) Layered expansion actuator and manufacture thereof
JP2014170992A (en) Method of manufacturing vibrator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20819353

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020819353

Country of ref document: EP

Effective date: 20211201